Fix off-by-one error in iov_iter_advance()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
1da177e4 68
fe7752ba 69#include "audit.h"
1da177e4 70
1da177e4
LT
71/* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73#define AUDIT_NAMES 20
74
9c937dcc
AG
75/* Indicates that audit should log the full pathname. */
76#define AUDIT_NAME_FULL -1
77
de6bbd1d
EP
78/* no execve audit message should be longer than this (userspace limits) */
79#define MAX_EXECVE_AUDIT_LEN 7500
80
471a5c7c
AV
81/* number of audit rules */
82int audit_n_rules;
83
e54dc243
AG
84/* determines whether we collect data for signals sent */
85int audit_signals;
86
1da177e4
LT
87/* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92struct audit_names {
93 const char *name;
9c937dcc
AG
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
1b50eed9 102 u32 osid;
1da177e4
LT
103};
104
105struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108};
109
110#define AUDIT_AUX_IPCPERM 0
111
e54dc243
AG
112/* Number of target pids per aux struct. */
113#define AUDIT_AUX_PIDS 16
114
20ca73bc
GW
115struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120};
121
122struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128};
129
130struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134};
135
136struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140};
141
1da177e4
LT
142struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
9c7aa6aa 149 u32 osid;
1da177e4
LT
150};
151
473ae30b
AV
152struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
bdf4c48a 156 struct mm_struct *mm;
473ae30b
AV
157};
158
3ec3b2fb
DW
159struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163};
164
165struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169};
170
db349509
AV
171struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174};
175
e54dc243
AG
176struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 182 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
184 int pid_count;
185};
186
74c3cbe3
AV
187struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
190};
191
1da177e4
LT
192/* The per-task audit context. */
193struct audit_context {
d51374ad 194 int dummy; /* must be the first element */
1da177e4
LT
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
2fd6f58b 202 long return_code;/* syscall return code */
1da177e4
LT
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
5adc8a6a 206 char * filterkey; /* key for rule that triggered record */
44707fdf 207 struct path pwd;
1da177e4
LT
208 struct audit_context *previous; /* For nested syscalls */
209 struct audit_aux_data *aux;
e54dc243 210 struct audit_aux_data *aux_pids;
1da177e4
LT
211
212 /* Save things to print about task_struct */
f46038ff 213 pid_t pid, ppid;
1da177e4
LT
214 uid_t uid, euid, suid, fsuid;
215 gid_t gid, egid, sgid, fsgid;
216 unsigned long personality;
2fd6f58b 217 int arch;
1da177e4 218
a5cb013d 219 pid_t target_pid;
c2a7780e
EP
220 uid_t target_auid;
221 uid_t target_uid;
4746ec5b 222 unsigned int target_sessionid;
a5cb013d 223 u32 target_sid;
c2a7780e 224 char target_comm[TASK_COMM_LEN];
a5cb013d 225
74c3cbe3
AV
226 struct audit_tree_refs *trees, *first_trees;
227 int tree_count;
228
1da177e4
LT
229#if AUDIT_DEBUG
230 int put_count;
231 int ino_count;
232#endif
233};
234
55669bfa
AV
235#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236static inline int open_arg(int flags, int mask)
237{
238 int n = ACC_MODE(flags);
239 if (flags & (O_TRUNC | O_CREAT))
240 n |= AUDIT_PERM_WRITE;
241 return n & mask;
242}
243
244static int audit_match_perm(struct audit_context *ctx, int mask)
245{
246 unsigned n = ctx->major;
247 switch (audit_classify_syscall(ctx->arch, n)) {
248 case 0: /* native */
249 if ((mask & AUDIT_PERM_WRITE) &&
250 audit_match_class(AUDIT_CLASS_WRITE, n))
251 return 1;
252 if ((mask & AUDIT_PERM_READ) &&
253 audit_match_class(AUDIT_CLASS_READ, n))
254 return 1;
255 if ((mask & AUDIT_PERM_ATTR) &&
256 audit_match_class(AUDIT_CLASS_CHATTR, n))
257 return 1;
258 return 0;
259 case 1: /* 32bit on biarch */
260 if ((mask & AUDIT_PERM_WRITE) &&
261 audit_match_class(AUDIT_CLASS_WRITE_32, n))
262 return 1;
263 if ((mask & AUDIT_PERM_READ) &&
264 audit_match_class(AUDIT_CLASS_READ_32, n))
265 return 1;
266 if ((mask & AUDIT_PERM_ATTR) &&
267 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
268 return 1;
269 return 0;
270 case 2: /* open */
271 return mask & ACC_MODE(ctx->argv[1]);
272 case 3: /* openat */
273 return mask & ACC_MODE(ctx->argv[2]);
274 case 4: /* socketcall */
275 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
276 case 5: /* execve */
277 return mask & AUDIT_PERM_EXEC;
278 default:
279 return 0;
280 }
281}
282
8b67dca9
AV
283static int audit_match_filetype(struct audit_context *ctx, int which)
284{
285 unsigned index = which & ~S_IFMT;
286 mode_t mode = which & S_IFMT;
287 if (index >= ctx->name_count)
288 return 0;
289 if (ctx->names[index].ino == -1)
290 return 0;
291 if ((ctx->names[index].mode ^ mode) & S_IFMT)
292 return 0;
293 return 1;
294}
295
74c3cbe3
AV
296/*
297 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
298 * ->first_trees points to its beginning, ->trees - to the current end of data.
299 * ->tree_count is the number of free entries in array pointed to by ->trees.
300 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
301 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
302 * it's going to remain 1-element for almost any setup) until we free context itself.
303 * References in it _are_ dropped - at the same time we free/drop aux stuff.
304 */
305
306#ifdef CONFIG_AUDIT_TREE
307static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
308{
309 struct audit_tree_refs *p = ctx->trees;
310 int left = ctx->tree_count;
311 if (likely(left)) {
312 p->c[--left] = chunk;
313 ctx->tree_count = left;
314 return 1;
315 }
316 if (!p)
317 return 0;
318 p = p->next;
319 if (p) {
320 p->c[30] = chunk;
321 ctx->trees = p;
322 ctx->tree_count = 30;
323 return 1;
324 }
325 return 0;
326}
327
328static int grow_tree_refs(struct audit_context *ctx)
329{
330 struct audit_tree_refs *p = ctx->trees;
331 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
332 if (!ctx->trees) {
333 ctx->trees = p;
334 return 0;
335 }
336 if (p)
337 p->next = ctx->trees;
338 else
339 ctx->first_trees = ctx->trees;
340 ctx->tree_count = 31;
341 return 1;
342}
343#endif
344
345static void unroll_tree_refs(struct audit_context *ctx,
346 struct audit_tree_refs *p, int count)
347{
348#ifdef CONFIG_AUDIT_TREE
349 struct audit_tree_refs *q;
350 int n;
351 if (!p) {
352 /* we started with empty chain */
353 p = ctx->first_trees;
354 count = 31;
355 /* if the very first allocation has failed, nothing to do */
356 if (!p)
357 return;
358 }
359 n = count;
360 for (q = p; q != ctx->trees; q = q->next, n = 31) {
361 while (n--) {
362 audit_put_chunk(q->c[n]);
363 q->c[n] = NULL;
364 }
365 }
366 while (n-- > ctx->tree_count) {
367 audit_put_chunk(q->c[n]);
368 q->c[n] = NULL;
369 }
370 ctx->trees = p;
371 ctx->tree_count = count;
372#endif
373}
374
375static void free_tree_refs(struct audit_context *ctx)
376{
377 struct audit_tree_refs *p, *q;
378 for (p = ctx->first_trees; p; p = q) {
379 q = p->next;
380 kfree(p);
381 }
382}
383
384static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
385{
386#ifdef CONFIG_AUDIT_TREE
387 struct audit_tree_refs *p;
388 int n;
389 if (!tree)
390 return 0;
391 /* full ones */
392 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
393 for (n = 0; n < 31; n++)
394 if (audit_tree_match(p->c[n], tree))
395 return 1;
396 }
397 /* partial */
398 if (p) {
399 for (n = ctx->tree_count; n < 31; n++)
400 if (audit_tree_match(p->c[n], tree))
401 return 1;
402 }
403#endif
404 return 0;
405}
406
f368c07d 407/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
408/* Compare a task_struct with an audit_rule. Return 1 on match, 0
409 * otherwise. */
410static int audit_filter_rules(struct task_struct *tsk,
93315ed6 411 struct audit_krule *rule,
1da177e4 412 struct audit_context *ctx,
f368c07d 413 struct audit_names *name,
1da177e4
LT
414 enum audit_state *state)
415{
2ad312d2 416 int i, j, need_sid = 1;
3dc7e315
DG
417 u32 sid;
418
1da177e4 419 for (i = 0; i < rule->field_count; i++) {
93315ed6 420 struct audit_field *f = &rule->fields[i];
1da177e4
LT
421 int result = 0;
422
93315ed6 423 switch (f->type) {
1da177e4 424 case AUDIT_PID:
93315ed6 425 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 426 break;
3c66251e 427 case AUDIT_PPID:
419c58f1
AV
428 if (ctx) {
429 if (!ctx->ppid)
430 ctx->ppid = sys_getppid();
3c66251e 431 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 432 }
3c66251e 433 break;
1da177e4 434 case AUDIT_UID:
93315ed6 435 result = audit_comparator(tsk->uid, f->op, f->val);
1da177e4
LT
436 break;
437 case AUDIT_EUID:
93315ed6 438 result = audit_comparator(tsk->euid, f->op, f->val);
1da177e4
LT
439 break;
440 case AUDIT_SUID:
93315ed6 441 result = audit_comparator(tsk->suid, f->op, f->val);
1da177e4
LT
442 break;
443 case AUDIT_FSUID:
93315ed6 444 result = audit_comparator(tsk->fsuid, f->op, f->val);
1da177e4
LT
445 break;
446 case AUDIT_GID:
93315ed6 447 result = audit_comparator(tsk->gid, f->op, f->val);
1da177e4
LT
448 break;
449 case AUDIT_EGID:
93315ed6 450 result = audit_comparator(tsk->egid, f->op, f->val);
1da177e4
LT
451 break;
452 case AUDIT_SGID:
93315ed6 453 result = audit_comparator(tsk->sgid, f->op, f->val);
1da177e4
LT
454 break;
455 case AUDIT_FSGID:
93315ed6 456 result = audit_comparator(tsk->fsgid, f->op, f->val);
1da177e4
LT
457 break;
458 case AUDIT_PERS:
93315ed6 459 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 460 break;
2fd6f58b 461 case AUDIT_ARCH:
9f8dbe9c 462 if (ctx)
93315ed6 463 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 464 break;
1da177e4
LT
465
466 case AUDIT_EXIT:
467 if (ctx && ctx->return_valid)
93315ed6 468 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
469 break;
470 case AUDIT_SUCCESS:
b01f2cc1 471 if (ctx && ctx->return_valid) {
93315ed6
AG
472 if (f->val)
473 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 474 else
93315ed6 475 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 476 }
1da177e4
LT
477 break;
478 case AUDIT_DEVMAJOR:
f368c07d
AG
479 if (name)
480 result = audit_comparator(MAJOR(name->dev),
481 f->op, f->val);
482 else if (ctx) {
1da177e4 483 for (j = 0; j < ctx->name_count; j++) {
93315ed6 484 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
485 ++result;
486 break;
487 }
488 }
489 }
490 break;
491 case AUDIT_DEVMINOR:
f368c07d
AG
492 if (name)
493 result = audit_comparator(MINOR(name->dev),
494 f->op, f->val);
495 else if (ctx) {
1da177e4 496 for (j = 0; j < ctx->name_count; j++) {
93315ed6 497 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
498 ++result;
499 break;
500 }
501 }
502 }
503 break;
504 case AUDIT_INODE:
f368c07d 505 if (name)
9c937dcc 506 result = (name->ino == f->val);
f368c07d 507 else if (ctx) {
1da177e4 508 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 509 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
510 ++result;
511 break;
512 }
513 }
514 }
515 break;
f368c07d
AG
516 case AUDIT_WATCH:
517 if (name && rule->watch->ino != (unsigned long)-1)
518 result = (name->dev == rule->watch->dev &&
9c937dcc 519 name->ino == rule->watch->ino);
f368c07d 520 break;
74c3cbe3
AV
521 case AUDIT_DIR:
522 if (ctx)
523 result = match_tree_refs(ctx, rule->tree);
524 break;
1da177e4
LT
525 case AUDIT_LOGINUID:
526 result = 0;
527 if (ctx)
bfef93a5 528 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 529 break;
3a6b9f85
DG
530 case AUDIT_SUBJ_USER:
531 case AUDIT_SUBJ_ROLE:
532 case AUDIT_SUBJ_TYPE:
533 case AUDIT_SUBJ_SEN:
534 case AUDIT_SUBJ_CLR:
3dc7e315
DG
535 /* NOTE: this may return negative values indicating
536 a temporary error. We simply treat this as a
537 match for now to avoid losing information that
538 may be wanted. An error message will also be
539 logged upon error */
04305e4a 540 if (f->lsm_rule) {
2ad312d2 541 if (need_sid) {
2a862b32 542 security_task_getsecid(tsk, &sid);
2ad312d2
SG
543 need_sid = 0;
544 }
d7a96f3a 545 result = security_audit_rule_match(sid, f->type,
3dc7e315 546 f->op,
04305e4a 547 f->lsm_rule,
3dc7e315 548 ctx);
2ad312d2 549 }
3dc7e315 550 break;
6e5a2d1d
DG
551 case AUDIT_OBJ_USER:
552 case AUDIT_OBJ_ROLE:
553 case AUDIT_OBJ_TYPE:
554 case AUDIT_OBJ_LEV_LOW:
555 case AUDIT_OBJ_LEV_HIGH:
556 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
557 also applies here */
04305e4a 558 if (f->lsm_rule) {
6e5a2d1d
DG
559 /* Find files that match */
560 if (name) {
d7a96f3a 561 result = security_audit_rule_match(
6e5a2d1d 562 name->osid, f->type, f->op,
04305e4a 563 f->lsm_rule, ctx);
6e5a2d1d
DG
564 } else if (ctx) {
565 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 566 if (security_audit_rule_match(
6e5a2d1d
DG
567 ctx->names[j].osid,
568 f->type, f->op,
04305e4a 569 f->lsm_rule, ctx)) {
6e5a2d1d
DG
570 ++result;
571 break;
572 }
573 }
574 }
575 /* Find ipc objects that match */
576 if (ctx) {
577 struct audit_aux_data *aux;
578 for (aux = ctx->aux; aux;
579 aux = aux->next) {
580 if (aux->type == AUDIT_IPC) {
581 struct audit_aux_data_ipcctl *axi = (void *)aux;
04305e4a 582 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
6e5a2d1d
DG
583 ++result;
584 break;
585 }
586 }
587 }
588 }
589 }
590 break;
1da177e4
LT
591 case AUDIT_ARG0:
592 case AUDIT_ARG1:
593 case AUDIT_ARG2:
594 case AUDIT_ARG3:
595 if (ctx)
93315ed6 596 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 597 break;
5adc8a6a
AG
598 case AUDIT_FILTERKEY:
599 /* ignore this field for filtering */
600 result = 1;
601 break;
55669bfa
AV
602 case AUDIT_PERM:
603 result = audit_match_perm(ctx, f->val);
604 break;
8b67dca9
AV
605 case AUDIT_FILETYPE:
606 result = audit_match_filetype(ctx, f->val);
607 break;
1da177e4
LT
608 }
609
1da177e4
LT
610 if (!result)
611 return 0;
612 }
5adc8a6a
AG
613 if (rule->filterkey)
614 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
615 switch (rule->action) {
616 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
617 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
618 }
619 return 1;
620}
621
622/* At process creation time, we can determine if system-call auditing is
623 * completely disabled for this task. Since we only have the task
624 * structure at this point, we can only check uid and gid.
625 */
626static enum audit_state audit_filter_task(struct task_struct *tsk)
627{
628 struct audit_entry *e;
629 enum audit_state state;
630
631 rcu_read_lock();
0f45aa18 632 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 633 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
634 rcu_read_unlock();
635 return state;
636 }
637 }
638 rcu_read_unlock();
639 return AUDIT_BUILD_CONTEXT;
640}
641
642/* At syscall entry and exit time, this filter is called if the
643 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 644 * also not high enough that we already know we have to write an audit
b0dd25a8 645 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
646 */
647static enum audit_state audit_filter_syscall(struct task_struct *tsk,
648 struct audit_context *ctx,
649 struct list_head *list)
650{
651 struct audit_entry *e;
c3896495 652 enum audit_state state;
1da177e4 653
351bb722 654 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
655 return AUDIT_DISABLED;
656
1da177e4 657 rcu_read_lock();
c3896495 658 if (!list_empty(list)) {
b63862f4
DK
659 int word = AUDIT_WORD(ctx->major);
660 int bit = AUDIT_BIT(ctx->major);
661
662 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
663 if ((e->rule.mask[word] & bit) == bit &&
664 audit_filter_rules(tsk, &e->rule, ctx, NULL,
665 &state)) {
666 rcu_read_unlock();
667 return state;
668 }
669 }
670 }
671 rcu_read_unlock();
672 return AUDIT_BUILD_CONTEXT;
673}
674
675/* At syscall exit time, this filter is called if any audit_names[] have been
676 * collected during syscall processing. We only check rules in sublists at hash
677 * buckets applicable to the inode numbers in audit_names[].
678 * Regarding audit_state, same rules apply as for audit_filter_syscall().
679 */
680enum audit_state audit_filter_inodes(struct task_struct *tsk,
681 struct audit_context *ctx)
682{
683 int i;
684 struct audit_entry *e;
685 enum audit_state state;
686
687 if (audit_pid && tsk->tgid == audit_pid)
688 return AUDIT_DISABLED;
689
690 rcu_read_lock();
691 for (i = 0; i < ctx->name_count; i++) {
692 int word = AUDIT_WORD(ctx->major);
693 int bit = AUDIT_BIT(ctx->major);
694 struct audit_names *n = &ctx->names[i];
695 int h = audit_hash_ino((u32)n->ino);
696 struct list_head *list = &audit_inode_hash[h];
697
698 if (list_empty(list))
699 continue;
700
701 list_for_each_entry_rcu(e, list, list) {
702 if ((e->rule.mask[word] & bit) == bit &&
703 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
704 rcu_read_unlock();
705 return state;
706 }
0f45aa18
DW
707 }
708 }
709 rcu_read_unlock();
1da177e4 710 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
711}
712
f368c07d
AG
713void audit_set_auditable(struct audit_context *ctx)
714{
715 ctx->auditable = 1;
716}
717
1da177e4
LT
718static inline struct audit_context *audit_get_context(struct task_struct *tsk,
719 int return_valid,
720 int return_code)
721{
722 struct audit_context *context = tsk->audit_context;
723
724 if (likely(!context))
725 return NULL;
726 context->return_valid = return_valid;
f701b75e
EP
727
728 /*
729 * we need to fix up the return code in the audit logs if the actual
730 * return codes are later going to be fixed up by the arch specific
731 * signal handlers
732 *
733 * This is actually a test for:
734 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
735 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
736 *
737 * but is faster than a bunch of ||
738 */
739 if (unlikely(return_code <= -ERESTARTSYS) &&
740 (return_code >= -ERESTART_RESTARTBLOCK) &&
741 (return_code != -ENOIOCTLCMD))
742 context->return_code = -EINTR;
743 else
744 context->return_code = return_code;
1da177e4 745
d51374ad 746 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 747 enum audit_state state;
f368c07d 748
0f45aa18 749 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
750 if (state == AUDIT_RECORD_CONTEXT) {
751 context->auditable = 1;
752 goto get_context;
753 }
754
755 state = audit_filter_inodes(tsk, context);
1da177e4
LT
756 if (state == AUDIT_RECORD_CONTEXT)
757 context->auditable = 1;
f368c07d 758
1da177e4
LT
759 }
760
f368c07d 761get_context:
3f2792ff 762
1da177e4
LT
763 tsk->audit_context = NULL;
764 return context;
765}
766
767static inline void audit_free_names(struct audit_context *context)
768{
769 int i;
770
771#if AUDIT_DEBUG == 2
772 if (context->auditable
773 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 774 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
775 " name_count=%d put_count=%d"
776 " ino_count=%d [NOT freeing]\n",
73241ccc 777 __FILE__, __LINE__,
1da177e4
LT
778 context->serial, context->major, context->in_syscall,
779 context->name_count, context->put_count,
780 context->ino_count);
8c8570fb 781 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
782 printk(KERN_ERR "names[%d] = %p = %s\n", i,
783 context->names[i].name,
73241ccc 784 context->names[i].name ?: "(null)");
8c8570fb 785 }
1da177e4
LT
786 dump_stack();
787 return;
788 }
789#endif
790#if AUDIT_DEBUG
791 context->put_count = 0;
792 context->ino_count = 0;
793#endif
794
8c8570fb 795 for (i = 0; i < context->name_count; i++) {
9c937dcc 796 if (context->names[i].name && context->names[i].name_put)
1da177e4 797 __putname(context->names[i].name);
8c8570fb 798 }
1da177e4 799 context->name_count = 0;
44707fdf
JB
800 path_put(&context->pwd);
801 context->pwd.dentry = NULL;
802 context->pwd.mnt = NULL;
1da177e4
LT
803}
804
805static inline void audit_free_aux(struct audit_context *context)
806{
807 struct audit_aux_data *aux;
808
809 while ((aux = context->aux)) {
810 context->aux = aux->next;
811 kfree(aux);
812 }
e54dc243
AG
813 while ((aux = context->aux_pids)) {
814 context->aux_pids = aux->next;
815 kfree(aux);
816 }
1da177e4
LT
817}
818
819static inline void audit_zero_context(struct audit_context *context,
820 enum audit_state state)
821{
1da177e4
LT
822 memset(context, 0, sizeof(*context));
823 context->state = state;
1da177e4
LT
824}
825
826static inline struct audit_context *audit_alloc_context(enum audit_state state)
827{
828 struct audit_context *context;
829
830 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
831 return NULL;
832 audit_zero_context(context, state);
833 return context;
834}
835
b0dd25a8
RD
836/**
837 * audit_alloc - allocate an audit context block for a task
838 * @tsk: task
839 *
840 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
841 * if necessary. Doing so turns on system call auditing for the
842 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
843 * needed.
844 */
1da177e4
LT
845int audit_alloc(struct task_struct *tsk)
846{
847 struct audit_context *context;
848 enum audit_state state;
849
b593d384 850 if (likely(!audit_ever_enabled))
1da177e4
LT
851 return 0; /* Return if not auditing. */
852
853 state = audit_filter_task(tsk);
854 if (likely(state == AUDIT_DISABLED))
855 return 0;
856
857 if (!(context = audit_alloc_context(state))) {
858 audit_log_lost("out of memory in audit_alloc");
859 return -ENOMEM;
860 }
861
1da177e4
LT
862 tsk->audit_context = context;
863 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
864 return 0;
865}
866
867static inline void audit_free_context(struct audit_context *context)
868{
869 struct audit_context *previous;
870 int count = 0;
871
872 do {
873 previous = context->previous;
874 if (previous || (count && count < 10)) {
875 ++count;
876 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
877 " freeing multiple contexts (%d)\n",
878 context->serial, context->major,
879 context->name_count, count);
880 }
881 audit_free_names(context);
74c3cbe3
AV
882 unroll_tree_refs(context, NULL, 0);
883 free_tree_refs(context);
1da177e4 884 audit_free_aux(context);
5adc8a6a 885 kfree(context->filterkey);
1da177e4
LT
886 kfree(context);
887 context = previous;
888 } while (context);
889 if (count >= 10)
890 printk(KERN_ERR "audit: freed %d contexts\n", count);
891}
892
161a09e7 893void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
894{
895 char *ctx = NULL;
c4823bce
AV
896 unsigned len;
897 int error;
898 u32 sid;
899
2a862b32 900 security_task_getsecid(current, &sid);
c4823bce
AV
901 if (!sid)
902 return;
8c8570fb 903
2a862b32 904 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
905 if (error) {
906 if (error != -EINVAL)
8c8570fb
DK
907 goto error_path;
908 return;
909 }
910
8c8570fb 911 audit_log_format(ab, " subj=%s", ctx);
2a862b32 912 security_release_secctx(ctx, len);
7306a0b9 913 return;
8c8570fb
DK
914
915error_path:
7306a0b9 916 audit_panic("error in audit_log_task_context");
8c8570fb
DK
917 return;
918}
919
161a09e7
JL
920EXPORT_SYMBOL(audit_log_task_context);
921
e495149b 922static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 923{
45d9bb0e
AV
924 char name[sizeof(tsk->comm)];
925 struct mm_struct *mm = tsk->mm;
219f0817
SS
926 struct vm_area_struct *vma;
927
e495149b
AV
928 /* tsk == current */
929
45d9bb0e 930 get_task_comm(name, tsk);
99e45eea
DW
931 audit_log_format(ab, " comm=");
932 audit_log_untrustedstring(ab, name);
219f0817 933
e495149b
AV
934 if (mm) {
935 down_read(&mm->mmap_sem);
936 vma = mm->mmap;
937 while (vma) {
938 if ((vma->vm_flags & VM_EXECUTABLE) &&
939 vma->vm_file) {
940 audit_log_d_path(ab, "exe=",
44707fdf 941 &vma->vm_file->f_path);
e495149b
AV
942 break;
943 }
944 vma = vma->vm_next;
219f0817 945 }
e495149b 946 up_read(&mm->mmap_sem);
219f0817 947 }
e495149b 948 audit_log_task_context(ab);
219f0817
SS
949}
950
e54dc243 951static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
952 uid_t auid, uid_t uid, unsigned int sessionid,
953 u32 sid, char *comm)
e54dc243
AG
954{
955 struct audit_buffer *ab;
2a862b32 956 char *ctx = NULL;
e54dc243
AG
957 u32 len;
958 int rc = 0;
959
960 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
961 if (!ab)
6246ccab 962 return rc;
e54dc243 963
4746ec5b
EP
964 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
965 uid, sessionid);
2a862b32 966 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 967 audit_log_format(ab, " obj=(none)");
e54dc243 968 rc = 1;
2a862b32
AD
969 } else {
970 audit_log_format(ab, " obj=%s", ctx);
971 security_release_secctx(ctx, len);
972 }
c2a7780e
EP
973 audit_log_format(ab, " ocomm=");
974 audit_log_untrustedstring(ab, comm);
e54dc243 975 audit_log_end(ab);
e54dc243
AG
976
977 return rc;
978}
979
de6bbd1d
EP
980/*
981 * to_send and len_sent accounting are very loose estimates. We aren't
982 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
983 * within about 500 bytes (next page boundry)
984 *
985 * why snprintf? an int is up to 12 digits long. if we just assumed when
986 * logging that a[%d]= was going to be 16 characters long we would be wasting
987 * space in every audit message. In one 7500 byte message we can log up to
988 * about 1000 min size arguments. That comes down to about 50% waste of space
989 * if we didn't do the snprintf to find out how long arg_num_len was.
990 */
991static int audit_log_single_execve_arg(struct audit_context *context,
992 struct audit_buffer **ab,
993 int arg_num,
994 size_t *len_sent,
995 const char __user *p,
996 char *buf)
bdf4c48a 997{
de6bbd1d
EP
998 char arg_num_len_buf[12];
999 const char __user *tmp_p = p;
1000 /* how many digits are in arg_num? 3 is the length of a=\n */
1001 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1002 size_t len, len_left, to_send;
1003 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1004 unsigned int i, has_cntl = 0, too_long = 0;
1005 int ret;
1006
1007 /* strnlen_user includes the null we don't want to send */
1008 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1009
de6bbd1d
EP
1010 /*
1011 * We just created this mm, if we can't find the strings
1012 * we just copied into it something is _very_ wrong. Similar
1013 * for strings that are too long, we should not have created
1014 * any.
1015 */
b0abcfc1 1016 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1017 WARN_ON(1);
1018 send_sig(SIGKILL, current, 0);
b0abcfc1 1019 return -1;
de6bbd1d 1020 }
040b3a2d 1021
de6bbd1d
EP
1022 /* walk the whole argument looking for non-ascii chars */
1023 do {
1024 if (len_left > MAX_EXECVE_AUDIT_LEN)
1025 to_send = MAX_EXECVE_AUDIT_LEN;
1026 else
1027 to_send = len_left;
1028 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1029 /*
de6bbd1d
EP
1030 * There is no reason for this copy to be short. We just
1031 * copied them here, and the mm hasn't been exposed to user-
1032 * space yet.
bdf4c48a 1033 */
de6bbd1d 1034 if (ret) {
bdf4c48a
PZ
1035 WARN_ON(1);
1036 send_sig(SIGKILL, current, 0);
b0abcfc1 1037 return -1;
bdf4c48a 1038 }
de6bbd1d
EP
1039 buf[to_send] = '\0';
1040 has_cntl = audit_string_contains_control(buf, to_send);
1041 if (has_cntl) {
1042 /*
1043 * hex messages get logged as 2 bytes, so we can only
1044 * send half as much in each message
1045 */
1046 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1047 break;
1048 }
de6bbd1d
EP
1049 len_left -= to_send;
1050 tmp_p += to_send;
1051 } while (len_left > 0);
1052
1053 len_left = len;
1054
1055 if (len > max_execve_audit_len)
1056 too_long = 1;
1057
1058 /* rewalk the argument actually logging the message */
1059 for (i = 0; len_left > 0; i++) {
1060 int room_left;
1061
1062 if (len_left > max_execve_audit_len)
1063 to_send = max_execve_audit_len;
1064 else
1065 to_send = len_left;
1066
1067 /* do we have space left to send this argument in this ab? */
1068 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1069 if (has_cntl)
1070 room_left -= (to_send * 2);
1071 else
1072 room_left -= to_send;
1073 if (room_left < 0) {
1074 *len_sent = 0;
1075 audit_log_end(*ab);
1076 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1077 if (!*ab)
1078 return 0;
1079 }
bdf4c48a 1080
bdf4c48a 1081 /*
de6bbd1d
EP
1082 * first record needs to say how long the original string was
1083 * so we can be sure nothing was lost.
1084 */
1085 if ((i == 0) && (too_long))
422b03cf 1086 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1087 has_cntl ? 2*len : len);
1088
1089 /*
1090 * normally arguments are small enough to fit and we already
1091 * filled buf above when we checked for control characters
1092 * so don't bother with another copy_from_user
bdf4c48a 1093 */
de6bbd1d
EP
1094 if (len >= max_execve_audit_len)
1095 ret = copy_from_user(buf, p, to_send);
1096 else
1097 ret = 0;
040b3a2d 1098 if (ret) {
bdf4c48a
PZ
1099 WARN_ON(1);
1100 send_sig(SIGKILL, current, 0);
b0abcfc1 1101 return -1;
bdf4c48a 1102 }
de6bbd1d
EP
1103 buf[to_send] = '\0';
1104
1105 /* actually log it */
1106 audit_log_format(*ab, "a%d", arg_num);
1107 if (too_long)
1108 audit_log_format(*ab, "[%d]", i);
1109 audit_log_format(*ab, "=");
1110 if (has_cntl)
b556f8ad 1111 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1112 else
1113 audit_log_format(*ab, "\"%s\"", buf);
1114 audit_log_format(*ab, "\n");
1115
1116 p += to_send;
1117 len_left -= to_send;
1118 *len_sent += arg_num_len;
1119 if (has_cntl)
1120 *len_sent += to_send * 2;
1121 else
1122 *len_sent += to_send;
1123 }
1124 /* include the null we didn't log */
1125 return len + 1;
1126}
1127
1128static void audit_log_execve_info(struct audit_context *context,
1129 struct audit_buffer **ab,
1130 struct audit_aux_data_execve *axi)
1131{
1132 int i;
1133 size_t len, len_sent = 0;
1134 const char __user *p;
1135 char *buf;
bdf4c48a 1136
de6bbd1d
EP
1137 if (axi->mm != current->mm)
1138 return; /* execve failed, no additional info */
1139
1140 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1141
de6bbd1d
EP
1142 audit_log_format(*ab, "argc=%d ", axi->argc);
1143
1144 /*
1145 * we need some kernel buffer to hold the userspace args. Just
1146 * allocate one big one rather than allocating one of the right size
1147 * for every single argument inside audit_log_single_execve_arg()
1148 * should be <8k allocation so should be pretty safe.
1149 */
1150 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151 if (!buf) {
1152 audit_panic("out of memory for argv string\n");
1153 return;
bdf4c48a 1154 }
de6bbd1d
EP
1155
1156 for (i = 0; i < axi->argc; i++) {
1157 len = audit_log_single_execve_arg(context, ab, i,
1158 &len_sent, p, buf);
1159 if (len <= 0)
1160 break;
1161 p += len;
1162 }
1163 kfree(buf);
bdf4c48a
PZ
1164}
1165
e495149b 1166static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1167{
9c7aa6aa 1168 int i, call_panic = 0;
1da177e4 1169 struct audit_buffer *ab;
7551ced3 1170 struct audit_aux_data *aux;
a6c043a8 1171 const char *tty;
1da177e4 1172
e495149b 1173 /* tsk == current */
3f2792ff 1174 context->pid = tsk->pid;
419c58f1
AV
1175 if (!context->ppid)
1176 context->ppid = sys_getppid();
3f2792ff
AV
1177 context->uid = tsk->uid;
1178 context->gid = tsk->gid;
1179 context->euid = tsk->euid;
1180 context->suid = tsk->suid;
1181 context->fsuid = tsk->fsuid;
1182 context->egid = tsk->egid;
1183 context->sgid = tsk->sgid;
1184 context->fsgid = tsk->fsgid;
1185 context->personality = tsk->personality;
e495149b
AV
1186
1187 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1188 if (!ab)
1189 return; /* audit_panic has been called */
bccf6ae0
DW
1190 audit_log_format(ab, "arch=%x syscall=%d",
1191 context->arch, context->major);
1da177e4
LT
1192 if (context->personality != PER_LINUX)
1193 audit_log_format(ab, " per=%lx", context->personality);
1194 if (context->return_valid)
9f8dbe9c 1195 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1196 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1197 context->return_code);
eb84a20e
AC
1198
1199 mutex_lock(&tty_mutex);
24ec839c 1200 read_lock(&tasklist_lock);
45d9bb0e
AV
1201 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1202 tty = tsk->signal->tty->name;
a6c043a8
SG
1203 else
1204 tty = "(none)";
24ec839c 1205 read_unlock(&tasklist_lock);
1da177e4
LT
1206 audit_log_format(ab,
1207 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1208 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1209 " euid=%u suid=%u fsuid=%u"
4746ec5b 1210 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1211 context->argv[0],
1212 context->argv[1],
1213 context->argv[2],
1214 context->argv[3],
1215 context->name_count,
f46038ff 1216 context->ppid,
1da177e4 1217 context->pid,
bfef93a5 1218 tsk->loginuid,
1da177e4
LT
1219 context->uid,
1220 context->gid,
1221 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1222 context->egid, context->sgid, context->fsgid, tty,
1223 tsk->sessionid);
eb84a20e
AC
1224
1225 mutex_unlock(&tty_mutex);
1226
e495149b 1227 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1228 if (context->filterkey) {
1229 audit_log_format(ab, " key=");
1230 audit_log_untrustedstring(ab, context->filterkey);
1231 } else
1232 audit_log_format(ab, " key=(null)");
1da177e4 1233 audit_log_end(ab);
1da177e4 1234
7551ced3 1235 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1236
e495149b 1237 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1238 if (!ab)
1239 continue; /* audit_panic has been called */
1240
1da177e4 1241 switch (aux->type) {
20ca73bc
GW
1242 case AUDIT_MQ_OPEN: {
1243 struct audit_aux_data_mq_open *axi = (void *)aux;
1244 audit_log_format(ab,
1245 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 axi->oflag, axi->mode, axi->attr.mq_flags,
1248 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1249 axi->attr.mq_curmsgs);
1250 break; }
1251
1252 case AUDIT_MQ_SENDRECV: {
1253 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1254 audit_log_format(ab,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 axi->mqdes, axi->msg_len, axi->msg_prio,
1258 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1259 break; }
1260
1261 case AUDIT_MQ_NOTIFY: {
1262 struct audit_aux_data_mq_notify *axi = (void *)aux;
1263 audit_log_format(ab,
1264 "mqdes=%d sigev_signo=%d",
1265 axi->mqdes,
1266 axi->notification.sigev_signo);
1267 break; }
1268
1269 case AUDIT_MQ_GETSETATTR: {
1270 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1271 audit_log_format(ab,
1272 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1273 "mq_curmsgs=%ld ",
1274 axi->mqdes,
1275 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1276 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1277 break; }
1278
c0404993 1279 case AUDIT_IPC: {
1da177e4
LT
1280 struct audit_aux_data_ipcctl *axi = (void *)aux;
1281 audit_log_format(ab,
5b9a4262 1282 "ouid=%u ogid=%u mode=%#o",
ac03221a 1283 axi->uid, axi->gid, axi->mode);
9c7aa6aa
SG
1284 if (axi->osid != 0) {
1285 char *ctx = NULL;
1286 u32 len;
2a862b32 1287 if (security_secid_to_secctx(
9c7aa6aa 1288 axi->osid, &ctx, &len)) {
ce29b682 1289 audit_log_format(ab, " osid=%u",
9c7aa6aa
SG
1290 axi->osid);
1291 call_panic = 1;
2a862b32 1292 } else {
9c7aa6aa 1293 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1294 security_release_secctx(ctx, len);
1295 }
9c7aa6aa 1296 }
3ec3b2fb
DW
1297 break; }
1298
073115d6
SG
1299 case AUDIT_IPC_SET_PERM: {
1300 struct audit_aux_data_ipcctl *axi = (void *)aux;
1301 audit_log_format(ab,
5b9a4262 1302 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
073115d6 1303 axi->qbytes, axi->uid, axi->gid, axi->mode);
073115d6 1304 break; }
ac03221a 1305
473ae30b
AV
1306 case AUDIT_EXECVE: {
1307 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1308 audit_log_execve_info(context, &ab, axi);
473ae30b 1309 break; }
073115d6 1310
3ec3b2fb 1311 case AUDIT_SOCKETCALL: {
3ec3b2fb
DW
1312 struct audit_aux_data_socketcall *axs = (void *)aux;
1313 audit_log_format(ab, "nargs=%d", axs->nargs);
1314 for (i=0; i<axs->nargs; i++)
1315 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1316 break; }
1317
1318 case AUDIT_SOCKADDR: {
1319 struct audit_aux_data_sockaddr *axs = (void *)aux;
1320
1321 audit_log_format(ab, "saddr=");
b556f8ad 1322 audit_log_n_hex(ab, axs->a, axs->len);
3ec3b2fb 1323 break; }
01116105 1324
db349509
AV
1325 case AUDIT_FD_PAIR: {
1326 struct audit_aux_data_fd_pair *axs = (void *)aux;
1327 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1328 break; }
1329
1da177e4
LT
1330 }
1331 audit_log_end(ab);
1da177e4
LT
1332 }
1333
e54dc243
AG
1334 for (aux = context->aux_pids; aux; aux = aux->next) {
1335 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1336
1337 for (i = 0; i < axs->pid_count; i++)
1338 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1339 axs->target_auid[i],
1340 axs->target_uid[i],
4746ec5b 1341 axs->target_sessionid[i],
c2a7780e
EP
1342 axs->target_sid[i],
1343 axs->target_comm[i]))
e54dc243 1344 call_panic = 1;
a5cb013d
AV
1345 }
1346
e54dc243
AG
1347 if (context->target_pid &&
1348 audit_log_pid_context(context, context->target_pid,
c2a7780e 1349 context->target_auid, context->target_uid,
4746ec5b 1350 context->target_sessionid,
c2a7780e 1351 context->target_sid, context->target_comm))
e54dc243
AG
1352 call_panic = 1;
1353
44707fdf 1354 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1356 if (ab) {
44707fdf 1357 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1358 audit_log_end(ab);
1359 }
1360 }
1da177e4 1361 for (i = 0; i < context->name_count; i++) {
9c937dcc 1362 struct audit_names *n = &context->names[i];
73241ccc 1363
e495149b 1364 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1365 if (!ab)
1366 continue; /* audit_panic has been called */
8f37d47c 1367
1da177e4 1368 audit_log_format(ab, "item=%d", i);
73241ccc 1369
9c937dcc
AG
1370 if (n->name) {
1371 switch(n->name_len) {
1372 case AUDIT_NAME_FULL:
1373 /* log the full path */
1374 audit_log_format(ab, " name=");
1375 audit_log_untrustedstring(ab, n->name);
1376 break;
1377 case 0:
1378 /* name was specified as a relative path and the
1379 * directory component is the cwd */
44707fdf 1380 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1381 break;
1382 default:
1383 /* log the name's directory component */
1384 audit_log_format(ab, " name=");
b556f8ad
EP
1385 audit_log_n_untrustedstring(ab, n->name,
1386 n->name_len);
9c937dcc
AG
1387 }
1388 } else
1389 audit_log_format(ab, " name=(null)");
1390
1391 if (n->ino != (unsigned long)-1) {
1392 audit_log_format(ab, " inode=%lu"
1393 " dev=%02x:%02x mode=%#o"
1394 " ouid=%u ogid=%u rdev=%02x:%02x",
1395 n->ino,
1396 MAJOR(n->dev),
1397 MINOR(n->dev),
1398 n->mode,
1399 n->uid,
1400 n->gid,
1401 MAJOR(n->rdev),
1402 MINOR(n->rdev));
1403 }
1404 if (n->osid != 0) {
1b50eed9
SG
1405 char *ctx = NULL;
1406 u32 len;
2a862b32 1407 if (security_secid_to_secctx(
9c937dcc
AG
1408 n->osid, &ctx, &len)) {
1409 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1410 call_panic = 2;
2a862b32 1411 } else {
1b50eed9 1412 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1413 security_release_secctx(ctx, len);
1414 }
8c8570fb
DK
1415 }
1416
1da177e4
LT
1417 audit_log_end(ab);
1418 }
c0641f28
EP
1419
1420 /* Send end of event record to help user space know we are finished */
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1422 if (ab)
1423 audit_log_end(ab);
9c7aa6aa
SG
1424 if (call_panic)
1425 audit_panic("error converting sid to string");
1da177e4
LT
1426}
1427
b0dd25a8
RD
1428/**
1429 * audit_free - free a per-task audit context
1430 * @tsk: task whose audit context block to free
1431 *
fa84cb93 1432 * Called from copy_process and do_exit
b0dd25a8 1433 */
1da177e4
LT
1434void audit_free(struct task_struct *tsk)
1435{
1436 struct audit_context *context;
1437
1da177e4 1438 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1439 if (likely(!context))
1440 return;
1441
1442 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1443 * function (e.g., exit_group), then free context block.
1444 * We use GFP_ATOMIC here because we might be doing this
f5561964 1445 * in the context of the idle thread */
e495149b 1446 /* that can happen only if we are called from do_exit() */
f7056d64 1447 if (context->in_syscall && context->auditable)
e495149b 1448 audit_log_exit(context, tsk);
1da177e4
LT
1449
1450 audit_free_context(context);
1451}
1452
b0dd25a8
RD
1453/**
1454 * audit_syscall_entry - fill in an audit record at syscall entry
1455 * @tsk: task being audited
1456 * @arch: architecture type
1457 * @major: major syscall type (function)
1458 * @a1: additional syscall register 1
1459 * @a2: additional syscall register 2
1460 * @a3: additional syscall register 3
1461 * @a4: additional syscall register 4
1462 *
1463 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1464 * audit context was created when the task was created and the state or
1465 * filters demand the audit context be built. If the state from the
1466 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1467 * then the record will be written at syscall exit time (otherwise, it
1468 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1469 * be written).
1470 */
5411be59 1471void audit_syscall_entry(int arch, int major,
1da177e4
LT
1472 unsigned long a1, unsigned long a2,
1473 unsigned long a3, unsigned long a4)
1474{
5411be59 1475 struct task_struct *tsk = current;
1da177e4
LT
1476 struct audit_context *context = tsk->audit_context;
1477 enum audit_state state;
1478
86a1c34a
RM
1479 if (unlikely(!context))
1480 return;
1da177e4 1481
b0dd25a8
RD
1482 /*
1483 * This happens only on certain architectures that make system
1da177e4
LT
1484 * calls in kernel_thread via the entry.S interface, instead of
1485 * with direct calls. (If you are porting to a new
1486 * architecture, hitting this condition can indicate that you
1487 * got the _exit/_leave calls backward in entry.S.)
1488 *
1489 * i386 no
1490 * x86_64 no
2ef9481e 1491 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1492 *
1493 * This also happens with vm86 emulation in a non-nested manner
1494 * (entries without exits), so this case must be caught.
1495 */
1496 if (context->in_syscall) {
1497 struct audit_context *newctx;
1498
1da177e4
LT
1499#if AUDIT_DEBUG
1500 printk(KERN_ERR
1501 "audit(:%d) pid=%d in syscall=%d;"
1502 " entering syscall=%d\n",
1503 context->serial, tsk->pid, context->major, major);
1504#endif
1505 newctx = audit_alloc_context(context->state);
1506 if (newctx) {
1507 newctx->previous = context;
1508 context = newctx;
1509 tsk->audit_context = newctx;
1510 } else {
1511 /* If we can't alloc a new context, the best we
1512 * can do is to leak memory (any pending putname
1513 * will be lost). The only other alternative is
1514 * to abandon auditing. */
1515 audit_zero_context(context, context->state);
1516 }
1517 }
1518 BUG_ON(context->in_syscall || context->name_count);
1519
1520 if (!audit_enabled)
1521 return;
1522
2fd6f58b 1523 context->arch = arch;
1da177e4
LT
1524 context->major = major;
1525 context->argv[0] = a1;
1526 context->argv[1] = a2;
1527 context->argv[2] = a3;
1528 context->argv[3] = a4;
1529
1530 state = context->state;
d51374ad
AV
1531 context->dummy = !audit_n_rules;
1532 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1533 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1534 if (likely(state == AUDIT_DISABLED))
1535 return;
1536
ce625a80 1537 context->serial = 0;
1da177e4
LT
1538 context->ctime = CURRENT_TIME;
1539 context->in_syscall = 1;
1540 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1541 context->ppid = 0;
1da177e4
LT
1542}
1543
b0dd25a8
RD
1544/**
1545 * audit_syscall_exit - deallocate audit context after a system call
1546 * @tsk: task being audited
1547 * @valid: success/failure flag
1548 * @return_code: syscall return value
1549 *
1550 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1551 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1552 * filtering, or because some other part of the kernel write an audit
1553 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1554 * free the names stored from getname().
1555 */
5411be59 1556void audit_syscall_exit(int valid, long return_code)
1da177e4 1557{
5411be59 1558 struct task_struct *tsk = current;
1da177e4
LT
1559 struct audit_context *context;
1560
2fd6f58b 1561 context = audit_get_context(tsk, valid, return_code);
1da177e4 1562
1da177e4 1563 if (likely(!context))
97e94c45 1564 return;
1da177e4 1565
f7056d64 1566 if (context->in_syscall && context->auditable)
e495149b 1567 audit_log_exit(context, tsk);
1da177e4
LT
1568
1569 context->in_syscall = 0;
1570 context->auditable = 0;
2fd6f58b 1571
1da177e4
LT
1572 if (context->previous) {
1573 struct audit_context *new_context = context->previous;
1574 context->previous = NULL;
1575 audit_free_context(context);
1576 tsk->audit_context = new_context;
1577 } else {
1578 audit_free_names(context);
74c3cbe3 1579 unroll_tree_refs(context, NULL, 0);
1da177e4 1580 audit_free_aux(context);
e54dc243
AG
1581 context->aux = NULL;
1582 context->aux_pids = NULL;
a5cb013d 1583 context->target_pid = 0;
e54dc243 1584 context->target_sid = 0;
5adc8a6a
AG
1585 kfree(context->filterkey);
1586 context->filterkey = NULL;
1da177e4
LT
1587 tsk->audit_context = context;
1588 }
1da177e4
LT
1589}
1590
74c3cbe3
AV
1591static inline void handle_one(const struct inode *inode)
1592{
1593#ifdef CONFIG_AUDIT_TREE
1594 struct audit_context *context;
1595 struct audit_tree_refs *p;
1596 struct audit_chunk *chunk;
1597 int count;
1598 if (likely(list_empty(&inode->inotify_watches)))
1599 return;
1600 context = current->audit_context;
1601 p = context->trees;
1602 count = context->tree_count;
1603 rcu_read_lock();
1604 chunk = audit_tree_lookup(inode);
1605 rcu_read_unlock();
1606 if (!chunk)
1607 return;
1608 if (likely(put_tree_ref(context, chunk)))
1609 return;
1610 if (unlikely(!grow_tree_refs(context))) {
436c405c 1611 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1612 audit_set_auditable(context);
1613 audit_put_chunk(chunk);
1614 unroll_tree_refs(context, p, count);
1615 return;
1616 }
1617 put_tree_ref(context, chunk);
1618#endif
1619}
1620
1621static void handle_path(const struct dentry *dentry)
1622{
1623#ifdef CONFIG_AUDIT_TREE
1624 struct audit_context *context;
1625 struct audit_tree_refs *p;
1626 const struct dentry *d, *parent;
1627 struct audit_chunk *drop;
1628 unsigned long seq;
1629 int count;
1630
1631 context = current->audit_context;
1632 p = context->trees;
1633 count = context->tree_count;
1634retry:
1635 drop = NULL;
1636 d = dentry;
1637 rcu_read_lock();
1638 seq = read_seqbegin(&rename_lock);
1639 for(;;) {
1640 struct inode *inode = d->d_inode;
1641 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1642 struct audit_chunk *chunk;
1643 chunk = audit_tree_lookup(inode);
1644 if (chunk) {
1645 if (unlikely(!put_tree_ref(context, chunk))) {
1646 drop = chunk;
1647 break;
1648 }
1649 }
1650 }
1651 parent = d->d_parent;
1652 if (parent == d)
1653 break;
1654 d = parent;
1655 }
1656 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1657 rcu_read_unlock();
1658 if (!drop) {
1659 /* just a race with rename */
1660 unroll_tree_refs(context, p, count);
1661 goto retry;
1662 }
1663 audit_put_chunk(drop);
1664 if (grow_tree_refs(context)) {
1665 /* OK, got more space */
1666 unroll_tree_refs(context, p, count);
1667 goto retry;
1668 }
1669 /* too bad */
1670 printk(KERN_WARNING
436c405c 1671 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1672 unroll_tree_refs(context, p, count);
1673 audit_set_auditable(context);
1674 return;
1675 }
1676 rcu_read_unlock();
1677#endif
1678}
1679
b0dd25a8
RD
1680/**
1681 * audit_getname - add a name to the list
1682 * @name: name to add
1683 *
1684 * Add a name to the list of audit names for this context.
1685 * Called from fs/namei.c:getname().
1686 */
d8945bb5 1687void __audit_getname(const char *name)
1da177e4
LT
1688{
1689 struct audit_context *context = current->audit_context;
1690
d8945bb5 1691 if (IS_ERR(name) || !name)
1da177e4
LT
1692 return;
1693
1694 if (!context->in_syscall) {
1695#if AUDIT_DEBUG == 2
1696 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1697 __FILE__, __LINE__, context->serial, name);
1698 dump_stack();
1699#endif
1700 return;
1701 }
1702 BUG_ON(context->name_count >= AUDIT_NAMES);
1703 context->names[context->name_count].name = name;
9c937dcc
AG
1704 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1705 context->names[context->name_count].name_put = 1;
1da177e4 1706 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1707 context->names[context->name_count].osid = 0;
1da177e4 1708 ++context->name_count;
44707fdf 1709 if (!context->pwd.dentry) {
8f37d47c 1710 read_lock(&current->fs->lock);
44707fdf
JB
1711 context->pwd = current->fs->pwd;
1712 path_get(&current->fs->pwd);
8f37d47c
DW
1713 read_unlock(&current->fs->lock);
1714 }
9f8dbe9c 1715
1da177e4
LT
1716}
1717
b0dd25a8
RD
1718/* audit_putname - intercept a putname request
1719 * @name: name to intercept and delay for putname
1720 *
1721 * If we have stored the name from getname in the audit context,
1722 * then we delay the putname until syscall exit.
1723 * Called from include/linux/fs.h:putname().
1724 */
1da177e4
LT
1725void audit_putname(const char *name)
1726{
1727 struct audit_context *context = current->audit_context;
1728
1729 BUG_ON(!context);
1730 if (!context->in_syscall) {
1731#if AUDIT_DEBUG == 2
1732 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1733 __FILE__, __LINE__, context->serial, name);
1734 if (context->name_count) {
1735 int i;
1736 for (i = 0; i < context->name_count; i++)
1737 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1738 context->names[i].name,
73241ccc 1739 context->names[i].name ?: "(null)");
1da177e4
LT
1740 }
1741#endif
1742 __putname(name);
1743 }
1744#if AUDIT_DEBUG
1745 else {
1746 ++context->put_count;
1747 if (context->put_count > context->name_count) {
1748 printk(KERN_ERR "%s:%d(:%d): major=%d"
1749 " in_syscall=%d putname(%p) name_count=%d"
1750 " put_count=%d\n",
1751 __FILE__, __LINE__,
1752 context->serial, context->major,
1753 context->in_syscall, name, context->name_count,
1754 context->put_count);
1755 dump_stack();
1756 }
1757 }
1758#endif
1759}
1760
5712e88f
AG
1761static int audit_inc_name_count(struct audit_context *context,
1762 const struct inode *inode)
1763{
1764 if (context->name_count >= AUDIT_NAMES) {
1765 if (inode)
1766 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1767 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1768 MAJOR(inode->i_sb->s_dev),
1769 MINOR(inode->i_sb->s_dev),
1770 inode->i_ino);
1771
1772 else
436c405c 1773 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1774 return 1;
1775 }
1776 context->name_count++;
1777#if AUDIT_DEBUG
1778 context->ino_count++;
1779#endif
1780 return 0;
1781}
1782
3e2efce0
AG
1783/* Copy inode data into an audit_names. */
1784static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
8c8570fb 1785{
3e2efce0
AG
1786 name->ino = inode->i_ino;
1787 name->dev = inode->i_sb->s_dev;
1788 name->mode = inode->i_mode;
1789 name->uid = inode->i_uid;
1790 name->gid = inode->i_gid;
1791 name->rdev = inode->i_rdev;
2a862b32 1792 security_inode_getsecid(inode, &name->osid);
8c8570fb
DK
1793}
1794
b0dd25a8
RD
1795/**
1796 * audit_inode - store the inode and device from a lookup
1797 * @name: name being audited
481968f4 1798 * @dentry: dentry being audited
b0dd25a8
RD
1799 *
1800 * Called from fs/namei.c:path_lookup().
1801 */
5a190ae6 1802void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1803{
1804 int idx;
1805 struct audit_context *context = current->audit_context;
74c3cbe3 1806 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1807
1808 if (!context->in_syscall)
1809 return;
1810 if (context->name_count
1811 && context->names[context->name_count-1].name
1812 && context->names[context->name_count-1].name == name)
1813 idx = context->name_count - 1;
1814 else if (context->name_count > 1
1815 && context->names[context->name_count-2].name
1816 && context->names[context->name_count-2].name == name)
1817 idx = context->name_count - 2;
1818 else {
1819 /* FIXME: how much do we care about inodes that have no
1820 * associated name? */
5712e88f 1821 if (audit_inc_name_count(context, inode))
1da177e4 1822 return;
5712e88f 1823 idx = context->name_count - 1;
1da177e4 1824 context->names[idx].name = NULL;
1da177e4 1825 }
74c3cbe3 1826 handle_path(dentry);
3e2efce0 1827 audit_copy_inode(&context->names[idx], inode);
73241ccc
AG
1828}
1829
1830/**
1831 * audit_inode_child - collect inode info for created/removed objects
1832 * @dname: inode's dentry name
481968f4 1833 * @dentry: dentry being audited
73d3ec5a 1834 * @parent: inode of dentry parent
73241ccc
AG
1835 *
1836 * For syscalls that create or remove filesystem objects, audit_inode
1837 * can only collect information for the filesystem object's parent.
1838 * This call updates the audit context with the child's information.
1839 * Syscalls that create a new filesystem object must be hooked after
1840 * the object is created. Syscalls that remove a filesystem object
1841 * must be hooked prior, in order to capture the target inode during
1842 * unsuccessful attempts.
1843 */
5a190ae6 1844void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1845 const struct inode *parent)
73241ccc
AG
1846{
1847 int idx;
1848 struct audit_context *context = current->audit_context;
5712e88f 1849 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1850 const struct inode *inode = dentry->d_inode;
9c937dcc 1851 int dirlen = 0;
73241ccc
AG
1852
1853 if (!context->in_syscall)
1854 return;
1855
74c3cbe3
AV
1856 if (inode)
1857 handle_one(inode);
73241ccc 1858 /* determine matching parent */
f368c07d 1859 if (!dname)
5712e88f 1860 goto add_names;
73241ccc 1861
5712e88f
AG
1862 /* parent is more likely, look for it first */
1863 for (idx = 0; idx < context->name_count; idx++) {
1864 struct audit_names *n = &context->names[idx];
f368c07d 1865
5712e88f
AG
1866 if (!n->name)
1867 continue;
1868
1869 if (n->ino == parent->i_ino &&
1870 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1871 n->name_len = dirlen; /* update parent data in place */
1872 found_parent = n->name;
1873 goto add_names;
f368c07d 1874 }
5712e88f 1875 }
73241ccc 1876
5712e88f
AG
1877 /* no matching parent, look for matching child */
1878 for (idx = 0; idx < context->name_count; idx++) {
1879 struct audit_names *n = &context->names[idx];
1880
1881 if (!n->name)
1882 continue;
1883
1884 /* strcmp() is the more likely scenario */
1885 if (!strcmp(dname, n->name) ||
1886 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1887 if (inode)
1888 audit_copy_inode(n, inode);
1889 else
1890 n->ino = (unsigned long)-1;
1891 found_child = n->name;
1892 goto add_names;
1893 }
ac9910ce 1894 }
5712e88f
AG
1895
1896add_names:
1897 if (!found_parent) {
1898 if (audit_inc_name_count(context, parent))
ac9910ce 1899 return;
5712e88f
AG
1900 idx = context->name_count - 1;
1901 context->names[idx].name = NULL;
73d3ec5a
AG
1902 audit_copy_inode(&context->names[idx], parent);
1903 }
5712e88f
AG
1904
1905 if (!found_child) {
1906 if (audit_inc_name_count(context, inode))
1907 return;
1908 idx = context->name_count - 1;
1909
1910 /* Re-use the name belonging to the slot for a matching parent
1911 * directory. All names for this context are relinquished in
1912 * audit_free_names() */
1913 if (found_parent) {
1914 context->names[idx].name = found_parent;
1915 context->names[idx].name_len = AUDIT_NAME_FULL;
1916 /* don't call __putname() */
1917 context->names[idx].name_put = 0;
1918 } else {
1919 context->names[idx].name = NULL;
1920 }
1921
1922 if (inode)
1923 audit_copy_inode(&context->names[idx], inode);
1924 else
1925 context->names[idx].ino = (unsigned long)-1;
1926 }
3e2efce0 1927}
50e437d5 1928EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 1929
b0dd25a8
RD
1930/**
1931 * auditsc_get_stamp - get local copies of audit_context values
1932 * @ctx: audit_context for the task
1933 * @t: timespec to store time recorded in the audit_context
1934 * @serial: serial value that is recorded in the audit_context
1935 *
1936 * Also sets the context as auditable.
1937 */
bfb4496e
DW
1938void auditsc_get_stamp(struct audit_context *ctx,
1939 struct timespec *t, unsigned int *serial)
1da177e4 1940{
ce625a80
DW
1941 if (!ctx->serial)
1942 ctx->serial = audit_serial();
bfb4496e
DW
1943 t->tv_sec = ctx->ctime.tv_sec;
1944 t->tv_nsec = ctx->ctime.tv_nsec;
1945 *serial = ctx->serial;
1946 ctx->auditable = 1;
1da177e4
LT
1947}
1948
4746ec5b
EP
1949/* global counter which is incremented every time something logs in */
1950static atomic_t session_id = ATOMIC_INIT(0);
1951
b0dd25a8
RD
1952/**
1953 * audit_set_loginuid - set a task's audit_context loginuid
1954 * @task: task whose audit context is being modified
1955 * @loginuid: loginuid value
1956 *
1957 * Returns 0.
1958 *
1959 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1960 */
456be6cd 1961int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 1962{
4746ec5b 1963 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
1964 struct audit_context *context = task->audit_context;
1965
bfef93a5
AV
1966 if (context && context->in_syscall) {
1967 struct audit_buffer *ab;
1968
1969 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1970 if (ab) {
1971 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
1972 "old auid=%u new auid=%u"
1973 " old ses=%u new ses=%u",
bfef93a5 1974 task->pid, task->uid,
4746ec5b
EP
1975 task->loginuid, loginuid,
1976 task->sessionid, sessionid);
bfef93a5 1977 audit_log_end(ab);
c0404993 1978 }
1da177e4 1979 }
4746ec5b 1980 task->sessionid = sessionid;
bfef93a5 1981 task->loginuid = loginuid;
1da177e4
LT
1982 return 0;
1983}
1984
20ca73bc
GW
1985/**
1986 * __audit_mq_open - record audit data for a POSIX MQ open
1987 * @oflag: open flag
1988 * @mode: mode bits
1989 * @u_attr: queue attributes
1990 *
1991 * Returns 0 for success or NULL context or < 0 on error.
1992 */
1993int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1994{
1995 struct audit_aux_data_mq_open *ax;
1996 struct audit_context *context = current->audit_context;
1997
1998 if (!audit_enabled)
1999 return 0;
2000
2001 if (likely(!context))
2002 return 0;
2003
2004 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2005 if (!ax)
2006 return -ENOMEM;
2007
2008 if (u_attr != NULL) {
2009 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2010 kfree(ax);
2011 return -EFAULT;
2012 }
2013 } else
2014 memset(&ax->attr, 0, sizeof(ax->attr));
2015
2016 ax->oflag = oflag;
2017 ax->mode = mode;
2018
2019 ax->d.type = AUDIT_MQ_OPEN;
2020 ax->d.next = context->aux;
2021 context->aux = (void *)ax;
2022 return 0;
2023}
2024
2025/**
2026 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2027 * @mqdes: MQ descriptor
2028 * @msg_len: Message length
2029 * @msg_prio: Message priority
1dbe83c3 2030 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2031 *
2032 * Returns 0 for success or NULL context or < 0 on error.
2033 */
2034int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2035 const struct timespec __user *u_abs_timeout)
2036{
2037 struct audit_aux_data_mq_sendrecv *ax;
2038 struct audit_context *context = current->audit_context;
2039
2040 if (!audit_enabled)
2041 return 0;
2042
2043 if (likely(!context))
2044 return 0;
2045
2046 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2047 if (!ax)
2048 return -ENOMEM;
2049
2050 if (u_abs_timeout != NULL) {
2051 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2052 kfree(ax);
2053 return -EFAULT;
2054 }
2055 } else
2056 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2057
2058 ax->mqdes = mqdes;
2059 ax->msg_len = msg_len;
2060 ax->msg_prio = msg_prio;
2061
2062 ax->d.type = AUDIT_MQ_SENDRECV;
2063 ax->d.next = context->aux;
2064 context->aux = (void *)ax;
2065 return 0;
2066}
2067
2068/**
2069 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
1dbe83c3
RD
2072 * @u_msg_prio: Message priority
2073 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2074 *
2075 * Returns 0 for success or NULL context or < 0 on error.
2076 */
2077int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2078 unsigned int __user *u_msg_prio,
2079 const struct timespec __user *u_abs_timeout)
2080{
2081 struct audit_aux_data_mq_sendrecv *ax;
2082 struct audit_context *context = current->audit_context;
2083
2084 if (!audit_enabled)
2085 return 0;
2086
2087 if (likely(!context))
2088 return 0;
2089
2090 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2091 if (!ax)
2092 return -ENOMEM;
2093
2094 if (u_msg_prio != NULL) {
2095 if (get_user(ax->msg_prio, u_msg_prio)) {
2096 kfree(ax);
2097 return -EFAULT;
2098 }
2099 } else
2100 ax->msg_prio = 0;
2101
2102 if (u_abs_timeout != NULL) {
2103 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2104 kfree(ax);
2105 return -EFAULT;
2106 }
2107 } else
2108 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2109
2110 ax->mqdes = mqdes;
2111 ax->msg_len = msg_len;
2112
2113 ax->d.type = AUDIT_MQ_SENDRECV;
2114 ax->d.next = context->aux;
2115 context->aux = (void *)ax;
2116 return 0;
2117}
2118
2119/**
2120 * __audit_mq_notify - record audit data for a POSIX MQ notify
2121 * @mqdes: MQ descriptor
2122 * @u_notification: Notification event
2123 *
2124 * Returns 0 for success or NULL context or < 0 on error.
2125 */
2126
2127int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2128{
2129 struct audit_aux_data_mq_notify *ax;
2130 struct audit_context *context = current->audit_context;
2131
2132 if (!audit_enabled)
2133 return 0;
2134
2135 if (likely(!context))
2136 return 0;
2137
2138 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2139 if (!ax)
2140 return -ENOMEM;
2141
2142 if (u_notification != NULL) {
2143 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2144 kfree(ax);
2145 return -EFAULT;
2146 }
2147 } else
2148 memset(&ax->notification, 0, sizeof(ax->notification));
2149
2150 ax->mqdes = mqdes;
2151
2152 ax->d.type = AUDIT_MQ_NOTIFY;
2153 ax->d.next = context->aux;
2154 context->aux = (void *)ax;
2155 return 0;
2156}
2157
2158/**
2159 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2160 * @mqdes: MQ descriptor
2161 * @mqstat: MQ flags
2162 *
2163 * Returns 0 for success or NULL context or < 0 on error.
2164 */
2165int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2166{
2167 struct audit_aux_data_mq_getsetattr *ax;
2168 struct audit_context *context = current->audit_context;
2169
2170 if (!audit_enabled)
2171 return 0;
2172
2173 if (likely(!context))
2174 return 0;
2175
2176 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2177 if (!ax)
2178 return -ENOMEM;
2179
2180 ax->mqdes = mqdes;
2181 ax->mqstat = *mqstat;
2182
2183 ax->d.type = AUDIT_MQ_GETSETATTR;
2184 ax->d.next = context->aux;
2185 context->aux = (void *)ax;
2186 return 0;
2187}
2188
b0dd25a8 2189/**
073115d6
SG
2190 * audit_ipc_obj - record audit data for ipc object
2191 * @ipcp: ipc permissions
2192 *
2193 * Returns 0 for success or NULL context or < 0 on error.
2194 */
d8945bb5 2195int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6
SG
2196{
2197 struct audit_aux_data_ipcctl *ax;
2198 struct audit_context *context = current->audit_context;
2199
073115d6
SG
2200 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2201 if (!ax)
2202 return -ENOMEM;
2203
2204 ax->uid = ipcp->uid;
2205 ax->gid = ipcp->gid;
2206 ax->mode = ipcp->mode;
2a862b32 2207 security_ipc_getsecid(ipcp, &ax->osid);
073115d6
SG
2208 ax->d.type = AUDIT_IPC;
2209 ax->d.next = context->aux;
2210 context->aux = (void *)ax;
2211 return 0;
2212}
2213
2214/**
2215 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2216 * @qbytes: msgq bytes
2217 * @uid: msgq user id
2218 * @gid: msgq group id
2219 * @mode: msgq mode (permissions)
2220 *
2221 * Returns 0 for success or NULL context or < 0 on error.
2222 */
d8945bb5 2223int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4
LT
2224{
2225 struct audit_aux_data_ipcctl *ax;
2226 struct audit_context *context = current->audit_context;
2227
8c8570fb 2228 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1da177e4
LT
2229 if (!ax)
2230 return -ENOMEM;
2231
2232 ax->qbytes = qbytes;
2233 ax->uid = uid;
2234 ax->gid = gid;
2235 ax->mode = mode;
2236
073115d6 2237 ax->d.type = AUDIT_IPC_SET_PERM;
1da177e4
LT
2238 ax->d.next = context->aux;
2239 context->aux = (void *)ax;
2240 return 0;
2241}
c2f0c7c3 2242
473ae30b
AV
2243int audit_bprm(struct linux_binprm *bprm)
2244{
2245 struct audit_aux_data_execve *ax;
2246 struct audit_context *context = current->audit_context;
473ae30b 2247
5ac3a9c2 2248 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2249 return 0;
2250
bdf4c48a 2251 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2252 if (!ax)
2253 return -ENOMEM;
2254
2255 ax->argc = bprm->argc;
2256 ax->envc = bprm->envc;
bdf4c48a 2257 ax->mm = bprm->mm;
473ae30b
AV
2258 ax->d.type = AUDIT_EXECVE;
2259 ax->d.next = context->aux;
2260 context->aux = (void *)ax;
2261 return 0;
2262}
2263
2264
b0dd25a8
RD
2265/**
2266 * audit_socketcall - record audit data for sys_socketcall
2267 * @nargs: number of args
2268 * @args: args array
2269 *
2270 * Returns 0 for success or NULL context or < 0 on error.
2271 */
3ec3b2fb
DW
2272int audit_socketcall(int nargs, unsigned long *args)
2273{
2274 struct audit_aux_data_socketcall *ax;
2275 struct audit_context *context = current->audit_context;
2276
5ac3a9c2 2277 if (likely(!context || context->dummy))
3ec3b2fb
DW
2278 return 0;
2279
2280 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2281 if (!ax)
2282 return -ENOMEM;
2283
2284 ax->nargs = nargs;
2285 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2286
2287 ax->d.type = AUDIT_SOCKETCALL;
2288 ax->d.next = context->aux;
2289 context->aux = (void *)ax;
2290 return 0;
2291}
2292
db349509
AV
2293/**
2294 * __audit_fd_pair - record audit data for pipe and socketpair
2295 * @fd1: the first file descriptor
2296 * @fd2: the second file descriptor
2297 *
2298 * Returns 0 for success or NULL context or < 0 on error.
2299 */
2300int __audit_fd_pair(int fd1, int fd2)
2301{
2302 struct audit_context *context = current->audit_context;
2303 struct audit_aux_data_fd_pair *ax;
2304
2305 if (likely(!context)) {
2306 return 0;
2307 }
2308
2309 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2310 if (!ax) {
2311 return -ENOMEM;
2312 }
2313
2314 ax->fd[0] = fd1;
2315 ax->fd[1] = fd2;
2316
2317 ax->d.type = AUDIT_FD_PAIR;
2318 ax->d.next = context->aux;
2319 context->aux = (void *)ax;
2320 return 0;
2321}
2322
b0dd25a8
RD
2323/**
2324 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2325 * @len: data length in user space
2326 * @a: data address in kernel space
2327 *
2328 * Returns 0 for success or NULL context or < 0 on error.
2329 */
3ec3b2fb
DW
2330int audit_sockaddr(int len, void *a)
2331{
2332 struct audit_aux_data_sockaddr *ax;
2333 struct audit_context *context = current->audit_context;
2334
5ac3a9c2 2335 if (likely(!context || context->dummy))
3ec3b2fb
DW
2336 return 0;
2337
2338 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2339 if (!ax)
2340 return -ENOMEM;
2341
2342 ax->len = len;
2343 memcpy(ax->a, a, len);
2344
2345 ax->d.type = AUDIT_SOCKADDR;
2346 ax->d.next = context->aux;
2347 context->aux = (void *)ax;
2348 return 0;
2349}
2350
a5cb013d
AV
2351void __audit_ptrace(struct task_struct *t)
2352{
2353 struct audit_context *context = current->audit_context;
2354
2355 context->target_pid = t->pid;
c2a7780e
EP
2356 context->target_auid = audit_get_loginuid(t);
2357 context->target_uid = t->uid;
4746ec5b 2358 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2359 security_task_getsecid(t, &context->target_sid);
c2a7780e 2360 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2361}
2362
b0dd25a8
RD
2363/**
2364 * audit_signal_info - record signal info for shutting down audit subsystem
2365 * @sig: signal value
2366 * @t: task being signaled
2367 *
2368 * If the audit subsystem is being terminated, record the task (pid)
2369 * and uid that is doing that.
2370 */
e54dc243 2371int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2372{
e54dc243
AG
2373 struct audit_aux_data_pids *axp;
2374 struct task_struct *tsk = current;
2375 struct audit_context *ctx = tsk->audit_context;
e1396065 2376
175fc484
AV
2377 if (audit_pid && t->tgid == audit_pid) {
2378 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2379 audit_sig_pid = tsk->pid;
bfef93a5
AV
2380 if (tsk->loginuid != -1)
2381 audit_sig_uid = tsk->loginuid;
175fc484
AV
2382 else
2383 audit_sig_uid = tsk->uid;
2a862b32 2384 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2385 }
2386 if (!audit_signals || audit_dummy_context())
2387 return 0;
c2f0c7c3 2388 }
e54dc243 2389
e54dc243
AG
2390 /* optimize the common case by putting first signal recipient directly
2391 * in audit_context */
2392 if (!ctx->target_pid) {
2393 ctx->target_pid = t->tgid;
c2a7780e
EP
2394 ctx->target_auid = audit_get_loginuid(t);
2395 ctx->target_uid = t->uid;
4746ec5b 2396 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2397 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2398 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2399 return 0;
2400 }
2401
2402 axp = (void *)ctx->aux_pids;
2403 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2404 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2405 if (!axp)
2406 return -ENOMEM;
2407
2408 axp->d.type = AUDIT_OBJ_PID;
2409 axp->d.next = ctx->aux_pids;
2410 ctx->aux_pids = (void *)axp;
2411 }
88ae704c 2412 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2413
2414 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e
EP
2415 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2416 axp->target_uid[axp->pid_count] = t->uid;
4746ec5b 2417 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2418 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2419 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2420 axp->pid_count++;
2421
2422 return 0;
c2f0c7c3 2423}
0a4ff8c2
SG
2424
2425/**
2426 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2427 * @signr: signal value
0a4ff8c2
SG
2428 *
2429 * If a process ends with a core dump, something fishy is going on and we
2430 * should record the event for investigation.
2431 */
2432void audit_core_dumps(long signr)
2433{
2434 struct audit_buffer *ab;
2435 u32 sid;
4746ec5b
EP
2436 uid_t auid = audit_get_loginuid(current);
2437 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2438
2439 if (!audit_enabled)
2440 return;
2441
2442 if (signr == SIGQUIT) /* don't care for those */
2443 return;
2444
2445 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
4746ec5b
EP
2446 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2447 auid, current->uid, current->gid, sessionid);
2a862b32 2448 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2449 if (sid) {
2450 char *ctx = NULL;
2451 u32 len;
2452
2a862b32 2453 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2454 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2455 else {
0a4ff8c2 2456 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2457 security_release_secctx(ctx, len);
2458 }
0a4ff8c2
SG
2459 }
2460 audit_log_format(ab, " pid=%d comm=", current->pid);
2461 audit_log_untrustedstring(ab, current->comm);
2462 audit_log_format(ab, " sig=%ld", signr);
2463 audit_log_end(ab);
2464}