Merge tag 'v3.10.107' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
6fb8a90a 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
430cbeb8
DC
100 }
101 spin_unlock(&btp->bt_lru_lock);
102}
103
104/*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 111 * bt_lru_lock.
1da177e4 112 */
430cbeb8
DC
113STATIC void
114xfs_buf_lru_del(
115 struct xfs_buf *bp)
116{
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
43ff2122
CH
142 ASSERT(xfs_buf_islocked(bp));
143
430cbeb8 144 bp->b_flags |= XBF_STALE;
43ff2122
CH
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
430cbeb8
DC
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
6fb8a90a
CM
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
430cbeb8
DC
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167}
1da177e4 168
3e85c868
DC
169static int
170xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173{
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
f4b42421 178 bp->b_maps = &bp->__b_map;
3e85c868
DC
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187}
188
189/*
190 * Frees b_pages if it was allocated.
191 */
192static void
193xfs_buf_free_maps(
194 struct xfs_buf *bp)
195{
f4b42421 196 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200}
201
4347b9d7 202struct xfs_buf *
3e85c868 203_xfs_buf_alloc(
4347b9d7 204 struct xfs_buftarg *target,
3e85c868
DC
205 struct xfs_buf_map *map,
206 int nmaps,
ce8e922c 207 xfs_buf_flags_t flags)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
aa5c158e 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
214 if (unlikely(!bp))
215 return NULL;
216
1da177e4 217 /*
12bcb3f7
DC
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
1da177e4 220 */
611c9946 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 222
ce8e922c 223 atomic_set(&bp->b_hold, 1);
430cbeb8 224 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 225 init_completion(&bp->b_iowait);
430cbeb8 226 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 227 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 228 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 229 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
ce8e922c
NS
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
0b1b213f 258 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
259
260 return bp;
1da177e4
LT
261}
262
263/*
ce8e922c
NS
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
1da177e4
LT
266 */
267STATIC int
ce8e922c
NS
268_xfs_buf_get_pages(
269 xfs_buf_t *bp,
1da177e4 270 int page_count,
ce8e922c 271 xfs_buf_flags_t flags)
1da177e4
LT
272{
273 /* Make sure that we have a page list */
ce8e922c 274 if (bp->b_pages == NULL) {
ce8e922c
NS
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c 279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 280 page_count, KM_NOFS);
ce8e922c 281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c 296 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 297 kmem_free(bp->b_pages);
3fc98b1a 298 bp->b_pages = NULL;
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
0b1b213f 313 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 314
430cbeb8
DC
315 ASSERT(list_empty(&bp->b_lru));
316
0e6e847f 317 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
318 uint i;
319
73c77e2c 320 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
1da177e4 323
948ecdb4
NS
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
0e6e847f 327 __free_page(page);
948ecdb4 328 }
0e6e847f
DC
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
3fc98b1a 331 _xfs_buf_free_pages(bp);
3e85c868 332 xfs_buf_free_maps(bp);
4347b9d7 333 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
334}
335
336/*
0e6e847f 337 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
338 */
339STATIC int
0e6e847f 340xfs_buf_allocate_memory(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
aa0e8833 344 size_t size;
1da177e4 345 size_t nbytes, offset;
ce8e922c 346 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 347 unsigned short page_count, i;
795cac72 348 xfs_off_t start, end;
1da177e4
LT
349 int error;
350
0e6e847f
DC
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
795cac72
DC
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
aa5c158e 358 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
795cac72 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
611c9946 375 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
376 return 0;
377 }
378
379use_alloc_page:
f4b42421
MT
380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 382 >> PAGE_SHIFT;
795cac72 383 page_count = end - start;
ce8e922c 384 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
385 if (unlikely(error))
386 return error;
1da177e4 387
ce8e922c 388 offset = bp->b_offset;
0e6e847f 389 bp->b_flags |= _XBF_PAGES;
1da177e4 390
ce8e922c 391 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
392 struct page *page;
393 uint retries = 0;
0e6e847f
DC
394retry:
395 page = alloc_page(gfp_mask);
1da177e4 396 if (unlikely(page == NULL)) {
ce8e922c
NS
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
0e6e847f
DC
399 error = ENOMEM;
400 goto out_free_pages;
1da177e4
LT
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
4f10700a
DC
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 412 __func__, gfp_mask);
1da177e4 413
ce8e922c 414 XFS_STATS_INC(xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
ce8e922c 419 XFS_STATS_INC(xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
4e448d48 431 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
432 return error;
433}
434
435/*
25985edc 436 * Map buffer into kernel address-space if necessary.
1da177e4
LT
437 */
438STATIC int
ce8e922c 439_xfs_buf_map_pages(
1da177e4
LT
440 xfs_buf_t *bp,
441 uint flags)
442{
0e6e847f 443 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 444 if (bp->b_page_count == 1) {
0e6e847f 445 /* A single page buffer is always mappable */
ce8e922c 446 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
447 } else if (flags & XBF_UNMAPPED) {
448 bp->b_addr = NULL;
449 } else {
a19fb380
DC
450 int retried = 0;
451
452 do {
453 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
454 -1, PAGE_KERNEL);
455 if (bp->b_addr)
456 break;
457 vm_unmap_aliases();
458 } while (retried++ <= 1);
459
460 if (!bp->b_addr)
1da177e4 461 return -ENOMEM;
ce8e922c 462 bp->b_addr += bp->b_offset;
1da177e4
LT
463 }
464
465 return 0;
466}
467
468/*
469 * Finding and Reading Buffers
470 */
471
472/*
ce8e922c 473 * Look up, and creates if absent, a lockable buffer for
1da177e4 474 * a given range of an inode. The buffer is returned
eabbaf11 475 * locked. No I/O is implied by this call.
1da177e4
LT
476 */
477xfs_buf_t *
ce8e922c 478_xfs_buf_find(
e70b73f8 479 struct xfs_buftarg *btp,
3e85c868
DC
480 struct xfs_buf_map *map,
481 int nmaps,
ce8e922c
NS
482 xfs_buf_flags_t flags,
483 xfs_buf_t *new_bp)
1da177e4 484{
e70b73f8 485 size_t numbytes;
74f75a0c
DC
486 struct xfs_perag *pag;
487 struct rb_node **rbp;
488 struct rb_node *parent;
489 xfs_buf_t *bp;
3e85c868 490 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 491 xfs_daddr_t eofs;
3e85c868
DC
492 int numblks = 0;
493 int i;
1da177e4 494
3e85c868
DC
495 for (i = 0; i < nmaps; i++)
496 numblks += map[i].bm_len;
e70b73f8 497 numbytes = BBTOB(numblks);
1da177e4
LT
498
499 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 500 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 501 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 502
10616b80
DC
503 /*
504 * Corrupted block numbers can get through to here, unfortunately, so we
505 * have to check that the buffer falls within the filesystem bounds.
506 */
507 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
508 if (blkno >= eofs) {
509 /*
510 * XXX (dgc): we should really be returning EFSCORRUPTED here,
511 * but none of the higher level infrastructure supports
512 * returning a specific error on buffer lookup failures.
513 */
514 xfs_alert(btp->bt_mount,
515 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
516 __func__, blkno, eofs);
7bc0dc27 517 WARN_ON(1);
10616b80
DC
518 return NULL;
519 }
520
74f75a0c
DC
521 /* get tree root */
522 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 523 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
524
525 /* walk tree */
526 spin_lock(&pag->pag_buf_lock);
527 rbp = &pag->pag_buf_tree.rb_node;
528 parent = NULL;
529 bp = NULL;
530 while (*rbp) {
531 parent = *rbp;
532 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
533
de1cbee4 534 if (blkno < bp->b_bn)
74f75a0c 535 rbp = &(*rbp)->rb_left;
de1cbee4 536 else if (blkno > bp->b_bn)
74f75a0c
DC
537 rbp = &(*rbp)->rb_right;
538 else {
539 /*
de1cbee4 540 * found a block number match. If the range doesn't
74f75a0c
DC
541 * match, the only way this is allowed is if the buffer
542 * in the cache is stale and the transaction that made
543 * it stale has not yet committed. i.e. we are
544 * reallocating a busy extent. Skip this buffer and
545 * continue searching to the right for an exact match.
546 */
4e94b71b 547 if (bp->b_length != numblks) {
74f75a0c
DC
548 ASSERT(bp->b_flags & XBF_STALE);
549 rbp = &(*rbp)->rb_right;
550 continue;
551 }
ce8e922c 552 atomic_inc(&bp->b_hold);
1da177e4
LT
553 goto found;
554 }
555 }
556
557 /* No match found */
ce8e922c 558 if (new_bp) {
74f75a0c
DC
559 rb_link_node(&new_bp->b_rbnode, parent, rbp);
560 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
561 /* the buffer keeps the perag reference until it is freed */
562 new_bp->b_pag = pag;
563 spin_unlock(&pag->pag_buf_lock);
1da177e4 564 } else {
ce8e922c 565 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
566 spin_unlock(&pag->pag_buf_lock);
567 xfs_perag_put(pag);
1da177e4 568 }
ce8e922c 569 return new_bp;
1da177e4
LT
570
571found:
74f75a0c
DC
572 spin_unlock(&pag->pag_buf_lock);
573 xfs_perag_put(pag);
1da177e4 574
0c842ad4
CH
575 if (!xfs_buf_trylock(bp)) {
576 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
577 xfs_buf_rele(bp);
578 XFS_STATS_INC(xb_busy_locked);
579 return NULL;
1da177e4 580 }
0c842ad4
CH
581 xfs_buf_lock(bp);
582 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
583 }
584
0e6e847f
DC
585 /*
586 * if the buffer is stale, clear all the external state associated with
587 * it. We need to keep flags such as how we allocated the buffer memory
588 * intact here.
589 */
ce8e922c
NS
590 if (bp->b_flags & XBF_STALE) {
591 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 592 ASSERT(bp->b_iodone == NULL);
611c9946 593 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 594 bp->b_ops = NULL;
2f926587 595 }
0b1b213f
CH
596
597 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
598 XFS_STATS_INC(xb_get_locked);
599 return bp;
1da177e4
LT
600}
601
602/*
3815832a
DC
603 * Assembles a buffer covering the specified range. The code is optimised for
604 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
605 * more hits than misses.
1da177e4 606 */
3815832a 607struct xfs_buf *
6dde2707
DC
608xfs_buf_get_map(
609 struct xfs_buftarg *target,
610 struct xfs_buf_map *map,
611 int nmaps,
ce8e922c 612 xfs_buf_flags_t flags)
1da177e4 613{
3815832a
DC
614 struct xfs_buf *bp;
615 struct xfs_buf *new_bp;
0e6e847f 616 int error = 0;
1da177e4 617
6dde2707 618 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
619 if (likely(bp))
620 goto found;
621
6dde2707 622 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 623 if (unlikely(!new_bp))
1da177e4
LT
624 return NULL;
625
fe2429b0
DC
626 error = xfs_buf_allocate_memory(new_bp, flags);
627 if (error) {
3e85c868 628 xfs_buf_free(new_bp);
fe2429b0
DC
629 return NULL;
630 }
631
6dde2707 632 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 633 if (!bp) {
fe2429b0 634 xfs_buf_free(new_bp);
3815832a
DC
635 return NULL;
636 }
637
fe2429b0
DC
638 if (bp != new_bp)
639 xfs_buf_free(new_bp);
1da177e4 640
3815832a 641found:
611c9946 642 if (!bp->b_addr) {
ce8e922c 643 error = _xfs_buf_map_pages(bp, flags);
1da177e4 644 if (unlikely(error)) {
4f10700a
DC
645 xfs_warn(target->bt_mount,
646 "%s: failed to map pages\n", __func__);
a8acad70
DC
647 xfs_buf_relse(bp);
648 return NULL;
1da177e4
LT
649 }
650 }
651
ce8e922c 652 XFS_STATS_INC(xb_get);
0b1b213f 653 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 654 return bp;
1da177e4
LT
655}
656
5d765b97
CH
657STATIC int
658_xfs_buf_read(
659 xfs_buf_t *bp,
660 xfs_buf_flags_t flags)
661{
43ff2122 662 ASSERT(!(flags & XBF_WRITE));
f4b42421 663 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 664
43ff2122 665 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 666 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 667
0e95f19a
DC
668 xfs_buf_iorequest(bp);
669 if (flags & XBF_ASYNC)
670 return 0;
ec53d1db 671 return xfs_buf_iowait(bp);
5d765b97
CH
672}
673
1da177e4 674xfs_buf_t *
6dde2707
DC
675xfs_buf_read_map(
676 struct xfs_buftarg *target,
677 struct xfs_buf_map *map,
678 int nmaps,
c3f8fc73 679 xfs_buf_flags_t flags,
1813dd64 680 const struct xfs_buf_ops *ops)
1da177e4 681{
6dde2707 682 struct xfs_buf *bp;
ce8e922c
NS
683
684 flags |= XBF_READ;
685
6dde2707 686 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 687 if (bp) {
0b1b213f
CH
688 trace_xfs_buf_read(bp, flags, _RET_IP_);
689
ce8e922c 690 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 691 XFS_STATS_INC(xb_get_read);
1813dd64 692 bp->b_ops = ops;
5d765b97 693 _xfs_buf_read(bp, flags);
ce8e922c 694 } else if (flags & XBF_ASYNC) {
1da177e4
LT
695 /*
696 * Read ahead call which is already satisfied,
697 * drop the buffer
698 */
a8acad70
DC
699 xfs_buf_relse(bp);
700 return NULL;
1da177e4 701 } else {
1da177e4 702 /* We do not want read in the flags */
ce8e922c 703 bp->b_flags &= ~XBF_READ;
1da177e4
LT
704 }
705 }
706
ce8e922c 707 return bp;
1da177e4
LT
708}
709
1da177e4 710/*
ce8e922c
NS
711 * If we are not low on memory then do the readahead in a deadlock
712 * safe manner.
1da177e4
LT
713 */
714void
6dde2707
DC
715xfs_buf_readahead_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
c3f8fc73 718 int nmaps,
1813dd64 719 const struct xfs_buf_ops *ops)
1da177e4 720{
0e6e847f 721 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
722 return;
723
6dde2707 724 xfs_buf_read_map(target, map, nmaps,
1813dd64 725 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
726}
727
5adc94c2
DC
728/*
729 * Read an uncached buffer from disk. Allocates and returns a locked
730 * buffer containing the disk contents or nothing.
731 */
732struct xfs_buf *
733xfs_buf_read_uncached(
5adc94c2
DC
734 struct xfs_buftarg *target,
735 xfs_daddr_t daddr,
e70b73f8 736 size_t numblks,
c3f8fc73 737 int flags,
1813dd64 738 const struct xfs_buf_ops *ops)
5adc94c2 739{
eab4e633 740 struct xfs_buf *bp;
5adc94c2 741
e70b73f8 742 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
743 if (!bp)
744 return NULL;
745
746 /* set up the buffer for a read IO */
3e85c868
DC
747 ASSERT(bp->b_map_count == 1);
748 bp->b_bn = daddr;
749 bp->b_maps[0].bm_bn = daddr;
cbb7baab 750 bp->b_flags |= XBF_READ;
1813dd64 751 bp->b_ops = ops;
5adc94c2 752
e70b73f8 753 xfsbdstrat(target->bt_mount, bp);
eab4e633 754 xfs_buf_iowait(bp);
5adc94c2 755 return bp;
1da177e4
LT
756}
757
44396476
DC
758/*
759 * Return a buffer allocated as an empty buffer and associated to external
760 * memory via xfs_buf_associate_memory() back to it's empty state.
761 */
762void
763xfs_buf_set_empty(
764 struct xfs_buf *bp,
e70b73f8 765 size_t numblks)
44396476
DC
766{
767 if (bp->b_pages)
768 _xfs_buf_free_pages(bp);
769
770 bp->b_pages = NULL;
771 bp->b_page_count = 0;
772 bp->b_addr = NULL;
4e94b71b 773 bp->b_length = numblks;
aa0e8833 774 bp->b_io_length = numblks;
3e85c868
DC
775
776 ASSERT(bp->b_map_count == 1);
44396476 777 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
778 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
779 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
780}
781
1da177e4
LT
782static inline struct page *
783mem_to_page(
784 void *addr)
785{
9e2779fa 786 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
787 return virt_to_page(addr);
788 } else {
789 return vmalloc_to_page(addr);
790 }
791}
792
793int
ce8e922c
NS
794xfs_buf_associate_memory(
795 xfs_buf_t *bp,
1da177e4
LT
796 void *mem,
797 size_t len)
798{
799 int rval;
800 int i = 0;
d1afb678
LM
801 unsigned long pageaddr;
802 unsigned long offset;
803 size_t buflen;
1da177e4
LT
804 int page_count;
805
0e6e847f 806 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 807 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
808 buflen = PAGE_ALIGN(len + offset);
809 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
810
811 /* Free any previous set of page pointers */
ce8e922c
NS
812 if (bp->b_pages)
813 _xfs_buf_free_pages(bp);
1da177e4 814
ce8e922c
NS
815 bp->b_pages = NULL;
816 bp->b_addr = mem;
1da177e4 817
aa5c158e 818 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
819 if (rval)
820 return rval;
821
ce8e922c 822 bp->b_offset = offset;
d1afb678
LM
823
824 for (i = 0; i < bp->b_page_count; i++) {
825 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 826 pageaddr += PAGE_SIZE;
1da177e4 827 }
1da177e4 828
aa0e8833 829 bp->b_io_length = BTOBB(len);
4e94b71b 830 bp->b_length = BTOBB(buflen);
1da177e4
LT
831
832 return 0;
833}
834
835xfs_buf_t *
686865f7
DC
836xfs_buf_get_uncached(
837 struct xfs_buftarg *target,
e70b73f8 838 size_t numblks,
686865f7 839 int flags)
1da177e4 840{
e70b73f8 841 unsigned long page_count;
1fa40b01 842 int error, i;
3e85c868
DC
843 struct xfs_buf *bp;
844 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 845
3e85c868 846 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
847 if (unlikely(bp == NULL))
848 goto fail;
1da177e4 849
e70b73f8 850 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
851 error = _xfs_buf_get_pages(bp, page_count, 0);
852 if (error)
1da177e4
LT
853 goto fail_free_buf;
854
1fa40b01 855 for (i = 0; i < page_count; i++) {
686865f7 856 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
857 if (!bp->b_pages[i])
858 goto fail_free_mem;
1da177e4 859 }
1fa40b01 860 bp->b_flags |= _XBF_PAGES;
1da177e4 861
611c9946 862 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 863 if (unlikely(error)) {
4f10700a
DC
864 xfs_warn(target->bt_mount,
865 "%s: failed to map pages\n", __func__);
1da177e4 866 goto fail_free_mem;
1fa40b01 867 }
1da177e4 868
686865f7 869 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 870 return bp;
1fa40b01 871
1da177e4 872 fail_free_mem:
1fa40b01
CH
873 while (--i >= 0)
874 __free_page(bp->b_pages[i]);
ca165b88 875 _xfs_buf_free_pages(bp);
1da177e4 876 fail_free_buf:
3e85c868 877 xfs_buf_free_maps(bp);
4347b9d7 878 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
879 fail:
880 return NULL;
881}
882
883/*
1da177e4
LT
884 * Increment reference count on buffer, to hold the buffer concurrently
885 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
886 * Must hold the buffer already to call this function.
887 */
888void
ce8e922c
NS
889xfs_buf_hold(
890 xfs_buf_t *bp)
1da177e4 891{
0b1b213f 892 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 893 atomic_inc(&bp->b_hold);
1da177e4
LT
894}
895
896/*
ce8e922c
NS
897 * Releases a hold on the specified buffer. If the
898 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
899 */
900void
ce8e922c
NS
901xfs_buf_rele(
902 xfs_buf_t *bp)
1da177e4 903{
74f75a0c 904 struct xfs_perag *pag = bp->b_pag;
1da177e4 905
0b1b213f 906 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 907
74f75a0c 908 if (!pag) {
430cbeb8 909 ASSERT(list_empty(&bp->b_lru));
74f75a0c 910 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
911 if (atomic_dec_and_test(&bp->b_hold))
912 xfs_buf_free(bp);
913 return;
914 }
915
74f75a0c 916 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 917
3790689f 918 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 919 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 920 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
921 atomic_read(&bp->b_lru_ref)) {
922 xfs_buf_lru_add(bp);
923 spin_unlock(&pag->pag_buf_lock);
1da177e4 924 } else {
430cbeb8 925 xfs_buf_lru_del(bp);
43ff2122 926 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
927 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
928 spin_unlock(&pag->pag_buf_lock);
929 xfs_perag_put(pag);
ce8e922c 930 xfs_buf_free(bp);
1da177e4
LT
931 }
932 }
933}
934
935
936/*
0e6e847f 937 * Lock a buffer object, if it is not already locked.
90810b9e
DC
938 *
939 * If we come across a stale, pinned, locked buffer, we know that we are
940 * being asked to lock a buffer that has been reallocated. Because it is
941 * pinned, we know that the log has not been pushed to disk and hence it
942 * will still be locked. Rather than continuing to have trylock attempts
943 * fail until someone else pushes the log, push it ourselves before
944 * returning. This means that the xfsaild will not get stuck trying
945 * to push on stale inode buffers.
1da177e4
LT
946 */
947int
0c842ad4
CH
948xfs_buf_trylock(
949 struct xfs_buf *bp)
1da177e4
LT
950{
951 int locked;
952
ce8e922c 953 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 954 if (locked)
ce8e922c 955 XB_SET_OWNER(bp);
0b1b213f 956
0c842ad4
CH
957 trace_xfs_buf_trylock(bp, _RET_IP_);
958 return locked;
1da177e4 959}
1da177e4
LT
960
961/*
0e6e847f 962 * Lock a buffer object.
ed3b4d6c
DC
963 *
964 * If we come across a stale, pinned, locked buffer, we know that we
965 * are being asked to lock a buffer that has been reallocated. Because
966 * it is pinned, we know that the log has not been pushed to disk and
967 * hence it will still be locked. Rather than sleeping until someone
968 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 969 */
ce8e922c
NS
970void
971xfs_buf_lock(
0c842ad4 972 struct xfs_buf *bp)
1da177e4 973{
0b1b213f
CH
974 trace_xfs_buf_lock(bp, _RET_IP_);
975
ed3b4d6c 976 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 977 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
978 down(&bp->b_sema);
979 XB_SET_OWNER(bp);
0b1b213f
CH
980
981 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
982}
983
1da177e4 984void
ce8e922c 985xfs_buf_unlock(
0c842ad4 986 struct xfs_buf *bp)
1da177e4 987{
ce8e922c
NS
988 XB_CLEAR_OWNER(bp);
989 up(&bp->b_sema);
0b1b213f
CH
990
991 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
992}
993
ce8e922c
NS
994STATIC void
995xfs_buf_wait_unpin(
996 xfs_buf_t *bp)
1da177e4
LT
997{
998 DECLARE_WAITQUEUE (wait, current);
999
ce8e922c 1000 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1001 return;
1002
ce8e922c 1003 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1004 for (;;) {
1005 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1006 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1007 break;
7eaceacc 1008 io_schedule();
1da177e4 1009 }
ce8e922c 1010 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1011 set_current_state(TASK_RUNNING);
1012}
1013
1014/*
1015 * Buffer Utility Routines
1016 */
1017
1da177e4 1018STATIC void
ce8e922c 1019xfs_buf_iodone_work(
c4028958 1020 struct work_struct *work)
1da177e4 1021{
1813dd64 1022 struct xfs_buf *bp =
c4028958 1023 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
1024 bool read = !!(bp->b_flags & XBF_READ);
1025
1026 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8
DC
1027
1028 /* only validate buffers that were read without errors */
1029 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1813dd64 1030 bp->b_ops->verify_read(bp);
1da177e4 1031
80f6c29d 1032 if (bp->b_iodone)
ce8e922c
NS
1033 (*(bp->b_iodone))(bp);
1034 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1035 xfs_buf_relse(bp);
1813dd64
DC
1036 else {
1037 ASSERT(read && bp->b_ops);
1038 complete(&bp->b_iowait);
1039 }
1da177e4
LT
1040}
1041
1042void
ce8e922c 1043xfs_buf_ioend(
1813dd64
DC
1044 struct xfs_buf *bp,
1045 int schedule)
1da177e4 1046{
1813dd64
DC
1047 bool read = !!(bp->b_flags & XBF_READ);
1048
0b1b213f
CH
1049 trace_xfs_buf_iodone(bp, _RET_IP_);
1050
ce8e922c
NS
1051 if (bp->b_error == 0)
1052 bp->b_flags |= XBF_DONE;
1da177e4 1053
1813dd64 1054 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1055 if (schedule) {
c4028958 1056 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1057 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1058 } else {
c4028958 1059 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1060 }
1061 } else {
1813dd64 1062 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1063 complete(&bp->b_iowait);
1da177e4
LT
1064 }
1065}
1066
1da177e4 1067void
ce8e922c
NS
1068xfs_buf_ioerror(
1069 xfs_buf_t *bp,
1070 int error)
1da177e4
LT
1071{
1072 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1073 bp->b_error = (unsigned short)error;
0b1b213f 1074 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1075}
1076
901796af
CH
1077void
1078xfs_buf_ioerror_alert(
1079 struct xfs_buf *bp,
1080 const char *func)
1081{
1082 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1083"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1084 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1085}
1086
4e23471a
CH
1087/*
1088 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1089 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1090 * so that the proper iodone callbacks get called.
1091 */
1092STATIC int
1093xfs_bioerror(
1094 xfs_buf_t *bp)
1095{
1096#ifdef XFSERRORDEBUG
1097 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1098#endif
1099
1100 /*
1101 * No need to wait until the buffer is unpinned, we aren't flushing it.
1102 */
5a52c2a5 1103 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1104
1105 /*
1a1a3e97 1106 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1107 */
1108 XFS_BUF_UNREAD(bp);
4e23471a 1109 XFS_BUF_UNDONE(bp);
c867cb61 1110 xfs_buf_stale(bp);
4e23471a 1111
1a1a3e97 1112 xfs_buf_ioend(bp, 0);
4e23471a
CH
1113
1114 return EIO;
1115}
1116
1117/*
1118 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1119 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1120 * This is meant for userdata errors; metadata bufs come with
1121 * iodone functions attached, so that we can track down errors.
1122 */
1123STATIC int
1124xfs_bioerror_relse(
1125 struct xfs_buf *bp)
1126{
ed43233b 1127 int64_t fl = bp->b_flags;
4e23471a
CH
1128 /*
1129 * No need to wait until the buffer is unpinned.
1130 * We aren't flushing it.
1131 *
1132 * chunkhold expects B_DONE to be set, whether
1133 * we actually finish the I/O or not. We don't want to
1134 * change that interface.
1135 */
1136 XFS_BUF_UNREAD(bp);
4e23471a 1137 XFS_BUF_DONE(bp);
c867cb61 1138 xfs_buf_stale(bp);
cb669ca5 1139 bp->b_iodone = NULL;
0cadda1c 1140 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1141 /*
1142 * Mark b_error and B_ERROR _both_.
1143 * Lot's of chunkcache code assumes that.
1144 * There's no reason to mark error for
1145 * ASYNC buffers.
1146 */
5a52c2a5 1147 xfs_buf_ioerror(bp, EIO);
5fde0326 1148 complete(&bp->b_iowait);
4e23471a
CH
1149 } else {
1150 xfs_buf_relse(bp);
1151 }
1152
1153 return EIO;
1154}
1155
a2dcf5df 1156STATIC int
4e23471a
CH
1157xfs_bdstrat_cb(
1158 struct xfs_buf *bp)
1159{
ebad861b 1160 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1161 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1162 /*
1163 * Metadata write that didn't get logged but
1164 * written delayed anyway. These aren't associated
1165 * with a transaction, and can be ignored.
1166 */
1167 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1168 return xfs_bioerror_relse(bp);
1169 else
1170 return xfs_bioerror(bp);
1171 }
1172
1173 xfs_buf_iorequest(bp);
1174 return 0;
1175}
1176
a2dcf5df
CH
1177int
1178xfs_bwrite(
1179 struct xfs_buf *bp)
1180{
1181 int error;
1182
1183 ASSERT(xfs_buf_islocked(bp));
1184
1185 bp->b_flags |= XBF_WRITE;
1186 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1187
1188 xfs_bdstrat_cb(bp);
1189
1190 error = xfs_buf_iowait(bp);
1191 if (error) {
1192 xfs_force_shutdown(bp->b_target->bt_mount,
1193 SHUTDOWN_META_IO_ERROR);
1194 }
1195 return error;
1196}
1197
4e23471a
CH
1198/*
1199 * Wrapper around bdstrat so that we can stop data from going to disk in case
1200 * we are shutting down the filesystem. Typically user data goes thru this
1201 * path; one of the exceptions is the superblock.
1202 */
1203void
1204xfsbdstrat(
1205 struct xfs_mount *mp,
1206 struct xfs_buf *bp)
1207{
1208 if (XFS_FORCED_SHUTDOWN(mp)) {
1209 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1210 xfs_bioerror_relse(bp);
1211 return;
1212 }
1213
1214 xfs_buf_iorequest(bp);
1215}
1216
b8f82a4a 1217STATIC void
ce8e922c
NS
1218_xfs_buf_ioend(
1219 xfs_buf_t *bp,
1da177e4
LT
1220 int schedule)
1221{
0e6e847f 1222 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1223 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1224}
1225
782e3b3b 1226STATIC void
ce8e922c 1227xfs_buf_bio_end_io(
1da177e4 1228 struct bio *bio,
1da177e4
LT
1229 int error)
1230{
ce8e922c 1231 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1232
37eb17e6
DC
1233 /*
1234 * don't overwrite existing errors - otherwise we can lose errors on
1235 * buffers that require multiple bios to complete.
1236 */
1237 if (!bp->b_error)
1238 xfs_buf_ioerror(bp, -error);
1da177e4 1239
37eb17e6 1240 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1241 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1242
ce8e922c 1243 _xfs_buf_ioend(bp, 1);
1da177e4 1244 bio_put(bio);
1da177e4
LT
1245}
1246
3e85c868
DC
1247static void
1248xfs_buf_ioapply_map(
1249 struct xfs_buf *bp,
1250 int map,
1251 int *buf_offset,
1252 int *count,
1253 int rw)
1da177e4 1254{
3e85c868
DC
1255 int page_index;
1256 int total_nr_pages = bp->b_page_count;
1257 int nr_pages;
1258 struct bio *bio;
1259 sector_t sector = bp->b_maps[map].bm_bn;
1260 int size;
1261 int offset;
1da177e4 1262
ce8e922c 1263 total_nr_pages = bp->b_page_count;
1da177e4 1264
3e85c868
DC
1265 /* skip the pages in the buffer before the start offset */
1266 page_index = 0;
1267 offset = *buf_offset;
1268 while (offset >= PAGE_SIZE) {
1269 page_index++;
1270 offset -= PAGE_SIZE;
f538d4da
CH
1271 }
1272
3e85c868
DC
1273 /*
1274 * Limit the IO size to the length of the current vector, and update the
1275 * remaining IO count for the next time around.
1276 */
1277 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1278 *count -= size;
1279 *buf_offset += size;
34951f5c 1280
1da177e4 1281next_chunk:
ce8e922c 1282 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1283 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1284 if (nr_pages > total_nr_pages)
1285 nr_pages = total_nr_pages;
1286
1287 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1288 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1289 bio->bi_sector = sector;
ce8e922c
NS
1290 bio->bi_end_io = xfs_buf_bio_end_io;
1291 bio->bi_private = bp;
1da177e4 1292
0e6e847f 1293
3e85c868 1294 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1295 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1296
1297 if (nbytes > size)
1298 nbytes = size;
1299
3e85c868
DC
1300 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1301 offset);
ce8e922c 1302 if (rbytes < nbytes)
1da177e4
LT
1303 break;
1304
1305 offset = 0;
aa0e8833 1306 sector += BTOBB(nbytes);
1da177e4
LT
1307 size -= nbytes;
1308 total_nr_pages--;
1309 }
1310
1da177e4 1311 if (likely(bio->bi_size)) {
73c77e2c
JB
1312 if (xfs_buf_is_vmapped(bp)) {
1313 flush_kernel_vmap_range(bp->b_addr,
1314 xfs_buf_vmap_len(bp));
1315 }
1da177e4
LT
1316 submit_bio(rw, bio);
1317 if (size)
1318 goto next_chunk;
1319 } else {
37eb17e6
DC
1320 /*
1321 * This is guaranteed not to be the last io reference count
1322 * because the caller (xfs_buf_iorequest) holds a count itself.
1323 */
1324 atomic_dec(&bp->b_io_remaining);
ce8e922c 1325 xfs_buf_ioerror(bp, EIO);
ec53d1db 1326 bio_put(bio);
1da177e4 1327 }
3e85c868
DC
1328
1329}
1330
1331STATIC void
1332_xfs_buf_ioapply(
1333 struct xfs_buf *bp)
1334{
1335 struct blk_plug plug;
1336 int rw;
1337 int offset;
1338 int size;
1339 int i;
1340
c163f9a1
DC
1341 /*
1342 * Make sure we capture only current IO errors rather than stale errors
1343 * left over from previous use of the buffer (e.g. failed readahead).
1344 */
1345 bp->b_error = 0;
1346
3e85c868
DC
1347 if (bp->b_flags & XBF_WRITE) {
1348 if (bp->b_flags & XBF_SYNCIO)
1349 rw = WRITE_SYNC;
1350 else
1351 rw = WRITE;
1352 if (bp->b_flags & XBF_FUA)
1353 rw |= REQ_FUA;
1354 if (bp->b_flags & XBF_FLUSH)
1355 rw |= REQ_FLUSH;
1813dd64
DC
1356
1357 /*
1358 * Run the write verifier callback function if it exists. If
1359 * this function fails it will mark the buffer with an error and
1360 * the IO should not be dispatched.
1361 */
1362 if (bp->b_ops) {
1363 bp->b_ops->verify_write(bp);
1364 if (bp->b_error) {
1365 xfs_force_shutdown(bp->b_target->bt_mount,
1366 SHUTDOWN_CORRUPT_INCORE);
1367 return;
1368 }
1369 }
3e85c868
DC
1370 } else if (bp->b_flags & XBF_READ_AHEAD) {
1371 rw = READA;
1372 } else {
1373 rw = READ;
1374 }
1375
1376 /* we only use the buffer cache for meta-data */
1377 rw |= REQ_META;
1378
1379 /*
1380 * Walk all the vectors issuing IO on them. Set up the initial offset
1381 * into the buffer and the desired IO size before we start -
1382 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1383 * subsequent call.
1384 */
1385 offset = bp->b_offset;
1386 size = BBTOB(bp->b_io_length);
1387 blk_start_plug(&plug);
1388 for (i = 0; i < bp->b_map_count; i++) {
1389 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1390 if (bp->b_error)
1391 break;
1392 if (size <= 0)
1393 break; /* all done */
1394 }
1395 blk_finish_plug(&plug);
1da177e4
LT
1396}
1397
0e95f19a 1398void
ce8e922c
NS
1399xfs_buf_iorequest(
1400 xfs_buf_t *bp)
1da177e4 1401{
0b1b213f 1402 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1403
43ff2122 1404 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1405
375ec69d 1406 if (bp->b_flags & XBF_WRITE)
ce8e922c 1407 xfs_buf_wait_unpin(bp);
ce8e922c 1408 xfs_buf_hold(bp);
1da177e4
LT
1409
1410 /* Set the count to 1 initially, this will stop an I/O
1411 * completion callout which happens before we have started
ce8e922c 1412 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1413 */
ce8e922c
NS
1414 atomic_set(&bp->b_io_remaining, 1);
1415 _xfs_buf_ioapply(bp);
08023d6d 1416 _xfs_buf_ioend(bp, 1);
1da177e4 1417
ce8e922c 1418 xfs_buf_rele(bp);
1da177e4
LT
1419}
1420
1421/*
0e95f19a
DC
1422 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1423 * no I/O is pending or there is already a pending error on the buffer. It
1424 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1425 */
1426int
ce8e922c
NS
1427xfs_buf_iowait(
1428 xfs_buf_t *bp)
1da177e4 1429{
0b1b213f
CH
1430 trace_xfs_buf_iowait(bp, _RET_IP_);
1431
0e95f19a
DC
1432 if (!bp->b_error)
1433 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1434
1435 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1436 return bp->b_error;
1da177e4
LT
1437}
1438
ce8e922c
NS
1439xfs_caddr_t
1440xfs_buf_offset(
1441 xfs_buf_t *bp,
1da177e4
LT
1442 size_t offset)
1443{
1444 struct page *page;
1445
611c9946 1446 if (bp->b_addr)
62926044 1447 return bp->b_addr + offset;
1da177e4 1448
ce8e922c 1449 offset += bp->b_offset;
0e6e847f
DC
1450 page = bp->b_pages[offset >> PAGE_SHIFT];
1451 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1452}
1453
1454/*
1da177e4
LT
1455 * Move data into or out of a buffer.
1456 */
1457void
ce8e922c
NS
1458xfs_buf_iomove(
1459 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1460 size_t boff, /* starting buffer offset */
1461 size_t bsize, /* length to copy */
b9c48649 1462 void *data, /* data address */
ce8e922c 1463 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1464{
795cac72 1465 size_t bend;
1da177e4
LT
1466
1467 bend = boff + bsize;
1468 while (boff < bend) {
795cac72
DC
1469 struct page *page;
1470 int page_index, page_offset, csize;
1471
1472 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1473 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1474 page = bp->b_pages[page_index];
1475 csize = min_t(size_t, PAGE_SIZE - page_offset,
1476 BBTOB(bp->b_io_length) - boff);
1da177e4 1477
795cac72 1478 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1479
1480 switch (mode) {
ce8e922c 1481 case XBRW_ZERO:
795cac72 1482 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1483 break;
ce8e922c 1484 case XBRW_READ:
795cac72 1485 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1486 break;
ce8e922c 1487 case XBRW_WRITE:
795cac72 1488 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1489 }
1490
1491 boff += csize;
1492 data += csize;
1493 }
1494}
1495
1496/*
ce8e922c 1497 * Handling of buffer targets (buftargs).
1da177e4
LT
1498 */
1499
1500/*
430cbeb8
DC
1501 * Wait for any bufs with callbacks that have been submitted but have not yet
1502 * returned. These buffers will have an elevated hold count, so wait on those
1503 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1504 */
1505void
1506xfs_wait_buftarg(
74f75a0c 1507 struct xfs_buftarg *btp)
1da177e4 1508{
430cbeb8
DC
1509 struct xfs_buf *bp;
1510
1511restart:
1512 spin_lock(&btp->bt_lru_lock);
1513 while (!list_empty(&btp->bt_lru)) {
1514 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1515 if (atomic_read(&bp->b_hold) > 1) {
3b19034d
DC
1516 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1517 list_move_tail(&bp->b_lru, &btp->bt_lru);
430cbeb8 1518 spin_unlock(&btp->bt_lru_lock);
26af6552 1519 delay(100);
430cbeb8 1520 goto restart;
1da177e4 1521 }
430cbeb8 1522 /*
90802ed9 1523 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1524 * ignored in xfs_buf_rele().
1525 */
1526 atomic_set(&bp->b_lru_ref, 0);
1527 spin_unlock(&btp->bt_lru_lock);
1528 xfs_buf_rele(bp);
1529 spin_lock(&btp->bt_lru_lock);
1da177e4 1530 }
430cbeb8 1531 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1532}
1533
ff57ab21
DC
1534int
1535xfs_buftarg_shrink(
1536 struct shrinker *shrink,
1495f230 1537 struct shrink_control *sc)
a6867a68 1538{
ff57ab21
DC
1539 struct xfs_buftarg *btp = container_of(shrink,
1540 struct xfs_buftarg, bt_shrinker);
430cbeb8 1541 struct xfs_buf *bp;
1495f230 1542 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1543 LIST_HEAD(dispose);
1544
1545 if (!nr_to_scan)
1546 return btp->bt_lru_nr;
1547
1548 spin_lock(&btp->bt_lru_lock);
1549 while (!list_empty(&btp->bt_lru)) {
1550 if (nr_to_scan-- <= 0)
1551 break;
1552
1553 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1554
1555 /*
1556 * Decrement the b_lru_ref count unless the value is already
1557 * zero. If the value is already zero, we need to reclaim the
1558 * buffer, otherwise it gets another trip through the LRU.
1559 */
1560 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1561 list_move_tail(&bp->b_lru, &btp->bt_lru);
1562 continue;
1563 }
1564
1565 /*
1566 * remove the buffer from the LRU now to avoid needing another
1567 * lock round trip inside xfs_buf_rele().
1568 */
1569 list_move(&bp->b_lru, &dispose);
1570 btp->bt_lru_nr--;
6fb8a90a 1571 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
ff57ab21 1572 }
430cbeb8
DC
1573 spin_unlock(&btp->bt_lru_lock);
1574
1575 while (!list_empty(&dispose)) {
1576 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1577 list_del_init(&bp->b_lru);
1578 xfs_buf_rele(bp);
1579 }
1580
1581 return btp->bt_lru_nr;
a6867a68
DC
1582}
1583
1da177e4
LT
1584void
1585xfs_free_buftarg(
b7963133
CH
1586 struct xfs_mount *mp,
1587 struct xfs_buftarg *btp)
1da177e4 1588{
ff57ab21
DC
1589 unregister_shrinker(&btp->bt_shrinker);
1590
b7963133
CH
1591 if (mp->m_flags & XFS_MOUNT_BARRIER)
1592 xfs_blkdev_issue_flush(btp);
a6867a68 1593
f0e2d93c 1594 kmem_free(btp);
1da177e4
LT
1595}
1596
1da177e4
LT
1597STATIC int
1598xfs_setsize_buftarg_flags(
1599 xfs_buftarg_t *btp,
1600 unsigned int blocksize,
1601 unsigned int sectorsize,
1602 int verbose)
1603{
ce8e922c
NS
1604 btp->bt_bsize = blocksize;
1605 btp->bt_sshift = ffs(sectorsize) - 1;
1606 btp->bt_smask = sectorsize - 1;
1da177e4 1607
ce8e922c 1608 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1609 char name[BDEVNAME_SIZE];
1610
1611 bdevname(btp->bt_bdev, name);
1612
4f10700a
DC
1613 xfs_warn(btp->bt_mount,
1614 "Cannot set_blocksize to %u on device %s\n",
02b102df 1615 sectorsize, name);
1da177e4
LT
1616 return EINVAL;
1617 }
1618
1da177e4
LT
1619 return 0;
1620}
1621
1622/*
ce8e922c
NS
1623 * When allocating the initial buffer target we have not yet
1624 * read in the superblock, so don't know what sized sectors
1625 * are being used is at this early stage. Play safe.
1626 */
1da177e4
LT
1627STATIC int
1628xfs_setsize_buftarg_early(
1629 xfs_buftarg_t *btp,
1630 struct block_device *bdev)
1631{
1632 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1633 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1634}
1635
1636int
1637xfs_setsize_buftarg(
1638 xfs_buftarg_t *btp,
1639 unsigned int blocksize,
1640 unsigned int sectorsize)
1641{
1642 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1643}
1644
1da177e4
LT
1645xfs_buftarg_t *
1646xfs_alloc_buftarg(
ebad861b 1647 struct xfs_mount *mp,
1da177e4 1648 struct block_device *bdev,
e2a07812
JE
1649 int external,
1650 const char *fsname)
1da177e4
LT
1651{
1652 xfs_buftarg_t *btp;
1653
b17cb364 1654 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1655
ebad861b 1656 btp->bt_mount = mp;
ce8e922c
NS
1657 btp->bt_dev = bdev->bd_dev;
1658 btp->bt_bdev = bdev;
0e6e847f
DC
1659 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1660 if (!btp->bt_bdi)
1661 goto error;
1662
430cbeb8
DC
1663 INIT_LIST_HEAD(&btp->bt_lru);
1664 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1665 if (xfs_setsize_buftarg_early(btp, bdev))
1666 goto error;
ff57ab21
DC
1667 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1668 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1669 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1670 return btp;
1671
1672error:
f0e2d93c 1673 kmem_free(btp);
1da177e4
LT
1674 return NULL;
1675}
1676
1da177e4 1677/*
43ff2122
CH
1678 * Add a buffer to the delayed write list.
1679 *
1680 * This queues a buffer for writeout if it hasn't already been. Note that
1681 * neither this routine nor the buffer list submission functions perform
1682 * any internal synchronization. It is expected that the lists are thread-local
1683 * to the callers.
1684 *
1685 * Returns true if we queued up the buffer, or false if it already had
1686 * been on the buffer list.
1da177e4 1687 */
43ff2122 1688bool
ce8e922c 1689xfs_buf_delwri_queue(
43ff2122
CH
1690 struct xfs_buf *bp,
1691 struct list_head *list)
1da177e4 1692{
43ff2122 1693 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1694 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1695
43ff2122
CH
1696 /*
1697 * If the buffer is already marked delwri it already is queued up
1698 * by someone else for imediate writeout. Just ignore it in that
1699 * case.
1700 */
1701 if (bp->b_flags & _XBF_DELWRI_Q) {
1702 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1703 return false;
1da177e4 1704 }
1da177e4 1705
43ff2122 1706 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1707
1708 /*
43ff2122
CH
1709 * If a buffer gets written out synchronously or marked stale while it
1710 * is on a delwri list we lazily remove it. To do this, the other party
1711 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1712 * It remains referenced and on the list. In a rare corner case it
1713 * might get readded to a delwri list after the synchronous writeout, in
1714 * which case we need just need to re-add the flag here.
d808f617 1715 */
43ff2122
CH
1716 bp->b_flags |= _XBF_DELWRI_Q;
1717 if (list_empty(&bp->b_list)) {
1718 atomic_inc(&bp->b_hold);
1719 list_add_tail(&bp->b_list, list);
585e6d88 1720 }
585e6d88 1721
43ff2122 1722 return true;
585e6d88
DC
1723}
1724
089716aa
DC
1725/*
1726 * Compare function is more complex than it needs to be because
1727 * the return value is only 32 bits and we are doing comparisons
1728 * on 64 bit values
1729 */
1730static int
1731xfs_buf_cmp(
1732 void *priv,
1733 struct list_head *a,
1734 struct list_head *b)
1735{
1736 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1737 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1738 xfs_daddr_t diff;
1739
f4b42421 1740 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1741 if (diff < 0)
1742 return -1;
1743 if (diff > 0)
1744 return 1;
1745 return 0;
1746}
1747
43ff2122
CH
1748static int
1749__xfs_buf_delwri_submit(
1750 struct list_head *buffer_list,
1751 struct list_head *io_list,
1752 bool wait)
1da177e4 1753{
43ff2122
CH
1754 struct blk_plug plug;
1755 struct xfs_buf *bp, *n;
1756 int pinned = 0;
1757
1758 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1759 if (!wait) {
1760 if (xfs_buf_ispinned(bp)) {
1761 pinned++;
1762 continue;
1763 }
1764 if (!xfs_buf_trylock(bp))
1765 continue;
1766 } else {
1767 xfs_buf_lock(bp);
1768 }
978c7b2f 1769
43ff2122
CH
1770 /*
1771 * Someone else might have written the buffer synchronously or
1772 * marked it stale in the meantime. In that case only the
1773 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1774 * reference and remove it from the list here.
1775 */
1776 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1777 list_del_init(&bp->b_list);
1778 xfs_buf_relse(bp);
1779 continue;
1780 }
c9c12971 1781
43ff2122
CH
1782 list_move_tail(&bp->b_list, io_list);
1783 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1784 }
1da177e4 1785
43ff2122 1786 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1787
43ff2122
CH
1788 blk_start_plug(&plug);
1789 list_for_each_entry_safe(bp, n, io_list, b_list) {
1790 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1791 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1792
43ff2122
CH
1793 if (!wait) {
1794 bp->b_flags |= XBF_ASYNC;
ce8e922c 1795 list_del_init(&bp->b_list);
1da177e4 1796 }
43ff2122
CH
1797 xfs_bdstrat_cb(bp);
1798 }
1799 blk_finish_plug(&plug);
1da177e4 1800
43ff2122 1801 return pinned;
1da177e4
LT
1802}
1803
1804/*
43ff2122
CH
1805 * Write out a buffer list asynchronously.
1806 *
1807 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1808 * out and not wait for I/O completion on any of the buffers. This interface
1809 * is only safely useable for callers that can track I/O completion by higher
1810 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1811 * function.
1da177e4
LT
1812 */
1813int
43ff2122
CH
1814xfs_buf_delwri_submit_nowait(
1815 struct list_head *buffer_list)
1da177e4 1816{
43ff2122
CH
1817 LIST_HEAD (io_list);
1818 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1819}
1da177e4 1820
43ff2122
CH
1821/*
1822 * Write out a buffer list synchronously.
1823 *
1824 * This will take the @buffer_list, write all buffers out and wait for I/O
1825 * completion on all of the buffers. @buffer_list is consumed by the function,
1826 * so callers must have some other way of tracking buffers if they require such
1827 * functionality.
1828 */
1829int
1830xfs_buf_delwri_submit(
1831 struct list_head *buffer_list)
1832{
1833 LIST_HEAD (io_list);
1834 int error = 0, error2;
1835 struct xfs_buf *bp;
1da177e4 1836
43ff2122 1837 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1838
43ff2122
CH
1839 /* Wait for IO to complete. */
1840 while (!list_empty(&io_list)) {
1841 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1842
089716aa 1843 list_del_init(&bp->b_list);
43ff2122
CH
1844 error2 = xfs_buf_iowait(bp);
1845 xfs_buf_relse(bp);
1846 if (!error)
1847 error = error2;
1da177e4
LT
1848 }
1849
43ff2122 1850 return error;
1da177e4
LT
1851}
1852
04d8b284 1853int __init
ce8e922c 1854xfs_buf_init(void)
1da177e4 1855{
8758280f
NS
1856 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1857 KM_ZONE_HWALIGN, NULL);
ce8e922c 1858 if (!xfs_buf_zone)
0b1b213f 1859 goto out;
04d8b284 1860
51749e47 1861 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1862 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1863 if (!xfslogd_workqueue)
04d8b284 1864 goto out_free_buf_zone;
1da177e4 1865
23ea4032 1866 return 0;
1da177e4 1867
23ea4032 1868 out_free_buf_zone:
ce8e922c 1869 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1870 out:
8758280f 1871 return -ENOMEM;
1da177e4
LT
1872}
1873
1da177e4 1874void
ce8e922c 1875xfs_buf_terminate(void)
1da177e4 1876{
04d8b284 1877 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1878 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1879}