audit: fix mq_open and mq_unlink to add the MQ root as a hidden parent audit_names...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
1da177e4
LT
88struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91};
92
93#define AUDIT_AUX_IPCPERM 0
94
e54dc243
AG
95/* Number of target pids per aux struct. */
96#define AUDIT_AUX_PIDS 16
97
473ae30b
AV
98struct audit_aux_data_execve {
99 struct audit_aux_data d;
100 int argc;
101 int envc;
bdf4c48a 102 struct mm_struct *mm;
473ae30b
AV
103};
104
e54dc243
AG
105struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 108 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 109 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 111 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
113 int pid_count;
114};
115
3fc689e9
EP
116struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122};
123
e68b75a0
EP
124struct audit_aux_data_capset {
125 struct audit_aux_data d;
126 pid_t pid;
127 struct audit_cap_data cap;
128};
129
74c3cbe3
AV
130struct audit_tree_refs {
131 struct audit_tree_refs *next;
132 struct audit_chunk *c[31];
133};
134
55669bfa
AV
135static inline int open_arg(int flags, int mask)
136{
137 int n = ACC_MODE(flags);
138 if (flags & (O_TRUNC | O_CREAT))
139 n |= AUDIT_PERM_WRITE;
140 return n & mask;
141}
142
143static int audit_match_perm(struct audit_context *ctx, int mask)
144{
c4bacefb 145 unsigned n;
1a61c88d 146 if (unlikely(!ctx))
147 return 0;
c4bacefb 148 n = ctx->major;
dbda4c0b 149
55669bfa
AV
150 switch (audit_classify_syscall(ctx->arch, n)) {
151 case 0: /* native */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR, n))
160 return 1;
161 return 0;
162 case 1: /* 32bit on biarch */
163 if ((mask & AUDIT_PERM_WRITE) &&
164 audit_match_class(AUDIT_CLASS_WRITE_32, n))
165 return 1;
166 if ((mask & AUDIT_PERM_READ) &&
167 audit_match_class(AUDIT_CLASS_READ_32, n))
168 return 1;
169 if ((mask & AUDIT_PERM_ATTR) &&
170 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
171 return 1;
172 return 0;
173 case 2: /* open */
174 return mask & ACC_MODE(ctx->argv[1]);
175 case 3: /* openat */
176 return mask & ACC_MODE(ctx->argv[2]);
177 case 4: /* socketcall */
178 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
179 case 5: /* execve */
180 return mask & AUDIT_PERM_EXEC;
181 default:
182 return 0;
183 }
184}
185
5ef30ee5 186static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 187{
5195d8e2 188 struct audit_names *n;
5ef30ee5 189 umode_t mode = (umode_t)val;
1a61c88d 190
191 if (unlikely(!ctx))
192 return 0;
193
5195d8e2
EP
194 list_for_each_entry(n, &ctx->names_list, list) {
195 if ((n->ino != -1) &&
196 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
197 return 1;
198 }
5195d8e2 199
5ef30ee5 200 return 0;
8b67dca9
AV
201}
202
74c3cbe3
AV
203/*
204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
205 * ->first_trees points to its beginning, ->trees - to the current end of data.
206 * ->tree_count is the number of free entries in array pointed to by ->trees.
207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
209 * it's going to remain 1-element for almost any setup) until we free context itself.
210 * References in it _are_ dropped - at the same time we free/drop aux stuff.
211 */
212
213#ifdef CONFIG_AUDIT_TREE
679173b7
EP
214static void audit_set_auditable(struct audit_context *ctx)
215{
216 if (!ctx->prio) {
217 ctx->prio = 1;
218 ctx->current_state = AUDIT_RECORD_CONTEXT;
219 }
220}
221
74c3cbe3
AV
222static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223{
224 struct audit_tree_refs *p = ctx->trees;
225 int left = ctx->tree_count;
226 if (likely(left)) {
227 p->c[--left] = chunk;
228 ctx->tree_count = left;
229 return 1;
230 }
231 if (!p)
232 return 0;
233 p = p->next;
234 if (p) {
235 p->c[30] = chunk;
236 ctx->trees = p;
237 ctx->tree_count = 30;
238 return 1;
239 }
240 return 0;
241}
242
243static int grow_tree_refs(struct audit_context *ctx)
244{
245 struct audit_tree_refs *p = ctx->trees;
246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247 if (!ctx->trees) {
248 ctx->trees = p;
249 return 0;
250 }
251 if (p)
252 p->next = ctx->trees;
253 else
254 ctx->first_trees = ctx->trees;
255 ctx->tree_count = 31;
256 return 1;
257}
258#endif
259
260static void unroll_tree_refs(struct audit_context *ctx,
261 struct audit_tree_refs *p, int count)
262{
263#ifdef CONFIG_AUDIT_TREE
264 struct audit_tree_refs *q;
265 int n;
266 if (!p) {
267 /* we started with empty chain */
268 p = ctx->first_trees;
269 count = 31;
270 /* if the very first allocation has failed, nothing to do */
271 if (!p)
272 return;
273 }
274 n = count;
275 for (q = p; q != ctx->trees; q = q->next, n = 31) {
276 while (n--) {
277 audit_put_chunk(q->c[n]);
278 q->c[n] = NULL;
279 }
280 }
281 while (n-- > ctx->tree_count) {
282 audit_put_chunk(q->c[n]);
283 q->c[n] = NULL;
284 }
285 ctx->trees = p;
286 ctx->tree_count = count;
287#endif
288}
289
290static void free_tree_refs(struct audit_context *ctx)
291{
292 struct audit_tree_refs *p, *q;
293 for (p = ctx->first_trees; p; p = q) {
294 q = p->next;
295 kfree(p);
296 }
297}
298
299static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
300{
301#ifdef CONFIG_AUDIT_TREE
302 struct audit_tree_refs *p;
303 int n;
304 if (!tree)
305 return 0;
306 /* full ones */
307 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
308 for (n = 0; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312 /* partial */
313 if (p) {
314 for (n = ctx->tree_count; n < 31; n++)
315 if (audit_tree_match(p->c[n], tree))
316 return 1;
317 }
318#endif
319 return 0;
320}
321
ca57ec0f
EB
322static int audit_compare_uid(kuid_t uid,
323 struct audit_names *name,
324 struct audit_field *f,
325 struct audit_context *ctx)
b34b0393
EP
326{
327 struct audit_names *n;
b34b0393 328 int rc;
ca57ec0f 329
b34b0393 330 if (name) {
ca57ec0f 331 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
332 if (rc)
333 return rc;
334 }
ca57ec0f 335
b34b0393
EP
336 if (ctx) {
337 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
338 rc = audit_uid_comparator(uid, f->op, n->uid);
339 if (rc)
340 return rc;
341 }
342 }
343 return 0;
344}
b34b0393 345
ca57ec0f
EB
346static int audit_compare_gid(kgid_t gid,
347 struct audit_names *name,
348 struct audit_field *f,
349 struct audit_context *ctx)
350{
351 struct audit_names *n;
352 int rc;
353
354 if (name) {
355 rc = audit_gid_comparator(gid, f->op, name->gid);
356 if (rc)
357 return rc;
358 }
359
360 if (ctx) {
361 list_for_each_entry(n, &ctx->names_list, list) {
362 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
363 if (rc)
364 return rc;
365 }
366 }
367 return 0;
368}
369
02d86a56
EP
370static int audit_field_compare(struct task_struct *tsk,
371 const struct cred *cred,
372 struct audit_field *f,
373 struct audit_context *ctx,
374 struct audit_names *name)
375{
02d86a56 376 switch (f->val) {
4a6633ed 377 /* process to file object comparisons */
02d86a56 378 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 379 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 380 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 381 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 382 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 383 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 384 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 385 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 386 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 387 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 388 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 389 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 390 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 391 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 393 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 395 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
396 /* uid comparisons */
397 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 398 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 399 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 400 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 401 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 402 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 403 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 404 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
405 /* auid comparisons */
406 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 407 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 408 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 409 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 410 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 411 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
412 /* euid comparisons */
413 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 414 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 415 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 416 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
417 /* suid comparisons */
418 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 419 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
420 /* gid comparisons */
421 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 422 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 423 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 424 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 425 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 426 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
427 /* egid comparisons */
428 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 429 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 430 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 431 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
432 /* sgid comparison */
433 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 434 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
435 default:
436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
437 return 0;
438 }
439 return 0;
440}
441
f368c07d 442/* Determine if any context name data matches a rule's watch data */
1da177e4 443/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
444 * otherwise.
445 *
446 * If task_creation is true, this is an explicit indication that we are
447 * filtering a task rule at task creation time. This and tsk == current are
448 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 */
1da177e4 450static int audit_filter_rules(struct task_struct *tsk,
93315ed6 451 struct audit_krule *rule,
1da177e4 452 struct audit_context *ctx,
f368c07d 453 struct audit_names *name,
f5629883
TJ
454 enum audit_state *state,
455 bool task_creation)
1da177e4 456{
f5629883 457 const struct cred *cred;
5195d8e2 458 int i, need_sid = 1;
3dc7e315
DG
459 u32 sid;
460
f5629883
TJ
461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462
1da177e4 463 for (i = 0; i < rule->field_count; i++) {
93315ed6 464 struct audit_field *f = &rule->fields[i];
5195d8e2 465 struct audit_names *n;
1da177e4
LT
466 int result = 0;
467
93315ed6 468 switch (f->type) {
1da177e4 469 case AUDIT_PID:
93315ed6 470 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 471 break;
3c66251e 472 case AUDIT_PPID:
419c58f1
AV
473 if (ctx) {
474 if (!ctx->ppid)
475 ctx->ppid = sys_getppid();
3c66251e 476 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 477 }
3c66251e 478 break;
1da177e4 479 case AUDIT_UID:
ca57ec0f 480 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
481 break;
482 case AUDIT_EUID:
ca57ec0f 483 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
484 break;
485 case AUDIT_SUID:
ca57ec0f 486 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
487 break;
488 case AUDIT_FSUID:
ca57ec0f 489 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
490 break;
491 case AUDIT_GID:
ca57ec0f 492 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_group_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_group_p(f->gid);
499 }
1da177e4
LT
500 break;
501 case AUDIT_EGID:
ca57ec0f 502 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
503 if (f->op == Audit_equal) {
504 if (!result)
505 result = in_egroup_p(f->gid);
506 } else if (f->op == Audit_not_equal) {
507 if (result)
508 result = !in_egroup_p(f->gid);
509 }
1da177e4
LT
510 break;
511 case AUDIT_SGID:
ca57ec0f 512 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
513 break;
514 case AUDIT_FSGID:
ca57ec0f 515 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
516 break;
517 case AUDIT_PERS:
93315ed6 518 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 519 break;
2fd6f58b 520 case AUDIT_ARCH:
9f8dbe9c 521 if (ctx)
93315ed6 522 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 523 break;
1da177e4
LT
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
93315ed6 527 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
528 break;
529 case AUDIT_SUCCESS:
b01f2cc1 530 if (ctx && ctx->return_valid) {
93315ed6
AG
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 533 else
93315ed6 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 535 }
1da177e4
LT
536 break;
537 case AUDIT_DEVMAJOR:
16c174bd
EP
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
5195d8e2 543 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
16c174bd
EP
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
5195d8e2 558 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
f368c07d 568 if (name)
9c937dcc 569 result = (name->ino == f->val);
f368c07d 570 else if (ctx) {
5195d8e2
EP
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
efaffd6e
EP
579 case AUDIT_OBJ_UID:
580 if (name) {
ca57ec0f 581 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
54d3218b
EP
591 case AUDIT_OBJ_GID:
592 if (name) {
ca57ec0f 593 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
f368c07d 603 case AUDIT_WATCH:
ae7b8f41
EP
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 606 break;
74c3cbe3
AV
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
1da177e4
LT
611 case AUDIT_LOGINUID:
612 result = 0;
613 if (ctx)
ca57ec0f 614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 615 break;
780a7654
EB
616 case AUDIT_LOGINUID_SET:
617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 break;
3a6b9f85
DG
619 case AUDIT_SUBJ_USER:
620 case AUDIT_SUBJ_ROLE:
621 case AUDIT_SUBJ_TYPE:
622 case AUDIT_SUBJ_SEN:
623 case AUDIT_SUBJ_CLR:
3dc7e315
DG
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
628 logged upon error */
04305e4a 629 if (f->lsm_rule) {
2ad312d2 630 if (need_sid) {
2a862b32 631 security_task_getsecid(tsk, &sid);
2ad312d2
SG
632 need_sid = 0;
633 }
d7a96f3a 634 result = security_audit_rule_match(sid, f->type,
3dc7e315 635 f->op,
04305e4a 636 f->lsm_rule,
3dc7e315 637 ctx);
2ad312d2 638 }
3dc7e315 639 break;
6e5a2d1d
DG
640 case AUDIT_OBJ_USER:
641 case AUDIT_OBJ_ROLE:
642 case AUDIT_OBJ_TYPE:
643 case AUDIT_OBJ_LEV_LOW:
644 case AUDIT_OBJ_LEV_HIGH:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 also applies here */
04305e4a 647 if (f->lsm_rule) {
6e5a2d1d
DG
648 /* Find files that match */
649 if (name) {
d7a96f3a 650 result = security_audit_rule_match(
6e5a2d1d 651 name->osid, f->type, f->op,
04305e4a 652 f->lsm_rule, ctx);
6e5a2d1d 653 } else if (ctx) {
5195d8e2
EP
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(n->osid, f->type,
656 f->op, f->lsm_rule,
657 ctx)) {
6e5a2d1d
DG
658 ++result;
659 break;
660 }
661 }
662 }
663 /* Find ipc objects that match */
a33e6751
AV
664 if (!ctx || ctx->type != AUDIT_IPC)
665 break;
666 if (security_audit_rule_match(ctx->ipc.osid,
667 f->type, f->op,
668 f->lsm_rule, ctx))
669 ++result;
6e5a2d1d
DG
670 }
671 break;
1da177e4
LT
672 case AUDIT_ARG0:
673 case AUDIT_ARG1:
674 case AUDIT_ARG2:
675 case AUDIT_ARG3:
676 if (ctx)
93315ed6 677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 678 break;
5adc8a6a
AG
679 case AUDIT_FILTERKEY:
680 /* ignore this field for filtering */
681 result = 1;
682 break;
55669bfa
AV
683 case AUDIT_PERM:
684 result = audit_match_perm(ctx, f->val);
685 break;
8b67dca9
AV
686 case AUDIT_FILETYPE:
687 result = audit_match_filetype(ctx, f->val);
688 break;
02d86a56
EP
689 case AUDIT_FIELD_COMPARE:
690 result = audit_field_compare(tsk, cred, f, ctx, name);
691 break;
1da177e4 692 }
f5629883 693 if (!result)
1da177e4
LT
694 return 0;
695 }
0590b933
AV
696
697 if (ctx) {
698 if (rule->prio <= ctx->prio)
699 return 0;
700 if (rule->filterkey) {
701 kfree(ctx->filterkey);
702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 }
704 ctx->prio = rule->prio;
705 }
1da177e4
LT
706 switch (rule->action) {
707 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
708 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
709 }
710 return 1;
711}
712
713/* At process creation time, we can determine if system-call auditing is
714 * completely disabled for this task. Since we only have the task
715 * structure at this point, we can only check uid and gid.
716 */
e048e02c 717static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
718{
719 struct audit_entry *e;
720 enum audit_state state;
721
722 rcu_read_lock();
0f45aa18 723 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
724 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
725 &state, true)) {
e048e02c
AV
726 if (state == AUDIT_RECORD_CONTEXT)
727 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
728 rcu_read_unlock();
729 return state;
730 }
731 }
732 rcu_read_unlock();
733 return AUDIT_BUILD_CONTEXT;
734}
735
736/* At syscall entry and exit time, this filter is called if the
737 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 738 * also not high enough that we already know we have to write an audit
b0dd25a8 739 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
740 */
741static enum audit_state audit_filter_syscall(struct task_struct *tsk,
742 struct audit_context *ctx,
743 struct list_head *list)
744{
745 struct audit_entry *e;
c3896495 746 enum audit_state state;
1da177e4 747
351bb722 748 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
749 return AUDIT_DISABLED;
750
1da177e4 751 rcu_read_lock();
c3896495 752 if (!list_empty(list)) {
b63862f4
DK
753 int word = AUDIT_WORD(ctx->major);
754 int bit = AUDIT_BIT(ctx->major);
755
756 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
757 if ((e->rule.mask[word] & bit) == bit &&
758 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 759 &state, false)) {
f368c07d 760 rcu_read_unlock();
0590b933 761 ctx->current_state = state;
f368c07d
AG
762 return state;
763 }
764 }
765 }
766 rcu_read_unlock();
767 return AUDIT_BUILD_CONTEXT;
768}
769
5195d8e2
EP
770/*
771 * Given an audit_name check the inode hash table to see if they match.
772 * Called holding the rcu read lock to protect the use of audit_inode_hash
773 */
774static int audit_filter_inode_name(struct task_struct *tsk,
775 struct audit_names *n,
776 struct audit_context *ctx) {
777 int word, bit;
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
782
783 word = AUDIT_WORD(ctx->major);
784 bit = AUDIT_BIT(ctx->major);
785
786 if (list_empty(list))
787 return 0;
788
789 list_for_each_entry_rcu(e, list, list) {
790 if ((e->rule.mask[word] & bit) == bit &&
791 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
792 ctx->current_state = state;
793 return 1;
794 }
795 }
796
797 return 0;
798}
799
800/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 801 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 802 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
803 * Regarding audit_state, same rules apply as for audit_filter_syscall().
804 */
0590b933 805void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 806{
5195d8e2 807 struct audit_names *n;
f368c07d
AG
808
809 if (audit_pid && tsk->tgid == audit_pid)
0590b933 810 return;
f368c07d
AG
811
812 rcu_read_lock();
f368c07d 813
5195d8e2
EP
814 list_for_each_entry(n, &ctx->names_list, list) {
815 if (audit_filter_inode_name(tsk, n, ctx))
816 break;
0f45aa18
DW
817 }
818 rcu_read_unlock();
0f45aa18
DW
819}
820
1da177e4
LT
821static inline struct audit_context *audit_get_context(struct task_struct *tsk,
822 int return_valid,
6d208da8 823 long return_code)
1da177e4
LT
824{
825 struct audit_context *context = tsk->audit_context;
826
56179a6e 827 if (!context)
1da177e4
LT
828 return NULL;
829 context->return_valid = return_valid;
f701b75e
EP
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
1da177e4 848
0590b933
AV
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
1da177e4
LT
852 }
853
1da177e4
LT
854 tsk->audit_context = NULL;
855 return context;
856}
857
858static inline void audit_free_names(struct audit_context *context)
859{
5195d8e2 860 struct audit_names *n, *next;
1da177e4
LT
861
862#if AUDIT_DEBUG == 2
0590b933 863 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
864 int i = 0;
865
73241ccc 866 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
867 " name_count=%d put_count=%d"
868 " ino_count=%d [NOT freeing]\n",
73241ccc 869 __FILE__, __LINE__,
1da177e4
LT
870 context->serial, context->major, context->in_syscall,
871 context->name_count, context->put_count,
872 context->ino_count);
5195d8e2 873 list_for_each_entry(n, &context->names_list, list) {
34c474de 874 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
91a27b2a 875 n->name, n->name->name ?: "(null)");
8c8570fb 876 }
1da177e4
LT
877 dump_stack();
878 return;
879 }
880#endif
881#if AUDIT_DEBUG
882 context->put_count = 0;
883 context->ino_count = 0;
884#endif
885
5195d8e2
EP
886 list_for_each_entry_safe(n, next, &context->names_list, list) {
887 list_del(&n->list);
888 if (n->name && n->name_put)
65ada7bc 889 final_putname(n->name);
5195d8e2
EP
890 if (n->should_free)
891 kfree(n);
8c8570fb 892 }
1da177e4 893 context->name_count = 0;
44707fdf
JB
894 path_put(&context->pwd);
895 context->pwd.dentry = NULL;
896 context->pwd.mnt = NULL;
1da177e4
LT
897}
898
899static inline void audit_free_aux(struct audit_context *context)
900{
901 struct audit_aux_data *aux;
902
903 while ((aux = context->aux)) {
904 context->aux = aux->next;
905 kfree(aux);
906 }
e54dc243
AG
907 while ((aux = context->aux_pids)) {
908 context->aux_pids = aux->next;
909 kfree(aux);
910 }
1da177e4
LT
911}
912
1da177e4
LT
913static inline struct audit_context *audit_alloc_context(enum audit_state state)
914{
915 struct audit_context *context;
916
17c6ee70
RM
917 context = kzalloc(sizeof(*context), GFP_KERNEL);
918 if (!context)
1da177e4 919 return NULL;
e2c5adc8
AM
920 context->state = state;
921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 922 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 923 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
924 return context;
925}
926
b0dd25a8
RD
927/**
928 * audit_alloc - allocate an audit context block for a task
929 * @tsk: task
930 *
931 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
932 * if necessary. Doing so turns on system call auditing for the
933 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
934 * needed.
935 */
1da177e4
LT
936int audit_alloc(struct task_struct *tsk)
937{
938 struct audit_context *context;
939 enum audit_state state;
e048e02c 940 char *key = NULL;
1da177e4 941
b593d384 942 if (likely(!audit_ever_enabled))
1da177e4
LT
943 return 0; /* Return if not auditing. */
944
e048e02c 945 state = audit_filter_task(tsk, &key);
56179a6e 946 if (state == AUDIT_DISABLED)
1da177e4
LT
947 return 0;
948
949 if (!(context = audit_alloc_context(state))) {
e048e02c 950 kfree(key);
1da177e4
LT
951 audit_log_lost("out of memory in audit_alloc");
952 return -ENOMEM;
953 }
e048e02c 954 context->filterkey = key;
1da177e4 955
1da177e4
LT
956 tsk->audit_context = context;
957 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
958 return 0;
959}
960
961static inline void audit_free_context(struct audit_context *context)
962{
c62d773a
AV
963 audit_free_names(context);
964 unroll_tree_refs(context, NULL, 0);
965 free_tree_refs(context);
966 audit_free_aux(context);
967 kfree(context->filterkey);
968 kfree(context->sockaddr);
969 kfree(context);
1da177e4
LT
970}
971
e54dc243 972static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 973 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 974 u32 sid, char *comm)
e54dc243
AG
975{
976 struct audit_buffer *ab;
2a862b32 977 char *ctx = NULL;
e54dc243
AG
978 u32 len;
979 int rc = 0;
980
981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
982 if (!ab)
6246ccab 983 return rc;
e54dc243 984
e1760bd5
EB
985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
986 from_kuid(&init_user_ns, auid),
cca080d9 987 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
988 if (sid) {
989 if (security_secid_to_secctx(sid, &ctx, &len)) {
990 audit_log_format(ab, " obj=(none)");
991 rc = 1;
992 } else {
993 audit_log_format(ab, " obj=%s", ctx);
994 security_release_secctx(ctx, len);
995 }
2a862b32 996 }
c2a7780e
EP
997 audit_log_format(ab, " ocomm=");
998 audit_log_untrustedstring(ab, comm);
e54dc243 999 audit_log_end(ab);
e54dc243
AG
1000
1001 return rc;
1002}
1003
de6bbd1d
EP
1004/*
1005 * to_send and len_sent accounting are very loose estimates. We aren't
1006 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1007 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1008 *
1009 * why snprintf? an int is up to 12 digits long. if we just assumed when
1010 * logging that a[%d]= was going to be 16 characters long we would be wasting
1011 * space in every audit message. In one 7500 byte message we can log up to
1012 * about 1000 min size arguments. That comes down to about 50% waste of space
1013 * if we didn't do the snprintf to find out how long arg_num_len was.
1014 */
1015static int audit_log_single_execve_arg(struct audit_context *context,
1016 struct audit_buffer **ab,
1017 int arg_num,
1018 size_t *len_sent,
1019 const char __user *p,
1020 char *buf)
bdf4c48a 1021{
de6bbd1d
EP
1022 char arg_num_len_buf[12];
1023 const char __user *tmp_p = p;
b87ce6e4
EP
1024 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1025 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1026 size_t len, len_left, to_send;
1027 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1028 unsigned int i, has_cntl = 0, too_long = 0;
1029 int ret;
1030
1031 /* strnlen_user includes the null we don't want to send */
1032 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1033
de6bbd1d
EP
1034 /*
1035 * We just created this mm, if we can't find the strings
1036 * we just copied into it something is _very_ wrong. Similar
1037 * for strings that are too long, we should not have created
1038 * any.
1039 */
b0abcfc1 1040 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1041 WARN_ON(1);
1042 send_sig(SIGKILL, current, 0);
b0abcfc1 1043 return -1;
de6bbd1d 1044 }
040b3a2d 1045
de6bbd1d
EP
1046 /* walk the whole argument looking for non-ascii chars */
1047 do {
1048 if (len_left > MAX_EXECVE_AUDIT_LEN)
1049 to_send = MAX_EXECVE_AUDIT_LEN;
1050 else
1051 to_send = len_left;
1052 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1053 /*
de6bbd1d
EP
1054 * There is no reason for this copy to be short. We just
1055 * copied them here, and the mm hasn't been exposed to user-
1056 * space yet.
bdf4c48a 1057 */
de6bbd1d 1058 if (ret) {
bdf4c48a
PZ
1059 WARN_ON(1);
1060 send_sig(SIGKILL, current, 0);
b0abcfc1 1061 return -1;
bdf4c48a 1062 }
de6bbd1d
EP
1063 buf[to_send] = '\0';
1064 has_cntl = audit_string_contains_control(buf, to_send);
1065 if (has_cntl) {
1066 /*
1067 * hex messages get logged as 2 bytes, so we can only
1068 * send half as much in each message
1069 */
1070 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1071 break;
1072 }
de6bbd1d
EP
1073 len_left -= to_send;
1074 tmp_p += to_send;
1075 } while (len_left > 0);
1076
1077 len_left = len;
1078
1079 if (len > max_execve_audit_len)
1080 too_long = 1;
1081
1082 /* rewalk the argument actually logging the message */
1083 for (i = 0; len_left > 0; i++) {
1084 int room_left;
1085
1086 if (len_left > max_execve_audit_len)
1087 to_send = max_execve_audit_len;
1088 else
1089 to_send = len_left;
1090
1091 /* do we have space left to send this argument in this ab? */
1092 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1093 if (has_cntl)
1094 room_left -= (to_send * 2);
1095 else
1096 room_left -= to_send;
1097 if (room_left < 0) {
1098 *len_sent = 0;
1099 audit_log_end(*ab);
1100 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1101 if (!*ab)
1102 return 0;
1103 }
bdf4c48a 1104
bdf4c48a 1105 /*
de6bbd1d
EP
1106 * first record needs to say how long the original string was
1107 * so we can be sure nothing was lost.
1108 */
1109 if ((i == 0) && (too_long))
ca96a895 1110 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1111 has_cntl ? 2*len : len);
1112
1113 /*
1114 * normally arguments are small enough to fit and we already
1115 * filled buf above when we checked for control characters
1116 * so don't bother with another copy_from_user
bdf4c48a 1117 */
de6bbd1d
EP
1118 if (len >= max_execve_audit_len)
1119 ret = copy_from_user(buf, p, to_send);
1120 else
1121 ret = 0;
040b3a2d 1122 if (ret) {
bdf4c48a
PZ
1123 WARN_ON(1);
1124 send_sig(SIGKILL, current, 0);
b0abcfc1 1125 return -1;
bdf4c48a 1126 }
de6bbd1d
EP
1127 buf[to_send] = '\0';
1128
1129 /* actually log it */
ca96a895 1130 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1131 if (too_long)
1132 audit_log_format(*ab, "[%d]", i);
1133 audit_log_format(*ab, "=");
1134 if (has_cntl)
b556f8ad 1135 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1136 else
9d960985 1137 audit_log_string(*ab, buf);
de6bbd1d
EP
1138
1139 p += to_send;
1140 len_left -= to_send;
1141 *len_sent += arg_num_len;
1142 if (has_cntl)
1143 *len_sent += to_send * 2;
1144 else
1145 *len_sent += to_send;
1146 }
1147 /* include the null we didn't log */
1148 return len + 1;
1149}
1150
1151static void audit_log_execve_info(struct audit_context *context,
1152 struct audit_buffer **ab,
1153 struct audit_aux_data_execve *axi)
1154{
5afb8a3f
XW
1155 int i, len;
1156 size_t len_sent = 0;
de6bbd1d
EP
1157 const char __user *p;
1158 char *buf;
bdf4c48a 1159
de6bbd1d
EP
1160 if (axi->mm != current->mm)
1161 return; /* execve failed, no additional info */
1162
1163 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1164
ca96a895 1165 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1166
1167 /*
1168 * we need some kernel buffer to hold the userspace args. Just
1169 * allocate one big one rather than allocating one of the right size
1170 * for every single argument inside audit_log_single_execve_arg()
1171 * should be <8k allocation so should be pretty safe.
1172 */
1173 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1174 if (!buf) {
1175 audit_panic("out of memory for argv string\n");
1176 return;
bdf4c48a 1177 }
de6bbd1d
EP
1178
1179 for (i = 0; i < axi->argc; i++) {
1180 len = audit_log_single_execve_arg(context, ab, i,
1181 &len_sent, p, buf);
1182 if (len <= 0)
1183 break;
1184 p += len;
1185 }
1186 kfree(buf);
bdf4c48a
PZ
1187}
1188
a33e6751 1189static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1190{
1191 struct audit_buffer *ab;
1192 int i;
1193
1194 ab = audit_log_start(context, GFP_KERNEL, context->type);
1195 if (!ab)
1196 return;
1197
1198 switch (context->type) {
1199 case AUDIT_SOCKETCALL: {
1200 int nargs = context->socketcall.nargs;
1201 audit_log_format(ab, "nargs=%d", nargs);
1202 for (i = 0; i < nargs; i++)
1203 audit_log_format(ab, " a%d=%lx", i,
1204 context->socketcall.args[i]);
1205 break; }
a33e6751
AV
1206 case AUDIT_IPC: {
1207 u32 osid = context->ipc.osid;
1208
2570ebbd 1209 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1210 from_kuid(&init_user_ns, context->ipc.uid),
1211 from_kgid(&init_user_ns, context->ipc.gid),
1212 context->ipc.mode);
a33e6751
AV
1213 if (osid) {
1214 char *ctx = NULL;
1215 u32 len;
1216 if (security_secid_to_secctx(osid, &ctx, &len)) {
1217 audit_log_format(ab, " osid=%u", osid);
1218 *call_panic = 1;
1219 } else {
1220 audit_log_format(ab, " obj=%s", ctx);
1221 security_release_secctx(ctx, len);
1222 }
1223 }
e816f370
AV
1224 if (context->ipc.has_perm) {
1225 audit_log_end(ab);
1226 ab = audit_log_start(context, GFP_KERNEL,
1227 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1228 if (unlikely(!ab))
1229 return;
e816f370 1230 audit_log_format(ab,
2570ebbd 1231 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1232 context->ipc.qbytes,
1233 context->ipc.perm_uid,
1234 context->ipc.perm_gid,
1235 context->ipc.perm_mode);
e816f370 1236 }
a33e6751 1237 break; }
564f6993
AV
1238 case AUDIT_MQ_OPEN: {
1239 audit_log_format(ab,
df0a4283 1240 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1241 "mq_msgsize=%ld mq_curmsgs=%ld",
1242 context->mq_open.oflag, context->mq_open.mode,
1243 context->mq_open.attr.mq_flags,
1244 context->mq_open.attr.mq_maxmsg,
1245 context->mq_open.attr.mq_msgsize,
1246 context->mq_open.attr.mq_curmsgs);
1247 break; }
c32c8af4
AV
1248 case AUDIT_MQ_SENDRECV: {
1249 audit_log_format(ab,
1250 "mqdes=%d msg_len=%zd msg_prio=%u "
1251 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1252 context->mq_sendrecv.mqdes,
1253 context->mq_sendrecv.msg_len,
1254 context->mq_sendrecv.msg_prio,
1255 context->mq_sendrecv.abs_timeout.tv_sec,
1256 context->mq_sendrecv.abs_timeout.tv_nsec);
1257 break; }
20114f71
AV
1258 case AUDIT_MQ_NOTIFY: {
1259 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1260 context->mq_notify.mqdes,
1261 context->mq_notify.sigev_signo);
1262 break; }
7392906e
AV
1263 case AUDIT_MQ_GETSETATTR: {
1264 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1265 audit_log_format(ab,
1266 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1267 "mq_curmsgs=%ld ",
1268 context->mq_getsetattr.mqdes,
1269 attr->mq_flags, attr->mq_maxmsg,
1270 attr->mq_msgsize, attr->mq_curmsgs);
1271 break; }
57f71a0a
AV
1272 case AUDIT_CAPSET: {
1273 audit_log_format(ab, "pid=%d", context->capset.pid);
1274 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1275 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1276 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1277 break; }
120a795d
AV
1278 case AUDIT_MMAP: {
1279 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280 context->mmap.flags);
1281 break; }
f3298dc4
AV
1282 }
1283 audit_log_end(ab);
1284}
1285
e495149b 1286static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1287{
9c7aa6aa 1288 int i, call_panic = 0;
1da177e4 1289 struct audit_buffer *ab;
7551ced3 1290 struct audit_aux_data *aux;
5195d8e2 1291 struct audit_names *n;
1da177e4 1292
e495149b 1293 /* tsk == current */
3f2792ff 1294 context->personality = tsk->personality;
e495149b
AV
1295
1296 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1297 if (!ab)
1298 return; /* audit_panic has been called */
bccf6ae0
DW
1299 audit_log_format(ab, "arch=%x syscall=%d",
1300 context->arch, context->major);
1da177e4
LT
1301 if (context->personality != PER_LINUX)
1302 audit_log_format(ab, " per=%lx", context->personality);
1303 if (context->return_valid)
9f8dbe9c 1304 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1305 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1306 context->return_code);
eb84a20e 1307
1da177e4 1308 audit_log_format(ab,
e23eb920
PM
1309 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1310 context->argv[0],
1311 context->argv[1],
1312 context->argv[2],
1313 context->argv[3],
1314 context->name_count);
eb84a20e 1315
e495149b 1316 audit_log_task_info(ab, tsk);
9d960985 1317 audit_log_key(ab, context->filterkey);
1da177e4 1318 audit_log_end(ab);
1da177e4 1319
7551ced3 1320 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1321
e495149b 1322 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1323 if (!ab)
1324 continue; /* audit_panic has been called */
1325
1da177e4 1326 switch (aux->type) {
20ca73bc 1327
473ae30b
AV
1328 case AUDIT_EXECVE: {
1329 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1330 audit_log_execve_info(context, &ab, axi);
473ae30b 1331 break; }
073115d6 1332
3fc689e9
EP
1333 case AUDIT_BPRM_FCAPS: {
1334 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1335 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1336 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1337 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1338 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1339 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1340 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1341 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1342 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1343 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1344 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1345 break; }
1346
1da177e4
LT
1347 }
1348 audit_log_end(ab);
1da177e4
LT
1349 }
1350
f3298dc4 1351 if (context->type)
a33e6751 1352 show_special(context, &call_panic);
f3298dc4 1353
157cf649
AV
1354 if (context->fds[0] >= 0) {
1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1356 if (ab) {
1357 audit_log_format(ab, "fd0=%d fd1=%d",
1358 context->fds[0], context->fds[1]);
1359 audit_log_end(ab);
1360 }
1361 }
1362
4f6b434f
AV
1363 if (context->sockaddr_len) {
1364 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1365 if (ab) {
1366 audit_log_format(ab, "saddr=");
1367 audit_log_n_hex(ab, (void *)context->sockaddr,
1368 context->sockaddr_len);
1369 audit_log_end(ab);
1370 }
1371 }
1372
e54dc243
AG
1373 for (aux = context->aux_pids; aux; aux = aux->next) {
1374 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1375
1376 for (i = 0; i < axs->pid_count; i++)
1377 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1378 axs->target_auid[i],
1379 axs->target_uid[i],
4746ec5b 1380 axs->target_sessionid[i],
c2a7780e
EP
1381 axs->target_sid[i],
1382 axs->target_comm[i]))
e54dc243 1383 call_panic = 1;
a5cb013d
AV
1384 }
1385
e54dc243
AG
1386 if (context->target_pid &&
1387 audit_log_pid_context(context, context->target_pid,
c2a7780e 1388 context->target_auid, context->target_uid,
4746ec5b 1389 context->target_sessionid,
c2a7780e 1390 context->target_sid, context->target_comm))
e54dc243
AG
1391 call_panic = 1;
1392
44707fdf 1393 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1394 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1395 if (ab) {
c158a35c 1396 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1397 audit_log_end(ab);
1398 }
1399 }
73241ccc 1400
5195d8e2 1401 i = 0;
24dccf86
JL
1402 list_for_each_entry(n, &context->names_list, list) {
1403 if (n->hidden)
1404 continue;
b24a30a7 1405 audit_log_name(context, n, NULL, i++, &call_panic);
24dccf86 1406 }
c0641f28
EP
1407
1408 /* Send end of event record to help user space know we are finished */
1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1410 if (ab)
1411 audit_log_end(ab);
9c7aa6aa
SG
1412 if (call_panic)
1413 audit_panic("error converting sid to string");
1da177e4
LT
1414}
1415
b0dd25a8
RD
1416/**
1417 * audit_free - free a per-task audit context
1418 * @tsk: task whose audit context block to free
1419 *
fa84cb93 1420 * Called from copy_process and do_exit
b0dd25a8 1421 */
a4ff8dba 1422void __audit_free(struct task_struct *tsk)
1da177e4
LT
1423{
1424 struct audit_context *context;
1425
1da177e4 1426 context = audit_get_context(tsk, 0, 0);
56179a6e 1427 if (!context)
1da177e4
LT
1428 return;
1429
1430 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1431 * function (e.g., exit_group), then free context block.
1432 * We use GFP_ATOMIC here because we might be doing this
f5561964 1433 * in the context of the idle thread */
e495149b 1434 /* that can happen only if we are called from do_exit() */
0590b933 1435 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1436 audit_log_exit(context, tsk);
916d7576
AV
1437 if (!list_empty(&context->killed_trees))
1438 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1439
1440 audit_free_context(context);
1441}
1442
b0dd25a8
RD
1443/**
1444 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1445 * @arch: architecture type
1446 * @major: major syscall type (function)
1447 * @a1: additional syscall register 1
1448 * @a2: additional syscall register 2
1449 * @a3: additional syscall register 3
1450 * @a4: additional syscall register 4
1451 *
1452 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1453 * audit context was created when the task was created and the state or
1454 * filters demand the audit context be built. If the state from the
1455 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1456 * then the record will be written at syscall exit time (otherwise, it
1457 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1458 * be written).
1459 */
b05d8447 1460void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1461 unsigned long a1, unsigned long a2,
1462 unsigned long a3, unsigned long a4)
1463{
5411be59 1464 struct task_struct *tsk = current;
1da177e4
LT
1465 struct audit_context *context = tsk->audit_context;
1466 enum audit_state state;
1467
56179a6e 1468 if (!context)
86a1c34a 1469 return;
1da177e4 1470
1da177e4
LT
1471 BUG_ON(context->in_syscall || context->name_count);
1472
1473 if (!audit_enabled)
1474 return;
1475
2fd6f58b 1476 context->arch = arch;
1da177e4
LT
1477 context->major = major;
1478 context->argv[0] = a1;
1479 context->argv[1] = a2;
1480 context->argv[2] = a3;
1481 context->argv[3] = a4;
1482
1483 state = context->state;
d51374ad 1484 context->dummy = !audit_n_rules;
0590b933
AV
1485 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1486 context->prio = 0;
0f45aa18 1487 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1488 }
56179a6e 1489 if (state == AUDIT_DISABLED)
1da177e4
LT
1490 return;
1491
ce625a80 1492 context->serial = 0;
1da177e4
LT
1493 context->ctime = CURRENT_TIME;
1494 context->in_syscall = 1;
0590b933 1495 context->current_state = state;
419c58f1 1496 context->ppid = 0;
1da177e4
LT
1497}
1498
b0dd25a8
RD
1499/**
1500 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1501 * @success: success value of the syscall
1502 * @return_code: return value of the syscall
b0dd25a8
RD
1503 *
1504 * Tear down after system call. If the audit context has been marked as
1da177e4 1505 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1506 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1507 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1508 * free the names stored from getname().
1509 */
d7e7528b 1510void __audit_syscall_exit(int success, long return_code)
1da177e4 1511{
5411be59 1512 struct task_struct *tsk = current;
1da177e4
LT
1513 struct audit_context *context;
1514
d7e7528b
EP
1515 if (success)
1516 success = AUDITSC_SUCCESS;
1517 else
1518 success = AUDITSC_FAILURE;
1da177e4 1519
d7e7528b 1520 context = audit_get_context(tsk, success, return_code);
56179a6e 1521 if (!context)
97e94c45 1522 return;
1da177e4 1523
0590b933 1524 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1525 audit_log_exit(context, tsk);
1da177e4
LT
1526
1527 context->in_syscall = 0;
0590b933 1528 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1529
916d7576
AV
1530 if (!list_empty(&context->killed_trees))
1531 audit_kill_trees(&context->killed_trees);
1532
c62d773a
AV
1533 audit_free_names(context);
1534 unroll_tree_refs(context, NULL, 0);
1535 audit_free_aux(context);
1536 context->aux = NULL;
1537 context->aux_pids = NULL;
1538 context->target_pid = 0;
1539 context->target_sid = 0;
1540 context->sockaddr_len = 0;
1541 context->type = 0;
1542 context->fds[0] = -1;
1543 if (context->state != AUDIT_RECORD_CONTEXT) {
1544 kfree(context->filterkey);
1545 context->filterkey = NULL;
1da177e4 1546 }
c62d773a 1547 tsk->audit_context = context;
1da177e4
LT
1548}
1549
74c3cbe3
AV
1550static inline void handle_one(const struct inode *inode)
1551{
1552#ifdef CONFIG_AUDIT_TREE
1553 struct audit_context *context;
1554 struct audit_tree_refs *p;
1555 struct audit_chunk *chunk;
1556 int count;
e61ce867 1557 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1558 return;
1559 context = current->audit_context;
1560 p = context->trees;
1561 count = context->tree_count;
1562 rcu_read_lock();
1563 chunk = audit_tree_lookup(inode);
1564 rcu_read_unlock();
1565 if (!chunk)
1566 return;
1567 if (likely(put_tree_ref(context, chunk)))
1568 return;
1569 if (unlikely(!grow_tree_refs(context))) {
436c405c 1570 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1571 audit_set_auditable(context);
1572 audit_put_chunk(chunk);
1573 unroll_tree_refs(context, p, count);
1574 return;
1575 }
1576 put_tree_ref(context, chunk);
1577#endif
1578}
1579
1580static void handle_path(const struct dentry *dentry)
1581{
1582#ifdef CONFIG_AUDIT_TREE
1583 struct audit_context *context;
1584 struct audit_tree_refs *p;
1585 const struct dentry *d, *parent;
1586 struct audit_chunk *drop;
1587 unsigned long seq;
1588 int count;
1589
1590 context = current->audit_context;
1591 p = context->trees;
1592 count = context->tree_count;
1593retry:
1594 drop = NULL;
1595 d = dentry;
1596 rcu_read_lock();
1597 seq = read_seqbegin(&rename_lock);
1598 for(;;) {
1599 struct inode *inode = d->d_inode;
e61ce867 1600 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1601 struct audit_chunk *chunk;
1602 chunk = audit_tree_lookup(inode);
1603 if (chunk) {
1604 if (unlikely(!put_tree_ref(context, chunk))) {
1605 drop = chunk;
1606 break;
1607 }
1608 }
1609 }
1610 parent = d->d_parent;
1611 if (parent == d)
1612 break;
1613 d = parent;
1614 }
1615 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1616 rcu_read_unlock();
1617 if (!drop) {
1618 /* just a race with rename */
1619 unroll_tree_refs(context, p, count);
1620 goto retry;
1621 }
1622 audit_put_chunk(drop);
1623 if (grow_tree_refs(context)) {
1624 /* OK, got more space */
1625 unroll_tree_refs(context, p, count);
1626 goto retry;
1627 }
1628 /* too bad */
1629 printk(KERN_WARNING
436c405c 1630 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1631 unroll_tree_refs(context, p, count);
1632 audit_set_auditable(context);
1633 return;
1634 }
1635 rcu_read_unlock();
1636#endif
1637}
1638
78e2e802
JL
1639static struct audit_names *audit_alloc_name(struct audit_context *context,
1640 unsigned char type)
5195d8e2
EP
1641{
1642 struct audit_names *aname;
1643
1644 if (context->name_count < AUDIT_NAMES) {
1645 aname = &context->preallocated_names[context->name_count];
1646 memset(aname, 0, sizeof(*aname));
1647 } else {
1648 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1649 if (!aname)
1650 return NULL;
1651 aname->should_free = true;
1652 }
1653
1654 aname->ino = (unsigned long)-1;
78e2e802 1655 aname->type = type;
5195d8e2
EP
1656 list_add_tail(&aname->list, &context->names_list);
1657
1658 context->name_count++;
1659#if AUDIT_DEBUG
1660 context->ino_count++;
1661#endif
1662 return aname;
1663}
1664
7ac86265
JL
1665/**
1666 * audit_reusename - fill out filename with info from existing entry
1667 * @uptr: userland ptr to pathname
1668 *
1669 * Search the audit_names list for the current audit context. If there is an
1670 * existing entry with a matching "uptr" then return the filename
1671 * associated with that audit_name. If not, return NULL.
1672 */
1673struct filename *
1674__audit_reusename(const __user char *uptr)
1675{
1676 struct audit_context *context = current->audit_context;
1677 struct audit_names *n;
1678
1679 list_for_each_entry(n, &context->names_list, list) {
1680 if (!n->name)
1681 continue;
1682 if (n->name->uptr == uptr)
1683 return n->name;
1684 }
1685 return NULL;
1686}
1687
b0dd25a8
RD
1688/**
1689 * audit_getname - add a name to the list
1690 * @name: name to add
1691 *
1692 * Add a name to the list of audit names for this context.
1693 * Called from fs/namei.c:getname().
1694 */
91a27b2a 1695void __audit_getname(struct filename *name)
1da177e4
LT
1696{
1697 struct audit_context *context = current->audit_context;
5195d8e2 1698 struct audit_names *n;
1da177e4 1699
1da177e4
LT
1700 if (!context->in_syscall) {
1701#if AUDIT_DEBUG == 2
1702 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1703 __FILE__, __LINE__, context->serial, name);
1704 dump_stack();
1705#endif
1706 return;
1707 }
5195d8e2 1708
91a27b2a
JL
1709#if AUDIT_DEBUG
1710 /* The filename _must_ have a populated ->name */
1711 BUG_ON(!name->name);
1712#endif
1713
78e2e802 1714 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1715 if (!n)
1716 return;
1717
1718 n->name = name;
1719 n->name_len = AUDIT_NAME_FULL;
1720 n->name_put = true;
adb5c247 1721 name->aname = n;
5195d8e2 1722
f7ad3c6b
MS
1723 if (!context->pwd.dentry)
1724 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1725}
1726
b0dd25a8
RD
1727/* audit_putname - intercept a putname request
1728 * @name: name to intercept and delay for putname
1729 *
1730 * If we have stored the name from getname in the audit context,
1731 * then we delay the putname until syscall exit.
1732 * Called from include/linux/fs.h:putname().
1733 */
91a27b2a 1734void audit_putname(struct filename *name)
1da177e4
LT
1735{
1736 struct audit_context *context = current->audit_context;
1737
1738 BUG_ON(!context);
1739 if (!context->in_syscall) {
1740#if AUDIT_DEBUG == 2
65ada7bc 1741 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1742 __FILE__, __LINE__, context->serial, name);
1743 if (context->name_count) {
5195d8e2 1744 struct audit_names *n;
34c474de 1745 int i = 0;
5195d8e2
EP
1746
1747 list_for_each_entry(n, &context->names_list, list)
34c474de 1748 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
91a27b2a 1749 n->name, n->name->name ?: "(null)");
5195d8e2 1750 }
1da177e4 1751#endif
65ada7bc 1752 final_putname(name);
1da177e4
LT
1753 }
1754#if AUDIT_DEBUG
1755 else {
1756 ++context->put_count;
1757 if (context->put_count > context->name_count) {
1758 printk(KERN_ERR "%s:%d(:%d): major=%d"
1759 " in_syscall=%d putname(%p) name_count=%d"
1760 " put_count=%d\n",
1761 __FILE__, __LINE__,
1762 context->serial, context->major,
91a27b2a
JL
1763 context->in_syscall, name->name,
1764 context->name_count, context->put_count);
1da177e4
LT
1765 dump_stack();
1766 }
1767 }
1768#endif
1769}
1770
b0dd25a8 1771/**
bfcec708 1772 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1773 * @name: name being audited
481968f4 1774 * @dentry: dentry being audited
24dccf86 1775 * @flags: attributes for this particular entry
b0dd25a8 1776 */
adb5c247 1777void __audit_inode(struct filename *name, const struct dentry *dentry,
24dccf86 1778 unsigned int flags)
1da177e4 1779{
1da177e4 1780 struct audit_context *context = current->audit_context;
74c3cbe3 1781 const struct inode *inode = dentry->d_inode;
5195d8e2 1782 struct audit_names *n;
24dccf86 1783 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1784
1785 if (!context->in_syscall)
1786 return;
5195d8e2 1787
9cec9d68
JL
1788 if (!name)
1789 goto out_alloc;
1790
adb5c247
JL
1791#if AUDIT_DEBUG
1792 /* The struct filename _must_ have a populated ->name */
1793 BUG_ON(!name->name);
1794#endif
1795 /*
1796 * If we have a pointer to an audit_names entry already, then we can
1797 * just use it directly if the type is correct.
1798 */
1799 n = name->aname;
1800 if (n) {
1801 if (parent) {
1802 if (n->type == AUDIT_TYPE_PARENT ||
1803 n->type == AUDIT_TYPE_UNKNOWN)
1804 goto out;
1805 } else {
1806 if (n->type != AUDIT_TYPE_PARENT)
1807 goto out;
1808 }
1809 }
1810
5195d8e2 1811 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1812 /* does the name pointer match? */
adb5c247 1813 if (!n->name || n->name->name != name->name)
bfcec708
JL
1814 continue;
1815
1816 /* match the correct record type */
1817 if (parent) {
1818 if (n->type == AUDIT_TYPE_PARENT ||
1819 n->type == AUDIT_TYPE_UNKNOWN)
1820 goto out;
1821 } else {
1822 if (n->type != AUDIT_TYPE_PARENT)
1823 goto out;
1824 }
1da177e4 1825 }
5195d8e2 1826
9cec9d68 1827out_alloc:
bfcec708
JL
1828 /* unable to find the name from a previous getname(). Allocate a new
1829 * anonymous entry.
1830 */
78e2e802 1831 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1832 if (!n)
1833 return;
1834out:
bfcec708 1835 if (parent) {
91a27b2a 1836 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1837 n->type = AUDIT_TYPE_PARENT;
24dccf86
JL
1838 if (flags & AUDIT_INODE_HIDDEN)
1839 n->hidden = true;
bfcec708
JL
1840 } else {
1841 n->name_len = AUDIT_NAME_FULL;
1842 n->type = AUDIT_TYPE_NORMAL;
1843 }
74c3cbe3 1844 handle_path(dentry);
5195d8e2 1845 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1846}
1847
1848/**
c43a25ab 1849 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1850 * @parent: inode of dentry parent
c43a25ab 1851 * @dentry: dentry being audited
4fa6b5ec 1852 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created. Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
c43a25ab 1862void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1863 const struct dentry *dentry,
1864 const unsigned char type)
73241ccc 1865{
73241ccc 1866 struct audit_context *context = current->audit_context;
5a190ae6 1867 const struct inode *inode = dentry->d_inode;
cccc6bba 1868 const char *dname = dentry->d_name.name;
4fa6b5ec 1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1870
1871 if (!context->in_syscall)
1872 return;
1873
74c3cbe3
AV
1874 if (inode)
1875 handle_one(inode);
73241ccc 1876
4fa6b5ec 1877 /* look for a parent entry first */
5195d8e2 1878 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1879 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1880 continue;
1881
1882 if (n->ino == parent->i_ino &&
91a27b2a 1883 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1884 found_parent = n;
1885 break;
f368c07d 1886 }
5712e88f 1887 }
73241ccc 1888
4fa6b5ec 1889 /* is there a matching child entry? */
5195d8e2 1890 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1891 /* can only match entries that have a name */
1892 if (!n->name || n->type != type)
1893 continue;
1894
1895 /* if we found a parent, make sure this one is a child of it */
1896 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1897 continue;
1898
91a27b2a
JL
1899 if (!strcmp(dname, n->name->name) ||
1900 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1901 found_parent ?
1902 found_parent->name_len :
e3d6b07b 1903 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1904 found_child = n;
1905 break;
5712e88f 1906 }
ac9910ce 1907 }
5712e88f 1908
5712e88f 1909 if (!found_parent) {
4fa6b5ec
JL
1910 /* create a new, "anonymous" parent record */
1911 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1912 if (!n)
ac9910ce 1913 return;
5195d8e2 1914 audit_copy_inode(n, NULL, parent);
73d3ec5a 1915 }
5712e88f
AG
1916
1917 if (!found_child) {
4fa6b5ec
JL
1918 found_child = audit_alloc_name(context, type);
1919 if (!found_child)
5712e88f 1920 return;
5712e88f
AG
1921
1922 /* Re-use the name belonging to the slot for a matching parent
1923 * directory. All names for this context are relinquished in
1924 * audit_free_names() */
1925 if (found_parent) {
4fa6b5ec
JL
1926 found_child->name = found_parent->name;
1927 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1928 /* don't call __putname() */
4fa6b5ec 1929 found_child->name_put = false;
5712e88f 1930 }
5712e88f 1931 }
4fa6b5ec
JL
1932 if (inode)
1933 audit_copy_inode(found_child, dentry, inode);
1934 else
1935 found_child->ino = (unsigned long)-1;
3e2efce0 1936}
50e437d5 1937EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1938
b0dd25a8
RD
1939/**
1940 * auditsc_get_stamp - get local copies of audit_context values
1941 * @ctx: audit_context for the task
1942 * @t: timespec to store time recorded in the audit_context
1943 * @serial: serial value that is recorded in the audit_context
1944 *
1945 * Also sets the context as auditable.
1946 */
48887e63 1947int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 1948 struct timespec *t, unsigned int *serial)
1da177e4 1949{
48887e63
AV
1950 if (!ctx->in_syscall)
1951 return 0;
ce625a80
DW
1952 if (!ctx->serial)
1953 ctx->serial = audit_serial();
bfb4496e
DW
1954 t->tv_sec = ctx->ctime.tv_sec;
1955 t->tv_nsec = ctx->ctime.tv_nsec;
1956 *serial = ctx->serial;
0590b933
AV
1957 if (!ctx->prio) {
1958 ctx->prio = 1;
1959 ctx->current_state = AUDIT_RECORD_CONTEXT;
1960 }
48887e63 1961 return 1;
1da177e4
LT
1962}
1963
4746ec5b
EP
1964/* global counter which is incremented every time something logs in */
1965static atomic_t session_id = ATOMIC_INIT(0);
1966
b0dd25a8 1967/**
0a300be6 1968 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
1969 * @loginuid: loginuid value
1970 *
1971 * Returns 0.
1972 *
1973 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1974 */
e1760bd5 1975int audit_set_loginuid(kuid_t loginuid)
1da177e4 1976{
0a300be6 1977 struct task_struct *task = current;
41757106 1978 struct audit_context *context = task->audit_context;
633b4545 1979 unsigned int sessionid;
41757106 1980
633b4545 1981#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
780a7654 1982 if (audit_loginuid_set(task))
633b4545
EP
1983 return -EPERM;
1984#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1985 if (!capable(CAP_AUDIT_CONTROL))
1986 return -EPERM;
1987#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1988
1989 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
1990 if (context && context->in_syscall) {
1991 struct audit_buffer *ab;
1992
1993 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1994 if (ab) {
1995 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1996 "old auid=%u new auid=%u"
1997 " old ses=%u new ses=%u",
cca080d9
EB
1998 task->pid,
1999 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
2000 from_kuid(&init_user_ns, task->loginuid),
2001 from_kuid(&init_user_ns, loginuid),
4746ec5b 2002 task->sessionid, sessionid);
bfef93a5 2003 audit_log_end(ab);
c0404993 2004 }
1da177e4 2005 }
4746ec5b 2006 task->sessionid = sessionid;
bfef93a5 2007 task->loginuid = loginuid;
1da177e4
LT
2008 return 0;
2009}
2010
20ca73bc
GW
2011/**
2012 * __audit_mq_open - record audit data for a POSIX MQ open
2013 * @oflag: open flag
2014 * @mode: mode bits
6b962559 2015 * @attr: queue attributes
20ca73bc 2016 *
20ca73bc 2017 */
df0a4283 2018void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2019{
20ca73bc
GW
2020 struct audit_context *context = current->audit_context;
2021
564f6993
AV
2022 if (attr)
2023 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2024 else
2025 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2026
564f6993
AV
2027 context->mq_open.oflag = oflag;
2028 context->mq_open.mode = mode;
20ca73bc 2029
564f6993 2030 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2031}
2032
2033/**
c32c8af4 2034 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2035 * @mqdes: MQ descriptor
2036 * @msg_len: Message length
2037 * @msg_prio: Message priority
c32c8af4 2038 * @abs_timeout: Message timeout in absolute time
20ca73bc 2039 *
20ca73bc 2040 */
c32c8af4
AV
2041void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2042 const struct timespec *abs_timeout)
20ca73bc 2043{
20ca73bc 2044 struct audit_context *context = current->audit_context;
c32c8af4 2045 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2046
c32c8af4
AV
2047 if (abs_timeout)
2048 memcpy(p, abs_timeout, sizeof(struct timespec));
2049 else
2050 memset(p, 0, sizeof(struct timespec));
20ca73bc 2051
c32c8af4
AV
2052 context->mq_sendrecv.mqdes = mqdes;
2053 context->mq_sendrecv.msg_len = msg_len;
2054 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2055
c32c8af4 2056 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2057}
2058
2059/**
2060 * __audit_mq_notify - record audit data for a POSIX MQ notify
2061 * @mqdes: MQ descriptor
6b962559 2062 * @notification: Notification event
20ca73bc 2063 *
20ca73bc
GW
2064 */
2065
20114f71 2066void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2067{
20ca73bc
GW
2068 struct audit_context *context = current->audit_context;
2069
20114f71
AV
2070 if (notification)
2071 context->mq_notify.sigev_signo = notification->sigev_signo;
2072 else
2073 context->mq_notify.sigev_signo = 0;
20ca73bc 2074
20114f71
AV
2075 context->mq_notify.mqdes = mqdes;
2076 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2077}
2078
2079/**
2080 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2081 * @mqdes: MQ descriptor
2082 * @mqstat: MQ flags
2083 *
20ca73bc 2084 */
7392906e 2085void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2086{
20ca73bc 2087 struct audit_context *context = current->audit_context;
7392906e
AV
2088 context->mq_getsetattr.mqdes = mqdes;
2089 context->mq_getsetattr.mqstat = *mqstat;
2090 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2091}
2092
b0dd25a8 2093/**
073115d6
SG
2094 * audit_ipc_obj - record audit data for ipc object
2095 * @ipcp: ipc permissions
2096 *
073115d6 2097 */
a33e6751 2098void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2099{
073115d6 2100 struct audit_context *context = current->audit_context;
a33e6751
AV
2101 context->ipc.uid = ipcp->uid;
2102 context->ipc.gid = ipcp->gid;
2103 context->ipc.mode = ipcp->mode;
e816f370 2104 context->ipc.has_perm = 0;
a33e6751
AV
2105 security_ipc_getsecid(ipcp, &context->ipc.osid);
2106 context->type = AUDIT_IPC;
073115d6
SG
2107}
2108
2109/**
2110 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2111 * @qbytes: msgq bytes
2112 * @uid: msgq user id
2113 * @gid: msgq group id
2114 * @mode: msgq mode (permissions)
2115 *
e816f370 2116 * Called only after audit_ipc_obj().
b0dd25a8 2117 */
2570ebbd 2118void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2119{
1da177e4
LT
2120 struct audit_context *context = current->audit_context;
2121
e816f370
AV
2122 context->ipc.qbytes = qbytes;
2123 context->ipc.perm_uid = uid;
2124 context->ipc.perm_gid = gid;
2125 context->ipc.perm_mode = mode;
2126 context->ipc.has_perm = 1;
1da177e4 2127}
c2f0c7c3 2128
07c49417 2129int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2130{
2131 struct audit_aux_data_execve *ax;
2132 struct audit_context *context = current->audit_context;
473ae30b 2133
bdf4c48a 2134 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2135 if (!ax)
2136 return -ENOMEM;
2137
2138 ax->argc = bprm->argc;
2139 ax->envc = bprm->envc;
bdf4c48a 2140 ax->mm = bprm->mm;
473ae30b
AV
2141 ax->d.type = AUDIT_EXECVE;
2142 ax->d.next = context->aux;
2143 context->aux = (void *)ax;
2144 return 0;
2145}
2146
2147
b0dd25a8
RD
2148/**
2149 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2150 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2151 * @args: args array
2152 *
b0dd25a8 2153 */
2950fa9d 2154int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2155{
3ec3b2fb
DW
2156 struct audit_context *context = current->audit_context;
2157
2950fa9d
CG
2158 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2159 return -EINVAL;
f3298dc4
AV
2160 context->type = AUDIT_SOCKETCALL;
2161 context->socketcall.nargs = nargs;
2162 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2163 return 0;
3ec3b2fb
DW
2164}
2165
db349509
AV
2166/**
2167 * __audit_fd_pair - record audit data for pipe and socketpair
2168 * @fd1: the first file descriptor
2169 * @fd2: the second file descriptor
2170 *
db349509 2171 */
157cf649 2172void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2173{
2174 struct audit_context *context = current->audit_context;
157cf649
AV
2175 context->fds[0] = fd1;
2176 context->fds[1] = fd2;
db349509
AV
2177}
2178
b0dd25a8
RD
2179/**
2180 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2181 * @len: data length in user space
2182 * @a: data address in kernel space
2183 *
2184 * Returns 0 for success or NULL context or < 0 on error.
2185 */
07c49417 2186int __audit_sockaddr(int len, void *a)
3ec3b2fb 2187{
3ec3b2fb
DW
2188 struct audit_context *context = current->audit_context;
2189
4f6b434f
AV
2190 if (!context->sockaddr) {
2191 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2192 if (!p)
2193 return -ENOMEM;
2194 context->sockaddr = p;
2195 }
3ec3b2fb 2196
4f6b434f
AV
2197 context->sockaddr_len = len;
2198 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2199 return 0;
2200}
2201
a5cb013d
AV
2202void __audit_ptrace(struct task_struct *t)
2203{
2204 struct audit_context *context = current->audit_context;
2205
2206 context->target_pid = t->pid;
c2a7780e 2207 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2208 context->target_uid = task_uid(t);
4746ec5b 2209 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2210 security_task_getsecid(t, &context->target_sid);
c2a7780e 2211 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2212}
2213
b0dd25a8
RD
2214/**
2215 * audit_signal_info - record signal info for shutting down audit subsystem
2216 * @sig: signal value
2217 * @t: task being signaled
2218 *
2219 * If the audit subsystem is being terminated, record the task (pid)
2220 * and uid that is doing that.
2221 */
e54dc243 2222int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2223{
e54dc243
AG
2224 struct audit_aux_data_pids *axp;
2225 struct task_struct *tsk = current;
2226 struct audit_context *ctx = tsk->audit_context;
cca080d9 2227 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2228
175fc484 2229 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2230 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2231 audit_sig_pid = tsk->pid;
e1760bd5 2232 if (uid_valid(tsk->loginuid))
bfef93a5 2233 audit_sig_uid = tsk->loginuid;
175fc484 2234 else
c69e8d9c 2235 audit_sig_uid = uid;
2a862b32 2236 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2237 }
2238 if (!audit_signals || audit_dummy_context())
2239 return 0;
c2f0c7c3 2240 }
e54dc243 2241
e54dc243
AG
2242 /* optimize the common case by putting first signal recipient directly
2243 * in audit_context */
2244 if (!ctx->target_pid) {
2245 ctx->target_pid = t->tgid;
c2a7780e 2246 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2247 ctx->target_uid = t_uid;
4746ec5b 2248 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2249 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2250 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2251 return 0;
2252 }
2253
2254 axp = (void *)ctx->aux_pids;
2255 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2256 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2257 if (!axp)
2258 return -ENOMEM;
2259
2260 axp->d.type = AUDIT_OBJ_PID;
2261 axp->d.next = ctx->aux_pids;
2262 ctx->aux_pids = (void *)axp;
2263 }
88ae704c 2264 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2265
2266 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2267 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2268 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2269 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2270 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2271 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2272 axp->pid_count++;
2273
2274 return 0;
c2f0c7c3 2275}
0a4ff8c2 2276
3fc689e9
EP
2277/**
2278 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2279 * @bprm: pointer to the bprm being processed
2280 * @new: the proposed new credentials
2281 * @old: the old credentials
3fc689e9
EP
2282 *
2283 * Simply check if the proc already has the caps given by the file and if not
2284 * store the priv escalation info for later auditing at the end of the syscall
2285 *
3fc689e9
EP
2286 * -Eric
2287 */
d84f4f99
DH
2288int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2289 const struct cred *new, const struct cred *old)
3fc689e9
EP
2290{
2291 struct audit_aux_data_bprm_fcaps *ax;
2292 struct audit_context *context = current->audit_context;
2293 struct cpu_vfs_cap_data vcaps;
2294 struct dentry *dentry;
2295
2296 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2297 if (!ax)
d84f4f99 2298 return -ENOMEM;
3fc689e9
EP
2299
2300 ax->d.type = AUDIT_BPRM_FCAPS;
2301 ax->d.next = context->aux;
2302 context->aux = (void *)ax;
2303
2304 dentry = dget(bprm->file->f_dentry);
2305 get_vfs_caps_from_disk(dentry, &vcaps);
2306 dput(dentry);
2307
2308 ax->fcap.permitted = vcaps.permitted;
2309 ax->fcap.inheritable = vcaps.inheritable;
2310 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2311 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2312
d84f4f99
DH
2313 ax->old_pcap.permitted = old->cap_permitted;
2314 ax->old_pcap.inheritable = old->cap_inheritable;
2315 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2316
d84f4f99
DH
2317 ax->new_pcap.permitted = new->cap_permitted;
2318 ax->new_pcap.inheritable = new->cap_inheritable;
2319 ax->new_pcap.effective = new->cap_effective;
2320 return 0;
3fc689e9
EP
2321}
2322
e68b75a0
EP
2323/**
2324 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2325 * @pid: target pid of the capset call
2326 * @new: the new credentials
2327 * @old: the old (current) credentials
e68b75a0
EP
2328 *
2329 * Record the aguments userspace sent to sys_capset for later printing by the
2330 * audit system if applicable
2331 */
57f71a0a 2332void __audit_log_capset(pid_t pid,
d84f4f99 2333 const struct cred *new, const struct cred *old)
e68b75a0 2334{
e68b75a0 2335 struct audit_context *context = current->audit_context;
57f71a0a
AV
2336 context->capset.pid = pid;
2337 context->capset.cap.effective = new->cap_effective;
2338 context->capset.cap.inheritable = new->cap_effective;
2339 context->capset.cap.permitted = new->cap_permitted;
2340 context->type = AUDIT_CAPSET;
e68b75a0
EP
2341}
2342
120a795d
AV
2343void __audit_mmap_fd(int fd, int flags)
2344{
2345 struct audit_context *context = current->audit_context;
2346 context->mmap.fd = fd;
2347 context->mmap.flags = flags;
2348 context->type = AUDIT_MMAP;
2349}
2350
7b9205bd 2351static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2352{
cca080d9
EB
2353 kuid_t auid, uid;
2354 kgid_t gid;
85e7bac3
EP
2355 unsigned int sessionid;
2356
2357 auid = audit_get_loginuid(current);
2358 sessionid = audit_get_sessionid(current);
2359 current_uid_gid(&uid, &gid);
2360
2361 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2362 from_kuid(&init_user_ns, auid),
2363 from_kuid(&init_user_ns, uid),
2364 from_kgid(&init_user_ns, gid),
2365 sessionid);
85e7bac3
EP
2366 audit_log_task_context(ab);
2367 audit_log_format(ab, " pid=%d comm=", current->pid);
2368 audit_log_untrustedstring(ab, current->comm);
7b9205bd
KC
2369}
2370
2371static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2372{
2373 audit_log_task(ab);
85e7bac3
EP
2374 audit_log_format(ab, " reason=");
2375 audit_log_string(ab, reason);
2376 audit_log_format(ab, " sig=%ld", signr);
2377}
0a4ff8c2
SG
2378/**
2379 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2380 * @signr: signal value
0a4ff8c2
SG
2381 *
2382 * If a process ends with a core dump, something fishy is going on and we
2383 * should record the event for investigation.
2384 */
2385void audit_core_dumps(long signr)
2386{
2387 struct audit_buffer *ab;
0a4ff8c2
SG
2388
2389 if (!audit_enabled)
2390 return;
2391
2392 if (signr == SIGQUIT) /* don't care for those */
2393 return;
2394
2395 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2396 if (unlikely(!ab))
2397 return;
85e7bac3
EP
2398 audit_log_abend(ab, "memory violation", signr);
2399 audit_log_end(ab);
2400}
0a4ff8c2 2401
3dc1c1b2 2402void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2403{
2404 struct audit_buffer *ab;
2405
7b9205bd
KC
2406 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2407 if (unlikely(!ab))
2408 return;
2409 audit_log_task(ab);
2410 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2411 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2412 audit_log_format(ab, " compat=%d", is_compat_task());
2413 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2414 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2415 audit_log_end(ab);
2416}
916d7576
AV
2417
2418struct list_head *audit_killed_trees(void)
2419{
2420 struct audit_context *ctx = current->audit_context;
2421 if (likely(!ctx || !ctx->in_syscall))
2422 return NULL;
2423 return &ctx->killed_trees;
2424}