x86/amd-iommu: Move inv-dte command building to own function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
a66022c4 21#include <linux/bitmap.h>
5a0e3ad6 22#include <linux/slab.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
339d3261 121 if (dev->bus != &pci_bus_type)
98fc5a69
JR
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
b00d3bcf
JR
149 dev_data->dev = dev;
150
657cbb6b
JR
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
156
24100055
JR
157 atomic_set(&dev_data->bind, 0);
158
657cbb6b
JR
159 dev->archdata.iommu = dev_data;
160
161
162 return 0;
163}
164
165static void iommu_uninit_device(struct device *dev)
166{
167 kfree(dev->archdata.iommu);
168}
b7cc9554
JR
169
170void __init amd_iommu_uninit_devices(void)
171{
172 struct pci_dev *pdev = NULL;
173
174 for_each_pci_dev(pdev) {
175
176 if (!check_device(&pdev->dev))
177 continue;
178
179 iommu_uninit_device(&pdev->dev);
180 }
181}
182
183int __init amd_iommu_init_devices(void)
184{
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
187
188 for_each_pci_dev(pdev) {
189
190 if (!check_device(&pdev->dev))
191 continue;
192
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
196 }
197
198 return 0;
199
200out_free:
201
202 amd_iommu_uninit_devices();
203
204 return ret;
205}
7f26508b
JR
206#ifdef CONFIG_AMD_IOMMU_STATS
207
208/*
209 * Initialization code for statistics collection
210 */
211
da49f6df 212DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 213DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 214DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 215DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 216DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 217DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 218DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 219DECLARE_STATS_COUNTER(cross_page);
f57d98ae 220DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 221DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 222DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 223DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 224
7f26508b 225static struct dentry *stats_dir;
7f26508b
JR
226static struct dentry *de_fflush;
227
228static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229{
230 if (stats_dir == NULL)
231 return;
232
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
235}
236
237static void amd_iommu_stats_init(void)
238{
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
242
7f26508b
JR
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
245
246 amd_iommu_stats_add(&compl_wait);
0f2a86f2 247 amd_iommu_stats_add(&cnt_map_single);
146a6917 248 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 249 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 250 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 251 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 252 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 253 amd_iommu_stats_add(&cross_page);
f57d98ae 254 amd_iommu_stats_add(&domain_flush_single);
18811f55 255 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 256 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 257 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
258}
259
260#endif
261
a80dc3e0
JR
262/****************************************************************************
263 *
264 * Interrupt handling functions
265 *
266 ****************************************************************************/
267
e3e59876
JR
268static void dump_dte_entry(u16 devid)
269{
270 int i;
271
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
275}
276
945b4ac4
JR
277static void dump_command(unsigned long phys_addr)
278{
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
281
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284}
285
a345b23b 286static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
287{
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294
4c6f40d4 295 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
296
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
e3e59876 303 dump_dte_entry(devid);
90008ee4
JR
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
8eed9833 325 iommu->reset_in_progress = true;
a345b23b 326 reset_iommu_command_buffer(iommu);
945b4ac4 327 dump_command(address);
90008ee4
JR
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 }
348}
349
350static void iommu_poll_events(struct amd_iommu *iommu)
351{
352 u32 head, tail;
353 unsigned long flags;
354
355 spin_lock_irqsave(&iommu->lock, flags);
356
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359
360 while (head != tail) {
a345b23b 361 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 }
364
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366
367 spin_unlock_irqrestore(&iommu->lock, flags);
368}
369
a80dc3e0
JR
370irqreturn_t amd_iommu_int_handler(int irq, void *data)
371{
90008ee4
JR
372 struct amd_iommu *iommu;
373
3bd22172 374 for_each_iommu(iommu)
90008ee4
JR
375 iommu_poll_events(iommu);
376
377 return IRQ_HANDLED;
a80dc3e0
JR
378}
379
431b2a20
JR
380/****************************************************************************
381 *
382 * IOMMU command queuing functions
383 *
384 ****************************************************************************/
385
ded46737
JR
386static void build_completion_wait(struct iommu_cmd *cmd)
387{
388 memset(cmd, 0, sizeof(*cmd));
389 cmd->data[0] = CMD_COMPL_WAIT_INT_MASK;
390 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
391}
392
94fe79e2
JR
393static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
394{
395 memset(cmd, 0, sizeof(*cmd));
396 cmd->data[0] = devid;
397 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
398}
399
431b2a20
JR
400/*
401 * Writes the command to the IOMMUs command buffer and informs the
402 * hardware about the new command. Must be called with iommu->lock held.
403 */
d6449536 404static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
405{
406 u32 tail, head;
407 u8 *target;
408
549c90dc 409 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
a19ae1ec 410 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 411 target = iommu->cmd_buf + tail;
a19ae1ec
JR
412 memcpy_toio(target, cmd, sizeof(*cmd));
413 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
414 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
415 if (tail == head)
416 return -ENOMEM;
417 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
418
419 return 0;
420}
421
431b2a20
JR
422/*
423 * General queuing function for commands. Takes iommu->lock and calls
424 * __iommu_queue_command().
425 */
d6449536 426static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
427{
428 unsigned long flags;
429 int ret;
430
431 spin_lock_irqsave(&iommu->lock, flags);
432 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 433 if (!ret)
0cfd7aa9 434 iommu->need_sync = true;
a19ae1ec
JR
435 spin_unlock_irqrestore(&iommu->lock, flags);
436
437 return ret;
438}
439
8d201968
JR
440/*
441 * This function waits until an IOMMU has completed a completion
442 * wait command
443 */
444static void __iommu_wait_for_completion(struct amd_iommu *iommu)
445{
446 int ready = 0;
447 unsigned status = 0;
448 unsigned long i = 0;
449
da49f6df
JR
450 INC_STATS_COUNTER(compl_wait);
451
8d201968
JR
452 while (!ready && (i < EXIT_LOOP_COUNT)) {
453 ++i;
454 /* wait for the bit to become one */
455 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
456 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
457 }
458
459 /* set bit back to zero */
460 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
461 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
462
8eed9833
JR
463 if (unlikely(i == EXIT_LOOP_COUNT))
464 iommu->reset_in_progress = true;
8d201968
JR
465}
466
467/*
468 * This function queues a completion wait command into the command
469 * buffer of an IOMMU
470 */
471static int __iommu_completion_wait(struct amd_iommu *iommu)
472{
473 struct iommu_cmd cmd;
474
ded46737 475 build_completion_wait(&cmd);
8d201968
JR
476
477 return __iommu_queue_command(iommu, &cmd);
478}
479
431b2a20
JR
480/*
481 * This function is called whenever we need to ensure that the IOMMU has
482 * completed execution of all commands we sent. It sends a
483 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
484 * us about that by writing a value to a physical address we pass with
485 * the command.
486 */
a19ae1ec
JR
487static int iommu_completion_wait(struct amd_iommu *iommu)
488{
8d201968
JR
489 int ret = 0;
490 unsigned long flags;
a19ae1ec 491
7e4f88da
JR
492 spin_lock_irqsave(&iommu->lock, flags);
493
09ee17eb
JR
494 if (!iommu->need_sync)
495 goto out;
496
8d201968 497 ret = __iommu_completion_wait(iommu);
09ee17eb 498
0cfd7aa9 499 iommu->need_sync = false;
a19ae1ec
JR
500
501 if (ret)
7e4f88da 502 goto out;
a19ae1ec 503
8d201968 504 __iommu_wait_for_completion(iommu);
84df8175 505
7e4f88da
JR
506out:
507 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec 508
8eed9833
JR
509 if (iommu->reset_in_progress)
510 reset_iommu_command_buffer(iommu);
511
a19ae1ec
JR
512 return 0;
513}
514
0518a3a4
JR
515static void iommu_flush_complete(struct protection_domain *domain)
516{
517 int i;
518
519 for (i = 0; i < amd_iommus_present; ++i) {
520 if (!domain->dev_iommu[i])
521 continue;
522
523 /*
524 * Devices of this domain are behind this IOMMU
525 * We need to wait for completion of all commands.
526 */
527 iommu_completion_wait(amd_iommus[i]);
528 }
529}
530
431b2a20
JR
531/*
532 * Command send function for invalidating a device table entry
533 */
3fa43655
JR
534static int iommu_flush_device(struct device *dev)
535{
536 struct amd_iommu *iommu;
b00d3bcf 537 struct iommu_cmd cmd;
3fa43655
JR
538 u16 devid;
539
540 devid = get_device_id(dev);
541 iommu = amd_iommu_rlookup_table[devid];
542
94fe79e2 543 build_inv_dte(&cmd, devid);
b00d3bcf
JR
544
545 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
546}
547
237b6f33
JR
548static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
549 u16 domid, int pde, int s)
550{
551 memset(cmd, 0, sizeof(*cmd));
552 address &= PAGE_MASK;
553 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
554 cmd->data[1] |= domid;
555 cmd->data[2] = lower_32_bits(address);
556 cmd->data[3] = upper_32_bits(address);
557 if (s) /* size bit - we flush more than one 4kb page */
558 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
559 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
560 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
561}
562
431b2a20
JR
563/*
564 * Generic command send function for invalidaing TLB entries
565 */
a19ae1ec
JR
566static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
567 u64 address, u16 domid, int pde, int s)
568{
d6449536 569 struct iommu_cmd cmd;
ee2fa743 570 int ret;
a19ae1ec 571
237b6f33 572 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 573
ee2fa743
JR
574 ret = iommu_queue_command(iommu, &cmd);
575
ee2fa743 576 return ret;
a19ae1ec
JR
577}
578
431b2a20
JR
579/*
580 * TLB invalidation function which is called from the mapping functions.
581 * It invalidates a single PTE if the range to flush is within a single
582 * page. Otherwise it flushes the whole TLB of the IOMMU.
583 */
6de8ad9b
JR
584static void __iommu_flush_pages(struct protection_domain *domain,
585 u64 address, size_t size, int pde)
a19ae1ec 586{
6de8ad9b 587 int s = 0, i;
dcd1e92e 588 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
589
590 address &= PAGE_MASK;
591
999ba417
JR
592 if (pages > 1) {
593 /*
594 * If we have to flush more than one page, flush all
595 * TLB entries for this domain
596 */
597 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
598 s = 1;
a19ae1ec
JR
599 }
600
999ba417 601
6de8ad9b
JR
602 for (i = 0; i < amd_iommus_present; ++i) {
603 if (!domain->dev_iommu[i])
604 continue;
605
606 /*
607 * Devices of this domain are behind this IOMMU
608 * We need a TLB flush
609 */
610 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
611 domain->id, pde, s);
612 }
613
614 return;
615}
616
617static void iommu_flush_pages(struct protection_domain *domain,
618 u64 address, size_t size)
619{
620 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 621}
b6c02715 622
1c655773 623/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 624static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 625{
dcd1e92e 626 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
627}
628
42a49f96 629/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 630static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 631{
dcd1e92e 632 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
633}
634
b00d3bcf 635
43f49609 636/*
b00d3bcf 637 * This function flushes the DTEs for all devices in domain
43f49609 638 */
b00d3bcf
JR
639static void iommu_flush_domain_devices(struct protection_domain *domain)
640{
641 struct iommu_dev_data *dev_data;
642 unsigned long flags;
643
644 spin_lock_irqsave(&domain->lock, flags);
645
646 list_for_each_entry(dev_data, &domain->dev_list, list)
647 iommu_flush_device(dev_data->dev);
648
649 spin_unlock_irqrestore(&domain->lock, flags);
650}
651
652static void iommu_flush_all_domain_devices(void)
43f49609 653{
09b42804 654 struct protection_domain *domain;
e394d72a 655 unsigned long flags;
18811f55 656
09b42804 657 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 658
09b42804 659 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
b00d3bcf 660 iommu_flush_domain_devices(domain);
09b42804 661 iommu_flush_complete(domain);
bfd1be18 662 }
e394d72a 663
09b42804 664 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
665}
666
b00d3bcf
JR
667void amd_iommu_flush_all_devices(void)
668{
669 iommu_flush_all_domain_devices();
670}
671
09b42804
JR
672/*
673 * This function uses heavy locking and may disable irqs for some time. But
674 * this is no issue because it is only called during resume.
675 */
bfd1be18 676void amd_iommu_flush_all_domains(void)
e394d72a 677{
e3306664 678 struct protection_domain *domain;
09b42804
JR
679 unsigned long flags;
680
681 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 682
e3306664 683 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 684 spin_lock(&domain->lock);
e3306664
JR
685 iommu_flush_tlb_pde(domain);
686 iommu_flush_complete(domain);
09b42804 687 spin_unlock(&domain->lock);
e3306664 688 }
09b42804
JR
689
690 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
691}
692
a345b23b
JR
693static void reset_iommu_command_buffer(struct amd_iommu *iommu)
694{
695 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
696
b26e81b8
JR
697 if (iommu->reset_in_progress)
698 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
699
a345b23b 700 amd_iommu_reset_cmd_buffer(iommu);
b00d3bcf
JR
701 amd_iommu_flush_all_devices();
702 amd_iommu_flush_all_domains();
b26e81b8
JR
703
704 iommu->reset_in_progress = false;
a345b23b
JR
705}
706
431b2a20
JR
707/****************************************************************************
708 *
709 * The functions below are used the create the page table mappings for
710 * unity mapped regions.
711 *
712 ****************************************************************************/
713
308973d3
JR
714/*
715 * This function is used to add another level to an IO page table. Adding
716 * another level increases the size of the address space by 9 bits to a size up
717 * to 64 bits.
718 */
719static bool increase_address_space(struct protection_domain *domain,
720 gfp_t gfp)
721{
722 u64 *pte;
723
724 if (domain->mode == PAGE_MODE_6_LEVEL)
725 /* address space already 64 bit large */
726 return false;
727
728 pte = (void *)get_zeroed_page(gfp);
729 if (!pte)
730 return false;
731
732 *pte = PM_LEVEL_PDE(domain->mode,
733 virt_to_phys(domain->pt_root));
734 domain->pt_root = pte;
735 domain->mode += 1;
736 domain->updated = true;
737
738 return true;
739}
740
741static u64 *alloc_pte(struct protection_domain *domain,
742 unsigned long address,
cbb9d729 743 unsigned long page_size,
308973d3
JR
744 u64 **pte_page,
745 gfp_t gfp)
746{
cbb9d729 747 int level, end_lvl;
308973d3 748 u64 *pte, *page;
cbb9d729
JR
749
750 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
751
752 while (address > PM_LEVEL_SIZE(domain->mode))
753 increase_address_space(domain, gfp);
754
cbb9d729
JR
755 level = domain->mode - 1;
756 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
757 address = PAGE_SIZE_ALIGN(address, page_size);
758 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
759
760 while (level > end_lvl) {
761 if (!IOMMU_PTE_PRESENT(*pte)) {
762 page = (u64 *)get_zeroed_page(gfp);
763 if (!page)
764 return NULL;
765 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
766 }
767
cbb9d729
JR
768 /* No level skipping support yet */
769 if (PM_PTE_LEVEL(*pte) != level)
770 return NULL;
771
308973d3
JR
772 level -= 1;
773
774 pte = IOMMU_PTE_PAGE(*pte);
775
776 if (pte_page && level == end_lvl)
777 *pte_page = pte;
778
779 pte = &pte[PM_LEVEL_INDEX(level, address)];
780 }
781
782 return pte;
783}
784
785/*
786 * This function checks if there is a PTE for a given dma address. If
787 * there is one, it returns the pointer to it.
788 */
24cd7723 789static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
790{
791 int level;
792 u64 *pte;
793
24cd7723
JR
794 if (address > PM_LEVEL_SIZE(domain->mode))
795 return NULL;
796
797 level = domain->mode - 1;
798 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 799
24cd7723
JR
800 while (level > 0) {
801
802 /* Not Present */
308973d3
JR
803 if (!IOMMU_PTE_PRESENT(*pte))
804 return NULL;
805
24cd7723
JR
806 /* Large PTE */
807 if (PM_PTE_LEVEL(*pte) == 0x07) {
808 unsigned long pte_mask, __pte;
809
810 /*
811 * If we have a series of large PTEs, make
812 * sure to return a pointer to the first one.
813 */
814 pte_mask = PTE_PAGE_SIZE(*pte);
815 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
816 __pte = ((unsigned long)pte) & pte_mask;
817
818 return (u64 *)__pte;
819 }
820
821 /* No level skipping support yet */
822 if (PM_PTE_LEVEL(*pte) != level)
823 return NULL;
824
308973d3
JR
825 level -= 1;
826
24cd7723 827 /* Walk to the next level */
308973d3
JR
828 pte = IOMMU_PTE_PAGE(*pte);
829 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
830 }
831
832 return pte;
833}
834
431b2a20
JR
835/*
836 * Generic mapping functions. It maps a physical address into a DMA
837 * address space. It allocates the page table pages if necessary.
838 * In the future it can be extended to a generic mapping function
839 * supporting all features of AMD IOMMU page tables like level skipping
840 * and full 64 bit address spaces.
841 */
38e817fe
JR
842static int iommu_map_page(struct protection_domain *dom,
843 unsigned long bus_addr,
844 unsigned long phys_addr,
abdc5eb3 845 int prot,
cbb9d729 846 unsigned long page_size)
bd0e5211 847{
8bda3092 848 u64 __pte, *pte;
cbb9d729 849 int i, count;
abdc5eb3 850
bad1cac2 851 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
852 return -EINVAL;
853
cbb9d729
JR
854 bus_addr = PAGE_ALIGN(bus_addr);
855 phys_addr = PAGE_ALIGN(phys_addr);
856 count = PAGE_SIZE_PTE_COUNT(page_size);
857 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
858
859 for (i = 0; i < count; ++i)
860 if (IOMMU_PTE_PRESENT(pte[i]))
861 return -EBUSY;
bd0e5211 862
cbb9d729
JR
863 if (page_size > PAGE_SIZE) {
864 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
865 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
866 } else
867 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 868
bd0e5211
JR
869 if (prot & IOMMU_PROT_IR)
870 __pte |= IOMMU_PTE_IR;
871 if (prot & IOMMU_PROT_IW)
872 __pte |= IOMMU_PTE_IW;
873
cbb9d729
JR
874 for (i = 0; i < count; ++i)
875 pte[i] = __pte;
bd0e5211 876
04bfdd84
JR
877 update_domain(dom);
878
bd0e5211
JR
879 return 0;
880}
881
24cd7723
JR
882static unsigned long iommu_unmap_page(struct protection_domain *dom,
883 unsigned long bus_addr,
884 unsigned long page_size)
eb74ff6c 885{
24cd7723
JR
886 unsigned long long unmap_size, unmapped;
887 u64 *pte;
888
889 BUG_ON(!is_power_of_2(page_size));
890
891 unmapped = 0;
eb74ff6c 892
24cd7723
JR
893 while (unmapped < page_size) {
894
895 pte = fetch_pte(dom, bus_addr);
896
897 if (!pte) {
898 /*
899 * No PTE for this address
900 * move forward in 4kb steps
901 */
902 unmap_size = PAGE_SIZE;
903 } else if (PM_PTE_LEVEL(*pte) == 0) {
904 /* 4kb PTE found for this address */
905 unmap_size = PAGE_SIZE;
906 *pte = 0ULL;
907 } else {
908 int count, i;
909
910 /* Large PTE found which maps this address */
911 unmap_size = PTE_PAGE_SIZE(*pte);
912 count = PAGE_SIZE_PTE_COUNT(unmap_size);
913 for (i = 0; i < count; i++)
914 pte[i] = 0ULL;
915 }
916
917 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
918 unmapped += unmap_size;
919 }
920
921 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 922
24cd7723 923 return unmapped;
eb74ff6c 924}
eb74ff6c 925
431b2a20
JR
926/*
927 * This function checks if a specific unity mapping entry is needed for
928 * this specific IOMMU.
929 */
bd0e5211
JR
930static int iommu_for_unity_map(struct amd_iommu *iommu,
931 struct unity_map_entry *entry)
932{
933 u16 bdf, i;
934
935 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
936 bdf = amd_iommu_alias_table[i];
937 if (amd_iommu_rlookup_table[bdf] == iommu)
938 return 1;
939 }
940
941 return 0;
942}
943
431b2a20
JR
944/*
945 * This function actually applies the mapping to the page table of the
946 * dma_ops domain.
947 */
bd0e5211
JR
948static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
949 struct unity_map_entry *e)
950{
951 u64 addr;
952 int ret;
953
954 for (addr = e->address_start; addr < e->address_end;
955 addr += PAGE_SIZE) {
abdc5eb3 956 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 957 PAGE_SIZE);
bd0e5211
JR
958 if (ret)
959 return ret;
960 /*
961 * if unity mapping is in aperture range mark the page
962 * as allocated in the aperture
963 */
964 if (addr < dma_dom->aperture_size)
c3239567 965 __set_bit(addr >> PAGE_SHIFT,
384de729 966 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
967 }
968
969 return 0;
970}
971
171e7b37
JR
972/*
973 * Init the unity mappings for a specific IOMMU in the system
974 *
975 * Basically iterates over all unity mapping entries and applies them to
976 * the default domain DMA of that IOMMU if necessary.
977 */
978static int iommu_init_unity_mappings(struct amd_iommu *iommu)
979{
980 struct unity_map_entry *entry;
981 int ret;
982
983 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
984 if (!iommu_for_unity_map(iommu, entry))
985 continue;
986 ret = dma_ops_unity_map(iommu->default_dom, entry);
987 if (ret)
988 return ret;
989 }
990
991 return 0;
992}
993
431b2a20
JR
994/*
995 * Inits the unity mappings required for a specific device
996 */
bd0e5211
JR
997static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
998 u16 devid)
999{
1000 struct unity_map_entry *e;
1001 int ret;
1002
1003 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1004 if (!(devid >= e->devid_start && devid <= e->devid_end))
1005 continue;
1006 ret = dma_ops_unity_map(dma_dom, e);
1007 if (ret)
1008 return ret;
1009 }
1010
1011 return 0;
1012}
1013
431b2a20
JR
1014/****************************************************************************
1015 *
1016 * The next functions belong to the address allocator for the dma_ops
1017 * interface functions. They work like the allocators in the other IOMMU
1018 * drivers. Its basically a bitmap which marks the allocated pages in
1019 * the aperture. Maybe it could be enhanced in the future to a more
1020 * efficient allocator.
1021 *
1022 ****************************************************************************/
d3086444 1023
431b2a20 1024/*
384de729 1025 * The address allocator core functions.
431b2a20
JR
1026 *
1027 * called with domain->lock held
1028 */
384de729 1029
171e7b37
JR
1030/*
1031 * Used to reserve address ranges in the aperture (e.g. for exclusion
1032 * ranges.
1033 */
1034static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1035 unsigned long start_page,
1036 unsigned int pages)
1037{
1038 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1039
1040 if (start_page + pages > last_page)
1041 pages = last_page - start_page;
1042
1043 for (i = start_page; i < start_page + pages; ++i) {
1044 int index = i / APERTURE_RANGE_PAGES;
1045 int page = i % APERTURE_RANGE_PAGES;
1046 __set_bit(page, dom->aperture[index]->bitmap);
1047 }
1048}
1049
9cabe89b
JR
1050/*
1051 * This function is used to add a new aperture range to an existing
1052 * aperture in case of dma_ops domain allocation or address allocation
1053 * failure.
1054 */
576175c2 1055static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1056 bool populate, gfp_t gfp)
1057{
1058 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1059 struct amd_iommu *iommu;
d91afd15 1060 unsigned long i;
9cabe89b 1061
f5e9705c
JR
1062#ifdef CONFIG_IOMMU_STRESS
1063 populate = false;
1064#endif
1065
9cabe89b
JR
1066 if (index >= APERTURE_MAX_RANGES)
1067 return -ENOMEM;
1068
1069 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1070 if (!dma_dom->aperture[index])
1071 return -ENOMEM;
1072
1073 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1074 if (!dma_dom->aperture[index]->bitmap)
1075 goto out_free;
1076
1077 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1078
1079 if (populate) {
1080 unsigned long address = dma_dom->aperture_size;
1081 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1082 u64 *pte, *pte_page;
1083
1084 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1085 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1086 &pte_page, gfp);
1087 if (!pte)
1088 goto out_free;
1089
1090 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1091
1092 address += APERTURE_RANGE_SIZE / 64;
1093 }
1094 }
1095
1096 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1097
b595076a 1098 /* Initialize the exclusion range if necessary */
576175c2
JR
1099 for_each_iommu(iommu) {
1100 if (iommu->exclusion_start &&
1101 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1102 && iommu->exclusion_start < dma_dom->aperture_size) {
1103 unsigned long startpage;
1104 int pages = iommu_num_pages(iommu->exclusion_start,
1105 iommu->exclusion_length,
1106 PAGE_SIZE);
1107 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1108 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1109 }
00cd122a
JR
1110 }
1111
1112 /*
1113 * Check for areas already mapped as present in the new aperture
1114 * range and mark those pages as reserved in the allocator. Such
1115 * mappings may already exist as a result of requested unity
1116 * mappings for devices.
1117 */
1118 for (i = dma_dom->aperture[index]->offset;
1119 i < dma_dom->aperture_size;
1120 i += PAGE_SIZE) {
24cd7723 1121 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1122 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1123 continue;
1124
1125 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1126 }
1127
04bfdd84
JR
1128 update_domain(&dma_dom->domain);
1129
9cabe89b
JR
1130 return 0;
1131
1132out_free:
04bfdd84
JR
1133 update_domain(&dma_dom->domain);
1134
9cabe89b
JR
1135 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1136
1137 kfree(dma_dom->aperture[index]);
1138 dma_dom->aperture[index] = NULL;
1139
1140 return -ENOMEM;
1141}
1142
384de729
JR
1143static unsigned long dma_ops_area_alloc(struct device *dev,
1144 struct dma_ops_domain *dom,
1145 unsigned int pages,
1146 unsigned long align_mask,
1147 u64 dma_mask,
1148 unsigned long start)
1149{
803b8cb4 1150 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1151 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1152 int i = start >> APERTURE_RANGE_SHIFT;
1153 unsigned long boundary_size;
1154 unsigned long address = -1;
1155 unsigned long limit;
1156
803b8cb4
JR
1157 next_bit >>= PAGE_SHIFT;
1158
384de729
JR
1159 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1160 PAGE_SIZE) >> PAGE_SHIFT;
1161
1162 for (;i < max_index; ++i) {
1163 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1164
1165 if (dom->aperture[i]->offset >= dma_mask)
1166 break;
1167
1168 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1169 dma_mask >> PAGE_SHIFT);
1170
1171 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1172 limit, next_bit, pages, 0,
1173 boundary_size, align_mask);
1174 if (address != -1) {
1175 address = dom->aperture[i]->offset +
1176 (address << PAGE_SHIFT);
803b8cb4 1177 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1178 break;
1179 }
1180
1181 next_bit = 0;
1182 }
1183
1184 return address;
1185}
1186
d3086444
JR
1187static unsigned long dma_ops_alloc_addresses(struct device *dev,
1188 struct dma_ops_domain *dom,
6d4f343f 1189 unsigned int pages,
832a90c3
JR
1190 unsigned long align_mask,
1191 u64 dma_mask)
d3086444 1192{
d3086444 1193 unsigned long address;
d3086444 1194
fe16f088
JR
1195#ifdef CONFIG_IOMMU_STRESS
1196 dom->next_address = 0;
1197 dom->need_flush = true;
1198#endif
d3086444 1199
384de729 1200 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1201 dma_mask, dom->next_address);
d3086444 1202
1c655773 1203 if (address == -1) {
803b8cb4 1204 dom->next_address = 0;
384de729
JR
1205 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1206 dma_mask, 0);
1c655773
JR
1207 dom->need_flush = true;
1208 }
d3086444 1209
384de729 1210 if (unlikely(address == -1))
8fd524b3 1211 address = DMA_ERROR_CODE;
d3086444
JR
1212
1213 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1214
1215 return address;
1216}
1217
431b2a20
JR
1218/*
1219 * The address free function.
1220 *
1221 * called with domain->lock held
1222 */
d3086444
JR
1223static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1224 unsigned long address,
1225 unsigned int pages)
1226{
384de729
JR
1227 unsigned i = address >> APERTURE_RANGE_SHIFT;
1228 struct aperture_range *range = dom->aperture[i];
80be308d 1229
384de729
JR
1230 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1231
47bccd6b
JR
1232#ifdef CONFIG_IOMMU_STRESS
1233 if (i < 4)
1234 return;
1235#endif
80be308d 1236
803b8cb4 1237 if (address >= dom->next_address)
80be308d 1238 dom->need_flush = true;
384de729
JR
1239
1240 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1241
a66022c4 1242 bitmap_clear(range->bitmap, address, pages);
384de729 1243
d3086444
JR
1244}
1245
431b2a20
JR
1246/****************************************************************************
1247 *
1248 * The next functions belong to the domain allocation. A domain is
1249 * allocated for every IOMMU as the default domain. If device isolation
1250 * is enabled, every device get its own domain. The most important thing
1251 * about domains is the page table mapping the DMA address space they
1252 * contain.
1253 *
1254 ****************************************************************************/
1255
aeb26f55
JR
1256/*
1257 * This function adds a protection domain to the global protection domain list
1258 */
1259static void add_domain_to_list(struct protection_domain *domain)
1260{
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1264 list_add(&domain->list, &amd_iommu_pd_list);
1265 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1266}
1267
1268/*
1269 * This function removes a protection domain to the global
1270 * protection domain list
1271 */
1272static void del_domain_from_list(struct protection_domain *domain)
1273{
1274 unsigned long flags;
1275
1276 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1277 list_del(&domain->list);
1278 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1279}
1280
ec487d1a
JR
1281static u16 domain_id_alloc(void)
1282{
1283 unsigned long flags;
1284 int id;
1285
1286 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1287 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1288 BUG_ON(id == 0);
1289 if (id > 0 && id < MAX_DOMAIN_ID)
1290 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1291 else
1292 id = 0;
1293 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1294
1295 return id;
1296}
1297
a2acfb75
JR
1298static void domain_id_free(int id)
1299{
1300 unsigned long flags;
1301
1302 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1303 if (id > 0 && id < MAX_DOMAIN_ID)
1304 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1305 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1306}
a2acfb75 1307
86db2e5d 1308static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1309{
1310 int i, j;
1311 u64 *p1, *p2, *p3;
1312
86db2e5d 1313 p1 = domain->pt_root;
ec487d1a
JR
1314
1315 if (!p1)
1316 return;
1317
1318 for (i = 0; i < 512; ++i) {
1319 if (!IOMMU_PTE_PRESENT(p1[i]))
1320 continue;
1321
1322 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1323 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1324 if (!IOMMU_PTE_PRESENT(p2[j]))
1325 continue;
1326 p3 = IOMMU_PTE_PAGE(p2[j]);
1327 free_page((unsigned long)p3);
1328 }
1329
1330 free_page((unsigned long)p2);
1331 }
1332
1333 free_page((unsigned long)p1);
86db2e5d
JR
1334
1335 domain->pt_root = NULL;
ec487d1a
JR
1336}
1337
431b2a20
JR
1338/*
1339 * Free a domain, only used if something went wrong in the
1340 * allocation path and we need to free an already allocated page table
1341 */
ec487d1a
JR
1342static void dma_ops_domain_free(struct dma_ops_domain *dom)
1343{
384de729
JR
1344 int i;
1345
ec487d1a
JR
1346 if (!dom)
1347 return;
1348
aeb26f55
JR
1349 del_domain_from_list(&dom->domain);
1350
86db2e5d 1351 free_pagetable(&dom->domain);
ec487d1a 1352
384de729
JR
1353 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1354 if (!dom->aperture[i])
1355 continue;
1356 free_page((unsigned long)dom->aperture[i]->bitmap);
1357 kfree(dom->aperture[i]);
1358 }
ec487d1a
JR
1359
1360 kfree(dom);
1361}
1362
431b2a20
JR
1363/*
1364 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1365 * It also initializes the page table and the address allocator data
431b2a20
JR
1366 * structures required for the dma_ops interface
1367 */
87a64d52 1368static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1369{
1370 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1371
1372 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1373 if (!dma_dom)
1374 return NULL;
1375
1376 spin_lock_init(&dma_dom->domain.lock);
1377
1378 dma_dom->domain.id = domain_id_alloc();
1379 if (dma_dom->domain.id == 0)
1380 goto free_dma_dom;
7c392cbe 1381 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1382 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1383 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1384 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1385 dma_dom->domain.priv = dma_dom;
1386 if (!dma_dom->domain.pt_root)
1387 goto free_dma_dom;
ec487d1a 1388
1c655773 1389 dma_dom->need_flush = false;
bd60b735 1390 dma_dom->target_dev = 0xffff;
1c655773 1391
aeb26f55
JR
1392 add_domain_to_list(&dma_dom->domain);
1393
576175c2 1394 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1395 goto free_dma_dom;
ec487d1a 1396
431b2a20 1397 /*
ec487d1a
JR
1398 * mark the first page as allocated so we never return 0 as
1399 * a valid dma-address. So we can use 0 as error value
431b2a20 1400 */
384de729 1401 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1402 dma_dom->next_address = 0;
ec487d1a 1403
ec487d1a
JR
1404
1405 return dma_dom;
1406
1407free_dma_dom:
1408 dma_ops_domain_free(dma_dom);
1409
1410 return NULL;
1411}
1412
5b28df6f
JR
1413/*
1414 * little helper function to check whether a given protection domain is a
1415 * dma_ops domain
1416 */
1417static bool dma_ops_domain(struct protection_domain *domain)
1418{
1419 return domain->flags & PD_DMA_OPS_MASK;
1420}
1421
407d733e 1422static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1423{
b20ac0d4 1424 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1425
38ddf41b
JR
1426 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1427 << DEV_ENTRY_MODE_SHIFT;
1428 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1429
b20ac0d4 1430 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1431 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1432 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1433}
1434
1435static void clear_dte_entry(u16 devid)
1436{
15898bbc
JR
1437 /* remove entry from the device table seen by the hardware */
1438 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1439 amd_iommu_dev_table[devid].data[1] = 0;
1440 amd_iommu_dev_table[devid].data[2] = 0;
1441
1442 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1443}
1444
1445static void do_attach(struct device *dev, struct protection_domain *domain)
1446{
1447 struct iommu_dev_data *dev_data;
1448 struct amd_iommu *iommu;
1449 u16 devid;
1450
1451 devid = get_device_id(dev);
1452 iommu = amd_iommu_rlookup_table[devid];
1453 dev_data = get_dev_data(dev);
1454
1455 /* Update data structures */
1456 dev_data->domain = domain;
1457 list_add(&dev_data->list, &domain->dev_list);
1458 set_dte_entry(devid, domain);
1459
1460 /* Do reference counting */
1461 domain->dev_iommu[iommu->index] += 1;
1462 domain->dev_cnt += 1;
1463
1464 /* Flush the DTE entry */
3fa43655 1465 iommu_flush_device(dev);
7f760ddd
JR
1466}
1467
1468static void do_detach(struct device *dev)
1469{
1470 struct iommu_dev_data *dev_data;
1471 struct amd_iommu *iommu;
1472 u16 devid;
1473
1474 devid = get_device_id(dev);
1475 iommu = amd_iommu_rlookup_table[devid];
1476 dev_data = get_dev_data(dev);
15898bbc
JR
1477
1478 /* decrease reference counters */
7f760ddd
JR
1479 dev_data->domain->dev_iommu[iommu->index] -= 1;
1480 dev_data->domain->dev_cnt -= 1;
1481
1482 /* Update data structures */
1483 dev_data->domain = NULL;
1484 list_del(&dev_data->list);
1485 clear_dte_entry(devid);
15898bbc 1486
7f760ddd 1487 /* Flush the DTE entry */
3fa43655 1488 iommu_flush_device(dev);
2b681faf
JR
1489}
1490
1491/*
1492 * If a device is not yet associated with a domain, this function does
1493 * assigns it visible for the hardware
1494 */
15898bbc
JR
1495static int __attach_device(struct device *dev,
1496 struct protection_domain *domain)
2b681faf 1497{
657cbb6b 1498 struct iommu_dev_data *dev_data, *alias_data;
84fe6c19 1499 int ret;
657cbb6b 1500
657cbb6b
JR
1501 dev_data = get_dev_data(dev);
1502 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1503
657cbb6b
JR
1504 if (!alias_data)
1505 return -EINVAL;
15898bbc 1506
2b681faf
JR
1507 /* lock domain */
1508 spin_lock(&domain->lock);
1509
15898bbc 1510 /* Some sanity checks */
84fe6c19 1511 ret = -EBUSY;
657cbb6b
JR
1512 if (alias_data->domain != NULL &&
1513 alias_data->domain != domain)
84fe6c19 1514 goto out_unlock;
eba6ac60 1515
657cbb6b
JR
1516 if (dev_data->domain != NULL &&
1517 dev_data->domain != domain)
84fe6c19 1518 goto out_unlock;
15898bbc
JR
1519
1520 /* Do real assignment */
7f760ddd
JR
1521 if (dev_data->alias != dev) {
1522 alias_data = get_dev_data(dev_data->alias);
1523 if (alias_data->domain == NULL)
1524 do_attach(dev_data->alias, domain);
24100055
JR
1525
1526 atomic_inc(&alias_data->bind);
657cbb6b 1527 }
15898bbc 1528
7f760ddd
JR
1529 if (dev_data->domain == NULL)
1530 do_attach(dev, domain);
eba6ac60 1531
24100055
JR
1532 atomic_inc(&dev_data->bind);
1533
84fe6c19
JL
1534 ret = 0;
1535
1536out_unlock:
1537
eba6ac60
JR
1538 /* ready */
1539 spin_unlock(&domain->lock);
15898bbc 1540
84fe6c19 1541 return ret;
0feae533 1542}
b20ac0d4 1543
407d733e
JR
1544/*
1545 * If a device is not yet associated with a domain, this function does
1546 * assigns it visible for the hardware
1547 */
15898bbc
JR
1548static int attach_device(struct device *dev,
1549 struct protection_domain *domain)
0feae533 1550{
eba6ac60 1551 unsigned long flags;
15898bbc 1552 int ret;
eba6ac60
JR
1553
1554 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1555 ret = __attach_device(dev, domain);
b20ac0d4
JR
1556 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1557
0feae533
JR
1558 /*
1559 * We might boot into a crash-kernel here. The crashed kernel
1560 * left the caches in the IOMMU dirty. So we have to flush
1561 * here to evict all dirty stuff.
1562 */
dcd1e92e 1563 iommu_flush_tlb_pde(domain);
15898bbc
JR
1564
1565 return ret;
b20ac0d4
JR
1566}
1567
355bf553
JR
1568/*
1569 * Removes a device from a protection domain (unlocked)
1570 */
15898bbc 1571static void __detach_device(struct device *dev)
355bf553 1572{
657cbb6b 1573 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1574 struct iommu_dev_data *alias_data;
2ca76279 1575 struct protection_domain *domain;
7c392cbe 1576 unsigned long flags;
c4596114 1577
7f760ddd 1578 BUG_ON(!dev_data->domain);
355bf553 1579
2ca76279
JR
1580 domain = dev_data->domain;
1581
1582 spin_lock_irqsave(&domain->lock, flags);
24100055 1583
7f760ddd 1584 if (dev_data->alias != dev) {
24100055 1585 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1586 if (atomic_dec_and_test(&alias_data->bind))
1587 do_detach(dev_data->alias);
24100055
JR
1588 }
1589
7f760ddd
JR
1590 if (atomic_dec_and_test(&dev_data->bind))
1591 do_detach(dev);
1592
2ca76279 1593 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1594
1595 /*
1596 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1597 * passthrough domain if it is detached from any other domain.
1598 * Make sure we can deassign from the pt_domain itself.
21129f78 1599 */
d3ad9373
JR
1600 if (iommu_pass_through &&
1601 (dev_data->domain == NULL && domain != pt_domain))
15898bbc 1602 __attach_device(dev, pt_domain);
355bf553
JR
1603}
1604
1605/*
1606 * Removes a device from a protection domain (with devtable_lock held)
1607 */
15898bbc 1608static void detach_device(struct device *dev)
355bf553
JR
1609{
1610 unsigned long flags;
1611
1612 /* lock device table */
1613 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1614 __detach_device(dev);
355bf553
JR
1615 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1616}
e275a2a0 1617
15898bbc
JR
1618/*
1619 * Find out the protection domain structure for a given PCI device. This
1620 * will give us the pointer to the page table root for example.
1621 */
1622static struct protection_domain *domain_for_device(struct device *dev)
1623{
1624 struct protection_domain *dom;
657cbb6b 1625 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1626 unsigned long flags;
1627 u16 devid, alias;
1628
657cbb6b
JR
1629 devid = get_device_id(dev);
1630 alias = amd_iommu_alias_table[devid];
1631 dev_data = get_dev_data(dev);
1632 alias_data = get_dev_data(dev_data->alias);
1633 if (!alias_data)
1634 return NULL;
15898bbc
JR
1635
1636 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1637 dom = dev_data->domain;
15898bbc 1638 if (dom == NULL &&
657cbb6b
JR
1639 alias_data->domain != NULL) {
1640 __attach_device(dev, alias_data->domain);
1641 dom = alias_data->domain;
15898bbc
JR
1642 }
1643
1644 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1645
1646 return dom;
1647}
1648
e275a2a0
JR
1649static int device_change_notifier(struct notifier_block *nb,
1650 unsigned long action, void *data)
1651{
1652 struct device *dev = data;
98fc5a69 1653 u16 devid;
e275a2a0
JR
1654 struct protection_domain *domain;
1655 struct dma_ops_domain *dma_domain;
1656 struct amd_iommu *iommu;
1ac4cbbc 1657 unsigned long flags;
e275a2a0 1658
98fc5a69
JR
1659 if (!check_device(dev))
1660 return 0;
e275a2a0 1661
98fc5a69
JR
1662 devid = get_device_id(dev);
1663 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1664
1665 switch (action) {
c1eee67b 1666 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1667
1668 domain = domain_for_device(dev);
1669
e275a2a0
JR
1670 if (!domain)
1671 goto out;
a1ca331c
JR
1672 if (iommu_pass_through)
1673 break;
15898bbc 1674 detach_device(dev);
1ac4cbbc
JR
1675 break;
1676 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1677
1678 iommu_init_device(dev);
1679
1680 domain = domain_for_device(dev);
1681
1ac4cbbc
JR
1682 /* allocate a protection domain if a device is added */
1683 dma_domain = find_protection_domain(devid);
1684 if (dma_domain)
1685 goto out;
87a64d52 1686 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1687 if (!dma_domain)
1688 goto out;
1689 dma_domain->target_dev = devid;
1690
1691 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1692 list_add_tail(&dma_domain->list, &iommu_pd_list);
1693 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1694
e275a2a0 1695 break;
657cbb6b
JR
1696 case BUS_NOTIFY_DEL_DEVICE:
1697
1698 iommu_uninit_device(dev);
1699
e275a2a0
JR
1700 default:
1701 goto out;
1702 }
1703
3fa43655 1704 iommu_flush_device(dev);
e275a2a0
JR
1705 iommu_completion_wait(iommu);
1706
1707out:
1708 return 0;
1709}
1710
b25ae679 1711static struct notifier_block device_nb = {
e275a2a0
JR
1712 .notifier_call = device_change_notifier,
1713};
355bf553 1714
8638c491
JR
1715void amd_iommu_init_notifier(void)
1716{
1717 bus_register_notifier(&pci_bus_type, &device_nb);
1718}
1719
431b2a20
JR
1720/*****************************************************************************
1721 *
1722 * The next functions belong to the dma_ops mapping/unmapping code.
1723 *
1724 *****************************************************************************/
1725
1726/*
1727 * In the dma_ops path we only have the struct device. This function
1728 * finds the corresponding IOMMU, the protection domain and the
1729 * requestor id for a given device.
1730 * If the device is not yet associated with a domain this is also done
1731 * in this function.
1732 */
94f6d190 1733static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1734{
94f6d190 1735 struct protection_domain *domain;
b20ac0d4 1736 struct dma_ops_domain *dma_dom;
94f6d190 1737 u16 devid = get_device_id(dev);
b20ac0d4 1738
f99c0f1c 1739 if (!check_device(dev))
94f6d190 1740 return ERR_PTR(-EINVAL);
b20ac0d4 1741
94f6d190
JR
1742 domain = domain_for_device(dev);
1743 if (domain != NULL && !dma_ops_domain(domain))
1744 return ERR_PTR(-EBUSY);
f99c0f1c 1745
94f6d190
JR
1746 if (domain != NULL)
1747 return domain;
b20ac0d4 1748
15898bbc 1749 /* Device not bount yet - bind it */
94f6d190 1750 dma_dom = find_protection_domain(devid);
15898bbc 1751 if (!dma_dom)
94f6d190
JR
1752 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1753 attach_device(dev, &dma_dom->domain);
15898bbc 1754 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1755 dma_dom->domain.id, dev_name(dev));
f91ba190 1756
94f6d190 1757 return &dma_dom->domain;
b20ac0d4
JR
1758}
1759
04bfdd84
JR
1760static void update_device_table(struct protection_domain *domain)
1761{
492667da 1762 struct iommu_dev_data *dev_data;
04bfdd84 1763
492667da
JR
1764 list_for_each_entry(dev_data, &domain->dev_list, list) {
1765 u16 devid = get_device_id(dev_data->dev);
1766 set_dte_entry(devid, domain);
04bfdd84
JR
1767 }
1768}
1769
1770static void update_domain(struct protection_domain *domain)
1771{
1772 if (!domain->updated)
1773 return;
1774
1775 update_device_table(domain);
b00d3bcf 1776 iommu_flush_domain_devices(domain);
601367d7 1777 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1778
1779 domain->updated = false;
1780}
1781
8bda3092
JR
1782/*
1783 * This function fetches the PTE for a given address in the aperture
1784 */
1785static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1786 unsigned long address)
1787{
384de729 1788 struct aperture_range *aperture;
8bda3092
JR
1789 u64 *pte, *pte_page;
1790
384de729
JR
1791 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1792 if (!aperture)
1793 return NULL;
1794
1795 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1796 if (!pte) {
cbb9d729 1797 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 1798 GFP_ATOMIC);
384de729
JR
1799 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1800 } else
8c8c143c 1801 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1802
04bfdd84 1803 update_domain(&dom->domain);
8bda3092
JR
1804
1805 return pte;
1806}
1807
431b2a20
JR
1808/*
1809 * This is the generic map function. It maps one 4kb page at paddr to
1810 * the given address in the DMA address space for the domain.
1811 */
680525e0 1812static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1813 unsigned long address,
1814 phys_addr_t paddr,
1815 int direction)
1816{
1817 u64 *pte, __pte;
1818
1819 WARN_ON(address > dom->aperture_size);
1820
1821 paddr &= PAGE_MASK;
1822
8bda3092 1823 pte = dma_ops_get_pte(dom, address);
53812c11 1824 if (!pte)
8fd524b3 1825 return DMA_ERROR_CODE;
cb76c322
JR
1826
1827 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1828
1829 if (direction == DMA_TO_DEVICE)
1830 __pte |= IOMMU_PTE_IR;
1831 else if (direction == DMA_FROM_DEVICE)
1832 __pte |= IOMMU_PTE_IW;
1833 else if (direction == DMA_BIDIRECTIONAL)
1834 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1835
1836 WARN_ON(*pte);
1837
1838 *pte = __pte;
1839
1840 return (dma_addr_t)address;
1841}
1842
431b2a20
JR
1843/*
1844 * The generic unmapping function for on page in the DMA address space.
1845 */
680525e0 1846static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1847 unsigned long address)
1848{
384de729 1849 struct aperture_range *aperture;
cb76c322
JR
1850 u64 *pte;
1851
1852 if (address >= dom->aperture_size)
1853 return;
1854
384de729
JR
1855 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1856 if (!aperture)
1857 return;
1858
1859 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1860 if (!pte)
1861 return;
cb76c322 1862
8c8c143c 1863 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1864
1865 WARN_ON(!*pte);
1866
1867 *pte = 0ULL;
1868}
1869
431b2a20
JR
1870/*
1871 * This function contains common code for mapping of a physically
24f81160
JR
1872 * contiguous memory region into DMA address space. It is used by all
1873 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1874 * Must be called with the domain lock held.
1875 */
cb76c322 1876static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1877 struct dma_ops_domain *dma_dom,
1878 phys_addr_t paddr,
1879 size_t size,
6d4f343f 1880 int dir,
832a90c3
JR
1881 bool align,
1882 u64 dma_mask)
cb76c322
JR
1883{
1884 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1885 dma_addr_t address, start, ret;
cb76c322 1886 unsigned int pages;
6d4f343f 1887 unsigned long align_mask = 0;
cb76c322
JR
1888 int i;
1889
e3c449f5 1890 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1891 paddr &= PAGE_MASK;
1892
8ecaf8f1
JR
1893 INC_STATS_COUNTER(total_map_requests);
1894
c1858976
JR
1895 if (pages > 1)
1896 INC_STATS_COUNTER(cross_page);
1897
6d4f343f
JR
1898 if (align)
1899 align_mask = (1UL << get_order(size)) - 1;
1900
11b83888 1901retry:
832a90c3
JR
1902 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1903 dma_mask);
8fd524b3 1904 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1905 /*
1906 * setting next_address here will let the address
1907 * allocator only scan the new allocated range in the
1908 * first run. This is a small optimization.
1909 */
1910 dma_dom->next_address = dma_dom->aperture_size;
1911
576175c2 1912 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1913 goto out;
1914
1915 /*
af901ca1 1916 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
1917 * allocation again
1918 */
1919 goto retry;
1920 }
cb76c322
JR
1921
1922 start = address;
1923 for (i = 0; i < pages; ++i) {
680525e0 1924 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1925 if (ret == DMA_ERROR_CODE)
53812c11
JR
1926 goto out_unmap;
1927
cb76c322
JR
1928 paddr += PAGE_SIZE;
1929 start += PAGE_SIZE;
1930 }
1931 address += offset;
1932
5774f7c5
JR
1933 ADD_STATS_COUNTER(alloced_io_mem, size);
1934
afa9fdc2 1935 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1936 iommu_flush_tlb(&dma_dom->domain);
1c655773 1937 dma_dom->need_flush = false;
318afd41 1938 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1939 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1940
cb76c322
JR
1941out:
1942 return address;
53812c11
JR
1943
1944out_unmap:
1945
1946 for (--i; i >= 0; --i) {
1947 start -= PAGE_SIZE;
680525e0 1948 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1949 }
1950
1951 dma_ops_free_addresses(dma_dom, address, pages);
1952
8fd524b3 1953 return DMA_ERROR_CODE;
cb76c322
JR
1954}
1955
431b2a20
JR
1956/*
1957 * Does the reverse of the __map_single function. Must be called with
1958 * the domain lock held too
1959 */
cd8c82e8 1960static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1961 dma_addr_t dma_addr,
1962 size_t size,
1963 int dir)
1964{
04e0463e 1965 dma_addr_t flush_addr;
cb76c322
JR
1966 dma_addr_t i, start;
1967 unsigned int pages;
1968
8fd524b3 1969 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1970 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1971 return;
1972
04e0463e 1973 flush_addr = dma_addr;
e3c449f5 1974 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1975 dma_addr &= PAGE_MASK;
1976 start = dma_addr;
1977
1978 for (i = 0; i < pages; ++i) {
680525e0 1979 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1980 start += PAGE_SIZE;
1981 }
1982
5774f7c5
JR
1983 SUB_STATS_COUNTER(alloced_io_mem, size);
1984
cb76c322 1985 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1986
80be308d 1987 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
04e0463e 1988 iommu_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
1989 dma_dom->need_flush = false;
1990 }
cb76c322
JR
1991}
1992
431b2a20
JR
1993/*
1994 * The exported map_single function for dma_ops.
1995 */
51491367
FT
1996static dma_addr_t map_page(struct device *dev, struct page *page,
1997 unsigned long offset, size_t size,
1998 enum dma_data_direction dir,
1999 struct dma_attrs *attrs)
4da70b9e
JR
2000{
2001 unsigned long flags;
4da70b9e 2002 struct protection_domain *domain;
4da70b9e 2003 dma_addr_t addr;
832a90c3 2004 u64 dma_mask;
51491367 2005 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2006
0f2a86f2
JR
2007 INC_STATS_COUNTER(cnt_map_single);
2008
94f6d190
JR
2009 domain = get_domain(dev);
2010 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2011 return (dma_addr_t)paddr;
94f6d190
JR
2012 else if (IS_ERR(domain))
2013 return DMA_ERROR_CODE;
4da70b9e 2014
f99c0f1c
JR
2015 dma_mask = *dev->dma_mask;
2016
4da70b9e 2017 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2018
cd8c82e8 2019 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2020 dma_mask);
8fd524b3 2021 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2022 goto out;
2023
0518a3a4 2024 iommu_flush_complete(domain);
4da70b9e
JR
2025
2026out:
2027 spin_unlock_irqrestore(&domain->lock, flags);
2028
2029 return addr;
2030}
2031
431b2a20
JR
2032/*
2033 * The exported unmap_single function for dma_ops.
2034 */
51491367
FT
2035static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2036 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2037{
2038 unsigned long flags;
4da70b9e 2039 struct protection_domain *domain;
4da70b9e 2040
146a6917
JR
2041 INC_STATS_COUNTER(cnt_unmap_single);
2042
94f6d190
JR
2043 domain = get_domain(dev);
2044 if (IS_ERR(domain))
5b28df6f
JR
2045 return;
2046
4da70b9e
JR
2047 spin_lock_irqsave(&domain->lock, flags);
2048
cd8c82e8 2049 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2050
0518a3a4 2051 iommu_flush_complete(domain);
4da70b9e
JR
2052
2053 spin_unlock_irqrestore(&domain->lock, flags);
2054}
2055
431b2a20
JR
2056/*
2057 * This is a special map_sg function which is used if we should map a
2058 * device which is not handled by an AMD IOMMU in the system.
2059 */
65b050ad
JR
2060static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2061 int nelems, int dir)
2062{
2063 struct scatterlist *s;
2064 int i;
2065
2066 for_each_sg(sglist, s, nelems, i) {
2067 s->dma_address = (dma_addr_t)sg_phys(s);
2068 s->dma_length = s->length;
2069 }
2070
2071 return nelems;
2072}
2073
431b2a20
JR
2074/*
2075 * The exported map_sg function for dma_ops (handles scatter-gather
2076 * lists).
2077 */
65b050ad 2078static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2079 int nelems, enum dma_data_direction dir,
2080 struct dma_attrs *attrs)
65b050ad
JR
2081{
2082 unsigned long flags;
65b050ad 2083 struct protection_domain *domain;
65b050ad
JR
2084 int i;
2085 struct scatterlist *s;
2086 phys_addr_t paddr;
2087 int mapped_elems = 0;
832a90c3 2088 u64 dma_mask;
65b050ad 2089
d03f067a
JR
2090 INC_STATS_COUNTER(cnt_map_sg);
2091
94f6d190
JR
2092 domain = get_domain(dev);
2093 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2094 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2095 else if (IS_ERR(domain))
2096 return 0;
dbcc112e 2097
832a90c3 2098 dma_mask = *dev->dma_mask;
65b050ad 2099
65b050ad
JR
2100 spin_lock_irqsave(&domain->lock, flags);
2101
2102 for_each_sg(sglist, s, nelems, i) {
2103 paddr = sg_phys(s);
2104
cd8c82e8 2105 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2106 paddr, s->length, dir, false,
2107 dma_mask);
65b050ad
JR
2108
2109 if (s->dma_address) {
2110 s->dma_length = s->length;
2111 mapped_elems++;
2112 } else
2113 goto unmap;
65b050ad
JR
2114 }
2115
0518a3a4 2116 iommu_flush_complete(domain);
65b050ad
JR
2117
2118out:
2119 spin_unlock_irqrestore(&domain->lock, flags);
2120
2121 return mapped_elems;
2122unmap:
2123 for_each_sg(sglist, s, mapped_elems, i) {
2124 if (s->dma_address)
cd8c82e8 2125 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2126 s->dma_length, dir);
2127 s->dma_address = s->dma_length = 0;
2128 }
2129
2130 mapped_elems = 0;
2131
2132 goto out;
2133}
2134
431b2a20
JR
2135/*
2136 * The exported map_sg function for dma_ops (handles scatter-gather
2137 * lists).
2138 */
65b050ad 2139static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2140 int nelems, enum dma_data_direction dir,
2141 struct dma_attrs *attrs)
65b050ad
JR
2142{
2143 unsigned long flags;
65b050ad
JR
2144 struct protection_domain *domain;
2145 struct scatterlist *s;
65b050ad
JR
2146 int i;
2147
55877a6b
JR
2148 INC_STATS_COUNTER(cnt_unmap_sg);
2149
94f6d190
JR
2150 domain = get_domain(dev);
2151 if (IS_ERR(domain))
5b28df6f
JR
2152 return;
2153
65b050ad
JR
2154 spin_lock_irqsave(&domain->lock, flags);
2155
2156 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2157 __unmap_single(domain->priv, s->dma_address,
65b050ad 2158 s->dma_length, dir);
65b050ad
JR
2159 s->dma_address = s->dma_length = 0;
2160 }
2161
0518a3a4 2162 iommu_flush_complete(domain);
65b050ad
JR
2163
2164 spin_unlock_irqrestore(&domain->lock, flags);
2165}
2166
431b2a20
JR
2167/*
2168 * The exported alloc_coherent function for dma_ops.
2169 */
5d8b53cf
JR
2170static void *alloc_coherent(struct device *dev, size_t size,
2171 dma_addr_t *dma_addr, gfp_t flag)
2172{
2173 unsigned long flags;
2174 void *virt_addr;
5d8b53cf 2175 struct protection_domain *domain;
5d8b53cf 2176 phys_addr_t paddr;
832a90c3 2177 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2178
c8f0fb36
JR
2179 INC_STATS_COUNTER(cnt_alloc_coherent);
2180
94f6d190
JR
2181 domain = get_domain(dev);
2182 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2183 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2184 *dma_addr = __pa(virt_addr);
2185 return virt_addr;
94f6d190
JR
2186 } else if (IS_ERR(domain))
2187 return NULL;
5d8b53cf 2188
f99c0f1c
JR
2189 dma_mask = dev->coherent_dma_mask;
2190 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2191 flag |= __GFP_ZERO;
5d8b53cf
JR
2192
2193 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2194 if (!virt_addr)
b25ae679 2195 return NULL;
5d8b53cf 2196
5d8b53cf
JR
2197 paddr = virt_to_phys(virt_addr);
2198
832a90c3
JR
2199 if (!dma_mask)
2200 dma_mask = *dev->dma_mask;
2201
5d8b53cf
JR
2202 spin_lock_irqsave(&domain->lock, flags);
2203
cd8c82e8 2204 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2205 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2206
8fd524b3 2207 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2208 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2209 goto out_free;
367d04c4 2210 }
5d8b53cf 2211
0518a3a4 2212 iommu_flush_complete(domain);
5d8b53cf 2213
5d8b53cf
JR
2214 spin_unlock_irqrestore(&domain->lock, flags);
2215
2216 return virt_addr;
5b28df6f
JR
2217
2218out_free:
2219
2220 free_pages((unsigned long)virt_addr, get_order(size));
2221
2222 return NULL;
5d8b53cf
JR
2223}
2224
431b2a20
JR
2225/*
2226 * The exported free_coherent function for dma_ops.
431b2a20 2227 */
5d8b53cf
JR
2228static void free_coherent(struct device *dev, size_t size,
2229 void *virt_addr, dma_addr_t dma_addr)
2230{
2231 unsigned long flags;
5d8b53cf 2232 struct protection_domain *domain;
5d8b53cf 2233
5d31ee7e
JR
2234 INC_STATS_COUNTER(cnt_free_coherent);
2235
94f6d190
JR
2236 domain = get_domain(dev);
2237 if (IS_ERR(domain))
5b28df6f
JR
2238 goto free_mem;
2239
5d8b53cf
JR
2240 spin_lock_irqsave(&domain->lock, flags);
2241
cd8c82e8 2242 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2243
0518a3a4 2244 iommu_flush_complete(domain);
5d8b53cf
JR
2245
2246 spin_unlock_irqrestore(&domain->lock, flags);
2247
2248free_mem:
2249 free_pages((unsigned long)virt_addr, get_order(size));
2250}
2251
b39ba6ad
JR
2252/*
2253 * This function is called by the DMA layer to find out if we can handle a
2254 * particular device. It is part of the dma_ops.
2255 */
2256static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2257{
420aef8a 2258 return check_device(dev);
b39ba6ad
JR
2259}
2260
c432f3df 2261/*
431b2a20
JR
2262 * The function for pre-allocating protection domains.
2263 *
c432f3df
JR
2264 * If the driver core informs the DMA layer if a driver grabs a device
2265 * we don't need to preallocate the protection domains anymore.
2266 * For now we have to.
2267 */
0e93dd88 2268static void prealloc_protection_domains(void)
c432f3df
JR
2269{
2270 struct pci_dev *dev = NULL;
2271 struct dma_ops_domain *dma_dom;
98fc5a69 2272 u16 devid;
c432f3df 2273
d18c69d3 2274 for_each_pci_dev(dev) {
98fc5a69
JR
2275
2276 /* Do we handle this device? */
2277 if (!check_device(&dev->dev))
c432f3df 2278 continue;
98fc5a69
JR
2279
2280 /* Is there already any domain for it? */
15898bbc 2281 if (domain_for_device(&dev->dev))
c432f3df 2282 continue;
98fc5a69
JR
2283
2284 devid = get_device_id(&dev->dev);
2285
87a64d52 2286 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2287 if (!dma_dom)
2288 continue;
2289 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2290 dma_dom->target_dev = devid;
2291
15898bbc 2292 attach_device(&dev->dev, &dma_dom->domain);
be831297 2293
bd60b735 2294 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2295 }
2296}
2297
160c1d8e 2298static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2299 .alloc_coherent = alloc_coherent,
2300 .free_coherent = free_coherent,
51491367
FT
2301 .map_page = map_page,
2302 .unmap_page = unmap_page,
6631ee9d
JR
2303 .map_sg = map_sg,
2304 .unmap_sg = unmap_sg,
b39ba6ad 2305 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2306};
2307
431b2a20
JR
2308/*
2309 * The function which clues the AMD IOMMU driver into dma_ops.
2310 */
f5325094
JR
2311
2312void __init amd_iommu_init_api(void)
2313{
2314 register_iommu(&amd_iommu_ops);
2315}
2316
6631ee9d
JR
2317int __init amd_iommu_init_dma_ops(void)
2318{
2319 struct amd_iommu *iommu;
6631ee9d
JR
2320 int ret;
2321
431b2a20
JR
2322 /*
2323 * first allocate a default protection domain for every IOMMU we
2324 * found in the system. Devices not assigned to any other
2325 * protection domain will be assigned to the default one.
2326 */
3bd22172 2327 for_each_iommu(iommu) {
87a64d52 2328 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2329 if (iommu->default_dom == NULL)
2330 return -ENOMEM;
e2dc14a2 2331 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2332 ret = iommu_init_unity_mappings(iommu);
2333 if (ret)
2334 goto free_domains;
2335 }
2336
431b2a20 2337 /*
8793abeb 2338 * Pre-allocate the protection domains for each device.
431b2a20 2339 */
8793abeb 2340 prealloc_protection_domains();
6631ee9d
JR
2341
2342 iommu_detected = 1;
75f1cdf1 2343 swiotlb = 0;
6631ee9d 2344
431b2a20 2345 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2346 dma_ops = &amd_iommu_dma_ops;
2347
7f26508b
JR
2348 amd_iommu_stats_init();
2349
6631ee9d
JR
2350 return 0;
2351
2352free_domains:
2353
3bd22172 2354 for_each_iommu(iommu) {
6631ee9d
JR
2355 if (iommu->default_dom)
2356 dma_ops_domain_free(iommu->default_dom);
2357 }
2358
2359 return ret;
2360}
6d98cd80
JR
2361
2362/*****************************************************************************
2363 *
2364 * The following functions belong to the exported interface of AMD IOMMU
2365 *
2366 * This interface allows access to lower level functions of the IOMMU
2367 * like protection domain handling and assignement of devices to domains
2368 * which is not possible with the dma_ops interface.
2369 *
2370 *****************************************************************************/
2371
6d98cd80
JR
2372static void cleanup_domain(struct protection_domain *domain)
2373{
492667da 2374 struct iommu_dev_data *dev_data, *next;
6d98cd80 2375 unsigned long flags;
6d98cd80
JR
2376
2377 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2378
492667da
JR
2379 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2380 struct device *dev = dev_data->dev;
2381
04e856c0 2382 __detach_device(dev);
492667da
JR
2383 atomic_set(&dev_data->bind, 0);
2384 }
6d98cd80
JR
2385
2386 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2387}
2388
2650815f
JR
2389static void protection_domain_free(struct protection_domain *domain)
2390{
2391 if (!domain)
2392 return;
2393
aeb26f55
JR
2394 del_domain_from_list(domain);
2395
2650815f
JR
2396 if (domain->id)
2397 domain_id_free(domain->id);
2398
2399 kfree(domain);
2400}
2401
2402static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2403{
2404 struct protection_domain *domain;
2405
2406 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2407 if (!domain)
2650815f 2408 return NULL;
c156e347
JR
2409
2410 spin_lock_init(&domain->lock);
5d214fe6 2411 mutex_init(&domain->api_lock);
c156e347
JR
2412 domain->id = domain_id_alloc();
2413 if (!domain->id)
2650815f 2414 goto out_err;
7c392cbe 2415 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2416
aeb26f55
JR
2417 add_domain_to_list(domain);
2418
2650815f
JR
2419 return domain;
2420
2421out_err:
2422 kfree(domain);
2423
2424 return NULL;
2425}
2426
2427static int amd_iommu_domain_init(struct iommu_domain *dom)
2428{
2429 struct protection_domain *domain;
2430
2431 domain = protection_domain_alloc();
2432 if (!domain)
c156e347 2433 goto out_free;
2650815f
JR
2434
2435 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2436 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2437 if (!domain->pt_root)
2438 goto out_free;
2439
2440 dom->priv = domain;
2441
2442 return 0;
2443
2444out_free:
2650815f 2445 protection_domain_free(domain);
c156e347
JR
2446
2447 return -ENOMEM;
2448}
2449
98383fc3
JR
2450static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2451{
2452 struct protection_domain *domain = dom->priv;
2453
2454 if (!domain)
2455 return;
2456
2457 if (domain->dev_cnt > 0)
2458 cleanup_domain(domain);
2459
2460 BUG_ON(domain->dev_cnt != 0);
2461
2462 free_pagetable(domain);
2463
8b408fe4 2464 protection_domain_free(domain);
98383fc3
JR
2465
2466 dom->priv = NULL;
2467}
2468
684f2888
JR
2469static void amd_iommu_detach_device(struct iommu_domain *dom,
2470 struct device *dev)
2471{
657cbb6b 2472 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2473 struct amd_iommu *iommu;
684f2888
JR
2474 u16 devid;
2475
98fc5a69 2476 if (!check_device(dev))
684f2888
JR
2477 return;
2478
98fc5a69 2479 devid = get_device_id(dev);
684f2888 2480
657cbb6b 2481 if (dev_data->domain != NULL)
15898bbc 2482 detach_device(dev);
684f2888
JR
2483
2484 iommu = amd_iommu_rlookup_table[devid];
2485 if (!iommu)
2486 return;
2487
3fa43655 2488 iommu_flush_device(dev);
684f2888
JR
2489 iommu_completion_wait(iommu);
2490}
2491
01106066
JR
2492static int amd_iommu_attach_device(struct iommu_domain *dom,
2493 struct device *dev)
2494{
2495 struct protection_domain *domain = dom->priv;
657cbb6b 2496 struct iommu_dev_data *dev_data;
01106066 2497 struct amd_iommu *iommu;
15898bbc 2498 int ret;
01106066
JR
2499 u16 devid;
2500
98fc5a69 2501 if (!check_device(dev))
01106066
JR
2502 return -EINVAL;
2503
657cbb6b
JR
2504 dev_data = dev->archdata.iommu;
2505
98fc5a69 2506 devid = get_device_id(dev);
01106066
JR
2507
2508 iommu = amd_iommu_rlookup_table[devid];
2509 if (!iommu)
2510 return -EINVAL;
2511
657cbb6b 2512 if (dev_data->domain)
15898bbc 2513 detach_device(dev);
01106066 2514
15898bbc 2515 ret = attach_device(dev, domain);
01106066
JR
2516
2517 iommu_completion_wait(iommu);
2518
15898bbc 2519 return ret;
01106066
JR
2520}
2521
468e2366
JR
2522static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2523 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2524{
468e2366 2525 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2526 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2527 int prot = 0;
2528 int ret;
2529
2530 if (iommu_prot & IOMMU_READ)
2531 prot |= IOMMU_PROT_IR;
2532 if (iommu_prot & IOMMU_WRITE)
2533 prot |= IOMMU_PROT_IW;
2534
5d214fe6 2535 mutex_lock(&domain->api_lock);
795e74f7 2536 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2537 mutex_unlock(&domain->api_lock);
2538
795e74f7 2539 return ret;
c6229ca6
JR
2540}
2541
468e2366
JR
2542static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2543 int gfp_order)
eb74ff6c 2544{
eb74ff6c 2545 struct protection_domain *domain = dom->priv;
468e2366 2546 unsigned long page_size, unmap_size;
eb74ff6c 2547
468e2366 2548 page_size = 0x1000UL << gfp_order;
eb74ff6c 2549
5d214fe6 2550 mutex_lock(&domain->api_lock);
468e2366 2551 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2552 mutex_unlock(&domain->api_lock);
eb74ff6c 2553
601367d7 2554 iommu_flush_tlb_pde(domain);
5d214fe6 2555
468e2366 2556 return get_order(unmap_size);
eb74ff6c
JR
2557}
2558
645c4c8d
JR
2559static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2560 unsigned long iova)
2561{
2562 struct protection_domain *domain = dom->priv;
f03152bb 2563 unsigned long offset_mask;
645c4c8d 2564 phys_addr_t paddr;
f03152bb 2565 u64 *pte, __pte;
645c4c8d 2566
24cd7723 2567 pte = fetch_pte(domain, iova);
645c4c8d 2568
a6d41a40 2569 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2570 return 0;
2571
f03152bb
JR
2572 if (PM_PTE_LEVEL(*pte) == 0)
2573 offset_mask = PAGE_SIZE - 1;
2574 else
2575 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2576
2577 __pte = *pte & PM_ADDR_MASK;
2578 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2579
2580 return paddr;
2581}
2582
dbb9fd86
SY
2583static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2584 unsigned long cap)
2585{
80a506b8
JR
2586 switch (cap) {
2587 case IOMMU_CAP_CACHE_COHERENCY:
2588 return 1;
2589 }
2590
dbb9fd86
SY
2591 return 0;
2592}
2593
26961efe
JR
2594static struct iommu_ops amd_iommu_ops = {
2595 .domain_init = amd_iommu_domain_init,
2596 .domain_destroy = amd_iommu_domain_destroy,
2597 .attach_dev = amd_iommu_attach_device,
2598 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2599 .map = amd_iommu_map,
2600 .unmap = amd_iommu_unmap,
26961efe 2601 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2602 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2603};
2604
0feae533
JR
2605/*****************************************************************************
2606 *
2607 * The next functions do a basic initialization of IOMMU for pass through
2608 * mode
2609 *
2610 * In passthrough mode the IOMMU is initialized and enabled but not used for
2611 * DMA-API translation.
2612 *
2613 *****************************************************************************/
2614
2615int __init amd_iommu_init_passthrough(void)
2616{
15898bbc 2617 struct amd_iommu *iommu;
0feae533 2618 struct pci_dev *dev = NULL;
15898bbc 2619 u16 devid;
0feae533 2620
af901ca1 2621 /* allocate passthrough domain */
0feae533
JR
2622 pt_domain = protection_domain_alloc();
2623 if (!pt_domain)
2624 return -ENOMEM;
2625
2626 pt_domain->mode |= PAGE_MODE_NONE;
2627
6c54aabd 2628 for_each_pci_dev(dev) {
98fc5a69 2629 if (!check_device(&dev->dev))
0feae533
JR
2630 continue;
2631
98fc5a69
JR
2632 devid = get_device_id(&dev->dev);
2633
15898bbc 2634 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2635 if (!iommu)
2636 continue;
2637
15898bbc 2638 attach_device(&dev->dev, pt_domain);
0feae533
JR
2639 }
2640
2641 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2642
2643 return 0;
2644}