x86/amd-iommu: Introduce set_dte_entry function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
9355a081
JR
64static u64 *fetch_pte(struct protection_domain *domain,
65 unsigned long address);
bd0e5211 66
c1eee67b
CW
67#ifndef BUS_NOTIFY_UNBOUND_DRIVER
68#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
69#endif
70
7f26508b
JR
71#ifdef CONFIG_AMD_IOMMU_STATS
72
73/*
74 * Initialization code for statistics collection
75 */
76
da49f6df 77DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 78DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 79DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 80DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 81DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 82DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 83DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 84DECLARE_STATS_COUNTER(cross_page);
f57d98ae 85DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 86DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 87DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 88DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 89
7f26508b
JR
90static struct dentry *stats_dir;
91static struct dentry *de_isolate;
92static struct dentry *de_fflush;
93
94static void amd_iommu_stats_add(struct __iommu_counter *cnt)
95{
96 if (stats_dir == NULL)
97 return;
98
99 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
100 &cnt->value);
101}
102
103static void amd_iommu_stats_init(void)
104{
105 stats_dir = debugfs_create_dir("amd-iommu", NULL);
106 if (stats_dir == NULL)
107 return;
108
109 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
110 (u32 *)&amd_iommu_isolate);
111
112 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
113 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
114
115 amd_iommu_stats_add(&compl_wait);
0f2a86f2 116 amd_iommu_stats_add(&cnt_map_single);
146a6917 117 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 118 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 119 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 120 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 121 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 122 amd_iommu_stats_add(&cross_page);
f57d98ae 123 amd_iommu_stats_add(&domain_flush_single);
18811f55 124 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 125 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 126 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
127}
128
129#endif
130
431b2a20 131/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
132static int iommu_has_npcache(struct amd_iommu *iommu)
133{
ae9b9403 134 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
135}
136
a80dc3e0
JR
137/****************************************************************************
138 *
139 * Interrupt handling functions
140 *
141 ****************************************************************************/
142
90008ee4
JR
143static void iommu_print_event(void *__evt)
144{
145 u32 *event = __evt;
146 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
147 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
148 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
149 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
150 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
151
152 printk(KERN_ERR "AMD IOMMU: Event logged [");
153
154 switch (type) {
155 case EVENT_TYPE_ILL_DEV:
156 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
157 "address=0x%016llx flags=0x%04x]\n",
158 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
159 address, flags);
160 break;
161 case EVENT_TYPE_IO_FAULT:
162 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
163 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
164 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
165 domid, address, flags);
166 break;
167 case EVENT_TYPE_DEV_TAB_ERR:
168 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
169 "address=0x%016llx flags=0x%04x]\n",
170 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
171 address, flags);
172 break;
173 case EVENT_TYPE_PAGE_TAB_ERR:
174 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
175 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
176 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
177 domid, address, flags);
178 break;
179 case EVENT_TYPE_ILL_CMD:
180 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
181 break;
182 case EVENT_TYPE_CMD_HARD_ERR:
183 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
184 "flags=0x%04x]\n", address, flags);
185 break;
186 case EVENT_TYPE_IOTLB_INV_TO:
187 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
188 "address=0x%016llx]\n",
189 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
190 address);
191 break;
192 case EVENT_TYPE_INV_DEV_REQ:
193 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
194 "address=0x%016llx flags=0x%04x]\n",
195 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
196 address, flags);
197 break;
198 default:
199 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
200 }
201}
202
203static void iommu_poll_events(struct amd_iommu *iommu)
204{
205 u32 head, tail;
206 unsigned long flags;
207
208 spin_lock_irqsave(&iommu->lock, flags);
209
210 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
211 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
212
213 while (head != tail) {
214 iommu_print_event(iommu->evt_buf + head);
215 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
216 }
217
218 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
219
220 spin_unlock_irqrestore(&iommu->lock, flags);
221}
222
a80dc3e0
JR
223irqreturn_t amd_iommu_int_handler(int irq, void *data)
224{
90008ee4
JR
225 struct amd_iommu *iommu;
226
3bd22172 227 for_each_iommu(iommu)
90008ee4
JR
228 iommu_poll_events(iommu);
229
230 return IRQ_HANDLED;
a80dc3e0
JR
231}
232
431b2a20
JR
233/****************************************************************************
234 *
235 * IOMMU command queuing functions
236 *
237 ****************************************************************************/
238
239/*
240 * Writes the command to the IOMMUs command buffer and informs the
241 * hardware about the new command. Must be called with iommu->lock held.
242 */
d6449536 243static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
244{
245 u32 tail, head;
246 u8 *target;
247
248 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 249 target = iommu->cmd_buf + tail;
a19ae1ec
JR
250 memcpy_toio(target, cmd, sizeof(*cmd));
251 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
252 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
253 if (tail == head)
254 return -ENOMEM;
255 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
256
257 return 0;
258}
259
431b2a20
JR
260/*
261 * General queuing function for commands. Takes iommu->lock and calls
262 * __iommu_queue_command().
263 */
d6449536 264static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
265{
266 unsigned long flags;
267 int ret;
268
269 spin_lock_irqsave(&iommu->lock, flags);
270 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 271 if (!ret)
0cfd7aa9 272 iommu->need_sync = true;
a19ae1ec
JR
273 spin_unlock_irqrestore(&iommu->lock, flags);
274
275 return ret;
276}
277
8d201968
JR
278/*
279 * This function waits until an IOMMU has completed a completion
280 * wait command
281 */
282static void __iommu_wait_for_completion(struct amd_iommu *iommu)
283{
284 int ready = 0;
285 unsigned status = 0;
286 unsigned long i = 0;
287
da49f6df
JR
288 INC_STATS_COUNTER(compl_wait);
289
8d201968
JR
290 while (!ready && (i < EXIT_LOOP_COUNT)) {
291 ++i;
292 /* wait for the bit to become one */
293 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
294 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
295 }
296
297 /* set bit back to zero */
298 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
299 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
300
301 if (unlikely(i == EXIT_LOOP_COUNT))
302 panic("AMD IOMMU: Completion wait loop failed\n");
303}
304
305/*
306 * This function queues a completion wait command into the command
307 * buffer of an IOMMU
308 */
309static int __iommu_completion_wait(struct amd_iommu *iommu)
310{
311 struct iommu_cmd cmd;
312
313 memset(&cmd, 0, sizeof(cmd));
314 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
315 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
316
317 return __iommu_queue_command(iommu, &cmd);
318}
319
431b2a20
JR
320/*
321 * This function is called whenever we need to ensure that the IOMMU has
322 * completed execution of all commands we sent. It sends a
323 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
324 * us about that by writing a value to a physical address we pass with
325 * the command.
326 */
a19ae1ec
JR
327static int iommu_completion_wait(struct amd_iommu *iommu)
328{
8d201968
JR
329 int ret = 0;
330 unsigned long flags;
a19ae1ec 331
7e4f88da
JR
332 spin_lock_irqsave(&iommu->lock, flags);
333
09ee17eb
JR
334 if (!iommu->need_sync)
335 goto out;
336
8d201968 337 ret = __iommu_completion_wait(iommu);
09ee17eb 338
0cfd7aa9 339 iommu->need_sync = false;
a19ae1ec
JR
340
341 if (ret)
7e4f88da 342 goto out;
a19ae1ec 343
8d201968 344 __iommu_wait_for_completion(iommu);
84df8175 345
7e4f88da
JR
346out:
347 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
348
349 return 0;
350}
351
431b2a20
JR
352/*
353 * Command send function for invalidating a device table entry
354 */
a19ae1ec
JR
355static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
356{
d6449536 357 struct iommu_cmd cmd;
ee2fa743 358 int ret;
a19ae1ec
JR
359
360 BUG_ON(iommu == NULL);
361
362 memset(&cmd, 0, sizeof(cmd));
363 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
364 cmd.data[0] = devid;
365
ee2fa743
JR
366 ret = iommu_queue_command(iommu, &cmd);
367
ee2fa743 368 return ret;
a19ae1ec
JR
369}
370
237b6f33
JR
371static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
372 u16 domid, int pde, int s)
373{
374 memset(cmd, 0, sizeof(*cmd));
375 address &= PAGE_MASK;
376 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
377 cmd->data[1] |= domid;
378 cmd->data[2] = lower_32_bits(address);
379 cmd->data[3] = upper_32_bits(address);
380 if (s) /* size bit - we flush more than one 4kb page */
381 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
382 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
383 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
384}
385
431b2a20
JR
386/*
387 * Generic command send function for invalidaing TLB entries
388 */
a19ae1ec
JR
389static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
390 u64 address, u16 domid, int pde, int s)
391{
d6449536 392 struct iommu_cmd cmd;
ee2fa743 393 int ret;
a19ae1ec 394
237b6f33 395 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 396
ee2fa743
JR
397 ret = iommu_queue_command(iommu, &cmd);
398
ee2fa743 399 return ret;
a19ae1ec
JR
400}
401
431b2a20
JR
402/*
403 * TLB invalidation function which is called from the mapping functions.
404 * It invalidates a single PTE if the range to flush is within a single
405 * page. Otherwise it flushes the whole TLB of the IOMMU.
406 */
a19ae1ec
JR
407static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
408 u64 address, size_t size)
409{
999ba417 410 int s = 0;
e3c449f5 411 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
412
413 address &= PAGE_MASK;
414
999ba417
JR
415 if (pages > 1) {
416 /*
417 * If we have to flush more than one page, flush all
418 * TLB entries for this domain
419 */
420 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
421 s = 1;
a19ae1ec
JR
422 }
423
999ba417
JR
424 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
425
a19ae1ec
JR
426 return 0;
427}
b6c02715 428
1c655773
JR
429/* Flush the whole IO/TLB for a given protection domain */
430static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
431{
432 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
433
f57d98ae
JR
434 INC_STATS_COUNTER(domain_flush_single);
435
1c655773
JR
436 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
437}
438
42a49f96
CW
439/* Flush the whole IO/TLB for a given protection domain - including PDE */
440static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
441{
442 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
443
444 INC_STATS_COUNTER(domain_flush_single);
445
446 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
447}
448
43f49609
JR
449/*
450 * This function is used to flush the IO/TLB for a given protection domain
451 * on every IOMMU in the system
452 */
453static void iommu_flush_domain(u16 domid)
454{
455 unsigned long flags;
456 struct amd_iommu *iommu;
457 struct iommu_cmd cmd;
458
18811f55
JR
459 INC_STATS_COUNTER(domain_flush_all);
460
43f49609
JR
461 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
462 domid, 1, 1);
463
3bd22172 464 for_each_iommu(iommu) {
43f49609
JR
465 spin_lock_irqsave(&iommu->lock, flags);
466 __iommu_queue_command(iommu, &cmd);
467 __iommu_completion_wait(iommu);
468 __iommu_wait_for_completion(iommu);
469 spin_unlock_irqrestore(&iommu->lock, flags);
470 }
471}
43f49609 472
bfd1be18
JR
473void amd_iommu_flush_all_domains(void)
474{
475 int i;
476
477 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
478 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
479 continue;
480 iommu_flush_domain(i);
481 }
482}
483
6a0dbcbe 484static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
485{
486 struct amd_iommu *iommu;
487 int i;
488
489 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
490 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
491 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
492 continue;
493
494 iommu = amd_iommu_rlookup_table[i];
495 if (!iommu)
496 continue;
497
498 iommu_queue_inv_dev_entry(iommu, i);
499 iommu_completion_wait(iommu);
500 }
501}
502
6a0dbcbe
JR
503void amd_iommu_flush_all_devices(void)
504{
505 flush_devices_by_domain(NULL);
506}
507
431b2a20
JR
508/****************************************************************************
509 *
510 * The functions below are used the create the page table mappings for
511 * unity mapped regions.
512 *
513 ****************************************************************************/
514
515/*
516 * Generic mapping functions. It maps a physical address into a DMA
517 * address space. It allocates the page table pages if necessary.
518 * In the future it can be extended to a generic mapping function
519 * supporting all features of AMD IOMMU page tables like level skipping
520 * and full 64 bit address spaces.
521 */
38e817fe
JR
522static int iommu_map_page(struct protection_domain *dom,
523 unsigned long bus_addr,
524 unsigned long phys_addr,
525 int prot)
bd0e5211 526{
8bda3092 527 u64 __pte, *pte;
bd0e5211
JR
528
529 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 530 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
531
532 /* only support 512GB address spaces for now */
533 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
534 return -EINVAL;
535
8bda3092 536 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
537
538 if (IOMMU_PTE_PRESENT(*pte))
539 return -EBUSY;
540
541 __pte = phys_addr | IOMMU_PTE_P;
542 if (prot & IOMMU_PROT_IR)
543 __pte |= IOMMU_PTE_IR;
544 if (prot & IOMMU_PROT_IW)
545 __pte |= IOMMU_PTE_IW;
546
547 *pte = __pte;
548
549 return 0;
550}
551
eb74ff6c
JR
552static void iommu_unmap_page(struct protection_domain *dom,
553 unsigned long bus_addr)
554{
38a76eee 555 u64 *pte = fetch_pte(dom, bus_addr);
eb74ff6c 556
38a76eee
JR
557 if (pte)
558 *pte = 0;
eb74ff6c 559}
eb74ff6c 560
431b2a20
JR
561/*
562 * This function checks if a specific unity mapping entry is needed for
563 * this specific IOMMU.
564 */
bd0e5211
JR
565static int iommu_for_unity_map(struct amd_iommu *iommu,
566 struct unity_map_entry *entry)
567{
568 u16 bdf, i;
569
570 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
571 bdf = amd_iommu_alias_table[i];
572 if (amd_iommu_rlookup_table[bdf] == iommu)
573 return 1;
574 }
575
576 return 0;
577}
578
431b2a20
JR
579/*
580 * Init the unity mappings for a specific IOMMU in the system
581 *
582 * Basically iterates over all unity mapping entries and applies them to
583 * the default domain DMA of that IOMMU if necessary.
584 */
bd0e5211
JR
585static int iommu_init_unity_mappings(struct amd_iommu *iommu)
586{
587 struct unity_map_entry *entry;
588 int ret;
589
590 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
591 if (!iommu_for_unity_map(iommu, entry))
592 continue;
593 ret = dma_ops_unity_map(iommu->default_dom, entry);
594 if (ret)
595 return ret;
596 }
597
598 return 0;
599}
600
431b2a20
JR
601/*
602 * This function actually applies the mapping to the page table of the
603 * dma_ops domain.
604 */
bd0e5211
JR
605static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
606 struct unity_map_entry *e)
607{
608 u64 addr;
609 int ret;
610
611 for (addr = e->address_start; addr < e->address_end;
612 addr += PAGE_SIZE) {
38e817fe 613 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
614 if (ret)
615 return ret;
616 /*
617 * if unity mapping is in aperture range mark the page
618 * as allocated in the aperture
619 */
620 if (addr < dma_dom->aperture_size)
c3239567 621 __set_bit(addr >> PAGE_SHIFT,
384de729 622 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
623 }
624
625 return 0;
626}
627
431b2a20
JR
628/*
629 * Inits the unity mappings required for a specific device
630 */
bd0e5211
JR
631static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
632 u16 devid)
633{
634 struct unity_map_entry *e;
635 int ret;
636
637 list_for_each_entry(e, &amd_iommu_unity_map, list) {
638 if (!(devid >= e->devid_start && devid <= e->devid_end))
639 continue;
640 ret = dma_ops_unity_map(dma_dom, e);
641 if (ret)
642 return ret;
643 }
644
645 return 0;
646}
647
431b2a20
JR
648/****************************************************************************
649 *
650 * The next functions belong to the address allocator for the dma_ops
651 * interface functions. They work like the allocators in the other IOMMU
652 * drivers. Its basically a bitmap which marks the allocated pages in
653 * the aperture. Maybe it could be enhanced in the future to a more
654 * efficient allocator.
655 *
656 ****************************************************************************/
d3086444 657
431b2a20 658/*
384de729 659 * The address allocator core functions.
431b2a20
JR
660 *
661 * called with domain->lock held
662 */
384de729 663
00cd122a
JR
664/*
665 * This function checks if there is a PTE for a given dma address. If
666 * there is one, it returns the pointer to it.
667 */
9355a081 668static u64 *fetch_pte(struct protection_domain *domain,
00cd122a
JR
669 unsigned long address)
670{
9355a081 671 int level;
00cd122a
JR
672 u64 *pte;
673
9355a081
JR
674 level = domain->mode - 1;
675 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 676
9355a081
JR
677 while (level > 0) {
678 if (!IOMMU_PTE_PRESENT(*pte))
679 return NULL;
00cd122a 680
9355a081 681 level -= 1;
00cd122a 682
9355a081
JR
683 pte = IOMMU_PTE_PAGE(*pte);
684 pte = &pte[PM_LEVEL_INDEX(level, address)];
685 }
00cd122a
JR
686
687 return pte;
688}
689
9cabe89b
JR
690/*
691 * This function is used to add a new aperture range to an existing
692 * aperture in case of dma_ops domain allocation or address allocation
693 * failure.
694 */
00cd122a
JR
695static int alloc_new_range(struct amd_iommu *iommu,
696 struct dma_ops_domain *dma_dom,
9cabe89b
JR
697 bool populate, gfp_t gfp)
698{
699 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 700 int i;
9cabe89b 701
f5e9705c
JR
702#ifdef CONFIG_IOMMU_STRESS
703 populate = false;
704#endif
705
9cabe89b
JR
706 if (index >= APERTURE_MAX_RANGES)
707 return -ENOMEM;
708
709 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
710 if (!dma_dom->aperture[index])
711 return -ENOMEM;
712
713 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
714 if (!dma_dom->aperture[index]->bitmap)
715 goto out_free;
716
717 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
718
719 if (populate) {
720 unsigned long address = dma_dom->aperture_size;
721 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
722 u64 *pte, *pte_page;
723
724 for (i = 0; i < num_ptes; ++i) {
725 pte = alloc_pte(&dma_dom->domain, address,
726 &pte_page, gfp);
727 if (!pte)
728 goto out_free;
729
730 dma_dom->aperture[index]->pte_pages[i] = pte_page;
731
732 address += APERTURE_RANGE_SIZE / 64;
733 }
734 }
735
736 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
737
00cd122a
JR
738 /* Intialize the exclusion range if necessary */
739 if (iommu->exclusion_start &&
740 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
741 iommu->exclusion_start < dma_dom->aperture_size) {
742 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
743 int pages = iommu_num_pages(iommu->exclusion_start,
744 iommu->exclusion_length,
745 PAGE_SIZE);
746 dma_ops_reserve_addresses(dma_dom, startpage, pages);
747 }
748
749 /*
750 * Check for areas already mapped as present in the new aperture
751 * range and mark those pages as reserved in the allocator. Such
752 * mappings may already exist as a result of requested unity
753 * mappings for devices.
754 */
755 for (i = dma_dom->aperture[index]->offset;
756 i < dma_dom->aperture_size;
757 i += PAGE_SIZE) {
758 u64 *pte = fetch_pte(&dma_dom->domain, i);
759 if (!pte || !IOMMU_PTE_PRESENT(*pte))
760 continue;
761
762 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
763 }
764
9cabe89b
JR
765 return 0;
766
767out_free:
768 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
769
770 kfree(dma_dom->aperture[index]);
771 dma_dom->aperture[index] = NULL;
772
773 return -ENOMEM;
774}
775
384de729
JR
776static unsigned long dma_ops_area_alloc(struct device *dev,
777 struct dma_ops_domain *dom,
778 unsigned int pages,
779 unsigned long align_mask,
780 u64 dma_mask,
781 unsigned long start)
782{
803b8cb4 783 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
784 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
785 int i = start >> APERTURE_RANGE_SHIFT;
786 unsigned long boundary_size;
787 unsigned long address = -1;
788 unsigned long limit;
789
803b8cb4
JR
790 next_bit >>= PAGE_SHIFT;
791
384de729
JR
792 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
793 PAGE_SIZE) >> PAGE_SHIFT;
794
795 for (;i < max_index; ++i) {
796 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
797
798 if (dom->aperture[i]->offset >= dma_mask)
799 break;
800
801 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
802 dma_mask >> PAGE_SHIFT);
803
804 address = iommu_area_alloc(dom->aperture[i]->bitmap,
805 limit, next_bit, pages, 0,
806 boundary_size, align_mask);
807 if (address != -1) {
808 address = dom->aperture[i]->offset +
809 (address << PAGE_SHIFT);
803b8cb4 810 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
811 break;
812 }
813
814 next_bit = 0;
815 }
816
817 return address;
818}
819
d3086444
JR
820static unsigned long dma_ops_alloc_addresses(struct device *dev,
821 struct dma_ops_domain *dom,
6d4f343f 822 unsigned int pages,
832a90c3
JR
823 unsigned long align_mask,
824 u64 dma_mask)
d3086444 825{
d3086444 826 unsigned long address;
d3086444 827
fe16f088
JR
828#ifdef CONFIG_IOMMU_STRESS
829 dom->next_address = 0;
830 dom->need_flush = true;
831#endif
d3086444 832
384de729 833 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 834 dma_mask, dom->next_address);
d3086444 835
1c655773 836 if (address == -1) {
803b8cb4 837 dom->next_address = 0;
384de729
JR
838 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
839 dma_mask, 0);
1c655773
JR
840 dom->need_flush = true;
841 }
d3086444 842
384de729 843 if (unlikely(address == -1))
d3086444
JR
844 address = bad_dma_address;
845
846 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
847
848 return address;
849}
850
431b2a20
JR
851/*
852 * The address free function.
853 *
854 * called with domain->lock held
855 */
d3086444
JR
856static void dma_ops_free_addresses(struct dma_ops_domain *dom,
857 unsigned long address,
858 unsigned int pages)
859{
384de729
JR
860 unsigned i = address >> APERTURE_RANGE_SHIFT;
861 struct aperture_range *range = dom->aperture[i];
80be308d 862
384de729
JR
863 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
864
47bccd6b
JR
865#ifdef CONFIG_IOMMU_STRESS
866 if (i < 4)
867 return;
868#endif
80be308d 869
803b8cb4 870 if (address >= dom->next_address)
80be308d 871 dom->need_flush = true;
384de729
JR
872
873 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 874
384de729
JR
875 iommu_area_free(range->bitmap, address, pages);
876
d3086444
JR
877}
878
431b2a20
JR
879/****************************************************************************
880 *
881 * The next functions belong to the domain allocation. A domain is
882 * allocated for every IOMMU as the default domain. If device isolation
883 * is enabled, every device get its own domain. The most important thing
884 * about domains is the page table mapping the DMA address space they
885 * contain.
886 *
887 ****************************************************************************/
888
ec487d1a
JR
889static u16 domain_id_alloc(void)
890{
891 unsigned long flags;
892 int id;
893
894 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
895 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
896 BUG_ON(id == 0);
897 if (id > 0 && id < MAX_DOMAIN_ID)
898 __set_bit(id, amd_iommu_pd_alloc_bitmap);
899 else
900 id = 0;
901 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
902
903 return id;
904}
905
a2acfb75
JR
906static void domain_id_free(int id)
907{
908 unsigned long flags;
909
910 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
911 if (id > 0 && id < MAX_DOMAIN_ID)
912 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
913 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
914}
a2acfb75 915
431b2a20
JR
916/*
917 * Used to reserve address ranges in the aperture (e.g. for exclusion
918 * ranges.
919 */
ec487d1a
JR
920static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
921 unsigned long start_page,
922 unsigned int pages)
923{
384de729 924 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
925
926 if (start_page + pages > last_page)
927 pages = last_page - start_page;
928
384de729
JR
929 for (i = start_page; i < start_page + pages; ++i) {
930 int index = i / APERTURE_RANGE_PAGES;
931 int page = i % APERTURE_RANGE_PAGES;
932 __set_bit(page, dom->aperture[index]->bitmap);
933 }
ec487d1a
JR
934}
935
86db2e5d 936static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
937{
938 int i, j;
939 u64 *p1, *p2, *p3;
940
86db2e5d 941 p1 = domain->pt_root;
ec487d1a
JR
942
943 if (!p1)
944 return;
945
946 for (i = 0; i < 512; ++i) {
947 if (!IOMMU_PTE_PRESENT(p1[i]))
948 continue;
949
950 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 951 for (j = 0; j < 512; ++j) {
ec487d1a
JR
952 if (!IOMMU_PTE_PRESENT(p2[j]))
953 continue;
954 p3 = IOMMU_PTE_PAGE(p2[j]);
955 free_page((unsigned long)p3);
956 }
957
958 free_page((unsigned long)p2);
959 }
960
961 free_page((unsigned long)p1);
86db2e5d
JR
962
963 domain->pt_root = NULL;
ec487d1a
JR
964}
965
431b2a20
JR
966/*
967 * Free a domain, only used if something went wrong in the
968 * allocation path and we need to free an already allocated page table
969 */
ec487d1a
JR
970static void dma_ops_domain_free(struct dma_ops_domain *dom)
971{
384de729
JR
972 int i;
973
ec487d1a
JR
974 if (!dom)
975 return;
976
86db2e5d 977 free_pagetable(&dom->domain);
ec487d1a 978
384de729
JR
979 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
980 if (!dom->aperture[i])
981 continue;
982 free_page((unsigned long)dom->aperture[i]->bitmap);
983 kfree(dom->aperture[i]);
984 }
ec487d1a
JR
985
986 kfree(dom);
987}
988
431b2a20
JR
989/*
990 * Allocates a new protection domain usable for the dma_ops functions.
991 * It also intializes the page table and the address allocator data
992 * structures required for the dma_ops interface
993 */
d9cfed92 994static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
995{
996 struct dma_ops_domain *dma_dom;
ec487d1a
JR
997
998 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
999 if (!dma_dom)
1000 return NULL;
1001
1002 spin_lock_init(&dma_dom->domain.lock);
1003
1004 dma_dom->domain.id = domain_id_alloc();
1005 if (dma_dom->domain.id == 0)
1006 goto free_dma_dom;
1007 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1008 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1009 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1010 dma_dom->domain.priv = dma_dom;
1011 if (!dma_dom->domain.pt_root)
1012 goto free_dma_dom;
ec487d1a 1013
1c655773 1014 dma_dom->need_flush = false;
bd60b735 1015 dma_dom->target_dev = 0xffff;
1c655773 1016
00cd122a 1017 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1018 goto free_dma_dom;
ec487d1a 1019
431b2a20 1020 /*
ec487d1a
JR
1021 * mark the first page as allocated so we never return 0 as
1022 * a valid dma-address. So we can use 0 as error value
431b2a20 1023 */
384de729 1024 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1025 dma_dom->next_address = 0;
ec487d1a 1026
ec487d1a
JR
1027
1028 return dma_dom;
1029
1030free_dma_dom:
1031 dma_ops_domain_free(dma_dom);
1032
1033 return NULL;
1034}
1035
5b28df6f
JR
1036/*
1037 * little helper function to check whether a given protection domain is a
1038 * dma_ops domain
1039 */
1040static bool dma_ops_domain(struct protection_domain *domain)
1041{
1042 return domain->flags & PD_DMA_OPS_MASK;
1043}
1044
431b2a20
JR
1045/*
1046 * Find out the protection domain structure for a given PCI device. This
1047 * will give us the pointer to the page table root for example.
1048 */
b20ac0d4
JR
1049static struct protection_domain *domain_for_device(u16 devid)
1050{
1051 struct protection_domain *dom;
1052 unsigned long flags;
1053
1054 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1055 dom = amd_iommu_pd_table[devid];
1056 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1057
1058 return dom;
1059}
1060
407d733e 1061static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1062{
b20ac0d4 1063 u64 pte_root = virt_to_phys(domain->pt_root);
407d733e 1064 unsigned long flags;
863c74eb 1065
38ddf41b
JR
1066 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1067 << DEV_ENTRY_MODE_SHIFT;
1068 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1069
1070 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1071 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1072 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1073 amd_iommu_dev_table[devid].data[2] = domain->id;
1074
1075 amd_iommu_pd_table[devid] = domain;
1076 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
407d733e
JR
1077}
1078
1079/*
1080 * If a device is not yet associated with a domain, this function does
1081 * assigns it visible for the hardware
1082 */
1083static void attach_device(struct amd_iommu *iommu,
1084 struct protection_domain *domain,
1085 u16 devid)
1086{
1087 /* set the DTE entry */
1088 set_dte_entry(devid, domain);
1089
1090 /* increase reference counter */
1091 domain->dev_cnt += 1;
b20ac0d4 1092
42a49f96
CW
1093 /*
1094 * We might boot into a crash-kernel here. The crashed kernel
1095 * left the caches in the IOMMU dirty. So we have to flush
1096 * here to evict all dirty stuff.
1097 */
b20ac0d4 1098 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1099 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1100}
1101
355bf553
JR
1102/*
1103 * Removes a device from a protection domain (unlocked)
1104 */
1105static void __detach_device(struct protection_domain *domain, u16 devid)
1106{
1107
1108 /* lock domain */
1109 spin_lock(&domain->lock);
1110
1111 /* remove domain from the lookup table */
1112 amd_iommu_pd_table[devid] = NULL;
1113
1114 /* remove entry from the device table seen by the hardware */
1115 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1116 amd_iommu_dev_table[devid].data[1] = 0;
1117 amd_iommu_dev_table[devid].data[2] = 0;
1118
1119 /* decrease reference counter */
1120 domain->dev_cnt -= 1;
1121
1122 /* ready */
1123 spin_unlock(&domain->lock);
1124}
1125
1126/*
1127 * Removes a device from a protection domain (with devtable_lock held)
1128 */
1129static void detach_device(struct protection_domain *domain, u16 devid)
1130{
1131 unsigned long flags;
1132
1133 /* lock device table */
1134 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1135 __detach_device(domain, devid);
1136 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1137}
e275a2a0
JR
1138
1139static int device_change_notifier(struct notifier_block *nb,
1140 unsigned long action, void *data)
1141{
1142 struct device *dev = data;
1143 struct pci_dev *pdev = to_pci_dev(dev);
1144 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1145 struct protection_domain *domain;
1146 struct dma_ops_domain *dma_domain;
1147 struct amd_iommu *iommu;
1ac4cbbc 1148 unsigned long flags;
e275a2a0
JR
1149
1150 if (devid > amd_iommu_last_bdf)
1151 goto out;
1152
1153 devid = amd_iommu_alias_table[devid];
1154
1155 iommu = amd_iommu_rlookup_table[devid];
1156 if (iommu == NULL)
1157 goto out;
1158
1159 domain = domain_for_device(devid);
1160
1161 if (domain && !dma_ops_domain(domain))
1162 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1163 "to a non-dma-ops domain\n", dev_name(dev));
1164
1165 switch (action) {
c1eee67b 1166 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1167 if (!domain)
1168 goto out;
1169 detach_device(domain, devid);
1ac4cbbc
JR
1170 break;
1171 case BUS_NOTIFY_ADD_DEVICE:
1172 /* allocate a protection domain if a device is added */
1173 dma_domain = find_protection_domain(devid);
1174 if (dma_domain)
1175 goto out;
d9cfed92 1176 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1177 if (!dma_domain)
1178 goto out;
1179 dma_domain->target_dev = devid;
1180
1181 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1182 list_add_tail(&dma_domain->list, &iommu_pd_list);
1183 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1184
e275a2a0
JR
1185 break;
1186 default:
1187 goto out;
1188 }
1189
1190 iommu_queue_inv_dev_entry(iommu, devid);
1191 iommu_completion_wait(iommu);
1192
1193out:
1194 return 0;
1195}
1196
b25ae679 1197static struct notifier_block device_nb = {
e275a2a0
JR
1198 .notifier_call = device_change_notifier,
1199};
355bf553 1200
431b2a20
JR
1201/*****************************************************************************
1202 *
1203 * The next functions belong to the dma_ops mapping/unmapping code.
1204 *
1205 *****************************************************************************/
1206
dbcc112e
JR
1207/*
1208 * This function checks if the driver got a valid device from the caller to
1209 * avoid dereferencing invalid pointers.
1210 */
1211static bool check_device(struct device *dev)
1212{
1213 if (!dev || !dev->dma_mask)
1214 return false;
1215
1216 return true;
1217}
1218
bd60b735
JR
1219/*
1220 * In this function the list of preallocated protection domains is traversed to
1221 * find the domain for a specific device
1222 */
1223static struct dma_ops_domain *find_protection_domain(u16 devid)
1224{
1225 struct dma_ops_domain *entry, *ret = NULL;
1226 unsigned long flags;
1227
1228 if (list_empty(&iommu_pd_list))
1229 return NULL;
1230
1231 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1232
1233 list_for_each_entry(entry, &iommu_pd_list, list) {
1234 if (entry->target_dev == devid) {
1235 ret = entry;
bd60b735
JR
1236 break;
1237 }
1238 }
1239
1240 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1241
1242 return ret;
1243}
1244
431b2a20
JR
1245/*
1246 * In the dma_ops path we only have the struct device. This function
1247 * finds the corresponding IOMMU, the protection domain and the
1248 * requestor id for a given device.
1249 * If the device is not yet associated with a domain this is also done
1250 * in this function.
1251 */
b20ac0d4
JR
1252static int get_device_resources(struct device *dev,
1253 struct amd_iommu **iommu,
1254 struct protection_domain **domain,
1255 u16 *bdf)
1256{
1257 struct dma_ops_domain *dma_dom;
1258 struct pci_dev *pcidev;
1259 u16 _bdf;
1260
dbcc112e
JR
1261 *iommu = NULL;
1262 *domain = NULL;
1263 *bdf = 0xffff;
1264
1265 if (dev->bus != &pci_bus_type)
1266 return 0;
b20ac0d4
JR
1267
1268 pcidev = to_pci_dev(dev);
d591b0a3 1269 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1270
431b2a20 1271 /* device not translated by any IOMMU in the system? */
dbcc112e 1272 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1273 return 0;
b20ac0d4
JR
1274
1275 *bdf = amd_iommu_alias_table[_bdf];
1276
1277 *iommu = amd_iommu_rlookup_table[*bdf];
1278 if (*iommu == NULL)
1279 return 0;
b20ac0d4
JR
1280 *domain = domain_for_device(*bdf);
1281 if (*domain == NULL) {
bd60b735
JR
1282 dma_dom = find_protection_domain(*bdf);
1283 if (!dma_dom)
1284 dma_dom = (*iommu)->default_dom;
b20ac0d4 1285 *domain = &dma_dom->domain;
f1179dc0 1286 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1287 DUMP_printk("Using protection domain %d for device %s\n",
1288 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1289 }
1290
f91ba190 1291 if (domain_for_device(_bdf) == NULL)
f1179dc0 1292 attach_device(*iommu, *domain, _bdf);
f91ba190 1293
b20ac0d4
JR
1294 return 1;
1295}
1296
8bda3092
JR
1297/*
1298 * If the pte_page is not yet allocated this function is called
1299 */
1300static u64* alloc_pte(struct protection_domain *dom,
1301 unsigned long address, u64 **pte_page, gfp_t gfp)
1302{
1303 u64 *pte, *page;
1304
1305 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1306
1307 if (!IOMMU_PTE_PRESENT(*pte)) {
1308 page = (u64 *)get_zeroed_page(gfp);
1309 if (!page)
1310 return NULL;
1311 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1312 }
1313
1314 pte = IOMMU_PTE_PAGE(*pte);
1315 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1316
1317 if (!IOMMU_PTE_PRESENT(*pte)) {
1318 page = (u64 *)get_zeroed_page(gfp);
1319 if (!page)
1320 return NULL;
1321 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1322 }
1323
1324 pte = IOMMU_PTE_PAGE(*pte);
1325
1326 if (pte_page)
1327 *pte_page = pte;
1328
1329 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1330
1331 return pte;
1332}
1333
1334/*
1335 * This function fetches the PTE for a given address in the aperture
1336 */
1337static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1338 unsigned long address)
1339{
384de729 1340 struct aperture_range *aperture;
8bda3092
JR
1341 u64 *pte, *pte_page;
1342
384de729
JR
1343 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1344 if (!aperture)
1345 return NULL;
1346
1347 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1348 if (!pte) {
1349 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1350 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1351 } else
1352 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1353
1354 return pte;
1355}
1356
431b2a20
JR
1357/*
1358 * This is the generic map function. It maps one 4kb page at paddr to
1359 * the given address in the DMA address space for the domain.
1360 */
cb76c322
JR
1361static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1362 struct dma_ops_domain *dom,
1363 unsigned long address,
1364 phys_addr_t paddr,
1365 int direction)
1366{
1367 u64 *pte, __pte;
1368
1369 WARN_ON(address > dom->aperture_size);
1370
1371 paddr &= PAGE_MASK;
1372
8bda3092 1373 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1374 if (!pte)
1375 return bad_dma_address;
cb76c322
JR
1376
1377 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1378
1379 if (direction == DMA_TO_DEVICE)
1380 __pte |= IOMMU_PTE_IR;
1381 else if (direction == DMA_FROM_DEVICE)
1382 __pte |= IOMMU_PTE_IW;
1383 else if (direction == DMA_BIDIRECTIONAL)
1384 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1385
1386 WARN_ON(*pte);
1387
1388 *pte = __pte;
1389
1390 return (dma_addr_t)address;
1391}
1392
431b2a20
JR
1393/*
1394 * The generic unmapping function for on page in the DMA address space.
1395 */
cb76c322
JR
1396static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1397 struct dma_ops_domain *dom,
1398 unsigned long address)
1399{
384de729 1400 struct aperture_range *aperture;
cb76c322
JR
1401 u64 *pte;
1402
1403 if (address >= dom->aperture_size)
1404 return;
1405
384de729
JR
1406 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1407 if (!aperture)
1408 return;
1409
1410 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1411 if (!pte)
1412 return;
cb76c322 1413
cb76c322
JR
1414 pte += IOMMU_PTE_L0_INDEX(address);
1415
1416 WARN_ON(!*pte);
1417
1418 *pte = 0ULL;
1419}
1420
431b2a20
JR
1421/*
1422 * This function contains common code for mapping of a physically
24f81160
JR
1423 * contiguous memory region into DMA address space. It is used by all
1424 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1425 * Must be called with the domain lock held.
1426 */
cb76c322
JR
1427static dma_addr_t __map_single(struct device *dev,
1428 struct amd_iommu *iommu,
1429 struct dma_ops_domain *dma_dom,
1430 phys_addr_t paddr,
1431 size_t size,
6d4f343f 1432 int dir,
832a90c3
JR
1433 bool align,
1434 u64 dma_mask)
cb76c322
JR
1435{
1436 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1437 dma_addr_t address, start, ret;
cb76c322 1438 unsigned int pages;
6d4f343f 1439 unsigned long align_mask = 0;
cb76c322
JR
1440 int i;
1441
e3c449f5 1442 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1443 paddr &= PAGE_MASK;
1444
8ecaf8f1
JR
1445 INC_STATS_COUNTER(total_map_requests);
1446
c1858976
JR
1447 if (pages > 1)
1448 INC_STATS_COUNTER(cross_page);
1449
6d4f343f
JR
1450 if (align)
1451 align_mask = (1UL << get_order(size)) - 1;
1452
11b83888 1453retry:
832a90c3
JR
1454 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1455 dma_mask);
11b83888
JR
1456 if (unlikely(address == bad_dma_address)) {
1457 /*
1458 * setting next_address here will let the address
1459 * allocator only scan the new allocated range in the
1460 * first run. This is a small optimization.
1461 */
1462 dma_dom->next_address = dma_dom->aperture_size;
1463
1464 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1465 goto out;
1466
1467 /*
1468 * aperture was sucessfully enlarged by 128 MB, try
1469 * allocation again
1470 */
1471 goto retry;
1472 }
cb76c322
JR
1473
1474 start = address;
1475 for (i = 0; i < pages; ++i) {
53812c11
JR
1476 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1477 if (ret == bad_dma_address)
1478 goto out_unmap;
1479
cb76c322
JR
1480 paddr += PAGE_SIZE;
1481 start += PAGE_SIZE;
1482 }
1483 address += offset;
1484
5774f7c5
JR
1485 ADD_STATS_COUNTER(alloced_io_mem, size);
1486
afa9fdc2 1487 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1488 iommu_flush_tlb(iommu, dma_dom->domain.id);
1489 dma_dom->need_flush = false;
1490 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1491 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1492
cb76c322
JR
1493out:
1494 return address;
53812c11
JR
1495
1496out_unmap:
1497
1498 for (--i; i >= 0; --i) {
1499 start -= PAGE_SIZE;
1500 dma_ops_domain_unmap(iommu, dma_dom, start);
1501 }
1502
1503 dma_ops_free_addresses(dma_dom, address, pages);
1504
1505 return bad_dma_address;
cb76c322
JR
1506}
1507
431b2a20
JR
1508/*
1509 * Does the reverse of the __map_single function. Must be called with
1510 * the domain lock held too
1511 */
cb76c322
JR
1512static void __unmap_single(struct amd_iommu *iommu,
1513 struct dma_ops_domain *dma_dom,
1514 dma_addr_t dma_addr,
1515 size_t size,
1516 int dir)
1517{
1518 dma_addr_t i, start;
1519 unsigned int pages;
1520
b8d9905d
JR
1521 if ((dma_addr == bad_dma_address) ||
1522 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1523 return;
1524
e3c449f5 1525 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1526 dma_addr &= PAGE_MASK;
1527 start = dma_addr;
1528
1529 for (i = 0; i < pages; ++i) {
1530 dma_ops_domain_unmap(iommu, dma_dom, start);
1531 start += PAGE_SIZE;
1532 }
1533
5774f7c5
JR
1534 SUB_STATS_COUNTER(alloced_io_mem, size);
1535
cb76c322 1536 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1537
80be308d 1538 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1539 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1540 dma_dom->need_flush = false;
1541 }
cb76c322
JR
1542}
1543
431b2a20
JR
1544/*
1545 * The exported map_single function for dma_ops.
1546 */
51491367
FT
1547static dma_addr_t map_page(struct device *dev, struct page *page,
1548 unsigned long offset, size_t size,
1549 enum dma_data_direction dir,
1550 struct dma_attrs *attrs)
4da70b9e
JR
1551{
1552 unsigned long flags;
1553 struct amd_iommu *iommu;
1554 struct protection_domain *domain;
1555 u16 devid;
1556 dma_addr_t addr;
832a90c3 1557 u64 dma_mask;
51491367 1558 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1559
0f2a86f2
JR
1560 INC_STATS_COUNTER(cnt_map_single);
1561
dbcc112e
JR
1562 if (!check_device(dev))
1563 return bad_dma_address;
1564
832a90c3 1565 dma_mask = *dev->dma_mask;
4da70b9e
JR
1566
1567 get_device_resources(dev, &iommu, &domain, &devid);
1568
1569 if (iommu == NULL || domain == NULL)
431b2a20 1570 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1571 return (dma_addr_t)paddr;
1572
5b28df6f
JR
1573 if (!dma_ops_domain(domain))
1574 return bad_dma_address;
1575
4da70b9e 1576 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1577 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1578 dma_mask);
4da70b9e
JR
1579 if (addr == bad_dma_address)
1580 goto out;
1581
09ee17eb 1582 iommu_completion_wait(iommu);
4da70b9e
JR
1583
1584out:
1585 spin_unlock_irqrestore(&domain->lock, flags);
1586
1587 return addr;
1588}
1589
431b2a20
JR
1590/*
1591 * The exported unmap_single function for dma_ops.
1592 */
51491367
FT
1593static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1594 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1595{
1596 unsigned long flags;
1597 struct amd_iommu *iommu;
1598 struct protection_domain *domain;
1599 u16 devid;
1600
146a6917
JR
1601 INC_STATS_COUNTER(cnt_unmap_single);
1602
dbcc112e
JR
1603 if (!check_device(dev) ||
1604 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1605 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1606 return;
1607
5b28df6f
JR
1608 if (!dma_ops_domain(domain))
1609 return;
1610
4da70b9e
JR
1611 spin_lock_irqsave(&domain->lock, flags);
1612
1613 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1614
09ee17eb 1615 iommu_completion_wait(iommu);
4da70b9e
JR
1616
1617 spin_unlock_irqrestore(&domain->lock, flags);
1618}
1619
431b2a20
JR
1620/*
1621 * This is a special map_sg function which is used if we should map a
1622 * device which is not handled by an AMD IOMMU in the system.
1623 */
65b050ad
JR
1624static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1625 int nelems, int dir)
1626{
1627 struct scatterlist *s;
1628 int i;
1629
1630 for_each_sg(sglist, s, nelems, i) {
1631 s->dma_address = (dma_addr_t)sg_phys(s);
1632 s->dma_length = s->length;
1633 }
1634
1635 return nelems;
1636}
1637
431b2a20
JR
1638/*
1639 * The exported map_sg function for dma_ops (handles scatter-gather
1640 * lists).
1641 */
65b050ad 1642static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1643 int nelems, enum dma_data_direction dir,
1644 struct dma_attrs *attrs)
65b050ad
JR
1645{
1646 unsigned long flags;
1647 struct amd_iommu *iommu;
1648 struct protection_domain *domain;
1649 u16 devid;
1650 int i;
1651 struct scatterlist *s;
1652 phys_addr_t paddr;
1653 int mapped_elems = 0;
832a90c3 1654 u64 dma_mask;
65b050ad 1655
d03f067a
JR
1656 INC_STATS_COUNTER(cnt_map_sg);
1657
dbcc112e
JR
1658 if (!check_device(dev))
1659 return 0;
1660
832a90c3 1661 dma_mask = *dev->dma_mask;
65b050ad
JR
1662
1663 get_device_resources(dev, &iommu, &domain, &devid);
1664
1665 if (!iommu || !domain)
1666 return map_sg_no_iommu(dev, sglist, nelems, dir);
1667
5b28df6f
JR
1668 if (!dma_ops_domain(domain))
1669 return 0;
1670
65b050ad
JR
1671 spin_lock_irqsave(&domain->lock, flags);
1672
1673 for_each_sg(sglist, s, nelems, i) {
1674 paddr = sg_phys(s);
1675
1676 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1677 paddr, s->length, dir, false,
1678 dma_mask);
65b050ad
JR
1679
1680 if (s->dma_address) {
1681 s->dma_length = s->length;
1682 mapped_elems++;
1683 } else
1684 goto unmap;
65b050ad
JR
1685 }
1686
09ee17eb 1687 iommu_completion_wait(iommu);
65b050ad
JR
1688
1689out:
1690 spin_unlock_irqrestore(&domain->lock, flags);
1691
1692 return mapped_elems;
1693unmap:
1694 for_each_sg(sglist, s, mapped_elems, i) {
1695 if (s->dma_address)
1696 __unmap_single(iommu, domain->priv, s->dma_address,
1697 s->dma_length, dir);
1698 s->dma_address = s->dma_length = 0;
1699 }
1700
1701 mapped_elems = 0;
1702
1703 goto out;
1704}
1705
431b2a20
JR
1706/*
1707 * The exported map_sg function for dma_ops (handles scatter-gather
1708 * lists).
1709 */
65b050ad 1710static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1711 int nelems, enum dma_data_direction dir,
1712 struct dma_attrs *attrs)
65b050ad
JR
1713{
1714 unsigned long flags;
1715 struct amd_iommu *iommu;
1716 struct protection_domain *domain;
1717 struct scatterlist *s;
1718 u16 devid;
1719 int i;
1720
55877a6b
JR
1721 INC_STATS_COUNTER(cnt_unmap_sg);
1722
dbcc112e
JR
1723 if (!check_device(dev) ||
1724 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1725 return;
1726
5b28df6f
JR
1727 if (!dma_ops_domain(domain))
1728 return;
1729
65b050ad
JR
1730 spin_lock_irqsave(&domain->lock, flags);
1731
1732 for_each_sg(sglist, s, nelems, i) {
1733 __unmap_single(iommu, domain->priv, s->dma_address,
1734 s->dma_length, dir);
65b050ad
JR
1735 s->dma_address = s->dma_length = 0;
1736 }
1737
09ee17eb 1738 iommu_completion_wait(iommu);
65b050ad
JR
1739
1740 spin_unlock_irqrestore(&domain->lock, flags);
1741}
1742
431b2a20
JR
1743/*
1744 * The exported alloc_coherent function for dma_ops.
1745 */
5d8b53cf
JR
1746static void *alloc_coherent(struct device *dev, size_t size,
1747 dma_addr_t *dma_addr, gfp_t flag)
1748{
1749 unsigned long flags;
1750 void *virt_addr;
1751 struct amd_iommu *iommu;
1752 struct protection_domain *domain;
1753 u16 devid;
1754 phys_addr_t paddr;
832a90c3 1755 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1756
c8f0fb36
JR
1757 INC_STATS_COUNTER(cnt_alloc_coherent);
1758
dbcc112e
JR
1759 if (!check_device(dev))
1760 return NULL;
5d8b53cf 1761
13d9fead
FT
1762 if (!get_device_resources(dev, &iommu, &domain, &devid))
1763 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1764
c97ac535 1765 flag |= __GFP_ZERO;
5d8b53cf
JR
1766 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1767 if (!virt_addr)
b25ae679 1768 return NULL;
5d8b53cf 1769
5d8b53cf
JR
1770 paddr = virt_to_phys(virt_addr);
1771
5d8b53cf
JR
1772 if (!iommu || !domain) {
1773 *dma_addr = (dma_addr_t)paddr;
1774 return virt_addr;
1775 }
1776
5b28df6f
JR
1777 if (!dma_ops_domain(domain))
1778 goto out_free;
1779
832a90c3
JR
1780 if (!dma_mask)
1781 dma_mask = *dev->dma_mask;
1782
5d8b53cf
JR
1783 spin_lock_irqsave(&domain->lock, flags);
1784
1785 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1786 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1787
367d04c4
JS
1788 if (*dma_addr == bad_dma_address) {
1789 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1790 goto out_free;
367d04c4 1791 }
5d8b53cf 1792
09ee17eb 1793 iommu_completion_wait(iommu);
5d8b53cf 1794
5d8b53cf
JR
1795 spin_unlock_irqrestore(&domain->lock, flags);
1796
1797 return virt_addr;
5b28df6f
JR
1798
1799out_free:
1800
1801 free_pages((unsigned long)virt_addr, get_order(size));
1802
1803 return NULL;
5d8b53cf
JR
1804}
1805
431b2a20
JR
1806/*
1807 * The exported free_coherent function for dma_ops.
431b2a20 1808 */
5d8b53cf
JR
1809static void free_coherent(struct device *dev, size_t size,
1810 void *virt_addr, dma_addr_t dma_addr)
1811{
1812 unsigned long flags;
1813 struct amd_iommu *iommu;
1814 struct protection_domain *domain;
1815 u16 devid;
1816
5d31ee7e
JR
1817 INC_STATS_COUNTER(cnt_free_coherent);
1818
dbcc112e
JR
1819 if (!check_device(dev))
1820 return;
1821
5d8b53cf
JR
1822 get_device_resources(dev, &iommu, &domain, &devid);
1823
1824 if (!iommu || !domain)
1825 goto free_mem;
1826
5b28df6f
JR
1827 if (!dma_ops_domain(domain))
1828 goto free_mem;
1829
5d8b53cf
JR
1830 spin_lock_irqsave(&domain->lock, flags);
1831
1832 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1833
09ee17eb 1834 iommu_completion_wait(iommu);
5d8b53cf
JR
1835
1836 spin_unlock_irqrestore(&domain->lock, flags);
1837
1838free_mem:
1839 free_pages((unsigned long)virt_addr, get_order(size));
1840}
1841
b39ba6ad
JR
1842/*
1843 * This function is called by the DMA layer to find out if we can handle a
1844 * particular device. It is part of the dma_ops.
1845 */
1846static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1847{
1848 u16 bdf;
1849 struct pci_dev *pcidev;
1850
1851 /* No device or no PCI device */
1852 if (!dev || dev->bus != &pci_bus_type)
1853 return 0;
1854
1855 pcidev = to_pci_dev(dev);
1856
1857 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1858
1859 /* Out of our scope? */
1860 if (bdf > amd_iommu_last_bdf)
1861 return 0;
1862
1863 return 1;
1864}
1865
c432f3df 1866/*
431b2a20
JR
1867 * The function for pre-allocating protection domains.
1868 *
c432f3df
JR
1869 * If the driver core informs the DMA layer if a driver grabs a device
1870 * we don't need to preallocate the protection domains anymore.
1871 * For now we have to.
1872 */
0e93dd88 1873static void prealloc_protection_domains(void)
c432f3df
JR
1874{
1875 struct pci_dev *dev = NULL;
1876 struct dma_ops_domain *dma_dom;
1877 struct amd_iommu *iommu;
c432f3df
JR
1878 u16 devid;
1879
1880 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1881 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1882 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1883 continue;
1884 devid = amd_iommu_alias_table[devid];
1885 if (domain_for_device(devid))
1886 continue;
1887 iommu = amd_iommu_rlookup_table[devid];
1888 if (!iommu)
1889 continue;
d9cfed92 1890 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1891 if (!dma_dom)
1892 continue;
1893 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1894 dma_dom->target_dev = devid;
1895
1896 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1897 }
1898}
1899
160c1d8e 1900static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1901 .alloc_coherent = alloc_coherent,
1902 .free_coherent = free_coherent,
51491367
FT
1903 .map_page = map_page,
1904 .unmap_page = unmap_page,
6631ee9d
JR
1905 .map_sg = map_sg,
1906 .unmap_sg = unmap_sg,
b39ba6ad 1907 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1908};
1909
431b2a20
JR
1910/*
1911 * The function which clues the AMD IOMMU driver into dma_ops.
1912 */
6631ee9d
JR
1913int __init amd_iommu_init_dma_ops(void)
1914{
1915 struct amd_iommu *iommu;
6631ee9d
JR
1916 int ret;
1917
431b2a20
JR
1918 /*
1919 * first allocate a default protection domain for every IOMMU we
1920 * found in the system. Devices not assigned to any other
1921 * protection domain will be assigned to the default one.
1922 */
3bd22172 1923 for_each_iommu(iommu) {
d9cfed92 1924 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1925 if (iommu->default_dom == NULL)
1926 return -ENOMEM;
e2dc14a2 1927 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1928 ret = iommu_init_unity_mappings(iommu);
1929 if (ret)
1930 goto free_domains;
1931 }
1932
431b2a20
JR
1933 /*
1934 * If device isolation is enabled, pre-allocate the protection
1935 * domains for each device.
1936 */
6631ee9d
JR
1937 if (amd_iommu_isolate)
1938 prealloc_protection_domains();
1939
1940 iommu_detected = 1;
1941 force_iommu = 1;
1942 bad_dma_address = 0;
92af4e29 1943#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1944 gart_iommu_aperture_disabled = 1;
1945 gart_iommu_aperture = 0;
92af4e29 1946#endif
6631ee9d 1947
431b2a20 1948 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1949 dma_ops = &amd_iommu_dma_ops;
1950
26961efe 1951 register_iommu(&amd_iommu_ops);
26961efe 1952
e275a2a0
JR
1953 bus_register_notifier(&pci_bus_type, &device_nb);
1954
7f26508b
JR
1955 amd_iommu_stats_init();
1956
6631ee9d
JR
1957 return 0;
1958
1959free_domains:
1960
3bd22172 1961 for_each_iommu(iommu) {
6631ee9d
JR
1962 if (iommu->default_dom)
1963 dma_ops_domain_free(iommu->default_dom);
1964 }
1965
1966 return ret;
1967}
6d98cd80
JR
1968
1969/*****************************************************************************
1970 *
1971 * The following functions belong to the exported interface of AMD IOMMU
1972 *
1973 * This interface allows access to lower level functions of the IOMMU
1974 * like protection domain handling and assignement of devices to domains
1975 * which is not possible with the dma_ops interface.
1976 *
1977 *****************************************************************************/
1978
6d98cd80
JR
1979static void cleanup_domain(struct protection_domain *domain)
1980{
1981 unsigned long flags;
1982 u16 devid;
1983
1984 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1985
1986 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1987 if (amd_iommu_pd_table[devid] == domain)
1988 __detach_device(domain, devid);
1989
1990 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1991}
1992
c156e347
JR
1993static int amd_iommu_domain_init(struct iommu_domain *dom)
1994{
1995 struct protection_domain *domain;
1996
1997 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1998 if (!domain)
1999 return -ENOMEM;
2000
2001 spin_lock_init(&domain->lock);
2002 domain->mode = PAGE_MODE_3_LEVEL;
2003 domain->id = domain_id_alloc();
2004 if (!domain->id)
2005 goto out_free;
2006 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2007 if (!domain->pt_root)
2008 goto out_free;
2009
2010 dom->priv = domain;
2011
2012 return 0;
2013
2014out_free:
2015 kfree(domain);
2016
2017 return -ENOMEM;
2018}
2019
98383fc3
JR
2020static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2021{
2022 struct protection_domain *domain = dom->priv;
2023
2024 if (!domain)
2025 return;
2026
2027 if (domain->dev_cnt > 0)
2028 cleanup_domain(domain);
2029
2030 BUG_ON(domain->dev_cnt != 0);
2031
2032 free_pagetable(domain);
2033
2034 domain_id_free(domain->id);
2035
2036 kfree(domain);
2037
2038 dom->priv = NULL;
2039}
2040
684f2888
JR
2041static void amd_iommu_detach_device(struct iommu_domain *dom,
2042 struct device *dev)
2043{
2044 struct protection_domain *domain = dom->priv;
2045 struct amd_iommu *iommu;
2046 struct pci_dev *pdev;
2047 u16 devid;
2048
2049 if (dev->bus != &pci_bus_type)
2050 return;
2051
2052 pdev = to_pci_dev(dev);
2053
2054 devid = calc_devid(pdev->bus->number, pdev->devfn);
2055
2056 if (devid > 0)
2057 detach_device(domain, devid);
2058
2059 iommu = amd_iommu_rlookup_table[devid];
2060 if (!iommu)
2061 return;
2062
2063 iommu_queue_inv_dev_entry(iommu, devid);
2064 iommu_completion_wait(iommu);
2065}
2066
01106066
JR
2067static int amd_iommu_attach_device(struct iommu_domain *dom,
2068 struct device *dev)
2069{
2070 struct protection_domain *domain = dom->priv;
2071 struct protection_domain *old_domain;
2072 struct amd_iommu *iommu;
2073 struct pci_dev *pdev;
2074 u16 devid;
2075
2076 if (dev->bus != &pci_bus_type)
2077 return -EINVAL;
2078
2079 pdev = to_pci_dev(dev);
2080
2081 devid = calc_devid(pdev->bus->number, pdev->devfn);
2082
2083 if (devid >= amd_iommu_last_bdf ||
2084 devid != amd_iommu_alias_table[devid])
2085 return -EINVAL;
2086
2087 iommu = amd_iommu_rlookup_table[devid];
2088 if (!iommu)
2089 return -EINVAL;
2090
2091 old_domain = domain_for_device(devid);
2092 if (old_domain)
71ff3bca 2093 detach_device(old_domain, devid);
01106066
JR
2094
2095 attach_device(iommu, domain, devid);
2096
2097 iommu_completion_wait(iommu);
2098
2099 return 0;
2100}
2101
c6229ca6
JR
2102static int amd_iommu_map_range(struct iommu_domain *dom,
2103 unsigned long iova, phys_addr_t paddr,
2104 size_t size, int iommu_prot)
2105{
2106 struct protection_domain *domain = dom->priv;
2107 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2108 int prot = 0;
2109 int ret;
2110
2111 if (iommu_prot & IOMMU_READ)
2112 prot |= IOMMU_PROT_IR;
2113 if (iommu_prot & IOMMU_WRITE)
2114 prot |= IOMMU_PROT_IW;
2115
2116 iova &= PAGE_MASK;
2117 paddr &= PAGE_MASK;
2118
2119 for (i = 0; i < npages; ++i) {
2120 ret = iommu_map_page(domain, iova, paddr, prot);
2121 if (ret)
2122 return ret;
2123
2124 iova += PAGE_SIZE;
2125 paddr += PAGE_SIZE;
2126 }
2127
2128 return 0;
2129}
2130
eb74ff6c
JR
2131static void amd_iommu_unmap_range(struct iommu_domain *dom,
2132 unsigned long iova, size_t size)
2133{
2134
2135 struct protection_domain *domain = dom->priv;
2136 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2137
2138 iova &= PAGE_MASK;
2139
2140 for (i = 0; i < npages; ++i) {
2141 iommu_unmap_page(domain, iova);
2142 iova += PAGE_SIZE;
2143 }
2144
2145 iommu_flush_domain(domain->id);
2146}
2147
645c4c8d
JR
2148static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2149 unsigned long iova)
2150{
2151 struct protection_domain *domain = dom->priv;
2152 unsigned long offset = iova & ~PAGE_MASK;
2153 phys_addr_t paddr;
2154 u64 *pte;
2155
a6d41a40 2156 pte = fetch_pte(domain, iova);
645c4c8d 2157
a6d41a40 2158 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2159 return 0;
2160
2161 paddr = *pte & IOMMU_PAGE_MASK;
2162 paddr |= offset;
2163
2164 return paddr;
2165}
2166
dbb9fd86
SY
2167static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2168 unsigned long cap)
2169{
2170 return 0;
2171}
2172
26961efe
JR
2173static struct iommu_ops amd_iommu_ops = {
2174 .domain_init = amd_iommu_domain_init,
2175 .domain_destroy = amd_iommu_domain_destroy,
2176 .attach_dev = amd_iommu_attach_device,
2177 .detach_dev = amd_iommu_detach_device,
2178 .map = amd_iommu_map_range,
2179 .unmap = amd_iommu_unmap_range,
2180 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2181 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2182};
2183