Disallow gcc versions 3.{0,1}
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
1d9b16d1 27#include <asm/gart.h>
b6c02715 28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
b6c02715
JR
30
31#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
32
136f78a1
JR
33#define EXIT_LOOP_COUNT 10000000
34
b6c02715
JR
35static DEFINE_RWLOCK(amd_iommu_devtable_lock);
36
bd60b735
JR
37/* A list of preallocated protection domains */
38static LIST_HEAD(iommu_pd_list);
39static DEFINE_SPINLOCK(iommu_pd_list_lock);
40
431b2a20
JR
41/*
42 * general struct to manage commands send to an IOMMU
43 */
d6449536 44struct iommu_cmd {
b6c02715
JR
45 u32 data[4];
46};
47
bd0e5211
JR
48static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
49 struct unity_map_entry *e);
50
431b2a20 51/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
52static int iommu_has_npcache(struct amd_iommu *iommu)
53{
ae9b9403 54 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
55}
56
a80dc3e0
JR
57/****************************************************************************
58 *
59 * Interrupt handling functions
60 *
61 ****************************************************************************/
62
90008ee4
JR
63static void iommu_print_event(void *__evt)
64{
65 u32 *event = __evt;
66 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
67 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
68 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
69 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
70 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
71
72 printk(KERN_ERR "AMD IOMMU: Event logged [");
73
74 switch (type) {
75 case EVENT_TYPE_ILL_DEV:
76 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
77 "address=0x%016llx flags=0x%04x]\n",
78 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
79 address, flags);
80 break;
81 case EVENT_TYPE_IO_FAULT:
82 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
83 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
84 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
85 domid, address, flags);
86 break;
87 case EVENT_TYPE_DEV_TAB_ERR:
88 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
89 "address=0x%016llx flags=0x%04x]\n",
90 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
91 address, flags);
92 break;
93 case EVENT_TYPE_PAGE_TAB_ERR:
94 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
95 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
96 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
97 domid, address, flags);
98 break;
99 case EVENT_TYPE_ILL_CMD:
100 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
101 break;
102 case EVENT_TYPE_CMD_HARD_ERR:
103 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
104 "flags=0x%04x]\n", address, flags);
105 break;
106 case EVENT_TYPE_IOTLB_INV_TO:
107 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
108 "address=0x%016llx]\n",
109 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
110 address);
111 break;
112 case EVENT_TYPE_INV_DEV_REQ:
113 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
114 "address=0x%016llx flags=0x%04x]\n",
115 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
116 address, flags);
117 break;
118 default:
119 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
120 }
121}
122
123static void iommu_poll_events(struct amd_iommu *iommu)
124{
125 u32 head, tail;
126 unsigned long flags;
127
128 spin_lock_irqsave(&iommu->lock, flags);
129
130 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
131 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
132
133 while (head != tail) {
134 iommu_print_event(iommu->evt_buf + head);
135 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
136 }
137
138 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
139
140 spin_unlock_irqrestore(&iommu->lock, flags);
141}
142
a80dc3e0
JR
143irqreturn_t amd_iommu_int_handler(int irq, void *data)
144{
90008ee4
JR
145 struct amd_iommu *iommu;
146
147 list_for_each_entry(iommu, &amd_iommu_list, list)
148 iommu_poll_events(iommu);
149
150 return IRQ_HANDLED;
a80dc3e0
JR
151}
152
431b2a20
JR
153/****************************************************************************
154 *
155 * IOMMU command queuing functions
156 *
157 ****************************************************************************/
158
159/*
160 * Writes the command to the IOMMUs command buffer and informs the
161 * hardware about the new command. Must be called with iommu->lock held.
162 */
d6449536 163static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
164{
165 u32 tail, head;
166 u8 *target;
167
168 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 169 target = iommu->cmd_buf + tail;
a19ae1ec
JR
170 memcpy_toio(target, cmd, sizeof(*cmd));
171 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
172 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
173 if (tail == head)
174 return -ENOMEM;
175 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
176
177 return 0;
178}
179
431b2a20
JR
180/*
181 * General queuing function for commands. Takes iommu->lock and calls
182 * __iommu_queue_command().
183 */
d6449536 184static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
185{
186 unsigned long flags;
187 int ret;
188
189 spin_lock_irqsave(&iommu->lock, flags);
190 ret = __iommu_queue_command(iommu, cmd);
09ee17eb
JR
191 if (!ret)
192 iommu->need_sync = 1;
a19ae1ec
JR
193 spin_unlock_irqrestore(&iommu->lock, flags);
194
195 return ret;
196}
197
431b2a20
JR
198/*
199 * This function is called whenever we need to ensure that the IOMMU has
200 * completed execution of all commands we sent. It sends a
201 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
202 * us about that by writing a value to a physical address we pass with
203 * the command.
204 */
a19ae1ec
JR
205static int iommu_completion_wait(struct amd_iommu *iommu)
206{
7e4f88da 207 int ret = 0, ready = 0;
519c31ba 208 unsigned status = 0;
d6449536 209 struct iommu_cmd cmd;
7e4f88da 210 unsigned long flags, i = 0;
a19ae1ec
JR
211
212 memset(&cmd, 0, sizeof(cmd));
519c31ba 213 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
214 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
215
7e4f88da
JR
216 spin_lock_irqsave(&iommu->lock, flags);
217
09ee17eb
JR
218 if (!iommu->need_sync)
219 goto out;
220
221 iommu->need_sync = 0;
222
7e4f88da 223 ret = __iommu_queue_command(iommu, &cmd);
a19ae1ec
JR
224
225 if (ret)
7e4f88da 226 goto out;
a19ae1ec 227
136f78a1
JR
228 while (!ready && (i < EXIT_LOOP_COUNT)) {
229 ++i;
519c31ba
JR
230 /* wait for the bit to become one */
231 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
232 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
233 }
234
519c31ba
JR
235 /* set bit back to zero */
236 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
237 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
238
84df8175
JR
239 if (unlikely(i == EXIT_LOOP_COUNT))
240 panic("AMD IOMMU: Completion wait loop failed\n");
241
7e4f88da
JR
242out:
243 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
244
245 return 0;
246}
247
431b2a20
JR
248/*
249 * Command send function for invalidating a device table entry
250 */
a19ae1ec
JR
251static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
252{
d6449536 253 struct iommu_cmd cmd;
ee2fa743 254 int ret;
a19ae1ec
JR
255
256 BUG_ON(iommu == NULL);
257
258 memset(&cmd, 0, sizeof(cmd));
259 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
260 cmd.data[0] = devid;
261
ee2fa743
JR
262 ret = iommu_queue_command(iommu, &cmd);
263
ee2fa743 264 return ret;
a19ae1ec
JR
265}
266
431b2a20
JR
267/*
268 * Generic command send function for invalidaing TLB entries
269 */
a19ae1ec
JR
270static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
271 u64 address, u16 domid, int pde, int s)
272{
d6449536 273 struct iommu_cmd cmd;
ee2fa743 274 int ret;
a19ae1ec
JR
275
276 memset(&cmd, 0, sizeof(cmd));
277 address &= PAGE_MASK;
278 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
279 cmd.data[1] |= domid;
8a456695 280 cmd.data[2] = lower_32_bits(address);
8ea80d78 281 cmd.data[3] = upper_32_bits(address);
431b2a20 282 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 283 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 284 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
285 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
286
ee2fa743
JR
287 ret = iommu_queue_command(iommu, &cmd);
288
ee2fa743 289 return ret;
a19ae1ec
JR
290}
291
431b2a20
JR
292/*
293 * TLB invalidation function which is called from the mapping functions.
294 * It invalidates a single PTE if the range to flush is within a single
295 * page. Otherwise it flushes the whole TLB of the IOMMU.
296 */
a19ae1ec
JR
297static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
298 u64 address, size_t size)
299{
999ba417 300 int s = 0;
e3c449f5 301 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
302
303 address &= PAGE_MASK;
304
999ba417
JR
305 if (pages > 1) {
306 /*
307 * If we have to flush more than one page, flush all
308 * TLB entries for this domain
309 */
310 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
311 s = 1;
a19ae1ec
JR
312 }
313
999ba417
JR
314 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
315
a19ae1ec
JR
316 return 0;
317}
b6c02715 318
1c655773
JR
319/* Flush the whole IO/TLB for a given protection domain */
320static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
321{
322 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
323
324 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
325}
326
431b2a20
JR
327/****************************************************************************
328 *
329 * The functions below are used the create the page table mappings for
330 * unity mapped regions.
331 *
332 ****************************************************************************/
333
334/*
335 * Generic mapping functions. It maps a physical address into a DMA
336 * address space. It allocates the page table pages if necessary.
337 * In the future it can be extended to a generic mapping function
338 * supporting all features of AMD IOMMU page tables like level skipping
339 * and full 64 bit address spaces.
340 */
bd0e5211
JR
341static int iommu_map(struct protection_domain *dom,
342 unsigned long bus_addr,
343 unsigned long phys_addr,
344 int prot)
345{
346 u64 __pte, *pte, *page;
347
348 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 349 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
350
351 /* only support 512GB address spaces for now */
352 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
353 return -EINVAL;
354
355 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
356
357 if (!IOMMU_PTE_PRESENT(*pte)) {
358 page = (u64 *)get_zeroed_page(GFP_KERNEL);
359 if (!page)
360 return -ENOMEM;
361 *pte = IOMMU_L2_PDE(virt_to_phys(page));
362 }
363
364 pte = IOMMU_PTE_PAGE(*pte);
365 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
366
367 if (!IOMMU_PTE_PRESENT(*pte)) {
368 page = (u64 *)get_zeroed_page(GFP_KERNEL);
369 if (!page)
370 return -ENOMEM;
371 *pte = IOMMU_L1_PDE(virt_to_phys(page));
372 }
373
374 pte = IOMMU_PTE_PAGE(*pte);
375 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
376
377 if (IOMMU_PTE_PRESENT(*pte))
378 return -EBUSY;
379
380 __pte = phys_addr | IOMMU_PTE_P;
381 if (prot & IOMMU_PROT_IR)
382 __pte |= IOMMU_PTE_IR;
383 if (prot & IOMMU_PROT_IW)
384 __pte |= IOMMU_PTE_IW;
385
386 *pte = __pte;
387
388 return 0;
389}
390
431b2a20
JR
391/*
392 * This function checks if a specific unity mapping entry is needed for
393 * this specific IOMMU.
394 */
bd0e5211
JR
395static int iommu_for_unity_map(struct amd_iommu *iommu,
396 struct unity_map_entry *entry)
397{
398 u16 bdf, i;
399
400 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
401 bdf = amd_iommu_alias_table[i];
402 if (amd_iommu_rlookup_table[bdf] == iommu)
403 return 1;
404 }
405
406 return 0;
407}
408
431b2a20
JR
409/*
410 * Init the unity mappings for a specific IOMMU in the system
411 *
412 * Basically iterates over all unity mapping entries and applies them to
413 * the default domain DMA of that IOMMU if necessary.
414 */
bd0e5211
JR
415static int iommu_init_unity_mappings(struct amd_iommu *iommu)
416{
417 struct unity_map_entry *entry;
418 int ret;
419
420 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
421 if (!iommu_for_unity_map(iommu, entry))
422 continue;
423 ret = dma_ops_unity_map(iommu->default_dom, entry);
424 if (ret)
425 return ret;
426 }
427
428 return 0;
429}
430
431b2a20
JR
431/*
432 * This function actually applies the mapping to the page table of the
433 * dma_ops domain.
434 */
bd0e5211
JR
435static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
436 struct unity_map_entry *e)
437{
438 u64 addr;
439 int ret;
440
441 for (addr = e->address_start; addr < e->address_end;
442 addr += PAGE_SIZE) {
443 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
444 if (ret)
445 return ret;
446 /*
447 * if unity mapping is in aperture range mark the page
448 * as allocated in the aperture
449 */
450 if (addr < dma_dom->aperture_size)
451 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
452 }
453
454 return 0;
455}
456
431b2a20
JR
457/*
458 * Inits the unity mappings required for a specific device
459 */
bd0e5211
JR
460static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
461 u16 devid)
462{
463 struct unity_map_entry *e;
464 int ret;
465
466 list_for_each_entry(e, &amd_iommu_unity_map, list) {
467 if (!(devid >= e->devid_start && devid <= e->devid_end))
468 continue;
469 ret = dma_ops_unity_map(dma_dom, e);
470 if (ret)
471 return ret;
472 }
473
474 return 0;
475}
476
431b2a20
JR
477/****************************************************************************
478 *
479 * The next functions belong to the address allocator for the dma_ops
480 * interface functions. They work like the allocators in the other IOMMU
481 * drivers. Its basically a bitmap which marks the allocated pages in
482 * the aperture. Maybe it could be enhanced in the future to a more
483 * efficient allocator.
484 *
485 ****************************************************************************/
d3086444 486
431b2a20
JR
487/*
488 * The address allocator core function.
489 *
490 * called with domain->lock held
491 */
d3086444
JR
492static unsigned long dma_ops_alloc_addresses(struct device *dev,
493 struct dma_ops_domain *dom,
6d4f343f 494 unsigned int pages,
832a90c3
JR
495 unsigned long align_mask,
496 u64 dma_mask)
d3086444 497{
40becd8d 498 unsigned long limit;
d3086444 499 unsigned long address;
d3086444
JR
500 unsigned long boundary_size;
501
502 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
503 PAGE_SIZE) >> PAGE_SHIFT;
40becd8d
FT
504 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
505 dma_mask >> PAGE_SHIFT);
d3086444 506
1c655773 507 if (dom->next_bit >= limit) {
d3086444 508 dom->next_bit = 0;
1c655773
JR
509 dom->need_flush = true;
510 }
d3086444
JR
511
512 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
6d4f343f 513 0 , boundary_size, align_mask);
1c655773 514 if (address == -1) {
d3086444 515 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
6d4f343f 516 0, boundary_size, align_mask);
1c655773
JR
517 dom->need_flush = true;
518 }
d3086444
JR
519
520 if (likely(address != -1)) {
d3086444
JR
521 dom->next_bit = address + pages;
522 address <<= PAGE_SHIFT;
523 } else
524 address = bad_dma_address;
525
526 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
527
528 return address;
529}
530
431b2a20
JR
531/*
532 * The address free function.
533 *
534 * called with domain->lock held
535 */
d3086444
JR
536static void dma_ops_free_addresses(struct dma_ops_domain *dom,
537 unsigned long address,
538 unsigned int pages)
539{
540 address >>= PAGE_SHIFT;
541 iommu_area_free(dom->bitmap, address, pages);
80be308d 542
8501c45c 543 if (address >= dom->next_bit)
80be308d 544 dom->need_flush = true;
d3086444
JR
545}
546
431b2a20
JR
547/****************************************************************************
548 *
549 * The next functions belong to the domain allocation. A domain is
550 * allocated for every IOMMU as the default domain. If device isolation
551 * is enabled, every device get its own domain. The most important thing
552 * about domains is the page table mapping the DMA address space they
553 * contain.
554 *
555 ****************************************************************************/
556
ec487d1a
JR
557static u16 domain_id_alloc(void)
558{
559 unsigned long flags;
560 int id;
561
562 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
563 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
564 BUG_ON(id == 0);
565 if (id > 0 && id < MAX_DOMAIN_ID)
566 __set_bit(id, amd_iommu_pd_alloc_bitmap);
567 else
568 id = 0;
569 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
570
571 return id;
572}
573
431b2a20
JR
574/*
575 * Used to reserve address ranges in the aperture (e.g. for exclusion
576 * ranges.
577 */
ec487d1a
JR
578static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
579 unsigned long start_page,
580 unsigned int pages)
581{
582 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
583
584 if (start_page + pages > last_page)
585 pages = last_page - start_page;
586
d26dbc5c 587 iommu_area_reserve(dom->bitmap, start_page, pages);
ec487d1a
JR
588}
589
590static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
591{
592 int i, j;
593 u64 *p1, *p2, *p3;
594
595 p1 = dma_dom->domain.pt_root;
596
597 if (!p1)
598 return;
599
600 for (i = 0; i < 512; ++i) {
601 if (!IOMMU_PTE_PRESENT(p1[i]))
602 continue;
603
604 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 605 for (j = 0; j < 512; ++j) {
ec487d1a
JR
606 if (!IOMMU_PTE_PRESENT(p2[j]))
607 continue;
608 p3 = IOMMU_PTE_PAGE(p2[j]);
609 free_page((unsigned long)p3);
610 }
611
612 free_page((unsigned long)p2);
613 }
614
615 free_page((unsigned long)p1);
616}
617
431b2a20
JR
618/*
619 * Free a domain, only used if something went wrong in the
620 * allocation path and we need to free an already allocated page table
621 */
ec487d1a
JR
622static void dma_ops_domain_free(struct dma_ops_domain *dom)
623{
624 if (!dom)
625 return;
626
627 dma_ops_free_pagetable(dom);
628
629 kfree(dom->pte_pages);
630
631 kfree(dom->bitmap);
632
633 kfree(dom);
634}
635
431b2a20
JR
636/*
637 * Allocates a new protection domain usable for the dma_ops functions.
638 * It also intializes the page table and the address allocator data
639 * structures required for the dma_ops interface
640 */
ec487d1a
JR
641static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
642 unsigned order)
643{
644 struct dma_ops_domain *dma_dom;
645 unsigned i, num_pte_pages;
646 u64 *l2_pde;
647 u64 address;
648
649 /*
650 * Currently the DMA aperture must be between 32 MB and 1GB in size
651 */
652 if ((order < 25) || (order > 30))
653 return NULL;
654
655 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
656 if (!dma_dom)
657 return NULL;
658
659 spin_lock_init(&dma_dom->domain.lock);
660
661 dma_dom->domain.id = domain_id_alloc();
662 if (dma_dom->domain.id == 0)
663 goto free_dma_dom;
664 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
665 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
666 dma_dom->domain.priv = dma_dom;
667 if (!dma_dom->domain.pt_root)
668 goto free_dma_dom;
669 dma_dom->aperture_size = (1ULL << order);
670 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
671 GFP_KERNEL);
672 if (!dma_dom->bitmap)
673 goto free_dma_dom;
674 /*
675 * mark the first page as allocated so we never return 0 as
676 * a valid dma-address. So we can use 0 as error value
677 */
678 dma_dom->bitmap[0] = 1;
679 dma_dom->next_bit = 0;
680
1c655773 681 dma_dom->need_flush = false;
bd60b735 682 dma_dom->target_dev = 0xffff;
1c655773 683
431b2a20 684 /* Intialize the exclusion range if necessary */
ec487d1a
JR
685 if (iommu->exclusion_start &&
686 iommu->exclusion_start < dma_dom->aperture_size) {
687 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
e3c449f5
JR
688 int pages = iommu_num_pages(iommu->exclusion_start,
689 iommu->exclusion_length,
690 PAGE_SIZE);
ec487d1a
JR
691 dma_ops_reserve_addresses(dma_dom, startpage, pages);
692 }
693
431b2a20
JR
694 /*
695 * At the last step, build the page tables so we don't need to
696 * allocate page table pages in the dma_ops mapping/unmapping
697 * path.
698 */
ec487d1a
JR
699 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
700 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
701 GFP_KERNEL);
702 if (!dma_dom->pte_pages)
703 goto free_dma_dom;
704
705 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
706 if (l2_pde == NULL)
707 goto free_dma_dom;
708
709 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
710
711 for (i = 0; i < num_pte_pages; ++i) {
712 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
713 if (!dma_dom->pte_pages[i])
714 goto free_dma_dom;
715 address = virt_to_phys(dma_dom->pte_pages[i]);
716 l2_pde[i] = IOMMU_L1_PDE(address);
717 }
718
719 return dma_dom;
720
721free_dma_dom:
722 dma_ops_domain_free(dma_dom);
723
724 return NULL;
725}
726
431b2a20
JR
727/*
728 * Find out the protection domain structure for a given PCI device. This
729 * will give us the pointer to the page table root for example.
730 */
b20ac0d4
JR
731static struct protection_domain *domain_for_device(u16 devid)
732{
733 struct protection_domain *dom;
734 unsigned long flags;
735
736 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
737 dom = amd_iommu_pd_table[devid];
738 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
739
740 return dom;
741}
742
431b2a20
JR
743/*
744 * If a device is not yet associated with a domain, this function does
745 * assigns it visible for the hardware
746 */
b20ac0d4
JR
747static void set_device_domain(struct amd_iommu *iommu,
748 struct protection_domain *domain,
749 u16 devid)
750{
751 unsigned long flags;
752
753 u64 pte_root = virt_to_phys(domain->pt_root);
754
38ddf41b
JR
755 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
756 << DEV_ENTRY_MODE_SHIFT;
757 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
758
759 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
760 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
761 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
762 amd_iommu_dev_table[devid].data[2] = domain->id;
763
764 amd_iommu_pd_table[devid] = domain;
765 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
766
767 iommu_queue_inv_dev_entry(iommu, devid);
b20ac0d4
JR
768}
769
431b2a20
JR
770/*****************************************************************************
771 *
772 * The next functions belong to the dma_ops mapping/unmapping code.
773 *
774 *****************************************************************************/
775
dbcc112e
JR
776/*
777 * This function checks if the driver got a valid device from the caller to
778 * avoid dereferencing invalid pointers.
779 */
780static bool check_device(struct device *dev)
781{
782 if (!dev || !dev->dma_mask)
783 return false;
784
785 return true;
786}
787
bd60b735
JR
788/*
789 * In this function the list of preallocated protection domains is traversed to
790 * find the domain for a specific device
791 */
792static struct dma_ops_domain *find_protection_domain(u16 devid)
793{
794 struct dma_ops_domain *entry, *ret = NULL;
795 unsigned long flags;
796
797 if (list_empty(&iommu_pd_list))
798 return NULL;
799
800 spin_lock_irqsave(&iommu_pd_list_lock, flags);
801
802 list_for_each_entry(entry, &iommu_pd_list, list) {
803 if (entry->target_dev == devid) {
804 ret = entry;
805 list_del(&ret->list);
806 break;
807 }
808 }
809
810 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
811
812 return ret;
813}
814
431b2a20
JR
815/*
816 * In the dma_ops path we only have the struct device. This function
817 * finds the corresponding IOMMU, the protection domain and the
818 * requestor id for a given device.
819 * If the device is not yet associated with a domain this is also done
820 * in this function.
821 */
b20ac0d4
JR
822static int get_device_resources(struct device *dev,
823 struct amd_iommu **iommu,
824 struct protection_domain **domain,
825 u16 *bdf)
826{
827 struct dma_ops_domain *dma_dom;
828 struct pci_dev *pcidev;
829 u16 _bdf;
830
dbcc112e
JR
831 *iommu = NULL;
832 *domain = NULL;
833 *bdf = 0xffff;
834
835 if (dev->bus != &pci_bus_type)
836 return 0;
b20ac0d4
JR
837
838 pcidev = to_pci_dev(dev);
d591b0a3 839 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 840
431b2a20 841 /* device not translated by any IOMMU in the system? */
dbcc112e 842 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 843 return 0;
b20ac0d4
JR
844
845 *bdf = amd_iommu_alias_table[_bdf];
846
847 *iommu = amd_iommu_rlookup_table[*bdf];
848 if (*iommu == NULL)
849 return 0;
b20ac0d4
JR
850 *domain = domain_for_device(*bdf);
851 if (*domain == NULL) {
bd60b735
JR
852 dma_dom = find_protection_domain(*bdf);
853 if (!dma_dom)
854 dma_dom = (*iommu)->default_dom;
b20ac0d4
JR
855 *domain = &dma_dom->domain;
856 set_device_domain(*iommu, *domain, *bdf);
857 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
858 "device ", (*domain)->id);
859 print_devid(_bdf, 1);
860 }
861
f91ba190
JR
862 if (domain_for_device(_bdf) == NULL)
863 set_device_domain(*iommu, *domain, _bdf);
864
b20ac0d4
JR
865 return 1;
866}
867
431b2a20
JR
868/*
869 * This is the generic map function. It maps one 4kb page at paddr to
870 * the given address in the DMA address space for the domain.
871 */
cb76c322
JR
872static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
873 struct dma_ops_domain *dom,
874 unsigned long address,
875 phys_addr_t paddr,
876 int direction)
877{
878 u64 *pte, __pte;
879
880 WARN_ON(address > dom->aperture_size);
881
882 paddr &= PAGE_MASK;
883
884 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
885 pte += IOMMU_PTE_L0_INDEX(address);
886
887 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
888
889 if (direction == DMA_TO_DEVICE)
890 __pte |= IOMMU_PTE_IR;
891 else if (direction == DMA_FROM_DEVICE)
892 __pte |= IOMMU_PTE_IW;
893 else if (direction == DMA_BIDIRECTIONAL)
894 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
895
896 WARN_ON(*pte);
897
898 *pte = __pte;
899
900 return (dma_addr_t)address;
901}
902
431b2a20
JR
903/*
904 * The generic unmapping function for on page in the DMA address space.
905 */
cb76c322
JR
906static void dma_ops_domain_unmap(struct amd_iommu *iommu,
907 struct dma_ops_domain *dom,
908 unsigned long address)
909{
910 u64 *pte;
911
912 if (address >= dom->aperture_size)
913 return;
914
8ad909c4 915 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
cb76c322
JR
916
917 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
918 pte += IOMMU_PTE_L0_INDEX(address);
919
920 WARN_ON(!*pte);
921
922 *pte = 0ULL;
923}
924
431b2a20
JR
925/*
926 * This function contains common code for mapping of a physically
24f81160
JR
927 * contiguous memory region into DMA address space. It is used by all
928 * mapping functions provided with this IOMMU driver.
431b2a20
JR
929 * Must be called with the domain lock held.
930 */
cb76c322
JR
931static dma_addr_t __map_single(struct device *dev,
932 struct amd_iommu *iommu,
933 struct dma_ops_domain *dma_dom,
934 phys_addr_t paddr,
935 size_t size,
6d4f343f 936 int dir,
832a90c3
JR
937 bool align,
938 u64 dma_mask)
cb76c322
JR
939{
940 dma_addr_t offset = paddr & ~PAGE_MASK;
941 dma_addr_t address, start;
942 unsigned int pages;
6d4f343f 943 unsigned long align_mask = 0;
cb76c322
JR
944 int i;
945
e3c449f5 946 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
947 paddr &= PAGE_MASK;
948
6d4f343f
JR
949 if (align)
950 align_mask = (1UL << get_order(size)) - 1;
951
832a90c3
JR
952 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
953 dma_mask);
cb76c322
JR
954 if (unlikely(address == bad_dma_address))
955 goto out;
956
957 start = address;
958 for (i = 0; i < pages; ++i) {
959 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
960 paddr += PAGE_SIZE;
961 start += PAGE_SIZE;
962 }
963 address += offset;
964
afa9fdc2 965 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
966 iommu_flush_tlb(iommu, dma_dom->domain.id);
967 dma_dom->need_flush = false;
968 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
969 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
970
cb76c322
JR
971out:
972 return address;
973}
974
431b2a20
JR
975/*
976 * Does the reverse of the __map_single function. Must be called with
977 * the domain lock held too
978 */
cb76c322
JR
979static void __unmap_single(struct amd_iommu *iommu,
980 struct dma_ops_domain *dma_dom,
981 dma_addr_t dma_addr,
982 size_t size,
983 int dir)
984{
985 dma_addr_t i, start;
986 unsigned int pages;
987
b8d9905d
JR
988 if ((dma_addr == bad_dma_address) ||
989 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
990 return;
991
e3c449f5 992 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
993 dma_addr &= PAGE_MASK;
994 start = dma_addr;
995
996 for (i = 0; i < pages; ++i) {
997 dma_ops_domain_unmap(iommu, dma_dom, start);
998 start += PAGE_SIZE;
999 }
1000
1001 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1002
80be308d 1003 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1004 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1005 dma_dom->need_flush = false;
1006 }
cb76c322
JR
1007}
1008
431b2a20
JR
1009/*
1010 * The exported map_single function for dma_ops.
1011 */
4da70b9e
JR
1012static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1013 size_t size, int dir)
1014{
1015 unsigned long flags;
1016 struct amd_iommu *iommu;
1017 struct protection_domain *domain;
1018 u16 devid;
1019 dma_addr_t addr;
832a90c3 1020 u64 dma_mask;
4da70b9e 1021
dbcc112e
JR
1022 if (!check_device(dev))
1023 return bad_dma_address;
1024
832a90c3 1025 dma_mask = *dev->dma_mask;
4da70b9e
JR
1026
1027 get_device_resources(dev, &iommu, &domain, &devid);
1028
1029 if (iommu == NULL || domain == NULL)
431b2a20 1030 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1031 return (dma_addr_t)paddr;
1032
1033 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1034 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1035 dma_mask);
4da70b9e
JR
1036 if (addr == bad_dma_address)
1037 goto out;
1038
09ee17eb 1039 iommu_completion_wait(iommu);
4da70b9e
JR
1040
1041out:
1042 spin_unlock_irqrestore(&domain->lock, flags);
1043
1044 return addr;
1045}
1046
431b2a20
JR
1047/*
1048 * The exported unmap_single function for dma_ops.
1049 */
4da70b9e
JR
1050static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1051 size_t size, int dir)
1052{
1053 unsigned long flags;
1054 struct amd_iommu *iommu;
1055 struct protection_domain *domain;
1056 u16 devid;
1057
dbcc112e
JR
1058 if (!check_device(dev) ||
1059 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1060 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1061 return;
1062
1063 spin_lock_irqsave(&domain->lock, flags);
1064
1065 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1066
09ee17eb 1067 iommu_completion_wait(iommu);
4da70b9e
JR
1068
1069 spin_unlock_irqrestore(&domain->lock, flags);
1070}
1071
431b2a20
JR
1072/*
1073 * This is a special map_sg function which is used if we should map a
1074 * device which is not handled by an AMD IOMMU in the system.
1075 */
65b050ad
JR
1076static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1077 int nelems, int dir)
1078{
1079 struct scatterlist *s;
1080 int i;
1081
1082 for_each_sg(sglist, s, nelems, i) {
1083 s->dma_address = (dma_addr_t)sg_phys(s);
1084 s->dma_length = s->length;
1085 }
1086
1087 return nelems;
1088}
1089
431b2a20
JR
1090/*
1091 * The exported map_sg function for dma_ops (handles scatter-gather
1092 * lists).
1093 */
65b050ad
JR
1094static int map_sg(struct device *dev, struct scatterlist *sglist,
1095 int nelems, int dir)
1096{
1097 unsigned long flags;
1098 struct amd_iommu *iommu;
1099 struct protection_domain *domain;
1100 u16 devid;
1101 int i;
1102 struct scatterlist *s;
1103 phys_addr_t paddr;
1104 int mapped_elems = 0;
832a90c3 1105 u64 dma_mask;
65b050ad 1106
dbcc112e
JR
1107 if (!check_device(dev))
1108 return 0;
1109
832a90c3 1110 dma_mask = *dev->dma_mask;
65b050ad
JR
1111
1112 get_device_resources(dev, &iommu, &domain, &devid);
1113
1114 if (!iommu || !domain)
1115 return map_sg_no_iommu(dev, sglist, nelems, dir);
1116
1117 spin_lock_irqsave(&domain->lock, flags);
1118
1119 for_each_sg(sglist, s, nelems, i) {
1120 paddr = sg_phys(s);
1121
1122 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1123 paddr, s->length, dir, false,
1124 dma_mask);
65b050ad
JR
1125
1126 if (s->dma_address) {
1127 s->dma_length = s->length;
1128 mapped_elems++;
1129 } else
1130 goto unmap;
65b050ad
JR
1131 }
1132
09ee17eb 1133 iommu_completion_wait(iommu);
65b050ad
JR
1134
1135out:
1136 spin_unlock_irqrestore(&domain->lock, flags);
1137
1138 return mapped_elems;
1139unmap:
1140 for_each_sg(sglist, s, mapped_elems, i) {
1141 if (s->dma_address)
1142 __unmap_single(iommu, domain->priv, s->dma_address,
1143 s->dma_length, dir);
1144 s->dma_address = s->dma_length = 0;
1145 }
1146
1147 mapped_elems = 0;
1148
1149 goto out;
1150}
1151
431b2a20
JR
1152/*
1153 * The exported map_sg function for dma_ops (handles scatter-gather
1154 * lists).
1155 */
65b050ad
JR
1156static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1157 int nelems, int dir)
1158{
1159 unsigned long flags;
1160 struct amd_iommu *iommu;
1161 struct protection_domain *domain;
1162 struct scatterlist *s;
1163 u16 devid;
1164 int i;
1165
dbcc112e
JR
1166 if (!check_device(dev) ||
1167 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1168 return;
1169
1170 spin_lock_irqsave(&domain->lock, flags);
1171
1172 for_each_sg(sglist, s, nelems, i) {
1173 __unmap_single(iommu, domain->priv, s->dma_address,
1174 s->dma_length, dir);
65b050ad
JR
1175 s->dma_address = s->dma_length = 0;
1176 }
1177
09ee17eb 1178 iommu_completion_wait(iommu);
65b050ad
JR
1179
1180 spin_unlock_irqrestore(&domain->lock, flags);
1181}
1182
431b2a20
JR
1183/*
1184 * The exported alloc_coherent function for dma_ops.
1185 */
5d8b53cf
JR
1186static void *alloc_coherent(struct device *dev, size_t size,
1187 dma_addr_t *dma_addr, gfp_t flag)
1188{
1189 unsigned long flags;
1190 void *virt_addr;
1191 struct amd_iommu *iommu;
1192 struct protection_domain *domain;
1193 u16 devid;
1194 phys_addr_t paddr;
832a90c3 1195 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1196
dbcc112e
JR
1197 if (!check_device(dev))
1198 return NULL;
5d8b53cf 1199
13d9fead
FT
1200 if (!get_device_resources(dev, &iommu, &domain, &devid))
1201 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1202
c97ac535 1203 flag |= __GFP_ZERO;
5d8b53cf
JR
1204 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1205 if (!virt_addr)
1206 return 0;
1207
5d8b53cf
JR
1208 paddr = virt_to_phys(virt_addr);
1209
5d8b53cf
JR
1210 if (!iommu || !domain) {
1211 *dma_addr = (dma_addr_t)paddr;
1212 return virt_addr;
1213 }
1214
832a90c3
JR
1215 if (!dma_mask)
1216 dma_mask = *dev->dma_mask;
1217
5d8b53cf
JR
1218 spin_lock_irqsave(&domain->lock, flags);
1219
1220 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1221 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf
JR
1222
1223 if (*dma_addr == bad_dma_address) {
1224 free_pages((unsigned long)virt_addr, get_order(size));
1225 virt_addr = NULL;
1226 goto out;
1227 }
1228
09ee17eb 1229 iommu_completion_wait(iommu);
5d8b53cf
JR
1230
1231out:
1232 spin_unlock_irqrestore(&domain->lock, flags);
1233
1234 return virt_addr;
1235}
1236
431b2a20
JR
1237/*
1238 * The exported free_coherent function for dma_ops.
431b2a20 1239 */
5d8b53cf
JR
1240static void free_coherent(struct device *dev, size_t size,
1241 void *virt_addr, dma_addr_t dma_addr)
1242{
1243 unsigned long flags;
1244 struct amd_iommu *iommu;
1245 struct protection_domain *domain;
1246 u16 devid;
1247
dbcc112e
JR
1248 if (!check_device(dev))
1249 return;
1250
5d8b53cf
JR
1251 get_device_resources(dev, &iommu, &domain, &devid);
1252
1253 if (!iommu || !domain)
1254 goto free_mem;
1255
1256 spin_lock_irqsave(&domain->lock, flags);
1257
1258 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1259
09ee17eb 1260 iommu_completion_wait(iommu);
5d8b53cf
JR
1261
1262 spin_unlock_irqrestore(&domain->lock, flags);
1263
1264free_mem:
1265 free_pages((unsigned long)virt_addr, get_order(size));
1266}
1267
b39ba6ad
JR
1268/*
1269 * This function is called by the DMA layer to find out if we can handle a
1270 * particular device. It is part of the dma_ops.
1271 */
1272static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1273{
1274 u16 bdf;
1275 struct pci_dev *pcidev;
1276
1277 /* No device or no PCI device */
1278 if (!dev || dev->bus != &pci_bus_type)
1279 return 0;
1280
1281 pcidev = to_pci_dev(dev);
1282
1283 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1284
1285 /* Out of our scope? */
1286 if (bdf > amd_iommu_last_bdf)
1287 return 0;
1288
1289 return 1;
1290}
1291
c432f3df 1292/*
431b2a20
JR
1293 * The function for pre-allocating protection domains.
1294 *
c432f3df
JR
1295 * If the driver core informs the DMA layer if a driver grabs a device
1296 * we don't need to preallocate the protection domains anymore.
1297 * For now we have to.
1298 */
1299void prealloc_protection_domains(void)
1300{
1301 struct pci_dev *dev = NULL;
1302 struct dma_ops_domain *dma_dom;
1303 struct amd_iommu *iommu;
1304 int order = amd_iommu_aperture_order;
1305 u16 devid;
1306
1307 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1308 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1309 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1310 continue;
1311 devid = amd_iommu_alias_table[devid];
1312 if (domain_for_device(devid))
1313 continue;
1314 iommu = amd_iommu_rlookup_table[devid];
1315 if (!iommu)
1316 continue;
1317 dma_dom = dma_ops_domain_alloc(iommu, order);
1318 if (!dma_dom)
1319 continue;
1320 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1321 dma_dom->target_dev = devid;
1322
1323 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1324 }
1325}
1326
6631ee9d
JR
1327static struct dma_mapping_ops amd_iommu_dma_ops = {
1328 .alloc_coherent = alloc_coherent,
1329 .free_coherent = free_coherent,
1330 .map_single = map_single,
1331 .unmap_single = unmap_single,
1332 .map_sg = map_sg,
1333 .unmap_sg = unmap_sg,
b39ba6ad 1334 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1335};
1336
431b2a20
JR
1337/*
1338 * The function which clues the AMD IOMMU driver into dma_ops.
1339 */
6631ee9d
JR
1340int __init amd_iommu_init_dma_ops(void)
1341{
1342 struct amd_iommu *iommu;
1343 int order = amd_iommu_aperture_order;
1344 int ret;
1345
431b2a20
JR
1346 /*
1347 * first allocate a default protection domain for every IOMMU we
1348 * found in the system. Devices not assigned to any other
1349 * protection domain will be assigned to the default one.
1350 */
6631ee9d
JR
1351 list_for_each_entry(iommu, &amd_iommu_list, list) {
1352 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1353 if (iommu->default_dom == NULL)
1354 return -ENOMEM;
1355 ret = iommu_init_unity_mappings(iommu);
1356 if (ret)
1357 goto free_domains;
1358 }
1359
431b2a20
JR
1360 /*
1361 * If device isolation is enabled, pre-allocate the protection
1362 * domains for each device.
1363 */
6631ee9d
JR
1364 if (amd_iommu_isolate)
1365 prealloc_protection_domains();
1366
1367 iommu_detected = 1;
1368 force_iommu = 1;
1369 bad_dma_address = 0;
92af4e29 1370#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1371 gart_iommu_aperture_disabled = 1;
1372 gart_iommu_aperture = 0;
92af4e29 1373#endif
6631ee9d 1374
431b2a20 1375 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1376 dma_ops = &amd_iommu_dma_ops;
1377
1378 return 0;
1379
1380free_domains:
1381
1382 list_for_each_entry(iommu, &amd_iommu_list, list) {
1383 if (iommu->default_dom)
1384 dma_ops_domain_free(iommu->default_dom);
1385 }
1386
1387 return ret;
1388}