xfs: kill xfs_read_buf()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
23ea4032 45
7989cb8e 46static struct workqueue_struct *xfslogd_workqueue;
1da177e4 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c
NS
58#define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
60 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 61
ce8e922c
NS
62#define xb_to_km(flags) \
63 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 64
1da177e4 65
73c77e2c
JB
66static inline int
67xfs_buf_is_vmapped(
68 struct xfs_buf *bp)
69{
70 /*
71 * Return true if the buffer is vmapped.
72 *
73 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
74 * code is clever enough to know it doesn't have to map a single page,
75 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
76 */
77 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
78}
79
80static inline int
81xfs_buf_vmap_len(
82 struct xfs_buf *bp)
83{
84 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
85}
86
1da177e4 87/*
430cbeb8
DC
88 * xfs_buf_lru_add - add a buffer to the LRU.
89 *
90 * The LRU takes a new reference to the buffer so that it will only be freed
91 * once the shrinker takes the buffer off the LRU.
92 */
93STATIC void
94xfs_buf_lru_add(
95 struct xfs_buf *bp)
96{
97 struct xfs_buftarg *btp = bp->b_target;
98
99 spin_lock(&btp->bt_lru_lock);
100 if (list_empty(&bp->b_lru)) {
101 atomic_inc(&bp->b_hold);
102 list_add_tail(&bp->b_lru, &btp->bt_lru);
103 btp->bt_lru_nr++;
104 }
105 spin_unlock(&btp->bt_lru_lock);
106}
107
108/*
109 * xfs_buf_lru_del - remove a buffer from the LRU
110 *
111 * The unlocked check is safe here because it only occurs when there are not
112 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
113 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 114 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 115 * bt_lru_lock.
1da177e4 116 */
430cbeb8
DC
117STATIC void
118xfs_buf_lru_del(
119 struct xfs_buf *bp)
120{
121 struct xfs_buftarg *btp = bp->b_target;
122
123 if (list_empty(&bp->b_lru))
124 return;
125
126 spin_lock(&btp->bt_lru_lock);
127 if (!list_empty(&bp->b_lru)) {
128 list_del_init(&bp->b_lru);
129 btp->bt_lru_nr--;
130 }
131 spin_unlock(&btp->bt_lru_lock);
132}
133
134/*
135 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
136 * b_lru_ref count so that the buffer is freed immediately when the buffer
137 * reference count falls to zero. If the buffer is already on the LRU, we need
138 * to remove the reference that LRU holds on the buffer.
139 *
140 * This prevents build-up of stale buffers on the LRU.
141 */
142void
143xfs_buf_stale(
144 struct xfs_buf *bp)
145{
43ff2122
CH
146 ASSERT(xfs_buf_islocked(bp));
147
430cbeb8 148 bp->b_flags |= XBF_STALE;
43ff2122
CH
149
150 /*
151 * Clear the delwri status so that a delwri queue walker will not
152 * flush this buffer to disk now that it is stale. The delwri queue has
153 * a reference to the buffer, so this is safe to do.
154 */
155 bp->b_flags &= ~_XBF_DELWRI_Q;
156
430cbeb8
DC
157 atomic_set(&(bp)->b_lru_ref, 0);
158 if (!list_empty(&bp->b_lru)) {
159 struct xfs_buftarg *btp = bp->b_target;
160
161 spin_lock(&btp->bt_lru_lock);
162 if (!list_empty(&bp->b_lru)) {
163 list_del_init(&bp->b_lru);
164 btp->bt_lru_nr--;
165 atomic_dec(&bp->b_hold);
166 }
167 spin_unlock(&btp->bt_lru_lock);
168 }
169 ASSERT(atomic_read(&bp->b_hold) >= 1);
170}
1da177e4 171
4347b9d7
CH
172struct xfs_buf *
173xfs_buf_alloc(
174 struct xfs_buftarg *target,
e70b73f8
DC
175 xfs_daddr_t blkno,
176 size_t numblks,
ce8e922c 177 xfs_buf_flags_t flags)
1da177e4 178{
4347b9d7
CH
179 struct xfs_buf *bp;
180
bf813cdd 181 bp = kmem_zone_zalloc(xfs_buf_zone, xb_to_km(flags));
4347b9d7
CH
182 if (unlikely(!bp))
183 return NULL;
184
1da177e4 185 /*
ce8e922c 186 * We don't want certain flags to appear in b_flags.
1da177e4 187 */
a8acad70 188 flags &= ~(XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
ce8e922c 189
ce8e922c 190 atomic_set(&bp->b_hold, 1);
430cbeb8 191 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 192 init_completion(&bp->b_iowait);
430cbeb8 193 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 194 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 195 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 196 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
197 XB_SET_OWNER(bp);
198 bp->b_target = target;
de1cbee4 199
1da177e4 200 /*
aa0e8833
DC
201 * Set length and io_length to the same value initially.
202 * I/O routines should use io_length, which will be the same in
1da177e4
LT
203 * most cases but may be reset (e.g. XFS recovery).
204 */
4e94b71b 205 bp->b_length = numblks;
aa0e8833 206 bp->b_io_length = numblks;
ce8e922c 207 bp->b_flags = flags;
e70b73f8
DC
208
209 /*
210 * We do not set the block number here in the buffer because we have not
211 * finished initialising the buffer. We insert the buffer into the cache
212 * in this state, so this ensures that we are unable to do IO on a
213 * buffer that hasn't been fully initialised.
214 */
ce8e922c
NS
215 bp->b_bn = XFS_BUF_DADDR_NULL;
216 atomic_set(&bp->b_pin_count, 0);
217 init_waitqueue_head(&bp->b_waiters);
218
219 XFS_STATS_INC(xb_create);
0b1b213f 220 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
221
222 return bp;
1da177e4
LT
223}
224
225/*
ce8e922c
NS
226 * Allocate a page array capable of holding a specified number
227 * of pages, and point the page buf at it.
1da177e4
LT
228 */
229STATIC int
ce8e922c
NS
230_xfs_buf_get_pages(
231 xfs_buf_t *bp,
1da177e4 232 int page_count,
ce8e922c 233 xfs_buf_flags_t flags)
1da177e4
LT
234{
235 /* Make sure that we have a page list */
ce8e922c 236 if (bp->b_pages == NULL) {
ce8e922c
NS
237 bp->b_page_count = page_count;
238 if (page_count <= XB_PAGES) {
239 bp->b_pages = bp->b_page_array;
1da177e4 240 } else {
ce8e922c
NS
241 bp->b_pages = kmem_alloc(sizeof(struct page *) *
242 page_count, xb_to_km(flags));
243 if (bp->b_pages == NULL)
1da177e4
LT
244 return -ENOMEM;
245 }
ce8e922c 246 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
247 }
248 return 0;
249}
250
251/*
ce8e922c 252 * Frees b_pages if it was allocated.
1da177e4
LT
253 */
254STATIC void
ce8e922c 255_xfs_buf_free_pages(
1da177e4
LT
256 xfs_buf_t *bp)
257{
ce8e922c 258 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 259 kmem_free(bp->b_pages);
3fc98b1a 260 bp->b_pages = NULL;
1da177e4
LT
261 }
262}
263
264/*
265 * Releases the specified buffer.
266 *
267 * The modification state of any associated pages is left unchanged.
ce8e922c 268 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
269 * hashed and refcounted buffers
270 */
271void
ce8e922c 272xfs_buf_free(
1da177e4
LT
273 xfs_buf_t *bp)
274{
0b1b213f 275 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 276
430cbeb8
DC
277 ASSERT(list_empty(&bp->b_lru));
278
0e6e847f 279 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
280 uint i;
281
73c77e2c 282 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
283 vm_unmap_ram(bp->b_addr - bp->b_offset,
284 bp->b_page_count);
1da177e4 285
948ecdb4
NS
286 for (i = 0; i < bp->b_page_count; i++) {
287 struct page *page = bp->b_pages[i];
288
0e6e847f 289 __free_page(page);
948ecdb4 290 }
0e6e847f
DC
291 } else if (bp->b_flags & _XBF_KMEM)
292 kmem_free(bp->b_addr);
3fc98b1a 293 _xfs_buf_free_pages(bp);
4347b9d7 294 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
295}
296
297/*
0e6e847f 298 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
299 */
300STATIC int
0e6e847f 301xfs_buf_allocate_memory(
1da177e4
LT
302 xfs_buf_t *bp,
303 uint flags)
304{
aa0e8833 305 size_t size;
1da177e4 306 size_t nbytes, offset;
ce8e922c 307 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 308 unsigned short page_count, i;
795cac72 309 xfs_off_t start, end;
1da177e4
LT
310 int error;
311
0e6e847f
DC
312 /*
313 * for buffers that are contained within a single page, just allocate
314 * the memory from the heap - there's no need for the complexity of
315 * page arrays to keep allocation down to order 0.
316 */
795cac72
DC
317 size = BBTOB(bp->b_length);
318 if (size < PAGE_SIZE) {
319 bp->b_addr = kmem_alloc(size, xb_to_km(flags));
0e6e847f
DC
320 if (!bp->b_addr) {
321 /* low memory - use alloc_page loop instead */
322 goto use_alloc_page;
323 }
324
795cac72 325 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
326 ((unsigned long)bp->b_addr & PAGE_MASK)) {
327 /* b_addr spans two pages - use alloc_page instead */
328 kmem_free(bp->b_addr);
329 bp->b_addr = NULL;
330 goto use_alloc_page;
331 }
332 bp->b_offset = offset_in_page(bp->b_addr);
333 bp->b_pages = bp->b_page_array;
334 bp->b_pages[0] = virt_to_page(bp->b_addr);
335 bp->b_page_count = 1;
336 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
337 return 0;
338 }
339
340use_alloc_page:
795cac72
DC
341 start = BBTOB(bp->b_bn) >> PAGE_SHIFT;
342 end = (BBTOB(bp->b_bn + bp->b_length) + PAGE_SIZE - 1) >> PAGE_SHIFT;
343 page_count = end - start;
ce8e922c 344 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
345 if (unlikely(error))
346 return error;
1da177e4 347
ce8e922c 348 offset = bp->b_offset;
0e6e847f 349 bp->b_flags |= _XBF_PAGES;
1da177e4 350
ce8e922c 351 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
352 struct page *page;
353 uint retries = 0;
0e6e847f
DC
354retry:
355 page = alloc_page(gfp_mask);
1da177e4 356 if (unlikely(page == NULL)) {
ce8e922c
NS
357 if (flags & XBF_READ_AHEAD) {
358 bp->b_page_count = i;
0e6e847f
DC
359 error = ENOMEM;
360 goto out_free_pages;
1da177e4
LT
361 }
362
363 /*
364 * This could deadlock.
365 *
366 * But until all the XFS lowlevel code is revamped to
367 * handle buffer allocation failures we can't do much.
368 */
369 if (!(++retries % 100))
4f10700a
DC
370 xfs_err(NULL,
371 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 372 __func__, gfp_mask);
1da177e4 373
ce8e922c 374 XFS_STATS_INC(xb_page_retries);
8aa7e847 375 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
376 goto retry;
377 }
378
ce8e922c 379 XFS_STATS_INC(xb_page_found);
1da177e4 380
0e6e847f 381 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 382 size -= nbytes;
ce8e922c 383 bp->b_pages[i] = page;
1da177e4
LT
384 offset = 0;
385 }
0e6e847f 386 return 0;
1da177e4 387
0e6e847f
DC
388out_free_pages:
389 for (i = 0; i < bp->b_page_count; i++)
390 __free_page(bp->b_pages[i]);
1da177e4
LT
391 return error;
392}
393
394/*
25985edc 395 * Map buffer into kernel address-space if necessary.
1da177e4
LT
396 */
397STATIC int
ce8e922c 398_xfs_buf_map_pages(
1da177e4
LT
399 xfs_buf_t *bp,
400 uint flags)
401{
0e6e847f 402 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 403 if (bp->b_page_count == 1) {
0e6e847f 404 /* A single page buffer is always mappable */
ce8e922c
NS
405 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
406 bp->b_flags |= XBF_MAPPED;
407 } else if (flags & XBF_MAPPED) {
a19fb380
DC
408 int retried = 0;
409
410 do {
411 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
412 -1, PAGE_KERNEL);
413 if (bp->b_addr)
414 break;
415 vm_unmap_aliases();
416 } while (retried++ <= 1);
417
418 if (!bp->b_addr)
1da177e4 419 return -ENOMEM;
ce8e922c
NS
420 bp->b_addr += bp->b_offset;
421 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
422 }
423
424 return 0;
425}
426
427/*
428 * Finding and Reading Buffers
429 */
430
431/*
ce8e922c 432 * Look up, and creates if absent, a lockable buffer for
1da177e4 433 * a given range of an inode. The buffer is returned
eabbaf11 434 * locked. No I/O is implied by this call.
1da177e4
LT
435 */
436xfs_buf_t *
ce8e922c 437_xfs_buf_find(
e70b73f8
DC
438 struct xfs_buftarg *btp,
439 xfs_daddr_t blkno,
440 size_t numblks,
ce8e922c
NS
441 xfs_buf_flags_t flags,
442 xfs_buf_t *new_bp)
1da177e4 443{
e70b73f8 444 size_t numbytes;
74f75a0c
DC
445 struct xfs_perag *pag;
446 struct rb_node **rbp;
447 struct rb_node *parent;
448 xfs_buf_t *bp;
1da177e4 449
e70b73f8 450 numbytes = BBTOB(numblks);
1da177e4
LT
451
452 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 453 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 454 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 455
74f75a0c
DC
456 /* get tree root */
457 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 458 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
459
460 /* walk tree */
461 spin_lock(&pag->pag_buf_lock);
462 rbp = &pag->pag_buf_tree.rb_node;
463 parent = NULL;
464 bp = NULL;
465 while (*rbp) {
466 parent = *rbp;
467 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
468
de1cbee4 469 if (blkno < bp->b_bn)
74f75a0c 470 rbp = &(*rbp)->rb_left;
de1cbee4 471 else if (blkno > bp->b_bn)
74f75a0c
DC
472 rbp = &(*rbp)->rb_right;
473 else {
474 /*
de1cbee4 475 * found a block number match. If the range doesn't
74f75a0c
DC
476 * match, the only way this is allowed is if the buffer
477 * in the cache is stale and the transaction that made
478 * it stale has not yet committed. i.e. we are
479 * reallocating a busy extent. Skip this buffer and
480 * continue searching to the right for an exact match.
481 */
4e94b71b 482 if (bp->b_length != numblks) {
74f75a0c
DC
483 ASSERT(bp->b_flags & XBF_STALE);
484 rbp = &(*rbp)->rb_right;
485 continue;
486 }
ce8e922c 487 atomic_inc(&bp->b_hold);
1da177e4
LT
488 goto found;
489 }
490 }
491
492 /* No match found */
ce8e922c 493 if (new_bp) {
74f75a0c
DC
494 rb_link_node(&new_bp->b_rbnode, parent, rbp);
495 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
496 /* the buffer keeps the perag reference until it is freed */
497 new_bp->b_pag = pag;
498 spin_unlock(&pag->pag_buf_lock);
1da177e4 499 } else {
ce8e922c 500 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
501 spin_unlock(&pag->pag_buf_lock);
502 xfs_perag_put(pag);
1da177e4 503 }
ce8e922c 504 return new_bp;
1da177e4
LT
505
506found:
74f75a0c
DC
507 spin_unlock(&pag->pag_buf_lock);
508 xfs_perag_put(pag);
1da177e4 509
0c842ad4
CH
510 if (!xfs_buf_trylock(bp)) {
511 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
512 xfs_buf_rele(bp);
513 XFS_STATS_INC(xb_busy_locked);
514 return NULL;
1da177e4 515 }
0c842ad4
CH
516 xfs_buf_lock(bp);
517 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
518 }
519
0e6e847f
DC
520 /*
521 * if the buffer is stale, clear all the external state associated with
522 * it. We need to keep flags such as how we allocated the buffer memory
523 * intact here.
524 */
ce8e922c
NS
525 if (bp->b_flags & XBF_STALE) {
526 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 527 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 528 }
0b1b213f
CH
529
530 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
531 XFS_STATS_INC(xb_get_locked);
532 return bp;
1da177e4
LT
533}
534
535/*
3815832a
DC
536 * Assembles a buffer covering the specified range. The code is optimised for
537 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
538 * more hits than misses.
1da177e4 539 */
3815832a 540struct xfs_buf *
6ad112bf 541xfs_buf_get(
e70b73f8
DC
542 xfs_buftarg_t *target,
543 xfs_daddr_t blkno,
544 size_t numblks,
ce8e922c 545 xfs_buf_flags_t flags)
1da177e4 546{
3815832a
DC
547 struct xfs_buf *bp;
548 struct xfs_buf *new_bp;
0e6e847f 549 int error = 0;
1da177e4 550
e70b73f8 551 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
3815832a
DC
552 if (likely(bp))
553 goto found;
554
e70b73f8 555 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
ce8e922c 556 if (unlikely(!new_bp))
1da177e4
LT
557 return NULL;
558
fe2429b0
DC
559 error = xfs_buf_allocate_memory(new_bp, flags);
560 if (error) {
561 kmem_zone_free(xfs_buf_zone, new_bp);
562 return NULL;
563 }
564
e70b73f8 565 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
3815832a 566 if (!bp) {
fe2429b0 567 xfs_buf_free(new_bp);
3815832a
DC
568 return NULL;
569 }
570
fe2429b0
DC
571 if (bp != new_bp)
572 xfs_buf_free(new_bp);
1da177e4 573
3815832a
DC
574 /*
575 * Now we have a workable buffer, fill in the block number so
576 * that we can do IO on it.
577 */
e70b73f8 578 bp->b_bn = blkno;
aa0e8833 579 bp->b_io_length = bp->b_length;
3815832a
DC
580
581found:
ce8e922c
NS
582 if (!(bp->b_flags & XBF_MAPPED)) {
583 error = _xfs_buf_map_pages(bp, flags);
1da177e4 584 if (unlikely(error)) {
4f10700a
DC
585 xfs_warn(target->bt_mount,
586 "%s: failed to map pages\n", __func__);
a8acad70
DC
587 xfs_buf_relse(bp);
588 return NULL;
1da177e4
LT
589 }
590 }
591
ce8e922c 592 XFS_STATS_INC(xb_get);
0b1b213f 593 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 594 return bp;
1da177e4
LT
595}
596
5d765b97
CH
597STATIC int
598_xfs_buf_read(
599 xfs_buf_t *bp,
600 xfs_buf_flags_t flags)
601{
43ff2122 602 ASSERT(!(flags & XBF_WRITE));
5d765b97
CH
603 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
604
43ff2122 605 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 606 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 607
0e95f19a
DC
608 xfs_buf_iorequest(bp);
609 if (flags & XBF_ASYNC)
610 return 0;
ec53d1db 611 return xfs_buf_iowait(bp);
5d765b97
CH
612}
613
1da177e4 614xfs_buf_t *
6ad112bf 615xfs_buf_read(
1da177e4 616 xfs_buftarg_t *target,
e70b73f8
DC
617 xfs_daddr_t blkno,
618 size_t numblks,
ce8e922c 619 xfs_buf_flags_t flags)
1da177e4 620{
ce8e922c
NS
621 xfs_buf_t *bp;
622
623 flags |= XBF_READ;
624
e70b73f8 625 bp = xfs_buf_get(target, blkno, numblks, flags);
ce8e922c 626 if (bp) {
0b1b213f
CH
627 trace_xfs_buf_read(bp, flags, _RET_IP_);
628
ce8e922c 629 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 630 XFS_STATS_INC(xb_get_read);
5d765b97 631 _xfs_buf_read(bp, flags);
ce8e922c 632 } else if (flags & XBF_ASYNC) {
1da177e4
LT
633 /*
634 * Read ahead call which is already satisfied,
635 * drop the buffer
636 */
a8acad70
DC
637 xfs_buf_relse(bp);
638 return NULL;
1da177e4 639 } else {
1da177e4 640 /* We do not want read in the flags */
ce8e922c 641 bp->b_flags &= ~XBF_READ;
1da177e4
LT
642 }
643 }
644
ce8e922c 645 return bp;
1da177e4
LT
646}
647
1da177e4 648/*
ce8e922c
NS
649 * If we are not low on memory then do the readahead in a deadlock
650 * safe manner.
1da177e4
LT
651 */
652void
ce8e922c 653xfs_buf_readahead(
1da177e4 654 xfs_buftarg_t *target,
e70b73f8
DC
655 xfs_daddr_t blkno,
656 size_t numblks)
1da177e4 657{
0e6e847f 658 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
659 return;
660
e70b73f8 661 xfs_buf_read(target, blkno, numblks,
1a1a3e97 662 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
663}
664
5adc94c2
DC
665/*
666 * Read an uncached buffer from disk. Allocates and returns a locked
667 * buffer containing the disk contents or nothing.
668 */
669struct xfs_buf *
670xfs_buf_read_uncached(
5adc94c2
DC
671 struct xfs_buftarg *target,
672 xfs_daddr_t daddr,
e70b73f8 673 size_t numblks,
5adc94c2
DC
674 int flags)
675{
676 xfs_buf_t *bp;
677 int error;
678
e70b73f8 679 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
680 if (!bp)
681 return NULL;
682
683 /* set up the buffer for a read IO */
5adc94c2
DC
684 XFS_BUF_SET_ADDR(bp, daddr);
685 XFS_BUF_READ(bp);
5adc94c2 686
e70b73f8 687 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 688 error = xfs_buf_iowait(bp);
0e95f19a 689 if (error) {
5adc94c2
DC
690 xfs_buf_relse(bp);
691 return NULL;
692 }
693 return bp;
1da177e4
LT
694}
695
44396476
DC
696/*
697 * Return a buffer allocated as an empty buffer and associated to external
698 * memory via xfs_buf_associate_memory() back to it's empty state.
699 */
700void
701xfs_buf_set_empty(
702 struct xfs_buf *bp,
e70b73f8 703 size_t numblks)
44396476
DC
704{
705 if (bp->b_pages)
706 _xfs_buf_free_pages(bp);
707
708 bp->b_pages = NULL;
709 bp->b_page_count = 0;
710 bp->b_addr = NULL;
4e94b71b 711 bp->b_length = numblks;
aa0e8833 712 bp->b_io_length = numblks;
44396476
DC
713 bp->b_bn = XFS_BUF_DADDR_NULL;
714 bp->b_flags &= ~XBF_MAPPED;
715}
716
1da177e4
LT
717static inline struct page *
718mem_to_page(
719 void *addr)
720{
9e2779fa 721 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
722 return virt_to_page(addr);
723 } else {
724 return vmalloc_to_page(addr);
725 }
726}
727
728int
ce8e922c
NS
729xfs_buf_associate_memory(
730 xfs_buf_t *bp,
1da177e4
LT
731 void *mem,
732 size_t len)
733{
734 int rval;
735 int i = 0;
d1afb678
LM
736 unsigned long pageaddr;
737 unsigned long offset;
738 size_t buflen;
1da177e4
LT
739 int page_count;
740
0e6e847f 741 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 742 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
743 buflen = PAGE_ALIGN(len + offset);
744 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
745
746 /* Free any previous set of page pointers */
ce8e922c
NS
747 if (bp->b_pages)
748 _xfs_buf_free_pages(bp);
1da177e4 749
ce8e922c
NS
750 bp->b_pages = NULL;
751 bp->b_addr = mem;
1da177e4 752
36fae17a 753 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
754 if (rval)
755 return rval;
756
ce8e922c 757 bp->b_offset = offset;
d1afb678
LM
758
759 for (i = 0; i < bp->b_page_count; i++) {
760 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 761 pageaddr += PAGE_SIZE;
1da177e4 762 }
1da177e4 763
aa0e8833 764 bp->b_io_length = BTOBB(len);
4e94b71b 765 bp->b_length = BTOBB(buflen);
ce8e922c 766 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
767
768 return 0;
769}
770
771xfs_buf_t *
686865f7
DC
772xfs_buf_get_uncached(
773 struct xfs_buftarg *target,
e70b73f8 774 size_t numblks,
686865f7 775 int flags)
1da177e4 776{
e70b73f8 777 unsigned long page_count;
1fa40b01 778 int error, i;
1da177e4 779 xfs_buf_t *bp;
1da177e4 780
e70b73f8 781 bp = xfs_buf_alloc(target, 0, numblks, 0);
1da177e4
LT
782 if (unlikely(bp == NULL))
783 goto fail;
1da177e4 784
e70b73f8 785 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
786 error = _xfs_buf_get_pages(bp, page_count, 0);
787 if (error)
1da177e4
LT
788 goto fail_free_buf;
789
1fa40b01 790 for (i = 0; i < page_count; i++) {
686865f7 791 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
792 if (!bp->b_pages[i])
793 goto fail_free_mem;
1da177e4 794 }
1fa40b01 795 bp->b_flags |= _XBF_PAGES;
1da177e4 796
1fa40b01
CH
797 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
798 if (unlikely(error)) {
4f10700a
DC
799 xfs_warn(target->bt_mount,
800 "%s: failed to map pages\n", __func__);
1da177e4 801 goto fail_free_mem;
1fa40b01 802 }
1da177e4 803
686865f7 804 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 805 return bp;
1fa40b01 806
1da177e4 807 fail_free_mem:
1fa40b01
CH
808 while (--i >= 0)
809 __free_page(bp->b_pages[i]);
ca165b88 810 _xfs_buf_free_pages(bp);
1da177e4 811 fail_free_buf:
4347b9d7 812 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
813 fail:
814 return NULL;
815}
816
817/*
1da177e4
LT
818 * Increment reference count on buffer, to hold the buffer concurrently
819 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
820 * Must hold the buffer already to call this function.
821 */
822void
ce8e922c
NS
823xfs_buf_hold(
824 xfs_buf_t *bp)
1da177e4 825{
0b1b213f 826 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 827 atomic_inc(&bp->b_hold);
1da177e4
LT
828}
829
830/*
ce8e922c
NS
831 * Releases a hold on the specified buffer. If the
832 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
833 */
834void
ce8e922c
NS
835xfs_buf_rele(
836 xfs_buf_t *bp)
1da177e4 837{
74f75a0c 838 struct xfs_perag *pag = bp->b_pag;
1da177e4 839
0b1b213f 840 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 841
74f75a0c 842 if (!pag) {
430cbeb8 843 ASSERT(list_empty(&bp->b_lru));
74f75a0c 844 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
845 if (atomic_dec_and_test(&bp->b_hold))
846 xfs_buf_free(bp);
847 return;
848 }
849
74f75a0c 850 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 851
3790689f 852 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 853 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 854 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
855 atomic_read(&bp->b_lru_ref)) {
856 xfs_buf_lru_add(bp);
857 spin_unlock(&pag->pag_buf_lock);
1da177e4 858 } else {
430cbeb8 859 xfs_buf_lru_del(bp);
43ff2122 860 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
861 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
862 spin_unlock(&pag->pag_buf_lock);
863 xfs_perag_put(pag);
ce8e922c 864 xfs_buf_free(bp);
1da177e4
LT
865 }
866 }
867}
868
869
870/*
0e6e847f 871 * Lock a buffer object, if it is not already locked.
90810b9e
DC
872 *
873 * If we come across a stale, pinned, locked buffer, we know that we are
874 * being asked to lock a buffer that has been reallocated. Because it is
875 * pinned, we know that the log has not been pushed to disk and hence it
876 * will still be locked. Rather than continuing to have trylock attempts
877 * fail until someone else pushes the log, push it ourselves before
878 * returning. This means that the xfsaild will not get stuck trying
879 * to push on stale inode buffers.
1da177e4
LT
880 */
881int
0c842ad4
CH
882xfs_buf_trylock(
883 struct xfs_buf *bp)
1da177e4
LT
884{
885 int locked;
886
ce8e922c 887 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 888 if (locked)
ce8e922c 889 XB_SET_OWNER(bp);
90810b9e
DC
890 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
891 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 892
0c842ad4
CH
893 trace_xfs_buf_trylock(bp, _RET_IP_);
894 return locked;
1da177e4 895}
1da177e4
LT
896
897/*
0e6e847f 898 * Lock a buffer object.
ed3b4d6c
DC
899 *
900 * If we come across a stale, pinned, locked buffer, we know that we
901 * are being asked to lock a buffer that has been reallocated. Because
902 * it is pinned, we know that the log has not been pushed to disk and
903 * hence it will still be locked. Rather than sleeping until someone
904 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 905 */
ce8e922c
NS
906void
907xfs_buf_lock(
0c842ad4 908 struct xfs_buf *bp)
1da177e4 909{
0b1b213f
CH
910 trace_xfs_buf_lock(bp, _RET_IP_);
911
ed3b4d6c 912 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 913 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
914 down(&bp->b_sema);
915 XB_SET_OWNER(bp);
0b1b213f
CH
916
917 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
918}
919
1da177e4 920void
ce8e922c 921xfs_buf_unlock(
0c842ad4 922 struct xfs_buf *bp)
1da177e4 923{
ce8e922c
NS
924 XB_CLEAR_OWNER(bp);
925 up(&bp->b_sema);
0b1b213f
CH
926
927 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
928}
929
ce8e922c
NS
930STATIC void
931xfs_buf_wait_unpin(
932 xfs_buf_t *bp)
1da177e4
LT
933{
934 DECLARE_WAITQUEUE (wait, current);
935
ce8e922c 936 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
937 return;
938
ce8e922c 939 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
940 for (;;) {
941 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 942 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 943 break;
7eaceacc 944 io_schedule();
1da177e4 945 }
ce8e922c 946 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
947 set_current_state(TASK_RUNNING);
948}
949
950/*
951 * Buffer Utility Routines
952 */
953
1da177e4 954STATIC void
ce8e922c 955xfs_buf_iodone_work(
c4028958 956 struct work_struct *work)
1da177e4 957{
c4028958
DH
958 xfs_buf_t *bp =
959 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 960
80f6c29d 961 if (bp->b_iodone)
ce8e922c
NS
962 (*(bp->b_iodone))(bp);
963 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
964 xfs_buf_relse(bp);
965}
966
967void
ce8e922c
NS
968xfs_buf_ioend(
969 xfs_buf_t *bp,
1da177e4
LT
970 int schedule)
971{
0b1b213f
CH
972 trace_xfs_buf_iodone(bp, _RET_IP_);
973
77be55a5 974 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
975 if (bp->b_error == 0)
976 bp->b_flags |= XBF_DONE;
1da177e4 977
ce8e922c 978 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 979 if (schedule) {
c4028958 980 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 981 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 982 } else {
c4028958 983 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
984 }
985 } else {
b4dd330b 986 complete(&bp->b_iowait);
1da177e4
LT
987 }
988}
989
1da177e4 990void
ce8e922c
NS
991xfs_buf_ioerror(
992 xfs_buf_t *bp,
993 int error)
1da177e4
LT
994{
995 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 996 bp->b_error = (unsigned short)error;
0b1b213f 997 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
998}
999
901796af
CH
1000void
1001xfs_buf_ioerror_alert(
1002 struct xfs_buf *bp,
1003 const char *func)
1004{
1005 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1006"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1007 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1008}
1009
1da177e4 1010int
64e0bc7d 1011xfs_bwrite(
5d765b97 1012 struct xfs_buf *bp)
1da177e4 1013{
8c38366f 1014 int error;
1da177e4 1015
43ff2122
CH
1016 ASSERT(xfs_buf_islocked(bp));
1017
64e0bc7d 1018 bp->b_flags |= XBF_WRITE;
43ff2122 1019 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1020
939d723b 1021 xfs_bdstrat_cb(bp);
1da177e4 1022
8c38366f 1023 error = xfs_buf_iowait(bp);
c2b006c1
CH
1024 if (error) {
1025 xfs_force_shutdown(bp->b_target->bt_mount,
1026 SHUTDOWN_META_IO_ERROR);
1027 }
64e0bc7d 1028 return error;
5d765b97 1029}
1da177e4 1030
4e23471a
CH
1031/*
1032 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1033 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1034 * so that the proper iodone callbacks get called.
1035 */
1036STATIC int
1037xfs_bioerror(
1038 xfs_buf_t *bp)
1039{
1040#ifdef XFSERRORDEBUG
1041 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1042#endif
1043
1044 /*
1045 * No need to wait until the buffer is unpinned, we aren't flushing it.
1046 */
5a52c2a5 1047 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1048
1049 /*
1a1a3e97 1050 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1051 */
1052 XFS_BUF_UNREAD(bp);
4e23471a 1053 XFS_BUF_UNDONE(bp);
c867cb61 1054 xfs_buf_stale(bp);
4e23471a 1055
1a1a3e97 1056 xfs_buf_ioend(bp, 0);
4e23471a
CH
1057
1058 return EIO;
1059}
1060
1061/*
1062 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1063 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1064 * This is meant for userdata errors; metadata bufs come with
1065 * iodone functions attached, so that we can track down errors.
1066 */
1067STATIC int
1068xfs_bioerror_relse(
1069 struct xfs_buf *bp)
1070{
ed43233b 1071 int64_t fl = bp->b_flags;
4e23471a
CH
1072 /*
1073 * No need to wait until the buffer is unpinned.
1074 * We aren't flushing it.
1075 *
1076 * chunkhold expects B_DONE to be set, whether
1077 * we actually finish the I/O or not. We don't want to
1078 * change that interface.
1079 */
1080 XFS_BUF_UNREAD(bp);
4e23471a 1081 XFS_BUF_DONE(bp);
c867cb61 1082 xfs_buf_stale(bp);
cb669ca5 1083 bp->b_iodone = NULL;
0cadda1c 1084 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1085 /*
1086 * Mark b_error and B_ERROR _both_.
1087 * Lot's of chunkcache code assumes that.
1088 * There's no reason to mark error for
1089 * ASYNC buffers.
1090 */
5a52c2a5 1091 xfs_buf_ioerror(bp, EIO);
5fde0326 1092 complete(&bp->b_iowait);
4e23471a
CH
1093 } else {
1094 xfs_buf_relse(bp);
1095 }
1096
1097 return EIO;
1098}
1099
1100
1101/*
1102 * All xfs metadata buffers except log state machine buffers
1103 * get this attached as their b_bdstrat callback function.
1104 * This is so that we can catch a buffer
1105 * after prematurely unpinning it to forcibly shutdown the filesystem.
1106 */
1107int
1108xfs_bdstrat_cb(
1109 struct xfs_buf *bp)
1110{
ebad861b 1111 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1112 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1113 /*
1114 * Metadata write that didn't get logged but
1115 * written delayed anyway. These aren't associated
1116 * with a transaction, and can be ignored.
1117 */
1118 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1119 return xfs_bioerror_relse(bp);
1120 else
1121 return xfs_bioerror(bp);
1122 }
1123
1124 xfs_buf_iorequest(bp);
1125 return 0;
1126}
1127
1128/*
1129 * Wrapper around bdstrat so that we can stop data from going to disk in case
1130 * we are shutting down the filesystem. Typically user data goes thru this
1131 * path; one of the exceptions is the superblock.
1132 */
1133void
1134xfsbdstrat(
1135 struct xfs_mount *mp,
1136 struct xfs_buf *bp)
1137{
1138 if (XFS_FORCED_SHUTDOWN(mp)) {
1139 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1140 xfs_bioerror_relse(bp);
1141 return;
1142 }
1143
1144 xfs_buf_iorequest(bp);
1145}
1146
b8f82a4a 1147STATIC void
ce8e922c
NS
1148_xfs_buf_ioend(
1149 xfs_buf_t *bp,
1da177e4
LT
1150 int schedule)
1151{
0e6e847f 1152 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1153 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1154}
1155
782e3b3b 1156STATIC void
ce8e922c 1157xfs_buf_bio_end_io(
1da177e4 1158 struct bio *bio,
1da177e4
LT
1159 int error)
1160{
ce8e922c 1161 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1162
cfbe5267 1163 xfs_buf_ioerror(bp, -error);
1da177e4 1164
73c77e2c
JB
1165 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1166 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1167
ce8e922c 1168 _xfs_buf_ioend(bp, 1);
1da177e4 1169 bio_put(bio);
1da177e4
LT
1170}
1171
1172STATIC void
ce8e922c
NS
1173_xfs_buf_ioapply(
1174 xfs_buf_t *bp)
1da177e4 1175{
a9759f2d 1176 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1177 struct bio *bio;
ce8e922c 1178 int offset = bp->b_offset;
aa0e8833 1179 int size = BBTOB(bp->b_io_length);
ce8e922c 1180 sector_t sector = bp->b_bn;
1da177e4 1181
ce8e922c 1182 total_nr_pages = bp->b_page_count;
1da177e4
LT
1183 map_i = 0;
1184
1d5ae5df
CH
1185 if (bp->b_flags & XBF_WRITE) {
1186 if (bp->b_flags & XBF_SYNCIO)
1187 rw = WRITE_SYNC;
1188 else
1189 rw = WRITE;
1190 if (bp->b_flags & XBF_FUA)
1191 rw |= REQ_FUA;
1192 if (bp->b_flags & XBF_FLUSH)
1193 rw |= REQ_FLUSH;
1194 } else if (bp->b_flags & XBF_READ_AHEAD) {
1195 rw = READA;
51bdd706 1196 } else {
1d5ae5df 1197 rw = READ;
f538d4da
CH
1198 }
1199
34951f5c
CH
1200 /* we only use the buffer cache for meta-data */
1201 rw |= REQ_META;
1202
1da177e4 1203next_chunk:
ce8e922c 1204 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1205 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1206 if (nr_pages > total_nr_pages)
1207 nr_pages = total_nr_pages;
1208
1209 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1210 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1211 bio->bi_sector = sector;
ce8e922c
NS
1212 bio->bi_end_io = xfs_buf_bio_end_io;
1213 bio->bi_private = bp;
1da177e4 1214
0e6e847f 1215
1da177e4 1216 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1217 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1218
1219 if (nbytes > size)
1220 nbytes = size;
1221
ce8e922c
NS
1222 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1223 if (rbytes < nbytes)
1da177e4
LT
1224 break;
1225
1226 offset = 0;
aa0e8833 1227 sector += BTOBB(nbytes);
1da177e4
LT
1228 size -= nbytes;
1229 total_nr_pages--;
1230 }
1231
1da177e4 1232 if (likely(bio->bi_size)) {
73c77e2c
JB
1233 if (xfs_buf_is_vmapped(bp)) {
1234 flush_kernel_vmap_range(bp->b_addr,
1235 xfs_buf_vmap_len(bp));
1236 }
1da177e4
LT
1237 submit_bio(rw, bio);
1238 if (size)
1239 goto next_chunk;
1240 } else {
ce8e922c 1241 xfs_buf_ioerror(bp, EIO);
ec53d1db 1242 bio_put(bio);
1da177e4
LT
1243 }
1244}
1245
0e95f19a 1246void
ce8e922c
NS
1247xfs_buf_iorequest(
1248 xfs_buf_t *bp)
1da177e4 1249{
0b1b213f 1250 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1251
43ff2122 1252 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1253
375ec69d 1254 if (bp->b_flags & XBF_WRITE)
ce8e922c 1255 xfs_buf_wait_unpin(bp);
ce8e922c 1256 xfs_buf_hold(bp);
1da177e4
LT
1257
1258 /* Set the count to 1 initially, this will stop an I/O
1259 * completion callout which happens before we have started
ce8e922c 1260 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1261 */
ce8e922c
NS
1262 atomic_set(&bp->b_io_remaining, 1);
1263 _xfs_buf_ioapply(bp);
1264 _xfs_buf_ioend(bp, 0);
1da177e4 1265
ce8e922c 1266 xfs_buf_rele(bp);
1da177e4
LT
1267}
1268
1269/*
0e95f19a
DC
1270 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1271 * no I/O is pending or there is already a pending error on the buffer. It
1272 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1273 */
1274int
ce8e922c
NS
1275xfs_buf_iowait(
1276 xfs_buf_t *bp)
1da177e4 1277{
0b1b213f
CH
1278 trace_xfs_buf_iowait(bp, _RET_IP_);
1279
0e95f19a
DC
1280 if (!bp->b_error)
1281 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1282
1283 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1284 return bp->b_error;
1da177e4
LT
1285}
1286
ce8e922c
NS
1287xfs_caddr_t
1288xfs_buf_offset(
1289 xfs_buf_t *bp,
1da177e4
LT
1290 size_t offset)
1291{
1292 struct page *page;
1293
ce8e922c 1294 if (bp->b_flags & XBF_MAPPED)
62926044 1295 return bp->b_addr + offset;
1da177e4 1296
ce8e922c 1297 offset += bp->b_offset;
0e6e847f
DC
1298 page = bp->b_pages[offset >> PAGE_SHIFT];
1299 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1300}
1301
1302/*
1da177e4
LT
1303 * Move data into or out of a buffer.
1304 */
1305void
ce8e922c
NS
1306xfs_buf_iomove(
1307 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1308 size_t boff, /* starting buffer offset */
1309 size_t bsize, /* length to copy */
b9c48649 1310 void *data, /* data address */
ce8e922c 1311 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1312{
795cac72 1313 size_t bend;
1da177e4
LT
1314
1315 bend = boff + bsize;
1316 while (boff < bend) {
795cac72
DC
1317 struct page *page;
1318 int page_index, page_offset, csize;
1319
1320 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1321 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1322 page = bp->b_pages[page_index];
1323 csize = min_t(size_t, PAGE_SIZE - page_offset,
1324 BBTOB(bp->b_io_length) - boff);
1da177e4 1325
795cac72 1326 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1327
1328 switch (mode) {
ce8e922c 1329 case XBRW_ZERO:
795cac72 1330 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1331 break;
ce8e922c 1332 case XBRW_READ:
795cac72 1333 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1334 break;
ce8e922c 1335 case XBRW_WRITE:
795cac72 1336 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1337 }
1338
1339 boff += csize;
1340 data += csize;
1341 }
1342}
1343
1344/*
ce8e922c 1345 * Handling of buffer targets (buftargs).
1da177e4
LT
1346 */
1347
1348/*
430cbeb8
DC
1349 * Wait for any bufs with callbacks that have been submitted but have not yet
1350 * returned. These buffers will have an elevated hold count, so wait on those
1351 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1352 */
1353void
1354xfs_wait_buftarg(
74f75a0c 1355 struct xfs_buftarg *btp)
1da177e4 1356{
430cbeb8
DC
1357 struct xfs_buf *bp;
1358
1359restart:
1360 spin_lock(&btp->bt_lru_lock);
1361 while (!list_empty(&btp->bt_lru)) {
1362 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1363 if (atomic_read(&bp->b_hold) > 1) {
1364 spin_unlock(&btp->bt_lru_lock);
26af6552 1365 delay(100);
430cbeb8 1366 goto restart;
1da177e4 1367 }
430cbeb8 1368 /*
90802ed9 1369 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1370 * ignored in xfs_buf_rele().
1371 */
1372 atomic_set(&bp->b_lru_ref, 0);
1373 spin_unlock(&btp->bt_lru_lock);
1374 xfs_buf_rele(bp);
1375 spin_lock(&btp->bt_lru_lock);
1da177e4 1376 }
430cbeb8 1377 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1378}
1379
ff57ab21
DC
1380int
1381xfs_buftarg_shrink(
1382 struct shrinker *shrink,
1495f230 1383 struct shrink_control *sc)
a6867a68 1384{
ff57ab21
DC
1385 struct xfs_buftarg *btp = container_of(shrink,
1386 struct xfs_buftarg, bt_shrinker);
430cbeb8 1387 struct xfs_buf *bp;
1495f230 1388 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1389 LIST_HEAD(dispose);
1390
1391 if (!nr_to_scan)
1392 return btp->bt_lru_nr;
1393
1394 spin_lock(&btp->bt_lru_lock);
1395 while (!list_empty(&btp->bt_lru)) {
1396 if (nr_to_scan-- <= 0)
1397 break;
1398
1399 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1400
1401 /*
1402 * Decrement the b_lru_ref count unless the value is already
1403 * zero. If the value is already zero, we need to reclaim the
1404 * buffer, otherwise it gets another trip through the LRU.
1405 */
1406 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1407 list_move_tail(&bp->b_lru, &btp->bt_lru);
1408 continue;
1409 }
1410
1411 /*
1412 * remove the buffer from the LRU now to avoid needing another
1413 * lock round trip inside xfs_buf_rele().
1414 */
1415 list_move(&bp->b_lru, &dispose);
1416 btp->bt_lru_nr--;
ff57ab21 1417 }
430cbeb8
DC
1418 spin_unlock(&btp->bt_lru_lock);
1419
1420 while (!list_empty(&dispose)) {
1421 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1422 list_del_init(&bp->b_lru);
1423 xfs_buf_rele(bp);
1424 }
1425
1426 return btp->bt_lru_nr;
a6867a68
DC
1427}
1428
1da177e4
LT
1429void
1430xfs_free_buftarg(
b7963133
CH
1431 struct xfs_mount *mp,
1432 struct xfs_buftarg *btp)
1da177e4 1433{
ff57ab21
DC
1434 unregister_shrinker(&btp->bt_shrinker);
1435
b7963133
CH
1436 if (mp->m_flags & XFS_MOUNT_BARRIER)
1437 xfs_blkdev_issue_flush(btp);
a6867a68 1438
f0e2d93c 1439 kmem_free(btp);
1da177e4
LT
1440}
1441
1da177e4
LT
1442STATIC int
1443xfs_setsize_buftarg_flags(
1444 xfs_buftarg_t *btp,
1445 unsigned int blocksize,
1446 unsigned int sectorsize,
1447 int verbose)
1448{
ce8e922c
NS
1449 btp->bt_bsize = blocksize;
1450 btp->bt_sshift = ffs(sectorsize) - 1;
1451 btp->bt_smask = sectorsize - 1;
1da177e4 1452
ce8e922c 1453 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1454 char name[BDEVNAME_SIZE];
1455
1456 bdevname(btp->bt_bdev, name);
1457
4f10700a
DC
1458 xfs_warn(btp->bt_mount,
1459 "Cannot set_blocksize to %u on device %s\n",
02b102df 1460 sectorsize, name);
1da177e4
LT
1461 return EINVAL;
1462 }
1463
1da177e4
LT
1464 return 0;
1465}
1466
1467/*
ce8e922c
NS
1468 * When allocating the initial buffer target we have not yet
1469 * read in the superblock, so don't know what sized sectors
1470 * are being used is at this early stage. Play safe.
1471 */
1da177e4
LT
1472STATIC int
1473xfs_setsize_buftarg_early(
1474 xfs_buftarg_t *btp,
1475 struct block_device *bdev)
1476{
1477 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1478 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1479}
1480
1481int
1482xfs_setsize_buftarg(
1483 xfs_buftarg_t *btp,
1484 unsigned int blocksize,
1485 unsigned int sectorsize)
1486{
1487 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1488}
1489
1da177e4
LT
1490xfs_buftarg_t *
1491xfs_alloc_buftarg(
ebad861b 1492 struct xfs_mount *mp,
1da177e4 1493 struct block_device *bdev,
e2a07812
JE
1494 int external,
1495 const char *fsname)
1da177e4
LT
1496{
1497 xfs_buftarg_t *btp;
1498
1499 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1500
ebad861b 1501 btp->bt_mount = mp;
ce8e922c
NS
1502 btp->bt_dev = bdev->bd_dev;
1503 btp->bt_bdev = bdev;
0e6e847f
DC
1504 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1505 if (!btp->bt_bdi)
1506 goto error;
1507
430cbeb8
DC
1508 INIT_LIST_HEAD(&btp->bt_lru);
1509 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1510 if (xfs_setsize_buftarg_early(btp, bdev))
1511 goto error;
ff57ab21
DC
1512 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1513 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1514 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1515 return btp;
1516
1517error:
f0e2d93c 1518 kmem_free(btp);
1da177e4
LT
1519 return NULL;
1520}
1521
1da177e4 1522/*
43ff2122
CH
1523 * Add a buffer to the delayed write list.
1524 *
1525 * This queues a buffer for writeout if it hasn't already been. Note that
1526 * neither this routine nor the buffer list submission functions perform
1527 * any internal synchronization. It is expected that the lists are thread-local
1528 * to the callers.
1529 *
1530 * Returns true if we queued up the buffer, or false if it already had
1531 * been on the buffer list.
1da177e4 1532 */
43ff2122 1533bool
ce8e922c 1534xfs_buf_delwri_queue(
43ff2122
CH
1535 struct xfs_buf *bp,
1536 struct list_head *list)
1da177e4 1537{
43ff2122 1538 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1539 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1540
43ff2122
CH
1541 /*
1542 * If the buffer is already marked delwri it already is queued up
1543 * by someone else for imediate writeout. Just ignore it in that
1544 * case.
1545 */
1546 if (bp->b_flags & _XBF_DELWRI_Q) {
1547 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1548 return false;
1da177e4 1549 }
1da177e4 1550
43ff2122 1551 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1552
1553 /*
43ff2122
CH
1554 * If a buffer gets written out synchronously or marked stale while it
1555 * is on a delwri list we lazily remove it. To do this, the other party
1556 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1557 * It remains referenced and on the list. In a rare corner case it
1558 * might get readded to a delwri list after the synchronous writeout, in
1559 * which case we need just need to re-add the flag here.
d808f617 1560 */
43ff2122
CH
1561 bp->b_flags |= _XBF_DELWRI_Q;
1562 if (list_empty(&bp->b_list)) {
1563 atomic_inc(&bp->b_hold);
1564 list_add_tail(&bp->b_list, list);
585e6d88 1565 }
585e6d88 1566
43ff2122 1567 return true;
585e6d88
DC
1568}
1569
089716aa
DC
1570/*
1571 * Compare function is more complex than it needs to be because
1572 * the return value is only 32 bits and we are doing comparisons
1573 * on 64 bit values
1574 */
1575static int
1576xfs_buf_cmp(
1577 void *priv,
1578 struct list_head *a,
1579 struct list_head *b)
1580{
1581 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1582 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1583 xfs_daddr_t diff;
1584
1585 diff = ap->b_bn - bp->b_bn;
1586 if (diff < 0)
1587 return -1;
1588 if (diff > 0)
1589 return 1;
1590 return 0;
1591}
1592
43ff2122
CH
1593static int
1594__xfs_buf_delwri_submit(
1595 struct list_head *buffer_list,
1596 struct list_head *io_list,
1597 bool wait)
1da177e4 1598{
43ff2122
CH
1599 struct blk_plug plug;
1600 struct xfs_buf *bp, *n;
1601 int pinned = 0;
1602
1603 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1604 if (!wait) {
1605 if (xfs_buf_ispinned(bp)) {
1606 pinned++;
1607 continue;
1608 }
1609 if (!xfs_buf_trylock(bp))
1610 continue;
1611 } else {
1612 xfs_buf_lock(bp);
1613 }
978c7b2f 1614
43ff2122
CH
1615 /*
1616 * Someone else might have written the buffer synchronously or
1617 * marked it stale in the meantime. In that case only the
1618 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1619 * reference and remove it from the list here.
1620 */
1621 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1622 list_del_init(&bp->b_list);
1623 xfs_buf_relse(bp);
1624 continue;
1625 }
c9c12971 1626
43ff2122
CH
1627 list_move_tail(&bp->b_list, io_list);
1628 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1629 }
1da177e4 1630
43ff2122 1631 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1632
43ff2122
CH
1633 blk_start_plug(&plug);
1634 list_for_each_entry_safe(bp, n, io_list, b_list) {
1635 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1636 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1637
43ff2122
CH
1638 if (!wait) {
1639 bp->b_flags |= XBF_ASYNC;
ce8e922c 1640 list_del_init(&bp->b_list);
1da177e4 1641 }
43ff2122
CH
1642 xfs_bdstrat_cb(bp);
1643 }
1644 blk_finish_plug(&plug);
1da177e4 1645
43ff2122 1646 return pinned;
1da177e4
LT
1647}
1648
1649/*
43ff2122
CH
1650 * Write out a buffer list asynchronously.
1651 *
1652 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1653 * out and not wait for I/O completion on any of the buffers. This interface
1654 * is only safely useable for callers that can track I/O completion by higher
1655 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1656 * function.
1da177e4
LT
1657 */
1658int
43ff2122
CH
1659xfs_buf_delwri_submit_nowait(
1660 struct list_head *buffer_list)
1da177e4 1661{
43ff2122
CH
1662 LIST_HEAD (io_list);
1663 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1664}
1da177e4 1665
43ff2122
CH
1666/*
1667 * Write out a buffer list synchronously.
1668 *
1669 * This will take the @buffer_list, write all buffers out and wait for I/O
1670 * completion on all of the buffers. @buffer_list is consumed by the function,
1671 * so callers must have some other way of tracking buffers if they require such
1672 * functionality.
1673 */
1674int
1675xfs_buf_delwri_submit(
1676 struct list_head *buffer_list)
1677{
1678 LIST_HEAD (io_list);
1679 int error = 0, error2;
1680 struct xfs_buf *bp;
1da177e4 1681
43ff2122 1682 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1683
43ff2122
CH
1684 /* Wait for IO to complete. */
1685 while (!list_empty(&io_list)) {
1686 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1687
089716aa 1688 list_del_init(&bp->b_list);
43ff2122
CH
1689 error2 = xfs_buf_iowait(bp);
1690 xfs_buf_relse(bp);
1691 if (!error)
1692 error = error2;
1da177e4
LT
1693 }
1694
43ff2122 1695 return error;
1da177e4
LT
1696}
1697
04d8b284 1698int __init
ce8e922c 1699xfs_buf_init(void)
1da177e4 1700{
8758280f
NS
1701 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1702 KM_ZONE_HWALIGN, NULL);
ce8e922c 1703 if (!xfs_buf_zone)
0b1b213f 1704 goto out;
04d8b284 1705
51749e47 1706 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1707 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1708 if (!xfslogd_workqueue)
04d8b284 1709 goto out_free_buf_zone;
1da177e4 1710
23ea4032 1711 return 0;
1da177e4 1712
23ea4032 1713 out_free_buf_zone:
ce8e922c 1714 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1715 out:
8758280f 1716 return -ENOMEM;
1da177e4
LT
1717}
1718
1da177e4 1719void
ce8e922c 1720xfs_buf_terminate(void)
1da177e4 1721{
04d8b284 1722 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1723 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1724}