iommu/amd: Add iommuv2 flag to struct amd_iommu
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
cb41ed85 21#include <linux/pci-ats.h>
a66022c4 22#include <linux/bitmap.h>
5a0e3ad6 23#include <linux/slab.h>
7f26508b 24#include <linux/debugfs.h>
b6c02715 25#include <linux/scatterlist.h>
51491367 26#include <linux/dma-mapping.h>
b6c02715 27#include <linux/iommu-helper.h>
c156e347 28#include <linux/iommu.h>
815b33fd 29#include <linux/delay.h>
403f81d8 30#include <linux/amd-iommu.h>
17f5b569 31#include <asm/msidef.h>
b6c02715 32#include <asm/proto.h>
46a7fa27 33#include <asm/iommu.h>
1d9b16d1 34#include <asm/gart.h>
27c2127a 35#include <asm/dma.h>
403f81d8
JR
36
37#include "amd_iommu_proto.h"
38#include "amd_iommu_types.h"
b6c02715
JR
39
40#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
41
815b33fd 42#define LOOP_TIMEOUT 100000
136f78a1 43
b6c02715
JR
44static DEFINE_RWLOCK(amd_iommu_devtable_lock);
45
bd60b735
JR
46/* A list of preallocated protection domains */
47static LIST_HEAD(iommu_pd_list);
48static DEFINE_SPINLOCK(iommu_pd_list_lock);
49
8fa5f802
JR
50/* List of all available dev_data structures */
51static LIST_HEAD(dev_data_list);
52static DEFINE_SPINLOCK(dev_data_list_lock);
53
0feae533
JR
54/*
55 * Domain for untranslated devices - only allocated
56 * if iommu=pt passed on kernel cmd line.
57 */
58static struct protection_domain *pt_domain;
59
26961efe 60static struct iommu_ops amd_iommu_ops;
26961efe 61
431b2a20
JR
62/*
63 * general struct to manage commands send to an IOMMU
64 */
d6449536 65struct iommu_cmd {
b6c02715
JR
66 u32 data[4];
67};
68
04bfdd84 69static void update_domain(struct protection_domain *domain);
c1eee67b 70
15898bbc
JR
71/****************************************************************************
72 *
73 * Helper functions
74 *
75 ****************************************************************************/
76
f62dda66 77static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
78{
79 struct iommu_dev_data *dev_data;
80 unsigned long flags;
81
82 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
83 if (!dev_data)
84 return NULL;
85
f62dda66 86 dev_data->devid = devid;
8fa5f802
JR
87 atomic_set(&dev_data->bind, 0);
88
89 spin_lock_irqsave(&dev_data_list_lock, flags);
90 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
91 spin_unlock_irqrestore(&dev_data_list_lock, flags);
92
93 return dev_data;
94}
95
96static void free_dev_data(struct iommu_dev_data *dev_data)
97{
98 unsigned long flags;
99
100 spin_lock_irqsave(&dev_data_list_lock, flags);
101 list_del(&dev_data->dev_data_list);
102 spin_unlock_irqrestore(&dev_data_list_lock, flags);
103
104 kfree(dev_data);
105}
106
3b03bb74
JR
107static struct iommu_dev_data *search_dev_data(u16 devid)
108{
109 struct iommu_dev_data *dev_data;
110 unsigned long flags;
111
112 spin_lock_irqsave(&dev_data_list_lock, flags);
113 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
114 if (dev_data->devid == devid)
115 goto out_unlock;
116 }
117
118 dev_data = NULL;
119
120out_unlock:
121 spin_unlock_irqrestore(&dev_data_list_lock, flags);
122
123 return dev_data;
124}
125
126static struct iommu_dev_data *find_dev_data(u16 devid)
127{
128 struct iommu_dev_data *dev_data;
129
130 dev_data = search_dev_data(devid);
131
132 if (dev_data == NULL)
133 dev_data = alloc_dev_data(devid);
134
135 return dev_data;
136}
137
15898bbc
JR
138static inline u16 get_device_id(struct device *dev)
139{
140 struct pci_dev *pdev = to_pci_dev(dev);
141
142 return calc_devid(pdev->bus->number, pdev->devfn);
143}
144
657cbb6b
JR
145static struct iommu_dev_data *get_dev_data(struct device *dev)
146{
147 return dev->archdata.iommu;
148}
149
71c70984
JR
150/*
151 * In this function the list of preallocated protection domains is traversed to
152 * find the domain for a specific device
153 */
154static struct dma_ops_domain *find_protection_domain(u16 devid)
155{
156 struct dma_ops_domain *entry, *ret = NULL;
157 unsigned long flags;
158 u16 alias = amd_iommu_alias_table[devid];
159
160 if (list_empty(&iommu_pd_list))
161 return NULL;
162
163 spin_lock_irqsave(&iommu_pd_list_lock, flags);
164
165 list_for_each_entry(entry, &iommu_pd_list, list) {
166 if (entry->target_dev == devid ||
167 entry->target_dev == alias) {
168 ret = entry;
169 break;
170 }
171 }
172
173 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
174
175 return ret;
176}
177
98fc5a69
JR
178/*
179 * This function checks if the driver got a valid device from the caller to
180 * avoid dereferencing invalid pointers.
181 */
182static bool check_device(struct device *dev)
183{
184 u16 devid;
185
186 if (!dev || !dev->dma_mask)
187 return false;
188
189 /* No device or no PCI device */
339d3261 190 if (dev->bus != &pci_bus_type)
98fc5a69
JR
191 return false;
192
193 devid = get_device_id(dev);
194
195 /* Out of our scope? */
196 if (devid > amd_iommu_last_bdf)
197 return false;
198
199 if (amd_iommu_rlookup_table[devid] == NULL)
200 return false;
201
202 return true;
203}
204
657cbb6b
JR
205static int iommu_init_device(struct device *dev)
206{
207 struct iommu_dev_data *dev_data;
8fa5f802 208 u16 alias;
657cbb6b
JR
209
210 if (dev->archdata.iommu)
211 return 0;
212
3b03bb74 213 dev_data = find_dev_data(get_device_id(dev));
657cbb6b
JR
214 if (!dev_data)
215 return -ENOMEM;
216
f62dda66 217 alias = amd_iommu_alias_table[dev_data->devid];
2b02b091 218 if (alias != dev_data->devid) {
71f77580 219 struct iommu_dev_data *alias_data;
b00d3bcf 220
71f77580
JR
221 alias_data = find_dev_data(alias);
222 if (alias_data == NULL) {
223 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
224 dev_name(dev));
2b02b091
JR
225 free_dev_data(dev_data);
226 return -ENOTSUPP;
227 }
71f77580 228 dev_data->alias_data = alias_data;
26018874 229 }
657cbb6b
JR
230
231 dev->archdata.iommu = dev_data;
232
657cbb6b
JR
233 return 0;
234}
235
26018874
JR
236static void iommu_ignore_device(struct device *dev)
237{
238 u16 devid, alias;
239
240 devid = get_device_id(dev);
241 alias = amd_iommu_alias_table[devid];
242
243 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
244 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
245
246 amd_iommu_rlookup_table[devid] = NULL;
247 amd_iommu_rlookup_table[alias] = NULL;
248}
249
657cbb6b
JR
250static void iommu_uninit_device(struct device *dev)
251{
8fa5f802
JR
252 /*
253 * Nothing to do here - we keep dev_data around for unplugged devices
254 * and reuse it when the device is re-plugged - not doing so would
255 * introduce a ton of races.
256 */
657cbb6b 257}
b7cc9554
JR
258
259void __init amd_iommu_uninit_devices(void)
260{
8fa5f802 261 struct iommu_dev_data *dev_data, *n;
b7cc9554
JR
262 struct pci_dev *pdev = NULL;
263
264 for_each_pci_dev(pdev) {
265
266 if (!check_device(&pdev->dev))
267 continue;
268
269 iommu_uninit_device(&pdev->dev);
270 }
8fa5f802
JR
271
272 /* Free all of our dev_data structures */
273 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
274 free_dev_data(dev_data);
b7cc9554
JR
275}
276
277int __init amd_iommu_init_devices(void)
278{
279 struct pci_dev *pdev = NULL;
280 int ret = 0;
281
282 for_each_pci_dev(pdev) {
283
284 if (!check_device(&pdev->dev))
285 continue;
286
287 ret = iommu_init_device(&pdev->dev);
26018874
JR
288 if (ret == -ENOTSUPP)
289 iommu_ignore_device(&pdev->dev);
290 else if (ret)
b7cc9554
JR
291 goto out_free;
292 }
293
294 return 0;
295
296out_free:
297
298 amd_iommu_uninit_devices();
299
300 return ret;
301}
7f26508b
JR
302#ifdef CONFIG_AMD_IOMMU_STATS
303
304/*
305 * Initialization code for statistics collection
306 */
307
da49f6df 308DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 309DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 310DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 311DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 312DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 313DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 314DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 315DECLARE_STATS_COUNTER(cross_page);
f57d98ae 316DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 317DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 318DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 319DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 320
7f26508b 321static struct dentry *stats_dir;
7f26508b
JR
322static struct dentry *de_fflush;
323
324static void amd_iommu_stats_add(struct __iommu_counter *cnt)
325{
326 if (stats_dir == NULL)
327 return;
328
329 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
330 &cnt->value);
331}
332
333static void amd_iommu_stats_init(void)
334{
335 stats_dir = debugfs_create_dir("amd-iommu", NULL);
336 if (stats_dir == NULL)
337 return;
338
7f26508b
JR
339 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
340 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
341
342 amd_iommu_stats_add(&compl_wait);
0f2a86f2 343 amd_iommu_stats_add(&cnt_map_single);
146a6917 344 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 345 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 346 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 347 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 348 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 349 amd_iommu_stats_add(&cross_page);
f57d98ae 350 amd_iommu_stats_add(&domain_flush_single);
18811f55 351 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 352 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 353 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
354}
355
356#endif
357
a80dc3e0
JR
358/****************************************************************************
359 *
360 * Interrupt handling functions
361 *
362 ****************************************************************************/
363
e3e59876
JR
364static void dump_dte_entry(u16 devid)
365{
366 int i;
367
ee6c2868
JR
368 for (i = 0; i < 4; ++i)
369 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
370 amd_iommu_dev_table[devid].data[i]);
371}
372
945b4ac4
JR
373static void dump_command(unsigned long phys_addr)
374{
375 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
376 int i;
377
378 for (i = 0; i < 4; ++i)
379 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
380}
381
a345b23b 382static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
383{
384 u32 *event = __evt;
385 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
386 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
387 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
388 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
389 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
390
4c6f40d4 391 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
392
393 switch (type) {
394 case EVENT_TYPE_ILL_DEV:
395 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
396 "address=0x%016llx flags=0x%04x]\n",
397 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
398 address, flags);
e3e59876 399 dump_dte_entry(devid);
90008ee4
JR
400 break;
401 case EVENT_TYPE_IO_FAULT:
402 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
403 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
404 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
405 domid, address, flags);
406 break;
407 case EVENT_TYPE_DEV_TAB_ERR:
408 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
409 "address=0x%016llx flags=0x%04x]\n",
410 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
411 address, flags);
412 break;
413 case EVENT_TYPE_PAGE_TAB_ERR:
414 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
415 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
416 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
417 domid, address, flags);
418 break;
419 case EVENT_TYPE_ILL_CMD:
420 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 421 dump_command(address);
90008ee4
JR
422 break;
423 case EVENT_TYPE_CMD_HARD_ERR:
424 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
425 "flags=0x%04x]\n", address, flags);
426 break;
427 case EVENT_TYPE_IOTLB_INV_TO:
428 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
429 "address=0x%016llx]\n",
430 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
431 address);
432 break;
433 case EVENT_TYPE_INV_DEV_REQ:
434 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
435 "address=0x%016llx flags=0x%04x]\n",
436 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
437 address, flags);
438 break;
439 default:
440 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
441 }
442}
443
444static void iommu_poll_events(struct amd_iommu *iommu)
445{
446 u32 head, tail;
447 unsigned long flags;
448
449 spin_lock_irqsave(&iommu->lock, flags);
450
451 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
452 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
453
454 while (head != tail) {
a345b23b 455 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
456 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
457 }
458
459 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
460
461 spin_unlock_irqrestore(&iommu->lock, flags);
462}
463
72fe00f0 464irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 465{
90008ee4
JR
466 struct amd_iommu *iommu;
467
3bd22172 468 for_each_iommu(iommu)
90008ee4
JR
469 iommu_poll_events(iommu);
470
471 return IRQ_HANDLED;
a80dc3e0
JR
472}
473
72fe00f0
JR
474irqreturn_t amd_iommu_int_handler(int irq, void *data)
475{
476 return IRQ_WAKE_THREAD;
477}
478
431b2a20
JR
479/****************************************************************************
480 *
481 * IOMMU command queuing functions
482 *
483 ****************************************************************************/
484
ac0ea6e9
JR
485static int wait_on_sem(volatile u64 *sem)
486{
487 int i = 0;
488
489 while (*sem == 0 && i < LOOP_TIMEOUT) {
490 udelay(1);
491 i += 1;
492 }
493
494 if (i == LOOP_TIMEOUT) {
495 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
496 return -EIO;
497 }
498
499 return 0;
500}
501
502static void copy_cmd_to_buffer(struct amd_iommu *iommu,
503 struct iommu_cmd *cmd,
504 u32 tail)
a19ae1ec 505{
a19ae1ec
JR
506 u8 *target;
507
8a7c5ef3 508 target = iommu->cmd_buf + tail;
ac0ea6e9
JR
509 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
510
511 /* Copy command to buffer */
512 memcpy(target, cmd, sizeof(*cmd));
513
514 /* Tell the IOMMU about it */
a19ae1ec 515 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 516}
a19ae1ec 517
815b33fd 518static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 519{
815b33fd
JR
520 WARN_ON(address & 0x7ULL);
521
ded46737 522 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
523 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
524 cmd->data[1] = upper_32_bits(__pa(address));
525 cmd->data[2] = 1;
ded46737
JR
526 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
527}
528
94fe79e2
JR
529static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
530{
531 memset(cmd, 0, sizeof(*cmd));
532 cmd->data[0] = devid;
533 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
534}
535
11b6402c
JR
536static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
537 size_t size, u16 domid, int pde)
538{
539 u64 pages;
540 int s;
541
542 pages = iommu_num_pages(address, size, PAGE_SIZE);
543 s = 0;
544
545 if (pages > 1) {
546 /*
547 * If we have to flush more than one page, flush all
548 * TLB entries for this domain
549 */
550 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
551 s = 1;
552 }
553
554 address &= PAGE_MASK;
555
556 memset(cmd, 0, sizeof(*cmd));
557 cmd->data[1] |= domid;
558 cmd->data[2] = lower_32_bits(address);
559 cmd->data[3] = upper_32_bits(address);
560 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
561 if (s) /* size bit - we flush more than one 4kb page */
562 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
563 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
564 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
565}
566
cb41ed85
JR
567static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
568 u64 address, size_t size)
569{
570 u64 pages;
571 int s;
572
573 pages = iommu_num_pages(address, size, PAGE_SIZE);
574 s = 0;
575
576 if (pages > 1) {
577 /*
578 * If we have to flush more than one page, flush all
579 * TLB entries for this domain
580 */
581 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
582 s = 1;
583 }
584
585 address &= PAGE_MASK;
586
587 memset(cmd, 0, sizeof(*cmd));
588 cmd->data[0] = devid;
589 cmd->data[0] |= (qdep & 0xff) << 24;
590 cmd->data[1] = devid;
591 cmd->data[2] = lower_32_bits(address);
592 cmd->data[3] = upper_32_bits(address);
593 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
594 if (s)
595 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
596}
597
58fc7f14
JR
598static void build_inv_all(struct iommu_cmd *cmd)
599{
600 memset(cmd, 0, sizeof(*cmd));
601 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
602}
603
431b2a20 604/*
431b2a20 605 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 606 * hardware about the new command.
431b2a20 607 */
f1ca1512
JR
608static int iommu_queue_command_sync(struct amd_iommu *iommu,
609 struct iommu_cmd *cmd,
610 bool sync)
a19ae1ec 611{
ac0ea6e9 612 u32 left, tail, head, next_tail;
a19ae1ec 613 unsigned long flags;
a19ae1ec 614
549c90dc 615 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
ac0ea6e9
JR
616
617again:
a19ae1ec 618 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 619
ac0ea6e9
JR
620 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
621 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
622 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
623 left = (head - next_tail) % iommu->cmd_buf_size;
a19ae1ec 624
ac0ea6e9
JR
625 if (left <= 2) {
626 struct iommu_cmd sync_cmd;
627 volatile u64 sem = 0;
628 int ret;
8d201968 629
ac0ea6e9
JR
630 build_completion_wait(&sync_cmd, (u64)&sem);
631 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 632
ac0ea6e9
JR
633 spin_unlock_irqrestore(&iommu->lock, flags);
634
635 if ((ret = wait_on_sem(&sem)) != 0)
636 return ret;
637
638 goto again;
8d201968
JR
639 }
640
ac0ea6e9
JR
641 copy_cmd_to_buffer(iommu, cmd, tail);
642
643 /* We need to sync now to make sure all commands are processed */
f1ca1512 644 iommu->need_sync = sync;
ac0ea6e9 645
a19ae1ec 646 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 647
815b33fd 648 return 0;
8d201968
JR
649}
650
f1ca1512
JR
651static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
652{
653 return iommu_queue_command_sync(iommu, cmd, true);
654}
655
8d201968
JR
656/*
657 * This function queues a completion wait command into the command
658 * buffer of an IOMMU
659 */
a19ae1ec 660static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
661{
662 struct iommu_cmd cmd;
815b33fd 663 volatile u64 sem = 0;
ac0ea6e9 664 int ret;
8d201968 665
09ee17eb 666 if (!iommu->need_sync)
815b33fd 667 return 0;
09ee17eb 668
815b33fd 669 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 670
f1ca1512 671 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 672 if (ret)
815b33fd 673 return ret;
8d201968 674
ac0ea6e9 675 return wait_on_sem(&sem);
8d201968
JR
676}
677
d8c13085 678static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 679{
d8c13085 680 struct iommu_cmd cmd;
a19ae1ec 681
d8c13085 682 build_inv_dte(&cmd, devid);
7e4f88da 683
d8c13085
JR
684 return iommu_queue_command(iommu, &cmd);
685}
09ee17eb 686
7d0c5cc5
JR
687static void iommu_flush_dte_all(struct amd_iommu *iommu)
688{
689 u32 devid;
09ee17eb 690
7d0c5cc5
JR
691 for (devid = 0; devid <= 0xffff; ++devid)
692 iommu_flush_dte(iommu, devid);
a19ae1ec 693
7d0c5cc5
JR
694 iommu_completion_wait(iommu);
695}
84df8175 696
7d0c5cc5
JR
697/*
698 * This function uses heavy locking and may disable irqs for some time. But
699 * this is no issue because it is only called during resume.
700 */
701static void iommu_flush_tlb_all(struct amd_iommu *iommu)
702{
703 u32 dom_id;
a19ae1ec 704
7d0c5cc5
JR
705 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
706 struct iommu_cmd cmd;
707 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
708 dom_id, 1);
709 iommu_queue_command(iommu, &cmd);
710 }
8eed9833 711
7d0c5cc5 712 iommu_completion_wait(iommu);
a19ae1ec
JR
713}
714
58fc7f14 715static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 716{
58fc7f14 717 struct iommu_cmd cmd;
0518a3a4 718
58fc7f14 719 build_inv_all(&cmd);
0518a3a4 720
58fc7f14
JR
721 iommu_queue_command(iommu, &cmd);
722 iommu_completion_wait(iommu);
723}
724
7d0c5cc5
JR
725void iommu_flush_all_caches(struct amd_iommu *iommu)
726{
58fc7f14
JR
727 if (iommu_feature(iommu, FEATURE_IA)) {
728 iommu_flush_all(iommu);
729 } else {
730 iommu_flush_dte_all(iommu);
731 iommu_flush_tlb_all(iommu);
0518a3a4
JR
732 }
733}
734
431b2a20 735/*
cb41ed85 736 * Command send function for flushing on-device TLB
431b2a20 737 */
6c542047
JR
738static int device_flush_iotlb(struct iommu_dev_data *dev_data,
739 u64 address, size_t size)
3fa43655
JR
740{
741 struct amd_iommu *iommu;
b00d3bcf 742 struct iommu_cmd cmd;
cb41ed85 743 int qdep;
3fa43655 744
ea61cddb
JR
745 qdep = dev_data->ats.qdep;
746 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 747
ea61cddb 748 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
749
750 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
751}
752
431b2a20 753/*
431b2a20 754 * Command send function for invalidating a device table entry
431b2a20 755 */
6c542047 756static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 757{
3fa43655 758 struct amd_iommu *iommu;
ee2fa743 759 int ret;
a19ae1ec 760
6c542047 761 iommu = amd_iommu_rlookup_table[dev_data->devid];
a19ae1ec 762
f62dda66 763 ret = iommu_flush_dte(iommu, dev_data->devid);
cb41ed85
JR
764 if (ret)
765 return ret;
766
ea61cddb 767 if (dev_data->ats.enabled)
6c542047 768 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 769
ee2fa743 770 return ret;
a19ae1ec
JR
771}
772
431b2a20
JR
773/*
774 * TLB invalidation function which is called from the mapping functions.
775 * It invalidates a single PTE if the range to flush is within a single
776 * page. Otherwise it flushes the whole TLB of the IOMMU.
777 */
17b124bf
JR
778static void __domain_flush_pages(struct protection_domain *domain,
779 u64 address, size_t size, int pde)
a19ae1ec 780{
cb41ed85 781 struct iommu_dev_data *dev_data;
11b6402c
JR
782 struct iommu_cmd cmd;
783 int ret = 0, i;
a19ae1ec 784
11b6402c 785 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 786
6de8ad9b
JR
787 for (i = 0; i < amd_iommus_present; ++i) {
788 if (!domain->dev_iommu[i])
789 continue;
790
791 /*
792 * Devices of this domain are behind this IOMMU
793 * We need a TLB flush
794 */
11b6402c 795 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
796 }
797
cb41ed85 798 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 799
ea61cddb 800 if (!dev_data->ats.enabled)
cb41ed85
JR
801 continue;
802
6c542047 803 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
804 }
805
11b6402c 806 WARN_ON(ret);
6de8ad9b
JR
807}
808
17b124bf
JR
809static void domain_flush_pages(struct protection_domain *domain,
810 u64 address, size_t size)
6de8ad9b 811{
17b124bf 812 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 813}
b6c02715 814
1c655773 815/* Flush the whole IO/TLB for a given protection domain */
17b124bf 816static void domain_flush_tlb(struct protection_domain *domain)
1c655773 817{
17b124bf 818 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
819}
820
42a49f96 821/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 822static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 823{
17b124bf 824 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
825}
826
17b124bf 827static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 828{
17b124bf 829 int i;
18811f55 830
17b124bf
JR
831 for (i = 0; i < amd_iommus_present; ++i) {
832 if (!domain->dev_iommu[i])
833 continue;
bfd1be18 834
17b124bf
JR
835 /*
836 * Devices of this domain are behind this IOMMU
837 * We need to wait for completion of all commands.
838 */
839 iommu_completion_wait(amd_iommus[i]);
bfd1be18 840 }
e394d72a
JR
841}
842
b00d3bcf 843
09b42804 844/*
b00d3bcf 845 * This function flushes the DTEs for all devices in domain
09b42804 846 */
17b124bf 847static void domain_flush_devices(struct protection_domain *domain)
e394d72a 848{
b00d3bcf 849 struct iommu_dev_data *dev_data;
b26e81b8 850
b00d3bcf 851 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 852 device_flush_dte(dev_data);
a345b23b
JR
853}
854
431b2a20
JR
855/****************************************************************************
856 *
857 * The functions below are used the create the page table mappings for
858 * unity mapped regions.
859 *
860 ****************************************************************************/
861
308973d3
JR
862/*
863 * This function is used to add another level to an IO page table. Adding
864 * another level increases the size of the address space by 9 bits to a size up
865 * to 64 bits.
866 */
867static bool increase_address_space(struct protection_domain *domain,
868 gfp_t gfp)
869{
870 u64 *pte;
871
872 if (domain->mode == PAGE_MODE_6_LEVEL)
873 /* address space already 64 bit large */
874 return false;
875
876 pte = (void *)get_zeroed_page(gfp);
877 if (!pte)
878 return false;
879
880 *pte = PM_LEVEL_PDE(domain->mode,
881 virt_to_phys(domain->pt_root));
882 domain->pt_root = pte;
883 domain->mode += 1;
884 domain->updated = true;
885
886 return true;
887}
888
889static u64 *alloc_pte(struct protection_domain *domain,
890 unsigned long address,
cbb9d729 891 unsigned long page_size,
308973d3
JR
892 u64 **pte_page,
893 gfp_t gfp)
894{
cbb9d729 895 int level, end_lvl;
308973d3 896 u64 *pte, *page;
cbb9d729
JR
897
898 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
899
900 while (address > PM_LEVEL_SIZE(domain->mode))
901 increase_address_space(domain, gfp);
902
cbb9d729
JR
903 level = domain->mode - 1;
904 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
905 address = PAGE_SIZE_ALIGN(address, page_size);
906 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
907
908 while (level > end_lvl) {
909 if (!IOMMU_PTE_PRESENT(*pte)) {
910 page = (u64 *)get_zeroed_page(gfp);
911 if (!page)
912 return NULL;
913 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
914 }
915
cbb9d729
JR
916 /* No level skipping support yet */
917 if (PM_PTE_LEVEL(*pte) != level)
918 return NULL;
919
308973d3
JR
920 level -= 1;
921
922 pte = IOMMU_PTE_PAGE(*pte);
923
924 if (pte_page && level == end_lvl)
925 *pte_page = pte;
926
927 pte = &pte[PM_LEVEL_INDEX(level, address)];
928 }
929
930 return pte;
931}
932
933/*
934 * This function checks if there is a PTE for a given dma address. If
935 * there is one, it returns the pointer to it.
936 */
24cd7723 937static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
308973d3
JR
938{
939 int level;
940 u64 *pte;
941
24cd7723
JR
942 if (address > PM_LEVEL_SIZE(domain->mode))
943 return NULL;
944
945 level = domain->mode - 1;
946 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
308973d3 947
24cd7723
JR
948 while (level > 0) {
949
950 /* Not Present */
308973d3
JR
951 if (!IOMMU_PTE_PRESENT(*pte))
952 return NULL;
953
24cd7723
JR
954 /* Large PTE */
955 if (PM_PTE_LEVEL(*pte) == 0x07) {
956 unsigned long pte_mask, __pte;
957
958 /*
959 * If we have a series of large PTEs, make
960 * sure to return a pointer to the first one.
961 */
962 pte_mask = PTE_PAGE_SIZE(*pte);
963 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
964 __pte = ((unsigned long)pte) & pte_mask;
965
966 return (u64 *)__pte;
967 }
968
969 /* No level skipping support yet */
970 if (PM_PTE_LEVEL(*pte) != level)
971 return NULL;
972
308973d3
JR
973 level -= 1;
974
24cd7723 975 /* Walk to the next level */
308973d3
JR
976 pte = IOMMU_PTE_PAGE(*pte);
977 pte = &pte[PM_LEVEL_INDEX(level, address)];
308973d3
JR
978 }
979
980 return pte;
981}
982
431b2a20
JR
983/*
984 * Generic mapping functions. It maps a physical address into a DMA
985 * address space. It allocates the page table pages if necessary.
986 * In the future it can be extended to a generic mapping function
987 * supporting all features of AMD IOMMU page tables like level skipping
988 * and full 64 bit address spaces.
989 */
38e817fe
JR
990static int iommu_map_page(struct protection_domain *dom,
991 unsigned long bus_addr,
992 unsigned long phys_addr,
abdc5eb3 993 int prot,
cbb9d729 994 unsigned long page_size)
bd0e5211 995{
8bda3092 996 u64 __pte, *pte;
cbb9d729 997 int i, count;
abdc5eb3 998
bad1cac2 999 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1000 return -EINVAL;
1001
cbb9d729
JR
1002 bus_addr = PAGE_ALIGN(bus_addr);
1003 phys_addr = PAGE_ALIGN(phys_addr);
1004 count = PAGE_SIZE_PTE_COUNT(page_size);
1005 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007 for (i = 0; i < count; ++i)
1008 if (IOMMU_PTE_PRESENT(pte[i]))
1009 return -EBUSY;
bd0e5211 1010
cbb9d729
JR
1011 if (page_size > PAGE_SIZE) {
1012 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014 } else
1015 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1016
bd0e5211
JR
1017 if (prot & IOMMU_PROT_IR)
1018 __pte |= IOMMU_PTE_IR;
1019 if (prot & IOMMU_PROT_IW)
1020 __pte |= IOMMU_PTE_IW;
1021
cbb9d729
JR
1022 for (i = 0; i < count; ++i)
1023 pte[i] = __pte;
bd0e5211 1024
04bfdd84
JR
1025 update_domain(dom);
1026
bd0e5211
JR
1027 return 0;
1028}
1029
24cd7723
JR
1030static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031 unsigned long bus_addr,
1032 unsigned long page_size)
eb74ff6c 1033{
24cd7723
JR
1034 unsigned long long unmap_size, unmapped;
1035 u64 *pte;
1036
1037 BUG_ON(!is_power_of_2(page_size));
1038
1039 unmapped = 0;
eb74ff6c 1040
24cd7723
JR
1041 while (unmapped < page_size) {
1042
1043 pte = fetch_pte(dom, bus_addr);
1044
1045 if (!pte) {
1046 /*
1047 * No PTE for this address
1048 * move forward in 4kb steps
1049 */
1050 unmap_size = PAGE_SIZE;
1051 } else if (PM_PTE_LEVEL(*pte) == 0) {
1052 /* 4kb PTE found for this address */
1053 unmap_size = PAGE_SIZE;
1054 *pte = 0ULL;
1055 } else {
1056 int count, i;
1057
1058 /* Large PTE found which maps this address */
1059 unmap_size = PTE_PAGE_SIZE(*pte);
1060 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1061 for (i = 0; i < count; i++)
1062 pte[i] = 0ULL;
1063 }
1064
1065 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066 unmapped += unmap_size;
1067 }
1068
1069 BUG_ON(!is_power_of_2(unmapped));
eb74ff6c 1070
24cd7723 1071 return unmapped;
eb74ff6c 1072}
eb74ff6c 1073
431b2a20
JR
1074/*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
bd0e5211
JR
1078static int iommu_for_unity_map(struct amd_iommu *iommu,
1079 struct unity_map_entry *entry)
1080{
1081 u16 bdf, i;
1082
1083 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084 bdf = amd_iommu_alias_table[i];
1085 if (amd_iommu_rlookup_table[bdf] == iommu)
1086 return 1;
1087 }
1088
1089 return 0;
1090}
1091
431b2a20
JR
1092/*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
bd0e5211
JR
1096static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097 struct unity_map_entry *e)
1098{
1099 u64 addr;
1100 int ret;
1101
1102 for (addr = e->address_start; addr < e->address_end;
1103 addr += PAGE_SIZE) {
abdc5eb3 1104 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
cbb9d729 1105 PAGE_SIZE);
bd0e5211
JR
1106 if (ret)
1107 return ret;
1108 /*
1109 * if unity mapping is in aperture range mark the page
1110 * as allocated in the aperture
1111 */
1112 if (addr < dma_dom->aperture_size)
c3239567 1113 __set_bit(addr >> PAGE_SHIFT,
384de729 1114 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
1115 }
1116
1117 return 0;
1118}
1119
171e7b37
JR
1120/*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127{
1128 struct unity_map_entry *entry;
1129 int ret;
1130
1131 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132 if (!iommu_for_unity_map(iommu, entry))
1133 continue;
1134 ret = dma_ops_unity_map(iommu->default_dom, entry);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 return 0;
1140}
1141
431b2a20
JR
1142/*
1143 * Inits the unity mappings required for a specific device
1144 */
bd0e5211
JR
1145static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146 u16 devid)
1147{
1148 struct unity_map_entry *e;
1149 int ret;
1150
1151 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152 if (!(devid >= e->devid_start && devid <= e->devid_end))
1153 continue;
1154 ret = dma_ops_unity_map(dma_dom, e);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 return 0;
1160}
1161
431b2a20
JR
1162/****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
d3086444 1171
431b2a20 1172/*
384de729 1173 * The address allocator core functions.
431b2a20
JR
1174 *
1175 * called with domain->lock held
1176 */
384de729 1177
171e7b37
JR
1178/*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183 unsigned long start_page,
1184 unsigned int pages)
1185{
1186 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188 if (start_page + pages > last_page)
1189 pages = last_page - start_page;
1190
1191 for (i = start_page; i < start_page + pages; ++i) {
1192 int index = i / APERTURE_RANGE_PAGES;
1193 int page = i % APERTURE_RANGE_PAGES;
1194 __set_bit(page, dom->aperture[index]->bitmap);
1195 }
1196}
1197
9cabe89b
JR
1198/*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
576175c2 1203static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1204 bool populate, gfp_t gfp)
1205{
1206 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1207 struct amd_iommu *iommu;
17f5b569 1208 unsigned long i, old_size;
9cabe89b 1209
f5e9705c
JR
1210#ifdef CONFIG_IOMMU_STRESS
1211 populate = false;
1212#endif
1213
9cabe89b
JR
1214 if (index >= APERTURE_MAX_RANGES)
1215 return -ENOMEM;
1216
1217 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218 if (!dma_dom->aperture[index])
1219 return -ENOMEM;
1220
1221 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222 if (!dma_dom->aperture[index]->bitmap)
1223 goto out_free;
1224
1225 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227 if (populate) {
1228 unsigned long address = dma_dom->aperture_size;
1229 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230 u64 *pte, *pte_page;
1231
1232 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1233 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1234 &pte_page, gfp);
1235 if (!pte)
1236 goto out_free;
1237
1238 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240 address += APERTURE_RANGE_SIZE / 64;
1241 }
1242 }
1243
17f5b569 1244 old_size = dma_dom->aperture_size;
9cabe89b
JR
1245 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
17f5b569
JR
1247 /* Reserve address range used for MSI messages */
1248 if (old_size < MSI_ADDR_BASE_LO &&
1249 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250 unsigned long spage;
1251 int pages;
1252
1253 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256 dma_ops_reserve_addresses(dma_dom, spage, pages);
1257 }
1258
b595076a 1259 /* Initialize the exclusion range if necessary */
576175c2
JR
1260 for_each_iommu(iommu) {
1261 if (iommu->exclusion_start &&
1262 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263 && iommu->exclusion_start < dma_dom->aperture_size) {
1264 unsigned long startpage;
1265 int pages = iommu_num_pages(iommu->exclusion_start,
1266 iommu->exclusion_length,
1267 PAGE_SIZE);
1268 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270 }
00cd122a
JR
1271 }
1272
1273 /*
1274 * Check for areas already mapped as present in the new aperture
1275 * range and mark those pages as reserved in the allocator. Such
1276 * mappings may already exist as a result of requested unity
1277 * mappings for devices.
1278 */
1279 for (i = dma_dom->aperture[index]->offset;
1280 i < dma_dom->aperture_size;
1281 i += PAGE_SIZE) {
24cd7723 1282 u64 *pte = fetch_pte(&dma_dom->domain, i);
00cd122a
JR
1283 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284 continue;
1285
fcd0861d 1286 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
00cd122a
JR
1287 }
1288
04bfdd84
JR
1289 update_domain(&dma_dom->domain);
1290
9cabe89b
JR
1291 return 0;
1292
1293out_free:
04bfdd84
JR
1294 update_domain(&dma_dom->domain);
1295
9cabe89b
JR
1296 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298 kfree(dma_dom->aperture[index]);
1299 dma_dom->aperture[index] = NULL;
1300
1301 return -ENOMEM;
1302}
1303
384de729
JR
1304static unsigned long dma_ops_area_alloc(struct device *dev,
1305 struct dma_ops_domain *dom,
1306 unsigned int pages,
1307 unsigned long align_mask,
1308 u64 dma_mask,
1309 unsigned long start)
1310{
803b8cb4 1311 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1312 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313 int i = start >> APERTURE_RANGE_SHIFT;
1314 unsigned long boundary_size;
1315 unsigned long address = -1;
1316 unsigned long limit;
1317
803b8cb4
JR
1318 next_bit >>= PAGE_SHIFT;
1319
384de729
JR
1320 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321 PAGE_SIZE) >> PAGE_SHIFT;
1322
1323 for (;i < max_index; ++i) {
1324 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326 if (dom->aperture[i]->offset >= dma_mask)
1327 break;
1328
1329 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330 dma_mask >> PAGE_SHIFT);
1331
1332 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333 limit, next_bit, pages, 0,
1334 boundary_size, align_mask);
1335 if (address != -1) {
1336 address = dom->aperture[i]->offset +
1337 (address << PAGE_SHIFT);
803b8cb4 1338 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1339 break;
1340 }
1341
1342 next_bit = 0;
1343 }
1344
1345 return address;
1346}
1347
d3086444
JR
1348static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349 struct dma_ops_domain *dom,
6d4f343f 1350 unsigned int pages,
832a90c3
JR
1351 unsigned long align_mask,
1352 u64 dma_mask)
d3086444 1353{
d3086444 1354 unsigned long address;
d3086444 1355
fe16f088
JR
1356#ifdef CONFIG_IOMMU_STRESS
1357 dom->next_address = 0;
1358 dom->need_flush = true;
1359#endif
d3086444 1360
384de729 1361 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1362 dma_mask, dom->next_address);
d3086444 1363
1c655773 1364 if (address == -1) {
803b8cb4 1365 dom->next_address = 0;
384de729
JR
1366 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367 dma_mask, 0);
1c655773
JR
1368 dom->need_flush = true;
1369 }
d3086444 1370
384de729 1371 if (unlikely(address == -1))
8fd524b3 1372 address = DMA_ERROR_CODE;
d3086444
JR
1373
1374 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1375
1376 return address;
1377}
1378
431b2a20
JR
1379/*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
d3086444
JR
1384static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385 unsigned long address,
1386 unsigned int pages)
1387{
384de729
JR
1388 unsigned i = address >> APERTURE_RANGE_SHIFT;
1389 struct aperture_range *range = dom->aperture[i];
80be308d 1390
384de729
JR
1391 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
47bccd6b
JR
1393#ifdef CONFIG_IOMMU_STRESS
1394 if (i < 4)
1395 return;
1396#endif
80be308d 1397
803b8cb4 1398 if (address >= dom->next_address)
80be308d 1399 dom->need_flush = true;
384de729
JR
1400
1401 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1402
a66022c4 1403 bitmap_clear(range->bitmap, address, pages);
384de729 1404
d3086444
JR
1405}
1406
431b2a20
JR
1407/****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
aeb26f55
JR
1417/*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420static void add_domain_to_list(struct protection_domain *domain)
1421{
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425 list_add(&domain->list, &amd_iommu_pd_list);
1426 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427}
1428
1429/*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433static void del_domain_from_list(struct protection_domain *domain)
1434{
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438 list_del(&domain->list);
1439 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440}
1441
ec487d1a
JR
1442static u16 domain_id_alloc(void)
1443{
1444 unsigned long flags;
1445 int id;
1446
1447 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449 BUG_ON(id == 0);
1450 if (id > 0 && id < MAX_DOMAIN_ID)
1451 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1452 else
1453 id = 0;
1454 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456 return id;
1457}
1458
a2acfb75
JR
1459static void domain_id_free(int id)
1460{
1461 unsigned long flags;
1462
1463 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464 if (id > 0 && id < MAX_DOMAIN_ID)
1465 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467}
a2acfb75 1468
86db2e5d 1469static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1470{
1471 int i, j;
1472 u64 *p1, *p2, *p3;
1473
86db2e5d 1474 p1 = domain->pt_root;
ec487d1a
JR
1475
1476 if (!p1)
1477 return;
1478
1479 for (i = 0; i < 512; ++i) {
1480 if (!IOMMU_PTE_PRESENT(p1[i]))
1481 continue;
1482
1483 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1484 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1485 if (!IOMMU_PTE_PRESENT(p2[j]))
1486 continue;
1487 p3 = IOMMU_PTE_PAGE(p2[j]);
1488 free_page((unsigned long)p3);
1489 }
1490
1491 free_page((unsigned long)p2);
1492 }
1493
1494 free_page((unsigned long)p1);
86db2e5d
JR
1495
1496 domain->pt_root = NULL;
ec487d1a
JR
1497}
1498
431b2a20
JR
1499/*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
ec487d1a
JR
1503static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504{
384de729
JR
1505 int i;
1506
ec487d1a
JR
1507 if (!dom)
1508 return;
1509
aeb26f55
JR
1510 del_domain_from_list(&dom->domain);
1511
86db2e5d 1512 free_pagetable(&dom->domain);
ec487d1a 1513
384de729
JR
1514 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515 if (!dom->aperture[i])
1516 continue;
1517 free_page((unsigned long)dom->aperture[i]->bitmap);
1518 kfree(dom->aperture[i]);
1519 }
ec487d1a
JR
1520
1521 kfree(dom);
1522}
1523
431b2a20
JR
1524/*
1525 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1526 * It also initializes the page table and the address allocator data
431b2a20
JR
1527 * structures required for the dma_ops interface
1528 */
87a64d52 1529static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1530{
1531 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1532
1533 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534 if (!dma_dom)
1535 return NULL;
1536
1537 spin_lock_init(&dma_dom->domain.lock);
1538
1539 dma_dom->domain.id = domain_id_alloc();
1540 if (dma_dom->domain.id == 0)
1541 goto free_dma_dom;
7c392cbe 1542 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1543 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1544 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1545 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1546 dma_dom->domain.priv = dma_dom;
1547 if (!dma_dom->domain.pt_root)
1548 goto free_dma_dom;
ec487d1a 1549
1c655773 1550 dma_dom->need_flush = false;
bd60b735 1551 dma_dom->target_dev = 0xffff;
1c655773 1552
aeb26f55
JR
1553 add_domain_to_list(&dma_dom->domain);
1554
576175c2 1555 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1556 goto free_dma_dom;
ec487d1a 1557
431b2a20 1558 /*
ec487d1a
JR
1559 * mark the first page as allocated so we never return 0 as
1560 * a valid dma-address. So we can use 0 as error value
431b2a20 1561 */
384de729 1562 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1563 dma_dom->next_address = 0;
ec487d1a 1564
ec487d1a
JR
1565
1566 return dma_dom;
1567
1568free_dma_dom:
1569 dma_ops_domain_free(dma_dom);
1570
1571 return NULL;
1572}
1573
5b28df6f
JR
1574/*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578static bool dma_ops_domain(struct protection_domain *domain)
1579{
1580 return domain->flags & PD_DMA_OPS_MASK;
1581}
1582
fd7b5535 1583static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1584{
b20ac0d4 1585 u64 pte_root = virt_to_phys(domain->pt_root);
ee6c2868 1586 u64 flags = 0;
863c74eb 1587
38ddf41b
JR
1588 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589 << DEV_ENTRY_MODE_SHIFT;
1590 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1591
ee6c2868
JR
1592 flags = amd_iommu_dev_table[devid].data[1];
1593
fd7b5535
JR
1594 if (ats)
1595 flags |= DTE_FLAG_IOTLB;
1596
ee6c2868
JR
1597 flags &= ~(0xffffUL);
1598 flags |= domain->id;
1599
1600 amd_iommu_dev_table[devid].data[1] = flags;
1601 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1602}
1603
1604static void clear_dte_entry(u16 devid)
1605{
15898bbc
JR
1606 /* remove entry from the device table seen by the hardware */
1607 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1608 amd_iommu_dev_table[devid].data[1] = 0;
15898bbc
JR
1609
1610 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1611}
1612
ec9e79ef
JR
1613static void do_attach(struct iommu_dev_data *dev_data,
1614 struct protection_domain *domain)
7f760ddd 1615{
7f760ddd 1616 struct amd_iommu *iommu;
ec9e79ef 1617 bool ats;
fd7b5535 1618
ec9e79ef
JR
1619 iommu = amd_iommu_rlookup_table[dev_data->devid];
1620 ats = dev_data->ats.enabled;
7f760ddd
JR
1621
1622 /* Update data structures */
1623 dev_data->domain = domain;
1624 list_add(&dev_data->list, &domain->dev_list);
f62dda66 1625 set_dte_entry(dev_data->devid, domain, ats);
7f760ddd
JR
1626
1627 /* Do reference counting */
1628 domain->dev_iommu[iommu->index] += 1;
1629 domain->dev_cnt += 1;
1630
1631 /* Flush the DTE entry */
6c542047 1632 device_flush_dte(dev_data);
7f760ddd
JR
1633}
1634
ec9e79ef 1635static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1636{
7f760ddd 1637 struct amd_iommu *iommu;
7f760ddd 1638
ec9e79ef 1639 iommu = amd_iommu_rlookup_table[dev_data->devid];
15898bbc
JR
1640
1641 /* decrease reference counters */
7f760ddd
JR
1642 dev_data->domain->dev_iommu[iommu->index] -= 1;
1643 dev_data->domain->dev_cnt -= 1;
1644
1645 /* Update data structures */
1646 dev_data->domain = NULL;
1647 list_del(&dev_data->list);
f62dda66 1648 clear_dte_entry(dev_data->devid);
15898bbc 1649
7f760ddd 1650 /* Flush the DTE entry */
6c542047 1651 device_flush_dte(dev_data);
2b681faf
JR
1652}
1653
1654/*
1655 * If a device is not yet associated with a domain, this function does
1656 * assigns it visible for the hardware
1657 */
ec9e79ef 1658static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1659 struct protection_domain *domain)
2b681faf 1660{
84fe6c19 1661 int ret;
657cbb6b 1662
2b681faf
JR
1663 /* lock domain */
1664 spin_lock(&domain->lock);
1665
71f77580
JR
1666 if (dev_data->alias_data != NULL) {
1667 struct iommu_dev_data *alias_data = dev_data->alias_data;
15898bbc 1668
2b02b091
JR
1669 /* Some sanity checks */
1670 ret = -EBUSY;
1671 if (alias_data->domain != NULL &&
1672 alias_data->domain != domain)
1673 goto out_unlock;
eba6ac60 1674
2b02b091
JR
1675 if (dev_data->domain != NULL &&
1676 dev_data->domain != domain)
1677 goto out_unlock;
15898bbc 1678
2b02b091 1679 /* Do real assignment */
7f760ddd 1680 if (alias_data->domain == NULL)
ec9e79ef 1681 do_attach(alias_data, domain);
24100055
JR
1682
1683 atomic_inc(&alias_data->bind);
657cbb6b 1684 }
15898bbc 1685
7f760ddd 1686 if (dev_data->domain == NULL)
ec9e79ef 1687 do_attach(dev_data, domain);
eba6ac60 1688
24100055
JR
1689 atomic_inc(&dev_data->bind);
1690
84fe6c19
JL
1691 ret = 0;
1692
1693out_unlock:
1694
eba6ac60
JR
1695 /* ready */
1696 spin_unlock(&domain->lock);
15898bbc 1697
84fe6c19 1698 return ret;
0feae533 1699}
b20ac0d4 1700
407d733e
JR
1701/*
1702 * If a device is not yet associated with a domain, this function does
1703 * assigns it visible for the hardware
1704 */
15898bbc
JR
1705static int attach_device(struct device *dev,
1706 struct protection_domain *domain)
0feae533 1707{
fd7b5535 1708 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 1709 struct iommu_dev_data *dev_data;
eba6ac60 1710 unsigned long flags;
15898bbc 1711 int ret;
eba6ac60 1712
ea61cddb
JR
1713 dev_data = get_dev_data(dev);
1714
1715 if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1716 dev_data->ats.enabled = true;
1717 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1718 }
fd7b5535 1719
eba6ac60 1720 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 1721 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
1722 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1723
0feae533
JR
1724 /*
1725 * We might boot into a crash-kernel here. The crashed kernel
1726 * left the caches in the IOMMU dirty. So we have to flush
1727 * here to evict all dirty stuff.
1728 */
17b124bf 1729 domain_flush_tlb_pde(domain);
15898bbc
JR
1730
1731 return ret;
b20ac0d4
JR
1732}
1733
355bf553
JR
1734/*
1735 * Removes a device from a protection domain (unlocked)
1736 */
ec9e79ef 1737static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 1738{
2ca76279 1739 struct protection_domain *domain;
7c392cbe 1740 unsigned long flags;
c4596114 1741
7f760ddd 1742 BUG_ON(!dev_data->domain);
355bf553 1743
2ca76279
JR
1744 domain = dev_data->domain;
1745
1746 spin_lock_irqsave(&domain->lock, flags);
24100055 1747
71f77580
JR
1748 if (dev_data->alias_data != NULL) {
1749 struct iommu_dev_data *alias_data = dev_data->alias_data;
1750
7f760ddd 1751 if (atomic_dec_and_test(&alias_data->bind))
ec9e79ef 1752 do_detach(alias_data);
24100055
JR
1753 }
1754
7f760ddd 1755 if (atomic_dec_and_test(&dev_data->bind))
ec9e79ef 1756 do_detach(dev_data);
7f760ddd 1757
2ca76279 1758 spin_unlock_irqrestore(&domain->lock, flags);
21129f78
JR
1759
1760 /*
1761 * If we run in passthrough mode the device must be assigned to the
d3ad9373
JR
1762 * passthrough domain if it is detached from any other domain.
1763 * Make sure we can deassign from the pt_domain itself.
21129f78 1764 */
d3ad9373
JR
1765 if (iommu_pass_through &&
1766 (dev_data->domain == NULL && domain != pt_domain))
ec9e79ef 1767 __attach_device(dev_data, pt_domain);
355bf553
JR
1768}
1769
1770/*
1771 * Removes a device from a protection domain (with devtable_lock held)
1772 */
15898bbc 1773static void detach_device(struct device *dev)
355bf553 1774{
ea61cddb 1775 struct iommu_dev_data *dev_data;
355bf553
JR
1776 unsigned long flags;
1777
ec9e79ef
JR
1778 dev_data = get_dev_data(dev);
1779
355bf553
JR
1780 /* lock device table */
1781 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 1782 __detach_device(dev_data);
355bf553 1783 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 1784
ea61cddb
JR
1785 if (dev_data->ats.enabled) {
1786 pci_disable_ats(to_pci_dev(dev));
1787 dev_data->ats.enabled = false;
1788 }
355bf553 1789}
e275a2a0 1790
15898bbc
JR
1791/*
1792 * Find out the protection domain structure for a given PCI device. This
1793 * will give us the pointer to the page table root for example.
1794 */
1795static struct protection_domain *domain_for_device(struct device *dev)
1796{
71f77580 1797 struct iommu_dev_data *dev_data;
2b02b091 1798 struct protection_domain *dom = NULL;
15898bbc 1799 unsigned long flags;
15898bbc 1800
657cbb6b 1801 dev_data = get_dev_data(dev);
15898bbc 1802
2b02b091
JR
1803 if (dev_data->domain)
1804 return dev_data->domain;
15898bbc 1805
71f77580
JR
1806 if (dev_data->alias_data != NULL) {
1807 struct iommu_dev_data *alias_data = dev_data->alias_data;
2b02b091
JR
1808
1809 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1810 if (alias_data->domain != NULL) {
1811 __attach_device(dev_data, alias_data->domain);
1812 dom = alias_data->domain;
1813 }
1814 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1815 }
15898bbc
JR
1816
1817 return dom;
1818}
1819
e275a2a0
JR
1820static int device_change_notifier(struct notifier_block *nb,
1821 unsigned long action, void *data)
1822{
1823 struct device *dev = data;
98fc5a69 1824 u16 devid;
e275a2a0
JR
1825 struct protection_domain *domain;
1826 struct dma_ops_domain *dma_domain;
1827 struct amd_iommu *iommu;
1ac4cbbc 1828 unsigned long flags;
e275a2a0 1829
98fc5a69
JR
1830 if (!check_device(dev))
1831 return 0;
e275a2a0 1832
98fc5a69
JR
1833 devid = get_device_id(dev);
1834 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1835
1836 switch (action) {
c1eee67b 1837 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1838
1839 domain = domain_for_device(dev);
1840
e275a2a0
JR
1841 if (!domain)
1842 goto out;
a1ca331c
JR
1843 if (iommu_pass_through)
1844 break;
15898bbc 1845 detach_device(dev);
1ac4cbbc
JR
1846 break;
1847 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1848
1849 iommu_init_device(dev);
1850
1851 domain = domain_for_device(dev);
1852
1ac4cbbc
JR
1853 /* allocate a protection domain if a device is added */
1854 dma_domain = find_protection_domain(devid);
1855 if (dma_domain)
1856 goto out;
87a64d52 1857 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1858 if (!dma_domain)
1859 goto out;
1860 dma_domain->target_dev = devid;
1861
1862 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1863 list_add_tail(&dma_domain->list, &iommu_pd_list);
1864 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1865
e275a2a0 1866 break;
657cbb6b
JR
1867 case BUS_NOTIFY_DEL_DEVICE:
1868
1869 iommu_uninit_device(dev);
1870
e275a2a0
JR
1871 default:
1872 goto out;
1873 }
1874
e275a2a0
JR
1875 iommu_completion_wait(iommu);
1876
1877out:
1878 return 0;
1879}
1880
b25ae679 1881static struct notifier_block device_nb = {
e275a2a0
JR
1882 .notifier_call = device_change_notifier,
1883};
355bf553 1884
8638c491
JR
1885void amd_iommu_init_notifier(void)
1886{
1887 bus_register_notifier(&pci_bus_type, &device_nb);
1888}
1889
431b2a20
JR
1890/*****************************************************************************
1891 *
1892 * The next functions belong to the dma_ops mapping/unmapping code.
1893 *
1894 *****************************************************************************/
1895
1896/*
1897 * In the dma_ops path we only have the struct device. This function
1898 * finds the corresponding IOMMU, the protection domain and the
1899 * requestor id for a given device.
1900 * If the device is not yet associated with a domain this is also done
1901 * in this function.
1902 */
94f6d190 1903static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1904{
94f6d190 1905 struct protection_domain *domain;
b20ac0d4 1906 struct dma_ops_domain *dma_dom;
94f6d190 1907 u16 devid = get_device_id(dev);
b20ac0d4 1908
f99c0f1c 1909 if (!check_device(dev))
94f6d190 1910 return ERR_PTR(-EINVAL);
b20ac0d4 1911
94f6d190
JR
1912 domain = domain_for_device(dev);
1913 if (domain != NULL && !dma_ops_domain(domain))
1914 return ERR_PTR(-EBUSY);
f99c0f1c 1915
94f6d190
JR
1916 if (domain != NULL)
1917 return domain;
b20ac0d4 1918
15898bbc 1919 /* Device not bount yet - bind it */
94f6d190 1920 dma_dom = find_protection_domain(devid);
15898bbc 1921 if (!dma_dom)
94f6d190
JR
1922 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1923 attach_device(dev, &dma_dom->domain);
15898bbc 1924 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1925 dma_dom->domain.id, dev_name(dev));
f91ba190 1926
94f6d190 1927 return &dma_dom->domain;
b20ac0d4
JR
1928}
1929
04bfdd84
JR
1930static void update_device_table(struct protection_domain *domain)
1931{
492667da 1932 struct iommu_dev_data *dev_data;
04bfdd84 1933
ea61cddb
JR
1934 list_for_each_entry(dev_data, &domain->dev_list, list)
1935 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
1936}
1937
1938static void update_domain(struct protection_domain *domain)
1939{
1940 if (!domain->updated)
1941 return;
1942
1943 update_device_table(domain);
17b124bf
JR
1944
1945 domain_flush_devices(domain);
1946 domain_flush_tlb_pde(domain);
04bfdd84
JR
1947
1948 domain->updated = false;
1949}
1950
8bda3092
JR
1951/*
1952 * This function fetches the PTE for a given address in the aperture
1953 */
1954static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1955 unsigned long address)
1956{
384de729 1957 struct aperture_range *aperture;
8bda3092
JR
1958 u64 *pte, *pte_page;
1959
384de729
JR
1960 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1961 if (!aperture)
1962 return NULL;
1963
1964 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1965 if (!pte) {
cbb9d729 1966 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 1967 GFP_ATOMIC);
384de729
JR
1968 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1969 } else
8c8c143c 1970 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1971
04bfdd84 1972 update_domain(&dom->domain);
8bda3092
JR
1973
1974 return pte;
1975}
1976
431b2a20
JR
1977/*
1978 * This is the generic map function. It maps one 4kb page at paddr to
1979 * the given address in the DMA address space for the domain.
1980 */
680525e0 1981static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1982 unsigned long address,
1983 phys_addr_t paddr,
1984 int direction)
1985{
1986 u64 *pte, __pte;
1987
1988 WARN_ON(address > dom->aperture_size);
1989
1990 paddr &= PAGE_MASK;
1991
8bda3092 1992 pte = dma_ops_get_pte(dom, address);
53812c11 1993 if (!pte)
8fd524b3 1994 return DMA_ERROR_CODE;
cb76c322
JR
1995
1996 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1997
1998 if (direction == DMA_TO_DEVICE)
1999 __pte |= IOMMU_PTE_IR;
2000 else if (direction == DMA_FROM_DEVICE)
2001 __pte |= IOMMU_PTE_IW;
2002 else if (direction == DMA_BIDIRECTIONAL)
2003 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2004
2005 WARN_ON(*pte);
2006
2007 *pte = __pte;
2008
2009 return (dma_addr_t)address;
2010}
2011
431b2a20
JR
2012/*
2013 * The generic unmapping function for on page in the DMA address space.
2014 */
680525e0 2015static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2016 unsigned long address)
2017{
384de729 2018 struct aperture_range *aperture;
cb76c322
JR
2019 u64 *pte;
2020
2021 if (address >= dom->aperture_size)
2022 return;
2023
384de729
JR
2024 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2025 if (!aperture)
2026 return;
2027
2028 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2029 if (!pte)
2030 return;
cb76c322 2031
8c8c143c 2032 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2033
2034 WARN_ON(!*pte);
2035
2036 *pte = 0ULL;
2037}
2038
431b2a20
JR
2039/*
2040 * This function contains common code for mapping of a physically
24f81160
JR
2041 * contiguous memory region into DMA address space. It is used by all
2042 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2043 * Must be called with the domain lock held.
2044 */
cb76c322 2045static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2046 struct dma_ops_domain *dma_dom,
2047 phys_addr_t paddr,
2048 size_t size,
6d4f343f 2049 int dir,
832a90c3
JR
2050 bool align,
2051 u64 dma_mask)
cb76c322
JR
2052{
2053 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2054 dma_addr_t address, start, ret;
cb76c322 2055 unsigned int pages;
6d4f343f 2056 unsigned long align_mask = 0;
cb76c322
JR
2057 int i;
2058
e3c449f5 2059 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2060 paddr &= PAGE_MASK;
2061
8ecaf8f1
JR
2062 INC_STATS_COUNTER(total_map_requests);
2063
c1858976
JR
2064 if (pages > 1)
2065 INC_STATS_COUNTER(cross_page);
2066
6d4f343f
JR
2067 if (align)
2068 align_mask = (1UL << get_order(size)) - 1;
2069
11b83888 2070retry:
832a90c3
JR
2071 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2072 dma_mask);
8fd524b3 2073 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2074 /*
2075 * setting next_address here will let the address
2076 * allocator only scan the new allocated range in the
2077 * first run. This is a small optimization.
2078 */
2079 dma_dom->next_address = dma_dom->aperture_size;
2080
576175c2 2081 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2082 goto out;
2083
2084 /*
af901ca1 2085 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2086 * allocation again
2087 */
2088 goto retry;
2089 }
cb76c322
JR
2090
2091 start = address;
2092 for (i = 0; i < pages; ++i) {
680525e0 2093 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2094 if (ret == DMA_ERROR_CODE)
53812c11
JR
2095 goto out_unmap;
2096
cb76c322
JR
2097 paddr += PAGE_SIZE;
2098 start += PAGE_SIZE;
2099 }
2100 address += offset;
2101
5774f7c5
JR
2102 ADD_STATS_COUNTER(alloced_io_mem, size);
2103
afa9fdc2 2104 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2105 domain_flush_tlb(&dma_dom->domain);
1c655773 2106 dma_dom->need_flush = false;
318afd41 2107 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2108 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2109
cb76c322
JR
2110out:
2111 return address;
53812c11
JR
2112
2113out_unmap:
2114
2115 for (--i; i >= 0; --i) {
2116 start -= PAGE_SIZE;
680525e0 2117 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2118 }
2119
2120 dma_ops_free_addresses(dma_dom, address, pages);
2121
8fd524b3 2122 return DMA_ERROR_CODE;
cb76c322
JR
2123}
2124
431b2a20
JR
2125/*
2126 * Does the reverse of the __map_single function. Must be called with
2127 * the domain lock held too
2128 */
cd8c82e8 2129static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2130 dma_addr_t dma_addr,
2131 size_t size,
2132 int dir)
2133{
04e0463e 2134 dma_addr_t flush_addr;
cb76c322
JR
2135 dma_addr_t i, start;
2136 unsigned int pages;
2137
8fd524b3 2138 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2139 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2140 return;
2141
04e0463e 2142 flush_addr = dma_addr;
e3c449f5 2143 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2144 dma_addr &= PAGE_MASK;
2145 start = dma_addr;
2146
2147 for (i = 0; i < pages; ++i) {
680525e0 2148 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2149 start += PAGE_SIZE;
2150 }
2151
5774f7c5
JR
2152 SUB_STATS_COUNTER(alloced_io_mem, size);
2153
cb76c322 2154 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2155
80be308d 2156 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2157 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2158 dma_dom->need_flush = false;
2159 }
cb76c322
JR
2160}
2161
431b2a20
JR
2162/*
2163 * The exported map_single function for dma_ops.
2164 */
51491367
FT
2165static dma_addr_t map_page(struct device *dev, struct page *page,
2166 unsigned long offset, size_t size,
2167 enum dma_data_direction dir,
2168 struct dma_attrs *attrs)
4da70b9e
JR
2169{
2170 unsigned long flags;
4da70b9e 2171 struct protection_domain *domain;
4da70b9e 2172 dma_addr_t addr;
832a90c3 2173 u64 dma_mask;
51491367 2174 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2175
0f2a86f2
JR
2176 INC_STATS_COUNTER(cnt_map_single);
2177
94f6d190
JR
2178 domain = get_domain(dev);
2179 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2180 return (dma_addr_t)paddr;
94f6d190
JR
2181 else if (IS_ERR(domain))
2182 return DMA_ERROR_CODE;
4da70b9e 2183
f99c0f1c
JR
2184 dma_mask = *dev->dma_mask;
2185
4da70b9e 2186 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2187
cd8c82e8 2188 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2189 dma_mask);
8fd524b3 2190 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2191 goto out;
2192
17b124bf 2193 domain_flush_complete(domain);
4da70b9e
JR
2194
2195out:
2196 spin_unlock_irqrestore(&domain->lock, flags);
2197
2198 return addr;
2199}
2200
431b2a20
JR
2201/*
2202 * The exported unmap_single function for dma_ops.
2203 */
51491367
FT
2204static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2205 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2206{
2207 unsigned long flags;
4da70b9e 2208 struct protection_domain *domain;
4da70b9e 2209
146a6917
JR
2210 INC_STATS_COUNTER(cnt_unmap_single);
2211
94f6d190
JR
2212 domain = get_domain(dev);
2213 if (IS_ERR(domain))
5b28df6f
JR
2214 return;
2215
4da70b9e
JR
2216 spin_lock_irqsave(&domain->lock, flags);
2217
cd8c82e8 2218 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2219
17b124bf 2220 domain_flush_complete(domain);
4da70b9e
JR
2221
2222 spin_unlock_irqrestore(&domain->lock, flags);
2223}
2224
431b2a20
JR
2225/*
2226 * This is a special map_sg function which is used if we should map a
2227 * device which is not handled by an AMD IOMMU in the system.
2228 */
65b050ad
JR
2229static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2230 int nelems, int dir)
2231{
2232 struct scatterlist *s;
2233 int i;
2234
2235 for_each_sg(sglist, s, nelems, i) {
2236 s->dma_address = (dma_addr_t)sg_phys(s);
2237 s->dma_length = s->length;
2238 }
2239
2240 return nelems;
2241}
2242
431b2a20
JR
2243/*
2244 * The exported map_sg function for dma_ops (handles scatter-gather
2245 * lists).
2246 */
65b050ad 2247static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2248 int nelems, enum dma_data_direction dir,
2249 struct dma_attrs *attrs)
65b050ad
JR
2250{
2251 unsigned long flags;
65b050ad 2252 struct protection_domain *domain;
65b050ad
JR
2253 int i;
2254 struct scatterlist *s;
2255 phys_addr_t paddr;
2256 int mapped_elems = 0;
832a90c3 2257 u64 dma_mask;
65b050ad 2258
d03f067a
JR
2259 INC_STATS_COUNTER(cnt_map_sg);
2260
94f6d190
JR
2261 domain = get_domain(dev);
2262 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 2263 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2264 else if (IS_ERR(domain))
2265 return 0;
dbcc112e 2266
832a90c3 2267 dma_mask = *dev->dma_mask;
65b050ad 2268
65b050ad
JR
2269 spin_lock_irqsave(&domain->lock, flags);
2270
2271 for_each_sg(sglist, s, nelems, i) {
2272 paddr = sg_phys(s);
2273
cd8c82e8 2274 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2275 paddr, s->length, dir, false,
2276 dma_mask);
65b050ad
JR
2277
2278 if (s->dma_address) {
2279 s->dma_length = s->length;
2280 mapped_elems++;
2281 } else
2282 goto unmap;
65b050ad
JR
2283 }
2284
17b124bf 2285 domain_flush_complete(domain);
65b050ad
JR
2286
2287out:
2288 spin_unlock_irqrestore(&domain->lock, flags);
2289
2290 return mapped_elems;
2291unmap:
2292 for_each_sg(sglist, s, mapped_elems, i) {
2293 if (s->dma_address)
cd8c82e8 2294 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2295 s->dma_length, dir);
2296 s->dma_address = s->dma_length = 0;
2297 }
2298
2299 mapped_elems = 0;
2300
2301 goto out;
2302}
2303
431b2a20
JR
2304/*
2305 * The exported map_sg function for dma_ops (handles scatter-gather
2306 * lists).
2307 */
65b050ad 2308static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2309 int nelems, enum dma_data_direction dir,
2310 struct dma_attrs *attrs)
65b050ad
JR
2311{
2312 unsigned long flags;
65b050ad
JR
2313 struct protection_domain *domain;
2314 struct scatterlist *s;
65b050ad
JR
2315 int i;
2316
55877a6b
JR
2317 INC_STATS_COUNTER(cnt_unmap_sg);
2318
94f6d190
JR
2319 domain = get_domain(dev);
2320 if (IS_ERR(domain))
5b28df6f
JR
2321 return;
2322
65b050ad
JR
2323 spin_lock_irqsave(&domain->lock, flags);
2324
2325 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2326 __unmap_single(domain->priv, s->dma_address,
65b050ad 2327 s->dma_length, dir);
65b050ad
JR
2328 s->dma_address = s->dma_length = 0;
2329 }
2330
17b124bf 2331 domain_flush_complete(domain);
65b050ad
JR
2332
2333 spin_unlock_irqrestore(&domain->lock, flags);
2334}
2335
431b2a20
JR
2336/*
2337 * The exported alloc_coherent function for dma_ops.
2338 */
5d8b53cf
JR
2339static void *alloc_coherent(struct device *dev, size_t size,
2340 dma_addr_t *dma_addr, gfp_t flag)
2341{
2342 unsigned long flags;
2343 void *virt_addr;
5d8b53cf 2344 struct protection_domain *domain;
5d8b53cf 2345 phys_addr_t paddr;
832a90c3 2346 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2347
c8f0fb36
JR
2348 INC_STATS_COUNTER(cnt_alloc_coherent);
2349
94f6d190
JR
2350 domain = get_domain(dev);
2351 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2352 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2353 *dma_addr = __pa(virt_addr);
2354 return virt_addr;
94f6d190
JR
2355 } else if (IS_ERR(domain))
2356 return NULL;
5d8b53cf 2357
f99c0f1c
JR
2358 dma_mask = dev->coherent_dma_mask;
2359 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2360 flag |= __GFP_ZERO;
5d8b53cf
JR
2361
2362 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2363 if (!virt_addr)
b25ae679 2364 return NULL;
5d8b53cf 2365
5d8b53cf
JR
2366 paddr = virt_to_phys(virt_addr);
2367
832a90c3
JR
2368 if (!dma_mask)
2369 dma_mask = *dev->dma_mask;
2370
5d8b53cf
JR
2371 spin_lock_irqsave(&domain->lock, flags);
2372
cd8c82e8 2373 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2374 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2375
8fd524b3 2376 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2377 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2378 goto out_free;
367d04c4 2379 }
5d8b53cf 2380
17b124bf 2381 domain_flush_complete(domain);
5d8b53cf 2382
5d8b53cf
JR
2383 spin_unlock_irqrestore(&domain->lock, flags);
2384
2385 return virt_addr;
5b28df6f
JR
2386
2387out_free:
2388
2389 free_pages((unsigned long)virt_addr, get_order(size));
2390
2391 return NULL;
5d8b53cf
JR
2392}
2393
431b2a20
JR
2394/*
2395 * The exported free_coherent function for dma_ops.
431b2a20 2396 */
5d8b53cf
JR
2397static void free_coherent(struct device *dev, size_t size,
2398 void *virt_addr, dma_addr_t dma_addr)
2399{
2400 unsigned long flags;
5d8b53cf 2401 struct protection_domain *domain;
5d8b53cf 2402
5d31ee7e
JR
2403 INC_STATS_COUNTER(cnt_free_coherent);
2404
94f6d190
JR
2405 domain = get_domain(dev);
2406 if (IS_ERR(domain))
5b28df6f
JR
2407 goto free_mem;
2408
5d8b53cf
JR
2409 spin_lock_irqsave(&domain->lock, flags);
2410
cd8c82e8 2411 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2412
17b124bf 2413 domain_flush_complete(domain);
5d8b53cf
JR
2414
2415 spin_unlock_irqrestore(&domain->lock, flags);
2416
2417free_mem:
2418 free_pages((unsigned long)virt_addr, get_order(size));
2419}
2420
b39ba6ad
JR
2421/*
2422 * This function is called by the DMA layer to find out if we can handle a
2423 * particular device. It is part of the dma_ops.
2424 */
2425static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2426{
420aef8a 2427 return check_device(dev);
b39ba6ad
JR
2428}
2429
c432f3df 2430/*
431b2a20
JR
2431 * The function for pre-allocating protection domains.
2432 *
c432f3df
JR
2433 * If the driver core informs the DMA layer if a driver grabs a device
2434 * we don't need to preallocate the protection domains anymore.
2435 * For now we have to.
2436 */
0e93dd88 2437static void prealloc_protection_domains(void)
c432f3df
JR
2438{
2439 struct pci_dev *dev = NULL;
2440 struct dma_ops_domain *dma_dom;
98fc5a69 2441 u16 devid;
c432f3df 2442
d18c69d3 2443 for_each_pci_dev(dev) {
98fc5a69
JR
2444
2445 /* Do we handle this device? */
2446 if (!check_device(&dev->dev))
c432f3df 2447 continue;
98fc5a69
JR
2448
2449 /* Is there already any domain for it? */
15898bbc 2450 if (domain_for_device(&dev->dev))
c432f3df 2451 continue;
98fc5a69
JR
2452
2453 devid = get_device_id(&dev->dev);
2454
87a64d52 2455 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2456 if (!dma_dom)
2457 continue;
2458 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2459 dma_dom->target_dev = devid;
2460
15898bbc 2461 attach_device(&dev->dev, &dma_dom->domain);
be831297 2462
bd60b735 2463 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2464 }
2465}
2466
160c1d8e 2467static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2468 .alloc_coherent = alloc_coherent,
2469 .free_coherent = free_coherent,
51491367
FT
2470 .map_page = map_page,
2471 .unmap_page = unmap_page,
6631ee9d
JR
2472 .map_sg = map_sg,
2473 .unmap_sg = unmap_sg,
b39ba6ad 2474 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2475};
2476
27c2127a
JR
2477static unsigned device_dma_ops_init(void)
2478{
2479 struct pci_dev *pdev = NULL;
2480 unsigned unhandled = 0;
2481
2482 for_each_pci_dev(pdev) {
2483 if (!check_device(&pdev->dev)) {
2484 unhandled += 1;
2485 continue;
2486 }
2487
2488 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2489 }
2490
2491 return unhandled;
2492}
2493
431b2a20
JR
2494/*
2495 * The function which clues the AMD IOMMU driver into dma_ops.
2496 */
f5325094
JR
2497
2498void __init amd_iommu_init_api(void)
2499{
2cc21c42 2500 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2501}
2502
6631ee9d
JR
2503int __init amd_iommu_init_dma_ops(void)
2504{
2505 struct amd_iommu *iommu;
27c2127a 2506 int ret, unhandled;
6631ee9d 2507
431b2a20
JR
2508 /*
2509 * first allocate a default protection domain for every IOMMU we
2510 * found in the system. Devices not assigned to any other
2511 * protection domain will be assigned to the default one.
2512 */
3bd22172 2513 for_each_iommu(iommu) {
87a64d52 2514 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2515 if (iommu->default_dom == NULL)
2516 return -ENOMEM;
e2dc14a2 2517 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2518 ret = iommu_init_unity_mappings(iommu);
2519 if (ret)
2520 goto free_domains;
2521 }
2522
431b2a20 2523 /*
8793abeb 2524 * Pre-allocate the protection domains for each device.
431b2a20 2525 */
8793abeb 2526 prealloc_protection_domains();
6631ee9d
JR
2527
2528 iommu_detected = 1;
75f1cdf1 2529 swiotlb = 0;
6631ee9d 2530
431b2a20 2531 /* Make the driver finally visible to the drivers */
27c2127a
JR
2532 unhandled = device_dma_ops_init();
2533 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2534 /* There are unhandled devices - initialize swiotlb for them */
2535 swiotlb = 1;
2536 }
6631ee9d 2537
7f26508b
JR
2538 amd_iommu_stats_init();
2539
6631ee9d
JR
2540 return 0;
2541
2542free_domains:
2543
3bd22172 2544 for_each_iommu(iommu) {
6631ee9d
JR
2545 if (iommu->default_dom)
2546 dma_ops_domain_free(iommu->default_dom);
2547 }
2548
2549 return ret;
2550}
6d98cd80
JR
2551
2552/*****************************************************************************
2553 *
2554 * The following functions belong to the exported interface of AMD IOMMU
2555 *
2556 * This interface allows access to lower level functions of the IOMMU
2557 * like protection domain handling and assignement of devices to domains
2558 * which is not possible with the dma_ops interface.
2559 *
2560 *****************************************************************************/
2561
6d98cd80
JR
2562static void cleanup_domain(struct protection_domain *domain)
2563{
492667da 2564 struct iommu_dev_data *dev_data, *next;
6d98cd80 2565 unsigned long flags;
6d98cd80
JR
2566
2567 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2568
492667da 2569 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
ec9e79ef 2570 __detach_device(dev_data);
492667da
JR
2571 atomic_set(&dev_data->bind, 0);
2572 }
6d98cd80
JR
2573
2574 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2575}
2576
2650815f
JR
2577static void protection_domain_free(struct protection_domain *domain)
2578{
2579 if (!domain)
2580 return;
2581
aeb26f55
JR
2582 del_domain_from_list(domain);
2583
2650815f
JR
2584 if (domain->id)
2585 domain_id_free(domain->id);
2586
2587 kfree(domain);
2588}
2589
2590static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2591{
2592 struct protection_domain *domain;
2593
2594 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2595 if (!domain)
2650815f 2596 return NULL;
c156e347
JR
2597
2598 spin_lock_init(&domain->lock);
5d214fe6 2599 mutex_init(&domain->api_lock);
c156e347
JR
2600 domain->id = domain_id_alloc();
2601 if (!domain->id)
2650815f 2602 goto out_err;
7c392cbe 2603 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2604
aeb26f55
JR
2605 add_domain_to_list(domain);
2606
2650815f
JR
2607 return domain;
2608
2609out_err:
2610 kfree(domain);
2611
2612 return NULL;
2613}
2614
2615static int amd_iommu_domain_init(struct iommu_domain *dom)
2616{
2617 struct protection_domain *domain;
2618
2619 domain = protection_domain_alloc();
2620 if (!domain)
c156e347 2621 goto out_free;
2650815f
JR
2622
2623 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2624 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2625 if (!domain->pt_root)
2626 goto out_free;
2627
2628 dom->priv = domain;
2629
2630 return 0;
2631
2632out_free:
2650815f 2633 protection_domain_free(domain);
c156e347
JR
2634
2635 return -ENOMEM;
2636}
2637
98383fc3
JR
2638static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2639{
2640 struct protection_domain *domain = dom->priv;
2641
2642 if (!domain)
2643 return;
2644
2645 if (domain->dev_cnt > 0)
2646 cleanup_domain(domain);
2647
2648 BUG_ON(domain->dev_cnt != 0);
2649
2650 free_pagetable(domain);
2651
8b408fe4 2652 protection_domain_free(domain);
98383fc3
JR
2653
2654 dom->priv = NULL;
2655}
2656
684f2888
JR
2657static void amd_iommu_detach_device(struct iommu_domain *dom,
2658 struct device *dev)
2659{
657cbb6b 2660 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2661 struct amd_iommu *iommu;
684f2888
JR
2662 u16 devid;
2663
98fc5a69 2664 if (!check_device(dev))
684f2888
JR
2665 return;
2666
98fc5a69 2667 devid = get_device_id(dev);
684f2888 2668
657cbb6b 2669 if (dev_data->domain != NULL)
15898bbc 2670 detach_device(dev);
684f2888
JR
2671
2672 iommu = amd_iommu_rlookup_table[devid];
2673 if (!iommu)
2674 return;
2675
684f2888
JR
2676 iommu_completion_wait(iommu);
2677}
2678
01106066
JR
2679static int amd_iommu_attach_device(struct iommu_domain *dom,
2680 struct device *dev)
2681{
2682 struct protection_domain *domain = dom->priv;
657cbb6b 2683 struct iommu_dev_data *dev_data;
01106066 2684 struct amd_iommu *iommu;
15898bbc 2685 int ret;
01106066 2686
98fc5a69 2687 if (!check_device(dev))
01106066
JR
2688 return -EINVAL;
2689
657cbb6b
JR
2690 dev_data = dev->archdata.iommu;
2691
f62dda66 2692 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
2693 if (!iommu)
2694 return -EINVAL;
2695
657cbb6b 2696 if (dev_data->domain)
15898bbc 2697 detach_device(dev);
01106066 2698
15898bbc 2699 ret = attach_device(dev, domain);
01106066
JR
2700
2701 iommu_completion_wait(iommu);
2702
15898bbc 2703 return ret;
01106066
JR
2704}
2705
468e2366
JR
2706static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2707 phys_addr_t paddr, int gfp_order, int iommu_prot)
c6229ca6 2708{
468e2366 2709 unsigned long page_size = 0x1000UL << gfp_order;
c6229ca6 2710 struct protection_domain *domain = dom->priv;
c6229ca6
JR
2711 int prot = 0;
2712 int ret;
2713
2714 if (iommu_prot & IOMMU_READ)
2715 prot |= IOMMU_PROT_IR;
2716 if (iommu_prot & IOMMU_WRITE)
2717 prot |= IOMMU_PROT_IW;
2718
5d214fe6 2719 mutex_lock(&domain->api_lock);
795e74f7 2720 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2721 mutex_unlock(&domain->api_lock);
2722
795e74f7 2723 return ret;
c6229ca6
JR
2724}
2725
468e2366
JR
2726static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2727 int gfp_order)
eb74ff6c 2728{
eb74ff6c 2729 struct protection_domain *domain = dom->priv;
468e2366 2730 unsigned long page_size, unmap_size;
eb74ff6c 2731
468e2366 2732 page_size = 0x1000UL << gfp_order;
eb74ff6c 2733
5d214fe6 2734 mutex_lock(&domain->api_lock);
468e2366 2735 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 2736 mutex_unlock(&domain->api_lock);
eb74ff6c 2737
17b124bf 2738 domain_flush_tlb_pde(domain);
5d214fe6 2739
468e2366 2740 return get_order(unmap_size);
eb74ff6c
JR
2741}
2742
645c4c8d
JR
2743static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2744 unsigned long iova)
2745{
2746 struct protection_domain *domain = dom->priv;
f03152bb 2747 unsigned long offset_mask;
645c4c8d 2748 phys_addr_t paddr;
f03152bb 2749 u64 *pte, __pte;
645c4c8d 2750
24cd7723 2751 pte = fetch_pte(domain, iova);
645c4c8d 2752
a6d41a40 2753 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2754 return 0;
2755
f03152bb
JR
2756 if (PM_PTE_LEVEL(*pte) == 0)
2757 offset_mask = PAGE_SIZE - 1;
2758 else
2759 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2760
2761 __pte = *pte & PM_ADDR_MASK;
2762 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
2763
2764 return paddr;
2765}
2766
dbb9fd86
SY
2767static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2768 unsigned long cap)
2769{
80a506b8
JR
2770 switch (cap) {
2771 case IOMMU_CAP_CACHE_COHERENCY:
2772 return 1;
2773 }
2774
dbb9fd86
SY
2775 return 0;
2776}
2777
26961efe
JR
2778static struct iommu_ops amd_iommu_ops = {
2779 .domain_init = amd_iommu_domain_init,
2780 .domain_destroy = amd_iommu_domain_destroy,
2781 .attach_dev = amd_iommu_attach_device,
2782 .detach_dev = amd_iommu_detach_device,
468e2366
JR
2783 .map = amd_iommu_map,
2784 .unmap = amd_iommu_unmap,
26961efe 2785 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2786 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2787};
2788
0feae533
JR
2789/*****************************************************************************
2790 *
2791 * The next functions do a basic initialization of IOMMU for pass through
2792 * mode
2793 *
2794 * In passthrough mode the IOMMU is initialized and enabled but not used for
2795 * DMA-API translation.
2796 *
2797 *****************************************************************************/
2798
2799int __init amd_iommu_init_passthrough(void)
2800{
15898bbc 2801 struct amd_iommu *iommu;
0feae533 2802 struct pci_dev *dev = NULL;
15898bbc 2803 u16 devid;
0feae533 2804
af901ca1 2805 /* allocate passthrough domain */
0feae533
JR
2806 pt_domain = protection_domain_alloc();
2807 if (!pt_domain)
2808 return -ENOMEM;
2809
2810 pt_domain->mode |= PAGE_MODE_NONE;
2811
6c54aabd 2812 for_each_pci_dev(dev) {
98fc5a69 2813 if (!check_device(&dev->dev))
0feae533
JR
2814 continue;
2815
98fc5a69
JR
2816 devid = get_device_id(&dev->dev);
2817
15898bbc 2818 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2819 if (!iommu)
2820 continue;
2821
15898bbc 2822 attach_device(&dev->dev, pt_domain);
0feae533
JR
2823 }
2824
2825 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2826
2827 return 0;
2828}