xfs: prevent reading uninitialized stack memory
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c
NS
190 INIT_LIST_HEAD(&bp->b_list);
191 INIT_LIST_HEAD(&bp->b_hash_list);
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
ce8e922c 265 ASSERT(list_empty(&bp->b_hash_list));
1da177e4 266
1fa40b01 267 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
268 uint i;
269
73c77e2c 270 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
271 vm_unmap_ram(bp->b_addr - bp->b_offset,
272 bp->b_page_count);
1da177e4 273
948ecdb4
NS
274 for (i = 0; i < bp->b_page_count; i++) {
275 struct page *page = bp->b_pages[i];
276
1fa40b01
CH
277 if (bp->b_flags & _XBF_PAGE_CACHE)
278 ASSERT(!PagePrivate(page));
948ecdb4
NS
279 page_cache_release(page);
280 }
1da177e4 281 }
3fc98b1a 282 _xfs_buf_free_pages(bp);
ce8e922c 283 xfs_buf_deallocate(bp);
1da177e4
LT
284}
285
286/*
287 * Finds all pages for buffer in question and builds it's page list.
288 */
289STATIC int
ce8e922c 290_xfs_buf_lookup_pages(
1da177e4
LT
291 xfs_buf_t *bp,
292 uint flags)
293{
ce8e922c
NS
294 struct address_space *mapping = bp->b_target->bt_mapping;
295 size_t blocksize = bp->b_target->bt_bsize;
296 size_t size = bp->b_count_desired;
1da177e4 297 size_t nbytes, offset;
ce8e922c 298 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
299 unsigned short page_count, i;
300 pgoff_t first;
204ab25f 301 xfs_off_t end;
1da177e4
LT
302 int error;
303
ce8e922c
NS
304 end = bp->b_file_offset + bp->b_buffer_length;
305 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 306
ce8e922c 307 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
308 if (unlikely(error))
309 return error;
ce8e922c 310 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 311
ce8e922c
NS
312 offset = bp->b_offset;
313 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 314
ce8e922c 315 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
316 struct page *page;
317 uint retries = 0;
318
319 retry:
320 page = find_or_create_page(mapping, first + i, gfp_mask);
321 if (unlikely(page == NULL)) {
ce8e922c
NS
322 if (flags & XBF_READ_AHEAD) {
323 bp->b_page_count = i;
6ab455ee
CH
324 for (i = 0; i < bp->b_page_count; i++)
325 unlock_page(bp->b_pages[i]);
1da177e4
LT
326 return -ENOMEM;
327 }
328
329 /*
330 * This could deadlock.
331 *
332 * But until all the XFS lowlevel code is revamped to
333 * handle buffer allocation failures we can't do much.
334 */
335 if (!(++retries % 100))
336 printk(KERN_ERR
337 "XFS: possible memory allocation "
338 "deadlock in %s (mode:0x%x)\n",
34a622b2 339 __func__, gfp_mask);
1da177e4 340
ce8e922c 341 XFS_STATS_INC(xb_page_retries);
7f8275d0 342 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 343 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
344 goto retry;
345 }
346
ce8e922c 347 XFS_STATS_INC(xb_page_found);
1da177e4
LT
348
349 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
350 size -= nbytes;
351
948ecdb4 352 ASSERT(!PagePrivate(page));
1da177e4
LT
353 if (!PageUptodate(page)) {
354 page_count--;
6ab455ee
CH
355 if (blocksize >= PAGE_CACHE_SIZE) {
356 if (flags & XBF_READ)
357 bp->b_flags |= _XBF_PAGE_LOCKED;
358 } else if (!PagePrivate(page)) {
1da177e4
LT
359 if (test_page_region(page, offset, nbytes))
360 page_count++;
361 }
362 }
363
ce8e922c 364 bp->b_pages[i] = page;
1da177e4
LT
365 offset = 0;
366 }
367
6ab455ee
CH
368 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
369 for (i = 0; i < bp->b_page_count; i++)
370 unlock_page(bp->b_pages[i]);
371 }
372
ce8e922c
NS
373 if (page_count == bp->b_page_count)
374 bp->b_flags |= XBF_DONE;
1da177e4 375
1da177e4
LT
376 return error;
377}
378
379/*
380 * Map buffer into kernel address-space if nessecary.
381 */
382STATIC int
ce8e922c 383_xfs_buf_map_pages(
1da177e4
LT
384 xfs_buf_t *bp,
385 uint flags)
386{
387 /* A single page buffer is always mappable */
ce8e922c
NS
388 if (bp->b_page_count == 1) {
389 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390 bp->b_flags |= XBF_MAPPED;
391 } else if (flags & XBF_MAPPED) {
8a262e57
AE
392 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
393 -1, PAGE_KERNEL);
ce8e922c 394 if (unlikely(bp->b_addr == NULL))
1da177e4 395 return -ENOMEM;
ce8e922c
NS
396 bp->b_addr += bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
398 }
399
400 return 0;
401}
402
403/*
404 * Finding and Reading Buffers
405 */
406
407/*
ce8e922c 408 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
409 * a given range of an inode. The buffer is returned
410 * locked. If other overlapping buffers exist, they are
411 * released before the new buffer is created and locked,
412 * which may imply that this call will block until those buffers
413 * are unlocked. No I/O is implied by this call.
414 */
415xfs_buf_t *
ce8e922c 416_xfs_buf_find(
1da177e4 417 xfs_buftarg_t *btp, /* block device target */
204ab25f 418 xfs_off_t ioff, /* starting offset of range */
1da177e4 419 size_t isize, /* length of range */
ce8e922c
NS
420 xfs_buf_flags_t flags,
421 xfs_buf_t *new_bp)
1da177e4 422{
204ab25f 423 xfs_off_t range_base;
1da177e4
LT
424 size_t range_length;
425 xfs_bufhash_t *hash;
ce8e922c 426 xfs_buf_t *bp, *n;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4
LT
434
435 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
436
437 spin_lock(&hash->bh_lock);
438
ce8e922c
NS
439 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
440 ASSERT(btp == bp->b_target);
441 if (bp->b_file_offset == range_base &&
442 bp->b_buffer_length == range_length) {
ce8e922c 443 atomic_inc(&bp->b_hold);
1da177e4
LT
444 goto found;
445 }
446 }
447
448 /* No match found */
ce8e922c
NS
449 if (new_bp) {
450 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 451 range_length, flags);
ce8e922c
NS
452 new_bp->b_hash = hash;
453 list_add(&new_bp->b_hash_list, &hash->bh_list);
1da177e4 454 } else {
ce8e922c 455 XFS_STATS_INC(xb_miss_locked);
1da177e4
LT
456 }
457
458 spin_unlock(&hash->bh_lock);
ce8e922c 459 return new_bp;
1da177e4
LT
460
461found:
462 spin_unlock(&hash->bh_lock);
463
464 /* Attempt to get the semaphore without sleeping,
465 * if this does not work then we need to drop the
466 * spinlock and do a hard attempt on the semaphore.
467 */
ce8e922c
NS
468 if (down_trylock(&bp->b_sema)) {
469 if (!(flags & XBF_TRYLOCK)) {
1da177e4 470 /* wait for buffer ownership */
ce8e922c
NS
471 xfs_buf_lock(bp);
472 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
473 } else {
474 /* We asked for a trylock and failed, no need
475 * to look at file offset and length here, we
ce8e922c
NS
476 * know that this buffer at least overlaps our
477 * buffer and is locked, therefore our buffer
478 * either does not exist, or is this buffer.
1da177e4 479 */
ce8e922c
NS
480 xfs_buf_rele(bp);
481 XFS_STATS_INC(xb_busy_locked);
482 return NULL;
1da177e4
LT
483 }
484 } else {
485 /* trylock worked */
ce8e922c 486 XB_SET_OWNER(bp);
1da177e4
LT
487 }
488
ce8e922c
NS
489 if (bp->b_flags & XBF_STALE) {
490 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
491 bp->b_flags &= XBF_MAPPED;
2f926587 492 }
0b1b213f
CH
493
494 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
495 XFS_STATS_INC(xb_get_locked);
496 return bp;
1da177e4
LT
497}
498
499/*
ce8e922c 500 * Assembles a buffer covering the specified range.
1da177e4
LT
501 * Storage in memory for all portions of the buffer will be allocated,
502 * although backing storage may not be.
503 */
504xfs_buf_t *
6ad112bf 505xfs_buf_get(
1da177e4 506 xfs_buftarg_t *target,/* target for buffer */
204ab25f 507 xfs_off_t ioff, /* starting offset of range */
1da177e4 508 size_t isize, /* length of range */
ce8e922c 509 xfs_buf_flags_t flags)
1da177e4 510{
ce8e922c 511 xfs_buf_t *bp, *new_bp;
1da177e4
LT
512 int error = 0, i;
513
ce8e922c
NS
514 new_bp = xfs_buf_allocate(flags);
515 if (unlikely(!new_bp))
1da177e4
LT
516 return NULL;
517
ce8e922c
NS
518 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
519 if (bp == new_bp) {
520 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
521 if (error)
522 goto no_buffer;
523 } else {
ce8e922c
NS
524 xfs_buf_deallocate(new_bp);
525 if (unlikely(bp == NULL))
1da177e4
LT
526 return NULL;
527 }
528
ce8e922c
NS
529 for (i = 0; i < bp->b_page_count; i++)
530 mark_page_accessed(bp->b_pages[i]);
1da177e4 531
ce8e922c
NS
532 if (!(bp->b_flags & XBF_MAPPED)) {
533 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
534 if (unlikely(error)) {
535 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 536 __func__);
1da177e4
LT
537 goto no_buffer;
538 }
539 }
540
ce8e922c 541 XFS_STATS_INC(xb_get);
1da177e4
LT
542
543 /*
544 * Always fill in the block number now, the mapped cases can do
545 * their own overlay of this later.
546 */
ce8e922c
NS
547 bp->b_bn = ioff;
548 bp->b_count_desired = bp->b_buffer_length;
1da177e4 549
0b1b213f 550 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 551 return bp;
1da177e4
LT
552
553 no_buffer:
ce8e922c
NS
554 if (flags & (XBF_LOCK | XBF_TRYLOCK))
555 xfs_buf_unlock(bp);
556 xfs_buf_rele(bp);
1da177e4
LT
557 return NULL;
558}
559
5d765b97
CH
560STATIC int
561_xfs_buf_read(
562 xfs_buf_t *bp,
563 xfs_buf_flags_t flags)
564{
565 int status;
566
5d765b97
CH
567 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
568 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
569
570 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
571 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
572 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
573 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
574
575 status = xfs_buf_iorequest(bp);
ec53d1db
DC
576 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
577 return status;
578 return xfs_buf_iowait(bp);
5d765b97
CH
579}
580
1da177e4 581xfs_buf_t *
6ad112bf 582xfs_buf_read(
1da177e4 583 xfs_buftarg_t *target,
204ab25f 584 xfs_off_t ioff,
1da177e4 585 size_t isize,
ce8e922c 586 xfs_buf_flags_t flags)
1da177e4 587{
ce8e922c
NS
588 xfs_buf_t *bp;
589
590 flags |= XBF_READ;
591
6ad112bf 592 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 593 if (bp) {
0b1b213f
CH
594 trace_xfs_buf_read(bp, flags, _RET_IP_);
595
ce8e922c 596 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 597 XFS_STATS_INC(xb_get_read);
5d765b97 598 _xfs_buf_read(bp, flags);
ce8e922c 599 } else if (flags & XBF_ASYNC) {
1da177e4
LT
600 /*
601 * Read ahead call which is already satisfied,
602 * drop the buffer
603 */
604 goto no_buffer;
605 } else {
1da177e4 606 /* We do not want read in the flags */
ce8e922c 607 bp->b_flags &= ~XBF_READ;
1da177e4
LT
608 }
609 }
610
ce8e922c 611 return bp;
1da177e4
LT
612
613 no_buffer:
ce8e922c
NS
614 if (flags & (XBF_LOCK | XBF_TRYLOCK))
615 xfs_buf_unlock(bp);
616 xfs_buf_rele(bp);
1da177e4
LT
617 return NULL;
618}
619
1da177e4 620/*
ce8e922c
NS
621 * If we are not low on memory then do the readahead in a deadlock
622 * safe manner.
1da177e4
LT
623 */
624void
ce8e922c 625xfs_buf_readahead(
1da177e4 626 xfs_buftarg_t *target,
204ab25f 627 xfs_off_t ioff,
1da177e4 628 size_t isize,
ce8e922c 629 xfs_buf_flags_t flags)
1da177e4
LT
630{
631 struct backing_dev_info *bdi;
632
ce8e922c 633 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
634 if (bdi_read_congested(bdi))
635 return;
636
ce8e922c 637 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
6ad112bf 638 xfs_buf_read(target, ioff, isize, flags);
1da177e4
LT
639}
640
641xfs_buf_t *
ce8e922c 642xfs_buf_get_empty(
1da177e4
LT
643 size_t len,
644 xfs_buftarg_t *target)
645{
ce8e922c 646 xfs_buf_t *bp;
1da177e4 647
ce8e922c
NS
648 bp = xfs_buf_allocate(0);
649 if (bp)
650 _xfs_buf_initialize(bp, target, 0, len, 0);
651 return bp;
1da177e4
LT
652}
653
654static inline struct page *
655mem_to_page(
656 void *addr)
657{
9e2779fa 658 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
659 return virt_to_page(addr);
660 } else {
661 return vmalloc_to_page(addr);
662 }
663}
664
665int
ce8e922c
NS
666xfs_buf_associate_memory(
667 xfs_buf_t *bp,
1da177e4
LT
668 void *mem,
669 size_t len)
670{
671 int rval;
672 int i = 0;
d1afb678
LM
673 unsigned long pageaddr;
674 unsigned long offset;
675 size_t buflen;
1da177e4
LT
676 int page_count;
677
d1afb678
LM
678 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
679 offset = (unsigned long)mem - pageaddr;
680 buflen = PAGE_CACHE_ALIGN(len + offset);
681 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
682
683 /* Free any previous set of page pointers */
ce8e922c
NS
684 if (bp->b_pages)
685 _xfs_buf_free_pages(bp);
1da177e4 686
ce8e922c
NS
687 bp->b_pages = NULL;
688 bp->b_addr = mem;
1da177e4 689
36fae17a 690 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
691 if (rval)
692 return rval;
693
ce8e922c 694 bp->b_offset = offset;
d1afb678
LM
695
696 for (i = 0; i < bp->b_page_count; i++) {
697 bp->b_pages[i] = mem_to_page((void *)pageaddr);
698 pageaddr += PAGE_CACHE_SIZE;
1da177e4 699 }
1da177e4 700
d1afb678
LM
701 bp->b_count_desired = len;
702 bp->b_buffer_length = buflen;
ce8e922c 703 bp->b_flags |= XBF_MAPPED;
6ab455ee 704 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
705
706 return 0;
707}
708
709xfs_buf_t *
ce8e922c 710xfs_buf_get_noaddr(
1da177e4
LT
711 size_t len,
712 xfs_buftarg_t *target)
713{
1fa40b01
CH
714 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
715 int error, i;
1da177e4 716 xfs_buf_t *bp;
1da177e4 717
ce8e922c 718 bp = xfs_buf_allocate(0);
1da177e4
LT
719 if (unlikely(bp == NULL))
720 goto fail;
ce8e922c 721 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 722
1fa40b01
CH
723 error = _xfs_buf_get_pages(bp, page_count, 0);
724 if (error)
1da177e4
LT
725 goto fail_free_buf;
726
1fa40b01
CH
727 for (i = 0; i < page_count; i++) {
728 bp->b_pages[i] = alloc_page(GFP_KERNEL);
729 if (!bp->b_pages[i])
730 goto fail_free_mem;
1da177e4 731 }
1fa40b01 732 bp->b_flags |= _XBF_PAGES;
1da177e4 733
1fa40b01
CH
734 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
735 if (unlikely(error)) {
736 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 737 __func__);
1da177e4 738 goto fail_free_mem;
1fa40b01 739 }
1da177e4 740
ce8e922c 741 xfs_buf_unlock(bp);
1da177e4 742
0b1b213f 743 trace_xfs_buf_get_noaddr(bp, _RET_IP_);
1da177e4 744 return bp;
1fa40b01 745
1da177e4 746 fail_free_mem:
1fa40b01
CH
747 while (--i >= 0)
748 __free_page(bp->b_pages[i]);
ca165b88 749 _xfs_buf_free_pages(bp);
1da177e4 750 fail_free_buf:
ca165b88 751 xfs_buf_deallocate(bp);
1da177e4
LT
752 fail:
753 return NULL;
754}
755
756/*
1da177e4
LT
757 * Increment reference count on buffer, to hold the buffer concurrently
758 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
759 * Must hold the buffer already to call this function.
760 */
761void
ce8e922c
NS
762xfs_buf_hold(
763 xfs_buf_t *bp)
1da177e4 764{
0b1b213f 765 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 766 atomic_inc(&bp->b_hold);
1da177e4
LT
767}
768
769/*
ce8e922c
NS
770 * Releases a hold on the specified buffer. If the
771 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
772 */
773void
ce8e922c
NS
774xfs_buf_rele(
775 xfs_buf_t *bp)
1da177e4 776{
ce8e922c 777 xfs_bufhash_t *hash = bp->b_hash;
1da177e4 778
0b1b213f 779 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 780
fad3aa1e
NS
781 if (unlikely(!hash)) {
782 ASSERT(!bp->b_relse);
783 if (atomic_dec_and_test(&bp->b_hold))
784 xfs_buf_free(bp);
785 return;
786 }
787
3790689f 788 ASSERT(atomic_read(&bp->b_hold) > 0);
ce8e922c
NS
789 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
790 if (bp->b_relse) {
791 atomic_inc(&bp->b_hold);
1da177e4 792 spin_unlock(&hash->bh_lock);
ce8e922c
NS
793 (*(bp->b_relse)) (bp);
794 } else if (bp->b_flags & XBF_FS_MANAGED) {
1da177e4 795 spin_unlock(&hash->bh_lock);
1da177e4 796 } else {
ce8e922c
NS
797 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
798 list_del_init(&bp->b_hash_list);
1da177e4 799 spin_unlock(&hash->bh_lock);
ce8e922c 800 xfs_buf_free(bp);
1da177e4
LT
801 }
802 }
803}
804
805
806/*
807 * Mutual exclusion on buffers. Locking model:
808 *
809 * Buffers associated with inodes for which buffer locking
810 * is not enabled are not protected by semaphores, and are
811 * assumed to be exclusively owned by the caller. There is a
812 * spinlock in the buffer, used by the caller when concurrent
813 * access is possible.
814 */
815
816/*
ce8e922c
NS
817 * Locks a buffer object, if it is not already locked.
818 * Note that this in no way locks the underlying pages, so it is only
819 * useful for synchronizing concurrent use of buffer objects, not for
820 * synchronizing independent access to the underlying pages.
1da177e4
LT
821 */
822int
ce8e922c
NS
823xfs_buf_cond_lock(
824 xfs_buf_t *bp)
1da177e4
LT
825{
826 int locked;
827
ce8e922c 828 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 829 if (locked)
ce8e922c 830 XB_SET_OWNER(bp);
0b1b213f
CH
831
832 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 833 return locked ? 0 : -EBUSY;
1da177e4
LT
834}
835
1da177e4 836int
ce8e922c
NS
837xfs_buf_lock_value(
838 xfs_buf_t *bp)
1da177e4 839{
adaa693b 840 return bp->b_sema.count;
1da177e4 841}
1da177e4
LT
842
843/*
ce8e922c
NS
844 * Locks a buffer object.
845 * Note that this in no way locks the underlying pages, so it is only
846 * useful for synchronizing concurrent use of buffer objects, not for
847 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
848 *
849 * If we come across a stale, pinned, locked buffer, we know that we
850 * are being asked to lock a buffer that has been reallocated. Because
851 * it is pinned, we know that the log has not been pushed to disk and
852 * hence it will still be locked. Rather than sleeping until someone
853 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 854 */
ce8e922c
NS
855void
856xfs_buf_lock(
857 xfs_buf_t *bp)
1da177e4 858{
0b1b213f
CH
859 trace_xfs_buf_lock(bp, _RET_IP_);
860
ed3b4d6c
DC
861 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
862 xfs_log_force(bp->b_mount, 0);
ce8e922c
NS
863 if (atomic_read(&bp->b_io_remaining))
864 blk_run_address_space(bp->b_target->bt_mapping);
865 down(&bp->b_sema);
866 XB_SET_OWNER(bp);
0b1b213f
CH
867
868 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
869}
870
871/*
ce8e922c 872 * Releases the lock on the buffer object.
2f926587 873 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 874 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
875 * take a reference for the delwri queue because the unlocker is going to
876 * drop their's and they don't know we just queued it.
1da177e4
LT
877 */
878void
ce8e922c
NS
879xfs_buf_unlock(
880 xfs_buf_t *bp)
1da177e4 881{
ce8e922c
NS
882 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
883 atomic_inc(&bp->b_hold);
884 bp->b_flags |= XBF_ASYNC;
885 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
886 }
887
ce8e922c
NS
888 XB_CLEAR_OWNER(bp);
889 up(&bp->b_sema);
0b1b213f
CH
890
891 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
892}
893
ce8e922c
NS
894STATIC void
895xfs_buf_wait_unpin(
896 xfs_buf_t *bp)
1da177e4
LT
897{
898 DECLARE_WAITQUEUE (wait, current);
899
ce8e922c 900 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
901 return;
902
ce8e922c 903 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
904 for (;;) {
905 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 906 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 907 break;
ce8e922c
NS
908 if (atomic_read(&bp->b_io_remaining))
909 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
910 schedule();
911 }
ce8e922c 912 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
913 set_current_state(TASK_RUNNING);
914}
915
916/*
917 * Buffer Utility Routines
918 */
919
1da177e4 920STATIC void
ce8e922c 921xfs_buf_iodone_work(
c4028958 922 struct work_struct *work)
1da177e4 923{
c4028958
DH
924 xfs_buf_t *bp =
925 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 926
0bfefc46
DC
927 /*
928 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
929 * ordered flag and reissue them. Because we can't tell the higher
930 * layers directly that they should not issue ordered I/O anymore, they
73f6aa4d 931 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
0bfefc46
DC
932 */
933 if ((bp->b_error == EOPNOTSUPP) &&
934 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
0b1b213f 935 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
0bfefc46 936 bp->b_flags &= ~XBF_ORDERED;
73f6aa4d 937 bp->b_flags |= _XFS_BARRIER_FAILED;
0bfefc46
DC
938 xfs_buf_iorequest(bp);
939 } else if (bp->b_iodone)
ce8e922c
NS
940 (*(bp->b_iodone))(bp);
941 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
942 xfs_buf_relse(bp);
943}
944
945void
ce8e922c
NS
946xfs_buf_ioend(
947 xfs_buf_t *bp,
1da177e4
LT
948 int schedule)
949{
0b1b213f
CH
950 trace_xfs_buf_iodone(bp, _RET_IP_);
951
77be55a5 952 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
953 if (bp->b_error == 0)
954 bp->b_flags |= XBF_DONE;
1da177e4 955
ce8e922c 956 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 957 if (schedule) {
c4028958 958 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 959 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 960 } else {
c4028958 961 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
962 }
963 } else {
b4dd330b 964 complete(&bp->b_iowait);
1da177e4
LT
965 }
966}
967
1da177e4 968void
ce8e922c
NS
969xfs_buf_ioerror(
970 xfs_buf_t *bp,
971 int error)
1da177e4
LT
972{
973 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 974 bp->b_error = (unsigned short)error;
0b1b213f 975 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
976}
977
1da177e4 978int
64e0bc7d
CH
979xfs_bwrite(
980 struct xfs_mount *mp,
5d765b97 981 struct xfs_buf *bp)
1da177e4 982{
8c38366f 983 int error;
1da177e4 984
64e0bc7d
CH
985 bp->b_mount = mp;
986 bp->b_flags |= XBF_WRITE;
8c38366f 987 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 988
5d765b97 989 xfs_buf_delwri_dequeue(bp);
939d723b 990 xfs_bdstrat_cb(bp);
1da177e4 991
8c38366f
CH
992 error = xfs_buf_iowait(bp);
993 if (error)
994 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
995 xfs_buf_relse(bp);
64e0bc7d 996 return error;
5d765b97 997}
1da177e4 998
5d765b97
CH
999void
1000xfs_bdwrite(
1001 void *mp,
1002 struct xfs_buf *bp)
1003{
0b1b213f 1004 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1005
15ac08a8 1006 bp->b_mount = mp;
1da177e4 1007
5d765b97
CH
1008 bp->b_flags &= ~XBF_READ;
1009 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1010
1011 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1012}
1013
4e23471a
CH
1014/*
1015 * Called when we want to stop a buffer from getting written or read.
1016 * We attach the EIO error, muck with its flags, and call biodone
1017 * so that the proper iodone callbacks get called.
1018 */
1019STATIC int
1020xfs_bioerror(
1021 xfs_buf_t *bp)
1022{
1023#ifdef XFSERRORDEBUG
1024 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1025#endif
1026
1027 /*
1028 * No need to wait until the buffer is unpinned, we aren't flushing it.
1029 */
1030 XFS_BUF_ERROR(bp, EIO);
1031
1032 /*
1033 * We're calling biodone, so delete XBF_DONE flag.
1034 */
1035 XFS_BUF_UNREAD(bp);
1036 XFS_BUF_UNDELAYWRITE(bp);
1037 XFS_BUF_UNDONE(bp);
1038 XFS_BUF_STALE(bp);
1039
4e23471a
CH
1040 xfs_biodone(bp);
1041
1042 return EIO;
1043}
1044
1045/*
1046 * Same as xfs_bioerror, except that we are releasing the buffer
1047 * here ourselves, and avoiding the biodone call.
1048 * This is meant for userdata errors; metadata bufs come with
1049 * iodone functions attached, so that we can track down errors.
1050 */
1051STATIC int
1052xfs_bioerror_relse(
1053 struct xfs_buf *bp)
1054{
1055 int64_t fl = XFS_BUF_BFLAGS(bp);
1056 /*
1057 * No need to wait until the buffer is unpinned.
1058 * We aren't flushing it.
1059 *
1060 * chunkhold expects B_DONE to be set, whether
1061 * we actually finish the I/O or not. We don't want to
1062 * change that interface.
1063 */
1064 XFS_BUF_UNREAD(bp);
1065 XFS_BUF_UNDELAYWRITE(bp);
1066 XFS_BUF_DONE(bp);
1067 XFS_BUF_STALE(bp);
1068 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1069 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1070 /*
1071 * Mark b_error and B_ERROR _both_.
1072 * Lot's of chunkcache code assumes that.
1073 * There's no reason to mark error for
1074 * ASYNC buffers.
1075 */
1076 XFS_BUF_ERROR(bp, EIO);
1077 XFS_BUF_FINISH_IOWAIT(bp);
1078 } else {
1079 xfs_buf_relse(bp);
1080 }
1081
1082 return EIO;
1083}
1084
1085
1086/*
1087 * All xfs metadata buffers except log state machine buffers
1088 * get this attached as their b_bdstrat callback function.
1089 * This is so that we can catch a buffer
1090 * after prematurely unpinning it to forcibly shutdown the filesystem.
1091 */
1092int
1093xfs_bdstrat_cb(
1094 struct xfs_buf *bp)
1095{
1096 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1097 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1098 /*
1099 * Metadata write that didn't get logged but
1100 * written delayed anyway. These aren't associated
1101 * with a transaction, and can be ignored.
1102 */
1103 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1104 return xfs_bioerror_relse(bp);
1105 else
1106 return xfs_bioerror(bp);
1107 }
1108
1109 xfs_buf_iorequest(bp);
1110 return 0;
1111}
1112
1113/*
1114 * Wrapper around bdstrat so that we can stop data from going to disk in case
1115 * we are shutting down the filesystem. Typically user data goes thru this
1116 * path; one of the exceptions is the superblock.
1117 */
1118void
1119xfsbdstrat(
1120 struct xfs_mount *mp,
1121 struct xfs_buf *bp)
1122{
1123 if (XFS_FORCED_SHUTDOWN(mp)) {
1124 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1125 xfs_bioerror_relse(bp);
1126 return;
1127 }
1128
1129 xfs_buf_iorequest(bp);
1130}
1131
b8f82a4a 1132STATIC void
ce8e922c
NS
1133_xfs_buf_ioend(
1134 xfs_buf_t *bp,
1da177e4
LT
1135 int schedule)
1136{
6ab455ee
CH
1137 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1138 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1139 xfs_buf_ioend(bp, schedule);
6ab455ee 1140 }
1da177e4
LT
1141}
1142
782e3b3b 1143STATIC void
ce8e922c 1144xfs_buf_bio_end_io(
1da177e4 1145 struct bio *bio,
1da177e4
LT
1146 int error)
1147{
ce8e922c
NS
1148 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1149 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1150 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1151
cfbe5267 1152 xfs_buf_ioerror(bp, -error);
1da177e4 1153
73c77e2c
JB
1154 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1155 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1156
eedb5530 1157 do {
1da177e4
LT
1158 struct page *page = bvec->bv_page;
1159
948ecdb4 1160 ASSERT(!PagePrivate(page));
ce8e922c
NS
1161 if (unlikely(bp->b_error)) {
1162 if (bp->b_flags & XBF_READ)
eedb5530 1163 ClearPageUptodate(page);
ce8e922c 1164 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1165 SetPageUptodate(page);
1166 } else if (!PagePrivate(page) &&
ce8e922c 1167 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1168 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1169 }
1170
eedb5530
NS
1171 if (--bvec >= bio->bi_io_vec)
1172 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1173
1174 if (bp->b_flags & _XBF_PAGE_LOCKED)
1175 unlock_page(page);
eedb5530 1176 } while (bvec >= bio->bi_io_vec);
1da177e4 1177
ce8e922c 1178 _xfs_buf_ioend(bp, 1);
1da177e4 1179 bio_put(bio);
1da177e4
LT
1180}
1181
1182STATIC void
ce8e922c
NS
1183_xfs_buf_ioapply(
1184 xfs_buf_t *bp)
1da177e4 1185{
a9759f2d 1186 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1187 struct bio *bio;
ce8e922c
NS
1188 int offset = bp->b_offset;
1189 int size = bp->b_count_desired;
1190 sector_t sector = bp->b_bn;
1191 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1192
ce8e922c 1193 total_nr_pages = bp->b_page_count;
1da177e4
LT
1194 map_i = 0;
1195
ce8e922c
NS
1196 if (bp->b_flags & XBF_ORDERED) {
1197 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1198 rw = WRITE_BARRIER;
2ee1abad 1199 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1200 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1201 bp->b_flags &= ~_XBF_RUN_QUEUES;
1202 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1203 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1204 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1205 bp->b_flags &= ~_XBF_RUN_QUEUES;
1206 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1207 } else {
1208 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1209 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1210 }
1211
ce8e922c 1212 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1213 * we populate up the whole page, and hence the other metadata
1214 * in the same page. This optimization is only valid when the
ce8e922c 1215 * filesystem block size is not smaller than the page size.
1da177e4 1216 */
ce8e922c 1217 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1218 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1219 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1220 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1221 bio = bio_alloc(GFP_NOIO, 1);
1222
ce8e922c 1223 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1224 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1225 bio->bi_end_io = xfs_buf_bio_end_io;
1226 bio->bi_private = bp;
1da177e4 1227
ce8e922c 1228 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1229 size = 0;
1230
ce8e922c 1231 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1232
1233 goto submit_io;
1234 }
1235
1da177e4 1236next_chunk:
ce8e922c 1237 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1238 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1239 if (nr_pages > total_nr_pages)
1240 nr_pages = total_nr_pages;
1241
1242 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1243 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1244 bio->bi_sector = sector;
ce8e922c
NS
1245 bio->bi_end_io = xfs_buf_bio_end_io;
1246 bio->bi_private = bp;
1da177e4
LT
1247
1248 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1249 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1250
1251 if (nbytes > size)
1252 nbytes = size;
1253
ce8e922c
NS
1254 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1255 if (rbytes < nbytes)
1da177e4
LT
1256 break;
1257
1258 offset = 0;
1259 sector += nbytes >> BBSHIFT;
1260 size -= nbytes;
1261 total_nr_pages--;
1262 }
1263
1264submit_io:
1265 if (likely(bio->bi_size)) {
73c77e2c
JB
1266 if (xfs_buf_is_vmapped(bp)) {
1267 flush_kernel_vmap_range(bp->b_addr,
1268 xfs_buf_vmap_len(bp));
1269 }
1da177e4
LT
1270 submit_bio(rw, bio);
1271 if (size)
1272 goto next_chunk;
1273 } else {
ec53d1db
DC
1274 /*
1275 * if we get here, no pages were added to the bio. However,
1276 * we can't just error out here - if the pages are locked then
1277 * we have to unlock them otherwise we can hang on a later
1278 * access to the page.
1279 */
ce8e922c 1280 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1281 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1282 int i;
1283 for (i = 0; i < bp->b_page_count; i++)
1284 unlock_page(bp->b_pages[i]);
1285 }
1286 bio_put(bio);
1da177e4
LT
1287 }
1288}
1289
1da177e4 1290int
ce8e922c
NS
1291xfs_buf_iorequest(
1292 xfs_buf_t *bp)
1da177e4 1293{
0b1b213f 1294 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1295
ce8e922c
NS
1296 if (bp->b_flags & XBF_DELWRI) {
1297 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1298 return 0;
1299 }
1300
ce8e922c
NS
1301 if (bp->b_flags & XBF_WRITE) {
1302 xfs_buf_wait_unpin(bp);
1da177e4
LT
1303 }
1304
ce8e922c 1305 xfs_buf_hold(bp);
1da177e4
LT
1306
1307 /* Set the count to 1 initially, this will stop an I/O
1308 * completion callout which happens before we have started
ce8e922c 1309 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1310 */
ce8e922c
NS
1311 atomic_set(&bp->b_io_remaining, 1);
1312 _xfs_buf_ioapply(bp);
1313 _xfs_buf_ioend(bp, 0);
1da177e4 1314
ce8e922c 1315 xfs_buf_rele(bp);
1da177e4
LT
1316 return 0;
1317}
1318
1319/*
ce8e922c
NS
1320 * Waits for I/O to complete on the buffer supplied.
1321 * It returns immediately if no I/O is pending.
1322 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1323 */
1324int
ce8e922c
NS
1325xfs_buf_iowait(
1326 xfs_buf_t *bp)
1da177e4 1327{
0b1b213f
CH
1328 trace_xfs_buf_iowait(bp, _RET_IP_);
1329
ce8e922c
NS
1330 if (atomic_read(&bp->b_io_remaining))
1331 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1332 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1333
1334 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1335 return bp->b_error;
1da177e4
LT
1336}
1337
ce8e922c
NS
1338xfs_caddr_t
1339xfs_buf_offset(
1340 xfs_buf_t *bp,
1da177e4
LT
1341 size_t offset)
1342{
1343 struct page *page;
1344
ce8e922c
NS
1345 if (bp->b_flags & XBF_MAPPED)
1346 return XFS_BUF_PTR(bp) + offset;
1da177e4 1347
ce8e922c
NS
1348 offset += bp->b_offset;
1349 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1350 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1351}
1352
1353/*
1da177e4
LT
1354 * Move data into or out of a buffer.
1355 */
1356void
ce8e922c
NS
1357xfs_buf_iomove(
1358 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1359 size_t boff, /* starting buffer offset */
1360 size_t bsize, /* length to copy */
b9c48649 1361 void *data, /* data address */
ce8e922c 1362 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1363{
1364 size_t bend, cpoff, csize;
1365 struct page *page;
1366
1367 bend = boff + bsize;
1368 while (boff < bend) {
ce8e922c
NS
1369 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1370 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1371 csize = min_t(size_t,
ce8e922c 1372 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1373
1374 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1375
1376 switch (mode) {
ce8e922c 1377 case XBRW_ZERO:
1da177e4
LT
1378 memset(page_address(page) + cpoff, 0, csize);
1379 break;
ce8e922c 1380 case XBRW_READ:
1da177e4
LT
1381 memcpy(data, page_address(page) + cpoff, csize);
1382 break;
ce8e922c 1383 case XBRW_WRITE:
1da177e4
LT
1384 memcpy(page_address(page) + cpoff, data, csize);
1385 }
1386
1387 boff += csize;
1388 data += csize;
1389 }
1390}
1391
1392/*
ce8e922c 1393 * Handling of buffer targets (buftargs).
1da177e4
LT
1394 */
1395
1396/*
ce8e922c
NS
1397 * Wait for any bufs with callbacks that have been submitted but
1398 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1399 */
1400void
1401xfs_wait_buftarg(
1402 xfs_buftarg_t *btp)
1403{
1404 xfs_buf_t *bp, *n;
1405 xfs_bufhash_t *hash;
1406 uint i;
1407
1408 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1409 hash = &btp->bt_hash[i];
1410again:
1411 spin_lock(&hash->bh_lock);
ce8e922c
NS
1412 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1413 ASSERT(btp == bp->b_target);
1414 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1da177e4 1415 spin_unlock(&hash->bh_lock);
2f926587
DC
1416 /*
1417 * Catch superblock reference count leaks
1418 * immediately
1419 */
ce8e922c 1420 BUG_ON(bp->b_bn == 0);
1da177e4
LT
1421 delay(100);
1422 goto again;
1423 }
1424 }
1425 spin_unlock(&hash->bh_lock);
1426 }
1427}
1428
1429/*
ce8e922c
NS
1430 * Allocate buffer hash table for a given target.
1431 * For devices containing metadata (i.e. not the log/realtime devices)
1432 * we need to allocate a much larger hash table.
1da177e4
LT
1433 */
1434STATIC void
1435xfs_alloc_bufhash(
1436 xfs_buftarg_t *btp,
1437 int external)
1438{
1439 unsigned int i;
1440
9bc08a45 1441 btp->bt_hashshift = external ? 3 : 12; /* 8 or 4096 buckets */
bdfb0430
CH
1442 btp->bt_hash = kmem_zalloc_large((1 << btp->bt_hashshift) *
1443 sizeof(xfs_bufhash_t));
1da177e4
LT
1444 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1445 spin_lock_init(&btp->bt_hash[i].bh_lock);
1446 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1447 }
1448}
1449
1450STATIC void
1451xfs_free_bufhash(
1452 xfs_buftarg_t *btp)
1453{
bdfb0430 1454 kmem_free_large(btp->bt_hash);
1da177e4
LT
1455 btp->bt_hash = NULL;
1456}
1457
a6867a68 1458/*
ce8e922c 1459 * buftarg list for delwrite queue processing
a6867a68 1460 */
e6a0e9cd 1461static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1462static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1463
1464STATIC void
1465xfs_register_buftarg(
1466 xfs_buftarg_t *btp)
1467{
1468 spin_lock(&xfs_buftarg_lock);
1469 list_add(&btp->bt_list, &xfs_buftarg_list);
1470 spin_unlock(&xfs_buftarg_lock);
1471}
1472
1473STATIC void
1474xfs_unregister_buftarg(
1475 xfs_buftarg_t *btp)
1476{
1477 spin_lock(&xfs_buftarg_lock);
1478 list_del(&btp->bt_list);
1479 spin_unlock(&xfs_buftarg_lock);
1480}
1481
1da177e4
LT
1482void
1483xfs_free_buftarg(
b7963133
CH
1484 struct xfs_mount *mp,
1485 struct xfs_buftarg *btp)
1da177e4
LT
1486{
1487 xfs_flush_buftarg(btp, 1);
b7963133
CH
1488 if (mp->m_flags & XFS_MOUNT_BARRIER)
1489 xfs_blkdev_issue_flush(btp);
1da177e4 1490 xfs_free_bufhash(btp);
ce8e922c 1491 iput(btp->bt_mapping->host);
a6867a68 1492
ce8e922c
NS
1493 /* Unregister the buftarg first so that we don't get a
1494 * wakeup finding a non-existent task
1495 */
a6867a68
DC
1496 xfs_unregister_buftarg(btp);
1497 kthread_stop(btp->bt_task);
1498
f0e2d93c 1499 kmem_free(btp);
1da177e4
LT
1500}
1501
1da177e4
LT
1502STATIC int
1503xfs_setsize_buftarg_flags(
1504 xfs_buftarg_t *btp,
1505 unsigned int blocksize,
1506 unsigned int sectorsize,
1507 int verbose)
1508{
ce8e922c
NS
1509 btp->bt_bsize = blocksize;
1510 btp->bt_sshift = ffs(sectorsize) - 1;
1511 btp->bt_smask = sectorsize - 1;
1da177e4 1512
ce8e922c 1513 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1514 printk(KERN_WARNING
1515 "XFS: Cannot set_blocksize to %u on device %s\n",
1516 sectorsize, XFS_BUFTARG_NAME(btp));
1517 return EINVAL;
1518 }
1519
1520 if (verbose &&
1521 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1522 printk(KERN_WARNING
1523 "XFS: %u byte sectors in use on device %s. "
1524 "This is suboptimal; %u or greater is ideal.\n",
1525 sectorsize, XFS_BUFTARG_NAME(btp),
1526 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1527 }
1528
1529 return 0;
1530}
1531
1532/*
ce8e922c
NS
1533 * When allocating the initial buffer target we have not yet
1534 * read in the superblock, so don't know what sized sectors
1535 * are being used is at this early stage. Play safe.
1536 */
1da177e4
LT
1537STATIC int
1538xfs_setsize_buftarg_early(
1539 xfs_buftarg_t *btp,
1540 struct block_device *bdev)
1541{
1542 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1543 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1544}
1545
1546int
1547xfs_setsize_buftarg(
1548 xfs_buftarg_t *btp,
1549 unsigned int blocksize,
1550 unsigned int sectorsize)
1551{
1552 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1553}
1554
1555STATIC int
1556xfs_mapping_buftarg(
1557 xfs_buftarg_t *btp,
1558 struct block_device *bdev)
1559{
1560 struct backing_dev_info *bdi;
1561 struct inode *inode;
1562 struct address_space *mapping;
f5e54d6e 1563 static const struct address_space_operations mapping_aops = {
1da177e4 1564 .sync_page = block_sync_page,
e965f963 1565 .migratepage = fail_migrate_page,
1da177e4
LT
1566 };
1567
1568 inode = new_inode(bdev->bd_inode->i_sb);
1569 if (!inode) {
1570 printk(KERN_WARNING
1571 "XFS: Cannot allocate mapping inode for device %s\n",
1572 XFS_BUFTARG_NAME(btp));
1573 return ENOMEM;
1574 }
1575 inode->i_mode = S_IFBLK;
1576 inode->i_bdev = bdev;
1577 inode->i_rdev = bdev->bd_dev;
1578 bdi = blk_get_backing_dev_info(bdev);
1579 if (!bdi)
1580 bdi = &default_backing_dev_info;
1581 mapping = &inode->i_data;
1582 mapping->a_ops = &mapping_aops;
1583 mapping->backing_dev_info = bdi;
1584 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1585 btp->bt_mapping = mapping;
1da177e4
LT
1586 return 0;
1587}
1588
a6867a68
DC
1589STATIC int
1590xfs_alloc_delwrite_queue(
e2a07812
JE
1591 xfs_buftarg_t *btp,
1592 const char *fsname)
a6867a68
DC
1593{
1594 int error = 0;
1595
1596 INIT_LIST_HEAD(&btp->bt_list);
1597 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1598 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1599 btp->bt_flags = 0;
e2a07812 1600 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1601 if (IS_ERR(btp->bt_task)) {
1602 error = PTR_ERR(btp->bt_task);
1603 goto out_error;
1604 }
1605 xfs_register_buftarg(btp);
1606out_error:
1607 return error;
1608}
1609
1da177e4
LT
1610xfs_buftarg_t *
1611xfs_alloc_buftarg(
1612 struct block_device *bdev,
e2a07812
JE
1613 int external,
1614 const char *fsname)
1da177e4
LT
1615{
1616 xfs_buftarg_t *btp;
1617
1618 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1619
ce8e922c
NS
1620 btp->bt_dev = bdev->bd_dev;
1621 btp->bt_bdev = bdev;
1da177e4
LT
1622 if (xfs_setsize_buftarg_early(btp, bdev))
1623 goto error;
1624 if (xfs_mapping_buftarg(btp, bdev))
1625 goto error;
e2a07812 1626 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1627 goto error;
1da177e4
LT
1628 xfs_alloc_bufhash(btp, external);
1629 return btp;
1630
1631error:
f0e2d93c 1632 kmem_free(btp);
1da177e4
LT
1633 return NULL;
1634}
1635
1636
1637/*
ce8e922c 1638 * Delayed write buffer handling
1da177e4 1639 */
1da177e4 1640STATIC void
ce8e922c
NS
1641xfs_buf_delwri_queue(
1642 xfs_buf_t *bp,
1da177e4
LT
1643 int unlock)
1644{
ce8e922c
NS
1645 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1646 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1647
0b1b213f
CH
1648 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1649
ce8e922c 1650 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1651
a6867a68 1652 spin_lock(dwlk);
1da177e4 1653 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1654 if (!list_empty(&bp->b_list)) {
1655 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1656 if (unlock)
1657 atomic_dec(&bp->b_hold);
1658 list_del(&bp->b_list);
1da177e4
LT
1659 }
1660
c9c12971
DC
1661 if (list_empty(dwq)) {
1662 /* start xfsbufd as it is about to have something to do */
1663 wake_up_process(bp->b_target->bt_task);
1664 }
1665
ce8e922c
NS
1666 bp->b_flags |= _XBF_DELWRI_Q;
1667 list_add_tail(&bp->b_list, dwq);
1668 bp->b_queuetime = jiffies;
a6867a68 1669 spin_unlock(dwlk);
1da177e4
LT
1670
1671 if (unlock)
ce8e922c 1672 xfs_buf_unlock(bp);
1da177e4
LT
1673}
1674
1675void
ce8e922c
NS
1676xfs_buf_delwri_dequeue(
1677 xfs_buf_t *bp)
1da177e4 1678{
ce8e922c 1679 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1680 int dequeued = 0;
1681
a6867a68 1682 spin_lock(dwlk);
ce8e922c
NS
1683 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1684 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1685 list_del_init(&bp->b_list);
1da177e4
LT
1686 dequeued = 1;
1687 }
ce8e922c 1688 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1689 spin_unlock(dwlk);
1da177e4
LT
1690
1691 if (dequeued)
ce8e922c 1692 xfs_buf_rele(bp);
1da177e4 1693
0b1b213f 1694 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1695}
1696
d808f617
DC
1697/*
1698 * If a delwri buffer needs to be pushed before it has aged out, then promote
1699 * it to the head of the delwri queue so that it will be flushed on the next
1700 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1701 * than the age currently needed to flush the buffer. Hence the next time the
1702 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1703 */
1704void
1705xfs_buf_delwri_promote(
1706 struct xfs_buf *bp)
1707{
1708 struct xfs_buftarg *btp = bp->b_target;
1709 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1710
1711 ASSERT(bp->b_flags & XBF_DELWRI);
1712 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1713
1714 /*
1715 * Check the buffer age before locking the delayed write queue as we
1716 * don't need to promote buffers that are already past the flush age.
1717 */
1718 if (bp->b_queuetime < jiffies - age)
1719 return;
1720 bp->b_queuetime = jiffies - age;
1721 spin_lock(&btp->bt_delwrite_lock);
1722 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1723 spin_unlock(&btp->bt_delwrite_lock);
1724}
1725
1da177e4 1726STATIC void
ce8e922c 1727xfs_buf_runall_queues(
1da177e4
LT
1728 struct workqueue_struct *queue)
1729{
1730 flush_workqueue(queue);
1731}
1732
1da177e4 1733STATIC int
23ea4032 1734xfsbufd_wakeup(
7f8275d0 1735 struct shrinker *shrink,
15c84a47
NS
1736 int priority,
1737 gfp_t mask)
1da177e4 1738{
da7f93e9 1739 xfs_buftarg_t *btp;
a6867a68
DC
1740
1741 spin_lock(&xfs_buftarg_lock);
da7f93e9 1742 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1743 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1744 continue;
c9c12971
DC
1745 if (list_empty(&btp->bt_delwrite_queue))
1746 continue;
ce8e922c 1747 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1748 wake_up_process(btp->bt_task);
1749 }
1750 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1751 return 0;
1752}
1753
585e6d88
DC
1754/*
1755 * Move as many buffers as specified to the supplied list
1756 * idicating if we skipped any buffers to prevent deadlocks.
1757 */
1758STATIC int
1759xfs_buf_delwri_split(
1760 xfs_buftarg_t *target,
1761 struct list_head *list,
5e6a07df 1762 unsigned long age)
585e6d88
DC
1763{
1764 xfs_buf_t *bp, *n;
1765 struct list_head *dwq = &target->bt_delwrite_queue;
1766 spinlock_t *dwlk = &target->bt_delwrite_lock;
1767 int skipped = 0;
5e6a07df 1768 int force;
585e6d88 1769
5e6a07df 1770 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1771 INIT_LIST_HEAD(list);
1772 spin_lock(dwlk);
1773 list_for_each_entry_safe(bp, n, dwq, b_list) {
0b1b213f 1774 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1775 ASSERT(bp->b_flags & XBF_DELWRI);
1776
4d16e924 1777 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1778 if (!force &&
585e6d88
DC
1779 time_before(jiffies, bp->b_queuetime + age)) {
1780 xfs_buf_unlock(bp);
1781 break;
1782 }
1783
1784 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1785 _XBF_RUN_QUEUES);
1786 bp->b_flags |= XBF_WRITE;
1787 list_move_tail(&bp->b_list, list);
1788 } else
1789 skipped++;
1790 }
1791 spin_unlock(dwlk);
1792
1793 return skipped;
1794
1795}
1796
089716aa
DC
1797/*
1798 * Compare function is more complex than it needs to be because
1799 * the return value is only 32 bits and we are doing comparisons
1800 * on 64 bit values
1801 */
1802static int
1803xfs_buf_cmp(
1804 void *priv,
1805 struct list_head *a,
1806 struct list_head *b)
1807{
1808 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1809 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1810 xfs_daddr_t diff;
1811
1812 diff = ap->b_bn - bp->b_bn;
1813 if (diff < 0)
1814 return -1;
1815 if (diff > 0)
1816 return 1;
1817 return 0;
1818}
1819
1820void
1821xfs_buf_delwri_sort(
1822 xfs_buftarg_t *target,
1823 struct list_head *list)
1824{
1825 list_sort(NULL, list, xfs_buf_cmp);
1826}
1827
1da177e4 1828STATIC int
23ea4032 1829xfsbufd(
585e6d88 1830 void *data)
1da177e4 1831{
089716aa 1832 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1833
1da177e4
LT
1834 current->flags |= PF_MEMALLOC;
1835
978c7b2f
RW
1836 set_freezable();
1837
1da177e4 1838 do {
c9c12971
DC
1839 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1840 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1841 int count = 0;
1842 struct list_head tmp;
c9c12971 1843
3e1d1d28 1844 if (unlikely(freezing(current))) {
ce8e922c 1845 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1846 refrigerator();
abd0cf7a 1847 } else {
ce8e922c 1848 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1849 }
1da177e4 1850
c9c12971
DC
1851 /* sleep for a long time if there is nothing to do. */
1852 if (list_empty(&target->bt_delwrite_queue))
1853 tout = MAX_SCHEDULE_TIMEOUT;
1854 schedule_timeout_interruptible(tout);
1da177e4 1855
c9c12971 1856 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1857 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1858 while (!list_empty(&tmp)) {
089716aa
DC
1859 struct xfs_buf *bp;
1860 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1861 list_del_init(&bp->b_list);
939d723b 1862 xfs_bdstrat_cb(bp);
585e6d88 1863 count++;
1da177e4 1864 }
f07c2250
NS
1865 if (count)
1866 blk_run_address_space(target->bt_mapping);
1da177e4 1867
4df08c52 1868 } while (!kthread_should_stop());
1da177e4 1869
4df08c52 1870 return 0;
1da177e4
LT
1871}
1872
1873/*
ce8e922c
NS
1874 * Go through all incore buffers, and release buffers if they belong to
1875 * the given device. This is used in filesystem error handling to
1876 * preserve the consistency of its metadata.
1da177e4
LT
1877 */
1878int
1879xfs_flush_buftarg(
585e6d88
DC
1880 xfs_buftarg_t *target,
1881 int wait)
1da177e4 1882{
089716aa 1883 xfs_buf_t *bp;
585e6d88 1884 int pincount = 0;
089716aa
DC
1885 LIST_HEAD(tmp_list);
1886 LIST_HEAD(wait_list);
1da177e4 1887
c626d174 1888 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1889 xfs_buf_runall_queues(xfsdatad_workqueue);
1890 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1891
5e6a07df 1892 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1893 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1894
1895 /*
089716aa
DC
1896 * Dropped the delayed write list lock, now walk the temporary list.
1897 * All I/O is issued async and then if we need to wait for completion
1898 * we do that after issuing all the IO.
1da177e4 1899 */
089716aa
DC
1900 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1901 while (!list_empty(&tmp_list)) {
1902 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1903 ASSERT(target == bp->b_target);
089716aa
DC
1904 list_del_init(&bp->b_list);
1905 if (wait) {
ce8e922c 1906 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1907 list_add(&bp->b_list, &wait_list);
1908 }
939d723b 1909 xfs_bdstrat_cb(bp);
1da177e4
LT
1910 }
1911
089716aa
DC
1912 if (wait) {
1913 /* Expedite and wait for IO to complete. */
f07c2250 1914 blk_run_address_space(target->bt_mapping);
089716aa
DC
1915 while (!list_empty(&wait_list)) {
1916 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1917
089716aa
DC
1918 list_del_init(&bp->b_list);
1919 xfs_iowait(bp);
1920 xfs_buf_relse(bp);
1921 }
1da177e4
LT
1922 }
1923
1da177e4
LT
1924 return pincount;
1925}
1926
04d8b284 1927int __init
ce8e922c 1928xfs_buf_init(void)
1da177e4 1929{
8758280f
NS
1930 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1931 KM_ZONE_HWALIGN, NULL);
ce8e922c 1932 if (!xfs_buf_zone)
0b1b213f 1933 goto out;
04d8b284 1934
b4337692 1935 xfslogd_workqueue = create_workqueue("xfslogd");
23ea4032 1936 if (!xfslogd_workqueue)
04d8b284 1937 goto out_free_buf_zone;
1da177e4 1938
b4337692 1939 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1940 if (!xfsdatad_workqueue)
1941 goto out_destroy_xfslogd_workqueue;
1da177e4 1942
c626d174
DC
1943 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1944 if (!xfsconvertd_workqueue)
1945 goto out_destroy_xfsdatad_workqueue;
1946
8e1f936b 1947 register_shrinker(&xfs_buf_shake);
23ea4032 1948 return 0;
1da177e4 1949
c626d174
DC
1950 out_destroy_xfsdatad_workqueue:
1951 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1952 out_destroy_xfslogd_workqueue:
1953 destroy_workqueue(xfslogd_workqueue);
23ea4032 1954 out_free_buf_zone:
ce8e922c 1955 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1956 out:
8758280f 1957 return -ENOMEM;
1da177e4
LT
1958}
1959
1da177e4 1960void
ce8e922c 1961xfs_buf_terminate(void)
1da177e4 1962{
8e1f936b 1963 unregister_shrinker(&xfs_buf_shake);
c626d174 1964 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1965 destroy_workqueue(xfsdatad_workqueue);
1966 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1967 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1968}
e6a0e9cd
TS
1969
1970#ifdef CONFIG_KDB_MODULES
1971struct list_head *
1972xfs_get_buftarg_list(void)
1973{
1974 return &xfs_buftarg_list;
1975}
1976#endif