xfs: kill b_file_offset
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
23ea4032 45
7989cb8e 46static struct workqueue_struct *xfslogd_workqueue;
1da177e4 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c
NS
58#define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
60 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 61
ce8e922c
NS
62#define xb_to_km(flags) \
63 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 64
1da177e4 65
73c77e2c
JB
66static inline int
67xfs_buf_is_vmapped(
68 struct xfs_buf *bp)
69{
70 /*
71 * Return true if the buffer is vmapped.
72 *
73 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
74 * code is clever enough to know it doesn't have to map a single page,
75 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
76 */
77 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
78}
79
80static inline int
81xfs_buf_vmap_len(
82 struct xfs_buf *bp)
83{
84 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
85}
86
1da177e4 87/*
430cbeb8
DC
88 * xfs_buf_lru_add - add a buffer to the LRU.
89 *
90 * The LRU takes a new reference to the buffer so that it will only be freed
91 * once the shrinker takes the buffer off the LRU.
92 */
93STATIC void
94xfs_buf_lru_add(
95 struct xfs_buf *bp)
96{
97 struct xfs_buftarg *btp = bp->b_target;
98
99 spin_lock(&btp->bt_lru_lock);
100 if (list_empty(&bp->b_lru)) {
101 atomic_inc(&bp->b_hold);
102 list_add_tail(&bp->b_lru, &btp->bt_lru);
103 btp->bt_lru_nr++;
104 }
105 spin_unlock(&btp->bt_lru_lock);
106}
107
108/*
109 * xfs_buf_lru_del - remove a buffer from the LRU
110 *
111 * The unlocked check is safe here because it only occurs when there are not
112 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
113 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 114 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 115 * bt_lru_lock.
1da177e4 116 */
430cbeb8
DC
117STATIC void
118xfs_buf_lru_del(
119 struct xfs_buf *bp)
120{
121 struct xfs_buftarg *btp = bp->b_target;
122
123 if (list_empty(&bp->b_lru))
124 return;
125
126 spin_lock(&btp->bt_lru_lock);
127 if (!list_empty(&bp->b_lru)) {
128 list_del_init(&bp->b_lru);
129 btp->bt_lru_nr--;
130 }
131 spin_unlock(&btp->bt_lru_lock);
132}
133
134/*
135 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
136 * b_lru_ref count so that the buffer is freed immediately when the buffer
137 * reference count falls to zero. If the buffer is already on the LRU, we need
138 * to remove the reference that LRU holds on the buffer.
139 *
140 * This prevents build-up of stale buffers on the LRU.
141 */
142void
143xfs_buf_stale(
144 struct xfs_buf *bp)
145{
43ff2122
CH
146 ASSERT(xfs_buf_islocked(bp));
147
430cbeb8 148 bp->b_flags |= XBF_STALE;
43ff2122
CH
149
150 /*
151 * Clear the delwri status so that a delwri queue walker will not
152 * flush this buffer to disk now that it is stale. The delwri queue has
153 * a reference to the buffer, so this is safe to do.
154 */
155 bp->b_flags &= ~_XBF_DELWRI_Q;
156
430cbeb8
DC
157 atomic_set(&(bp)->b_lru_ref, 0);
158 if (!list_empty(&bp->b_lru)) {
159 struct xfs_buftarg *btp = bp->b_target;
160
161 spin_lock(&btp->bt_lru_lock);
162 if (!list_empty(&bp->b_lru)) {
163 list_del_init(&bp->b_lru);
164 btp->bt_lru_nr--;
165 atomic_dec(&bp->b_hold);
166 }
167 spin_unlock(&btp->bt_lru_lock);
168 }
169 ASSERT(atomic_read(&bp->b_hold) >= 1);
170}
1da177e4 171
4347b9d7
CH
172struct xfs_buf *
173xfs_buf_alloc(
174 struct xfs_buftarg *target,
e70b73f8
DC
175 xfs_daddr_t blkno,
176 size_t numblks,
ce8e922c 177 xfs_buf_flags_t flags)
1da177e4 178{
4347b9d7
CH
179 struct xfs_buf *bp;
180
bf813cdd 181 bp = kmem_zone_zalloc(xfs_buf_zone, xb_to_km(flags));
4347b9d7
CH
182 if (unlikely(!bp))
183 return NULL;
184
1da177e4 185 /*
ce8e922c 186 * We don't want certain flags to appear in b_flags.
1da177e4 187 */
ce8e922c
NS
188 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
189
ce8e922c 190 atomic_set(&bp->b_hold, 1);
430cbeb8 191 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 192 init_completion(&bp->b_iowait);
430cbeb8 193 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 194 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 195 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 196 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
197 XB_SET_OWNER(bp);
198 bp->b_target = target;
de1cbee4 199
1da177e4
LT
200 /*
201 * Set buffer_length and count_desired to the same value initially.
202 * I/O routines should use count_desired, which will be the same in
203 * most cases but may be reset (e.g. XFS recovery).
204 */
e70b73f8 205 bp->b_buffer_length = bp->b_count_desired = numblks << BBSHIFT;
ce8e922c 206 bp->b_flags = flags;
e70b73f8
DC
207
208 /*
209 * We do not set the block number here in the buffer because we have not
210 * finished initialising the buffer. We insert the buffer into the cache
211 * in this state, so this ensures that we are unable to do IO on a
212 * buffer that hasn't been fully initialised.
213 */
ce8e922c
NS
214 bp->b_bn = XFS_BUF_DADDR_NULL;
215 atomic_set(&bp->b_pin_count, 0);
216 init_waitqueue_head(&bp->b_waiters);
217
218 XFS_STATS_INC(xb_create);
0b1b213f 219 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
220
221 return bp;
1da177e4
LT
222}
223
224/*
ce8e922c
NS
225 * Allocate a page array capable of holding a specified number
226 * of pages, and point the page buf at it.
1da177e4
LT
227 */
228STATIC int
ce8e922c
NS
229_xfs_buf_get_pages(
230 xfs_buf_t *bp,
1da177e4 231 int page_count,
ce8e922c 232 xfs_buf_flags_t flags)
1da177e4
LT
233{
234 /* Make sure that we have a page list */
ce8e922c 235 if (bp->b_pages == NULL) {
ce8e922c
NS
236 bp->b_page_count = page_count;
237 if (page_count <= XB_PAGES) {
238 bp->b_pages = bp->b_page_array;
1da177e4 239 } else {
ce8e922c
NS
240 bp->b_pages = kmem_alloc(sizeof(struct page *) *
241 page_count, xb_to_km(flags));
242 if (bp->b_pages == NULL)
1da177e4
LT
243 return -ENOMEM;
244 }
ce8e922c 245 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
246 }
247 return 0;
248}
249
250/*
ce8e922c 251 * Frees b_pages if it was allocated.
1da177e4
LT
252 */
253STATIC void
ce8e922c 254_xfs_buf_free_pages(
1da177e4
LT
255 xfs_buf_t *bp)
256{
ce8e922c 257 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 258 kmem_free(bp->b_pages);
3fc98b1a 259 bp->b_pages = NULL;
1da177e4
LT
260 }
261}
262
263/*
264 * Releases the specified buffer.
265 *
266 * The modification state of any associated pages is left unchanged.
ce8e922c 267 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
268 * hashed and refcounted buffers
269 */
270void
ce8e922c 271xfs_buf_free(
1da177e4
LT
272 xfs_buf_t *bp)
273{
0b1b213f 274 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 275
430cbeb8
DC
276 ASSERT(list_empty(&bp->b_lru));
277
0e6e847f 278 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
279 uint i;
280
73c77e2c 281 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
282 vm_unmap_ram(bp->b_addr - bp->b_offset,
283 bp->b_page_count);
1da177e4 284
948ecdb4
NS
285 for (i = 0; i < bp->b_page_count; i++) {
286 struct page *page = bp->b_pages[i];
287
0e6e847f 288 __free_page(page);
948ecdb4 289 }
0e6e847f
DC
290 } else if (bp->b_flags & _XBF_KMEM)
291 kmem_free(bp->b_addr);
3fc98b1a 292 _xfs_buf_free_pages(bp);
4347b9d7 293 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
294}
295
296/*
0e6e847f 297 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
298 */
299STATIC int
0e6e847f 300xfs_buf_allocate_memory(
1da177e4
LT
301 xfs_buf_t *bp,
302 uint flags)
303{
ce8e922c 304 size_t size = bp->b_count_desired;
1da177e4 305 size_t nbytes, offset;
ce8e922c 306 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 307 unsigned short page_count, i;
204ab25f 308 xfs_off_t end;
1da177e4
LT
309 int error;
310
0e6e847f
DC
311 /*
312 * for buffers that are contained within a single page, just allocate
313 * the memory from the heap - there's no need for the complexity of
314 * page arrays to keep allocation down to order 0.
315 */
316 if (bp->b_buffer_length < PAGE_SIZE) {
317 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
318 if (!bp->b_addr) {
319 /* low memory - use alloc_page loop instead */
320 goto use_alloc_page;
321 }
322
323 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
324 PAGE_MASK) !=
325 ((unsigned long)bp->b_addr & PAGE_MASK)) {
326 /* b_addr spans two pages - use alloc_page instead */
327 kmem_free(bp->b_addr);
328 bp->b_addr = NULL;
329 goto use_alloc_page;
330 }
331 bp->b_offset = offset_in_page(bp->b_addr);
332 bp->b_pages = bp->b_page_array;
333 bp->b_pages[0] = virt_to_page(bp->b_addr);
334 bp->b_page_count = 1;
335 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
336 return 0;
337 }
338
339use_alloc_page:
de1cbee4
DC
340 end = BBTOB(bp->b_bn) + bp->b_buffer_length;
341 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(BBTOB(bp->b_bn));
ce8e922c 342 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
343 if (unlikely(error))
344 return error;
1da177e4 345
ce8e922c 346 offset = bp->b_offset;
0e6e847f 347 bp->b_flags |= _XBF_PAGES;
1da177e4 348
ce8e922c 349 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
350 struct page *page;
351 uint retries = 0;
0e6e847f
DC
352retry:
353 page = alloc_page(gfp_mask);
1da177e4 354 if (unlikely(page == NULL)) {
ce8e922c
NS
355 if (flags & XBF_READ_AHEAD) {
356 bp->b_page_count = i;
0e6e847f
DC
357 error = ENOMEM;
358 goto out_free_pages;
1da177e4
LT
359 }
360
361 /*
362 * This could deadlock.
363 *
364 * But until all the XFS lowlevel code is revamped to
365 * handle buffer allocation failures we can't do much.
366 */
367 if (!(++retries % 100))
4f10700a
DC
368 xfs_err(NULL,
369 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 370 __func__, gfp_mask);
1da177e4 371
ce8e922c 372 XFS_STATS_INC(xb_page_retries);
8aa7e847 373 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
374 goto retry;
375 }
376
ce8e922c 377 XFS_STATS_INC(xb_page_found);
1da177e4 378
0e6e847f 379 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 380 size -= nbytes;
ce8e922c 381 bp->b_pages[i] = page;
1da177e4
LT
382 offset = 0;
383 }
0e6e847f 384 return 0;
1da177e4 385
0e6e847f
DC
386out_free_pages:
387 for (i = 0; i < bp->b_page_count; i++)
388 __free_page(bp->b_pages[i]);
1da177e4
LT
389 return error;
390}
391
392/*
25985edc 393 * Map buffer into kernel address-space if necessary.
1da177e4
LT
394 */
395STATIC int
ce8e922c 396_xfs_buf_map_pages(
1da177e4
LT
397 xfs_buf_t *bp,
398 uint flags)
399{
0e6e847f 400 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 401 if (bp->b_page_count == 1) {
0e6e847f 402 /* A single page buffer is always mappable */
ce8e922c
NS
403 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
404 bp->b_flags |= XBF_MAPPED;
405 } else if (flags & XBF_MAPPED) {
a19fb380
DC
406 int retried = 0;
407
408 do {
409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
410 -1, PAGE_KERNEL);
411 if (bp->b_addr)
412 break;
413 vm_unmap_aliases();
414 } while (retried++ <= 1);
415
416 if (!bp->b_addr)
1da177e4 417 return -ENOMEM;
ce8e922c
NS
418 bp->b_addr += bp->b_offset;
419 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
420 }
421
422 return 0;
423}
424
425/*
426 * Finding and Reading Buffers
427 */
428
429/*
ce8e922c 430 * Look up, and creates if absent, a lockable buffer for
1da177e4 431 * a given range of an inode. The buffer is returned
eabbaf11 432 * locked. No I/O is implied by this call.
1da177e4
LT
433 */
434xfs_buf_t *
ce8e922c 435_xfs_buf_find(
e70b73f8
DC
436 struct xfs_buftarg *btp,
437 xfs_daddr_t blkno,
438 size_t numblks,
ce8e922c
NS
439 xfs_buf_flags_t flags,
440 xfs_buf_t *new_bp)
1da177e4 441{
e70b73f8 442 size_t numbytes;
74f75a0c
DC
443 struct xfs_perag *pag;
444 struct rb_node **rbp;
445 struct rb_node *parent;
446 xfs_buf_t *bp;
1da177e4 447
e70b73f8 448 numbytes = BBTOB(numblks);
1da177e4
LT
449
450 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 451 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 452 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 453
74f75a0c
DC
454 /* get tree root */
455 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 456 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
457
458 /* walk tree */
459 spin_lock(&pag->pag_buf_lock);
460 rbp = &pag->pag_buf_tree.rb_node;
461 parent = NULL;
462 bp = NULL;
463 while (*rbp) {
464 parent = *rbp;
465 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
466
de1cbee4 467 if (blkno < bp->b_bn)
74f75a0c 468 rbp = &(*rbp)->rb_left;
de1cbee4 469 else if (blkno > bp->b_bn)
74f75a0c
DC
470 rbp = &(*rbp)->rb_right;
471 else {
472 /*
de1cbee4 473 * found a block number match. If the range doesn't
74f75a0c
DC
474 * match, the only way this is allowed is if the buffer
475 * in the cache is stale and the transaction that made
476 * it stale has not yet committed. i.e. we are
477 * reallocating a busy extent. Skip this buffer and
478 * continue searching to the right for an exact match.
479 */
e70b73f8 480 if (bp->b_buffer_length != numbytes) {
74f75a0c
DC
481 ASSERT(bp->b_flags & XBF_STALE);
482 rbp = &(*rbp)->rb_right;
483 continue;
484 }
ce8e922c 485 atomic_inc(&bp->b_hold);
1da177e4
LT
486 goto found;
487 }
488 }
489
490 /* No match found */
ce8e922c 491 if (new_bp) {
74f75a0c
DC
492 rb_link_node(&new_bp->b_rbnode, parent, rbp);
493 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
494 /* the buffer keeps the perag reference until it is freed */
495 new_bp->b_pag = pag;
496 spin_unlock(&pag->pag_buf_lock);
1da177e4 497 } else {
ce8e922c 498 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
499 spin_unlock(&pag->pag_buf_lock);
500 xfs_perag_put(pag);
1da177e4 501 }
ce8e922c 502 return new_bp;
1da177e4
LT
503
504found:
74f75a0c
DC
505 spin_unlock(&pag->pag_buf_lock);
506 xfs_perag_put(pag);
1da177e4 507
0c842ad4
CH
508 if (!xfs_buf_trylock(bp)) {
509 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
510 xfs_buf_rele(bp);
511 XFS_STATS_INC(xb_busy_locked);
512 return NULL;
1da177e4 513 }
0c842ad4
CH
514 xfs_buf_lock(bp);
515 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
516 }
517
0e6e847f
DC
518 /*
519 * if the buffer is stale, clear all the external state associated with
520 * it. We need to keep flags such as how we allocated the buffer memory
521 * intact here.
522 */
ce8e922c
NS
523 if (bp->b_flags & XBF_STALE) {
524 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 525 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 526 }
0b1b213f
CH
527
528 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
529 XFS_STATS_INC(xb_get_locked);
530 return bp;
1da177e4
LT
531}
532
533/*
3815832a
DC
534 * Assembles a buffer covering the specified range. The code is optimised for
535 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
536 * more hits than misses.
1da177e4 537 */
3815832a 538struct xfs_buf *
6ad112bf 539xfs_buf_get(
e70b73f8
DC
540 xfs_buftarg_t *target,
541 xfs_daddr_t blkno,
542 size_t numblks,
ce8e922c 543 xfs_buf_flags_t flags)
1da177e4 544{
3815832a
DC
545 struct xfs_buf *bp;
546 struct xfs_buf *new_bp;
0e6e847f 547 int error = 0;
1da177e4 548
e70b73f8 549 bp = _xfs_buf_find(target, blkno, numblks, flags, NULL);
3815832a
DC
550 if (likely(bp))
551 goto found;
552
e70b73f8 553 new_bp = xfs_buf_alloc(target, blkno, numblks, flags);
ce8e922c 554 if (unlikely(!new_bp))
1da177e4
LT
555 return NULL;
556
fe2429b0
DC
557 error = xfs_buf_allocate_memory(new_bp, flags);
558 if (error) {
559 kmem_zone_free(xfs_buf_zone, new_bp);
560 return NULL;
561 }
562
e70b73f8 563 bp = _xfs_buf_find(target, blkno, numblks, flags, new_bp);
3815832a 564 if (!bp) {
fe2429b0 565 xfs_buf_free(new_bp);
3815832a
DC
566 return NULL;
567 }
568
fe2429b0
DC
569 if (bp != new_bp)
570 xfs_buf_free(new_bp);
1da177e4 571
3815832a
DC
572 /*
573 * Now we have a workable buffer, fill in the block number so
574 * that we can do IO on it.
575 */
e70b73f8 576 bp->b_bn = blkno;
3815832a
DC
577 bp->b_count_desired = bp->b_buffer_length;
578
579found:
ce8e922c
NS
580 if (!(bp->b_flags & XBF_MAPPED)) {
581 error = _xfs_buf_map_pages(bp, flags);
1da177e4 582 if (unlikely(error)) {
4f10700a
DC
583 xfs_warn(target->bt_mount,
584 "%s: failed to map pages\n", __func__);
1da177e4
LT
585 goto no_buffer;
586 }
587 }
588
ce8e922c 589 XFS_STATS_INC(xb_get);
0b1b213f 590 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 591 return bp;
1da177e4 592
3815832a 593no_buffer:
ce8e922c
NS
594 if (flags & (XBF_LOCK | XBF_TRYLOCK))
595 xfs_buf_unlock(bp);
596 xfs_buf_rele(bp);
1da177e4
LT
597 return NULL;
598}
599
5d765b97
CH
600STATIC int
601_xfs_buf_read(
602 xfs_buf_t *bp,
603 xfs_buf_flags_t flags)
604{
43ff2122 605 ASSERT(!(flags & XBF_WRITE));
5d765b97
CH
606 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
607
43ff2122 608 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 609 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 610
0e95f19a
DC
611 xfs_buf_iorequest(bp);
612 if (flags & XBF_ASYNC)
613 return 0;
ec53d1db 614 return xfs_buf_iowait(bp);
5d765b97
CH
615}
616
1da177e4 617xfs_buf_t *
6ad112bf 618xfs_buf_read(
1da177e4 619 xfs_buftarg_t *target,
e70b73f8
DC
620 xfs_daddr_t blkno,
621 size_t numblks,
ce8e922c 622 xfs_buf_flags_t flags)
1da177e4 623{
ce8e922c
NS
624 xfs_buf_t *bp;
625
626 flags |= XBF_READ;
627
e70b73f8 628 bp = xfs_buf_get(target, blkno, numblks, flags);
ce8e922c 629 if (bp) {
0b1b213f
CH
630 trace_xfs_buf_read(bp, flags, _RET_IP_);
631
ce8e922c 632 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 633 XFS_STATS_INC(xb_get_read);
5d765b97 634 _xfs_buf_read(bp, flags);
ce8e922c 635 } else if (flags & XBF_ASYNC) {
1da177e4
LT
636 /*
637 * Read ahead call which is already satisfied,
638 * drop the buffer
639 */
640 goto no_buffer;
641 } else {
1da177e4 642 /* We do not want read in the flags */
ce8e922c 643 bp->b_flags &= ~XBF_READ;
1da177e4
LT
644 }
645 }
646
ce8e922c 647 return bp;
1da177e4
LT
648
649 no_buffer:
ce8e922c
NS
650 if (flags & (XBF_LOCK | XBF_TRYLOCK))
651 xfs_buf_unlock(bp);
652 xfs_buf_rele(bp);
1da177e4
LT
653 return NULL;
654}
655
1da177e4 656/*
ce8e922c
NS
657 * If we are not low on memory then do the readahead in a deadlock
658 * safe manner.
1da177e4
LT
659 */
660void
ce8e922c 661xfs_buf_readahead(
1da177e4 662 xfs_buftarg_t *target,
e70b73f8
DC
663 xfs_daddr_t blkno,
664 size_t numblks)
1da177e4 665{
0e6e847f 666 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
667 return;
668
e70b73f8 669 xfs_buf_read(target, blkno, numblks,
1a1a3e97 670 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
671}
672
5adc94c2
DC
673/*
674 * Read an uncached buffer from disk. Allocates and returns a locked
675 * buffer containing the disk contents or nothing.
676 */
677struct xfs_buf *
678xfs_buf_read_uncached(
5adc94c2
DC
679 struct xfs_buftarg *target,
680 xfs_daddr_t daddr,
e70b73f8 681 size_t numblks,
5adc94c2
DC
682 int flags)
683{
684 xfs_buf_t *bp;
685 int error;
686
e70b73f8 687 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
688 if (!bp)
689 return NULL;
690
691 /* set up the buffer for a read IO */
5adc94c2
DC
692 XFS_BUF_SET_ADDR(bp, daddr);
693 XFS_BUF_READ(bp);
5adc94c2 694
e70b73f8 695 xfsbdstrat(target->bt_mount, bp);
1a1a3e97 696 error = xfs_buf_iowait(bp);
0e95f19a 697 if (error) {
5adc94c2
DC
698 xfs_buf_relse(bp);
699 return NULL;
700 }
701 return bp;
1da177e4
LT
702}
703
44396476
DC
704/*
705 * Return a buffer allocated as an empty buffer and associated to external
706 * memory via xfs_buf_associate_memory() back to it's empty state.
707 */
708void
709xfs_buf_set_empty(
710 struct xfs_buf *bp,
e70b73f8 711 size_t numblks)
44396476
DC
712{
713 if (bp->b_pages)
714 _xfs_buf_free_pages(bp);
715
716 bp->b_pages = NULL;
717 bp->b_page_count = 0;
718 bp->b_addr = NULL;
e70b73f8 719 bp->b_buffer_length = bp->b_count_desired = numblks << BBSHIFT;
44396476
DC
720 bp->b_bn = XFS_BUF_DADDR_NULL;
721 bp->b_flags &= ~XBF_MAPPED;
722}
723
1da177e4
LT
724static inline struct page *
725mem_to_page(
726 void *addr)
727{
9e2779fa 728 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
729 return virt_to_page(addr);
730 } else {
731 return vmalloc_to_page(addr);
732 }
733}
734
735int
ce8e922c
NS
736xfs_buf_associate_memory(
737 xfs_buf_t *bp,
1da177e4
LT
738 void *mem,
739 size_t len)
740{
741 int rval;
742 int i = 0;
d1afb678
LM
743 unsigned long pageaddr;
744 unsigned long offset;
745 size_t buflen;
1da177e4
LT
746 int page_count;
747
0e6e847f 748 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 749 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
750 buflen = PAGE_ALIGN(len + offset);
751 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
752
753 /* Free any previous set of page pointers */
ce8e922c
NS
754 if (bp->b_pages)
755 _xfs_buf_free_pages(bp);
1da177e4 756
ce8e922c
NS
757 bp->b_pages = NULL;
758 bp->b_addr = mem;
1da177e4 759
36fae17a 760 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
761 if (rval)
762 return rval;
763
ce8e922c 764 bp->b_offset = offset;
d1afb678
LM
765
766 for (i = 0; i < bp->b_page_count; i++) {
767 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 768 pageaddr += PAGE_SIZE;
1da177e4 769 }
1da177e4 770
d1afb678
LM
771 bp->b_count_desired = len;
772 bp->b_buffer_length = buflen;
ce8e922c 773 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
774
775 return 0;
776}
777
778xfs_buf_t *
686865f7
DC
779xfs_buf_get_uncached(
780 struct xfs_buftarg *target,
e70b73f8 781 size_t numblks,
686865f7 782 int flags)
1da177e4 783{
e70b73f8 784 unsigned long page_count;
1fa40b01 785 int error, i;
1da177e4 786 xfs_buf_t *bp;
1da177e4 787
e70b73f8 788 bp = xfs_buf_alloc(target, 0, numblks, 0);
1da177e4
LT
789 if (unlikely(bp == NULL))
790 goto fail;
1da177e4 791
e70b73f8 792 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
793 error = _xfs_buf_get_pages(bp, page_count, 0);
794 if (error)
1da177e4
LT
795 goto fail_free_buf;
796
1fa40b01 797 for (i = 0; i < page_count; i++) {
686865f7 798 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
799 if (!bp->b_pages[i])
800 goto fail_free_mem;
1da177e4 801 }
1fa40b01 802 bp->b_flags |= _XBF_PAGES;
1da177e4 803
1fa40b01
CH
804 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
805 if (unlikely(error)) {
4f10700a
DC
806 xfs_warn(target->bt_mount,
807 "%s: failed to map pages\n", __func__);
1da177e4 808 goto fail_free_mem;
1fa40b01 809 }
1da177e4 810
686865f7 811 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 812 return bp;
1fa40b01 813
1da177e4 814 fail_free_mem:
1fa40b01
CH
815 while (--i >= 0)
816 __free_page(bp->b_pages[i]);
ca165b88 817 _xfs_buf_free_pages(bp);
1da177e4 818 fail_free_buf:
4347b9d7 819 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
820 fail:
821 return NULL;
822}
823
824/*
1da177e4
LT
825 * Increment reference count on buffer, to hold the buffer concurrently
826 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
827 * Must hold the buffer already to call this function.
828 */
829void
ce8e922c
NS
830xfs_buf_hold(
831 xfs_buf_t *bp)
1da177e4 832{
0b1b213f 833 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 834 atomic_inc(&bp->b_hold);
1da177e4
LT
835}
836
837/*
ce8e922c
NS
838 * Releases a hold on the specified buffer. If the
839 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
840 */
841void
ce8e922c
NS
842xfs_buf_rele(
843 xfs_buf_t *bp)
1da177e4 844{
74f75a0c 845 struct xfs_perag *pag = bp->b_pag;
1da177e4 846
0b1b213f 847 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 848
74f75a0c 849 if (!pag) {
430cbeb8 850 ASSERT(list_empty(&bp->b_lru));
74f75a0c 851 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
852 if (atomic_dec_and_test(&bp->b_hold))
853 xfs_buf_free(bp);
854 return;
855 }
856
74f75a0c 857 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 858
3790689f 859 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 860 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 861 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
862 atomic_read(&bp->b_lru_ref)) {
863 xfs_buf_lru_add(bp);
864 spin_unlock(&pag->pag_buf_lock);
1da177e4 865 } else {
430cbeb8 866 xfs_buf_lru_del(bp);
43ff2122 867 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
868 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
869 spin_unlock(&pag->pag_buf_lock);
870 xfs_perag_put(pag);
ce8e922c 871 xfs_buf_free(bp);
1da177e4
LT
872 }
873 }
874}
875
876
877/*
0e6e847f 878 * Lock a buffer object, if it is not already locked.
90810b9e
DC
879 *
880 * If we come across a stale, pinned, locked buffer, we know that we are
881 * being asked to lock a buffer that has been reallocated. Because it is
882 * pinned, we know that the log has not been pushed to disk and hence it
883 * will still be locked. Rather than continuing to have trylock attempts
884 * fail until someone else pushes the log, push it ourselves before
885 * returning. This means that the xfsaild will not get stuck trying
886 * to push on stale inode buffers.
1da177e4
LT
887 */
888int
0c842ad4
CH
889xfs_buf_trylock(
890 struct xfs_buf *bp)
1da177e4
LT
891{
892 int locked;
893
ce8e922c 894 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 895 if (locked)
ce8e922c 896 XB_SET_OWNER(bp);
90810b9e
DC
897 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
898 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 899
0c842ad4
CH
900 trace_xfs_buf_trylock(bp, _RET_IP_);
901 return locked;
1da177e4 902}
1da177e4
LT
903
904/*
0e6e847f 905 * Lock a buffer object.
ed3b4d6c
DC
906 *
907 * If we come across a stale, pinned, locked buffer, we know that we
908 * are being asked to lock a buffer that has been reallocated. Because
909 * it is pinned, we know that the log has not been pushed to disk and
910 * hence it will still be locked. Rather than sleeping until someone
911 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 912 */
ce8e922c
NS
913void
914xfs_buf_lock(
0c842ad4 915 struct xfs_buf *bp)
1da177e4 916{
0b1b213f
CH
917 trace_xfs_buf_lock(bp, _RET_IP_);
918
ed3b4d6c 919 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 920 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
921 down(&bp->b_sema);
922 XB_SET_OWNER(bp);
0b1b213f
CH
923
924 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
925}
926
1da177e4 927void
ce8e922c 928xfs_buf_unlock(
0c842ad4 929 struct xfs_buf *bp)
1da177e4 930{
ce8e922c
NS
931 XB_CLEAR_OWNER(bp);
932 up(&bp->b_sema);
0b1b213f
CH
933
934 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
935}
936
ce8e922c
NS
937STATIC void
938xfs_buf_wait_unpin(
939 xfs_buf_t *bp)
1da177e4
LT
940{
941 DECLARE_WAITQUEUE (wait, current);
942
ce8e922c 943 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
944 return;
945
ce8e922c 946 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
947 for (;;) {
948 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 949 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 950 break;
7eaceacc 951 io_schedule();
1da177e4 952 }
ce8e922c 953 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
954 set_current_state(TASK_RUNNING);
955}
956
957/*
958 * Buffer Utility Routines
959 */
960
1da177e4 961STATIC void
ce8e922c 962xfs_buf_iodone_work(
c4028958 963 struct work_struct *work)
1da177e4 964{
c4028958
DH
965 xfs_buf_t *bp =
966 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 967
80f6c29d 968 if (bp->b_iodone)
ce8e922c
NS
969 (*(bp->b_iodone))(bp);
970 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
971 xfs_buf_relse(bp);
972}
973
974void
ce8e922c
NS
975xfs_buf_ioend(
976 xfs_buf_t *bp,
1da177e4
LT
977 int schedule)
978{
0b1b213f
CH
979 trace_xfs_buf_iodone(bp, _RET_IP_);
980
77be55a5 981 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
982 if (bp->b_error == 0)
983 bp->b_flags |= XBF_DONE;
1da177e4 984
ce8e922c 985 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 986 if (schedule) {
c4028958 987 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 988 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 989 } else {
c4028958 990 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
991 }
992 } else {
b4dd330b 993 complete(&bp->b_iowait);
1da177e4
LT
994 }
995}
996
1da177e4 997void
ce8e922c
NS
998xfs_buf_ioerror(
999 xfs_buf_t *bp,
1000 int error)
1da177e4
LT
1001{
1002 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1003 bp->b_error = (unsigned short)error;
0b1b213f 1004 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1005}
1006
901796af
CH
1007void
1008xfs_buf_ioerror_alert(
1009 struct xfs_buf *bp,
1010 const char *func)
1011{
1012 xfs_alert(bp->b_target->bt_mount,
1013"metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1014 (__uint64_t)XFS_BUF_ADDR(bp), func,
1015 bp->b_error, XFS_BUF_COUNT(bp));
1016}
1017
1da177e4 1018int
64e0bc7d 1019xfs_bwrite(
5d765b97 1020 struct xfs_buf *bp)
1da177e4 1021{
8c38366f 1022 int error;
1da177e4 1023
43ff2122
CH
1024 ASSERT(xfs_buf_islocked(bp));
1025
64e0bc7d 1026 bp->b_flags |= XBF_WRITE;
43ff2122 1027 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1028
939d723b 1029 xfs_bdstrat_cb(bp);
1da177e4 1030
8c38366f 1031 error = xfs_buf_iowait(bp);
c2b006c1
CH
1032 if (error) {
1033 xfs_force_shutdown(bp->b_target->bt_mount,
1034 SHUTDOWN_META_IO_ERROR);
1035 }
64e0bc7d 1036 return error;
5d765b97 1037}
1da177e4 1038
4e23471a
CH
1039/*
1040 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1041 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1042 * so that the proper iodone callbacks get called.
1043 */
1044STATIC int
1045xfs_bioerror(
1046 xfs_buf_t *bp)
1047{
1048#ifdef XFSERRORDEBUG
1049 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1050#endif
1051
1052 /*
1053 * No need to wait until the buffer is unpinned, we aren't flushing it.
1054 */
5a52c2a5 1055 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1056
1057 /*
1a1a3e97 1058 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1059 */
1060 XFS_BUF_UNREAD(bp);
4e23471a 1061 XFS_BUF_UNDONE(bp);
c867cb61 1062 xfs_buf_stale(bp);
4e23471a 1063
1a1a3e97 1064 xfs_buf_ioend(bp, 0);
4e23471a
CH
1065
1066 return EIO;
1067}
1068
1069/*
1070 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1071 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1072 * This is meant for userdata errors; metadata bufs come with
1073 * iodone functions attached, so that we can track down errors.
1074 */
1075STATIC int
1076xfs_bioerror_relse(
1077 struct xfs_buf *bp)
1078{
ed43233b 1079 int64_t fl = bp->b_flags;
4e23471a
CH
1080 /*
1081 * No need to wait until the buffer is unpinned.
1082 * We aren't flushing it.
1083 *
1084 * chunkhold expects B_DONE to be set, whether
1085 * we actually finish the I/O or not. We don't want to
1086 * change that interface.
1087 */
1088 XFS_BUF_UNREAD(bp);
4e23471a 1089 XFS_BUF_DONE(bp);
c867cb61 1090 xfs_buf_stale(bp);
cb669ca5 1091 bp->b_iodone = NULL;
0cadda1c 1092 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1093 /*
1094 * Mark b_error and B_ERROR _both_.
1095 * Lot's of chunkcache code assumes that.
1096 * There's no reason to mark error for
1097 * ASYNC buffers.
1098 */
5a52c2a5 1099 xfs_buf_ioerror(bp, EIO);
5fde0326 1100 complete(&bp->b_iowait);
4e23471a
CH
1101 } else {
1102 xfs_buf_relse(bp);
1103 }
1104
1105 return EIO;
1106}
1107
1108
1109/*
1110 * All xfs metadata buffers except log state machine buffers
1111 * get this attached as their b_bdstrat callback function.
1112 * This is so that we can catch a buffer
1113 * after prematurely unpinning it to forcibly shutdown the filesystem.
1114 */
1115int
1116xfs_bdstrat_cb(
1117 struct xfs_buf *bp)
1118{
ebad861b 1119 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1120 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1121 /*
1122 * Metadata write that didn't get logged but
1123 * written delayed anyway. These aren't associated
1124 * with a transaction, and can be ignored.
1125 */
1126 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1127 return xfs_bioerror_relse(bp);
1128 else
1129 return xfs_bioerror(bp);
1130 }
1131
1132 xfs_buf_iorequest(bp);
1133 return 0;
1134}
1135
1136/*
1137 * Wrapper around bdstrat so that we can stop data from going to disk in case
1138 * we are shutting down the filesystem. Typically user data goes thru this
1139 * path; one of the exceptions is the superblock.
1140 */
1141void
1142xfsbdstrat(
1143 struct xfs_mount *mp,
1144 struct xfs_buf *bp)
1145{
1146 if (XFS_FORCED_SHUTDOWN(mp)) {
1147 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1148 xfs_bioerror_relse(bp);
1149 return;
1150 }
1151
1152 xfs_buf_iorequest(bp);
1153}
1154
b8f82a4a 1155STATIC void
ce8e922c
NS
1156_xfs_buf_ioend(
1157 xfs_buf_t *bp,
1da177e4
LT
1158 int schedule)
1159{
0e6e847f 1160 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1161 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1162}
1163
782e3b3b 1164STATIC void
ce8e922c 1165xfs_buf_bio_end_io(
1da177e4 1166 struct bio *bio,
1da177e4
LT
1167 int error)
1168{
ce8e922c 1169 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1170
cfbe5267 1171 xfs_buf_ioerror(bp, -error);
1da177e4 1172
73c77e2c
JB
1173 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1174 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1175
ce8e922c 1176 _xfs_buf_ioend(bp, 1);
1da177e4 1177 bio_put(bio);
1da177e4
LT
1178}
1179
1180STATIC void
ce8e922c
NS
1181_xfs_buf_ioapply(
1182 xfs_buf_t *bp)
1da177e4 1183{
a9759f2d 1184 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1185 struct bio *bio;
ce8e922c
NS
1186 int offset = bp->b_offset;
1187 int size = bp->b_count_desired;
1188 sector_t sector = bp->b_bn;
1da177e4 1189
ce8e922c 1190 total_nr_pages = bp->b_page_count;
1da177e4
LT
1191 map_i = 0;
1192
1d5ae5df
CH
1193 if (bp->b_flags & XBF_WRITE) {
1194 if (bp->b_flags & XBF_SYNCIO)
1195 rw = WRITE_SYNC;
1196 else
1197 rw = WRITE;
1198 if (bp->b_flags & XBF_FUA)
1199 rw |= REQ_FUA;
1200 if (bp->b_flags & XBF_FLUSH)
1201 rw |= REQ_FLUSH;
1202 } else if (bp->b_flags & XBF_READ_AHEAD) {
1203 rw = READA;
51bdd706 1204 } else {
1d5ae5df 1205 rw = READ;
f538d4da
CH
1206 }
1207
34951f5c
CH
1208 /* we only use the buffer cache for meta-data */
1209 rw |= REQ_META;
1210
1da177e4 1211next_chunk:
ce8e922c 1212 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1213 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1214 if (nr_pages > total_nr_pages)
1215 nr_pages = total_nr_pages;
1216
1217 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1218 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1219 bio->bi_sector = sector;
ce8e922c
NS
1220 bio->bi_end_io = xfs_buf_bio_end_io;
1221 bio->bi_private = bp;
1da177e4 1222
0e6e847f 1223
1da177e4 1224 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1225 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1226
1227 if (nbytes > size)
1228 nbytes = size;
1229
ce8e922c
NS
1230 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1231 if (rbytes < nbytes)
1da177e4
LT
1232 break;
1233
1234 offset = 0;
1235 sector += nbytes >> BBSHIFT;
1236 size -= nbytes;
1237 total_nr_pages--;
1238 }
1239
1da177e4 1240 if (likely(bio->bi_size)) {
73c77e2c
JB
1241 if (xfs_buf_is_vmapped(bp)) {
1242 flush_kernel_vmap_range(bp->b_addr,
1243 xfs_buf_vmap_len(bp));
1244 }
1da177e4
LT
1245 submit_bio(rw, bio);
1246 if (size)
1247 goto next_chunk;
1248 } else {
ce8e922c 1249 xfs_buf_ioerror(bp, EIO);
ec53d1db 1250 bio_put(bio);
1da177e4
LT
1251 }
1252}
1253
0e95f19a 1254void
ce8e922c
NS
1255xfs_buf_iorequest(
1256 xfs_buf_t *bp)
1da177e4 1257{
0b1b213f 1258 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1259
43ff2122 1260 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1261
375ec69d 1262 if (bp->b_flags & XBF_WRITE)
ce8e922c 1263 xfs_buf_wait_unpin(bp);
ce8e922c 1264 xfs_buf_hold(bp);
1da177e4
LT
1265
1266 /* Set the count to 1 initially, this will stop an I/O
1267 * completion callout which happens before we have started
ce8e922c 1268 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1269 */
ce8e922c
NS
1270 atomic_set(&bp->b_io_remaining, 1);
1271 _xfs_buf_ioapply(bp);
1272 _xfs_buf_ioend(bp, 0);
1da177e4 1273
ce8e922c 1274 xfs_buf_rele(bp);
1da177e4
LT
1275}
1276
1277/*
0e95f19a
DC
1278 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1279 * no I/O is pending or there is already a pending error on the buffer. It
1280 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1281 */
1282int
ce8e922c
NS
1283xfs_buf_iowait(
1284 xfs_buf_t *bp)
1da177e4 1285{
0b1b213f
CH
1286 trace_xfs_buf_iowait(bp, _RET_IP_);
1287
0e95f19a
DC
1288 if (!bp->b_error)
1289 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1290
1291 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1292 return bp->b_error;
1da177e4
LT
1293}
1294
ce8e922c
NS
1295xfs_caddr_t
1296xfs_buf_offset(
1297 xfs_buf_t *bp,
1da177e4
LT
1298 size_t offset)
1299{
1300 struct page *page;
1301
ce8e922c 1302 if (bp->b_flags & XBF_MAPPED)
62926044 1303 return bp->b_addr + offset;
1da177e4 1304
ce8e922c 1305 offset += bp->b_offset;
0e6e847f
DC
1306 page = bp->b_pages[offset >> PAGE_SHIFT];
1307 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1308}
1309
1310/*
1da177e4
LT
1311 * Move data into or out of a buffer.
1312 */
1313void
ce8e922c
NS
1314xfs_buf_iomove(
1315 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1316 size_t boff, /* starting buffer offset */
1317 size_t bsize, /* length to copy */
b9c48649 1318 void *data, /* data address */
ce8e922c 1319 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1320{
1321 size_t bend, cpoff, csize;
1322 struct page *page;
1323
1324 bend = boff + bsize;
1325 while (boff < bend) {
ce8e922c
NS
1326 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1327 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1328 csize = min_t(size_t,
0e6e847f 1329 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1330
0e6e847f 1331 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1332
1333 switch (mode) {
ce8e922c 1334 case XBRW_ZERO:
1da177e4
LT
1335 memset(page_address(page) + cpoff, 0, csize);
1336 break;
ce8e922c 1337 case XBRW_READ:
1da177e4
LT
1338 memcpy(data, page_address(page) + cpoff, csize);
1339 break;
ce8e922c 1340 case XBRW_WRITE:
1da177e4
LT
1341 memcpy(page_address(page) + cpoff, data, csize);
1342 }
1343
1344 boff += csize;
1345 data += csize;
1346 }
1347}
1348
1349/*
ce8e922c 1350 * Handling of buffer targets (buftargs).
1da177e4
LT
1351 */
1352
1353/*
430cbeb8
DC
1354 * Wait for any bufs with callbacks that have been submitted but have not yet
1355 * returned. These buffers will have an elevated hold count, so wait on those
1356 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1357 */
1358void
1359xfs_wait_buftarg(
74f75a0c 1360 struct xfs_buftarg *btp)
1da177e4 1361{
430cbeb8
DC
1362 struct xfs_buf *bp;
1363
1364restart:
1365 spin_lock(&btp->bt_lru_lock);
1366 while (!list_empty(&btp->bt_lru)) {
1367 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1368 if (atomic_read(&bp->b_hold) > 1) {
1369 spin_unlock(&btp->bt_lru_lock);
26af6552 1370 delay(100);
430cbeb8 1371 goto restart;
1da177e4 1372 }
430cbeb8 1373 /*
90802ed9 1374 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1375 * ignored in xfs_buf_rele().
1376 */
1377 atomic_set(&bp->b_lru_ref, 0);
1378 spin_unlock(&btp->bt_lru_lock);
1379 xfs_buf_rele(bp);
1380 spin_lock(&btp->bt_lru_lock);
1da177e4 1381 }
430cbeb8 1382 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1383}
1384
ff57ab21
DC
1385int
1386xfs_buftarg_shrink(
1387 struct shrinker *shrink,
1495f230 1388 struct shrink_control *sc)
a6867a68 1389{
ff57ab21
DC
1390 struct xfs_buftarg *btp = container_of(shrink,
1391 struct xfs_buftarg, bt_shrinker);
430cbeb8 1392 struct xfs_buf *bp;
1495f230 1393 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1394 LIST_HEAD(dispose);
1395
1396 if (!nr_to_scan)
1397 return btp->bt_lru_nr;
1398
1399 spin_lock(&btp->bt_lru_lock);
1400 while (!list_empty(&btp->bt_lru)) {
1401 if (nr_to_scan-- <= 0)
1402 break;
1403
1404 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1405
1406 /*
1407 * Decrement the b_lru_ref count unless the value is already
1408 * zero. If the value is already zero, we need to reclaim the
1409 * buffer, otherwise it gets another trip through the LRU.
1410 */
1411 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1412 list_move_tail(&bp->b_lru, &btp->bt_lru);
1413 continue;
1414 }
1415
1416 /*
1417 * remove the buffer from the LRU now to avoid needing another
1418 * lock round trip inside xfs_buf_rele().
1419 */
1420 list_move(&bp->b_lru, &dispose);
1421 btp->bt_lru_nr--;
ff57ab21 1422 }
430cbeb8
DC
1423 spin_unlock(&btp->bt_lru_lock);
1424
1425 while (!list_empty(&dispose)) {
1426 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1427 list_del_init(&bp->b_lru);
1428 xfs_buf_rele(bp);
1429 }
1430
1431 return btp->bt_lru_nr;
a6867a68
DC
1432}
1433
1da177e4
LT
1434void
1435xfs_free_buftarg(
b7963133
CH
1436 struct xfs_mount *mp,
1437 struct xfs_buftarg *btp)
1da177e4 1438{
ff57ab21
DC
1439 unregister_shrinker(&btp->bt_shrinker);
1440
b7963133
CH
1441 if (mp->m_flags & XFS_MOUNT_BARRIER)
1442 xfs_blkdev_issue_flush(btp);
a6867a68 1443
f0e2d93c 1444 kmem_free(btp);
1da177e4
LT
1445}
1446
1da177e4
LT
1447STATIC int
1448xfs_setsize_buftarg_flags(
1449 xfs_buftarg_t *btp,
1450 unsigned int blocksize,
1451 unsigned int sectorsize,
1452 int verbose)
1453{
ce8e922c
NS
1454 btp->bt_bsize = blocksize;
1455 btp->bt_sshift = ffs(sectorsize) - 1;
1456 btp->bt_smask = sectorsize - 1;
1da177e4 1457
ce8e922c 1458 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1459 char name[BDEVNAME_SIZE];
1460
1461 bdevname(btp->bt_bdev, name);
1462
4f10700a
DC
1463 xfs_warn(btp->bt_mount,
1464 "Cannot set_blocksize to %u on device %s\n",
02b102df 1465 sectorsize, name);
1da177e4
LT
1466 return EINVAL;
1467 }
1468
1da177e4
LT
1469 return 0;
1470}
1471
1472/*
ce8e922c
NS
1473 * When allocating the initial buffer target we have not yet
1474 * read in the superblock, so don't know what sized sectors
1475 * are being used is at this early stage. Play safe.
1476 */
1da177e4
LT
1477STATIC int
1478xfs_setsize_buftarg_early(
1479 xfs_buftarg_t *btp,
1480 struct block_device *bdev)
1481{
1482 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1483 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1484}
1485
1486int
1487xfs_setsize_buftarg(
1488 xfs_buftarg_t *btp,
1489 unsigned int blocksize,
1490 unsigned int sectorsize)
1491{
1492 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1493}
1494
1da177e4
LT
1495xfs_buftarg_t *
1496xfs_alloc_buftarg(
ebad861b 1497 struct xfs_mount *mp,
1da177e4 1498 struct block_device *bdev,
e2a07812
JE
1499 int external,
1500 const char *fsname)
1da177e4
LT
1501{
1502 xfs_buftarg_t *btp;
1503
1504 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1505
ebad861b 1506 btp->bt_mount = mp;
ce8e922c
NS
1507 btp->bt_dev = bdev->bd_dev;
1508 btp->bt_bdev = bdev;
0e6e847f
DC
1509 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1510 if (!btp->bt_bdi)
1511 goto error;
1512
430cbeb8
DC
1513 INIT_LIST_HEAD(&btp->bt_lru);
1514 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1515 if (xfs_setsize_buftarg_early(btp, bdev))
1516 goto error;
ff57ab21
DC
1517 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1518 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1519 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1520 return btp;
1521
1522error:
f0e2d93c 1523 kmem_free(btp);
1da177e4
LT
1524 return NULL;
1525}
1526
1da177e4 1527/*
43ff2122
CH
1528 * Add a buffer to the delayed write list.
1529 *
1530 * This queues a buffer for writeout if it hasn't already been. Note that
1531 * neither this routine nor the buffer list submission functions perform
1532 * any internal synchronization. It is expected that the lists are thread-local
1533 * to the callers.
1534 *
1535 * Returns true if we queued up the buffer, or false if it already had
1536 * been on the buffer list.
1da177e4 1537 */
43ff2122 1538bool
ce8e922c 1539xfs_buf_delwri_queue(
43ff2122
CH
1540 struct xfs_buf *bp,
1541 struct list_head *list)
1da177e4 1542{
43ff2122 1543 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1544 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1545
43ff2122
CH
1546 /*
1547 * If the buffer is already marked delwri it already is queued up
1548 * by someone else for imediate writeout. Just ignore it in that
1549 * case.
1550 */
1551 if (bp->b_flags & _XBF_DELWRI_Q) {
1552 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1553 return false;
1da177e4 1554 }
1da177e4 1555
43ff2122 1556 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1557
1558 /*
43ff2122
CH
1559 * If a buffer gets written out synchronously or marked stale while it
1560 * is on a delwri list we lazily remove it. To do this, the other party
1561 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1562 * It remains referenced and on the list. In a rare corner case it
1563 * might get readded to a delwri list after the synchronous writeout, in
1564 * which case we need just need to re-add the flag here.
d808f617 1565 */
43ff2122
CH
1566 bp->b_flags |= _XBF_DELWRI_Q;
1567 if (list_empty(&bp->b_list)) {
1568 atomic_inc(&bp->b_hold);
1569 list_add_tail(&bp->b_list, list);
585e6d88 1570 }
585e6d88 1571
43ff2122 1572 return true;
585e6d88
DC
1573}
1574
089716aa
DC
1575/*
1576 * Compare function is more complex than it needs to be because
1577 * the return value is only 32 bits and we are doing comparisons
1578 * on 64 bit values
1579 */
1580static int
1581xfs_buf_cmp(
1582 void *priv,
1583 struct list_head *a,
1584 struct list_head *b)
1585{
1586 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1587 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1588 xfs_daddr_t diff;
1589
1590 diff = ap->b_bn - bp->b_bn;
1591 if (diff < 0)
1592 return -1;
1593 if (diff > 0)
1594 return 1;
1595 return 0;
1596}
1597
43ff2122
CH
1598static int
1599__xfs_buf_delwri_submit(
1600 struct list_head *buffer_list,
1601 struct list_head *io_list,
1602 bool wait)
1da177e4 1603{
43ff2122
CH
1604 struct blk_plug plug;
1605 struct xfs_buf *bp, *n;
1606 int pinned = 0;
1607
1608 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1609 if (!wait) {
1610 if (xfs_buf_ispinned(bp)) {
1611 pinned++;
1612 continue;
1613 }
1614 if (!xfs_buf_trylock(bp))
1615 continue;
1616 } else {
1617 xfs_buf_lock(bp);
1618 }
978c7b2f 1619
43ff2122
CH
1620 /*
1621 * Someone else might have written the buffer synchronously or
1622 * marked it stale in the meantime. In that case only the
1623 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1624 * reference and remove it from the list here.
1625 */
1626 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1627 list_del_init(&bp->b_list);
1628 xfs_buf_relse(bp);
1629 continue;
1630 }
c9c12971 1631
43ff2122
CH
1632 list_move_tail(&bp->b_list, io_list);
1633 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1634 }
1da177e4 1635
43ff2122 1636 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1637
43ff2122
CH
1638 blk_start_plug(&plug);
1639 list_for_each_entry_safe(bp, n, io_list, b_list) {
1640 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1641 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1642
43ff2122
CH
1643 if (!wait) {
1644 bp->b_flags |= XBF_ASYNC;
ce8e922c 1645 list_del_init(&bp->b_list);
1da177e4 1646 }
43ff2122
CH
1647 xfs_bdstrat_cb(bp);
1648 }
1649 blk_finish_plug(&plug);
1da177e4 1650
43ff2122 1651 return pinned;
1da177e4
LT
1652}
1653
1654/*
43ff2122
CH
1655 * Write out a buffer list asynchronously.
1656 *
1657 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1658 * out and not wait for I/O completion on any of the buffers. This interface
1659 * is only safely useable for callers that can track I/O completion by higher
1660 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1661 * function.
1da177e4
LT
1662 */
1663int
43ff2122
CH
1664xfs_buf_delwri_submit_nowait(
1665 struct list_head *buffer_list)
1da177e4 1666{
43ff2122
CH
1667 LIST_HEAD (io_list);
1668 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1669}
1da177e4 1670
43ff2122
CH
1671/*
1672 * Write out a buffer list synchronously.
1673 *
1674 * This will take the @buffer_list, write all buffers out and wait for I/O
1675 * completion on all of the buffers. @buffer_list is consumed by the function,
1676 * so callers must have some other way of tracking buffers if they require such
1677 * functionality.
1678 */
1679int
1680xfs_buf_delwri_submit(
1681 struct list_head *buffer_list)
1682{
1683 LIST_HEAD (io_list);
1684 int error = 0, error2;
1685 struct xfs_buf *bp;
1da177e4 1686
43ff2122 1687 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1688
43ff2122
CH
1689 /* Wait for IO to complete. */
1690 while (!list_empty(&io_list)) {
1691 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1692
089716aa 1693 list_del_init(&bp->b_list);
43ff2122
CH
1694 error2 = xfs_buf_iowait(bp);
1695 xfs_buf_relse(bp);
1696 if (!error)
1697 error = error2;
1da177e4
LT
1698 }
1699
43ff2122 1700 return error;
1da177e4
LT
1701}
1702
04d8b284 1703int __init
ce8e922c 1704xfs_buf_init(void)
1da177e4 1705{
8758280f
NS
1706 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1707 KM_ZONE_HWALIGN, NULL);
ce8e922c 1708 if (!xfs_buf_zone)
0b1b213f 1709 goto out;
04d8b284 1710
51749e47 1711 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1712 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1713 if (!xfslogd_workqueue)
04d8b284 1714 goto out_free_buf_zone;
1da177e4 1715
23ea4032 1716 return 0;
1da177e4 1717
23ea4032 1718 out_free_buf_zone:
ce8e922c 1719 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1720 out:
8758280f 1721 return -ENOMEM;
1da177e4
LT
1722}
1723
1da177e4 1724void
ce8e922c 1725xfs_buf_terminate(void)
1da177e4 1726{
04d8b284 1727 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1728 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1729}