iommu/amd: Implement notifier for PPR faults
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
17f5b569 34#include <asm/msidef.h>
b6c02715 35#include <asm/proto.h>
46a7fa27 36#include <asm/iommu.h>
1d9b16d1 37#include <asm/gart.h>
27c2127a 38#include <asm/dma.h>
403f81d8
JR
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
b6c02715
JR
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
815b33fd 45#define LOOP_TIMEOUT 100000
136f78a1 46
b6c02715
JR
47static DEFINE_RWLOCK(amd_iommu_devtable_lock);
48
bd60b735
JR
49/* A list of preallocated protection domains */
50static LIST_HEAD(iommu_pd_list);
51static DEFINE_SPINLOCK(iommu_pd_list_lock);
52
8fa5f802
JR
53/* List of all available dev_data structures */
54static LIST_HEAD(dev_data_list);
55static DEFINE_SPINLOCK(dev_data_list_lock);
56
0feae533
JR
57/*
58 * Domain for untranslated devices - only allocated
59 * if iommu=pt passed on kernel cmd line.
60 */
61static struct protection_domain *pt_domain;
62
26961efe 63static struct iommu_ops amd_iommu_ops;
26961efe 64
72e1dcc4
JR
65static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
66
431b2a20
JR
67/*
68 * general struct to manage commands send to an IOMMU
69 */
d6449536 70struct iommu_cmd {
b6c02715
JR
71 u32 data[4];
72};
73
04bfdd84 74static void update_domain(struct protection_domain *domain);
5abcdba4 75static int __init alloc_passthrough_domain(void);
c1eee67b 76
15898bbc
JR
77/****************************************************************************
78 *
79 * Helper functions
80 *
81 ****************************************************************************/
82
f62dda66 83static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
84{
85 struct iommu_dev_data *dev_data;
86 unsigned long flags;
87
88 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
89 if (!dev_data)
90 return NULL;
91
f62dda66 92 dev_data->devid = devid;
8fa5f802
JR
93 atomic_set(&dev_data->bind, 0);
94
95 spin_lock_irqsave(&dev_data_list_lock, flags);
96 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
97 spin_unlock_irqrestore(&dev_data_list_lock, flags);
98
99 return dev_data;
100}
101
102static void free_dev_data(struct iommu_dev_data *dev_data)
103{
104 unsigned long flags;
105
106 spin_lock_irqsave(&dev_data_list_lock, flags);
107 list_del(&dev_data->dev_data_list);
108 spin_unlock_irqrestore(&dev_data_list_lock, flags);
109
110 kfree(dev_data);
111}
112
3b03bb74
JR
113static struct iommu_dev_data *search_dev_data(u16 devid)
114{
115 struct iommu_dev_data *dev_data;
116 unsigned long flags;
117
118 spin_lock_irqsave(&dev_data_list_lock, flags);
119 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
120 if (dev_data->devid == devid)
121 goto out_unlock;
122 }
123
124 dev_data = NULL;
125
126out_unlock:
127 spin_unlock_irqrestore(&dev_data_list_lock, flags);
128
129 return dev_data;
130}
131
132static struct iommu_dev_data *find_dev_data(u16 devid)
133{
134 struct iommu_dev_data *dev_data;
135
136 dev_data = search_dev_data(devid);
137
138 if (dev_data == NULL)
139 dev_data = alloc_dev_data(devid);
140
141 return dev_data;
142}
143
15898bbc
JR
144static inline u16 get_device_id(struct device *dev)
145{
146 struct pci_dev *pdev = to_pci_dev(dev);
147
148 return calc_devid(pdev->bus->number, pdev->devfn);
149}
150
657cbb6b
JR
151static struct iommu_dev_data *get_dev_data(struct device *dev)
152{
153 return dev->archdata.iommu;
154}
155
5abcdba4
JR
156static bool pci_iommuv2_capable(struct pci_dev *pdev)
157{
158 static const int caps[] = {
159 PCI_EXT_CAP_ID_ATS,
160 PCI_PRI_CAP,
161 PCI_PASID_CAP,
162 };
163 int i, pos;
164
165 for (i = 0; i < 3; ++i) {
166 pos = pci_find_ext_capability(pdev, caps[i]);
167 if (pos == 0)
168 return false;
169 }
170
171 return true;
172}
173
71c70984
JR
174/*
175 * In this function the list of preallocated protection domains is traversed to
176 * find the domain for a specific device
177 */
178static struct dma_ops_domain *find_protection_domain(u16 devid)
179{
180 struct dma_ops_domain *entry, *ret = NULL;
181 unsigned long flags;
182 u16 alias = amd_iommu_alias_table[devid];
183
184 if (list_empty(&iommu_pd_list))
185 return NULL;
186
187 spin_lock_irqsave(&iommu_pd_list_lock, flags);
188
189 list_for_each_entry(entry, &iommu_pd_list, list) {
190 if (entry->target_dev == devid ||
191 entry->target_dev == alias) {
192 ret = entry;
193 break;
194 }
195 }
196
197 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
198
199 return ret;
200}
201
98fc5a69
JR
202/*
203 * This function checks if the driver got a valid device from the caller to
204 * avoid dereferencing invalid pointers.
205 */
206static bool check_device(struct device *dev)
207{
208 u16 devid;
209
210 if (!dev || !dev->dma_mask)
211 return false;
212
213 /* No device or no PCI device */
339d3261 214 if (dev->bus != &pci_bus_type)
98fc5a69
JR
215 return false;
216
217 devid = get_device_id(dev);
218
219 /* Out of our scope? */
220 if (devid > amd_iommu_last_bdf)
221 return false;
222
223 if (amd_iommu_rlookup_table[devid] == NULL)
224 return false;
225
226 return true;
227}
228
657cbb6b
JR
229static int iommu_init_device(struct device *dev)
230{
5abcdba4 231 struct pci_dev *pdev = to_pci_dev(dev);
657cbb6b 232 struct iommu_dev_data *dev_data;
8fa5f802 233 u16 alias;
657cbb6b
JR
234
235 if (dev->archdata.iommu)
236 return 0;
237
3b03bb74 238 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
239 if (!dev_data)
240 return -ENOMEM;
241
f62dda66 242 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 243 if (alias != dev_data->devid) {
71f77580 244 struct iommu_dev_data *alias_data;
b00d3bcf 245
71f77580
JR
246 alias_data = find_dev_data(alias);
247 if (alias_data == NULL) {
248 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
249 dev_name(dev));
2b02b091
JR
250 free_dev_data(dev_data);
251 return -ENOTSUPP;
252 }
71f77580 253 dev_data->alias_data = alias_data;
26018874 254 }
657cbb6b 255
5abcdba4
JR
256 if (pci_iommuv2_capable(pdev)) {
257 struct amd_iommu *iommu;
258
259 iommu = amd_iommu_rlookup_table[dev_data->devid];
260 dev_data->iommu_v2 = iommu->is_iommu_v2;
261 }
262
657cbb6b
JR
263 dev->archdata.iommu = dev_data;
264
657cbb6b
JR
265 return 0;
266}
267
26018874
JR
268static void iommu_ignore_device(struct device *dev)
269{
270 u16 devid, alias;
271
272 devid = get_device_id(dev);
273 alias = amd_iommu_alias_table[devid];
274
275 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
276 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
277
278 amd_iommu_rlookup_table[devid] = NULL;
279 amd_iommu_rlookup_table[alias] = NULL;
280}
281
657cbb6b
JR
282static void iommu_uninit_device(struct device *dev)
283{
8fa5f802
JR
284 /*
285 * Nothing to do here - we keep dev_data around for unplugged devices
286 * and reuse it when the device is re-plugged - not doing so would
287 * introduce a ton of races.
288 */
657cbb6b 289}
b7cc9554
JR
290
291void __init amd_iommu_uninit_devices(void)
292{
8fa5f802 293 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
294 struct pci_dev *pdev = NULL;
295
296 for_each_pci_dev(pdev) {
297
298 if (!check_device(&pdev->dev))
299 continue;
300
301 iommu_uninit_device(&pdev->dev);
302 }
8fa5f802
JR
303
304 /* Free all of our dev_data structures */
305 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
306 free_dev_data(dev_data);
b7cc9554
JR
307}
308
309int __init amd_iommu_init_devices(void)
310{
311 struct pci_dev *pdev = NULL;
312 int ret = 0;
313
314 for_each_pci_dev(pdev) {
315
316 if (!check_device(&pdev->dev))
317 continue;
318
319 ret = iommu_init_device(&pdev->dev);
26018874
JR
320 if (ret == -ENOTSUPP)
321 iommu_ignore_device(&pdev->dev);
322 else if (ret)
b7cc9554
JR
323 goto out_free;
324 }
325
326 return 0;
327
328out_free:
329
330 amd_iommu_uninit_devices();
331
332 return ret;
333}
7f26508b
JR
334#ifdef CONFIG_AMD_IOMMU_STATS
335
336/*
337 * Initialization code for statistics collection
338 */
339
da49f6df 340DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 341DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 342DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 343DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 344DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 345DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 346DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 347DECLARE_STATS_COUNTER(cross_page);
f57d98ae 348DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 349DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 350DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 351DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 352
7f26508b 353static struct dentry *stats_dir;
7f26508b
JR
354static struct dentry *de_fflush;
355
356static void amd_iommu_stats_add(struct __iommu_counter *cnt)
357{
358 if (stats_dir == NULL)
359 return;
360
361 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
362 &cnt->value);
363}
364
365static void amd_iommu_stats_init(void)
366{
367 stats_dir = debugfs_create_dir("amd-iommu", NULL);
368 if (stats_dir == NULL)
369 return;
370
7f26508b
JR
371 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
372 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
373
374 amd_iommu_stats_add(&compl_wait);
0f2a86f2 375 amd_iommu_stats_add(&cnt_map_single);
146a6917 376 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 377 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 378 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 379 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 380 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 381 amd_iommu_stats_add(&cross_page);
f57d98ae 382 amd_iommu_stats_add(&domain_flush_single);
18811f55 383 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 384 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 385 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
386}
387
388#endif
389
a80dc3e0
JR
390/****************************************************************************
391 *
392 * Interrupt handling functions
393 *
394 ****************************************************************************/
395
e3e59876
JR
396static void dump_dte_entry(u16 devid)
397{
398 int i;
399
ee6c2868
JR
400 for (i = 0; i < 4; ++i)
401 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
402 amd_iommu_dev_table[devid].data[i]);
403}
404
945b4ac4
JR
405static void dump_command(unsigned long phys_addr)
406{
407 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
408 int i;
409
410 for (i = 0; i < 4; ++i)
411 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
412}
413
a345b23b 414static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
415{
416 u32 *event = __evt;
417 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
418 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
419 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
420 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
421 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
422
4c6f40d4 423 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
424
425 switch (type) {
426 case EVENT_TYPE_ILL_DEV:
427 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
428 "address=0x%016llx flags=0x%04x]\n",
429 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
430 address, flags);
e3e59876 431 dump_dte_entry(devid);
90008ee4
JR
432 break;
433 case EVENT_TYPE_IO_FAULT:
434 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
435 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
436 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
437 domid, address, flags);
438 break;
439 case EVENT_TYPE_DEV_TAB_ERR:
440 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
441 "address=0x%016llx flags=0x%04x]\n",
442 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
443 address, flags);
444 break;
445 case EVENT_TYPE_PAGE_TAB_ERR:
446 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
447 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
448 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
449 domid, address, flags);
450 break;
451 case EVENT_TYPE_ILL_CMD:
452 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 453 dump_command(address);
90008ee4
JR
454 break;
455 case EVENT_TYPE_CMD_HARD_ERR:
456 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
457 "flags=0x%04x]\n", address, flags);
458 break;
459 case EVENT_TYPE_IOTLB_INV_TO:
460 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
461 "address=0x%016llx]\n",
462 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
463 address);
464 break;
465 case EVENT_TYPE_INV_DEV_REQ:
466 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
467 "address=0x%016llx flags=0x%04x]\n",
468 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
469 address, flags);
470 break;
471 default:
472 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
473 }
474}
475
476static void iommu_poll_events(struct amd_iommu *iommu)
477{
478 u32 head, tail;
479 unsigned long flags;
480
481 spin_lock_irqsave(&iommu->lock, flags);
482
483 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
484 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
485
486 while (head != tail) {
a345b23b 487 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
488 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
489 }
490
491 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
492
493 spin_unlock_irqrestore(&iommu->lock, flags);
494}
495
72e1dcc4
JR
496static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
497{
498 struct amd_iommu_fault fault;
499 volatile u64 *raw;
500 int i;
501
502 raw = (u64 *)(iommu->ppr_log + head);
503
504 /*
505 * Hardware bug: Interrupt may arrive before the entry is written to
506 * memory. If this happens we need to wait for the entry to arrive.
507 */
508 for (i = 0; i < LOOP_TIMEOUT; ++i) {
509 if (PPR_REQ_TYPE(raw[0]) != 0)
510 break;
511 udelay(1);
512 }
513
514 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
515 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
516 return;
517 }
518
519 fault.address = raw[1];
520 fault.pasid = PPR_PASID(raw[0]);
521 fault.device_id = PPR_DEVID(raw[0]);
522 fault.tag = PPR_TAG(raw[0]);
523 fault.flags = PPR_FLAGS(raw[0]);
524
525 /*
526 * To detect the hardware bug we need to clear the entry
527 * to back to zero.
528 */
529 raw[0] = raw[1] = 0;
530
531 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
532}
533
534static void iommu_poll_ppr_log(struct amd_iommu *iommu)
535{
536 unsigned long flags;
537 u32 head, tail;
538
539 if (iommu->ppr_log == NULL)
540 return;
541
542 spin_lock_irqsave(&iommu->lock, flags);
543
544 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
545 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
546
547 while (head != tail) {
548
549 /* Handle PPR entry */
550 iommu_handle_ppr_entry(iommu, head);
551
552 /* Update and refresh ring-buffer state*/
553 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
554 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
555 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
556 }
557
558 /* enable ppr interrupts again */
559 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
560
561 spin_unlock_irqrestore(&iommu->lock, flags);
562}
563
72fe00f0 564irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 565{
90008ee4
JR
566 struct amd_iommu *iommu;
567
72e1dcc4 568 for_each_iommu(iommu) {
90008ee4 569 iommu_poll_events(iommu);
72e1dcc4
JR
570 iommu_poll_ppr_log(iommu);
571 }
90008ee4
JR
572
573 return IRQ_HANDLED;
a80dc3e0
JR
574}
575
72fe00f0
JR
576irqreturn_t amd_iommu_int_handler(int irq, void *data)
577{
578 return IRQ_WAKE_THREAD;
579}
580
431b2a20
JR
581/****************************************************************************
582 *
583 * IOMMU command queuing functions
584 *
585 ****************************************************************************/
586
ac0ea6e9
JR
587static int wait_on_sem(volatile u64 *sem)
588{
589 int i = 0;
590
591 while (*sem == 0 && i < LOOP_TIMEOUT) {
592 udelay(1);
593 i += 1;
594 }
595
596 if (i == LOOP_TIMEOUT) {
597 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
598 return -EIO;
599 }
600
601 return 0;
602}
603
604static void copy_cmd_to_buffer(struct amd_iommu *iommu,
605 struct iommu_cmd *cmd,
606 u32 tail)
a19ae1ec 607{
a19ae1ec
JR
608 u8 *target;
609
8a7c5ef3 610 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
611 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
612
613 /* Copy command to buffer */
614 memcpy(target, cmd, sizeof(*cmd));
615
616 /* Tell the IOMMU about it */
a19ae1ec 617 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 618}
a19ae1ec 619
815b33fd 620static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 621{
815b33fd
JR
622 WARN_ON(address & 0x7ULL);
623
ded46737 624 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
625 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
626 cmd->data[1] = upper_32_bits(__pa(address));
627 cmd->data[2] = 1;
ded46737
JR
628 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
629}
630
94fe79e2
JR
631static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
632{
633 memset(cmd, 0, sizeof(*cmd));
634 cmd->data[0] = devid;
635 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
636}
637
11b6402c
JR
638static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
639 size_t size, u16 domid, int pde)
640{
641 u64 pages;
642 int s;
643
644 pages = iommu_num_pages(address, size, PAGE_SIZE);
645 s = 0;
646
647 if (pages > 1) {
648 /*
649 * If we have to flush more than one page, flush all
650 * TLB entries for this domain
651 */
652 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
653 s = 1;
654 }
655
656 address &= PAGE_MASK;
657
658 memset(cmd, 0, sizeof(*cmd));
659 cmd->data[1] |= domid;
660 cmd->data[2] = lower_32_bits(address);
661 cmd->data[3] = upper_32_bits(address);
662 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
663 if (s) /* size bit - we flush more than one 4kb page */
664 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
665 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
666 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
667}
668
cb41ed85
JR
669static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
670 u64 address, size_t size)
671{
672 u64 pages;
673 int s;
674
675 pages = iommu_num_pages(address, size, PAGE_SIZE);
676 s = 0;
677
678 if (pages > 1) {
679 /*
680 * If we have to flush more than one page, flush all
681 * TLB entries for this domain
682 */
683 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
684 s = 1;
685 }
686
687 address &= PAGE_MASK;
688
689 memset(cmd, 0, sizeof(*cmd));
690 cmd->data[0] = devid;
691 cmd->data[0] |= (qdep & 0xff) << 24;
692 cmd->data[1] = devid;
693 cmd->data[2] = lower_32_bits(address);
694 cmd->data[3] = upper_32_bits(address);
695 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
696 if (s)
697 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
698}
699
58fc7f14
JR
700static void build_inv_all(struct iommu_cmd *cmd)
701{
702 memset(cmd, 0, sizeof(*cmd));
703 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
704}
705
431b2a20 706/*
431b2a20 707 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 708 * hardware about the new command.
431b2a20 709 */
f1ca1512
JR
710static int iommu_queue_command_sync(struct amd_iommu *iommu,
711 struct iommu_cmd *cmd,
712 bool sync)
a19ae1ec 713{
ac0ea6e9 714 u32 left, tail, head, next_tail;
a19ae1ec 715 unsigned long flags;
a19ae1ec 716
549c90dc 717 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
718
719again:
a19ae1ec 720 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 721
ac0ea6e9
JR
722 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
723 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
724 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
725 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 726
ac0ea6e9
JR
727 if (left <= 2) {
728 struct iommu_cmd sync_cmd;
729 volatile u64 sem = 0;
730 int ret;
8d201968 731
ac0ea6e9
JR
732 build_completion_wait(&sync_cmd, (u64)&sem);
733 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 734
ac0ea6e9
JR
735 spin_unlock_irqrestore(&iommu->lock, flags);
736
737 if ((ret = wait_on_sem(&sem)) != 0)
738 return ret;
739
740 goto again;
8d201968
JR
741 }
742
ac0ea6e9
JR
743 copy_cmd_to_buffer(iommu, cmd, tail);
744
745 /* We need to sync now to make sure all commands are processed */
f1ca1512 746 iommu->need_sync = sync;
ac0ea6e9 747
a19ae1ec 748 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 749
815b33fd 750 return 0;
8d201968
JR
751}
752
f1ca1512
JR
753static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
754{
755 return iommu_queue_command_sync(iommu, cmd, true);
756}
757
8d201968
JR
758/*
759 * This function queues a completion wait command into the command
760 * buffer of an IOMMU
761 */
a19ae1ec 762static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
763{
764 struct iommu_cmd cmd;
815b33fd 765 volatile u64 sem = 0;
ac0ea6e9 766 int ret;
8d201968 767
09ee17eb 768 if (!iommu->need_sync)
815b33fd 769 return 0;
09ee17eb 770
815b33fd 771 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 772
f1ca1512 773 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 774 if (ret)
815b33fd 775 return ret;
8d201968 776
ac0ea6e9 777 return wait_on_sem(&sem);
8d201968
JR
778}
779
d8c13085 780static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 781{
d8c13085 782 struct iommu_cmd cmd;
a19ae1ec 783
d8c13085 784 build_inv_dte(&cmd, devid);
7e4f88da 785
d8c13085
JR
786 return iommu_queue_command(iommu, &cmd);
787}
09ee17eb 788
7d0c5cc5
JR
789static void iommu_flush_dte_all(struct amd_iommu *iommu)
790{
791 u32 devid;
09ee17eb 792
7d0c5cc5
JR
793 for (devid = 0; devid <= 0xffff; ++devid)
794 iommu_flush_dte(iommu, devid);
a19ae1ec 795
7d0c5cc5
JR
796 iommu_completion_wait(iommu);
797}
84df8175 798
7d0c5cc5
JR
799/*
800 * This function uses heavy locking and may disable irqs for some time. But
801 * this is no issue because it is only called during resume.
802 */
803static void iommu_flush_tlb_all(struct amd_iommu *iommu)
804{
805 u32 dom_id;
a19ae1ec 806
7d0c5cc5
JR
807 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
808 struct iommu_cmd cmd;
809 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
810 dom_id, 1);
811 iommu_queue_command(iommu, &cmd);
812 }
8eed9833 813
7d0c5cc5 814 iommu_completion_wait(iommu);
a19ae1ec
JR
815}
816
58fc7f14 817static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 818{
58fc7f14 819 struct iommu_cmd cmd;
0518a3a4 820
58fc7f14 821 build_inv_all(&cmd);
0518a3a4 822
58fc7f14
JR
823 iommu_queue_command(iommu, &cmd);
824 iommu_completion_wait(iommu);
825}
826
7d0c5cc5
JR
827void iommu_flush_all_caches(struct amd_iommu *iommu)
828{
58fc7f14
JR
829 if (iommu_feature(iommu, FEATURE_IA)) {
830 iommu_flush_all(iommu);
831 } else {
832 iommu_flush_dte_all(iommu);
833 iommu_flush_tlb_all(iommu);
0518a3a4
JR
834 }
835}
836
431b2a20 837/*
cb41ed85 838 * Command send function for flushing on-device TLB
431b2a20 839 */
6c542047
JR
840static int device_flush_iotlb(struct iommu_dev_data *dev_data,
841 u64 address, size_t size)
3fa43655
JR
842{
843 struct amd_iommu *iommu;
b00d3bcf 844 struct iommu_cmd cmd;
cb41ed85 845 int qdep;
3fa43655 846
ea61cddb
JR
847 qdep = dev_data->ats.qdep;
848 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 849
ea61cddb 850 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
851
852 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
853}
854
431b2a20 855/*
431b2a20 856 * Command send function for invalidating a device table entry
431b2a20 857 */
6c542047 858static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 859{
3fa43655 860 struct amd_iommu *iommu;
ee2fa743 861 int ret;
a19ae1ec 862
6c542047 863 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 864
f62dda66 865 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
866 if (ret)
867 return ret;
868
ea61cddb 869 if (dev_data->ats.enabled)
6c542047 870 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 871
ee2fa743 872 return ret;
a19ae1ec
JR
873}
874
431b2a20
JR
875/*
876 * TLB invalidation function which is called from the mapping functions.
877 * It invalidates a single PTE if the range to flush is within a single
878 * page. Otherwise it flushes the whole TLB of the IOMMU.
879 */
17b124bf
JR
880static void __domain_flush_pages(struct protection_domain *domain,
881 u64 address, size_t size, int pde)
a19ae1ec 882{
cb41ed85 883 struct iommu_dev_data *dev_data;
11b6402c
JR
884 struct iommu_cmd cmd;
885 int ret = 0, i;
a19ae1ec 886
11b6402c 887 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 888
6de8ad9b
JR
889 for (i = 0; i < amd_iommus_present; ++i) {
890 if (!domain->dev_iommu[i])
891 continue;
892
893 /*
894 * Devices of this domain are behind this IOMMU
895 * We need a TLB flush
896 */
11b6402c 897 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
898 }
899
cb41ed85 900 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 901
ea61cddb 902 if (!dev_data->ats.enabled)
cb41ed85
JR
903 continue;
904
6c542047 905 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
906 }
907
11b6402c 908 WARN_ON(ret);
6de8ad9b
JR
909}
910
17b124bf
JR
911static void domain_flush_pages(struct protection_domain *domain,
912 u64 address, size_t size)
6de8ad9b 913{
17b124bf 914 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 915}
b6c02715 916
1c655773 917/* Flush the whole IO/TLB for a given protection domain */
17b124bf 918static void domain_flush_tlb(struct protection_domain *domain)
1c655773 919{
17b124bf 920 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
921}
922
42a49f96 923/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 924static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 925{
17b124bf 926 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
927}
928
17b124bf 929static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 930{
17b124bf 931 int i;
18811f55 932
17b124bf
JR
933 for (i = 0; i < amd_iommus_present; ++i) {
934 if (!domain->dev_iommu[i])
935 continue;
bfd1be18 936
17b124bf
JR
937 /*
938 * Devices of this domain are behind this IOMMU
939 * We need to wait for completion of all commands.
940 */
941 iommu_completion_wait(amd_iommus[i]);
bfd1be18 942 }
e394d72a
JR
943}
944
b00d3bcf 945
09b42804 946/*
b00d3bcf 947 * This function flushes the DTEs for all devices in domain
09b42804 948 */
17b124bf 949static void domain_flush_devices(struct protection_domain *domain)
e394d72a 950{
b00d3bcf 951 struct iommu_dev_data *dev_data;
b26e81b8 952
b00d3bcf 953 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 954 device_flush_dte(dev_data);
a345b23b
JR
955}
956
431b2a20
JR
957/****************************************************************************
958 *
959 * The functions below are used the create the page table mappings for
960 * unity mapped regions.
961 *
962 ****************************************************************************/
963
308973d3
JR
964/*
965 * This function is used to add another level to an IO page table. Adding
966 * another level increases the size of the address space by 9 bits to a size up
967 * to 64 bits.
968 */
969static bool increase_address_space(struct protection_domain *domain,
970 gfp_t gfp)
971{
972 u64 *pte;
973
974 if (domain->mode == PAGE_MODE_6_LEVEL)
975 /* address space already 64 bit large */
976 return false;
977
978 pte = (void *)get_zeroed_page(gfp);
979 if (!pte)
980 return false;
981
982 *pte = PM_LEVEL_PDE(domain->mode,
983 virt_to_phys(domain->pt_root));
984 domain->pt_root = pte;
985 domain->mode += 1;
986 domain->updated = true;
987
988 return true;
989}
990
991static u64 *alloc_pte(struct protection_domain *domain,
992 unsigned long address,
cbb9d729 993 unsigned long page_size,
308973d3
JR
994 u64 **pte_page,
995 gfp_t gfp)
996{
cbb9d729 997 int level, end_lvl;
308973d3 998 u64 *pte, *page;
cbb9d729
JR
999
1000 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1001
1002 while (address > PM_LEVEL_SIZE(domain->mode))
1003 increase_address_space(domain, gfp);
1004
cbb9d729
JR
1005 level = domain->mode - 1;
1006 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1007 address = PAGE_SIZE_ALIGN(address, page_size);
1008 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1009
1010 while (level > end_lvl) {
1011 if (!IOMMU_PTE_PRESENT(*pte)) {
1012 page = (u64 *)get_zeroed_page(gfp);
1013 if (!page)
1014 return NULL;
1015 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1016 }
1017
cbb9d729
JR
1018 /* No level skipping support yet */
1019 if (PM_PTE_LEVEL(*pte) != level)
1020 return NULL;
1021
308973d3
JR
1022 level -= 1;
1023
1024 pte = IOMMU_PTE_PAGE(*pte);
1025
1026 if (pte_page && level == end_lvl)
1027 *pte_page = pte;
1028
1029 pte = &pte[PM_LEVEL_INDEX(level, address)];
1030 }
1031
1032 return pte;
1033}
1034
1035/*
1036 * This function checks if there is a PTE for a given dma address. If
1037 * there is one, it returns the pointer to it.
1038 */
24cd7723 1039static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
1040{
1041 int level;
1042 u64 *pte;
1043
24cd7723
JR
1044 if (address > PM_LEVEL_SIZE(domain->mode))
1045 return NULL;
1046
1047 level = domain->mode - 1;
1048 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 1049
24cd7723
JR
1050 while (level > 0) {
1051
1052 /* Not Present */
308973d3
JR
1053 if (!IOMMU_PTE_PRESENT(*pte))
1054 return NULL;
1055
24cd7723
JR
1056 /* Large PTE */
1057 if (PM_PTE_LEVEL(*pte) == 0x07) {
1058 unsigned long pte_mask, __pte;
1059
1060 /*
1061 * If we have a series of large PTEs, make
1062 * sure to return a pointer to the first one.
1063 */
1064 pte_mask = PTE_PAGE_SIZE(*pte);
1065 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1066 __pte = ((unsigned long)pte) & pte_mask;
1067
1068 return (u64 *)__pte;
1069 }
1070
1071 /* No level skipping support yet */
1072 if (PM_PTE_LEVEL(*pte) != level)
1073 return NULL;
1074
308973d3
JR
1075 level -= 1;
1076
24cd7723 1077 /* Walk to the next level */
308973d3
JR
1078 pte = IOMMU_PTE_PAGE(*pte);
1079 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
1080 }
1081
1082 return pte;
1083}
1084
431b2a20
JR
1085/*
1086 * Generic mapping functions. It maps a physical address into a DMA
1087 * address space. It allocates the page table pages if necessary.
1088 * In the future it can be extended to a generic mapping function
1089 * supporting all features of AMD IOMMU page tables like level skipping
1090 * and full 64 bit address spaces.
1091 */
38e817fe
JR
1092static int iommu_map_page(struct protection_domain *dom,
1093 unsigned long bus_addr,
1094 unsigned long phys_addr,
abdc5eb3 1095 int prot,
cbb9d729 1096 unsigned long page_size)
bd0e5211 1097{
8bda3092 1098 u64 __pte, *pte;
cbb9d729 1099 int i, count;
abdc5eb3 1100
bad1cac2 1101 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1102 return -EINVAL;
1103
cbb9d729
JR
1104 bus_addr = PAGE_ALIGN(bus_addr);
1105 phys_addr = PAGE_ALIGN(phys_addr);
1106 count = PAGE_SIZE_PTE_COUNT(page_size);
1107 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1108
1109 for (i = 0; i < count; ++i)
1110 if (IOMMU_PTE_PRESENT(pte[i]))
1111 return -EBUSY;
bd0e5211 1112
cbb9d729
JR
1113 if (page_size > PAGE_SIZE) {
1114 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1115 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1116 } else
1117 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1118
bd0e5211
JR
1119 if (prot & IOMMU_PROT_IR)
1120 __pte |= IOMMU_PTE_IR;
1121 if (prot & IOMMU_PROT_IW)
1122 __pte |= IOMMU_PTE_IW;
1123
cbb9d729
JR
1124 for (i = 0; i < count; ++i)
1125 pte[i] = __pte;
bd0e5211 1126
04bfdd84
JR
1127 update_domain(dom);
1128
bd0e5211
JR
1129 return 0;
1130}
1131
24cd7723
JR
1132static unsigned long iommu_unmap_page(struct protection_domain *dom,
1133 unsigned long bus_addr,
1134 unsigned long page_size)
eb74ff6c 1135{
24cd7723
JR
1136 unsigned long long unmap_size, unmapped;
1137 u64 *pte;
1138
1139 BUG_ON(!is_power_of_2(page_size));
1140
1141 unmapped = 0;
eb74ff6c 1142
24cd7723
JR
1143 while (unmapped < page_size) {
1144
1145 pte = fetch_pte(dom, bus_addr);
1146
1147 if (!pte) {
1148 /*
1149 * No PTE for this address
1150 * move forward in 4kb steps
1151 */
1152 unmap_size = PAGE_SIZE;
1153 } else if (PM_PTE_LEVEL(*pte) == 0) {
1154 /* 4kb PTE found for this address */
1155 unmap_size = PAGE_SIZE;
1156 *pte = 0ULL;
1157 } else {
1158 int count, i;
1159
1160 /* Large PTE found which maps this address */
1161 unmap_size = PTE_PAGE_SIZE(*pte);
1162 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1163 for (i = 0; i < count; i++)
1164 pte[i] = 0ULL;
1165 }
1166
1167 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1168 unmapped += unmap_size;
1169 }
1170
1171 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1172
24cd7723 1173 return unmapped;
eb74ff6c 1174}
eb74ff6c 1175
431b2a20
JR
1176/*
1177 * This function checks if a specific unity mapping entry is needed for
1178 * this specific IOMMU.
1179 */
bd0e5211
JR
1180static int iommu_for_unity_map(struct amd_iommu *iommu,
1181 struct unity_map_entry *entry)
1182{
1183 u16 bdf, i;
1184
1185 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1186 bdf = amd_iommu_alias_table[i];
1187 if (amd_iommu_rlookup_table[bdf] == iommu)
1188 return 1;
1189 }
1190
1191 return 0;
1192}
1193
431b2a20
JR
1194/*
1195 * This function actually applies the mapping to the page table of the
1196 * dma_ops domain.
1197 */
bd0e5211
JR
1198static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1199 struct unity_map_entry *e)
1200{
1201 u64 addr;
1202 int ret;
1203
1204 for (addr = e->address_start; addr < e->address_end;
1205 addr += PAGE_SIZE) {
abdc5eb3 1206 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1207 PAGE_SIZE);
bd0e5211
JR
1208 if (ret)
1209 return ret;
1210 /*
1211 * if unity mapping is in aperture range mark the page
1212 * as allocated in the aperture
1213 */
1214 if (addr < dma_dom->aperture_size)
c3239567 1215 __set_bit(addr >> PAGE_SHIFT,
384de729 1216 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1217 }
1218
1219 return 0;
1220}
1221
171e7b37
JR
1222/*
1223 * Init the unity mappings for a specific IOMMU in the system
1224 *
1225 * Basically iterates over all unity mapping entries and applies them to
1226 * the default domain DMA of that IOMMU if necessary.
1227 */
1228static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1229{
1230 struct unity_map_entry *entry;
1231 int ret;
1232
1233 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1234 if (!iommu_for_unity_map(iommu, entry))
1235 continue;
1236 ret = dma_ops_unity_map(iommu->default_dom, entry);
1237 if (ret)
1238 return ret;
1239 }
1240
1241 return 0;
1242}
1243
431b2a20
JR
1244/*
1245 * Inits the unity mappings required for a specific device
1246 */
bd0e5211
JR
1247static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1248 u16 devid)
1249{
1250 struct unity_map_entry *e;
1251 int ret;
1252
1253 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1254 if (!(devid >= e->devid_start && devid <= e->devid_end))
1255 continue;
1256 ret = dma_ops_unity_map(dma_dom, e);
1257 if (ret)
1258 return ret;
1259 }
1260
1261 return 0;
1262}
1263
431b2a20
JR
1264/****************************************************************************
1265 *
1266 * The next functions belong to the address allocator for the dma_ops
1267 * interface functions. They work like the allocators in the other IOMMU
1268 * drivers. Its basically a bitmap which marks the allocated pages in
1269 * the aperture. Maybe it could be enhanced in the future to a more
1270 * efficient allocator.
1271 *
1272 ****************************************************************************/
d3086444 1273
431b2a20 1274/*
384de729 1275 * The address allocator core functions.
431b2a20
JR
1276 *
1277 * called with domain->lock held
1278 */
384de729 1279
171e7b37
JR
1280/*
1281 * Used to reserve address ranges in the aperture (e.g. for exclusion
1282 * ranges.
1283 */
1284static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1285 unsigned long start_page,
1286 unsigned int pages)
1287{
1288 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1289
1290 if (start_page + pages > last_page)
1291 pages = last_page - start_page;
1292
1293 for (i = start_page; i < start_page + pages; ++i) {
1294 int index = i / APERTURE_RANGE_PAGES;
1295 int page = i % APERTURE_RANGE_PAGES;
1296 __set_bit(page, dom->aperture[index]->bitmap);
1297 }
1298}
1299
9cabe89b
JR
1300/*
1301 * This function is used to add a new aperture range to an existing
1302 * aperture in case of dma_ops domain allocation or address allocation
1303 * failure.
1304 */
576175c2 1305static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1306 bool populate, gfp_t gfp)
1307{
1308 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1309 struct amd_iommu *iommu;
17f5b569 1310 unsigned long i, old_size;
9cabe89b 1311
f5e9705c
JR
1312#ifdef CONFIG_IOMMU_STRESS
1313 populate = false;
1314#endif
1315
9cabe89b
JR
1316 if (index >= APERTURE_MAX_RANGES)
1317 return -ENOMEM;
1318
1319 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1320 if (!dma_dom->aperture[index])
1321 return -ENOMEM;
1322
1323 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1324 if (!dma_dom->aperture[index]->bitmap)
1325 goto out_free;
1326
1327 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1328
1329 if (populate) {
1330 unsigned long address = dma_dom->aperture_size;
1331 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1332 u64 *pte, *pte_page;
1333
1334 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1335 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1336 &pte_page, gfp);
1337 if (!pte)
1338 goto out_free;
1339
1340 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1341
1342 address += APERTURE_RANGE_SIZE / 64;
1343 }
1344 }
1345
17f5b569 1346 old_size = dma_dom->aperture_size;
9cabe89b
JR
1347 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1348
17f5b569
JR
1349 /* Reserve address range used for MSI messages */
1350 if (old_size < MSI_ADDR_BASE_LO &&
1351 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1352 unsigned long spage;
1353 int pages;
1354
1355 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1356 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1357
1358 dma_ops_reserve_addresses(dma_dom, spage, pages);
1359 }
1360
b595076a 1361 /* Initialize the exclusion range if necessary */
576175c2
JR
1362 for_each_iommu(iommu) {
1363 if (iommu->exclusion_start &&
1364 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1365 && iommu->exclusion_start < dma_dom->aperture_size) {
1366 unsigned long startpage;
1367 int pages = iommu_num_pages(iommu->exclusion_start,
1368 iommu->exclusion_length,
1369 PAGE_SIZE);
1370 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1371 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1372 }
00cd122a
JR
1373 }
1374
1375 /*
1376 * Check for areas already mapped as present in the new aperture
1377 * range and mark those pages as reserved in the allocator. Such
1378 * mappings may already exist as a result of requested unity
1379 * mappings for devices.
1380 */
1381 for (i = dma_dom->aperture[index]->offset;
1382 i < dma_dom->aperture_size;
1383 i += PAGE_SIZE) {
24cd7723 1384 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1385 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1386 continue;
1387
fcd0861d 1388 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1389 }
1390
04bfdd84
JR
1391 update_domain(&dma_dom->domain);
1392
9cabe89b
JR
1393 return 0;
1394
1395out_free:
04bfdd84
JR
1396 update_domain(&dma_dom->domain);
1397
9cabe89b
JR
1398 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1399
1400 kfree(dma_dom->aperture[index]);
1401 dma_dom->aperture[index] = NULL;
1402
1403 return -ENOMEM;
1404}
1405
384de729
JR
1406static unsigned long dma_ops_area_alloc(struct device *dev,
1407 struct dma_ops_domain *dom,
1408 unsigned int pages,
1409 unsigned long align_mask,
1410 u64 dma_mask,
1411 unsigned long start)
1412{
803b8cb4 1413 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1414 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1415 int i = start >> APERTURE_RANGE_SHIFT;
1416 unsigned long boundary_size;
1417 unsigned long address = -1;
1418 unsigned long limit;
1419
803b8cb4
JR
1420 next_bit >>= PAGE_SHIFT;
1421
384de729
JR
1422 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1423 PAGE_SIZE) >> PAGE_SHIFT;
1424
1425 for (;i < max_index; ++i) {
1426 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1427
1428 if (dom->aperture[i]->offset >= dma_mask)
1429 break;
1430
1431 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1432 dma_mask >> PAGE_SHIFT);
1433
1434 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1435 limit, next_bit, pages, 0,
1436 boundary_size, align_mask);
1437 if (address != -1) {
1438 address = dom->aperture[i]->offset +
1439 (address << PAGE_SHIFT);
803b8cb4 1440 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1441 break;
1442 }
1443
1444 next_bit = 0;
1445 }
1446
1447 return address;
1448}
1449
d3086444
JR
1450static unsigned long dma_ops_alloc_addresses(struct device *dev,
1451 struct dma_ops_domain *dom,
6d4f343f 1452 unsigned int pages,
832a90c3
JR
1453 unsigned long align_mask,
1454 u64 dma_mask)
d3086444 1455{
d3086444 1456 unsigned long address;
d3086444 1457
fe16f088
JR
1458#ifdef CONFIG_IOMMU_STRESS
1459 dom->next_address = 0;
1460 dom->need_flush = true;
1461#endif
d3086444 1462
384de729 1463 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1464 dma_mask, dom->next_address);
d3086444 1465
1c655773 1466 if (address == -1) {
803b8cb4 1467 dom->next_address = 0;
384de729
JR
1468 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1469 dma_mask, 0);
1c655773
JR
1470 dom->need_flush = true;
1471 }
d3086444 1472
384de729 1473 if (unlikely(address == -1))
8fd524b3 1474 address = DMA_ERROR_CODE;
d3086444
JR
1475
1476 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1477
1478 return address;
1479}
1480
431b2a20
JR
1481/*
1482 * The address free function.
1483 *
1484 * called with domain->lock held
1485 */
d3086444
JR
1486static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1487 unsigned long address,
1488 unsigned int pages)
1489{
384de729
JR
1490 unsigned i = address >> APERTURE_RANGE_SHIFT;
1491 struct aperture_range *range = dom->aperture[i];
80be308d 1492
384de729
JR
1493 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1494
47bccd6b
JR
1495#ifdef CONFIG_IOMMU_STRESS
1496 if (i < 4)
1497 return;
1498#endif
80be308d 1499
803b8cb4 1500 if (address >= dom->next_address)
80be308d 1501 dom->need_flush = true;
384de729
JR
1502
1503 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1504
a66022c4 1505 bitmap_clear(range->bitmap, address, pages);
384de729 1506
d3086444
JR
1507}
1508
431b2a20
JR
1509/****************************************************************************
1510 *
1511 * The next functions belong to the domain allocation. A domain is
1512 * allocated for every IOMMU as the default domain. If device isolation
1513 * is enabled, every device get its own domain. The most important thing
1514 * about domains is the page table mapping the DMA address space they
1515 * contain.
1516 *
1517 ****************************************************************************/
1518
aeb26f55
JR
1519/*
1520 * This function adds a protection domain to the global protection domain list
1521 */
1522static void add_domain_to_list(struct protection_domain *domain)
1523{
1524 unsigned long flags;
1525
1526 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1527 list_add(&domain->list, &amd_iommu_pd_list);
1528 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1529}
1530
1531/*
1532 * This function removes a protection domain to the global
1533 * protection domain list
1534 */
1535static void del_domain_from_list(struct protection_domain *domain)
1536{
1537 unsigned long flags;
1538
1539 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1540 list_del(&domain->list);
1541 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1542}
1543
ec487d1a
JR
1544static u16 domain_id_alloc(void)
1545{
1546 unsigned long flags;
1547 int id;
1548
1549 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1550 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1551 BUG_ON(id == 0);
1552 if (id > 0 && id < MAX_DOMAIN_ID)
1553 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1554 else
1555 id = 0;
1556 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1557
1558 return id;
1559}
1560
a2acfb75
JR
1561static void domain_id_free(int id)
1562{
1563 unsigned long flags;
1564
1565 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1566 if (id > 0 && id < MAX_DOMAIN_ID)
1567 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1568 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1569}
a2acfb75 1570
86db2e5d 1571static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1572{
1573 int i, j;
1574 u64 *p1, *p2, *p3;
1575
86db2e5d 1576 p1 = domain->pt_root;
ec487d1a
JR
1577
1578 if (!p1)
1579 return;
1580
1581 for (i = 0; i < 512; ++i) {
1582 if (!IOMMU_PTE_PRESENT(p1[i]))
1583 continue;
1584
1585 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1586 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1587 if (!IOMMU_PTE_PRESENT(p2[j]))
1588 continue;
1589 p3 = IOMMU_PTE_PAGE(p2[j]);
1590 free_page((unsigned long)p3);
1591 }
1592
1593 free_page((unsigned long)p2);
1594 }
1595
1596 free_page((unsigned long)p1);
86db2e5d
JR
1597
1598 domain->pt_root = NULL;
ec487d1a
JR
1599}
1600
431b2a20
JR
1601/*
1602 * Free a domain, only used if something went wrong in the
1603 * allocation path and we need to free an already allocated page table
1604 */
ec487d1a
JR
1605static void dma_ops_domain_free(struct dma_ops_domain *dom)
1606{
384de729
JR
1607 int i;
1608
ec487d1a
JR
1609 if (!dom)
1610 return;
1611
aeb26f55
JR
1612 del_domain_from_list(&dom->domain);
1613
86db2e5d 1614 free_pagetable(&dom->domain);
ec487d1a 1615
384de729
JR
1616 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1617 if (!dom->aperture[i])
1618 continue;
1619 free_page((unsigned long)dom->aperture[i]->bitmap);
1620 kfree(dom->aperture[i]);
1621 }
ec487d1a
JR
1622
1623 kfree(dom);
1624}
1625
431b2a20
JR
1626/*
1627 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1628 * It also initializes the page table and the address allocator data
431b2a20
JR
1629 * structures required for the dma_ops interface
1630 */
87a64d52 1631static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1632{
1633 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1634
1635 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1636 if (!dma_dom)
1637 return NULL;
1638
1639 spin_lock_init(&dma_dom->domain.lock);
1640
1641 dma_dom->domain.id = domain_id_alloc();
1642 if (dma_dom->domain.id == 0)
1643 goto free_dma_dom;
7c392cbe 1644 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1645 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1646 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1647 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1648 dma_dom->domain.priv = dma_dom;
1649 if (!dma_dom->domain.pt_root)
1650 goto free_dma_dom;
ec487d1a 1651
1c655773 1652 dma_dom->need_flush = false;
bd60b735 1653 dma_dom->target_dev = 0xffff;
1c655773 1654
aeb26f55
JR
1655 add_domain_to_list(&dma_dom->domain);
1656
576175c2 1657 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1658 goto free_dma_dom;
ec487d1a 1659
431b2a20 1660 /*
ec487d1a
JR
1661 * mark the first page as allocated so we never return 0 as
1662 * a valid dma-address. So we can use 0 as error value
431b2a20 1663 */
384de729 1664 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1665 dma_dom->next_address = 0;
ec487d1a 1666
ec487d1a
JR
1667
1668 return dma_dom;
1669
1670free_dma_dom:
1671 dma_ops_domain_free(dma_dom);
1672
1673 return NULL;
1674}
1675
5b28df6f
JR
1676/*
1677 * little helper function to check whether a given protection domain is a
1678 * dma_ops domain
1679 */
1680static bool dma_ops_domain(struct protection_domain *domain)
1681{
1682 return domain->flags & PD_DMA_OPS_MASK;
1683}
1684
fd7b5535 1685static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1686{
b20ac0d4 1687 u64 pte_root = virt_to_phys(domain->pt_root);
ee6c2868 1688 u64 flags = 0;
863c74eb 1689
38ddf41b
JR
1690 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1691 << DEV_ENTRY_MODE_SHIFT;
1692 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1693
ee6c2868
JR
1694 flags = amd_iommu_dev_table[devid].data[1];
1695
fd7b5535
JR
1696 if (ats)
1697 flags |= DTE_FLAG_IOTLB;
1698
ee6c2868
JR
1699 flags &= ~(0xffffUL);
1700 flags |= domain->id;
1701
1702 amd_iommu_dev_table[devid].data[1] = flags;
1703 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1704}
1705
1706static void clear_dte_entry(u16 devid)
1707{
15898bbc
JR
1708 /* remove entry from the device table seen by the hardware */
1709 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1710 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1711
1712 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1713}
1714
ec9e79ef
JR
1715static void do_attach(struct iommu_dev_data *dev_data,
1716 struct protection_domain *domain)
7f760ddd 1717{
7f760ddd 1718 struct amd_iommu *iommu;
ec9e79ef 1719 bool ats;
fd7b5535 1720
ec9e79ef
JR
1721 iommu = amd_iommu_rlookup_table[dev_data->devid];
1722 ats = dev_data->ats.enabled;
7f760ddd
JR
1723
1724 /* Update data structures */
1725 dev_data->domain = domain;
1726 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1727 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1728
1729 /* Do reference counting */
1730 domain->dev_iommu[iommu->index] += 1;
1731 domain->dev_cnt += 1;
1732
1733 /* Flush the DTE entry */
6c542047 1734 device_flush_dte(dev_data);
7f760ddd
JR
1735}
1736
ec9e79ef 1737static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1738{
7f760ddd 1739 struct amd_iommu *iommu;
7f760ddd 1740
ec9e79ef 1741 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
1742
1743 /* decrease reference counters */
7f760ddd
JR
1744 dev_data->domain->dev_iommu[iommu->index] -= 1;
1745 dev_data->domain->dev_cnt -= 1;
1746
1747 /* Update data structures */
1748 dev_data->domain = NULL;
1749 list_del(&dev_data->list);
f62dda66 1750 clear_dte_entry(dev_data->devid);
15898bbc 1751
7f760ddd 1752 /* Flush the DTE entry */
6c542047 1753 device_flush_dte(dev_data);
2b681faf
JR
1754}
1755
1756/*
1757 * If a device is not yet associated with a domain, this function does
1758 * assigns it visible for the hardware
1759 */
ec9e79ef 1760static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1761 struct protection_domain *domain)
2b681faf 1762{
84fe6c19 1763 int ret;
657cbb6b 1764
2b681faf
JR
1765 /* lock domain */
1766 spin_lock(&domain->lock);
1767
71f77580
JR
1768 if (dev_data->alias_data != NULL) {
1769 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 1770
2b02b091
JR
1771 /* Some sanity checks */
1772 ret = -EBUSY;
1773 if (alias_data->domain != NULL &&
1774 alias_data->domain != domain)
1775 goto out_unlock;
eba6ac60 1776
2b02b091
JR
1777 if (dev_data->domain != NULL &&
1778 dev_data->domain != domain)
1779 goto out_unlock;
15898bbc 1780
2b02b091 1781 /* Do real assignment */
7f760ddd 1782 if (alias_data->domain == NULL)
ec9e79ef 1783 do_attach(alias_data, domain);
24100055
JR
1784
1785 atomic_inc(&alias_data->bind);
657cbb6b 1786 }
15898bbc 1787
7f760ddd 1788 if (dev_data->domain == NULL)
ec9e79ef 1789 do_attach(dev_data, domain);
eba6ac60 1790
24100055
JR
1791 atomic_inc(&dev_data->bind);
1792
84fe6c19
JL
1793 ret = 0;
1794
1795out_unlock:
1796
eba6ac60
JR
1797 /* ready */
1798 spin_unlock(&domain->lock);
15898bbc 1799
84fe6c19 1800 return ret;
0feae533 1801}
b20ac0d4 1802
407d733e
JR
1803/*
1804 * If a device is not yet associated with a domain, this function does
1805 * assigns it visible for the hardware
1806 */
15898bbc
JR
1807static int attach_device(struct device *dev,
1808 struct protection_domain *domain)
0feae533 1809{
fd7b5535 1810 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 1811 struct iommu_dev_data *dev_data;
eba6ac60 1812 unsigned long flags;
15898bbc 1813 int ret;
eba6ac60 1814
ea61cddb
JR
1815 dev_data = get_dev_data(dev);
1816
1817 if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1818 dev_data->ats.enabled = true;
1819 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1820 }
fd7b5535 1821
eba6ac60 1822 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 1823 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
1824 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1825
0feae533
JR
1826 /*
1827 * We might boot into a crash-kernel here. The crashed kernel
1828 * left the caches in the IOMMU dirty. So we have to flush
1829 * here to evict all dirty stuff.
1830 */
17b124bf 1831 domain_flush_tlb_pde(domain);
15898bbc
JR
1832
1833 return ret;
b20ac0d4
JR
1834}
1835
355bf553
JR
1836/*
1837 * Removes a device from a protection domain (unlocked)
1838 */
ec9e79ef 1839static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 1840{
2ca76279 1841 struct protection_domain *domain;
7c392cbe 1842 unsigned long flags;
c4596114 1843
7f760ddd 1844 BUG_ON(!dev_data->domain);
355bf553 1845
2ca76279
JR
1846 domain = dev_data->domain;
1847
1848 spin_lock_irqsave(&domain->lock, flags);
24100055 1849
71f77580
JR
1850 if (dev_data->alias_data != NULL) {
1851 struct iommu_dev_data *alias_data = dev_data->alias_data;
1852
7f760ddd 1853 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 1854 do_detach(alias_data);
24100055
JR
1855 }
1856
7f760ddd 1857 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 1858 do_detach(dev_data);
7f760ddd 1859
2ca76279 1860 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1861
1862 /*
1863 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1864 * passthrough domain if it is detached from any other domain.
1865 * Make sure we can deassign from the pt_domain itself.
21129f78 1866 */
5abcdba4 1867 if (dev_data->passthrough &&
d3ad9373 1868 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 1869 __attach_device(dev_data, pt_domain);
355bf553
JR
1870}
1871
1872/*
1873 * Removes a device from a protection domain (with devtable_lock held)
1874 */
15898bbc 1875static void detach_device(struct device *dev)
355bf553 1876{
ea61cddb 1877 struct iommu_dev_data *dev_data;
355bf553
JR
1878 unsigned long flags;
1879
ec9e79ef
JR
1880 dev_data = get_dev_data(dev);
1881
355bf553
JR
1882 /* lock device table */
1883 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 1884 __detach_device(dev_data);
355bf553 1885 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 1886
ea61cddb
JR
1887 if (dev_data->ats.enabled) {
1888 pci_disable_ats(to_pci_dev(dev));
1889 dev_data->ats.enabled = false;
1890 }
355bf553 1891}
e275a2a0 1892
15898bbc
JR
1893/*
1894 * Find out the protection domain structure for a given PCI device. This
1895 * will give us the pointer to the page table root for example.
1896 */
1897static struct protection_domain *domain_for_device(struct device *dev)
1898{
71f77580 1899 struct iommu_dev_data *dev_data;
2b02b091 1900 struct protection_domain *dom = NULL;
15898bbc 1901 unsigned long flags;
15898bbc 1902
657cbb6b 1903 dev_data = get_dev_data(dev);
15898bbc 1904
2b02b091
JR
1905 if (dev_data->domain)
1906 return dev_data->domain;
15898bbc 1907
71f77580
JR
1908 if (dev_data->alias_data != NULL) {
1909 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
1910
1911 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1912 if (alias_data->domain != NULL) {
1913 __attach_device(dev_data, alias_data->domain);
1914 dom = alias_data->domain;
1915 }
1916 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1917 }
15898bbc
JR
1918
1919 return dom;
1920}
1921
e275a2a0
JR
1922static int device_change_notifier(struct notifier_block *nb,
1923 unsigned long action, void *data)
1924{
e275a2a0 1925 struct dma_ops_domain *dma_domain;
5abcdba4
JR
1926 struct protection_domain *domain;
1927 struct iommu_dev_data *dev_data;
1928 struct device *dev = data;
e275a2a0 1929 struct amd_iommu *iommu;
1ac4cbbc 1930 unsigned long flags;
5abcdba4 1931 u16 devid;
e275a2a0 1932
98fc5a69
JR
1933 if (!check_device(dev))
1934 return 0;
e275a2a0 1935
5abcdba4
JR
1936 devid = get_device_id(dev);
1937 iommu = amd_iommu_rlookup_table[devid];
1938 dev_data = get_dev_data(dev);
e275a2a0
JR
1939
1940 switch (action) {
c1eee67b 1941 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1942
1943 domain = domain_for_device(dev);
1944
e275a2a0
JR
1945 if (!domain)
1946 goto out;
5abcdba4 1947 if (dev_data->passthrough)
a1ca331c 1948 break;
15898bbc 1949 detach_device(dev);
1ac4cbbc
JR
1950 break;
1951 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1952
1953 iommu_init_device(dev);
1954
1955 domain = domain_for_device(dev);
1956
1ac4cbbc
JR
1957 /* allocate a protection domain if a device is added */
1958 dma_domain = find_protection_domain(devid);
1959 if (dma_domain)
1960 goto out;
87a64d52 1961 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1962 if (!dma_domain)
1963 goto out;
1964 dma_domain->target_dev = devid;
1965
1966 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1967 list_add_tail(&dma_domain->list, &iommu_pd_list);
1968 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1969
e275a2a0 1970 break;
657cbb6b
JR
1971 case BUS_NOTIFY_DEL_DEVICE:
1972
1973 iommu_uninit_device(dev);
1974
e275a2a0
JR
1975 default:
1976 goto out;
1977 }
1978
e275a2a0
JR
1979 iommu_completion_wait(iommu);
1980
1981out:
1982 return 0;
1983}
1984
b25ae679 1985static struct notifier_block device_nb = {
e275a2a0
JR
1986 .notifier_call = device_change_notifier,
1987};
355bf553 1988
8638c491
JR
1989void amd_iommu_init_notifier(void)
1990{
1991 bus_register_notifier(&pci_bus_type, &device_nb);
1992}
1993
431b2a20
JR
1994/*****************************************************************************
1995 *
1996 * The next functions belong to the dma_ops mapping/unmapping code.
1997 *
1998 *****************************************************************************/
1999
2000/*
2001 * In the dma_ops path we only have the struct device. This function
2002 * finds the corresponding IOMMU, the protection domain and the
2003 * requestor id for a given device.
2004 * If the device is not yet associated with a domain this is also done
2005 * in this function.
2006 */
94f6d190 2007static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2008{
94f6d190 2009 struct protection_domain *domain;
b20ac0d4 2010 struct dma_ops_domain *dma_dom;
94f6d190 2011 u16 devid = get_device_id(dev);
b20ac0d4 2012
f99c0f1c 2013 if (!check_device(dev))
94f6d190 2014 return ERR_PTR(-EINVAL);
b20ac0d4 2015
94f6d190
JR
2016 domain = domain_for_device(dev);
2017 if (domain != NULL && !dma_ops_domain(domain))
2018 return ERR_PTR(-EBUSY);
f99c0f1c 2019
94f6d190
JR
2020 if (domain != NULL)
2021 return domain;
b20ac0d4 2022
15898bbc 2023 /* Device not bount yet - bind it */
94f6d190 2024 dma_dom = find_protection_domain(devid);
15898bbc 2025 if (!dma_dom)
94f6d190
JR
2026 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2027 attach_device(dev, &dma_dom->domain);
15898bbc 2028 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 2029 dma_dom->domain.id, dev_name(dev));
f91ba190 2030
94f6d190 2031 return &dma_dom->domain;
b20ac0d4
JR
2032}
2033
04bfdd84
JR
2034static void update_device_table(struct protection_domain *domain)
2035{
492667da 2036 struct iommu_dev_data *dev_data;
04bfdd84 2037
ea61cddb
JR
2038 list_for_each_entry(dev_data, &domain->dev_list, list)
2039 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2040}
2041
2042static void update_domain(struct protection_domain *domain)
2043{
2044 if (!domain->updated)
2045 return;
2046
2047 update_device_table(domain);
17b124bf
JR
2048
2049 domain_flush_devices(domain);
2050 domain_flush_tlb_pde(domain);
04bfdd84
JR
2051
2052 domain->updated = false;
2053}
2054
8bda3092
JR
2055/*
2056 * This function fetches the PTE for a given address in the aperture
2057 */
2058static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2059 unsigned long address)
2060{
384de729 2061 struct aperture_range *aperture;
8bda3092
JR
2062 u64 *pte, *pte_page;
2063
384de729
JR
2064 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2065 if (!aperture)
2066 return NULL;
2067
2068 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2069 if (!pte) {
cbb9d729 2070 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2071 GFP_ATOMIC);
384de729
JR
2072 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2073 } else
8c8c143c 2074 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2075
04bfdd84 2076 update_domain(&dom->domain);
8bda3092
JR
2077
2078 return pte;
2079}
2080
431b2a20
JR
2081/*
2082 * This is the generic map function. It maps one 4kb page at paddr to
2083 * the given address in the DMA address space for the domain.
2084 */
680525e0 2085static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2086 unsigned long address,
2087 phys_addr_t paddr,
2088 int direction)
2089{
2090 u64 *pte, __pte;
2091
2092 WARN_ON(address > dom->aperture_size);
2093
2094 paddr &= PAGE_MASK;
2095
8bda3092 2096 pte = dma_ops_get_pte(dom, address);
53812c11 2097 if (!pte)
8fd524b3 2098 return DMA_ERROR_CODE;
cb76c322
JR
2099
2100 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2101
2102 if (direction == DMA_TO_DEVICE)
2103 __pte |= IOMMU_PTE_IR;
2104 else if (direction == DMA_FROM_DEVICE)
2105 __pte |= IOMMU_PTE_IW;
2106 else if (direction == DMA_BIDIRECTIONAL)
2107 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2108
2109 WARN_ON(*pte);
2110
2111 *pte = __pte;
2112
2113 return (dma_addr_t)address;
2114}
2115
431b2a20
JR
2116/*
2117 * The generic unmapping function for on page in the DMA address space.
2118 */
680525e0 2119static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2120 unsigned long address)
2121{
384de729 2122 struct aperture_range *aperture;
cb76c322
JR
2123 u64 *pte;
2124
2125 if (address >= dom->aperture_size)
2126 return;
2127
384de729
JR
2128 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2129 if (!aperture)
2130 return;
2131
2132 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2133 if (!pte)
2134 return;
cb76c322 2135
8c8c143c 2136 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2137
2138 WARN_ON(!*pte);
2139
2140 *pte = 0ULL;
2141}
2142
431b2a20
JR
2143/*
2144 * This function contains common code for mapping of a physically
24f81160
JR
2145 * contiguous memory region into DMA address space. It is used by all
2146 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2147 * Must be called with the domain lock held.
2148 */
cb76c322 2149static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2150 struct dma_ops_domain *dma_dom,
2151 phys_addr_t paddr,
2152 size_t size,
6d4f343f 2153 int dir,
832a90c3
JR
2154 bool align,
2155 u64 dma_mask)
cb76c322
JR
2156{
2157 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2158 dma_addr_t address, start, ret;
cb76c322 2159 unsigned int pages;
6d4f343f 2160 unsigned long align_mask = 0;
cb76c322
JR
2161 int i;
2162
e3c449f5 2163 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2164 paddr &= PAGE_MASK;
2165
8ecaf8f1
JR
2166 INC_STATS_COUNTER(total_map_requests);
2167
c1858976
JR
2168 if (pages > 1)
2169 INC_STATS_COUNTER(cross_page);
2170
6d4f343f
JR
2171 if (align)
2172 align_mask = (1UL << get_order(size)) - 1;
2173
11b83888 2174retry:
832a90c3
JR
2175 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2176 dma_mask);
8fd524b3 2177 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2178 /*
2179 * setting next_address here will let the address
2180 * allocator only scan the new allocated range in the
2181 * first run. This is a small optimization.
2182 */
2183 dma_dom->next_address = dma_dom->aperture_size;
2184
576175c2 2185 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2186 goto out;
2187
2188 /*
af901ca1 2189 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2190 * allocation again
2191 */
2192 goto retry;
2193 }
cb76c322
JR
2194
2195 start = address;
2196 for (i = 0; i < pages; ++i) {
680525e0 2197 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2198 if (ret == DMA_ERROR_CODE)
53812c11
JR
2199 goto out_unmap;
2200
cb76c322
JR
2201 paddr += PAGE_SIZE;
2202 start += PAGE_SIZE;
2203 }
2204 address += offset;
2205
5774f7c5
JR
2206 ADD_STATS_COUNTER(alloced_io_mem, size);
2207
afa9fdc2 2208 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2209 domain_flush_tlb(&dma_dom->domain);
1c655773 2210 dma_dom->need_flush = false;
318afd41 2211 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2212 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2213
cb76c322
JR
2214out:
2215 return address;
53812c11
JR
2216
2217out_unmap:
2218
2219 for (--i; i >= 0; --i) {
2220 start -= PAGE_SIZE;
680525e0 2221 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2222 }
2223
2224 dma_ops_free_addresses(dma_dom, address, pages);
2225
8fd524b3 2226 return DMA_ERROR_CODE;
cb76c322
JR
2227}
2228
431b2a20
JR
2229/*
2230 * Does the reverse of the __map_single function. Must be called with
2231 * the domain lock held too
2232 */
cd8c82e8 2233static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2234 dma_addr_t dma_addr,
2235 size_t size,
2236 int dir)
2237{
04e0463e 2238 dma_addr_t flush_addr;
cb76c322
JR
2239 dma_addr_t i, start;
2240 unsigned int pages;
2241
8fd524b3 2242 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2243 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2244 return;
2245
04e0463e 2246 flush_addr = dma_addr;
e3c449f5 2247 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2248 dma_addr &= PAGE_MASK;
2249 start = dma_addr;
2250
2251 for (i = 0; i < pages; ++i) {
680525e0 2252 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2253 start += PAGE_SIZE;
2254 }
2255
5774f7c5
JR
2256 SUB_STATS_COUNTER(alloced_io_mem, size);
2257
cb76c322 2258 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2259
80be308d 2260 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2261 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2262 dma_dom->need_flush = false;
2263 }
cb76c322
JR
2264}
2265
431b2a20
JR
2266/*
2267 * The exported map_single function for dma_ops.
2268 */
51491367
FT
2269static dma_addr_t map_page(struct device *dev, struct page *page,
2270 unsigned long offset, size_t size,
2271 enum dma_data_direction dir,
2272 struct dma_attrs *attrs)
4da70b9e
JR
2273{
2274 unsigned long flags;
4da70b9e 2275 struct protection_domain *domain;
4da70b9e 2276 dma_addr_t addr;
832a90c3 2277 u64 dma_mask;
51491367 2278 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2279
0f2a86f2
JR
2280 INC_STATS_COUNTER(cnt_map_single);
2281
94f6d190
JR
2282 domain = get_domain(dev);
2283 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2284 return (dma_addr_t)paddr;
94f6d190
JR
2285 else if (IS_ERR(domain))
2286 return DMA_ERROR_CODE;
4da70b9e 2287
f99c0f1c
JR
2288 dma_mask = *dev->dma_mask;
2289
4da70b9e 2290 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2291
cd8c82e8 2292 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2293 dma_mask);
8fd524b3 2294 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2295 goto out;
2296
17b124bf 2297 domain_flush_complete(domain);
4da70b9e
JR
2298
2299out:
2300 spin_unlock_irqrestore(&domain->lock, flags);
2301
2302 return addr;
2303}
2304
431b2a20
JR
2305/*
2306 * The exported unmap_single function for dma_ops.
2307 */
51491367
FT
2308static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2309 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2310{
2311 unsigned long flags;
4da70b9e 2312 struct protection_domain *domain;
4da70b9e 2313
146a6917
JR
2314 INC_STATS_COUNTER(cnt_unmap_single);
2315
94f6d190
JR
2316 domain = get_domain(dev);
2317 if (IS_ERR(domain))
5b28df6f
JR
2318 return;
2319
4da70b9e
JR
2320 spin_lock_irqsave(&domain->lock, flags);
2321
cd8c82e8 2322 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2323
17b124bf 2324 domain_flush_complete(domain);
4da70b9e
JR
2325
2326 spin_unlock_irqrestore(&domain->lock, flags);
2327}
2328
431b2a20
JR
2329/*
2330 * This is a special map_sg function which is used if we should map a
2331 * device which is not handled by an AMD IOMMU in the system.
2332 */
65b050ad
JR
2333static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2334 int nelems, int dir)
2335{
2336 struct scatterlist *s;
2337 int i;
2338
2339 for_each_sg(sglist, s, nelems, i) {
2340 s->dma_address = (dma_addr_t)sg_phys(s);
2341 s->dma_length = s->length;
2342 }
2343
2344 return nelems;
2345}
2346
431b2a20
JR
2347/*
2348 * The exported map_sg function for dma_ops (handles scatter-gather
2349 * lists).
2350 */
65b050ad 2351static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2352 int nelems, enum dma_data_direction dir,
2353 struct dma_attrs *attrs)
65b050ad
JR
2354{
2355 unsigned long flags;
65b050ad 2356 struct protection_domain *domain;
65b050ad
JR
2357 int i;
2358 struct scatterlist *s;
2359 phys_addr_t paddr;
2360 int mapped_elems = 0;
832a90c3 2361 u64 dma_mask;
65b050ad 2362
d03f067a
JR
2363 INC_STATS_COUNTER(cnt_map_sg);
2364
94f6d190
JR
2365 domain = get_domain(dev);
2366 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2367 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2368 else if (IS_ERR(domain))
2369 return 0;
dbcc112e 2370
832a90c3 2371 dma_mask = *dev->dma_mask;
65b050ad 2372
65b050ad
JR
2373 spin_lock_irqsave(&domain->lock, flags);
2374
2375 for_each_sg(sglist, s, nelems, i) {
2376 paddr = sg_phys(s);
2377
cd8c82e8 2378 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2379 paddr, s->length, dir, false,
2380 dma_mask);
65b050ad
JR
2381
2382 if (s->dma_address) {
2383 s->dma_length = s->length;
2384 mapped_elems++;
2385 } else
2386 goto unmap;
65b050ad
JR
2387 }
2388
17b124bf 2389 domain_flush_complete(domain);
65b050ad
JR
2390
2391out:
2392 spin_unlock_irqrestore(&domain->lock, flags);
2393
2394 return mapped_elems;
2395unmap:
2396 for_each_sg(sglist, s, mapped_elems, i) {
2397 if (s->dma_address)
cd8c82e8 2398 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2399 s->dma_length, dir);
2400 s->dma_address = s->dma_length = 0;
2401 }
2402
2403 mapped_elems = 0;
2404
2405 goto out;
2406}
2407
431b2a20
JR
2408/*
2409 * The exported map_sg function for dma_ops (handles scatter-gather
2410 * lists).
2411 */
65b050ad 2412static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2413 int nelems, enum dma_data_direction dir,
2414 struct dma_attrs *attrs)
65b050ad
JR
2415{
2416 unsigned long flags;
65b050ad
JR
2417 struct protection_domain *domain;
2418 struct scatterlist *s;
65b050ad
JR
2419 int i;
2420
55877a6b
JR
2421 INC_STATS_COUNTER(cnt_unmap_sg);
2422
94f6d190
JR
2423 domain = get_domain(dev);
2424 if (IS_ERR(domain))
5b28df6f
JR
2425 return;
2426
65b050ad
JR
2427 spin_lock_irqsave(&domain->lock, flags);
2428
2429 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2430 __unmap_single(domain->priv, s->dma_address,
65b050ad 2431 s->dma_length, dir);
65b050ad
JR
2432 s->dma_address = s->dma_length = 0;
2433 }
2434
17b124bf 2435 domain_flush_complete(domain);
65b050ad
JR
2436
2437 spin_unlock_irqrestore(&domain->lock, flags);
2438}
2439
431b2a20
JR
2440/*
2441 * The exported alloc_coherent function for dma_ops.
2442 */
5d8b53cf
JR
2443static void *alloc_coherent(struct device *dev, size_t size,
2444 dma_addr_t *dma_addr, gfp_t flag)
2445{
2446 unsigned long flags;
2447 void *virt_addr;
5d8b53cf 2448 struct protection_domain *domain;
5d8b53cf 2449 phys_addr_t paddr;
832a90c3 2450 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2451
c8f0fb36
JR
2452 INC_STATS_COUNTER(cnt_alloc_coherent);
2453
94f6d190
JR
2454 domain = get_domain(dev);
2455 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2456 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2457 *dma_addr = __pa(virt_addr);
2458 return virt_addr;
94f6d190
JR
2459 } else if (IS_ERR(domain))
2460 return NULL;
5d8b53cf 2461
f99c0f1c
JR
2462 dma_mask = dev->coherent_dma_mask;
2463 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2464 flag |= __GFP_ZERO;
5d8b53cf
JR
2465
2466 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2467 if (!virt_addr)
b25ae679 2468 return NULL;
5d8b53cf 2469
5d8b53cf
JR
2470 paddr = virt_to_phys(virt_addr);
2471
832a90c3
JR
2472 if (!dma_mask)
2473 dma_mask = *dev->dma_mask;
2474
5d8b53cf
JR
2475 spin_lock_irqsave(&domain->lock, flags);
2476
cd8c82e8 2477 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2478 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2479
8fd524b3 2480 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2481 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2482 goto out_free;
367d04c4 2483 }
5d8b53cf 2484
17b124bf 2485 domain_flush_complete(domain);
5d8b53cf 2486
5d8b53cf
JR
2487 spin_unlock_irqrestore(&domain->lock, flags);
2488
2489 return virt_addr;
5b28df6f
JR
2490
2491out_free:
2492
2493 free_pages((unsigned long)virt_addr, get_order(size));
2494
2495 return NULL;
5d8b53cf
JR
2496}
2497
431b2a20
JR
2498/*
2499 * The exported free_coherent function for dma_ops.
431b2a20 2500 */
5d8b53cf
JR
2501static void free_coherent(struct device *dev, size_t size,
2502 void *virt_addr, dma_addr_t dma_addr)
2503{
2504 unsigned long flags;
5d8b53cf 2505 struct protection_domain *domain;
5d8b53cf 2506
5d31ee7e
JR
2507 INC_STATS_COUNTER(cnt_free_coherent);
2508
94f6d190
JR
2509 domain = get_domain(dev);
2510 if (IS_ERR(domain))
5b28df6f
JR
2511 goto free_mem;
2512
5d8b53cf
JR
2513 spin_lock_irqsave(&domain->lock, flags);
2514
cd8c82e8 2515 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2516
17b124bf 2517 domain_flush_complete(domain);
5d8b53cf
JR
2518
2519 spin_unlock_irqrestore(&domain->lock, flags);
2520
2521free_mem:
2522 free_pages((unsigned long)virt_addr, get_order(size));
2523}
2524
b39ba6ad
JR
2525/*
2526 * This function is called by the DMA layer to find out if we can handle a
2527 * particular device. It is part of the dma_ops.
2528 */
2529static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2530{
420aef8a 2531 return check_device(dev);
b39ba6ad
JR
2532}
2533
c432f3df 2534/*
431b2a20
JR
2535 * The function for pre-allocating protection domains.
2536 *
c432f3df
JR
2537 * If the driver core informs the DMA layer if a driver grabs a device
2538 * we don't need to preallocate the protection domains anymore.
2539 * For now we have to.
2540 */
0e93dd88 2541static void prealloc_protection_domains(void)
c432f3df 2542{
5abcdba4 2543 struct iommu_dev_data *dev_data;
c432f3df 2544 struct dma_ops_domain *dma_dom;
5abcdba4 2545 struct pci_dev *dev = NULL;
98fc5a69 2546 u16 devid;
c432f3df 2547
d18c69d3 2548 for_each_pci_dev(dev) {
98fc5a69
JR
2549
2550 /* Do we handle this device? */
2551 if (!check_device(&dev->dev))
c432f3df 2552 continue;
98fc5a69 2553
5abcdba4
JR
2554 dev_data = get_dev_data(&dev->dev);
2555 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2556 /* Make sure passthrough domain is allocated */
2557 alloc_passthrough_domain();
2558 dev_data->passthrough = true;
2559 attach_device(&dev->dev, pt_domain);
2560 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2561 dev_name(&dev->dev));
2562 }
2563
98fc5a69 2564 /* Is there already any domain for it? */
15898bbc 2565 if (domain_for_device(&dev->dev))
c432f3df 2566 continue;
98fc5a69
JR
2567
2568 devid = get_device_id(&dev->dev);
2569
87a64d52 2570 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2571 if (!dma_dom)
2572 continue;
2573 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2574 dma_dom->target_dev = devid;
2575
15898bbc 2576 attach_device(&dev->dev, &dma_dom->domain);
be831297 2577
bd60b735 2578 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2579 }
2580}
2581
160c1d8e 2582static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2583 .alloc_coherent = alloc_coherent,
2584 .free_coherent = free_coherent,
51491367
FT
2585 .map_page = map_page,
2586 .unmap_page = unmap_page,
6631ee9d
JR
2587 .map_sg = map_sg,
2588 .unmap_sg = unmap_sg,
b39ba6ad 2589 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2590};
2591
27c2127a
JR
2592static unsigned device_dma_ops_init(void)
2593{
5abcdba4 2594 struct iommu_dev_data *dev_data;
27c2127a
JR
2595 struct pci_dev *pdev = NULL;
2596 unsigned unhandled = 0;
2597
2598 for_each_pci_dev(pdev) {
2599 if (!check_device(&pdev->dev)) {
2600 unhandled += 1;
2601 continue;
2602 }
2603
5abcdba4
JR
2604 dev_data = get_dev_data(&pdev->dev);
2605
2606 if (!dev_data->passthrough)
2607 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2608 else
2609 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
27c2127a
JR
2610 }
2611
2612 return unhandled;
2613}
2614
431b2a20
JR
2615/*
2616 * The function which clues the AMD IOMMU driver into dma_ops.
2617 */
f5325094
JR
2618
2619void __init amd_iommu_init_api(void)
2620{
2cc21c42 2621 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2622}
2623
6631ee9d
JR
2624int __init amd_iommu_init_dma_ops(void)
2625{
2626 struct amd_iommu *iommu;
27c2127a 2627 int ret, unhandled;
6631ee9d 2628
431b2a20
JR
2629 /*
2630 * first allocate a default protection domain for every IOMMU we
2631 * found in the system. Devices not assigned to any other
2632 * protection domain will be assigned to the default one.
2633 */
3bd22172 2634 for_each_iommu(iommu) {
87a64d52 2635 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2636 if (iommu->default_dom == NULL)
2637 return -ENOMEM;
e2dc14a2 2638 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2639 ret = iommu_init_unity_mappings(iommu);
2640 if (ret)
2641 goto free_domains;
2642 }
2643
431b2a20 2644 /*
8793abeb 2645 * Pre-allocate the protection domains for each device.
431b2a20 2646 */
8793abeb 2647 prealloc_protection_domains();
6631ee9d
JR
2648
2649 iommu_detected = 1;
75f1cdf1 2650 swiotlb = 0;
6631ee9d 2651
431b2a20 2652 /* Make the driver finally visible to the drivers */
27c2127a
JR
2653 unhandled = device_dma_ops_init();
2654 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2655 /* There are unhandled devices - initialize swiotlb for them */
2656 swiotlb = 1;
2657 }
6631ee9d 2658
7f26508b
JR
2659 amd_iommu_stats_init();
2660
6631ee9d
JR
2661 return 0;
2662
2663free_domains:
2664
3bd22172 2665 for_each_iommu(iommu) {
6631ee9d
JR
2666 if (iommu->default_dom)
2667 dma_ops_domain_free(iommu->default_dom);
2668 }
2669
2670 return ret;
2671}
6d98cd80
JR
2672
2673/*****************************************************************************
2674 *
2675 * The following functions belong to the exported interface of AMD IOMMU
2676 *
2677 * This interface allows access to lower level functions of the IOMMU
2678 * like protection domain handling and assignement of devices to domains
2679 * which is not possible with the dma_ops interface.
2680 *
2681 *****************************************************************************/
2682
6d98cd80
JR
2683static void cleanup_domain(struct protection_domain *domain)
2684{
492667da 2685 struct iommu_dev_data *dev_data, *next;
6d98cd80 2686 unsigned long flags;
6d98cd80
JR
2687
2688 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2689
492667da 2690 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 2691 __detach_device(dev_data);
492667da
JR
2692 atomic_set(&dev_data->bind, 0);
2693 }
6d98cd80
JR
2694
2695 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2696}
2697
2650815f
JR
2698static void protection_domain_free(struct protection_domain *domain)
2699{
2700 if (!domain)
2701 return;
2702
aeb26f55
JR
2703 del_domain_from_list(domain);
2704
2650815f
JR
2705 if (domain->id)
2706 domain_id_free(domain->id);
2707
2708 kfree(domain);
2709}
2710
2711static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2712{
2713 struct protection_domain *domain;
2714
2715 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2716 if (!domain)
2650815f 2717 return NULL;
c156e347
JR
2718
2719 spin_lock_init(&domain->lock);
5d214fe6 2720 mutex_init(&domain->api_lock);
c156e347
JR
2721 domain->id = domain_id_alloc();
2722 if (!domain->id)
2650815f 2723 goto out_err;
7c392cbe 2724 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2725
aeb26f55
JR
2726 add_domain_to_list(domain);
2727
2650815f
JR
2728 return domain;
2729
2730out_err:
2731 kfree(domain);
2732
2733 return NULL;
2734}
2735
5abcdba4
JR
2736static int __init alloc_passthrough_domain(void)
2737{
2738 if (pt_domain != NULL)
2739 return 0;
2740
2741 /* allocate passthrough domain */
2742 pt_domain = protection_domain_alloc();
2743 if (!pt_domain)
2744 return -ENOMEM;
2745
2746 pt_domain->mode = PAGE_MODE_NONE;
2747
2748 return 0;
2749}
2650815f
JR
2750static int amd_iommu_domain_init(struct iommu_domain *dom)
2751{
2752 struct protection_domain *domain;
2753
2754 domain = protection_domain_alloc();
2755 if (!domain)
c156e347 2756 goto out_free;
2650815f
JR
2757
2758 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2759 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2760 if (!domain->pt_root)
2761 goto out_free;
2762
2763 dom->priv = domain;
2764
2765 return 0;
2766
2767out_free:
2650815f 2768 protection_domain_free(domain);
c156e347
JR
2769
2770 return -ENOMEM;
2771}
2772
98383fc3
JR
2773static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2774{
2775 struct protection_domain *domain = dom->priv;
2776
2777 if (!domain)
2778 return;
2779
2780 if (domain->dev_cnt > 0)
2781 cleanup_domain(domain);
2782
2783 BUG_ON(domain->dev_cnt != 0);
2784
2785 free_pagetable(domain);
2786
8b408fe4 2787 protection_domain_free(domain);
98383fc3
JR
2788
2789 dom->priv = NULL;
2790}
2791
684f2888
JR
2792static void amd_iommu_detach_device(struct iommu_domain *dom,
2793 struct device *dev)
2794{
657cbb6b 2795 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2796 struct amd_iommu *iommu;
684f2888
JR
2797 u16 devid;
2798
98fc5a69 2799 if (!check_device(dev))
684f2888
JR
2800 return;
2801
98fc5a69 2802 devid = get_device_id(dev);
684f2888 2803
657cbb6b 2804 if (dev_data->domain != NULL)
15898bbc 2805 detach_device(dev);
684f2888
JR
2806
2807 iommu = amd_iommu_rlookup_table[devid];
2808 if (!iommu)
2809 return;
2810
684f2888
JR
2811 iommu_completion_wait(iommu);
2812}
2813
01106066
JR
2814static int amd_iommu_attach_device(struct iommu_domain *dom,
2815 struct device *dev)
2816{
2817 struct protection_domain *domain = dom->priv;
657cbb6b 2818 struct iommu_dev_data *dev_data;
01106066 2819 struct amd_iommu *iommu;
15898bbc 2820 int ret;
01106066 2821
98fc5a69 2822 if (!check_device(dev))
01106066
JR
2823 return -EINVAL;
2824
657cbb6b
JR
2825 dev_data = dev->archdata.iommu;
2826
f62dda66 2827 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
2828 if (!iommu)
2829 return -EINVAL;
2830
657cbb6b 2831 if (dev_data->domain)
15898bbc 2832 detach_device(dev);
01106066 2833
15898bbc 2834 ret = attach_device(dev, domain);
01106066
JR
2835
2836 iommu_completion_wait(iommu);
2837
15898bbc 2838 return ret;
01106066
JR
2839}
2840
468e2366
JR
2841static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2842 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2843{
468e2366 2844 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2845 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2846 int prot = 0;
2847 int ret;
2848
2849 if (iommu_prot & IOMMU_READ)
2850 prot |= IOMMU_PROT_IR;
2851 if (iommu_prot & IOMMU_WRITE)
2852 prot |= IOMMU_PROT_IW;
2853
5d214fe6 2854 mutex_lock(&domain->api_lock);
795e74f7 2855 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2856 mutex_unlock(&domain->api_lock);
2857
795e74f7 2858 return ret;
c6229ca6
JR
2859}
2860
468e2366
JR
2861static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2862 int gfp_order)
eb74ff6c 2863{
eb74ff6c 2864 struct protection_domain *domain = dom->priv;
468e2366 2865 unsigned long page_size, unmap_size;
eb74ff6c 2866
468e2366 2867 page_size = 0x1000UL << gfp_order;
eb74ff6c 2868
5d214fe6 2869 mutex_lock(&domain->api_lock);
468e2366 2870 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2871 mutex_unlock(&domain->api_lock);
eb74ff6c 2872
17b124bf 2873 domain_flush_tlb_pde(domain);
5d214fe6 2874
468e2366 2875 return get_order(unmap_size);
eb74ff6c
JR
2876}
2877
645c4c8d
JR
2878static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2879 unsigned long iova)
2880{
2881 struct protection_domain *domain = dom->priv;
f03152bb 2882 unsigned long offset_mask;
645c4c8d 2883 phys_addr_t paddr;
f03152bb 2884 u64 *pte, __pte;
645c4c8d 2885
24cd7723 2886 pte = fetch_pte(domain, iova);
645c4c8d 2887
a6d41a40 2888 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2889 return 0;
2890
f03152bb
JR
2891 if (PM_PTE_LEVEL(*pte) == 0)
2892 offset_mask = PAGE_SIZE - 1;
2893 else
2894 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2895
2896 __pte = *pte & PM_ADDR_MASK;
2897 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2898
2899 return paddr;
2900}
2901
dbb9fd86
SY
2902static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2903 unsigned long cap)
2904{
80a506b8
JR
2905 switch (cap) {
2906 case IOMMU_CAP_CACHE_COHERENCY:
2907 return 1;
2908 }
2909
dbb9fd86
SY
2910 return 0;
2911}
2912
26961efe
JR
2913static struct iommu_ops amd_iommu_ops = {
2914 .domain_init = amd_iommu_domain_init,
2915 .domain_destroy = amd_iommu_domain_destroy,
2916 .attach_dev = amd_iommu_attach_device,
2917 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2918 .map = amd_iommu_map,
2919 .unmap = amd_iommu_unmap,
26961efe 2920 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2921 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2922};
2923
0feae533
JR
2924/*****************************************************************************
2925 *
2926 * The next functions do a basic initialization of IOMMU for pass through
2927 * mode
2928 *
2929 * In passthrough mode the IOMMU is initialized and enabled but not used for
2930 * DMA-API translation.
2931 *
2932 *****************************************************************************/
2933
2934int __init amd_iommu_init_passthrough(void)
2935{
5abcdba4 2936 struct iommu_dev_data *dev_data;
0feae533 2937 struct pci_dev *dev = NULL;
5abcdba4 2938 struct amd_iommu *iommu;
15898bbc 2939 u16 devid;
5abcdba4 2940 int ret;
0feae533 2941
5abcdba4
JR
2942 ret = alloc_passthrough_domain();
2943 if (ret)
2944 return ret;
0feae533 2945
6c54aabd 2946 for_each_pci_dev(dev) {
98fc5a69 2947 if (!check_device(&dev->dev))
0feae533
JR
2948 continue;
2949
5abcdba4
JR
2950 dev_data = get_dev_data(&dev->dev);
2951 dev_data->passthrough = true;
2952
98fc5a69
JR
2953 devid = get_device_id(&dev->dev);
2954
15898bbc 2955 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2956 if (!iommu)
2957 continue;
2958
15898bbc 2959 attach_device(&dev->dev, pt_domain);
0feae533
JR
2960 }
2961
2962 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2963
2964 return 0;
2965}
72e1dcc4
JR
2966
2967/* IOMMUv2 specific functions */
2968int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2969{
2970 return atomic_notifier_chain_register(&ppr_notifier, nb);
2971}
2972EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2973
2974int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2975{
2976 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2977}
2978EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);