block: pass gfp_mask and flags to sb_issue_discard
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c
NS
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
ce8e922c 265 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 266
1fa40b01 267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
268 uint i;
269
73c77e2c 270 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
1da177e4 273
948ecdb4
NS
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
1fa40b01
CH
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
948ecdb4
NS
279 page_cache_release(page);
280 }
1da177e4 281 }
3fc98b1a 282 _xfs_buf_free_pages(bp);
ce8e922c 283 xfs_buf_deallocate(bp);
1da177e4
LT
284}
285
286/*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289STATIC int
ce8e922c 290_xfs_buf_lookup_pages(
1da177e4
LT
291 xfs_buf_t *bp,
292 uint flags)
293{
ce8e922c
NS
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
1da177e4 297 size_t nbytes, offset;
ce8e922c 298 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
299 unsigned short page_count, i;
300 pgoff_t first;
204ab25f 301 xfs_off_t end;
1da177e4
LT
302 int error;
303
ce8e922c
NS
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 306
ce8e922c 307 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
308 if (unlikely(error))
309 return error;
ce8e922c 310 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 311
ce8e922c
NS
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 314
ce8e922c 315 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
ce8e922c
NS
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
6ab455ee
CH
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
1da177e4
LT
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
34a622b2 339 __func__, gfp_mask);
1da177e4 340
ce8e922c 341 XFS_STATS_INC(xb_page_retries);
7f8275d0 342 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 343 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
344 goto retry;
345 }
346
ce8e922c 347 XFS_STATS_INC(xb_page_found);
1da177e4
LT
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
948ecdb4 352 ASSERT(!PagePrivate(page));
1da177e4
LT
353 if (!PageUptodate(page)) {
354 page_count--;
6ab455ee
CH
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
1da177e4
LT
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
ce8e922c 364 bp->b_pages[i] = page;
1da177e4
LT
365 offset = 0;
366 }
367
6ab455ee
CH
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
ce8e922c
NS
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
1da177e4 375
1da177e4
LT
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if nessecary.
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
387 /* A single page buffer is always mappable */
ce8e922c
NS
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
8a262e57
AE
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
ce8e922c 394 if (unlikely(bp->b_addr == NULL))
1da177e4 395 return -ENOMEM;
ce8e922c
NS
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
398 }
399
400 return 0;
401}
402
403/*
404 * Finding and Reading Buffers
405 */
406
407/*
ce8e922c 408 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415xfs_buf_t *
ce8e922c 416_xfs_buf_find(
1da177e4 417 xfs_buftarg_t *btp, /* block device target */
204ab25f 418 xfs_off_t ioff, /* starting offset of range */
1da177e4 419 size_t isize, /* length of range */
ce8e922c
NS
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
1da177e4 422{
204ab25f 423 xfs_off_t range_base;
1da177e4
LT
424 size_t range_length;
425 xfs_bufhash_t *hash;
ce8e922c 426 xfs_buf_t *bp, *n;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
ce8e922c
NS
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
1da177e4 443 /*
ce8e922c 444 * If we look at something, bring it to the
1da177e4
LT
445 * front of the list for next time.
446 */
ce8e922c
NS
447 atomic_inc(&bp->b_hold);
448 list_move(&bp->b_hash_list, &hash->bh_list);
1da177e4
LT
449 goto found;
450 }
451 }
452
453 /* No match found */
ce8e922c
NS
454 if (new_bp) {
455 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 456 range_length, flags);
ce8e922c
NS
457 new_bp->b_hash = hash;
458 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 459 } else {
ce8e922c 460 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
461 }
462
463 spin_unlock(&hash->bh_lock);
ce8e922c 464 return new_bp;
1da177e4
LT
465
466found:
467 spin_unlock(&hash->bh_lock);
468
469 /* Attempt to get the semaphore without sleeping,
470 * if this does not work then we need to drop the
471 * spinlock and do a hard attempt on the semaphore.
472 */
ce8e922c
NS
473 if (down_trylock(&bp->b_sema)) {
474 if (!(flags & XBF_TRYLOCK)) {
1da177e4 475 /* wait for buffer ownership */
ce8e922c
NS
476 xfs_buf_lock(bp);
477 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
478 } else {
479 /* We asked for a trylock and failed, no need
480 * to look at file offset and length here, we
ce8e922c
NS
481 * know that this buffer at least overlaps our
482 * buffer and is locked, therefore our buffer
483 * either does not exist, or is this buffer.
1da177e4 484 */
ce8e922c
NS
485 xfs_buf_rele(bp);
486 XFS_STATS_INC(xb_busy_locked);
487 return NULL;
1da177e4
LT
488 }
489 } else {
490 /* trylock worked */
ce8e922c 491 XB_SET_OWNER(bp);
1da177e4
LT
492 }
493
ce8e922c
NS
494 if (bp->b_flags & XBF_STALE) {
495 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
496 bp->b_flags &= XBF_MAPPED;
2f926587 497 }
0b1b213f
CH
498
499 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
500 XFS_STATS_INC(xb_get_locked);
501 return bp;
1da177e4
LT
502}
503
504/*
ce8e922c 505 * Assembles a buffer covering the specified range.
1da177e4
LT
506 * Storage in memory for all portions of the buffer will be allocated,
507 * although backing storage may not be.
508 */
509xfs_buf_t *
6ad112bf 510xfs_buf_get(
1da177e4 511 xfs_buftarg_t *target,/* target for buffer */
204ab25f 512 xfs_off_t ioff, /* starting offset of range */
1da177e4 513 size_t isize, /* length of range */
ce8e922c 514 xfs_buf_flags_t flags)
1da177e4 515{
ce8e922c 516 xfs_buf_t *bp, *new_bp;
1da177e4
LT
517 int error = 0, i;
518
ce8e922c
NS
519 new_bp = xfs_buf_allocate(flags);
520 if (unlikely(!new_bp))
1da177e4
LT
521 return NULL;
522
ce8e922c
NS
523 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
524 if (bp == new_bp) {
525 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
526 if (error)
527 goto no_buffer;
528 } else {
ce8e922c
NS
529 xfs_buf_deallocate(new_bp);
530 if (unlikely(bp == NULL))
1da177e4
LT
531 return NULL;
532 }
533
ce8e922c
NS
534 for (i = 0; i < bp->b_page_count; i++)
535 mark_page_accessed(bp->b_pages[i]);
1da177e4 536
ce8e922c
NS
537 if (!(bp->b_flags & XBF_MAPPED)) {
538 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
539 if (unlikely(error)) {
540 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 541 __func__);
1da177e4
LT
542 goto no_buffer;
543 }
544 }
545
ce8e922c 546 XFS_STATS_INC(xb_get);
1da177e4
LT
547
548 /*
549 * Always fill in the block number now, the mapped cases can do
550 * their own overlay of this later.
551 */
ce8e922c
NS
552 bp->b_bn = ioff;
553 bp->b_count_desired = bp->b_buffer_length;
1da177e4 554
0b1b213f 555 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 556 return bp;
1da177e4
LT
557
558 no_buffer:
ce8e922c
NS
559 if (flags & (XBF_LOCK | XBF_TRYLOCK))
560 xfs_buf_unlock(bp);
561 xfs_buf_rele(bp);
1da177e4
LT
562 return NULL;
563}
564
5d765b97
CH
565STATIC int
566_xfs_buf_read(
567 xfs_buf_t *bp,
568 xfs_buf_flags_t flags)
569{
570 int status;
571
5d765b97
CH
572 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
573 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
574
575 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
576 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
577 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
578 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
579
580 status = xfs_buf_iorequest(bp);
ec53d1db
DC
581 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
582 return status;
583 return xfs_buf_iowait(bp);
5d765b97
CH
584}
585
1da177e4 586xfs_buf_t *
6ad112bf 587xfs_buf_read(
1da177e4 588 xfs_buftarg_t *target,
204ab25f 589 xfs_off_t ioff,
1da177e4 590 size_t isize,
ce8e922c 591 xfs_buf_flags_t flags)
1da177e4 592{
ce8e922c
NS
593 xfs_buf_t *bp;
594
595 flags |= XBF_READ;
596
6ad112bf 597 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 598 if (bp) {
0b1b213f
CH
599 trace_xfs_buf_read(bp, flags, _RET_IP_);
600
ce8e922c 601 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 602 XFS_STATS_INC(xb_get_read);
5d765b97 603 _xfs_buf_read(bp, flags);
ce8e922c 604 } else if (flags & XBF_ASYNC) {
1da177e4
LT
605 /*
606 * Read ahead call which is already satisfied,
607 * drop the buffer
608 */
609 goto no_buffer;
610 } else {
1da177e4 611 /* We do not want read in the flags */
ce8e922c 612 bp->b_flags &= ~XBF_READ;
1da177e4
LT
613 }
614 }
615
ce8e922c 616 return bp;
1da177e4
LT
617
618 no_buffer:
ce8e922c
NS
619 if (flags & (XBF_LOCK | XBF_TRYLOCK))
620 xfs_buf_unlock(bp);
621 xfs_buf_rele(bp);
1da177e4
LT
622 return NULL;
623}
624
1da177e4 625/*
ce8e922c
NS
626 * If we are not low on memory then do the readahead in a deadlock
627 * safe manner.
1da177e4
LT
628 */
629void
ce8e922c 630xfs_buf_readahead(
1da177e4 631 xfs_buftarg_t *target,
204ab25f 632 xfs_off_t ioff,
1da177e4 633 size_t isize,
ce8e922c 634 xfs_buf_flags_t flags)
1da177e4
LT
635{
636 struct backing_dev_info *bdi;
637
ce8e922c 638 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
639 if (bdi_read_congested(bdi))
640 return;
641
ce8e922c 642 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
6ad112bf 643 xfs_buf_read(target, ioff, isize, flags);
1da177e4
LT
644}
645
646xfs_buf_t *
ce8e922c 647xfs_buf_get_empty(
1da177e4
LT
648 size_t len,
649 xfs_buftarg_t *target)
650{
ce8e922c 651 xfs_buf_t *bp;
1da177e4 652
ce8e922c
NS
653 bp = xfs_buf_allocate(0);
654 if (bp)
655 _xfs_buf_initialize(bp, target, 0, len, 0);
656 return bp;
1da177e4
LT
657}
658
659static inline struct page *
660mem_to_page(
661 void *addr)
662{
9e2779fa 663 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
664 return virt_to_page(addr);
665 } else {
666 return vmalloc_to_page(addr);
667 }
668}
669
670int
ce8e922c
NS
671xfs_buf_associate_memory(
672 xfs_buf_t *bp,
1da177e4
LT
673 void *mem,
674 size_t len)
675{
676 int rval;
677 int i = 0;
d1afb678
LM
678 unsigned long pageaddr;
679 unsigned long offset;
680 size_t buflen;
1da177e4
LT
681 int page_count;
682
d1afb678
LM
683 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
684 offset = (unsigned long)mem - pageaddr;
685 buflen = PAGE_CACHE_ALIGN(len + offset);
686 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
687
688 /* Free any previous set of page pointers */
ce8e922c
NS
689 if (bp->b_pages)
690 _xfs_buf_free_pages(bp);
1da177e4 691
ce8e922c
NS
692 bp->b_pages = NULL;
693 bp->b_addr = mem;
1da177e4 694
36fae17a 695 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
696 if (rval)
697 return rval;
698
ce8e922c 699 bp->b_offset = offset;
d1afb678
LM
700
701 for (i = 0; i < bp->b_page_count; i++) {
702 bp->b_pages[i] = mem_to_page((void *)pageaddr);
703 pageaddr += PAGE_CACHE_SIZE;
1da177e4 704 }
1da177e4 705
d1afb678
LM
706 bp->b_count_desired = len;
707 bp->b_buffer_length = buflen;
ce8e922c 708 bp->b_flags |= XBF_MAPPED;
6ab455ee 709 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
710
711 return 0;
712}
713
714xfs_buf_t *
ce8e922c 715xfs_buf_get_noaddr(
1da177e4
LT
716 size_t len,
717 xfs_buftarg_t *target)
718{
1fa40b01
CH
719 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
720 int error, i;
1da177e4 721 xfs_buf_t *bp;
1da177e4 722
ce8e922c 723 bp = xfs_buf_allocate(0);
1da177e4
LT
724 if (unlikely(bp == NULL))
725 goto fail;
ce8e922c 726 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 727
1fa40b01
CH
728 error = _xfs_buf_get_pages(bp, page_count, 0);
729 if (error)
1da177e4
LT
730 goto fail_free_buf;
731
1fa40b01
CH
732 for (i = 0; i < page_count; i++) {
733 bp->b_pages[i] = alloc_page(GFP_KERNEL);
734 if (!bp->b_pages[i])
735 goto fail_free_mem;
1da177e4 736 }
1fa40b01 737 bp->b_flags |= _XBF_PAGES;
1da177e4 738
1fa40b01
CH
739 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
740 if (unlikely(error)) {
741 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 742 __func__);
1da177e4 743 goto fail_free_mem;
1fa40b01 744 }
1da177e4 745
ce8e922c 746 xfs_buf_unlock(bp);
1da177e4 747
0b1b213f 748 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
1da177e4 749 return bp;
1fa40b01 750
1da177e4 751 fail_free_mem:
1fa40b01
CH
752 while (--i >= 0)
753 __free_page(bp->b_pages[i]);
ca165b88 754 _xfs_buf_free_pages(bp);
1da177e4 755 fail_free_buf:
ca165b88 756 xfs_buf_deallocate(bp);
1da177e4
LT
757 fail:
758 return NULL;
759}
760
761/*
1da177e4
LT
762 * Increment reference count on buffer, to hold the buffer concurrently
763 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
764 * Must hold the buffer already to call this function.
765 */
766void
ce8e922c
NS
767xfs_buf_hold(
768 xfs_buf_t *bp)
1da177e4 769{
0b1b213f 770 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 771 atomic_inc(&bp->b_hold);
1da177e4
LT
772}
773
774/*
ce8e922c
NS
775 * Releases a hold on the specified buffer. If the
776 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
777 */
778void
ce8e922c
NS
779xfs_buf_rele(
780 xfs_buf_t *bp)
1da177e4 781{
ce8e922c 782 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 783
0b1b213f 784 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 785
fad3aa1e
NS
786 if (unlikely(!hash)) {
787 ASSERT(!bp->b_relse);
788 if (atomic_dec_and_test(&bp->b_hold))
789 xfs_buf_free(bp);
790 return;
791 }
792
3790689f 793 ASSERT(atomic_read(&bp->b_hold) > 0);
ce8e922c
NS
794 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
795 if (bp->b_relse) {
796 atomic_inc(&bp->b_hold);
1da177e4 797 spin_unlock(&hash->bh_lock);
ce8e922c
NS
798 (*(bp->b_relse)) (bp);
799 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 800 spin_unlock(&hash->bh_lock);
1da177e4 801 } else {
ce8e922c
NS
802 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
803 list_del_init(&bp->b_hash_list);
1da177e4 804 spin_unlock(&hash->bh_lock);
ce8e922c 805 xfs_buf_free(bp);
1da177e4
LT
806 }
807 }
808}
809
810
811/*
812 * Mutual exclusion on buffers. Locking model:
813 *
814 * Buffers associated with inodes for which buffer locking
815 * is not enabled are not protected by semaphores, and are
816 * assumed to be exclusively owned by the caller. There is a
817 * spinlock in the buffer, used by the caller when concurrent
818 * access is possible.
819 */
820
821/*
ce8e922c
NS
822 * Locks a buffer object, if it is not already locked.
823 * Note that this in no way locks the underlying pages, so it is only
824 * useful for synchronizing concurrent use of buffer objects, not for
825 * synchronizing independent access to the underlying pages.
1da177e4
LT
826 */
827int
ce8e922c
NS
828xfs_buf_cond_lock(
829 xfs_buf_t *bp)
1da177e4
LT
830{
831 int locked;
832
ce8e922c 833 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 834 if (locked)
ce8e922c 835 XB_SET_OWNER(bp);
0b1b213f
CH
836
837 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 838 return locked ? 0 : -EBUSY;
1da177e4
LT
839}
840
1da177e4 841int
ce8e922c
NS
842xfs_buf_lock_value(
843 xfs_buf_t *bp)
1da177e4 844{
adaa693b 845 return bp->b_sema.count;
1da177e4 846}
1da177e4
LT
847
848/*
ce8e922c
NS
849 * Locks a buffer object.
850 * Note that this in no way locks the underlying pages, so it is only
851 * useful for synchronizing concurrent use of buffer objects, not for
852 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
853 *
854 * If we come across a stale, pinned, locked buffer, we know that we
855 * are being asked to lock a buffer that has been reallocated. Because
856 * it is pinned, we know that the log has not been pushed to disk and
857 * hence it will still be locked. Rather than sleeping until someone
858 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 859 */
ce8e922c
NS
860void
861xfs_buf_lock(
862 xfs_buf_t *bp)
1da177e4 863{
0b1b213f
CH
864 trace_xfs_buf_lock(bp, _RET_IP_);
865
ed3b4d6c
DC
866 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
867 xfs_log_force(bp->b_mount, 0);
ce8e922c
NS
868 if (atomic_read(&bp->b_io_remaining))
869 blk_run_address_space(bp->b_target->bt_mapping);
870 down(&bp->b_sema);
871 XB_SET_OWNER(bp);
0b1b213f
CH
872
873 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
874}
875
876/*
ce8e922c 877 * Releases the lock on the buffer object.
2f926587 878 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 879 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
880 * take a reference for the delwri queue because the unlocker is going to
881 * drop their's and they don't know we just queued it.
1da177e4
LT
882 */
883void
ce8e922c
NS
884xfs_buf_unlock(
885 xfs_buf_t *bp)
1da177e4 886{
ce8e922c
NS
887 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
888 atomic_inc(&bp->b_hold);
889 bp->b_flags |= XBF_ASYNC;
890 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
891 }
892
ce8e922c
NS
893 XB_CLEAR_OWNER(bp);
894 up(&bp->b_sema);
0b1b213f
CH
895
896 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
897}
898
ce8e922c
NS
899STATIC void
900xfs_buf_wait_unpin(
901 xfs_buf_t *bp)
1da177e4
LT
902{
903 DECLARE_WAITQUEUE (wait, current);
904
ce8e922c 905 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
906 return;
907
ce8e922c 908 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
909 for (;;) {
910 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 911 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 912 break;
ce8e922c
NS
913 if (atomic_read(&bp->b_io_remaining))
914 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
915 schedule();
916 }
ce8e922c 917 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
918 set_current_state(TASK_RUNNING);
919}
920
921/*
922 * Buffer Utility Routines
923 */
924
1da177e4 925STATIC void
ce8e922c 926xfs_buf_iodone_work(
c4028958 927 struct work_struct *work)
1da177e4 928{
c4028958
DH
929 xfs_buf_t *bp =
930 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 931
0bfefc46
DC
932 /*
933 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
934 * ordered flag and reissue them. Because we can't tell the higher
935 * layers directly that they should not issue ordered I/O anymore, they
73f6aa4d 936 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
0bfefc46
DC
937 */
938 if ((bp->b_error == EOPNOTSUPP) &&
939 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
0b1b213f 940 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
0bfefc46 941 bp->b_flags &= ~XBF_ORDERED;
73f6aa4d 942 bp->b_flags |= _XFS_BARRIER_FAILED;
0bfefc46
DC
943 xfs_buf_iorequest(bp);
944 } else if (bp->b_iodone)
ce8e922c
NS
945 (*(bp->b_iodone))(bp);
946 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
947 xfs_buf_relse(bp);
948}
949
950void
ce8e922c
NS
951xfs_buf_ioend(
952 xfs_buf_t *bp,
1da177e4
LT
953 int schedule)
954{
0b1b213f
CH
955 trace_xfs_buf_iodone(bp, _RET_IP_);
956
77be55a5 957 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
958 if (bp->b_error == 0)
959 bp->b_flags |= XBF_DONE;
1da177e4 960
ce8e922c 961 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 962 if (schedule) {
c4028958 963 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 964 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 965 } else {
c4028958 966 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
967 }
968 } else {
b4dd330b 969 complete(&bp->b_iowait);
1da177e4
LT
970 }
971}
972
1da177e4 973void
ce8e922c
NS
974xfs_buf_ioerror(
975 xfs_buf_t *bp,
976 int error)
1da177e4
LT
977{
978 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 979 bp->b_error = (unsigned short)error;
0b1b213f 980 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
981}
982
1da177e4 983int
64e0bc7d
CH
984xfs_bwrite(
985 struct xfs_mount *mp,
5d765b97 986 struct xfs_buf *bp)
1da177e4 987{
8c38366f 988 int error;
1da177e4 989
64e0bc7d
CH
990 bp->b_mount = mp;
991 bp->b_flags |= XBF_WRITE;
8c38366f 992 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 993
5d765b97 994 xfs_buf_delwri_dequeue(bp);
939d723b 995 xfs_bdstrat_cb(bp);
1da177e4 996
8c38366f
CH
997 error = xfs_buf_iowait(bp);
998 if (error)
999 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1000 xfs_buf_relse(bp);
64e0bc7d 1001 return error;
5d765b97 1002}
1da177e4 1003
5d765b97
CH
1004void
1005xfs_bdwrite(
1006 void *mp,
1007 struct xfs_buf *bp)
1008{
0b1b213f 1009 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1010
15ac08a8 1011 bp->b_mount = mp;
1da177e4 1012
5d765b97
CH
1013 bp->b_flags &= ~XBF_READ;
1014 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1015
1016 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1017}
1018
4e23471a
CH
1019/*
1020 * Called when we want to stop a buffer from getting written or read.
1021 * We attach the EIO error, muck with its flags, and call biodone
1022 * so that the proper iodone callbacks get called.
1023 */
1024STATIC int
1025xfs_bioerror(
1026 xfs_buf_t *bp)
1027{
1028#ifdef XFSERRORDEBUG
1029 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1030#endif
1031
1032 /*
1033 * No need to wait until the buffer is unpinned, we aren't flushing it.
1034 */
1035 XFS_BUF_ERROR(bp, EIO);
1036
1037 /*
1038 * We're calling biodone, so delete XBF_DONE flag.
1039 */
1040 XFS_BUF_UNREAD(bp);
1041 XFS_BUF_UNDELAYWRITE(bp);
1042 XFS_BUF_UNDONE(bp);
1043 XFS_BUF_STALE(bp);
1044
4e23471a
CH
1045 xfs_biodone(bp);
1046
1047 return EIO;
1048}
1049
1050/*
1051 * Same as xfs_bioerror, except that we are releasing the buffer
1052 * here ourselves, and avoiding the biodone call.
1053 * This is meant for userdata errors; metadata bufs come with
1054 * iodone functions attached, so that we can track down errors.
1055 */
1056STATIC int
1057xfs_bioerror_relse(
1058 struct xfs_buf *bp)
1059{
1060 int64_t fl = XFS_BUF_BFLAGS(bp);
1061 /*
1062 * No need to wait until the buffer is unpinned.
1063 * We aren't flushing it.
1064 *
1065 * chunkhold expects B_DONE to be set, whether
1066 * we actually finish the I/O or not. We don't want to
1067 * change that interface.
1068 */
1069 XFS_BUF_UNREAD(bp);
1070 XFS_BUF_UNDELAYWRITE(bp);
1071 XFS_BUF_DONE(bp);
1072 XFS_BUF_STALE(bp);
1073 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1074 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1075 /*
1076 * Mark b_error and B_ERROR _both_.
1077 * Lot's of chunkcache code assumes that.
1078 * There's no reason to mark error for
1079 * ASYNC buffers.
1080 */
1081 XFS_BUF_ERROR(bp, EIO);
1082 XFS_BUF_FINISH_IOWAIT(bp);
1083 } else {
1084 xfs_buf_relse(bp);
1085 }
1086
1087 return EIO;
1088}
1089
1090
1091/*
1092 * All xfs metadata buffers except log state machine buffers
1093 * get this attached as their b_bdstrat callback function.
1094 * This is so that we can catch a buffer
1095 * after prematurely unpinning it to forcibly shutdown the filesystem.
1096 */
1097int
1098xfs_bdstrat_cb(
1099 struct xfs_buf *bp)
1100{
1101 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1102 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1103 /*
1104 * Metadata write that didn't get logged but
1105 * written delayed anyway. These aren't associated
1106 * with a transaction, and can be ignored.
1107 */
1108 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1109 return xfs_bioerror_relse(bp);
1110 else
1111 return xfs_bioerror(bp);
1112 }
1113
1114 xfs_buf_iorequest(bp);
1115 return 0;
1116}
1117
1118/*
1119 * Wrapper around bdstrat so that we can stop data from going to disk in case
1120 * we are shutting down the filesystem. Typically user data goes thru this
1121 * path; one of the exceptions is the superblock.
1122 */
1123void
1124xfsbdstrat(
1125 struct xfs_mount *mp,
1126 struct xfs_buf *bp)
1127{
1128 if (XFS_FORCED_SHUTDOWN(mp)) {
1129 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1130 xfs_bioerror_relse(bp);
1131 return;
1132 }
1133
1134 xfs_buf_iorequest(bp);
1135}
1136
b8f82a4a 1137STATIC void
ce8e922c
NS
1138_xfs_buf_ioend(
1139 xfs_buf_t *bp,
1da177e4
LT
1140 int schedule)
1141{
6ab455ee
CH
1142 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1143 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1144 xfs_buf_ioend(bp, schedule);
6ab455ee 1145 }
1da177e4
LT
1146}
1147
782e3b3b 1148STATIC void
ce8e922c 1149xfs_buf_bio_end_io(
1da177e4 1150 struct bio *bio,
1da177e4
LT
1151 int error)
1152{
ce8e922c
NS
1153 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1154 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1155 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1156
cfbe5267 1157 xfs_buf_ioerror(bp, -error);
1da177e4 1158
73c77e2c
JB
1159 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1160 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1161
eedb5530 1162 do {
1da177e4
LT
1163 struct page *page = bvec->bv_page;
1164
948ecdb4 1165 ASSERT(!PagePrivate(page));
ce8e922c
NS
1166 if (unlikely(bp->b_error)) {
1167 if (bp->b_flags & XBF_READ)
eedb5530 1168 ClearPageUptodate(page);
ce8e922c 1169 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1170 SetPageUptodate(page);
1171 } else if (!PagePrivate(page) &&
ce8e922c 1172 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1173 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1174 }
1175
eedb5530
NS
1176 if (--bvec >= bio->bi_io_vec)
1177 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1178
1179 if (bp->b_flags & _XBF_PAGE_LOCKED)
1180 unlock_page(page);
eedb5530 1181 } while (bvec >= bio->bi_io_vec);
1da177e4 1182
ce8e922c 1183 _xfs_buf_ioend(bp, 1);
1da177e4 1184 bio_put(bio);
1da177e4
LT
1185}
1186
1187STATIC void
ce8e922c
NS
1188_xfs_buf_ioapply(
1189 xfs_buf_t *bp)
1da177e4 1190{
a9759f2d 1191 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1192 struct bio *bio;
ce8e922c
NS
1193 int offset = bp->b_offset;
1194 int size = bp->b_count_desired;
1195 sector_t sector = bp->b_bn;
1196 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1197
ce8e922c 1198 total_nr_pages = bp->b_page_count;
1da177e4
LT
1199 map_i = 0;
1200
ce8e922c
NS
1201 if (bp->b_flags & XBF_ORDERED) {
1202 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1203 rw = WRITE_BARRIER;
2ee1abad 1204 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1205 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1206 bp->b_flags &= ~_XBF_RUN_QUEUES;
1207 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1208 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1209 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1210 bp->b_flags &= ~_XBF_RUN_QUEUES;
1211 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1212 } else {
1213 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1214 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1215 }
1216
ce8e922c 1217 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1218 * we populate up the whole page, and hence the other metadata
1219 * in the same page. This optimization is only valid when the
ce8e922c 1220 * filesystem block size is not smaller than the page size.
1da177e4 1221 */
ce8e922c 1222 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1223 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1224 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1225 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1226 bio = bio_alloc(GFP_NOIO, 1);
1227
ce8e922c 1228 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1229 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1230 bio->bi_end_io = xfs_buf_bio_end_io;
1231 bio->bi_private = bp;
1da177e4 1232
ce8e922c 1233 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1234 size = 0;
1235
ce8e922c 1236 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1237
1238 goto submit_io;
1239 }
1240
1da177e4 1241next_chunk:
ce8e922c 1242 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1243 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1244 if (nr_pages > total_nr_pages)
1245 nr_pages = total_nr_pages;
1246
1247 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1248 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1249 bio->bi_sector = sector;
ce8e922c
NS
1250 bio->bi_end_io = xfs_buf_bio_end_io;
1251 bio->bi_private = bp;
1da177e4
LT
1252
1253 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1254 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1255
1256 if (nbytes > size)
1257 nbytes = size;
1258
ce8e922c
NS
1259 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1260 if (rbytes < nbytes)
1da177e4
LT
1261 break;
1262
1263 offset = 0;
1264 sector += nbytes >> BBSHIFT;
1265 size -= nbytes;
1266 total_nr_pages--;
1267 }
1268
1269submit_io:
1270 if (likely(bio->bi_size)) {
73c77e2c
JB
1271 if (xfs_buf_is_vmapped(bp)) {
1272 flush_kernel_vmap_range(bp->b_addr,
1273 xfs_buf_vmap_len(bp));
1274 }
1da177e4
LT
1275 submit_bio(rw, bio);
1276 if (size)
1277 goto next_chunk;
1278 } else {
ec53d1db
DC
1279 /*
1280 * if we get here, no pages were added to the bio. However,
1281 * we can't just error out here - if the pages are locked then
1282 * we have to unlock them otherwise we can hang on a later
1283 * access to the page.
1284 */
ce8e922c 1285 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1286 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1287 int i;
1288 for (i = 0; i < bp->b_page_count; i++)
1289 unlock_page(bp->b_pages[i]);
1290 }
1291 bio_put(bio);
1da177e4
LT
1292 }
1293}
1294
1da177e4 1295int
ce8e922c
NS
1296xfs_buf_iorequest(
1297 xfs_buf_t *bp)
1da177e4 1298{
0b1b213f 1299 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1300
ce8e922c
NS
1301 if (bp->b_flags & XBF_DELWRI) {
1302 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1303 return 0;
1304 }
1305
ce8e922c
NS
1306 if (bp->b_flags & XBF_WRITE) {
1307 xfs_buf_wait_unpin(bp);
1da177e4
LT
1308 }
1309
ce8e922c 1310 xfs_buf_hold(bp);
1da177e4
LT
1311
1312 /* Set the count to 1 initially, this will stop an I/O
1313 * completion callout which happens before we have started
ce8e922c 1314 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1315 */
ce8e922c
NS
1316 atomic_set(&bp->b_io_remaining, 1);
1317 _xfs_buf_ioapply(bp);
1318 _xfs_buf_ioend(bp, 0);
1da177e4 1319
ce8e922c 1320 xfs_buf_rele(bp);
1da177e4
LT
1321 return 0;
1322}
1323
1324/*
ce8e922c
NS
1325 * Waits for I/O to complete on the buffer supplied.
1326 * It returns immediately if no I/O is pending.
1327 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1328 */
1329int
ce8e922c
NS
1330xfs_buf_iowait(
1331 xfs_buf_t *bp)
1da177e4 1332{
0b1b213f
CH
1333 trace_xfs_buf_iowait(bp, _RET_IP_);
1334
ce8e922c
NS
1335 if (atomic_read(&bp->b_io_remaining))
1336 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1337 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1338
1339 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1340 return bp->b_error;
1da177e4
LT
1341}
1342
ce8e922c
NS
1343xfs_caddr_t
1344xfs_buf_offset(
1345 xfs_buf_t *bp,
1da177e4
LT
1346 size_t offset)
1347{
1348 struct page *page;
1349
ce8e922c
NS
1350 if (bp->b_flags & XBF_MAPPED)
1351 return XFS_BUF_PTR(bp) + offset;
1da177e4 1352
ce8e922c
NS
1353 offset += bp->b_offset;
1354 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1355 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1356}
1357
1358/*
1da177e4
LT
1359 * Move data into or out of a buffer.
1360 */
1361void
ce8e922c
NS
1362xfs_buf_iomove(
1363 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1364 size_t boff, /* starting buffer offset */
1365 size_t bsize, /* length to copy */
b9c48649 1366 void *data, /* data address */
ce8e922c 1367 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1368{
1369 size_t bend, cpoff, csize;
1370 struct page *page;
1371
1372 bend = boff + bsize;
1373 while (boff < bend) {
ce8e922c
NS
1374 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1375 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1376 csize = min_t(size_t,
ce8e922c 1377 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1378
1379 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1380
1381 switch (mode) {
ce8e922c 1382 case XBRW_ZERO:
1da177e4
LT
1383 memset(page_address(page) + cpoff, 0, csize);
1384 break;
ce8e922c 1385 case XBRW_READ:
1da177e4
LT
1386 memcpy(data, page_address(page) + cpoff, csize);
1387 break;
ce8e922c 1388 case XBRW_WRITE:
1da177e4
LT
1389 memcpy(page_address(page) + cpoff, data, csize);
1390 }
1391
1392 boff += csize;
1393 data += csize;
1394 }
1395}
1396
1397/*
ce8e922c 1398 * Handling of buffer targets (buftargs).
1da177e4
LT
1399 */
1400
1401/*
ce8e922c
NS
1402 * Wait for any bufs with callbacks that have been submitted but
1403 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1404 */
1405void
1406xfs_wait_buftarg(
1407 xfs_buftarg_t *btp)
1408{
1409 xfs_buf_t *bp, *n;
1410 xfs_bufhash_t *hash;
1411 uint i;
1412
1413 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1414 hash = &btp->bt_hash[i];
1415again:
1416 spin_lock(&hash->bh_lock);
ce8e922c
NS
1417 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1418 ASSERT(btp == bp->b_target);
1419 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1420 spin_unlock(&hash->bh_lock);
2f926587
DC
1421 /*
1422 * Catch superblock reference count leaks
1423 * immediately
1424 */
ce8e922c 1425 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1426 delay(100);
1427 goto again;
1428 }
1429 }
1430 spin_unlock(&hash->bh_lock);
1431 }
1432}
1433
1434/*
ce8e922c
NS
1435 * Allocate buffer hash table for a given target.
1436 * For devices containing metadata (i.e. not the log/realtime devices)
1437 * we need to allocate a much larger hash table.
1da177e4
LT
1438 */
1439STATIC void
1440xfs_alloc_bufhash(
1441 xfs_buftarg_t *btp,
1442 int external)
1443{
1444 unsigned int i;
1445
1446 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1447 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
bdfb0430
CH
1448 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1449 sizeof(xfs_bufhash_t));
1da177e4
LT
1450 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1451 spin_lock_init(&btp->bt_hash[i].bh_lock);
1452 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1453 }
1454}
1455
1456STATIC void
1457xfs_free_bufhash(
1458 xfs_buftarg_t *btp)
1459{
bdfb0430 1460 kmem_free_large(btp->bt_hash);
1da177e4
LT
1461 btp->bt_hash = NULL;
1462}
1463
a6867a68 1464/*
ce8e922c 1465 * buftarg list for delwrite queue processing
a6867a68 1466 */
e6a0e9cd 1467static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1468static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1469
1470STATIC void
1471xfs_register_buftarg(
1472 xfs_buftarg_t *btp)
1473{
1474 spin_lock(&xfs_buftarg_lock);
1475 list_add(&btp->bt_list, &xfs_buftarg_list);
1476 spin_unlock(&xfs_buftarg_lock);
1477}
1478
1479STATIC void
1480xfs_unregister_buftarg(
1481 xfs_buftarg_t *btp)
1482{
1483 spin_lock(&xfs_buftarg_lock);
1484 list_del(&btp->bt_list);
1485 spin_unlock(&xfs_buftarg_lock);
1486}
1487
1da177e4
LT
1488void
1489xfs_free_buftarg(
b7963133
CH
1490 struct xfs_mount *mp,
1491 struct xfs_buftarg *btp)
1da177e4
LT
1492{
1493 xfs_flush_buftarg(btp, 1);
b7963133
CH
1494 if (mp->m_flags & XFS_MOUNT_BARRIER)
1495 xfs_blkdev_issue_flush(btp);
1da177e4 1496 xfs_free_bufhash(btp);
ce8e922c 1497 iput(btp->bt_mapping->host);
a6867a68 1498
ce8e922c
NS
1499 /* Unregister the buftarg first so that we don't get a
1500 * wakeup finding a non-existent task
1501 */
a6867a68
DC
1502 xfs_unregister_buftarg(btp);
1503 kthread_stop(btp->bt_task);
1504
f0e2d93c 1505 kmem_free(btp);
1da177e4
LT
1506}
1507
1da177e4
LT
1508STATIC int
1509xfs_setsize_buftarg_flags(
1510 xfs_buftarg_t *btp,
1511 unsigned int blocksize,
1512 unsigned int sectorsize,
1513 int verbose)
1514{
ce8e922c
NS
1515 btp->bt_bsize = blocksize;
1516 btp->bt_sshift = ffs(sectorsize) - 1;
1517 btp->bt_smask = sectorsize - 1;
1da177e4 1518
ce8e922c 1519 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1520 printk(KERN_WARNING
1521 "XFS: Cannot set_blocksize to %u on device %s\n",
1522 sectorsize, XFS_BUFTARG_NAME(btp));
1523 return EINVAL;
1524 }
1525
1526 if (verbose &&
1527 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1528 printk(KERN_WARNING
1529 "XFS: %u byte sectors in use on device %s. "
1530 "This is suboptimal; %u or greater is ideal.\n",
1531 sectorsize, XFS_BUFTARG_NAME(btp),
1532 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1533 }
1534
1535 return 0;
1536}
1537
1538/*
ce8e922c
NS
1539 * When allocating the initial buffer target we have not yet
1540 * read in the superblock, so don't know what sized sectors
1541 * are being used is at this early stage. Play safe.
1542 */
1da177e4
LT
1543STATIC int
1544xfs_setsize_buftarg_early(
1545 xfs_buftarg_t *btp,
1546 struct block_device *bdev)
1547{
1548 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1549 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1550}
1551
1552int
1553xfs_setsize_buftarg(
1554 xfs_buftarg_t *btp,
1555 unsigned int blocksize,
1556 unsigned int sectorsize)
1557{
1558 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1559}
1560
1561STATIC int
1562xfs_mapping_buftarg(
1563 xfs_buftarg_t *btp,
1564 struct block_device *bdev)
1565{
1566 struct backing_dev_info *bdi;
1567 struct inode *inode;
1568 struct address_space *mapping;
f5e54d6e 1569 static const struct address_space_operations mapping_aops = {
1da177e4 1570 .sync_page = block_sync_page,
e965f963 1571 .migratepage = fail_migrate_page,
1da177e4
LT
1572 };
1573
1574 inode = new_inode(bdev->bd_inode->i_sb);
1575 if (!inode) {
1576 printk(KERN_WARNING
1577 "XFS: Cannot allocate mapping inode for device %s\n",
1578 XFS_BUFTARG_NAME(btp));
1579 return ENOMEM;
1580 }
1581 inode->i_mode = S_IFBLK;
1582 inode->i_bdev = bdev;
1583 inode->i_rdev = bdev->bd_dev;
1584 bdi = blk_get_backing_dev_info(bdev);
1585 if (!bdi)
1586 bdi = &default_backing_dev_info;
1587 mapping = &inode->i_data;
1588 mapping->a_ops = &mapping_aops;
1589 mapping->backing_dev_info = bdi;
1590 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1591 btp->bt_mapping = mapping;
1da177e4
LT
1592 return 0;
1593}
1594
a6867a68
DC
1595STATIC int
1596xfs_alloc_delwrite_queue(
e2a07812
JE
1597 xfs_buftarg_t *btp,
1598 const char *fsname)
a6867a68
DC
1599{
1600 int error = 0;
1601
1602 INIT_LIST_HEAD(&btp->bt_list);
1603 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1604 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1605 btp->bt_flags = 0;
e2a07812 1606 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1607 if (IS_ERR(btp->bt_task)) {
1608 error = PTR_ERR(btp->bt_task);
1609 goto out_error;
1610 }
1611 xfs_register_buftarg(btp);
1612out_error:
1613 return error;
1614}
1615
1da177e4
LT
1616xfs_buftarg_t *
1617xfs_alloc_buftarg(
1618 struct block_device *bdev,
e2a07812
JE
1619 int external,
1620 const char *fsname)
1da177e4
LT
1621{
1622 xfs_buftarg_t *btp;
1623
1624 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1625
ce8e922c
NS
1626 btp->bt_dev = bdev->bd_dev;
1627 btp->bt_bdev = bdev;
1da177e4
LT
1628 if (xfs_setsize_buftarg_early(btp, bdev))
1629 goto error;
1630 if (xfs_mapping_buftarg(btp, bdev))
1631 goto error;
e2a07812 1632 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1633 goto error;
1da177e4
LT
1634 xfs_alloc_bufhash(btp, external);
1635 return btp;
1636
1637error:
f0e2d93c 1638 kmem_free(btp);
1da177e4
LT
1639 return NULL;
1640}
1641
1642
1643/*
ce8e922c 1644 * Delayed write buffer handling
1da177e4 1645 */
1da177e4 1646STATIC void
ce8e922c
NS
1647xfs_buf_delwri_queue(
1648 xfs_buf_t *bp,
1da177e4
LT
1649 int unlock)
1650{
ce8e922c
NS
1651 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1652 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1653
0b1b213f
CH
1654 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1655
ce8e922c 1656 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1657
a6867a68 1658 spin_lock(dwlk);
1da177e4 1659 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1660 if (!list_empty(&bp->b_list)) {
1661 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1662 if (unlock)
1663 atomic_dec(&bp->b_hold);
1664 list_del(&bp->b_list);
1da177e4
LT
1665 }
1666
c9c12971
DC
1667 if (list_empty(dwq)) {
1668 /* start xfsbufd as it is about to have something to do */
1669 wake_up_process(bp->b_target->bt_task);
1670 }
1671
ce8e922c
NS
1672 bp->b_flags |= _XBF_DELWRI_Q;
1673 list_add_tail(&bp->b_list, dwq);
1674 bp->b_queuetime = jiffies;
a6867a68 1675 spin_unlock(dwlk);
1da177e4
LT
1676
1677 if (unlock)
ce8e922c 1678 xfs_buf_unlock(bp);
1da177e4
LT
1679}
1680
1681void
ce8e922c
NS
1682xfs_buf_delwri_dequeue(
1683 xfs_buf_t *bp)
1da177e4 1684{
ce8e922c 1685 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1686 int dequeued = 0;
1687
a6867a68 1688 spin_lock(dwlk);
ce8e922c
NS
1689 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1690 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1691 list_del_init(&bp->b_list);
1da177e4
LT
1692 dequeued = 1;
1693 }
ce8e922c 1694 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1695 spin_unlock(dwlk);
1da177e4
LT
1696
1697 if (dequeued)
ce8e922c 1698 xfs_buf_rele(bp);
1da177e4 1699
0b1b213f 1700 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1701}
1702
d808f617
DC
1703/*
1704 * If a delwri buffer needs to be pushed before it has aged out, then promote
1705 * it to the head of the delwri queue so that it will be flushed on the next
1706 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1707 * than the age currently needed to flush the buffer. Hence the next time the
1708 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1709 */
1710void
1711xfs_buf_delwri_promote(
1712 struct xfs_buf *bp)
1713{
1714 struct xfs_buftarg *btp = bp->b_target;
1715 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1716
1717 ASSERT(bp->b_flags & XBF_DELWRI);
1718 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1719
1720 /*
1721 * Check the buffer age before locking the delayed write queue as we
1722 * don't need to promote buffers that are already past the flush age.
1723 */
1724 if (bp->b_queuetime < jiffies - age)
1725 return;
1726 bp->b_queuetime = jiffies - age;
1727 spin_lock(&btp->bt_delwrite_lock);
1728 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1729 spin_unlock(&btp->bt_delwrite_lock);
1730}
1731
1da177e4 1732STATIC void
ce8e922c 1733xfs_buf_runall_queues(
1da177e4
LT
1734 struct workqueue_struct *queue)
1735{
1736 flush_workqueue(queue);
1737}
1738
1da177e4 1739STATIC int
23ea4032 1740xfsbufd_wakeup(
7f8275d0 1741 struct shrinker *shrink,
15c84a47
NS
1742 int priority,
1743 gfp_t mask)
1da177e4 1744{
da7f93e9 1745 xfs_buftarg_t *btp;
a6867a68
DC
1746
1747 spin_lock(&xfs_buftarg_lock);
da7f93e9 1748 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1749 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1750 continue;
c9c12971
DC
1751 if (list_empty(&btp->bt_delwrite_queue))
1752 continue;
ce8e922c 1753 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1754 wake_up_process(btp->bt_task);
1755 }
1756 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1757 return 0;
1758}
1759
585e6d88
DC
1760/*
1761 * Move as many buffers as specified to the supplied list
1762 * idicating if we skipped any buffers to prevent deadlocks.
1763 */
1764STATIC int
1765xfs_buf_delwri_split(
1766 xfs_buftarg_t *target,
1767 struct list_head *list,
5e6a07df 1768 unsigned long age)
585e6d88
DC
1769{
1770 xfs_buf_t *bp, *n;
1771 struct list_head *dwq = &target->bt_delwrite_queue;
1772 spinlock_t *dwlk = &target->bt_delwrite_lock;
1773 int skipped = 0;
5e6a07df 1774 int force;
585e6d88 1775
5e6a07df 1776 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1777 INIT_LIST_HEAD(list);
1778 spin_lock(dwlk);
1779 list_for_each_entry_safe(bp, n, dwq, b_list) {
0b1b213f 1780 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1781 ASSERT(bp->b_flags & XBF_DELWRI);
1782
4d16e924 1783 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1784 if (!force &&
585e6d88
DC
1785 time_before(jiffies, bp->b_queuetime + age)) {
1786 xfs_buf_unlock(bp);
1787 break;
1788 }
1789
1790 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1791 _XBF_RUN_QUEUES);
1792 bp->b_flags |= XBF_WRITE;
1793 list_move_tail(&bp->b_list, list);
1794 } else
1795 skipped++;
1796 }
1797 spin_unlock(dwlk);
1798
1799 return skipped;
1800
1801}
1802
089716aa
DC
1803/*
1804 * Compare function is more complex than it needs to be because
1805 * the return value is only 32 bits and we are doing comparisons
1806 * on 64 bit values
1807 */
1808static int
1809xfs_buf_cmp(
1810 void *priv,
1811 struct list_head *a,
1812 struct list_head *b)
1813{
1814 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1815 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1816 xfs_daddr_t diff;
1817
1818 diff = ap->b_bn - bp->b_bn;
1819 if (diff < 0)
1820 return -1;
1821 if (diff > 0)
1822 return 1;
1823 return 0;
1824}
1825
1826void
1827xfs_buf_delwri_sort(
1828 xfs_buftarg_t *target,
1829 struct list_head *list)
1830{
1831 list_sort(NULL, list, xfs_buf_cmp);
1832}
1833
1da177e4 1834STATIC int
23ea4032 1835xfsbufd(
585e6d88 1836 void *data)
1da177e4 1837{
089716aa 1838 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1839
1da177e4
LT
1840 current->flags |= PF_MEMALLOC;
1841
978c7b2f
RW
1842 set_freezable();
1843
1da177e4 1844 do {
c9c12971
DC
1845 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1846 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1847 int count = 0;
1848 struct list_head tmp;
c9c12971 1849
3e1d1d28 1850 if (unlikely(freezing(current))) {
ce8e922c 1851 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1852 refrigerator();
abd0cf7a 1853 } else {
ce8e922c 1854 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1855 }
1da177e4 1856
c9c12971
DC
1857 /* sleep for a long time if there is nothing to do. */
1858 if (list_empty(&target->bt_delwrite_queue))
1859 tout = MAX_SCHEDULE_TIMEOUT;
1860 schedule_timeout_interruptible(tout);
1da177e4 1861
c9c12971 1862 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1863 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1864 while (!list_empty(&tmp)) {
089716aa
DC
1865 struct xfs_buf *bp;
1866 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1867 list_del_init(&bp->b_list);
939d723b 1868 xfs_bdstrat_cb(bp);
585e6d88 1869 count++;
1da177e4 1870 }
f07c2250
NS
1871 if (count)
1872 blk_run_address_space(target->bt_mapping);
1da177e4 1873
4df08c52 1874 } while (!kthread_should_stop());
1da177e4 1875
4df08c52 1876 return 0;
1da177e4
LT
1877}
1878
1879/*
ce8e922c
NS
1880 * Go through all incore buffers, and release buffers if they belong to
1881 * the given device. This is used in filesystem error handling to
1882 * preserve the consistency of its metadata.
1da177e4
LT
1883 */
1884int
1885xfs_flush_buftarg(
585e6d88
DC
1886 xfs_buftarg_t *target,
1887 int wait)
1da177e4 1888{
089716aa 1889 xfs_buf_t *bp;
585e6d88 1890 int pincount = 0;
089716aa
DC
1891 LIST_HEAD(tmp_list);
1892 LIST_HEAD(wait_list);
1da177e4 1893
c626d174 1894 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1895 xfs_buf_runall_queues(xfsdatad_workqueue);
1896 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1897
5e6a07df 1898 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1899 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1900
1901 /*
089716aa
DC
1902 * Dropped the delayed write list lock, now walk the temporary list.
1903 * All I/O is issued async and then if we need to wait for completion
1904 * we do that after issuing all the IO.
1da177e4 1905 */
089716aa
DC
1906 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1907 while (!list_empty(&tmp_list)) {
1908 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1909 ASSERT(target == bp->b_target);
089716aa
DC
1910 list_del_init(&bp->b_list);
1911 if (wait) {
ce8e922c 1912 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1913 list_add(&bp->b_list, &wait_list);
1914 }
939d723b 1915 xfs_bdstrat_cb(bp);
1da177e4
LT
1916 }
1917
089716aa
DC
1918 if (wait) {
1919 /* Expedite and wait for IO to complete. */
f07c2250 1920 blk_run_address_space(target->bt_mapping);
089716aa
DC
1921 while (!list_empty(&wait_list)) {
1922 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1923
089716aa
DC
1924 list_del_init(&bp->b_list);
1925 xfs_iowait(bp);
1926 xfs_buf_relse(bp);
1927 }
1da177e4
LT
1928 }
1929
1da177e4
LT
1930 return pincount;
1931}
1932
04d8b284 1933int __init
ce8e922c 1934xfs_buf_init(void)
1da177e4 1935{
8758280f
NS
1936 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1937 KM_ZONE_HWALIGN, NULL);
ce8e922c 1938 if (!xfs_buf_zone)
0b1b213f 1939 goto out;
04d8b284 1940
b4337692 1941 xfslogd_workqueue = create_workqueue("xfslogd");
23ea4032 1942 if (!xfslogd_workqueue)
04d8b284 1943 goto out_free_buf_zone;
1da177e4 1944
b4337692 1945 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1946 if (!xfsdatad_workqueue)
1947 goto out_destroy_xfslogd_workqueue;
1da177e4 1948
c626d174
DC
1949 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1950 if (!xfsconvertd_workqueue)
1951 goto out_destroy_xfsdatad_workqueue;
1952
8e1f936b 1953 register_shrinker(&xfs_buf_shake);
23ea4032 1954 return 0;
1da177e4 1955
c626d174
DC
1956 out_destroy_xfsdatad_workqueue:
1957 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1958 out_destroy_xfslogd_workqueue:
1959 destroy_workqueue(xfslogd_workqueue);
23ea4032 1960 out_free_buf_zone:
ce8e922c 1961 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1962 out:
8758280f 1963 return -ENOMEM;
1da177e4
LT
1964}
1965
1da177e4 1966void
ce8e922c 1967xfs_buf_terminate(void)
1da177e4 1968{
8e1f936b 1969 unregister_shrinker(&xfs_buf_shake);
c626d174 1970 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1971 destroy_workqueue(xfsdatad_workqueue);
1972 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1973 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1974}
e6a0e9cd
TS
1975
1976#ifdef CONFIG_KDB_MODULES
1977struct list_head *
1978xfs_get_buftarg_list(void)
1979{
1980 return &xfs_buftarg_list;
1981}
1982#endif