Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
23#include <linux/scatterlist.h>
24#include <linux/iommu-helper.h>
25#include <asm/proto.h>
46a7fa27 26#include <asm/iommu.h>
b6c02715 27#include <asm/amd_iommu_types.h>
c6da992e 28#include <asm/amd_iommu.h>
b6c02715
JR
29
30#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
31
136f78a1
JR
32#define EXIT_LOOP_COUNT 10000000
33
b6c02715
JR
34static DEFINE_RWLOCK(amd_iommu_devtable_lock);
35
431b2a20
JR
36/*
37 * general struct to manage commands send to an IOMMU
38 */
d6449536 39struct iommu_cmd {
b6c02715
JR
40 u32 data[4];
41};
42
bd0e5211
JR
43static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
44 struct unity_map_entry *e);
45
431b2a20 46/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
47static int iommu_has_npcache(struct amd_iommu *iommu)
48{
49 return iommu->cap & IOMMU_CAP_NPCACHE;
50}
51
431b2a20
JR
52/****************************************************************************
53 *
54 * IOMMU command queuing functions
55 *
56 ****************************************************************************/
57
58/*
59 * Writes the command to the IOMMUs command buffer and informs the
60 * hardware about the new command. Must be called with iommu->lock held.
61 */
d6449536 62static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
63{
64 u32 tail, head;
65 u8 *target;
66
67 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
68 target = (iommu->cmd_buf + tail);
69 memcpy_toio(target, cmd, sizeof(*cmd));
70 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
71 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
72 if (tail == head)
73 return -ENOMEM;
74 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
75
76 return 0;
77}
78
431b2a20
JR
79/*
80 * General queuing function for commands. Takes iommu->lock and calls
81 * __iommu_queue_command().
82 */
d6449536 83static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&iommu->lock, flags);
89 ret = __iommu_queue_command(iommu, cmd);
90 spin_unlock_irqrestore(&iommu->lock, flags);
91
92 return ret;
93}
94
431b2a20
JR
95/*
96 * This function is called whenever we need to ensure that the IOMMU has
97 * completed execution of all commands we sent. It sends a
98 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
99 * us about that by writing a value to a physical address we pass with
100 * the command.
101 */
a19ae1ec
JR
102static int iommu_completion_wait(struct amd_iommu *iommu)
103{
519c31ba
JR
104 int ret, ready = 0;
105 unsigned status = 0;
d6449536 106 struct iommu_cmd cmd;
136f78a1 107 unsigned long i = 0;
a19ae1ec
JR
108
109 memset(&cmd, 0, sizeof(cmd));
519c31ba 110 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
a19ae1ec
JR
111 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
112
113 iommu->need_sync = 0;
114
115 ret = iommu_queue_command(iommu, &cmd);
116
117 if (ret)
118 return ret;
119
136f78a1
JR
120 while (!ready && (i < EXIT_LOOP_COUNT)) {
121 ++i;
519c31ba
JR
122 /* wait for the bit to become one */
123 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
124 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
136f78a1
JR
125 }
126
519c31ba
JR
127 /* set bit back to zero */
128 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
129 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
130
136f78a1
JR
131 if (unlikely((i == EXIT_LOOP_COUNT) && printk_ratelimit()))
132 printk(KERN_WARNING "AMD IOMMU: Completion wait loop failed\n");
a19ae1ec
JR
133
134 return 0;
135}
136
431b2a20
JR
137/*
138 * Command send function for invalidating a device table entry
139 */
a19ae1ec
JR
140static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
141{
d6449536 142 struct iommu_cmd cmd;
a19ae1ec
JR
143
144 BUG_ON(iommu == NULL);
145
146 memset(&cmd, 0, sizeof(cmd));
147 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
148 cmd.data[0] = devid;
149
150 iommu->need_sync = 1;
151
152 return iommu_queue_command(iommu, &cmd);
153}
154
431b2a20
JR
155/*
156 * Generic command send function for invalidaing TLB entries
157 */
a19ae1ec
JR
158static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
159 u64 address, u16 domid, int pde, int s)
160{
d6449536 161 struct iommu_cmd cmd;
a19ae1ec
JR
162
163 memset(&cmd, 0, sizeof(cmd));
164 address &= PAGE_MASK;
165 CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
166 cmd.data[1] |= domid;
8a456695 167 cmd.data[2] = lower_32_bits(address);
8ea80d78 168 cmd.data[3] = upper_32_bits(address);
431b2a20 169 if (s) /* size bit - we flush more than one 4kb page */
a19ae1ec 170 cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
431b2a20 171 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
a19ae1ec
JR
172 cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
173
174 iommu->need_sync = 1;
175
176 return iommu_queue_command(iommu, &cmd);
177}
178
431b2a20
JR
179/*
180 * TLB invalidation function which is called from the mapping functions.
181 * It invalidates a single PTE if the range to flush is within a single
182 * page. Otherwise it flushes the whole TLB of the IOMMU.
183 */
a19ae1ec
JR
184static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
185 u64 address, size_t size)
186{
999ba417 187 int s = 0;
a8132e5f 188 unsigned pages = iommu_num_pages(address, size);
a19ae1ec
JR
189
190 address &= PAGE_MASK;
191
999ba417
JR
192 if (pages > 1) {
193 /*
194 * If we have to flush more than one page, flush all
195 * TLB entries for this domain
196 */
197 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
198 s = 1;
a19ae1ec
JR
199 }
200
999ba417
JR
201 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
202
a19ae1ec
JR
203 return 0;
204}
b6c02715 205
431b2a20
JR
206/****************************************************************************
207 *
208 * The functions below are used the create the page table mappings for
209 * unity mapped regions.
210 *
211 ****************************************************************************/
212
213/*
214 * Generic mapping functions. It maps a physical address into a DMA
215 * address space. It allocates the page table pages if necessary.
216 * In the future it can be extended to a generic mapping function
217 * supporting all features of AMD IOMMU page tables like level skipping
218 * and full 64 bit address spaces.
219 */
bd0e5211
JR
220static int iommu_map(struct protection_domain *dom,
221 unsigned long bus_addr,
222 unsigned long phys_addr,
223 int prot)
224{
225 u64 __pte, *pte, *page;
226
227 bus_addr = PAGE_ALIGN(bus_addr);
228 phys_addr = PAGE_ALIGN(bus_addr);
229
230 /* only support 512GB address spaces for now */
231 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
232 return -EINVAL;
233
234 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
235
236 if (!IOMMU_PTE_PRESENT(*pte)) {
237 page = (u64 *)get_zeroed_page(GFP_KERNEL);
238 if (!page)
239 return -ENOMEM;
240 *pte = IOMMU_L2_PDE(virt_to_phys(page));
241 }
242
243 pte = IOMMU_PTE_PAGE(*pte);
244 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
245
246 if (!IOMMU_PTE_PRESENT(*pte)) {
247 page = (u64 *)get_zeroed_page(GFP_KERNEL);
248 if (!page)
249 return -ENOMEM;
250 *pte = IOMMU_L1_PDE(virt_to_phys(page));
251 }
252
253 pte = IOMMU_PTE_PAGE(*pte);
254 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
255
256 if (IOMMU_PTE_PRESENT(*pte))
257 return -EBUSY;
258
259 __pte = phys_addr | IOMMU_PTE_P;
260 if (prot & IOMMU_PROT_IR)
261 __pte |= IOMMU_PTE_IR;
262 if (prot & IOMMU_PROT_IW)
263 __pte |= IOMMU_PTE_IW;
264
265 *pte = __pte;
266
267 return 0;
268}
269
431b2a20
JR
270/*
271 * This function checks if a specific unity mapping entry is needed for
272 * this specific IOMMU.
273 */
bd0e5211
JR
274static int iommu_for_unity_map(struct amd_iommu *iommu,
275 struct unity_map_entry *entry)
276{
277 u16 bdf, i;
278
279 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
280 bdf = amd_iommu_alias_table[i];
281 if (amd_iommu_rlookup_table[bdf] == iommu)
282 return 1;
283 }
284
285 return 0;
286}
287
431b2a20
JR
288/*
289 * Init the unity mappings for a specific IOMMU in the system
290 *
291 * Basically iterates over all unity mapping entries and applies them to
292 * the default domain DMA of that IOMMU if necessary.
293 */
bd0e5211
JR
294static int iommu_init_unity_mappings(struct amd_iommu *iommu)
295{
296 struct unity_map_entry *entry;
297 int ret;
298
299 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
300 if (!iommu_for_unity_map(iommu, entry))
301 continue;
302 ret = dma_ops_unity_map(iommu->default_dom, entry);
303 if (ret)
304 return ret;
305 }
306
307 return 0;
308}
309
431b2a20
JR
310/*
311 * This function actually applies the mapping to the page table of the
312 * dma_ops domain.
313 */
bd0e5211
JR
314static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
315 struct unity_map_entry *e)
316{
317 u64 addr;
318 int ret;
319
320 for (addr = e->address_start; addr < e->address_end;
321 addr += PAGE_SIZE) {
322 ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
323 if (ret)
324 return ret;
325 /*
326 * if unity mapping is in aperture range mark the page
327 * as allocated in the aperture
328 */
329 if (addr < dma_dom->aperture_size)
330 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
331 }
332
333 return 0;
334}
335
431b2a20
JR
336/*
337 * Inits the unity mappings required for a specific device
338 */
bd0e5211
JR
339static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
340 u16 devid)
341{
342 struct unity_map_entry *e;
343 int ret;
344
345 list_for_each_entry(e, &amd_iommu_unity_map, list) {
346 if (!(devid >= e->devid_start && devid <= e->devid_end))
347 continue;
348 ret = dma_ops_unity_map(dma_dom, e);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354}
355
431b2a20
JR
356/****************************************************************************
357 *
358 * The next functions belong to the address allocator for the dma_ops
359 * interface functions. They work like the allocators in the other IOMMU
360 * drivers. Its basically a bitmap which marks the allocated pages in
361 * the aperture. Maybe it could be enhanced in the future to a more
362 * efficient allocator.
363 *
364 ****************************************************************************/
d3086444
JR
365static unsigned long dma_mask_to_pages(unsigned long mask)
366{
367 return (mask >> PAGE_SHIFT) +
368 (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
369}
370
431b2a20
JR
371/*
372 * The address allocator core function.
373 *
374 * called with domain->lock held
375 */
d3086444
JR
376static unsigned long dma_ops_alloc_addresses(struct device *dev,
377 struct dma_ops_domain *dom,
378 unsigned int pages)
379{
380 unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
381 unsigned long address;
382 unsigned long size = dom->aperture_size >> PAGE_SHIFT;
383 unsigned long boundary_size;
384
385 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
386 PAGE_SIZE) >> PAGE_SHIFT;
387 limit = limit < size ? limit : size;
388
389 if (dom->next_bit >= limit)
390 dom->next_bit = 0;
391
392 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
393 0 , boundary_size, 0);
394 if (address == -1)
395 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
396 0, boundary_size, 0);
397
398 if (likely(address != -1)) {
d3086444
JR
399 dom->next_bit = address + pages;
400 address <<= PAGE_SHIFT;
401 } else
402 address = bad_dma_address;
403
404 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
405
406 return address;
407}
408
431b2a20
JR
409/*
410 * The address free function.
411 *
412 * called with domain->lock held
413 */
d3086444
JR
414static void dma_ops_free_addresses(struct dma_ops_domain *dom,
415 unsigned long address,
416 unsigned int pages)
417{
418 address >>= PAGE_SHIFT;
419 iommu_area_free(dom->bitmap, address, pages);
420}
421
431b2a20
JR
422/****************************************************************************
423 *
424 * The next functions belong to the domain allocation. A domain is
425 * allocated for every IOMMU as the default domain. If device isolation
426 * is enabled, every device get its own domain. The most important thing
427 * about domains is the page table mapping the DMA address space they
428 * contain.
429 *
430 ****************************************************************************/
431
ec487d1a
JR
432static u16 domain_id_alloc(void)
433{
434 unsigned long flags;
435 int id;
436
437 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
438 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
439 BUG_ON(id == 0);
440 if (id > 0 && id < MAX_DOMAIN_ID)
441 __set_bit(id, amd_iommu_pd_alloc_bitmap);
442 else
443 id = 0;
444 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
445
446 return id;
447}
448
431b2a20
JR
449/*
450 * Used to reserve address ranges in the aperture (e.g. for exclusion
451 * ranges.
452 */
ec487d1a
JR
453static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
454 unsigned long start_page,
455 unsigned int pages)
456{
457 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
458
459 if (start_page + pages > last_page)
460 pages = last_page - start_page;
461
462 set_bit_string(dom->bitmap, start_page, pages);
463}
464
465static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
466{
467 int i, j;
468 u64 *p1, *p2, *p3;
469
470 p1 = dma_dom->domain.pt_root;
471
472 if (!p1)
473 return;
474
475 for (i = 0; i < 512; ++i) {
476 if (!IOMMU_PTE_PRESENT(p1[i]))
477 continue;
478
479 p2 = IOMMU_PTE_PAGE(p1[i]);
480 for (j = 0; j < 512; ++i) {
481 if (!IOMMU_PTE_PRESENT(p2[j]))
482 continue;
483 p3 = IOMMU_PTE_PAGE(p2[j]);
484 free_page((unsigned long)p3);
485 }
486
487 free_page((unsigned long)p2);
488 }
489
490 free_page((unsigned long)p1);
491}
492
431b2a20
JR
493/*
494 * Free a domain, only used if something went wrong in the
495 * allocation path and we need to free an already allocated page table
496 */
ec487d1a
JR
497static void dma_ops_domain_free(struct dma_ops_domain *dom)
498{
499 if (!dom)
500 return;
501
502 dma_ops_free_pagetable(dom);
503
504 kfree(dom->pte_pages);
505
506 kfree(dom->bitmap);
507
508 kfree(dom);
509}
510
431b2a20
JR
511/*
512 * Allocates a new protection domain usable for the dma_ops functions.
513 * It also intializes the page table and the address allocator data
514 * structures required for the dma_ops interface
515 */
ec487d1a
JR
516static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
517 unsigned order)
518{
519 struct dma_ops_domain *dma_dom;
520 unsigned i, num_pte_pages;
521 u64 *l2_pde;
522 u64 address;
523
524 /*
525 * Currently the DMA aperture must be between 32 MB and 1GB in size
526 */
527 if ((order < 25) || (order > 30))
528 return NULL;
529
530 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
531 if (!dma_dom)
532 return NULL;
533
534 spin_lock_init(&dma_dom->domain.lock);
535
536 dma_dom->domain.id = domain_id_alloc();
537 if (dma_dom->domain.id == 0)
538 goto free_dma_dom;
539 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
540 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
541 dma_dom->domain.priv = dma_dom;
542 if (!dma_dom->domain.pt_root)
543 goto free_dma_dom;
544 dma_dom->aperture_size = (1ULL << order);
545 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
546 GFP_KERNEL);
547 if (!dma_dom->bitmap)
548 goto free_dma_dom;
549 /*
550 * mark the first page as allocated so we never return 0 as
551 * a valid dma-address. So we can use 0 as error value
552 */
553 dma_dom->bitmap[0] = 1;
554 dma_dom->next_bit = 0;
555
431b2a20 556 /* Intialize the exclusion range if necessary */
ec487d1a
JR
557 if (iommu->exclusion_start &&
558 iommu->exclusion_start < dma_dom->aperture_size) {
559 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
a8132e5f
JR
560 int pages = iommu_num_pages(iommu->exclusion_start,
561 iommu->exclusion_length);
ec487d1a
JR
562 dma_ops_reserve_addresses(dma_dom, startpage, pages);
563 }
564
431b2a20
JR
565 /*
566 * At the last step, build the page tables so we don't need to
567 * allocate page table pages in the dma_ops mapping/unmapping
568 * path.
569 */
ec487d1a
JR
570 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
571 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
572 GFP_KERNEL);
573 if (!dma_dom->pte_pages)
574 goto free_dma_dom;
575
576 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
577 if (l2_pde == NULL)
578 goto free_dma_dom;
579
580 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
581
582 for (i = 0; i < num_pte_pages; ++i) {
583 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
584 if (!dma_dom->pte_pages[i])
585 goto free_dma_dom;
586 address = virt_to_phys(dma_dom->pte_pages[i]);
587 l2_pde[i] = IOMMU_L1_PDE(address);
588 }
589
590 return dma_dom;
591
592free_dma_dom:
593 dma_ops_domain_free(dma_dom);
594
595 return NULL;
596}
597
431b2a20
JR
598/*
599 * Find out the protection domain structure for a given PCI device. This
600 * will give us the pointer to the page table root for example.
601 */
b20ac0d4
JR
602static struct protection_domain *domain_for_device(u16 devid)
603{
604 struct protection_domain *dom;
605 unsigned long flags;
606
607 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
608 dom = amd_iommu_pd_table[devid];
609 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
610
611 return dom;
612}
613
431b2a20
JR
614/*
615 * If a device is not yet associated with a domain, this function does
616 * assigns it visible for the hardware
617 */
b20ac0d4
JR
618static void set_device_domain(struct amd_iommu *iommu,
619 struct protection_domain *domain,
620 u16 devid)
621{
622 unsigned long flags;
623
624 u64 pte_root = virt_to_phys(domain->pt_root);
625
626 pte_root |= (domain->mode & 0x07) << 9;
627 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
628
629 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
630 amd_iommu_dev_table[devid].data[0] = pte_root;
631 amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
632 amd_iommu_dev_table[devid].data[2] = domain->id;
633
634 amd_iommu_pd_table[devid] = domain;
635 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
636
637 iommu_queue_inv_dev_entry(iommu, devid);
638
639 iommu->need_sync = 1;
640}
641
431b2a20
JR
642/*****************************************************************************
643 *
644 * The next functions belong to the dma_ops mapping/unmapping code.
645 *
646 *****************************************************************************/
647
648/*
649 * In the dma_ops path we only have the struct device. This function
650 * finds the corresponding IOMMU, the protection domain and the
651 * requestor id for a given device.
652 * If the device is not yet associated with a domain this is also done
653 * in this function.
654 */
b20ac0d4
JR
655static int get_device_resources(struct device *dev,
656 struct amd_iommu **iommu,
657 struct protection_domain **domain,
658 u16 *bdf)
659{
660 struct dma_ops_domain *dma_dom;
661 struct pci_dev *pcidev;
662 u16 _bdf;
663
664 BUG_ON(!dev || dev->bus != &pci_bus_type || !dev->dma_mask);
665
666 pcidev = to_pci_dev(dev);
d591b0a3 667 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 668
431b2a20 669 /* device not translated by any IOMMU in the system? */
3a61ec38 670 if (_bdf > amd_iommu_last_bdf) {
b20ac0d4
JR
671 *iommu = NULL;
672 *domain = NULL;
673 *bdf = 0xffff;
674 return 0;
675 }
676
677 *bdf = amd_iommu_alias_table[_bdf];
678
679 *iommu = amd_iommu_rlookup_table[*bdf];
680 if (*iommu == NULL)
681 return 0;
682 dma_dom = (*iommu)->default_dom;
683 *domain = domain_for_device(*bdf);
684 if (*domain == NULL) {
685 *domain = &dma_dom->domain;
686 set_device_domain(*iommu, *domain, *bdf);
687 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
688 "device ", (*domain)->id);
689 print_devid(_bdf, 1);
690 }
691
692 return 1;
693}
694
431b2a20
JR
695/*
696 * This is the generic map function. It maps one 4kb page at paddr to
697 * the given address in the DMA address space for the domain.
698 */
cb76c322
JR
699static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
700 struct dma_ops_domain *dom,
701 unsigned long address,
702 phys_addr_t paddr,
703 int direction)
704{
705 u64 *pte, __pte;
706
707 WARN_ON(address > dom->aperture_size);
708
709 paddr &= PAGE_MASK;
710
711 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
712 pte += IOMMU_PTE_L0_INDEX(address);
713
714 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
715
716 if (direction == DMA_TO_DEVICE)
717 __pte |= IOMMU_PTE_IR;
718 else if (direction == DMA_FROM_DEVICE)
719 __pte |= IOMMU_PTE_IW;
720 else if (direction == DMA_BIDIRECTIONAL)
721 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
722
723 WARN_ON(*pte);
724
725 *pte = __pte;
726
727 return (dma_addr_t)address;
728}
729
431b2a20
JR
730/*
731 * The generic unmapping function for on page in the DMA address space.
732 */
cb76c322
JR
733static void dma_ops_domain_unmap(struct amd_iommu *iommu,
734 struct dma_ops_domain *dom,
735 unsigned long address)
736{
737 u64 *pte;
738
739 if (address >= dom->aperture_size)
740 return;
741
742 WARN_ON(address & 0xfffULL || address > dom->aperture_size);
743
744 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
745 pte += IOMMU_PTE_L0_INDEX(address);
746
747 WARN_ON(!*pte);
748
749 *pte = 0ULL;
750}
751
431b2a20
JR
752/*
753 * This function contains common code for mapping of a physically
754 * contiguous memory region into DMA address space. It is uses by all
755 * mapping functions provided by this IOMMU driver.
756 * Must be called with the domain lock held.
757 */
cb76c322
JR
758static dma_addr_t __map_single(struct device *dev,
759 struct amd_iommu *iommu,
760 struct dma_ops_domain *dma_dom,
761 phys_addr_t paddr,
762 size_t size,
763 int dir)
764{
765 dma_addr_t offset = paddr & ~PAGE_MASK;
766 dma_addr_t address, start;
767 unsigned int pages;
768 int i;
769
a8132e5f 770 pages = iommu_num_pages(paddr, size);
cb76c322
JR
771 paddr &= PAGE_MASK;
772
773 address = dma_ops_alloc_addresses(dev, dma_dom, pages);
774 if (unlikely(address == bad_dma_address))
775 goto out;
776
777 start = address;
778 for (i = 0; i < pages; ++i) {
779 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
780 paddr += PAGE_SIZE;
781 start += PAGE_SIZE;
782 }
783 address += offset;
784
785out:
786 return address;
787}
788
431b2a20
JR
789/*
790 * Does the reverse of the __map_single function. Must be called with
791 * the domain lock held too
792 */
cb76c322
JR
793static void __unmap_single(struct amd_iommu *iommu,
794 struct dma_ops_domain *dma_dom,
795 dma_addr_t dma_addr,
796 size_t size,
797 int dir)
798{
799 dma_addr_t i, start;
800 unsigned int pages;
801
802 if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
803 return;
804
a8132e5f 805 pages = iommu_num_pages(dma_addr, size);
cb76c322
JR
806 dma_addr &= PAGE_MASK;
807 start = dma_addr;
808
809 for (i = 0; i < pages; ++i) {
810 dma_ops_domain_unmap(iommu, dma_dom, start);
811 start += PAGE_SIZE;
812 }
813
814 dma_ops_free_addresses(dma_dom, dma_addr, pages);
815}
816
431b2a20
JR
817/*
818 * The exported map_single function for dma_ops.
819 */
4da70b9e
JR
820static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
821 size_t size, int dir)
822{
823 unsigned long flags;
824 struct amd_iommu *iommu;
825 struct protection_domain *domain;
826 u16 devid;
827 dma_addr_t addr;
828
829 get_device_resources(dev, &iommu, &domain, &devid);
830
831 if (iommu == NULL || domain == NULL)
431b2a20 832 /* device not handled by any AMD IOMMU */
4da70b9e
JR
833 return (dma_addr_t)paddr;
834
835 spin_lock_irqsave(&domain->lock, flags);
836 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir);
837 if (addr == bad_dma_address)
838 goto out;
839
840 if (iommu_has_npcache(iommu))
841 iommu_flush_pages(iommu, domain->id, addr, size);
842
843 if (iommu->need_sync)
844 iommu_completion_wait(iommu);
845
846out:
847 spin_unlock_irqrestore(&domain->lock, flags);
848
849 return addr;
850}
851
431b2a20
JR
852/*
853 * The exported unmap_single function for dma_ops.
854 */
4da70b9e
JR
855static void unmap_single(struct device *dev, dma_addr_t dma_addr,
856 size_t size, int dir)
857{
858 unsigned long flags;
859 struct amd_iommu *iommu;
860 struct protection_domain *domain;
861 u16 devid;
862
863 if (!get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 864 /* device not handled by any AMD IOMMU */
4da70b9e
JR
865 return;
866
867 spin_lock_irqsave(&domain->lock, flags);
868
869 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
870
871 iommu_flush_pages(iommu, domain->id, dma_addr, size);
872
873 if (iommu->need_sync)
874 iommu_completion_wait(iommu);
875
876 spin_unlock_irqrestore(&domain->lock, flags);
877}
878
431b2a20
JR
879/*
880 * This is a special map_sg function which is used if we should map a
881 * device which is not handled by an AMD IOMMU in the system.
882 */
65b050ad
JR
883static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
884 int nelems, int dir)
885{
886 struct scatterlist *s;
887 int i;
888
889 for_each_sg(sglist, s, nelems, i) {
890 s->dma_address = (dma_addr_t)sg_phys(s);
891 s->dma_length = s->length;
892 }
893
894 return nelems;
895}
896
431b2a20
JR
897/*
898 * The exported map_sg function for dma_ops (handles scatter-gather
899 * lists).
900 */
65b050ad
JR
901static int map_sg(struct device *dev, struct scatterlist *sglist,
902 int nelems, int dir)
903{
904 unsigned long flags;
905 struct amd_iommu *iommu;
906 struct protection_domain *domain;
907 u16 devid;
908 int i;
909 struct scatterlist *s;
910 phys_addr_t paddr;
911 int mapped_elems = 0;
912
913 get_device_resources(dev, &iommu, &domain, &devid);
914
915 if (!iommu || !domain)
916 return map_sg_no_iommu(dev, sglist, nelems, dir);
917
918 spin_lock_irqsave(&domain->lock, flags);
919
920 for_each_sg(sglist, s, nelems, i) {
921 paddr = sg_phys(s);
922
923 s->dma_address = __map_single(dev, iommu, domain->priv,
924 paddr, s->length, dir);
925
926 if (s->dma_address) {
927 s->dma_length = s->length;
928 mapped_elems++;
929 } else
930 goto unmap;
931 if (iommu_has_npcache(iommu))
932 iommu_flush_pages(iommu, domain->id, s->dma_address,
933 s->dma_length);
934 }
935
936 if (iommu->need_sync)
937 iommu_completion_wait(iommu);
938
939out:
940 spin_unlock_irqrestore(&domain->lock, flags);
941
942 return mapped_elems;
943unmap:
944 for_each_sg(sglist, s, mapped_elems, i) {
945 if (s->dma_address)
946 __unmap_single(iommu, domain->priv, s->dma_address,
947 s->dma_length, dir);
948 s->dma_address = s->dma_length = 0;
949 }
950
951 mapped_elems = 0;
952
953 goto out;
954}
955
431b2a20
JR
956/*
957 * The exported map_sg function for dma_ops (handles scatter-gather
958 * lists).
959 */
65b050ad
JR
960static void unmap_sg(struct device *dev, struct scatterlist *sglist,
961 int nelems, int dir)
962{
963 unsigned long flags;
964 struct amd_iommu *iommu;
965 struct protection_domain *domain;
966 struct scatterlist *s;
967 u16 devid;
968 int i;
969
970 if (!get_device_resources(dev, &iommu, &domain, &devid))
971 return;
972
973 spin_lock_irqsave(&domain->lock, flags);
974
975 for_each_sg(sglist, s, nelems, i) {
976 __unmap_single(iommu, domain->priv, s->dma_address,
977 s->dma_length, dir);
978 iommu_flush_pages(iommu, domain->id, s->dma_address,
979 s->dma_length);
980 s->dma_address = s->dma_length = 0;
981 }
982
983 if (iommu->need_sync)
984 iommu_completion_wait(iommu);
985
986 spin_unlock_irqrestore(&domain->lock, flags);
987}
988
431b2a20
JR
989/*
990 * The exported alloc_coherent function for dma_ops.
991 */
5d8b53cf
JR
992static void *alloc_coherent(struct device *dev, size_t size,
993 dma_addr_t *dma_addr, gfp_t flag)
994{
995 unsigned long flags;
996 void *virt_addr;
997 struct amd_iommu *iommu;
998 struct protection_domain *domain;
999 u16 devid;
1000 phys_addr_t paddr;
1001
1002 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1003 if (!virt_addr)
1004 return 0;
1005
1006 memset(virt_addr, 0, size);
1007 paddr = virt_to_phys(virt_addr);
1008
1009 get_device_resources(dev, &iommu, &domain, &devid);
1010
1011 if (!iommu || !domain) {
1012 *dma_addr = (dma_addr_t)paddr;
1013 return virt_addr;
1014 }
1015
1016 spin_lock_irqsave(&domain->lock, flags);
1017
1018 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1019 size, DMA_BIDIRECTIONAL);
1020
1021 if (*dma_addr == bad_dma_address) {
1022 free_pages((unsigned long)virt_addr, get_order(size));
1023 virt_addr = NULL;
1024 goto out;
1025 }
1026
1027 if (iommu_has_npcache(iommu))
1028 iommu_flush_pages(iommu, domain->id, *dma_addr, size);
1029
1030 if (iommu->need_sync)
1031 iommu_completion_wait(iommu);
1032
1033out:
1034 spin_unlock_irqrestore(&domain->lock, flags);
1035
1036 return virt_addr;
1037}
1038
431b2a20
JR
1039/*
1040 * The exported free_coherent function for dma_ops.
1041 * FIXME: fix the generic x86 DMA layer so that it actually calls that
1042 * function.
1043 */
5d8b53cf
JR
1044static void free_coherent(struct device *dev, size_t size,
1045 void *virt_addr, dma_addr_t dma_addr)
1046{
1047 unsigned long flags;
1048 struct amd_iommu *iommu;
1049 struct protection_domain *domain;
1050 u16 devid;
1051
1052 get_device_resources(dev, &iommu, &domain, &devid);
1053
1054 if (!iommu || !domain)
1055 goto free_mem;
1056
1057 spin_lock_irqsave(&domain->lock, flags);
1058
1059 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1060 iommu_flush_pages(iommu, domain->id, dma_addr, size);
1061
1062 if (iommu->need_sync)
1063 iommu_completion_wait(iommu);
1064
1065 spin_unlock_irqrestore(&domain->lock, flags);
1066
1067free_mem:
1068 free_pages((unsigned long)virt_addr, get_order(size));
1069}
1070
c432f3df 1071/*
431b2a20
JR
1072 * The function for pre-allocating protection domains.
1073 *
c432f3df
JR
1074 * If the driver core informs the DMA layer if a driver grabs a device
1075 * we don't need to preallocate the protection domains anymore.
1076 * For now we have to.
1077 */
1078void prealloc_protection_domains(void)
1079{
1080 struct pci_dev *dev = NULL;
1081 struct dma_ops_domain *dma_dom;
1082 struct amd_iommu *iommu;
1083 int order = amd_iommu_aperture_order;
1084 u16 devid;
1085
1086 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1087 devid = (dev->bus->number << 8) | dev->devfn;
3a61ec38 1088 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1089 continue;
1090 devid = amd_iommu_alias_table[devid];
1091 if (domain_for_device(devid))
1092 continue;
1093 iommu = amd_iommu_rlookup_table[devid];
1094 if (!iommu)
1095 continue;
1096 dma_dom = dma_ops_domain_alloc(iommu, order);
1097 if (!dma_dom)
1098 continue;
1099 init_unity_mappings_for_device(dma_dom, devid);
1100 set_device_domain(iommu, &dma_dom->domain, devid);
1101 printk(KERN_INFO "AMD IOMMU: Allocated domain %d for device ",
1102 dma_dom->domain.id);
1103 print_devid(devid, 1);
1104 }
1105}
1106
6631ee9d
JR
1107static struct dma_mapping_ops amd_iommu_dma_ops = {
1108 .alloc_coherent = alloc_coherent,
1109 .free_coherent = free_coherent,
1110 .map_single = map_single,
1111 .unmap_single = unmap_single,
1112 .map_sg = map_sg,
1113 .unmap_sg = unmap_sg,
1114};
1115
431b2a20
JR
1116/*
1117 * The function which clues the AMD IOMMU driver into dma_ops.
1118 */
6631ee9d
JR
1119int __init amd_iommu_init_dma_ops(void)
1120{
1121 struct amd_iommu *iommu;
1122 int order = amd_iommu_aperture_order;
1123 int ret;
1124
431b2a20
JR
1125 /*
1126 * first allocate a default protection domain for every IOMMU we
1127 * found in the system. Devices not assigned to any other
1128 * protection domain will be assigned to the default one.
1129 */
6631ee9d
JR
1130 list_for_each_entry(iommu, &amd_iommu_list, list) {
1131 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1132 if (iommu->default_dom == NULL)
1133 return -ENOMEM;
1134 ret = iommu_init_unity_mappings(iommu);
1135 if (ret)
1136 goto free_domains;
1137 }
1138
431b2a20
JR
1139 /*
1140 * If device isolation is enabled, pre-allocate the protection
1141 * domains for each device.
1142 */
6631ee9d
JR
1143 if (amd_iommu_isolate)
1144 prealloc_protection_domains();
1145
1146 iommu_detected = 1;
1147 force_iommu = 1;
1148 bad_dma_address = 0;
92af4e29 1149#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1150 gart_iommu_aperture_disabled = 1;
1151 gart_iommu_aperture = 0;
92af4e29 1152#endif
6631ee9d 1153
431b2a20 1154 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1155 dma_ops = &amd_iommu_dma_ops;
1156
1157 return 0;
1158
1159free_domains:
1160
1161 list_for_each_entry(iommu, &amd_iommu_list, list) {
1162 if (iommu->default_dom)
1163 dma_ops_domain_free(iommu->default_dom);
1164 }
1165
1166 return ret;
1167}