[XFS] Fix racy access to pb_flags. pagebuf_rele() modified pb_flags after
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
eedb5530 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33/*
34 * The xfs_buf.c code provides an abstract buffer cache model on top
35 * of the Linux page cache. Cached metadata blocks for a file system
36 * are hashed to the inode for the block device. xfs_buf.c assembles
37 * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38 *
39 * Written by Steve Lord, Jim Mostek, Russell Cattelan
40 * and Rajagopal Ananthanarayanan ("ananth") at SGI.
41 *
42 */
43
44#include <linux/stddef.h>
45#include <linux/errno.h>
46#include <linux/slab.h>
47#include <linux/pagemap.h>
48#include <linux/init.h>
49#include <linux/vmalloc.h>
50#include <linux/bio.h>
51#include <linux/sysctl.h>
52#include <linux/proc_fs.h>
53#include <linux/workqueue.h>
54#include <linux/percpu.h>
55#include <linux/blkdev.h>
56#include <linux/hash.h>
57
58#include "xfs_linux.h"
59
60/*
61 * File wide globals
62 */
63
23ea4032 64STATIC kmem_cache_t *pagebuf_zone;
1da177e4 65STATIC kmem_shaker_t pagebuf_shake;
23ea4032 66STATIC int xfsbufd_wakeup(int, unsigned int);
1da177e4 67STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
23ea4032
CH
68
69STATIC struct workqueue_struct *xfslogd_workqueue;
0829c360 70struct workqueue_struct *xfsdatad_workqueue;
1da177e4
LT
71
72/*
73 * Pagebuf debugging
74 */
75
76#ifdef PAGEBUF_TRACE
77void
78pagebuf_trace(
79 xfs_buf_t *pb,
80 char *id,
81 void *data,
82 void *ra)
83{
84 ktrace_enter(pagebuf_trace_buf,
85 pb, id,
86 (void *)(unsigned long)pb->pb_flags,
87 (void *)(unsigned long)pb->pb_hold.counter,
88 (void *)(unsigned long)pb->pb_sema.count.counter,
89 (void *)current,
90 data, ra,
91 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
92 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
93 (void *)(unsigned long)pb->pb_buffer_length,
94 NULL, NULL, NULL, NULL, NULL);
95}
96ktrace_t *pagebuf_trace_buf;
97#define PAGEBUF_TRACE_SIZE 4096
98#define PB_TRACE(pb, id, data) \
99 pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
100#else
101#define PB_TRACE(pb, id, data) do { } while (0)
102#endif
103
104#ifdef PAGEBUF_LOCK_TRACKING
105# define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
106# define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
107# define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
108#else
109# define PB_SET_OWNER(pb) do { } while (0)
110# define PB_CLEAR_OWNER(pb) do { } while (0)
111# define PB_GET_OWNER(pb) do { } while (0)
112#endif
113
114/*
115 * Pagebuf allocation / freeing.
116 */
117
118#define pb_to_gfp(flags) \
119 ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
120 ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
121
122#define pb_to_km(flags) \
123 (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
124
125
126#define pagebuf_allocate(flags) \
23ea4032 127 kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
1da177e4 128#define pagebuf_deallocate(pb) \
23ea4032 129 kmem_zone_free(pagebuf_zone, (pb));
1da177e4
LT
130
131/*
132 * Page Region interfaces.
133 *
134 * For pages in filesystems where the blocksize is smaller than the
135 * pagesize, we use the page->private field (long) to hold a bitmap
136 * of uptodate regions within the page.
137 *
138 * Each such region is "bytes per page / bits per long" bytes long.
139 *
140 * NBPPR == number-of-bytes-per-page-region
141 * BTOPR == bytes-to-page-region (rounded up)
142 * BTOPRT == bytes-to-page-region-truncated (rounded down)
143 */
144#if (BITS_PER_LONG == 32)
145#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
146#elif (BITS_PER_LONG == 64)
147#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
148#else
149#error BITS_PER_LONG must be 32 or 64
150#endif
151#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
152#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
153#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
154
155STATIC unsigned long
156page_region_mask(
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask;
161 int first, final;
162
163 first = BTOPR(offset);
164 final = BTOPRT(offset + length - 1);
165 first = min(first, final);
166
167 mask = ~0UL;
168 mask <<= BITS_PER_LONG - (final - first);
169 mask >>= BITS_PER_LONG - (final);
170
171 ASSERT(offset + length <= PAGE_CACHE_SIZE);
172 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
173
174 return mask;
175}
176
177STATIC inline void
178set_page_region(
179 struct page *page,
180 size_t offset,
181 size_t length)
182{
183 page->private |= page_region_mask(offset, length);
184 if (page->private == ~0UL)
185 SetPageUptodate(page);
186}
187
188STATIC inline int
189test_page_region(
190 struct page *page,
191 size_t offset,
192 size_t length)
193{
194 unsigned long mask = page_region_mask(offset, length);
195
196 return (mask && (page->private & mask) == mask);
197}
198
199/*
200 * Mapping of multi-page buffers into contiguous virtual space
201 */
202
203typedef struct a_list {
204 void *vm_addr;
205 struct a_list *next;
206} a_list_t;
207
208STATIC a_list_t *as_free_head;
209STATIC int as_list_len;
210STATIC DEFINE_SPINLOCK(as_lock);
211
212/*
213 * Try to batch vunmaps because they are costly.
214 */
215STATIC void
216free_address(
217 void *addr)
218{
219 a_list_t *aentry;
220
221 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
222 if (likely(aentry)) {
223 spin_lock(&as_lock);
224 aentry->next = as_free_head;
225 aentry->vm_addr = addr;
226 as_free_head = aentry;
227 as_list_len++;
228 spin_unlock(&as_lock);
229 } else {
230 vunmap(addr);
231 }
232}
233
234STATIC void
235purge_addresses(void)
236{
237 a_list_t *aentry, *old;
238
239 if (as_free_head == NULL)
240 return;
241
242 spin_lock(&as_lock);
243 aentry = as_free_head;
244 as_free_head = NULL;
245 as_list_len = 0;
246 spin_unlock(&as_lock);
247
248 while ((old = aentry) != NULL) {
249 vunmap(aentry->vm_addr);
250 aentry = aentry->next;
251 kfree(old);
252 }
253}
254
255/*
256 * Internal pagebuf object manipulation
257 */
258
259STATIC void
260_pagebuf_initialize(
261 xfs_buf_t *pb,
262 xfs_buftarg_t *target,
263 loff_t range_base,
264 size_t range_length,
265 page_buf_flags_t flags)
266{
267 /*
268 * We don't want certain flags to appear in pb->pb_flags.
269 */
270 flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
271
272 memset(pb, 0, sizeof(xfs_buf_t));
273 atomic_set(&pb->pb_hold, 1);
274 init_MUTEX_LOCKED(&pb->pb_iodonesema);
275 INIT_LIST_HEAD(&pb->pb_list);
276 INIT_LIST_HEAD(&pb->pb_hash_list);
277 init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
278 PB_SET_OWNER(pb);
279 pb->pb_target = target;
280 pb->pb_file_offset = range_base;
281 /*
282 * Set buffer_length and count_desired to the same value initially.
283 * I/O routines should use count_desired, which will be the same in
284 * most cases but may be reset (e.g. XFS recovery).
285 */
286 pb->pb_buffer_length = pb->pb_count_desired = range_length;
287 pb->pb_flags = flags | PBF_NONE;
288 pb->pb_bn = XFS_BUF_DADDR_NULL;
289 atomic_set(&pb->pb_pin_count, 0);
290 init_waitqueue_head(&pb->pb_waiters);
291
292 XFS_STATS_INC(pb_create);
293 PB_TRACE(pb, "initialize", target);
294}
295
296/*
297 * Allocate a page array capable of holding a specified number
298 * of pages, and point the page buf at it.
299 */
300STATIC int
301_pagebuf_get_pages(
302 xfs_buf_t *pb,
303 int page_count,
304 page_buf_flags_t flags)
305{
306 /* Make sure that we have a page list */
307 if (pb->pb_pages == NULL) {
308 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
309 pb->pb_page_count = page_count;
310 if (page_count <= PB_PAGES) {
311 pb->pb_pages = pb->pb_page_array;
312 } else {
313 pb->pb_pages = kmem_alloc(sizeof(struct page *) *
314 page_count, pb_to_km(flags));
315 if (pb->pb_pages == NULL)
316 return -ENOMEM;
317 }
318 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
319 }
320 return 0;
321}
322
323/*
324 * Frees pb_pages if it was malloced.
325 */
326STATIC void
327_pagebuf_free_pages(
328 xfs_buf_t *bp)
329{
330 if (bp->pb_pages != bp->pb_page_array) {
331 kmem_free(bp->pb_pages,
332 bp->pb_page_count * sizeof(struct page *));
333 }
334}
335
336/*
337 * Releases the specified buffer.
338 *
339 * The modification state of any associated pages is left unchanged.
340 * The buffer most not be on any hash - use pagebuf_rele instead for
341 * hashed and refcounted buffers
342 */
343void
344pagebuf_free(
345 xfs_buf_t *bp)
346{
347 PB_TRACE(bp, "free", 0);
348
349 ASSERT(list_empty(&bp->pb_hash_list));
350
351 if (bp->pb_flags & _PBF_PAGE_CACHE) {
352 uint i;
353
354 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
355 free_address(bp->pb_addr - bp->pb_offset);
356
357 for (i = 0; i < bp->pb_page_count; i++)
358 page_cache_release(bp->pb_pages[i]);
359 _pagebuf_free_pages(bp);
360 } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
361 /*
362 * XXX(hch): bp->pb_count_desired might be incorrect (see
363 * pagebuf_associate_memory for details), but fortunately
364 * the Linux version of kmem_free ignores the len argument..
365 */
366 kmem_free(bp->pb_addr, bp->pb_count_desired);
367 _pagebuf_free_pages(bp);
368 }
369
370 pagebuf_deallocate(bp);
371}
372
373/*
374 * Finds all pages for buffer in question and builds it's page list.
375 */
376STATIC int
377_pagebuf_lookup_pages(
378 xfs_buf_t *bp,
379 uint flags)
380{
381 struct address_space *mapping = bp->pb_target->pbr_mapping;
382 size_t blocksize = bp->pb_target->pbr_bsize;
383 size_t size = bp->pb_count_desired;
384 size_t nbytes, offset;
385 int gfp_mask = pb_to_gfp(flags);
386 unsigned short page_count, i;
387 pgoff_t first;
388 loff_t end;
389 int error;
390
391 end = bp->pb_file_offset + bp->pb_buffer_length;
392 page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
393
394 error = _pagebuf_get_pages(bp, page_count, flags);
395 if (unlikely(error))
396 return error;
397 bp->pb_flags |= _PBF_PAGE_CACHE;
398
399 offset = bp->pb_offset;
400 first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
401
402 for (i = 0; i < bp->pb_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405
406 retry:
407 page = find_or_create_page(mapping, first + i, gfp_mask);
408 if (unlikely(page == NULL)) {
409 if (flags & PBF_READ_AHEAD) {
410 bp->pb_page_count = i;
411 for (i = 0; i < bp->pb_page_count; i++)
412 unlock_page(bp->pb_pages[i]);
413 return -ENOMEM;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 printk(KERN_ERR
424 "XFS: possible memory allocation "
425 "deadlock in %s (mode:0x%x)\n",
426 __FUNCTION__, gfp_mask);
427
428 XFS_STATS_INC(pb_page_retries);
23ea4032 429 xfsbufd_wakeup(0, gfp_mask);
1da177e4
LT
430 blk_congestion_wait(WRITE, HZ/50);
431 goto retry;
432 }
433
434 XFS_STATS_INC(pb_page_found);
435
436 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
437 size -= nbytes;
438
439 if (!PageUptodate(page)) {
440 page_count--;
441 if (blocksize >= PAGE_CACHE_SIZE) {
442 if (flags & PBF_READ)
443 bp->pb_locked = 1;
444 } else if (!PagePrivate(page)) {
445 if (test_page_region(page, offset, nbytes))
446 page_count++;
447 }
448 }
449
450 bp->pb_pages[i] = page;
451 offset = 0;
452 }
453
454 if (!bp->pb_locked) {
455 for (i = 0; i < bp->pb_page_count; i++)
456 unlock_page(bp->pb_pages[i]);
457 }
458
459 if (page_count) {
460 /* if we have any uptodate pages, mark that in the buffer */
461 bp->pb_flags &= ~PBF_NONE;
462
463 /* if some pages aren't uptodate, mark that in the buffer */
464 if (page_count != bp->pb_page_count)
465 bp->pb_flags |= PBF_PARTIAL;
466 }
467
468 PB_TRACE(bp, "lookup_pages", (long)page_count);
469 return error;
470}
471
472/*
473 * Map buffer into kernel address-space if nessecary.
474 */
475STATIC int
476_pagebuf_map_pages(
477 xfs_buf_t *bp,
478 uint flags)
479{
480 /* A single page buffer is always mappable */
481 if (bp->pb_page_count == 1) {
482 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
483 bp->pb_flags |= PBF_MAPPED;
484 } else if (flags & PBF_MAPPED) {
485 if (as_list_len > 64)
486 purge_addresses();
487 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
488 VM_MAP, PAGE_KERNEL);
489 if (unlikely(bp->pb_addr == NULL))
490 return -ENOMEM;
491 bp->pb_addr += bp->pb_offset;
492 bp->pb_flags |= PBF_MAPPED;
493 }
494
495 return 0;
496}
497
498/*
499 * Finding and Reading Buffers
500 */
501
502/*
503 * _pagebuf_find
504 *
505 * Looks up, and creates if absent, a lockable buffer for
506 * a given range of an inode. The buffer is returned
507 * locked. If other overlapping buffers exist, they are
508 * released before the new buffer is created and locked,
509 * which may imply that this call will block until those buffers
510 * are unlocked. No I/O is implied by this call.
511 */
512xfs_buf_t *
513_pagebuf_find(
514 xfs_buftarg_t *btp, /* block device target */
515 loff_t ioff, /* starting offset of range */
516 size_t isize, /* length of range */
517 page_buf_flags_t flags, /* PBF_TRYLOCK */
518 xfs_buf_t *new_pb)/* newly allocated buffer */
519{
520 loff_t range_base;
521 size_t range_length;
522 xfs_bufhash_t *hash;
523 xfs_buf_t *pb, *n;
524
525 range_base = (ioff << BBSHIFT);
526 range_length = (isize << BBSHIFT);
527
528 /* Check for IOs smaller than the sector size / not sector aligned */
529 ASSERT(!(range_length < (1 << btp->pbr_sshift)));
530 ASSERT(!(range_base & (loff_t)btp->pbr_smask));
531
532 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
533
534 spin_lock(&hash->bh_lock);
535
536 list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
537 ASSERT(btp == pb->pb_target);
538 if (pb->pb_file_offset == range_base &&
539 pb->pb_buffer_length == range_length) {
540 /*
541 * If we look at something bring it to the
542 * front of the list for next time.
543 */
544 atomic_inc(&pb->pb_hold);
545 list_move(&pb->pb_hash_list, &hash->bh_list);
546 goto found;
547 }
548 }
549
550 /* No match found */
551 if (new_pb) {
552 _pagebuf_initialize(new_pb, btp, range_base,
553 range_length, flags);
554 new_pb->pb_hash = hash;
555 list_add(&new_pb->pb_hash_list, &hash->bh_list);
556 } else {
557 XFS_STATS_INC(pb_miss_locked);
558 }
559
560 spin_unlock(&hash->bh_lock);
561 return new_pb;
562
563found:
564 spin_unlock(&hash->bh_lock);
565
566 /* Attempt to get the semaphore without sleeping,
567 * if this does not work then we need to drop the
568 * spinlock and do a hard attempt on the semaphore.
569 */
570 if (down_trylock(&pb->pb_sema)) {
571 if (!(flags & PBF_TRYLOCK)) {
572 /* wait for buffer ownership */
573 PB_TRACE(pb, "get_lock", 0);
574 pagebuf_lock(pb);
575 XFS_STATS_INC(pb_get_locked_waited);
576 } else {
577 /* We asked for a trylock and failed, no need
578 * to look at file offset and length here, we
579 * know that this pagebuf at least overlaps our
580 * pagebuf and is locked, therefore our buffer
581 * either does not exist, or is this buffer
582 */
583
584 pagebuf_rele(pb);
585 XFS_STATS_INC(pb_busy_locked);
586 return (NULL);
587 }
588 } else {
589 /* trylock worked */
590 PB_SET_OWNER(pb);
591 }
592
2f926587
DC
593 if (pb->pb_flags & PBF_STALE) {
594 ASSERT((pb->pb_flags & _PBF_DELWRI_Q) == 0);
1da177e4 595 pb->pb_flags &= PBF_MAPPED;
2f926587 596 }
1da177e4
LT
597 PB_TRACE(pb, "got_lock", 0);
598 XFS_STATS_INC(pb_get_locked);
599 return (pb);
600}
601
602/*
603 * xfs_buf_get_flags assembles a buffer covering the specified range.
604 *
605 * Storage in memory for all portions of the buffer will be allocated,
606 * although backing storage may not be.
607 */
608xfs_buf_t *
609xfs_buf_get_flags( /* allocate a buffer */
610 xfs_buftarg_t *target,/* target for buffer */
611 loff_t ioff, /* starting offset of range */
612 size_t isize, /* length of range */
613 page_buf_flags_t flags) /* PBF_TRYLOCK */
614{
615 xfs_buf_t *pb, *new_pb;
616 int error = 0, i;
617
618 new_pb = pagebuf_allocate(flags);
619 if (unlikely(!new_pb))
620 return NULL;
621
622 pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
623 if (pb == new_pb) {
624 error = _pagebuf_lookup_pages(pb, flags);
625 if (error)
626 goto no_buffer;
627 } else {
628 pagebuf_deallocate(new_pb);
629 if (unlikely(pb == NULL))
630 return NULL;
631 }
632
633 for (i = 0; i < pb->pb_page_count; i++)
634 mark_page_accessed(pb->pb_pages[i]);
635
636 if (!(pb->pb_flags & PBF_MAPPED)) {
637 error = _pagebuf_map_pages(pb, flags);
638 if (unlikely(error)) {
639 printk(KERN_WARNING "%s: failed to map pages\n",
640 __FUNCTION__);
641 goto no_buffer;
642 }
643 }
644
645 XFS_STATS_INC(pb_get);
646
647 /*
648 * Always fill in the block number now, the mapped cases can do
649 * their own overlay of this later.
650 */
651 pb->pb_bn = ioff;
652 pb->pb_count_desired = pb->pb_buffer_length;
653
654 PB_TRACE(pb, "get", (unsigned long)flags);
655 return pb;
656
657 no_buffer:
658 if (flags & (PBF_LOCK | PBF_TRYLOCK))
659 pagebuf_unlock(pb);
660 pagebuf_rele(pb);
661 return NULL;
662}
663
664xfs_buf_t *
665xfs_buf_read_flags(
666 xfs_buftarg_t *target,
667 loff_t ioff,
668 size_t isize,
669 page_buf_flags_t flags)
670{
671 xfs_buf_t *pb;
672
673 flags |= PBF_READ;
674
675 pb = xfs_buf_get_flags(target, ioff, isize, flags);
676 if (pb) {
677 if (PBF_NOT_DONE(pb)) {
678 PB_TRACE(pb, "read", (unsigned long)flags);
679 XFS_STATS_INC(pb_get_read);
680 pagebuf_iostart(pb, flags);
681 } else if (flags & PBF_ASYNC) {
682 PB_TRACE(pb, "read_async", (unsigned long)flags);
683 /*
684 * Read ahead call which is already satisfied,
685 * drop the buffer
686 */
687 goto no_buffer;
688 } else {
689 PB_TRACE(pb, "read_done", (unsigned long)flags);
690 /* We do not want read in the flags */
691 pb->pb_flags &= ~PBF_READ;
692 }
693 }
694
695 return pb;
696
697 no_buffer:
698 if (flags & (PBF_LOCK | PBF_TRYLOCK))
699 pagebuf_unlock(pb);
700 pagebuf_rele(pb);
701 return NULL;
702}
703
1da177e4
LT
704/*
705 * If we are not low on memory then do the readahead in a deadlock
706 * safe manner.
707 */
708void
709pagebuf_readahead(
710 xfs_buftarg_t *target,
711 loff_t ioff,
712 size_t isize,
713 page_buf_flags_t flags)
714{
715 struct backing_dev_info *bdi;
716
717 bdi = target->pbr_mapping->backing_dev_info;
718 if (bdi_read_congested(bdi))
719 return;
720
721 flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
722 xfs_buf_read_flags(target, ioff, isize, flags);
723}
724
725xfs_buf_t *
726pagebuf_get_empty(
727 size_t len,
728 xfs_buftarg_t *target)
729{
730 xfs_buf_t *pb;
731
732 pb = pagebuf_allocate(0);
733 if (pb)
734 _pagebuf_initialize(pb, target, 0, len, 0);
735 return pb;
736}
737
738static inline struct page *
739mem_to_page(
740 void *addr)
741{
742 if (((unsigned long)addr < VMALLOC_START) ||
743 ((unsigned long)addr >= VMALLOC_END)) {
744 return virt_to_page(addr);
745 } else {
746 return vmalloc_to_page(addr);
747 }
748}
749
750int
751pagebuf_associate_memory(
752 xfs_buf_t *pb,
753 void *mem,
754 size_t len)
755{
756 int rval;
757 int i = 0;
758 size_t ptr;
759 size_t end, end_cur;
760 off_t offset;
761 int page_count;
762
763 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
764 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
765 if (offset && (len > PAGE_CACHE_SIZE))
766 page_count++;
767
768 /* Free any previous set of page pointers */
769 if (pb->pb_pages)
770 _pagebuf_free_pages(pb);
771
772 pb->pb_pages = NULL;
773 pb->pb_addr = mem;
774
775 rval = _pagebuf_get_pages(pb, page_count, 0);
776 if (rval)
777 return rval;
778
779 pb->pb_offset = offset;
780 ptr = (size_t) mem & PAGE_CACHE_MASK;
781 end = PAGE_CACHE_ALIGN((size_t) mem + len);
782 end_cur = end;
783 /* set up first page */
784 pb->pb_pages[0] = mem_to_page(mem);
785
786 ptr += PAGE_CACHE_SIZE;
787 pb->pb_page_count = ++i;
788 while (ptr < end) {
789 pb->pb_pages[i] = mem_to_page((void *)ptr);
790 pb->pb_page_count = ++i;
791 ptr += PAGE_CACHE_SIZE;
792 }
793 pb->pb_locked = 0;
794
795 pb->pb_count_desired = pb->pb_buffer_length = len;
796 pb->pb_flags |= PBF_MAPPED;
797
798 return 0;
799}
800
801xfs_buf_t *
802pagebuf_get_no_daddr(
803 size_t len,
804 xfs_buftarg_t *target)
805{
806 size_t malloc_len = len;
807 xfs_buf_t *bp;
808 void *data;
809 int error;
810
811 bp = pagebuf_allocate(0);
812 if (unlikely(bp == NULL))
813 goto fail;
814 _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
815
816 try_again:
817 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
818 if (unlikely(data == NULL))
819 goto fail_free_buf;
820
821 /* check whether alignment matches.. */
822 if ((__psunsigned_t)data !=
823 ((__psunsigned_t)data & ~target->pbr_smask)) {
824 /* .. else double the size and try again */
825 kmem_free(data, malloc_len);
826 malloc_len <<= 1;
827 goto try_again;
828 }
829
830 error = pagebuf_associate_memory(bp, data, len);
831 if (error)
832 goto fail_free_mem;
833 bp->pb_flags |= _PBF_KMEM_ALLOC;
834
835 pagebuf_unlock(bp);
836
837 PB_TRACE(bp, "no_daddr", data);
838 return bp;
839 fail_free_mem:
840 kmem_free(data, malloc_len);
841 fail_free_buf:
842 pagebuf_free(bp);
843 fail:
844 return NULL;
845}
846
847/*
848 * pagebuf_hold
849 *
850 * Increment reference count on buffer, to hold the buffer concurrently
851 * with another thread which may release (free) the buffer asynchronously.
852 *
853 * Must hold the buffer already to call this function.
854 */
855void
856pagebuf_hold(
857 xfs_buf_t *pb)
858{
859 atomic_inc(&pb->pb_hold);
860 PB_TRACE(pb, "hold", 0);
861}
862
863/*
864 * pagebuf_rele
865 *
866 * pagebuf_rele releases a hold on the specified buffer. If the
867 * the hold count is 1, pagebuf_rele calls pagebuf_free.
868 */
869void
870pagebuf_rele(
871 xfs_buf_t *pb)
872{
873 xfs_bufhash_t *hash = pb->pb_hash;
874
875 PB_TRACE(pb, "rele", pb->pb_relse);
876
2f926587
DC
877 /*
878 * pagebuf_lookup buffers are not hashed, not delayed write,
879 * and don't have their own release routines. Special case.
880 */
881 if (unlikely(!hash)) {
882 ASSERT(!pb->pb_relse);
883 if (atomic_dec_and_test(&pb->pb_hold))
884 xfs_buf_free(pb);
885 return;
886 }
887
1da177e4
LT
888 if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
889 int do_free = 1;
890
891 if (pb->pb_relse) {
892 atomic_inc(&pb->pb_hold);
893 spin_unlock(&hash->bh_lock);
894 (*(pb->pb_relse)) (pb);
895 spin_lock(&hash->bh_lock);
896 do_free = 0;
897 }
898
2f926587 899 if (pb->pb_flags & PBF_FS_MANAGED) {
1da177e4
LT
900 do_free = 0;
901 }
902
903 if (do_free) {
2f926587 904 ASSERT((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == 0);
1da177e4
LT
905 list_del_init(&pb->pb_hash_list);
906 spin_unlock(&hash->bh_lock);
907 pagebuf_free(pb);
908 } else {
909 spin_unlock(&hash->bh_lock);
910 }
2f926587
DC
911 } else {
912 /*
913 * Catch reference count leaks
914 */
915 ASSERT(atomic_read(&pb->pb_hold) >= 0);
1da177e4
LT
916 }
917}
918
919
920/*
921 * Mutual exclusion on buffers. Locking model:
922 *
923 * Buffers associated with inodes for which buffer locking
924 * is not enabled are not protected by semaphores, and are
925 * assumed to be exclusively owned by the caller. There is a
926 * spinlock in the buffer, used by the caller when concurrent
927 * access is possible.
928 */
929
930/*
931 * pagebuf_cond_lock
932 *
933 * pagebuf_cond_lock locks a buffer object, if it is not already locked.
934 * Note that this in no way
935 * locks the underlying pages, so it is only useful for synchronizing
936 * concurrent use of page buffer objects, not for synchronizing independent
937 * access to the underlying pages.
938 */
939int
940pagebuf_cond_lock( /* lock buffer, if not locked */
941 /* returns -EBUSY if locked) */
942 xfs_buf_t *pb)
943{
944 int locked;
945
946 locked = down_trylock(&pb->pb_sema) == 0;
947 if (locked) {
948 PB_SET_OWNER(pb);
949 }
950 PB_TRACE(pb, "cond_lock", (long)locked);
951 return(locked ? 0 : -EBUSY);
952}
953
954#if defined(DEBUG) || defined(XFS_BLI_TRACE)
955/*
956 * pagebuf_lock_value
957 *
958 * Return lock value for a pagebuf
959 */
960int
961pagebuf_lock_value(
962 xfs_buf_t *pb)
963{
964 return(atomic_read(&pb->pb_sema.count));
965}
966#endif
967
968/*
969 * pagebuf_lock
970 *
971 * pagebuf_lock locks a buffer object. Note that this in no way
972 * locks the underlying pages, so it is only useful for synchronizing
973 * concurrent use of page buffer objects, not for synchronizing independent
974 * access to the underlying pages.
975 */
976int
977pagebuf_lock(
978 xfs_buf_t *pb)
979{
980 PB_TRACE(pb, "lock", 0);
981 if (atomic_read(&pb->pb_io_remaining))
982 blk_run_address_space(pb->pb_target->pbr_mapping);
983 down(&pb->pb_sema);
984 PB_SET_OWNER(pb);
985 PB_TRACE(pb, "locked", 0);
986 return 0;
987}
988
989/*
990 * pagebuf_unlock
991 *
992 * pagebuf_unlock releases the lock on the buffer object created by
2f926587
DC
993 * pagebuf_lock or pagebuf_cond_lock (not any pinning of underlying pages
994 * created by pagebuf_pin).
995 *
996 * If the buffer is marked delwri but is not queued, do so before we
997 * unlock the buffer as we need to set flags correctly. We also need to
998 * take a reference for the delwri queue because the unlocker is going to
999 * drop their's and they don't know we just queued it.
1da177e4
LT
1000 */
1001void
1002pagebuf_unlock( /* unlock buffer */
1003 xfs_buf_t *pb) /* buffer to unlock */
1004{
2f926587
DC
1005 if ((pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q)) == PBF_DELWRI) {
1006 atomic_inc(&pb->pb_hold);
1007 pb->pb_flags |= PBF_ASYNC;
1008 pagebuf_delwri_queue(pb, 0);
1009 }
1010
1da177e4
LT
1011 PB_CLEAR_OWNER(pb);
1012 up(&pb->pb_sema);
1013 PB_TRACE(pb, "unlock", 0);
1014}
1015
1016
1017/*
1018 * Pinning Buffer Storage in Memory
1019 */
1020
1021/*
1022 * pagebuf_pin
1023 *
1024 * pagebuf_pin locks all of the memory represented by a buffer in
1025 * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
1026 * the same or different buffers affecting a given page, will
1027 * properly count the number of outstanding "pin" requests. The
1028 * buffer may be released after the pagebuf_pin and a different
1029 * buffer used when calling pagebuf_unpin, if desired.
1030 * pagebuf_pin should be used by the file system when it wants be
1031 * assured that no attempt will be made to force the affected
1032 * memory to disk. It does not assure that a given logical page
1033 * will not be moved to a different physical page.
1034 */
1035void
1036pagebuf_pin(
1037 xfs_buf_t *pb)
1038{
1039 atomic_inc(&pb->pb_pin_count);
1040 PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1041}
1042
1043/*
1044 * pagebuf_unpin
1045 *
1046 * pagebuf_unpin reverses the locking of memory performed by
1047 * pagebuf_pin. Note that both functions affected the logical
1048 * pages associated with the buffer, not the buffer itself.
1049 */
1050void
1051pagebuf_unpin(
1052 xfs_buf_t *pb)
1053{
1054 if (atomic_dec_and_test(&pb->pb_pin_count)) {
1055 wake_up_all(&pb->pb_waiters);
1056 }
1057 PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1058}
1059
1060int
1061pagebuf_ispin(
1062 xfs_buf_t *pb)
1063{
1064 return atomic_read(&pb->pb_pin_count);
1065}
1066
1067/*
1068 * pagebuf_wait_unpin
1069 *
1070 * pagebuf_wait_unpin waits until all of the memory associated
1071 * with the buffer is not longer locked in memory. It returns
1072 * immediately if none of the affected pages are locked.
1073 */
1074static inline void
1075_pagebuf_wait_unpin(
1076 xfs_buf_t *pb)
1077{
1078 DECLARE_WAITQUEUE (wait, current);
1079
1080 if (atomic_read(&pb->pb_pin_count) == 0)
1081 return;
1082
1083 add_wait_queue(&pb->pb_waiters, &wait);
1084 for (;;) {
1085 set_current_state(TASK_UNINTERRUPTIBLE);
1086 if (atomic_read(&pb->pb_pin_count) == 0)
1087 break;
1088 if (atomic_read(&pb->pb_io_remaining))
1089 blk_run_address_space(pb->pb_target->pbr_mapping);
1090 schedule();
1091 }
1092 remove_wait_queue(&pb->pb_waiters, &wait);
1093 set_current_state(TASK_RUNNING);
1094}
1095
1096/*
1097 * Buffer Utility Routines
1098 */
1099
1100/*
1101 * pagebuf_iodone
1102 *
1103 * pagebuf_iodone marks a buffer for which I/O is in progress
1104 * done with respect to that I/O. The pb_iodone routine, if
1105 * present, will be called as a side-effect.
1106 */
1107STATIC void
1108pagebuf_iodone_work(
1109 void *v)
1110{
1111 xfs_buf_t *bp = (xfs_buf_t *)v;
1112
1113 if (bp->pb_iodone)
1114 (*(bp->pb_iodone))(bp);
1115 else if (bp->pb_flags & PBF_ASYNC)
1116 xfs_buf_relse(bp);
1117}
1118
1119void
1120pagebuf_iodone(
1121 xfs_buf_t *pb,
1122 int dataio,
1123 int schedule)
1124{
1125 pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1126 if (pb->pb_error == 0) {
1127 pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
1128 }
1129
1130 PB_TRACE(pb, "iodone", pb->pb_iodone);
1131
1132 if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1133 if (schedule) {
1134 INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
23ea4032
CH
1135 queue_work(dataio ? xfsdatad_workqueue :
1136 xfslogd_workqueue, &pb->pb_iodone_work);
1da177e4
LT
1137 } else {
1138 pagebuf_iodone_work(pb);
1139 }
1140 } else {
1141 up(&pb->pb_iodonesema);
1142 }
1143}
1144
1145/*
1146 * pagebuf_ioerror
1147 *
1148 * pagebuf_ioerror sets the error code for a buffer.
1149 */
1150void
1151pagebuf_ioerror( /* mark/clear buffer error flag */
1152 xfs_buf_t *pb, /* buffer to mark */
1153 int error) /* error to store (0 if none) */
1154{
1155 ASSERT(error >= 0 && error <= 0xffff);
1156 pb->pb_error = (unsigned short)error;
1157 PB_TRACE(pb, "ioerror", (unsigned long)error);
1158}
1159
1160/*
1161 * pagebuf_iostart
1162 *
1163 * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1164 * If necessary, it will arrange for any disk space allocation required,
1165 * and it will break up the request if the block mappings require it.
1166 * The pb_iodone routine in the buffer supplied will only be called
1167 * when all of the subsidiary I/O requests, if any, have been completed.
1168 * pagebuf_iostart calls the pagebuf_ioinitiate routine or
1169 * pagebuf_iorequest, if the former routine is not defined, to start
1170 * the I/O on a given low-level request.
1171 */
1172int
1173pagebuf_iostart( /* start I/O on a buffer */
1174 xfs_buf_t *pb, /* buffer to start */
1175 page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1176 /* PBF_WRITE, PBF_DELWRI, */
1177 /* PBF_DONT_BLOCK */
1178{
1179 int status = 0;
1180
1181 PB_TRACE(pb, "iostart", (unsigned long)flags);
1182
1183 if (flags & PBF_DELWRI) {
1184 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1185 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1186 pagebuf_delwri_queue(pb, 1);
1187 return status;
1188 }
1189
1190 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1191 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1192 pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1193 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1194
1195 BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1196
1197 /* For writes allow an alternate strategy routine to precede
1198 * the actual I/O request (which may not be issued at all in
1199 * a shutdown situation, for example).
1200 */
1201 status = (flags & PBF_WRITE) ?
1202 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1203
1204 /* Wait for I/O if we are not an async request.
1205 * Note: async I/O request completion will release the buffer,
1206 * and that can already be done by this point. So using the
1207 * buffer pointer from here on, after async I/O, is invalid.
1208 */
1209 if (!status && !(flags & PBF_ASYNC))
1210 status = pagebuf_iowait(pb);
1211
1212 return status;
1213}
1214
1215/*
1216 * Helper routine for pagebuf_iorequest
1217 */
1218
1219STATIC __inline__ int
1220_pagebuf_iolocked(
1221 xfs_buf_t *pb)
1222{
1223 ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1224 if (pb->pb_flags & PBF_READ)
1225 return pb->pb_locked;
1226 return 0;
1227}
1228
1229STATIC __inline__ void
1230_pagebuf_iodone(
1231 xfs_buf_t *pb,
1232 int schedule)
1233{
1234 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1235 pb->pb_locked = 0;
1236 pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
1237 }
1238}
1239
1240STATIC int
1241bio_end_io_pagebuf(
1242 struct bio *bio,
1243 unsigned int bytes_done,
1244 int error)
1245{
1246 xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
eedb5530
NS
1247 unsigned int blocksize = pb->pb_target->pbr_bsize;
1248 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4
LT
1249
1250 if (bio->bi_size)
1251 return 1;
1252
1253 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1254 pb->pb_error = EIO;
1255
eedb5530 1256 do {
1da177e4
LT
1257 struct page *page = bvec->bv_page;
1258
eedb5530
NS
1259 if (unlikely(pb->pb_error)) {
1260 if (pb->pb_flags & PBF_READ)
1261 ClearPageUptodate(page);
1da177e4
LT
1262 SetPageError(page);
1263 } else if (blocksize == PAGE_CACHE_SIZE) {
1264 SetPageUptodate(page);
1265 } else if (!PagePrivate(page) &&
1266 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1267 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1268 }
1269
eedb5530
NS
1270 if (--bvec >= bio->bi_io_vec)
1271 prefetchw(&bvec->bv_page->flags);
1272
1da177e4
LT
1273 if (_pagebuf_iolocked(pb)) {
1274 unlock_page(page);
1275 }
eedb5530 1276 } while (bvec >= bio->bi_io_vec);
1da177e4
LT
1277
1278 _pagebuf_iodone(pb, 1);
1279 bio_put(bio);
1280 return 0;
1281}
1282
1283STATIC void
1284_pagebuf_ioapply(
1285 xfs_buf_t *pb)
1286{
1287 int i, rw, map_i, total_nr_pages, nr_pages;
1288 struct bio *bio;
1289 int offset = pb->pb_offset;
1290 int size = pb->pb_count_desired;
1291 sector_t sector = pb->pb_bn;
1292 unsigned int blocksize = pb->pb_target->pbr_bsize;
1293 int locking = _pagebuf_iolocked(pb);
1294
1295 total_nr_pages = pb->pb_page_count;
1296 map_i = 0;
1297
1298 if (pb->pb_flags & _PBF_RUN_QUEUES) {
1299 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1300 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1301 } else {
1302 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1303 }
1304
1305 /* Special code path for reading a sub page size pagebuf in --
1306 * we populate up the whole page, and hence the other metadata
1307 * in the same page. This optimization is only valid when the
1308 * filesystem block size and the page size are equal.
1309 */
1310 if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1311 (pb->pb_flags & PBF_READ) && locking &&
1312 (blocksize == PAGE_CACHE_SIZE)) {
1313 bio = bio_alloc(GFP_NOIO, 1);
1314
1315 bio->bi_bdev = pb->pb_target->pbr_bdev;
1316 bio->bi_sector = sector - (offset >> BBSHIFT);
1317 bio->bi_end_io = bio_end_io_pagebuf;
1318 bio->bi_private = pb;
1319
1320 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1321 size = 0;
1322
1323 atomic_inc(&pb->pb_io_remaining);
1324
1325 goto submit_io;
1326 }
1327
1328 /* Lock down the pages which we need to for the request */
1329 if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1330 for (i = 0; size; i++) {
1331 int nbytes = PAGE_CACHE_SIZE - offset;
1332 struct page *page = pb->pb_pages[i];
1333
1334 if (nbytes > size)
1335 nbytes = size;
1336
1337 lock_page(page);
1338
1339 size -= nbytes;
1340 offset = 0;
1341 }
1342 offset = pb->pb_offset;
1343 size = pb->pb_count_desired;
1344 }
1345
1346next_chunk:
1347 atomic_inc(&pb->pb_io_remaining);
1348 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1349 if (nr_pages > total_nr_pages)
1350 nr_pages = total_nr_pages;
1351
1352 bio = bio_alloc(GFP_NOIO, nr_pages);
1353 bio->bi_bdev = pb->pb_target->pbr_bdev;
1354 bio->bi_sector = sector;
1355 bio->bi_end_io = bio_end_io_pagebuf;
1356 bio->bi_private = pb;
1357
1358 for (; size && nr_pages; nr_pages--, map_i++) {
1359 int nbytes = PAGE_CACHE_SIZE - offset;
1360
1361 if (nbytes > size)
1362 nbytes = size;
1363
1364 if (bio_add_page(bio, pb->pb_pages[map_i],
1365 nbytes, offset) < nbytes)
1366 break;
1367
1368 offset = 0;
1369 sector += nbytes >> BBSHIFT;
1370 size -= nbytes;
1371 total_nr_pages--;
1372 }
1373
1374submit_io:
1375 if (likely(bio->bi_size)) {
1376 submit_bio(rw, bio);
1377 if (size)
1378 goto next_chunk;
1379 } else {
1380 bio_put(bio);
1381 pagebuf_ioerror(pb, EIO);
1382 }
1383}
1384
1385/*
1386 * pagebuf_iorequest -- the core I/O request routine.
1387 */
1388int
1389pagebuf_iorequest( /* start real I/O */
1390 xfs_buf_t *pb) /* buffer to convey to device */
1391{
1392 PB_TRACE(pb, "iorequest", 0);
1393
1394 if (pb->pb_flags & PBF_DELWRI) {
1395 pagebuf_delwri_queue(pb, 1);
1396 return 0;
1397 }
1398
1399 if (pb->pb_flags & PBF_WRITE) {
1400 _pagebuf_wait_unpin(pb);
1401 }
1402
1403 pagebuf_hold(pb);
1404
1405 /* Set the count to 1 initially, this will stop an I/O
1406 * completion callout which happens before we have started
1407 * all the I/O from calling pagebuf_iodone too early.
1408 */
1409 atomic_set(&pb->pb_io_remaining, 1);
1410 _pagebuf_ioapply(pb);
1411 _pagebuf_iodone(pb, 0);
1412
1413 pagebuf_rele(pb);
1414 return 0;
1415}
1416
1417/*
1418 * pagebuf_iowait
1419 *
1420 * pagebuf_iowait waits for I/O to complete on the buffer supplied.
1421 * It returns immediately if no I/O is pending. In any case, it returns
1422 * the error code, if any, or 0 if there is no error.
1423 */
1424int
1425pagebuf_iowait(
1426 xfs_buf_t *pb)
1427{
1428 PB_TRACE(pb, "iowait", 0);
1429 if (atomic_read(&pb->pb_io_remaining))
1430 blk_run_address_space(pb->pb_target->pbr_mapping);
1431 down(&pb->pb_iodonesema);
1432 PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1433 return pb->pb_error;
1434}
1435
1436caddr_t
1437pagebuf_offset(
1438 xfs_buf_t *pb,
1439 size_t offset)
1440{
1441 struct page *page;
1442
1443 offset += pb->pb_offset;
1444
1445 page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1446 return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1447}
1448
1449/*
1450 * pagebuf_iomove
1451 *
1452 * Move data into or out of a buffer.
1453 */
1454void
1455pagebuf_iomove(
1456 xfs_buf_t *pb, /* buffer to process */
1457 size_t boff, /* starting buffer offset */
1458 size_t bsize, /* length to copy */
1459 caddr_t data, /* data address */
1460 page_buf_rw_t mode) /* read/write flag */
1461{
1462 size_t bend, cpoff, csize;
1463 struct page *page;
1464
1465 bend = boff + bsize;
1466 while (boff < bend) {
1467 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1468 cpoff = page_buf_poff(boff + pb->pb_offset);
1469 csize = min_t(size_t,
1470 PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1471
1472 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1473
1474 switch (mode) {
1475 case PBRW_ZERO:
1476 memset(page_address(page) + cpoff, 0, csize);
1477 break;
1478 case PBRW_READ:
1479 memcpy(data, page_address(page) + cpoff, csize);
1480 break;
1481 case PBRW_WRITE:
1482 memcpy(page_address(page) + cpoff, data, csize);
1483 }
1484
1485 boff += csize;
1486 data += csize;
1487 }
1488}
1489
1490/*
1491 * Handling of buftargs.
1492 */
1493
1494/*
1495 * Wait for any bufs with callbacks that have been submitted but
1496 * have not yet returned... walk the hash list for the target.
1497 */
1498void
1499xfs_wait_buftarg(
1500 xfs_buftarg_t *btp)
1501{
1502 xfs_buf_t *bp, *n;
1503 xfs_bufhash_t *hash;
1504 uint i;
1505
1506 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1507 hash = &btp->bt_hash[i];
1508again:
1509 spin_lock(&hash->bh_lock);
1510 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1511 ASSERT(btp == bp->pb_target);
1512 if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1513 spin_unlock(&hash->bh_lock);
2f926587
DC
1514 /*
1515 * Catch superblock reference count leaks
1516 * immediately
1517 */
1518 BUG_ON(bp->pb_bn == 0);
1da177e4
LT
1519 delay(100);
1520 goto again;
1521 }
1522 }
1523 spin_unlock(&hash->bh_lock);
1524 }
1525}
1526
1527/*
1528 * Allocate buffer hash table for a given target.
1529 * For devices containing metadata (i.e. not the log/realtime devices)
1530 * we need to allocate a much larger hash table.
1531 */
1532STATIC void
1533xfs_alloc_bufhash(
1534 xfs_buftarg_t *btp,
1535 int external)
1536{
1537 unsigned int i;
1538
1539 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1540 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1541 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1542 sizeof(xfs_bufhash_t), KM_SLEEP);
1543 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1544 spin_lock_init(&btp->bt_hash[i].bh_lock);
1545 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1546 }
1547}
1548
1549STATIC void
1550xfs_free_bufhash(
1551 xfs_buftarg_t *btp)
1552{
1553 kmem_free(btp->bt_hash,
1554 (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1555 btp->bt_hash = NULL;
1556}
1557
1558void
1559xfs_free_buftarg(
1560 xfs_buftarg_t *btp,
1561 int external)
1562{
1563 xfs_flush_buftarg(btp, 1);
1564 if (external)
1565 xfs_blkdev_put(btp->pbr_bdev);
1566 xfs_free_bufhash(btp);
1567 iput(btp->pbr_mapping->host);
1568 kmem_free(btp, sizeof(*btp));
1569}
1570
1da177e4
LT
1571STATIC int
1572xfs_setsize_buftarg_flags(
1573 xfs_buftarg_t *btp,
1574 unsigned int blocksize,
1575 unsigned int sectorsize,
1576 int verbose)
1577{
1578 btp->pbr_bsize = blocksize;
1579 btp->pbr_sshift = ffs(sectorsize) - 1;
1580 btp->pbr_smask = sectorsize - 1;
1581
1582 if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1583 printk(KERN_WARNING
1584 "XFS: Cannot set_blocksize to %u on device %s\n",
1585 sectorsize, XFS_BUFTARG_NAME(btp));
1586 return EINVAL;
1587 }
1588
1589 if (verbose &&
1590 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1591 printk(KERN_WARNING
1592 "XFS: %u byte sectors in use on device %s. "
1593 "This is suboptimal; %u or greater is ideal.\n",
1594 sectorsize, XFS_BUFTARG_NAME(btp),
1595 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1596 }
1597
1598 return 0;
1599}
1600
1601/*
1602* When allocating the initial buffer target we have not yet
1603* read in the superblock, so don't know what sized sectors
1604* are being used is at this early stage. Play safe.
1605*/
1606STATIC int
1607xfs_setsize_buftarg_early(
1608 xfs_buftarg_t *btp,
1609 struct block_device *bdev)
1610{
1611 return xfs_setsize_buftarg_flags(btp,
1612 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1613}
1614
1615int
1616xfs_setsize_buftarg(
1617 xfs_buftarg_t *btp,
1618 unsigned int blocksize,
1619 unsigned int sectorsize)
1620{
1621 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1622}
1623
1624STATIC int
1625xfs_mapping_buftarg(
1626 xfs_buftarg_t *btp,
1627 struct block_device *bdev)
1628{
1629 struct backing_dev_info *bdi;
1630 struct inode *inode;
1631 struct address_space *mapping;
1632 static struct address_space_operations mapping_aops = {
1633 .sync_page = block_sync_page,
1634 };
1635
1636 inode = new_inode(bdev->bd_inode->i_sb);
1637 if (!inode) {
1638 printk(KERN_WARNING
1639 "XFS: Cannot allocate mapping inode for device %s\n",
1640 XFS_BUFTARG_NAME(btp));
1641 return ENOMEM;
1642 }
1643 inode->i_mode = S_IFBLK;
1644 inode->i_bdev = bdev;
1645 inode->i_rdev = bdev->bd_dev;
1646 bdi = blk_get_backing_dev_info(bdev);
1647 if (!bdi)
1648 bdi = &default_backing_dev_info;
1649 mapping = &inode->i_data;
1650 mapping->a_ops = &mapping_aops;
1651 mapping->backing_dev_info = bdi;
1652 mapping_set_gfp_mask(mapping, GFP_NOFS);
1653 btp->pbr_mapping = mapping;
1654 return 0;
1655}
1656
1657xfs_buftarg_t *
1658xfs_alloc_buftarg(
1659 struct block_device *bdev,
1660 int external)
1661{
1662 xfs_buftarg_t *btp;
1663
1664 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1665
1666 btp->pbr_dev = bdev->bd_dev;
1667 btp->pbr_bdev = bdev;
1668 if (xfs_setsize_buftarg_early(btp, bdev))
1669 goto error;
1670 if (xfs_mapping_buftarg(btp, bdev))
1671 goto error;
1672 xfs_alloc_bufhash(btp, external);
1673 return btp;
1674
1675error:
1676 kmem_free(btp, sizeof(*btp));
1677 return NULL;
1678}
1679
1680
1681/*
1682 * Pagebuf delayed write buffer handling
1683 */
1684
1685STATIC LIST_HEAD(pbd_delwrite_queue);
1686STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1687
1688STATIC void
1689pagebuf_delwri_queue(
1690 xfs_buf_t *pb,
1691 int unlock)
1692{
1693 PB_TRACE(pb, "delwri_q", (long)unlock);
2f926587
DC
1694 ASSERT((pb->pb_flags & (PBF_DELWRI|PBF_ASYNC)) ==
1695 (PBF_DELWRI|PBF_ASYNC));
1da177e4
LT
1696
1697 spin_lock(&pbd_delwrite_lock);
1698 /* If already in the queue, dequeue and place at tail */
1699 if (!list_empty(&pb->pb_list)) {
2f926587 1700 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1da177e4
LT
1701 if (unlock) {
1702 atomic_dec(&pb->pb_hold);
1703 }
1704 list_del(&pb->pb_list);
1705 }
1706
2f926587 1707 pb->pb_flags |= _PBF_DELWRI_Q;
1da177e4
LT
1708 list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1709 pb->pb_queuetime = jiffies;
1710 spin_unlock(&pbd_delwrite_lock);
1711
1712 if (unlock)
1713 pagebuf_unlock(pb);
1714}
1715
1716void
1717pagebuf_delwri_dequeue(
1718 xfs_buf_t *pb)
1719{
1720 int dequeued = 0;
1721
1722 spin_lock(&pbd_delwrite_lock);
1723 if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
2f926587 1724 ASSERT(pb->pb_flags & _PBF_DELWRI_Q);
1da177e4
LT
1725 list_del_init(&pb->pb_list);
1726 dequeued = 1;
1727 }
2f926587 1728 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1da177e4
LT
1729 spin_unlock(&pbd_delwrite_lock);
1730
1731 if (dequeued)
1732 pagebuf_rele(pb);
1733
1734 PB_TRACE(pb, "delwri_dq", (long)dequeued);
1735}
1736
1737STATIC void
1738pagebuf_runall_queues(
1739 struct workqueue_struct *queue)
1740{
1741 flush_workqueue(queue);
1742}
1743
1744/* Defines for pagebuf daemon */
23ea4032
CH
1745STATIC DECLARE_COMPLETION(xfsbufd_done);
1746STATIC struct task_struct *xfsbufd_task;
1747STATIC int xfsbufd_active;
1748STATIC int xfsbufd_force_flush;
1749STATIC int xfsbufd_force_sleep;
1da177e4
LT
1750
1751STATIC int
23ea4032 1752xfsbufd_wakeup(
1da177e4
LT
1753 int priority,
1754 unsigned int mask)
1755{
23ea4032 1756 if (xfsbufd_force_sleep)
abd0cf7a 1757 return 0;
23ea4032 1758 xfsbufd_force_flush = 1;
1da177e4 1759 barrier();
23ea4032 1760 wake_up_process(xfsbufd_task);
1da177e4
LT
1761 return 0;
1762}
1763
1764STATIC int
23ea4032 1765xfsbufd(
1da177e4
LT
1766 void *data)
1767{
1768 struct list_head tmp;
1769 unsigned long age;
1770 xfs_buftarg_t *target;
1771 xfs_buf_t *pb, *n;
1772
1773 /* Set up the thread */
1774 daemonize("xfsbufd");
1775 current->flags |= PF_MEMALLOC;
1776
23ea4032
CH
1777 xfsbufd_task = current;
1778 xfsbufd_active = 1;
1da177e4
LT
1779 barrier();
1780
1781 INIT_LIST_HEAD(&tmp);
1782 do {
3e1d1d28 1783 if (unlikely(freezing(current))) {
23ea4032 1784 xfsbufd_force_sleep = 1;
3e1d1d28 1785 refrigerator();
abd0cf7a 1786 } else {
23ea4032 1787 xfsbufd_force_sleep = 0;
abd0cf7a 1788 }
1da177e4
LT
1789
1790 set_current_state(TASK_INTERRUPTIBLE);
1791 schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);
1792
1793 age = (xfs_buf_age_centisecs * HZ) / 100;
1794 spin_lock(&pbd_delwrite_lock);
1795 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1796 PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1797 ASSERT(pb->pb_flags & PBF_DELWRI);
1798
1799 if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
23ea4032 1800 if (!xfsbufd_force_flush &&
1da177e4
LT
1801 time_before(jiffies,
1802 pb->pb_queuetime + age)) {
1803 pagebuf_unlock(pb);
1804 break;
1805 }
1806
2f926587 1807 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1da177e4
LT
1808 pb->pb_flags |= PBF_WRITE;
1809 list_move(&pb->pb_list, &tmp);
1810 }
1811 }
1812 spin_unlock(&pbd_delwrite_lock);
1813
1814 while (!list_empty(&tmp)) {
1815 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1816 target = pb->pb_target;
1817
1818 list_del_init(&pb->pb_list);
1819 pagebuf_iostrategy(pb);
1820
1821 blk_run_address_space(target->pbr_mapping);
1822 }
1823
1824 if (as_list_len > 0)
1825 purge_addresses();
1826
23ea4032
CH
1827 xfsbufd_force_flush = 0;
1828 } while (xfsbufd_active);
1da177e4 1829
23ea4032 1830 complete_and_exit(&xfsbufd_done, 0);
1da177e4
LT
1831}
1832
1833/*
1834 * Go through all incore buffers, and release buffers if they belong to
1835 * the given device. This is used in filesystem error handling to
1836 * preserve the consistency of its metadata.
1837 */
1838int
1839xfs_flush_buftarg(
1840 xfs_buftarg_t *target,
1841 int wait)
1842{
1843 struct list_head tmp;
1844 xfs_buf_t *pb, *n;
1845 int pincount = 0;
1846
23ea4032
CH
1847 pagebuf_runall_queues(xfsdatad_workqueue);
1848 pagebuf_runall_queues(xfslogd_workqueue);
1da177e4
LT
1849
1850 INIT_LIST_HEAD(&tmp);
1851 spin_lock(&pbd_delwrite_lock);
1852 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1853
1854 if (pb->pb_target != target)
1855 continue;
1856
2f926587 1857 ASSERT(pb->pb_flags & (PBF_DELWRI|_PBF_DELWRI_Q));
1da177e4
LT
1858 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1859 if (pagebuf_ispin(pb)) {
1860 pincount++;
1861 continue;
1862 }
1863
1da177e4
LT
1864 list_move(&pb->pb_list, &tmp);
1865 }
1866 spin_unlock(&pbd_delwrite_lock);
1867
1868 /*
1869 * Dropped the delayed write list lock, now walk the temporary list
1870 */
1871 list_for_each_entry_safe(pb, n, &tmp, pb_list) {
2f926587
DC
1872 pagebuf_lock(pb);
1873 pb->pb_flags &= ~(PBF_DELWRI|_PBF_DELWRI_Q);
1874 pb->pb_flags |= PBF_WRITE;
1da177e4
LT
1875 if (wait)
1876 pb->pb_flags &= ~PBF_ASYNC;
1877 else
1878 list_del_init(&pb->pb_list);
1879
1da177e4
LT
1880 pagebuf_iostrategy(pb);
1881 }
1882
1883 /*
1884 * Remaining list items must be flushed before returning
1885 */
1886 while (!list_empty(&tmp)) {
1887 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1888
1889 list_del_init(&pb->pb_list);
1890 xfs_iowait(pb);
1891 xfs_buf_relse(pb);
1892 }
1893
1894 if (wait)
1895 blk_run_address_space(target->pbr_mapping);
1896
1897 return pincount;
1898}
1899
1900STATIC int
23ea4032 1901xfs_buf_daemons_start(void)
1da177e4 1902{
23ea4032 1903 int error = -ENOMEM;
1da177e4 1904
23ea4032
CH
1905 xfslogd_workqueue = create_workqueue("xfslogd");
1906 if (!xfslogd_workqueue)
1907 goto out;
1da177e4 1908
23ea4032
CH
1909 xfsdatad_workqueue = create_workqueue("xfsdatad");
1910 if (!xfsdatad_workqueue)
1911 goto out_destroy_xfslogd_workqueue;
1da177e4 1912
23ea4032
CH
1913 error = kernel_thread(xfsbufd, NULL, CLONE_FS|CLONE_FILES);
1914 if (error < 0)
1915 goto out_destroy_xfsdatad_workqueue;
1916 return 0;
1da177e4 1917
23ea4032
CH
1918 out_destroy_xfsdatad_workqueue:
1919 destroy_workqueue(xfsdatad_workqueue);
1920 out_destroy_xfslogd_workqueue:
1921 destroy_workqueue(xfslogd_workqueue);
1922 out:
1923 return error;
1da177e4
LT
1924}
1925
1926/*
1da177e4
LT
1927 * Note: do not mark as __exit, it is called from pagebuf_terminate.
1928 */
1929STATIC void
23ea4032 1930xfs_buf_daemons_stop(void)
1da177e4 1931{
23ea4032 1932 xfsbufd_active = 0;
1da177e4 1933 barrier();
23ea4032 1934 wait_for_completion(&xfsbufd_done);
1da177e4 1935
23ea4032
CH
1936 destroy_workqueue(xfslogd_workqueue);
1937 destroy_workqueue(xfsdatad_workqueue);
1da177e4
LT
1938}
1939
1940/*
1941 * Initialization and Termination
1942 */
1943
1944int __init
1945pagebuf_init(void)
1946{
23ea4032
CH
1947 int error = -ENOMEM;
1948
1949 pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1950 if (!pagebuf_zone)
1951 goto out;
1da177e4
LT
1952
1953#ifdef PAGEBUF_TRACE
1954 pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1955#endif
1956
23ea4032 1957 error = xfs_buf_daemons_start();
cf9937c6 1958 if (error)
23ea4032 1959 goto out_free_buf_zone;
1da177e4 1960
23ea4032
CH
1961 pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1962 if (!pagebuf_shake) {
1963 error = -ENOMEM;
1964 goto out_stop_daemons;
1da177e4
LT
1965 }
1966
1967 return 0;
23ea4032
CH
1968
1969 out_stop_daemons:
1970 xfs_buf_daemons_stop();
1971 out_free_buf_zone:
1972#ifdef PAGEBUF_TRACE
1973 ktrace_free(pagebuf_trace_buf);
1974#endif
1975 kmem_zone_destroy(pagebuf_zone);
1976 out:
1977 return error;
1da177e4
LT
1978}
1979
1980
1981/*
1982 * pagebuf_terminate.
1983 *
1984 * Note: do not mark as __exit, this is also called from the __init code.
1985 */
1986void
1987pagebuf_terminate(void)
1988{
23ea4032 1989 xfs_buf_daemons_stop();
1da177e4
LT
1990
1991#ifdef PAGEBUF_TRACE
1992 ktrace_free(pagebuf_trace_buf);
1993#endif
1994
23ea4032 1995 kmem_zone_destroy(pagebuf_zone);
1da177e4
LT
1996 kmem_shake_deregister(pagebuf_shake);
1997}