[XFS] fix ASSERT and ASSERT_ALWAYS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
40#include <linux/mpage.h>
10ce4444 41#include <linux/pagevec.h>
1da177e4
LT
42#include <linux/writeback.h>
43
f51623b2
NS
44STATIC void
45xfs_count_page_state(
46 struct page *page,
47 int *delalloc,
48 int *unmapped,
49 int *unwritten)
50{
51 struct buffer_head *bh, *head;
52
53 *delalloc = *unmapped = *unwritten = 0;
54
55 bh = head = page_buffers(page);
56 do {
57 if (buffer_uptodate(bh) && !buffer_mapped(bh))
58 (*unmapped) = 1;
f51623b2
NS
59 else if (buffer_unwritten(bh))
60 (*unwritten) = 1;
61 else if (buffer_delay(bh))
62 (*delalloc) = 1;
63 } while ((bh = bh->b_this_page) != head);
64}
65
1da177e4
LT
66#if defined(XFS_RW_TRACE)
67void
68xfs_page_trace(
69 int tag,
70 struct inode *inode,
71 struct page *page,
ed9d88f7 72 unsigned long pgoff)
1da177e4
LT
73{
74 xfs_inode_t *ip;
67fcaa73 75 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 76 loff_t isize = i_size_read(inode);
f6d6d4fc 77 loff_t offset = page_offset(page);
1da177e4
LT
78 int delalloc = -1, unmapped = -1, unwritten = -1;
79
80 if (page_has_buffers(page))
81 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
82
75e17b3c 83 ip = xfs_vtoi(vp);
1da177e4
LT
84 if (!ip->i_rwtrace)
85 return;
86
87 ktrace_enter(ip->i_rwtrace,
88 (void *)((unsigned long)tag),
89 (void *)ip,
90 (void *)inode,
91 (void *)page,
ed9d88f7 92 (void *)pgoff,
1da177e4
LT
93 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
94 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
95 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
96 (void *)((unsigned long)(isize & 0xffffffff)),
97 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(offset & 0xffffffff)),
99 (void *)((unsigned long)delalloc),
100 (void *)((unsigned long)unmapped),
101 (void *)((unsigned long)unwritten),
f1fdc848 102 (void *)((unsigned long)current_pid()),
1da177e4
LT
103 (void *)NULL);
104}
105#else
ed9d88f7 106#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
107#endif
108
0829c360
CH
109/*
110 * Schedule IO completion handling on a xfsdatad if this was
e927af90
DC
111 * the final hold on this ioend. If we are asked to wait,
112 * flush the workqueue.
0829c360
CH
113 */
114STATIC void
115xfs_finish_ioend(
e927af90
DC
116 xfs_ioend_t *ioend,
117 int wait)
0829c360 118{
e927af90 119 if (atomic_dec_and_test(&ioend->io_remaining)) {
0829c360 120 queue_work(xfsdatad_workqueue, &ioend->io_work);
e927af90
DC
121 if (wait)
122 flush_workqueue(xfsdatad_workqueue);
123 }
0829c360
CH
124}
125
f6d6d4fc
CH
126/*
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
131 */
0829c360
CH
132STATIC void
133xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
135{
f6d6d4fc
CH
136 struct buffer_head *bh, *next;
137
138 for (bh = ioend->io_buffer_head; bh; bh = next) {
139 next = bh->b_private;
7d04a335 140 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 141 }
7d04a335
NS
142 if (unlikely(ioend->io_error))
143 vn_ioerror(ioend->io_vnode, ioend->io_error, __FILE__,__LINE__);
0829c360
CH
144 vn_iowake(ioend->io_vnode);
145 mempool_free(ioend, xfs_ioend_pool);
146}
147
ba87ea69
LM
148/*
149 * Update on-disk file size now that data has been written to disk.
150 * The current in-memory file size is i_size. If a write is beyond
151 * eof io_new_size will be the intended file size until i_size is
152 * updated. If this write does not extend all the way to the valid
153 * file size then restrict this update to the end of the write.
154 */
155STATIC void
156xfs_setfilesize(
157 xfs_ioend_t *ioend)
158{
159 xfs_inode_t *ip;
160 xfs_fsize_t isize;
161 xfs_fsize_t bsize;
162
163 ip = xfs_vtoi(ioend->io_vnode);
b2826136
DC
164 if (!ip)
165 return;
ba87ea69
LM
166
167 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
168 ASSERT(ioend->io_type != IOMAP_READ);
169
170 if (unlikely(ioend->io_error))
171 return;
172
173 bsize = ioend->io_offset + ioend->io_size;
174
175 xfs_ilock(ip, XFS_ILOCK_EXCL);
176
177 isize = MAX(ip->i_size, ip->i_iocore.io_new_size);
178 isize = MIN(isize, bsize);
179
180 if (ip->i_d.di_size < isize) {
181 ip->i_d.di_size = isize;
182 ip->i_update_core = 1;
183 ip->i_update_size = 1;
184 }
185
186 xfs_iunlock(ip, XFS_ILOCK_EXCL);
187}
188
0829c360 189/*
f6d6d4fc 190 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
191 */
192STATIC void
193xfs_end_bio_delalloc(
c4028958 194 struct work_struct *work)
f6d6d4fc 195{
c4028958
DH
196 xfs_ioend_t *ioend =
197 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 198
ba87ea69 199 xfs_setfilesize(ioend);
f6d6d4fc
CH
200 xfs_destroy_ioend(ioend);
201}
202
203/*
204 * Buffered IO write completion for regular, written extents.
205 */
206STATIC void
207xfs_end_bio_written(
c4028958 208 struct work_struct *work)
f6d6d4fc 209{
c4028958
DH
210 xfs_ioend_t *ioend =
211 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 212
ba87ea69 213 xfs_setfilesize(ioend);
f6d6d4fc
CH
214 xfs_destroy_ioend(ioend);
215}
216
217/*
218 * IO write completion for unwritten extents.
219 *
0829c360 220 * Issue transactions to convert a buffer range from unwritten
f0973863 221 * to written extents.
0829c360
CH
222 */
223STATIC void
224xfs_end_bio_unwritten(
c4028958 225 struct work_struct *work)
0829c360 226{
c4028958
DH
227 xfs_ioend_t *ioend =
228 container_of(work, xfs_ioend_t, io_work);
67fcaa73 229 bhv_vnode_t *vp = ioend->io_vnode;
0829c360
CH
230 xfs_off_t offset = ioend->io_offset;
231 size_t size = ioend->io_size;
0829c360 232
ba87ea69 233 if (likely(!ioend->io_error)) {
67fcaa73 234 bhv_vop_bmap(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL);
ba87ea69
LM
235 xfs_setfilesize(ioend);
236 }
237 xfs_destroy_ioend(ioend);
238}
239
240/*
241 * IO read completion for regular, written extents.
242 */
243STATIC void
244xfs_end_bio_read(
245 struct work_struct *work)
246{
247 xfs_ioend_t *ioend =
248 container_of(work, xfs_ioend_t, io_work);
249
0829c360
CH
250 xfs_destroy_ioend(ioend);
251}
252
253/*
254 * Allocate and initialise an IO completion structure.
255 * We need to track unwritten extent write completion here initially.
256 * We'll need to extend this for updating the ondisk inode size later
257 * (vs. incore size).
258 */
259STATIC xfs_ioend_t *
260xfs_alloc_ioend(
f6d6d4fc
CH
261 struct inode *inode,
262 unsigned int type)
0829c360
CH
263{
264 xfs_ioend_t *ioend;
265
266 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
267
268 /*
269 * Set the count to 1 initially, which will prevent an I/O
270 * completion callback from happening before we have started
271 * all the I/O from calling the completion routine too early.
272 */
273 atomic_set(&ioend->io_remaining, 1);
7d04a335 274 ioend->io_error = 0;
f6d6d4fc
CH
275 ioend->io_list = NULL;
276 ioend->io_type = type;
ec86dc02 277 ioend->io_vnode = vn_from_inode(inode);
c1a073bd 278 ioend->io_buffer_head = NULL;
f6d6d4fc 279 ioend->io_buffer_tail = NULL;
0829c360
CH
280 atomic_inc(&ioend->io_vnode->v_iocount);
281 ioend->io_offset = 0;
282 ioend->io_size = 0;
283
f6d6d4fc 284 if (type == IOMAP_UNWRITTEN)
c4028958 285 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 286 else if (type == IOMAP_DELAY)
c4028958 287 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
288 else if (type == IOMAP_READ)
289 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 290 else
c4028958 291 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
292
293 return ioend;
294}
295
1da177e4
LT
296STATIC int
297xfs_map_blocks(
298 struct inode *inode,
299 loff_t offset,
300 ssize_t count,
301 xfs_iomap_t *mapp,
302 int flags)
303{
67fcaa73 304 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
305 int error, nmaps = 1;
306
67fcaa73 307 error = bhv_vop_bmap(vp, offset, count, flags, mapp, &nmaps);
1da177e4
LT
308 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
309 VMODIFY(vp);
310 return -error;
311}
312
7989cb8e 313STATIC_INLINE int
1defeac9 314xfs_iomap_valid(
1da177e4 315 xfs_iomap_t *iomapp,
1defeac9 316 loff_t offset)
1da177e4 317{
1defeac9
CH
318 return offset >= iomapp->iomap_offset &&
319 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
320}
321
f6d6d4fc
CH
322/*
323 * BIO completion handler for buffered IO.
324 */
325STATIC int
326xfs_end_bio(
327 struct bio *bio,
328 unsigned int bytes_done,
329 int error)
330{
331 xfs_ioend_t *ioend = bio->bi_private;
332
333 if (bio->bi_size)
334 return 1;
335
f6d6d4fc 336 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 337 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
338
339 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
340 bio->bi_private = NULL;
341 bio->bi_end_io = NULL;
f6d6d4fc 342 bio_put(bio);
7d04a335 343
e927af90 344 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
345 return 0;
346}
347
348STATIC void
349xfs_submit_ioend_bio(
350 xfs_ioend_t *ioend,
351 struct bio *bio)
352{
353 atomic_inc(&ioend->io_remaining);
354
355 bio->bi_private = ioend;
356 bio->bi_end_io = xfs_end_bio;
357
358 submit_bio(WRITE, bio);
359 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
360 bio_put(bio);
361}
362
363STATIC struct bio *
364xfs_alloc_ioend_bio(
365 struct buffer_head *bh)
366{
367 struct bio *bio;
368 int nvecs = bio_get_nr_vecs(bh->b_bdev);
369
370 do {
371 bio = bio_alloc(GFP_NOIO, nvecs);
372 nvecs >>= 1;
373 } while (!bio);
374
375 ASSERT(bio->bi_private == NULL);
376 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
377 bio->bi_bdev = bh->b_bdev;
378 bio_get(bio);
379 return bio;
380}
381
382STATIC void
383xfs_start_buffer_writeback(
384 struct buffer_head *bh)
385{
386 ASSERT(buffer_mapped(bh));
387 ASSERT(buffer_locked(bh));
388 ASSERT(!buffer_delay(bh));
389 ASSERT(!buffer_unwritten(bh));
390
391 mark_buffer_async_write(bh);
392 set_buffer_uptodate(bh);
393 clear_buffer_dirty(bh);
394}
395
396STATIC void
397xfs_start_page_writeback(
398 struct page *page,
399 struct writeback_control *wbc,
400 int clear_dirty,
401 int buffers)
402{
403 ASSERT(PageLocked(page));
404 ASSERT(!PageWriteback(page));
f6d6d4fc 405 if (clear_dirty)
92132021
DC
406 clear_page_dirty_for_io(page);
407 set_page_writeback(page);
f6d6d4fc
CH
408 unlock_page(page);
409 if (!buffers) {
410 end_page_writeback(page);
411 wbc->pages_skipped++; /* We didn't write this page */
412 }
413}
414
415static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
416{
417 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
418}
419
420/*
d88992f6
DC
421 * Submit all of the bios for all of the ioends we have saved up, covering the
422 * initial writepage page and also any probed pages.
423 *
424 * Because we may have multiple ioends spanning a page, we need to start
425 * writeback on all the buffers before we submit them for I/O. If we mark the
426 * buffers as we got, then we can end up with a page that only has buffers
427 * marked async write and I/O complete on can occur before we mark the other
428 * buffers async write.
429 *
430 * The end result of this is that we trip a bug in end_page_writeback() because
431 * we call it twice for the one page as the code in end_buffer_async_write()
432 * assumes that all buffers on the page are started at the same time.
433 *
434 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 435 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
436 */
437STATIC void
438xfs_submit_ioend(
439 xfs_ioend_t *ioend)
440{
d88992f6 441 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
442 xfs_ioend_t *next;
443 struct buffer_head *bh;
444 struct bio *bio;
445 sector_t lastblock = 0;
446
d88992f6
DC
447 /* Pass 1 - start writeback */
448 do {
449 next = ioend->io_list;
450 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
451 xfs_start_buffer_writeback(bh);
452 }
453 } while ((ioend = next) != NULL);
454
455 /* Pass 2 - submit I/O */
456 ioend = head;
f6d6d4fc
CH
457 do {
458 next = ioend->io_list;
459 bio = NULL;
460
461 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
462
463 if (!bio) {
464 retry:
465 bio = xfs_alloc_ioend_bio(bh);
466 } else if (bh->b_blocknr != lastblock + 1) {
467 xfs_submit_ioend_bio(ioend, bio);
468 goto retry;
469 }
470
471 if (bio_add_buffer(bio, bh) != bh->b_size) {
472 xfs_submit_ioend_bio(ioend, bio);
473 goto retry;
474 }
475
476 lastblock = bh->b_blocknr;
477 }
478 if (bio)
479 xfs_submit_ioend_bio(ioend, bio);
e927af90 480 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
481 } while ((ioend = next) != NULL);
482}
483
484/*
485 * Cancel submission of all buffer_heads so far in this endio.
486 * Toss the endio too. Only ever called for the initial page
487 * in a writepage request, so only ever one page.
488 */
489STATIC void
490xfs_cancel_ioend(
491 xfs_ioend_t *ioend)
492{
493 xfs_ioend_t *next;
494 struct buffer_head *bh, *next_bh;
495
496 do {
497 next = ioend->io_list;
498 bh = ioend->io_buffer_head;
499 do {
500 next_bh = bh->b_private;
501 clear_buffer_async_write(bh);
502 unlock_buffer(bh);
503 } while ((bh = next_bh) != NULL);
504
505 vn_iowake(ioend->io_vnode);
506 mempool_free(ioend, xfs_ioend_pool);
507 } while ((ioend = next) != NULL);
508}
509
510/*
511 * Test to see if we've been building up a completion structure for
512 * earlier buffers -- if so, we try to append to this ioend if we
513 * can, otherwise we finish off any current ioend and start another.
514 * Return true if we've finished the given ioend.
515 */
516STATIC void
517xfs_add_to_ioend(
518 struct inode *inode,
519 struct buffer_head *bh,
7336cea8 520 xfs_off_t offset,
f6d6d4fc
CH
521 unsigned int type,
522 xfs_ioend_t **result,
523 int need_ioend)
524{
525 xfs_ioend_t *ioend = *result;
526
527 if (!ioend || need_ioend || type != ioend->io_type) {
528 xfs_ioend_t *previous = *result;
f6d6d4fc 529
f6d6d4fc
CH
530 ioend = xfs_alloc_ioend(inode, type);
531 ioend->io_offset = offset;
532 ioend->io_buffer_head = bh;
533 ioend->io_buffer_tail = bh;
534 if (previous)
535 previous->io_list = ioend;
536 *result = ioend;
537 } else {
538 ioend->io_buffer_tail->b_private = bh;
539 ioend->io_buffer_tail = bh;
540 }
541
542 bh->b_private = NULL;
543 ioend->io_size += bh->b_size;
544}
545
87cbc49c
NS
546STATIC void
547xfs_map_buffer(
548 struct buffer_head *bh,
549 xfs_iomap_t *mp,
550 xfs_off_t offset,
551 uint block_bits)
552{
553 sector_t bn;
554
555 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
556
557 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
558 ((offset - mp->iomap_offset) >> block_bits);
559
560 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
561
562 bh->b_blocknr = bn;
563 set_buffer_mapped(bh);
564}
565
1da177e4
LT
566STATIC void
567xfs_map_at_offset(
1da177e4 568 struct buffer_head *bh,
1defeac9 569 loff_t offset,
1da177e4 570 int block_bits,
1defeac9 571 xfs_iomap_t *iomapp)
1da177e4 572{
1da177e4
LT
573 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
574 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
575
576 lock_buffer(bh);
87cbc49c 577 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 578 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
579 set_buffer_mapped(bh);
580 clear_buffer_delay(bh);
f6d6d4fc 581 clear_buffer_unwritten(bh);
1da177e4
LT
582}
583
584/*
6c4fe19f 585 * Look for a page at index that is suitable for clustering.
1da177e4
LT
586 */
587STATIC unsigned int
6c4fe19f 588xfs_probe_page(
10ce4444 589 struct page *page,
6c4fe19f
CH
590 unsigned int pg_offset,
591 int mapped)
1da177e4 592{
1da177e4
LT
593 int ret = 0;
594
1da177e4 595 if (PageWriteback(page))
10ce4444 596 return 0;
1da177e4
LT
597
598 if (page->mapping && PageDirty(page)) {
599 if (page_has_buffers(page)) {
600 struct buffer_head *bh, *head;
601
602 bh = head = page_buffers(page);
603 do {
6c4fe19f
CH
604 if (!buffer_uptodate(bh))
605 break;
606 if (mapped != buffer_mapped(bh))
1da177e4
LT
607 break;
608 ret += bh->b_size;
609 if (ret >= pg_offset)
610 break;
611 } while ((bh = bh->b_this_page) != head);
612 } else
6c4fe19f 613 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
614 }
615
1da177e4
LT
616 return ret;
617}
618
f6d6d4fc 619STATIC size_t
6c4fe19f 620xfs_probe_cluster(
1da177e4
LT
621 struct inode *inode,
622 struct page *startpage,
623 struct buffer_head *bh,
6c4fe19f
CH
624 struct buffer_head *head,
625 int mapped)
1da177e4 626{
10ce4444 627 struct pagevec pvec;
1da177e4 628 pgoff_t tindex, tlast, tloff;
10ce4444
CH
629 size_t total = 0;
630 int done = 0, i;
1da177e4
LT
631
632 /* First sum forwards in this page */
633 do {
2353e8e9 634 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 635 return total;
1da177e4
LT
636 total += bh->b_size;
637 } while ((bh = bh->b_this_page) != head);
638
10ce4444
CH
639 /* if we reached the end of the page, sum forwards in following pages */
640 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
641 tindex = startpage->index + 1;
642
643 /* Prune this back to avoid pathological behavior */
644 tloff = min(tlast, startpage->index + 64);
645
646 pagevec_init(&pvec, 0);
647 while (!done && tindex <= tloff) {
648 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
649
650 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
651 break;
652
653 for (i = 0; i < pagevec_count(&pvec); i++) {
654 struct page *page = pvec.pages[i];
655 size_t pg_offset, len = 0;
656
657 if (tindex == tlast) {
658 pg_offset =
659 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
660 if (!pg_offset) {
661 done = 1;
10ce4444 662 break;
1defeac9 663 }
10ce4444
CH
664 } else
665 pg_offset = PAGE_CACHE_SIZE;
666
667 if (page->index == tindex && !TestSetPageLocked(page)) {
6c4fe19f 668 len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
669 unlock_page(page);
670 }
671
672 if (!len) {
673 done = 1;
674 break;
675 }
676
1da177e4 677 total += len;
1defeac9 678 tindex++;
1da177e4 679 }
10ce4444
CH
680
681 pagevec_release(&pvec);
682 cond_resched();
1da177e4 683 }
10ce4444 684
1da177e4
LT
685 return total;
686}
687
688/*
10ce4444
CH
689 * Test if a given page is suitable for writing as part of an unwritten
690 * or delayed allocate extent.
1da177e4 691 */
10ce4444
CH
692STATIC int
693xfs_is_delayed_page(
694 struct page *page,
f6d6d4fc 695 unsigned int type)
1da177e4 696{
1da177e4 697 if (PageWriteback(page))
10ce4444 698 return 0;
1da177e4
LT
699
700 if (page->mapping && page_has_buffers(page)) {
701 struct buffer_head *bh, *head;
702 int acceptable = 0;
703
704 bh = head = page_buffers(page);
705 do {
f6d6d4fc
CH
706 if (buffer_unwritten(bh))
707 acceptable = (type == IOMAP_UNWRITTEN);
708 else if (buffer_delay(bh))
709 acceptable = (type == IOMAP_DELAY);
2ddee844 710 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 711 acceptable = (type == IOMAP_NEW);
f6d6d4fc 712 else
1da177e4 713 break;
1da177e4
LT
714 } while ((bh = bh->b_this_page) != head);
715
716 if (acceptable)
10ce4444 717 return 1;
1da177e4
LT
718 }
719
10ce4444 720 return 0;
1da177e4
LT
721}
722
1da177e4
LT
723/*
724 * Allocate & map buffers for page given the extent map. Write it out.
725 * except for the original page of a writepage, this is called on
726 * delalloc/unwritten pages only, for the original page it is possible
727 * that the page has no mapping at all.
728 */
f6d6d4fc 729STATIC int
1da177e4
LT
730xfs_convert_page(
731 struct inode *inode,
732 struct page *page,
10ce4444 733 loff_t tindex,
1defeac9 734 xfs_iomap_t *mp,
f6d6d4fc 735 xfs_ioend_t **ioendp,
1da177e4 736 struct writeback_control *wbc,
1da177e4
LT
737 int startio,
738 int all_bh)
739{
f6d6d4fc 740 struct buffer_head *bh, *head;
9260dc6b
CH
741 xfs_off_t end_offset;
742 unsigned long p_offset;
f6d6d4fc 743 unsigned int type;
1da177e4 744 int bbits = inode->i_blkbits;
24e17b5f 745 int len, page_dirty;
f6d6d4fc 746 int count = 0, done = 0, uptodate = 1;
9260dc6b 747 xfs_off_t offset = page_offset(page);
1da177e4 748
10ce4444
CH
749 if (page->index != tindex)
750 goto fail;
751 if (TestSetPageLocked(page))
752 goto fail;
753 if (PageWriteback(page))
754 goto fail_unlock_page;
755 if (page->mapping != inode->i_mapping)
756 goto fail_unlock_page;
757 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
758 goto fail_unlock_page;
759
24e17b5f
NS
760 /*
761 * page_dirty is initially a count of buffers on the page before
c41564b5 762 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
763 *
764 * Derivation:
765 *
766 * End offset is the highest offset that this page should represent.
767 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
768 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
769 * hence give us the correct page_dirty count. On any other page,
770 * it will be zero and in that case we need page_dirty to be the
771 * count of buffers on the page.
24e17b5f 772 */
9260dc6b
CH
773 end_offset = min_t(unsigned long long,
774 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
775 i_size_read(inode));
776
24e17b5f 777 len = 1 << inode->i_blkbits;
9260dc6b
CH
778 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
779 PAGE_CACHE_SIZE);
780 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
781 page_dirty = p_offset / len;
24e17b5f 782
1da177e4
LT
783 bh = head = page_buffers(page);
784 do {
9260dc6b 785 if (offset >= end_offset)
1da177e4 786 break;
f6d6d4fc
CH
787 if (!buffer_uptodate(bh))
788 uptodate = 0;
789 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
790 done = 1;
1da177e4 791 continue;
f6d6d4fc
CH
792 }
793
9260dc6b
CH
794 if (buffer_unwritten(bh) || buffer_delay(bh)) {
795 if (buffer_unwritten(bh))
796 type = IOMAP_UNWRITTEN;
797 else
798 type = IOMAP_DELAY;
799
800 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 801 done = 1;
9260dc6b
CH
802 continue;
803 }
804
805 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
806 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
807
808 xfs_map_at_offset(bh, offset, bbits, mp);
809 if (startio) {
7336cea8 810 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
811 type, ioendp, done);
812 } else {
813 set_buffer_dirty(bh);
814 unlock_buffer(bh);
815 mark_buffer_dirty(bh);
816 }
817 page_dirty--;
818 count++;
819 } else {
df3c7244 820 type = IOMAP_NEW;
9260dc6b 821 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 822 lock_buffer(bh);
7336cea8 823 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
824 type, ioendp, done);
825 count++;
24e17b5f 826 page_dirty--;
9260dc6b
CH
827 } else {
828 done = 1;
1da177e4 829 }
1da177e4 830 }
7336cea8 831 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 832
f6d6d4fc
CH
833 if (uptodate && bh == head)
834 SetPageUptodate(page);
835
836 if (startio) {
f5e596bb
CH
837 if (count) {
838 struct backing_dev_info *bdi;
839
840 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 841 wbc->nr_to_write--;
f5e596bb
CH
842 if (bdi_write_congested(bdi)) {
843 wbc->encountered_congestion = 1;
844 done = 1;
9fddaca2 845 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
846 done = 1;
847 }
848 }
f6d6d4fc 849 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 850 }
f6d6d4fc
CH
851
852 return done;
10ce4444
CH
853 fail_unlock_page:
854 unlock_page(page);
855 fail:
856 return 1;
1da177e4
LT
857}
858
859/*
860 * Convert & write out a cluster of pages in the same extent as defined
861 * by mp and following the start page.
862 */
863STATIC void
864xfs_cluster_write(
865 struct inode *inode,
866 pgoff_t tindex,
867 xfs_iomap_t *iomapp,
f6d6d4fc 868 xfs_ioend_t **ioendp,
1da177e4
LT
869 struct writeback_control *wbc,
870 int startio,
871 int all_bh,
872 pgoff_t tlast)
873{
10ce4444
CH
874 struct pagevec pvec;
875 int done = 0, i;
1da177e4 876
10ce4444
CH
877 pagevec_init(&pvec, 0);
878 while (!done && tindex <= tlast) {
879 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
880
881 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 882 break;
10ce4444
CH
883
884 for (i = 0; i < pagevec_count(&pvec); i++) {
885 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
886 iomapp, ioendp, wbc, startio, all_bh);
887 if (done)
888 break;
889 }
890
891 pagevec_release(&pvec);
892 cond_resched();
1da177e4
LT
893 }
894}
895
896/*
897 * Calling this without startio set means we are being asked to make a dirty
898 * page ready for freeing it's buffers. When called with startio set then
899 * we are coming from writepage.
900 *
901 * When called with startio set it is important that we write the WHOLE
902 * page if possible.
903 * The bh->b_state's cannot know if any of the blocks or which block for
904 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 905 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
906 * may clear the page dirty flag prior to calling write page, under the
907 * assumption the entire page will be written out; by not writing out the
908 * whole page the page can be reused before all valid dirty data is
909 * written out. Note: in the case of a page that has been dirty'd by
910 * mapwrite and but partially setup by block_prepare_write the
911 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
912 * valid state, thus the whole page must be written out thing.
913 */
914
915STATIC int
916xfs_page_state_convert(
917 struct inode *inode,
918 struct page *page,
919 struct writeback_control *wbc,
920 int startio,
921 int unmapped) /* also implies page uptodate */
922{
f6d6d4fc 923 struct buffer_head *bh, *head;
1defeac9 924 xfs_iomap_t iomap;
f6d6d4fc 925 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
926 loff_t offset;
927 unsigned long p_offset = 0;
f6d6d4fc 928 unsigned int type;
1da177e4
LT
929 __uint64_t end_offset;
930 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
931 ssize_t size, len;
932 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
933 int page_dirty, count = 0;
934 int trylock = 0;
6c4fe19f 935 int all_bh = unmapped;
1da177e4 936
8272145c
NS
937 if (startio) {
938 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
939 trylock |= BMAPI_TRYLOCK;
940 }
3ba0815a 941
1da177e4
LT
942 /* Is this page beyond the end of the file? */
943 offset = i_size_read(inode);
944 end_index = offset >> PAGE_CACHE_SHIFT;
945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 if (page->index >= end_index) {
947 if ((page->index >= end_index + 1) ||
948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
949 if (startio)
950 unlock_page(page);
951 return 0;
1da177e4
LT
952 }
953 }
954
1da177e4 955 /*
24e17b5f 956 * page_dirty is initially a count of buffers on the page before
c41564b5 957 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
958 *
959 * Derivation:
960 *
961 * End offset is the highest offset that this page should represent.
962 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
963 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
964 * hence give us the correct page_dirty count. On any other page,
965 * it will be zero and in that case we need page_dirty to be the
966 * count of buffers on the page.
967 */
968 end_offset = min_t(unsigned long long,
969 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 970 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
971 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
972 PAGE_CACHE_SIZE);
973 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
974 page_dirty = p_offset / len;
975
24e17b5f 976 bh = head = page_buffers(page);
f6d6d4fc 977 offset = page_offset(page);
df3c7244
DC
978 flags = BMAPI_READ;
979 type = IOMAP_NEW;
f6d6d4fc 980
f6d6d4fc 981 /* TODO: cleanup count and page_dirty */
1da177e4
LT
982
983 do {
984 if (offset >= end_offset)
985 break;
986 if (!buffer_uptodate(bh))
987 uptodate = 0;
f6d6d4fc 988 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
989 /*
990 * the iomap is actually still valid, but the ioend
991 * isn't. shouldn't happen too often.
992 */
993 iomap_valid = 0;
1da177e4 994 continue;
f6d6d4fc 995 }
1da177e4 996
1defeac9
CH
997 if (iomap_valid)
998 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
999
1000 /*
1001 * First case, map an unwritten extent and prepare for
1002 * extent state conversion transaction on completion.
f6d6d4fc 1003 *
1da177e4
LT
1004 * Second case, allocate space for a delalloc buffer.
1005 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1006 *
1007 * Third case, an unmapped buffer was found, and we are
1008 * in a path where we need to write the whole page out.
df3c7244 1009 */
d5cb48aa
CH
1010 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1011 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1012 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1013 int new_ioend = 0;
1014
df3c7244 1015 /*
6c4fe19f
CH
1016 * Make sure we don't use a read-only iomap
1017 */
df3c7244 1018 if (flags == BMAPI_READ)
6c4fe19f
CH
1019 iomap_valid = 0;
1020
f6d6d4fc
CH
1021 if (buffer_unwritten(bh)) {
1022 type = IOMAP_UNWRITTEN;
8272145c 1023 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1024 } else if (buffer_delay(bh)) {
f6d6d4fc 1025 type = IOMAP_DELAY;
8272145c 1026 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1027 } else {
6c4fe19f 1028 type = IOMAP_NEW;
8272145c 1029 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1030 }
1031
1defeac9 1032 if (!iomap_valid) {
effd120e
DC
1033 /*
1034 * if we didn't have a valid mapping then we
1035 * need to ensure that we put the new mapping
1036 * in a new ioend structure. This needs to be
1037 * done to ensure that the ioends correctly
1038 * reflect the block mappings at io completion
1039 * for unwritten extent conversion.
1040 */
1041 new_ioend = 1;
6c4fe19f
CH
1042 if (type == IOMAP_NEW) {
1043 size = xfs_probe_cluster(inode,
1044 page, bh, head, 0);
d5cb48aa
CH
1045 } else {
1046 size = len;
1047 }
1048
1049 err = xfs_map_blocks(inode, offset, size,
1050 &iomap, flags);
f6d6d4fc 1051 if (err)
1da177e4 1052 goto error;
1defeac9 1053 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1054 }
1defeac9
CH
1055 if (iomap_valid) {
1056 xfs_map_at_offset(bh, offset,
1057 inode->i_blkbits, &iomap);
1da177e4 1058 if (startio) {
7336cea8 1059 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1060 type, &ioend,
effd120e 1061 new_ioend);
1da177e4
LT
1062 } else {
1063 set_buffer_dirty(bh);
1064 unlock_buffer(bh);
1065 mark_buffer_dirty(bh);
1066 }
1067 page_dirty--;
f6d6d4fc 1068 count++;
1da177e4 1069 }
d5cb48aa 1070 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1071 /*
1072 * we got here because the buffer is already mapped.
1073 * That means it must already have extents allocated
1074 * underneath it. Map the extent by reading it.
1075 */
df3c7244 1076 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1077 flags = BMAPI_READ;
1078 size = xfs_probe_cluster(inode, page, bh,
1079 head, 1);
1080 err = xfs_map_blocks(inode, offset, size,
1081 &iomap, flags);
1082 if (err)
1083 goto error;
1084 iomap_valid = xfs_iomap_valid(&iomap, offset);
1085 }
d5cb48aa 1086
df3c7244
DC
1087 /*
1088 * We set the type to IOMAP_NEW in case we are doing a
1089 * small write at EOF that is extending the file but
1090 * without needing an allocation. We need to update the
1091 * file size on I/O completion in this case so it is
1092 * the same case as having just allocated a new extent
1093 * that we are writing into for the first time.
1094 */
1095 type = IOMAP_NEW;
d5cb48aa
CH
1096 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1097 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1098 if (iomap_valid)
1099 all_bh = 1;
7336cea8 1100 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1101 &ioend, !iomap_valid);
1102 page_dirty--;
1103 count++;
f6d6d4fc 1104 } else {
1defeac9 1105 iomap_valid = 0;
1da177e4 1106 }
d5cb48aa
CH
1107 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1108 (unmapped || startio)) {
1109 iomap_valid = 0;
1da177e4 1110 }
f6d6d4fc
CH
1111
1112 if (!iohead)
1113 iohead = ioend;
1114
1115 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1116
1117 if (uptodate && bh == head)
1118 SetPageUptodate(page);
1119
f6d6d4fc
CH
1120 if (startio)
1121 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 1122
1defeac9
CH
1123 if (ioend && iomap_valid) {
1124 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1125 PAGE_CACHE_SHIFT;
775bf6c9 1126 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1127 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1128 wbc, startio, all_bh, tlast);
1da177e4
LT
1129 }
1130
f6d6d4fc
CH
1131 if (iohead)
1132 xfs_submit_ioend(iohead);
1133
1da177e4
LT
1134 return page_dirty;
1135
1136error:
f6d6d4fc
CH
1137 if (iohead)
1138 xfs_cancel_ioend(iohead);
1da177e4
LT
1139
1140 /*
1141 * If it's delalloc and we have nowhere to put it,
1142 * throw it away, unless the lower layers told
1143 * us to try again.
1144 */
1145 if (err != -EAGAIN) {
f6d6d4fc 1146 if (!unmapped)
1da177e4 1147 block_invalidatepage(page, 0);
1da177e4
LT
1148 ClearPageUptodate(page);
1149 }
1150 return err;
1151}
1152
f51623b2
NS
1153/*
1154 * writepage: Called from one of two places:
1155 *
1156 * 1. we are flushing a delalloc buffer head.
1157 *
1158 * 2. we are writing out a dirty page. Typically the page dirty
1159 * state is cleared before we get here. In this case is it
1160 * conceivable we have no buffer heads.
1161 *
1162 * For delalloc space on the page we need to allocate space and
1163 * flush it. For unmapped buffer heads on the page we should
1164 * allocate space if the page is uptodate. For any other dirty
1165 * buffer heads on the page we should flush them.
1166 *
1167 * If we detect that a transaction would be required to flush
1168 * the page, we have to check the process flags first, if we
1169 * are already in a transaction or disk I/O during allocations
1170 * is off, we need to fail the writepage and redirty the page.
1171 */
1172
1173STATIC int
e4c573bb 1174xfs_vm_writepage(
f51623b2
NS
1175 struct page *page,
1176 struct writeback_control *wbc)
1177{
1178 int error;
1179 int need_trans;
1180 int delalloc, unmapped, unwritten;
1181 struct inode *inode = page->mapping->host;
1182
1183 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1184
1185 /*
1186 * We need a transaction if:
1187 * 1. There are delalloc buffers on the page
1188 * 2. The page is uptodate and we have unmapped buffers
1189 * 3. The page is uptodate and we have no buffers
1190 * 4. There are unwritten buffers on the page
1191 */
1192
1193 if (!page_has_buffers(page)) {
1194 unmapped = 1;
1195 need_trans = 1;
1196 } else {
1197 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1198 if (!PageUptodate(page))
1199 unmapped = 0;
1200 need_trans = delalloc + unmapped + unwritten;
1201 }
1202
1203 /*
1204 * If we need a transaction and the process flags say
1205 * we are already in a transaction, or no IO is allowed
1206 * then mark the page dirty again and leave the page
1207 * as is.
1208 */
59c1b082 1209 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1210 goto out_fail;
1211
1212 /*
1213 * Delay hooking up buffer heads until we have
1214 * made our go/no-go decision.
1215 */
1216 if (!page_has_buffers(page))
1217 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1218
1219 /*
1220 * Convert delayed allocate, unwritten or unmapped space
1221 * to real space and flush out to disk.
1222 */
1223 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1224 if (error == -EAGAIN)
1225 goto out_fail;
1226 if (unlikely(error < 0))
1227 goto out_unlock;
1228
1229 return 0;
1230
1231out_fail:
1232 redirty_page_for_writepage(wbc, page);
1233 unlock_page(page);
1234 return 0;
1235out_unlock:
1236 unlock_page(page);
1237 return error;
1238}
1239
7d4fb40a
NS
1240STATIC int
1241xfs_vm_writepages(
1242 struct address_space *mapping,
1243 struct writeback_control *wbc)
1244{
67fcaa73 1245 struct bhv_vnode *vp = vn_from_inode(mapping->host);
7d4fb40a
NS
1246
1247 if (VN_TRUNC(vp))
1248 VUNTRUNCATE(vp);
1249 return generic_writepages(mapping, wbc);
1250}
1251
f51623b2
NS
1252/*
1253 * Called to move a page into cleanable state - and from there
1254 * to be released. Possibly the page is already clean. We always
1255 * have buffer heads in this call.
1256 *
1257 * Returns 0 if the page is ok to release, 1 otherwise.
1258 *
1259 * Possible scenarios are:
1260 *
1261 * 1. We are being called to release a page which has been written
1262 * to via regular I/O. buffer heads will be dirty and possibly
1263 * delalloc. If no delalloc buffer heads in this case then we
1264 * can just return zero.
1265 *
1266 * 2. We are called to release a page which has been written via
1267 * mmap, all we need to do is ensure there is no delalloc
1268 * state in the buffer heads, if not we can let the caller
1269 * free them and we should come back later via writepage.
1270 */
1271STATIC int
238f4c54 1272xfs_vm_releasepage(
f51623b2
NS
1273 struct page *page,
1274 gfp_t gfp_mask)
1275{
1276 struct inode *inode = page->mapping->host;
1277 int dirty, delalloc, unmapped, unwritten;
1278 struct writeback_control wbc = {
1279 .sync_mode = WB_SYNC_ALL,
1280 .nr_to_write = 1,
1281 };
1282
ed9d88f7 1283 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1284
238f4c54
NS
1285 if (!page_has_buffers(page))
1286 return 0;
1287
f51623b2
NS
1288 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1289 if (!delalloc && !unwritten)
1290 goto free_buffers;
1291
1292 if (!(gfp_mask & __GFP_FS))
1293 return 0;
1294
1295 /* If we are already inside a transaction or the thread cannot
1296 * do I/O, we cannot release this page.
1297 */
59c1b082 1298 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1299 return 0;
1300
1301 /*
1302 * Convert delalloc space to real space, do not flush the
1303 * data out to disk, that will be done by the caller.
1304 * Never need to allocate space here - we will always
1305 * come back to writepage in that case.
1306 */
1307 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1308 if (dirty == 0 && !unwritten)
1309 goto free_buffers;
1310 return 0;
1311
1312free_buffers:
1313 return try_to_free_buffers(page);
1314}
1315
1da177e4 1316STATIC int
c2536668 1317__xfs_get_blocks(
1da177e4
LT
1318 struct inode *inode,
1319 sector_t iblock,
1da177e4
LT
1320 struct buffer_head *bh_result,
1321 int create,
1322 int direct,
1323 bmapi_flags_t flags)
1324{
67fcaa73 1325 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1326 xfs_iomap_t iomap;
fdc7ed75
NS
1327 xfs_off_t offset;
1328 ssize_t size;
c2536668 1329 int niomap = 1;
1da177e4 1330 int error;
1da177e4 1331
fdc7ed75 1332 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1333 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1334 size = bh_result->b_size;
67fcaa73
NS
1335 error = bhv_vop_bmap(vp, offset, size,
1336 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1337 if (error)
1338 return -error;
c2536668 1339 if (niomap == 0)
1da177e4
LT
1340 return 0;
1341
1342 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1343 /*
1344 * For unwritten extents do not report a disk address on
1da177e4
LT
1345 * the read case (treat as if we're reading into a hole).
1346 */
1347 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1348 xfs_map_buffer(bh_result, &iomap, offset,
1349 inode->i_blkbits);
1da177e4
LT
1350 }
1351 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1352 if (direct)
1353 bh_result->b_private = inode;
1354 set_buffer_unwritten(bh_result);
1da177e4
LT
1355 }
1356 }
1357
c2536668
NS
1358 /*
1359 * If this is a realtime file, data may be on a different device.
1360 * to that pointed to from the buffer_head b_bdev currently.
1361 */
ce8e922c 1362 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1363
c2536668 1364 /*
549054af
DC
1365 * If we previously allocated a block out beyond eof and we are now
1366 * coming back to use it then we will need to flag it as new even if it
1367 * has a disk address.
1368 *
1369 * With sub-block writes into unwritten extents we also need to mark
1370 * the buffer as new so that the unwritten parts of the buffer gets
1371 * correctly zeroed.
1da177e4
LT
1372 */
1373 if (create &&
1374 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1375 (offset >= i_size_read(inode)) ||
1376 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1377 set_buffer_new(bh_result);
1da177e4
LT
1378
1379 if (iomap.iomap_flags & IOMAP_DELAY) {
1380 BUG_ON(direct);
1381 if (create) {
1382 set_buffer_uptodate(bh_result);
1383 set_buffer_mapped(bh_result);
1384 set_buffer_delay(bh_result);
1385 }
1386 }
1387
c2536668 1388 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1389 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1390 offset = min_t(xfs_off_t,
c2536668
NS
1391 iomap.iomap_bsize - iomap.iomap_delta, size);
1392 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1393 }
1394
1395 return 0;
1396}
1397
1398int
c2536668 1399xfs_get_blocks(
1da177e4
LT
1400 struct inode *inode,
1401 sector_t iblock,
1402 struct buffer_head *bh_result,
1403 int create)
1404{
c2536668 1405 return __xfs_get_blocks(inode, iblock,
fa30bd05 1406 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1407}
1408
1409STATIC int
e4c573bb 1410xfs_get_blocks_direct(
1da177e4
LT
1411 struct inode *inode,
1412 sector_t iblock,
1da177e4
LT
1413 struct buffer_head *bh_result,
1414 int create)
1415{
c2536668 1416 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1417 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1418}
1419
f0973863 1420STATIC void
e4c573bb 1421xfs_end_io_direct(
f0973863
CH
1422 struct kiocb *iocb,
1423 loff_t offset,
1424 ssize_t size,
1425 void *private)
1426{
1427 xfs_ioend_t *ioend = iocb->private;
1428
1429 /*
1430 * Non-NULL private data means we need to issue a transaction to
1431 * convert a range from unwritten to written extents. This needs
c41564b5 1432 * to happen from process context but aio+dio I/O completion
f0973863 1433 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1434 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1435 * it anyway to keep the code uniform and simpler.
1436 *
e927af90
DC
1437 * Well, if only it were that simple. Because synchronous direct I/O
1438 * requires extent conversion to occur *before* we return to userspace,
1439 * we have to wait for extent conversion to complete. Look at the
1440 * iocb that has been passed to us to determine if this is AIO or
1441 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1442 * workqueue and wait for it to complete.
1443 *
f0973863
CH
1444 * The core direct I/O code might be changed to always call the
1445 * completion handler in the future, in which case all this can
1446 * go away.
1447 */
ba87ea69
LM
1448 ioend->io_offset = offset;
1449 ioend->io_size = size;
1450 if (ioend->io_type == IOMAP_READ) {
e927af90 1451 xfs_finish_ioend(ioend, 0);
ba87ea69 1452 } else if (private && size > 0) {
e927af90 1453 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1454 } else {
ba87ea69
LM
1455 /*
1456 * A direct I/O write ioend starts it's life in unwritten
1457 * state in case they map an unwritten extent. This write
1458 * didn't map an unwritten extent so switch it's completion
1459 * handler.
1460 */
1461 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1462 xfs_finish_ioend(ioend, 0);
f0973863
CH
1463 }
1464
1465 /*
c41564b5 1466 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1467 * completion handler was called. Thus we need to protect
1468 * against double-freeing.
1469 */
1470 iocb->private = NULL;
1471}
1472
1da177e4 1473STATIC ssize_t
e4c573bb 1474xfs_vm_direct_IO(
1da177e4
LT
1475 int rw,
1476 struct kiocb *iocb,
1477 const struct iovec *iov,
1478 loff_t offset,
1479 unsigned long nr_segs)
1480{
1481 struct file *file = iocb->ki_filp;
1482 struct inode *inode = file->f_mapping->host;
67fcaa73 1483 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
1484 xfs_iomap_t iomap;
1485 int maps = 1;
1486 int error;
f0973863 1487 ssize_t ret;
1da177e4 1488
67fcaa73 1489 error = bhv_vop_bmap(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps);
1da177e4
LT
1490 if (error)
1491 return -error;
1492
721259bc 1493 if (rw == WRITE) {
ba87ea69 1494 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc
LM
1495 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1496 iomap.iomap_target->bt_bdev,
1497 iov, offset, nr_segs,
1498 xfs_get_blocks_direct,
1499 xfs_end_io_direct);
1500 } else {
ba87ea69 1501 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc
LM
1502 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1503 iomap.iomap_target->bt_bdev,
1504 iov, offset, nr_segs,
1505 xfs_get_blocks_direct,
1506 xfs_end_io_direct);
1507 }
f0973863 1508
8459d86a 1509 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1510 xfs_destroy_ioend(iocb->private);
1511 return ret;
1da177e4
LT
1512}
1513
f51623b2 1514STATIC int
e4c573bb 1515xfs_vm_prepare_write(
f51623b2
NS
1516 struct file *file,
1517 struct page *page,
1518 unsigned int from,
1519 unsigned int to)
1520{
c2536668 1521 return block_prepare_write(page, from, to, xfs_get_blocks);
f51623b2 1522}
1da177e4
LT
1523
1524STATIC sector_t
e4c573bb 1525xfs_vm_bmap(
1da177e4
LT
1526 struct address_space *mapping,
1527 sector_t block)
1528{
1529 struct inode *inode = (struct inode *)mapping->host;
67fcaa73 1530 bhv_vnode_t *vp = vn_from_inode(inode);
1da177e4 1531
e4c573bb 1532 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
67fcaa73
NS
1533 bhv_vop_rwlock(vp, VRWLOCK_READ);
1534 bhv_vop_flush_pages(vp, (xfs_off_t)0, -1, 0, FI_REMAPF);
1535 bhv_vop_rwunlock(vp, VRWLOCK_READ);
c2536668 1536 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1537}
1538
1539STATIC int
e4c573bb 1540xfs_vm_readpage(
1da177e4
LT
1541 struct file *unused,
1542 struct page *page)
1543{
c2536668 1544 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1545}
1546
1547STATIC int
e4c573bb 1548xfs_vm_readpages(
1da177e4
LT
1549 struct file *unused,
1550 struct address_space *mapping,
1551 struct list_head *pages,
1552 unsigned nr_pages)
1553{
c2536668 1554 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1555}
1556
2ff28e22 1557STATIC void
238f4c54 1558xfs_vm_invalidatepage(
bcec2b7f
NS
1559 struct page *page,
1560 unsigned long offset)
1561{
1562 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1563 page->mapping->host, page, offset);
2ff28e22 1564 block_invalidatepage(page, offset);
bcec2b7f
NS
1565}
1566
f5e54d6e 1567const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1568 .readpage = xfs_vm_readpage,
1569 .readpages = xfs_vm_readpages,
1570 .writepage = xfs_vm_writepage,
7d4fb40a 1571 .writepages = xfs_vm_writepages,
1da177e4 1572 .sync_page = block_sync_page,
238f4c54
NS
1573 .releasepage = xfs_vm_releasepage,
1574 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1575 .prepare_write = xfs_vm_prepare_write,
1da177e4 1576 .commit_write = generic_commit_write,
e4c573bb
NS
1577 .bmap = xfs_vm_bmap,
1578 .direct_IO = xfs_vm_direct_IO,
e965f963 1579 .migratepage = buffer_migrate_page,
1da177e4 1580};