sanitize audit_fd_pair()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
473ae30b
AV
127struct audit_aux_data_execve {
128 struct audit_aux_data d;
129 int argc;
130 int envc;
bdf4c48a 131 struct mm_struct *mm;
473ae30b
AV
132};
133
e54dc243
AG
134struct audit_aux_data_pids {
135 struct audit_aux_data d;
136 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
137 uid_t target_auid[AUDIT_AUX_PIDS];
138 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 139 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 140 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 141 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
142 int pid_count;
143};
144
3fc689e9
EP
145struct audit_aux_data_bprm_fcaps {
146 struct audit_aux_data d;
147 struct audit_cap_data fcap;
148 unsigned int fcap_ver;
149 struct audit_cap_data old_pcap;
150 struct audit_cap_data new_pcap;
151};
152
e68b75a0
EP
153struct audit_aux_data_capset {
154 struct audit_aux_data d;
155 pid_t pid;
156 struct audit_cap_data cap;
157};
158
74c3cbe3
AV
159struct audit_tree_refs {
160 struct audit_tree_refs *next;
161 struct audit_chunk *c[31];
162};
163
1da177e4
LT
164/* The per-task audit context. */
165struct audit_context {
d51374ad 166 int dummy; /* must be the first element */
1da177e4
LT
167 int in_syscall; /* 1 if task is in a syscall */
168 enum audit_state state;
169 unsigned int serial; /* serial number for record */
170 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
171 int major; /* syscall number */
172 unsigned long argv[4]; /* syscall arguments */
173 int return_valid; /* return code is valid */
2fd6f58b 174 long return_code;/* syscall return code */
1da177e4
LT
175 int auditable; /* 1 if record should be written */
176 int name_count;
177 struct audit_names names[AUDIT_NAMES];
5adc8a6a 178 char * filterkey; /* key for rule that triggered record */
44707fdf 179 struct path pwd;
1da177e4
LT
180 struct audit_context *previous; /* For nested syscalls */
181 struct audit_aux_data *aux;
e54dc243 182 struct audit_aux_data *aux_pids;
4f6b434f
AV
183 struct sockaddr_storage *sockaddr;
184 size_t sockaddr_len;
1da177e4 185 /* Save things to print about task_struct */
f46038ff 186 pid_t pid, ppid;
1da177e4
LT
187 uid_t uid, euid, suid, fsuid;
188 gid_t gid, egid, sgid, fsgid;
189 unsigned long personality;
2fd6f58b 190 int arch;
1da177e4 191
a5cb013d 192 pid_t target_pid;
c2a7780e
EP
193 uid_t target_auid;
194 uid_t target_uid;
4746ec5b 195 unsigned int target_sessionid;
a5cb013d 196 u32 target_sid;
c2a7780e 197 char target_comm[TASK_COMM_LEN];
a5cb013d 198
74c3cbe3
AV
199 struct audit_tree_refs *trees, *first_trees;
200 int tree_count;
201
f3298dc4
AV
202 int type;
203 union {
204 struct {
205 int nargs;
206 long args[6];
207 } socketcall;
a33e6751
AV
208 struct {
209 uid_t uid;
210 gid_t gid;
211 mode_t mode;
212 u32 osid;
e816f370
AV
213 int has_perm;
214 uid_t perm_uid;
215 gid_t perm_gid;
216 mode_t perm_mode;
217 unsigned long qbytes;
a33e6751 218 } ipc;
7392906e
AV
219 struct {
220 mqd_t mqdes;
221 struct mq_attr mqstat;
222 } mq_getsetattr;
20114f71
AV
223 struct {
224 mqd_t mqdes;
225 int sigev_signo;
226 } mq_notify;
c32c8af4
AV
227 struct {
228 mqd_t mqdes;
229 size_t msg_len;
230 unsigned int msg_prio;
231 struct timespec abs_timeout;
232 } mq_sendrecv;
564f6993
AV
233 struct {
234 int oflag;
235 mode_t mode;
236 struct mq_attr attr;
237 } mq_open;
f3298dc4 238 };
157cf649 239 int fds[2];
f3298dc4 240
1da177e4
LT
241#if AUDIT_DEBUG
242 int put_count;
243 int ino_count;
244#endif
245};
246
55669bfa
AV
247#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
248static inline int open_arg(int flags, int mask)
249{
250 int n = ACC_MODE(flags);
251 if (flags & (O_TRUNC | O_CREAT))
252 n |= AUDIT_PERM_WRITE;
253 return n & mask;
254}
255
256static int audit_match_perm(struct audit_context *ctx, int mask)
257{
c4bacefb 258 unsigned n;
1a61c88d 259 if (unlikely(!ctx))
260 return 0;
c4bacefb 261 n = ctx->major;
dbda4c0b 262
55669bfa
AV
263 switch (audit_classify_syscall(ctx->arch, n)) {
264 case 0: /* native */
265 if ((mask & AUDIT_PERM_WRITE) &&
266 audit_match_class(AUDIT_CLASS_WRITE, n))
267 return 1;
268 if ((mask & AUDIT_PERM_READ) &&
269 audit_match_class(AUDIT_CLASS_READ, n))
270 return 1;
271 if ((mask & AUDIT_PERM_ATTR) &&
272 audit_match_class(AUDIT_CLASS_CHATTR, n))
273 return 1;
274 return 0;
275 case 1: /* 32bit on biarch */
276 if ((mask & AUDIT_PERM_WRITE) &&
277 audit_match_class(AUDIT_CLASS_WRITE_32, n))
278 return 1;
279 if ((mask & AUDIT_PERM_READ) &&
280 audit_match_class(AUDIT_CLASS_READ_32, n))
281 return 1;
282 if ((mask & AUDIT_PERM_ATTR) &&
283 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
284 return 1;
285 return 0;
286 case 2: /* open */
287 return mask & ACC_MODE(ctx->argv[1]);
288 case 3: /* openat */
289 return mask & ACC_MODE(ctx->argv[2]);
290 case 4: /* socketcall */
291 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
292 case 5: /* execve */
293 return mask & AUDIT_PERM_EXEC;
294 default:
295 return 0;
296 }
297}
298
8b67dca9
AV
299static int audit_match_filetype(struct audit_context *ctx, int which)
300{
301 unsigned index = which & ~S_IFMT;
302 mode_t mode = which & S_IFMT;
1a61c88d 303
304 if (unlikely(!ctx))
305 return 0;
306
8b67dca9
AV
307 if (index >= ctx->name_count)
308 return 0;
309 if (ctx->names[index].ino == -1)
310 return 0;
311 if ((ctx->names[index].mode ^ mode) & S_IFMT)
312 return 0;
313 return 1;
314}
315
74c3cbe3
AV
316/*
317 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
318 * ->first_trees points to its beginning, ->trees - to the current end of data.
319 * ->tree_count is the number of free entries in array pointed to by ->trees.
320 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
321 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
322 * it's going to remain 1-element for almost any setup) until we free context itself.
323 * References in it _are_ dropped - at the same time we free/drop aux stuff.
324 */
325
326#ifdef CONFIG_AUDIT_TREE
327static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
328{
329 struct audit_tree_refs *p = ctx->trees;
330 int left = ctx->tree_count;
331 if (likely(left)) {
332 p->c[--left] = chunk;
333 ctx->tree_count = left;
334 return 1;
335 }
336 if (!p)
337 return 0;
338 p = p->next;
339 if (p) {
340 p->c[30] = chunk;
341 ctx->trees = p;
342 ctx->tree_count = 30;
343 return 1;
344 }
345 return 0;
346}
347
348static int grow_tree_refs(struct audit_context *ctx)
349{
350 struct audit_tree_refs *p = ctx->trees;
351 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
352 if (!ctx->trees) {
353 ctx->trees = p;
354 return 0;
355 }
356 if (p)
357 p->next = ctx->trees;
358 else
359 ctx->first_trees = ctx->trees;
360 ctx->tree_count = 31;
361 return 1;
362}
363#endif
364
365static void unroll_tree_refs(struct audit_context *ctx,
366 struct audit_tree_refs *p, int count)
367{
368#ifdef CONFIG_AUDIT_TREE
369 struct audit_tree_refs *q;
370 int n;
371 if (!p) {
372 /* we started with empty chain */
373 p = ctx->first_trees;
374 count = 31;
375 /* if the very first allocation has failed, nothing to do */
376 if (!p)
377 return;
378 }
379 n = count;
380 for (q = p; q != ctx->trees; q = q->next, n = 31) {
381 while (n--) {
382 audit_put_chunk(q->c[n]);
383 q->c[n] = NULL;
384 }
385 }
386 while (n-- > ctx->tree_count) {
387 audit_put_chunk(q->c[n]);
388 q->c[n] = NULL;
389 }
390 ctx->trees = p;
391 ctx->tree_count = count;
392#endif
393}
394
395static void free_tree_refs(struct audit_context *ctx)
396{
397 struct audit_tree_refs *p, *q;
398 for (p = ctx->first_trees; p; p = q) {
399 q = p->next;
400 kfree(p);
401 }
402}
403
404static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
405{
406#ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *p;
408 int n;
409 if (!tree)
410 return 0;
411 /* full ones */
412 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
413 for (n = 0; n < 31; n++)
414 if (audit_tree_match(p->c[n], tree))
415 return 1;
416 }
417 /* partial */
418 if (p) {
419 for (n = ctx->tree_count; n < 31; n++)
420 if (audit_tree_match(p->c[n], tree))
421 return 1;
422 }
423#endif
424 return 0;
425}
426
f368c07d 427/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
428/* Compare a task_struct with an audit_rule. Return 1 on match, 0
429 * otherwise. */
430static int audit_filter_rules(struct task_struct *tsk,
93315ed6 431 struct audit_krule *rule,
1da177e4 432 struct audit_context *ctx,
f368c07d 433 struct audit_names *name,
1da177e4
LT
434 enum audit_state *state)
435{
c69e8d9c 436 const struct cred *cred = get_task_cred(tsk);
2ad312d2 437 int i, j, need_sid = 1;
3dc7e315
DG
438 u32 sid;
439
1da177e4 440 for (i = 0; i < rule->field_count; i++) {
93315ed6 441 struct audit_field *f = &rule->fields[i];
1da177e4
LT
442 int result = 0;
443
93315ed6 444 switch (f->type) {
1da177e4 445 case AUDIT_PID:
93315ed6 446 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 447 break;
3c66251e 448 case AUDIT_PPID:
419c58f1
AV
449 if (ctx) {
450 if (!ctx->ppid)
451 ctx->ppid = sys_getppid();
3c66251e 452 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 453 }
3c66251e 454 break;
1da177e4 455 case AUDIT_UID:
b6dff3ec 456 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
457 break;
458 case AUDIT_EUID:
b6dff3ec 459 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
460 break;
461 case AUDIT_SUID:
b6dff3ec 462 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
463 break;
464 case AUDIT_FSUID:
b6dff3ec 465 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
466 break;
467 case AUDIT_GID:
b6dff3ec 468 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
469 break;
470 case AUDIT_EGID:
b6dff3ec 471 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
472 break;
473 case AUDIT_SGID:
b6dff3ec 474 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
475 break;
476 case AUDIT_FSGID:
b6dff3ec 477 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
478 break;
479 case AUDIT_PERS:
93315ed6 480 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 481 break;
2fd6f58b 482 case AUDIT_ARCH:
9f8dbe9c 483 if (ctx)
93315ed6 484 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 485 break;
1da177e4
LT
486
487 case AUDIT_EXIT:
488 if (ctx && ctx->return_valid)
93315ed6 489 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
490 break;
491 case AUDIT_SUCCESS:
b01f2cc1 492 if (ctx && ctx->return_valid) {
93315ed6
AG
493 if (f->val)
494 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 495 else
93315ed6 496 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 497 }
1da177e4
LT
498 break;
499 case AUDIT_DEVMAJOR:
f368c07d
AG
500 if (name)
501 result = audit_comparator(MAJOR(name->dev),
502 f->op, f->val);
503 else if (ctx) {
1da177e4 504 for (j = 0; j < ctx->name_count; j++) {
93315ed6 505 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
506 ++result;
507 break;
508 }
509 }
510 }
511 break;
512 case AUDIT_DEVMINOR:
f368c07d
AG
513 if (name)
514 result = audit_comparator(MINOR(name->dev),
515 f->op, f->val);
516 else if (ctx) {
1da177e4 517 for (j = 0; j < ctx->name_count; j++) {
93315ed6 518 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
519 ++result;
520 break;
521 }
522 }
523 }
524 break;
525 case AUDIT_INODE:
f368c07d 526 if (name)
9c937dcc 527 result = (name->ino == f->val);
f368c07d 528 else if (ctx) {
1da177e4 529 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 530 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
f368c07d
AG
537 case AUDIT_WATCH:
538 if (name && rule->watch->ino != (unsigned long)-1)
539 result = (name->dev == rule->watch->dev &&
9c937dcc 540 name->ino == rule->watch->ino);
f368c07d 541 break;
74c3cbe3
AV
542 case AUDIT_DIR:
543 if (ctx)
544 result = match_tree_refs(ctx, rule->tree);
545 break;
1da177e4
LT
546 case AUDIT_LOGINUID:
547 result = 0;
548 if (ctx)
bfef93a5 549 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 550 break;
3a6b9f85
DG
551 case AUDIT_SUBJ_USER:
552 case AUDIT_SUBJ_ROLE:
553 case AUDIT_SUBJ_TYPE:
554 case AUDIT_SUBJ_SEN:
555 case AUDIT_SUBJ_CLR:
3dc7e315
DG
556 /* NOTE: this may return negative values indicating
557 a temporary error. We simply treat this as a
558 match for now to avoid losing information that
559 may be wanted. An error message will also be
560 logged upon error */
04305e4a 561 if (f->lsm_rule) {
2ad312d2 562 if (need_sid) {
2a862b32 563 security_task_getsecid(tsk, &sid);
2ad312d2
SG
564 need_sid = 0;
565 }
d7a96f3a 566 result = security_audit_rule_match(sid, f->type,
3dc7e315 567 f->op,
04305e4a 568 f->lsm_rule,
3dc7e315 569 ctx);
2ad312d2 570 }
3dc7e315 571 break;
6e5a2d1d
DG
572 case AUDIT_OBJ_USER:
573 case AUDIT_OBJ_ROLE:
574 case AUDIT_OBJ_TYPE:
575 case AUDIT_OBJ_LEV_LOW:
576 case AUDIT_OBJ_LEV_HIGH:
577 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
578 also applies here */
04305e4a 579 if (f->lsm_rule) {
6e5a2d1d
DG
580 /* Find files that match */
581 if (name) {
d7a96f3a 582 result = security_audit_rule_match(
6e5a2d1d 583 name->osid, f->type, f->op,
04305e4a 584 f->lsm_rule, ctx);
6e5a2d1d
DG
585 } else if (ctx) {
586 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 587 if (security_audit_rule_match(
6e5a2d1d
DG
588 ctx->names[j].osid,
589 f->type, f->op,
04305e4a 590 f->lsm_rule, ctx)) {
6e5a2d1d
DG
591 ++result;
592 break;
593 }
594 }
595 }
596 /* Find ipc objects that match */
a33e6751
AV
597 if (!ctx || ctx->type != AUDIT_IPC)
598 break;
599 if (security_audit_rule_match(ctx->ipc.osid,
600 f->type, f->op,
601 f->lsm_rule, ctx))
602 ++result;
6e5a2d1d
DG
603 }
604 break;
1da177e4
LT
605 case AUDIT_ARG0:
606 case AUDIT_ARG1:
607 case AUDIT_ARG2:
608 case AUDIT_ARG3:
609 if (ctx)
93315ed6 610 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 611 break;
5adc8a6a
AG
612 case AUDIT_FILTERKEY:
613 /* ignore this field for filtering */
614 result = 1;
615 break;
55669bfa
AV
616 case AUDIT_PERM:
617 result = audit_match_perm(ctx, f->val);
618 break;
8b67dca9
AV
619 case AUDIT_FILETYPE:
620 result = audit_match_filetype(ctx, f->val);
621 break;
1da177e4
LT
622 }
623
c69e8d9c
DH
624 if (!result) {
625 put_cred(cred);
1da177e4 626 return 0;
c69e8d9c 627 }
1da177e4 628 }
980dfb0d 629 if (rule->filterkey && ctx)
5adc8a6a 630 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
631 switch (rule->action) {
632 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
633 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
634 }
c69e8d9c 635 put_cred(cred);
1da177e4
LT
636 return 1;
637}
638
639/* At process creation time, we can determine if system-call auditing is
640 * completely disabled for this task. Since we only have the task
641 * structure at this point, we can only check uid and gid.
642 */
643static enum audit_state audit_filter_task(struct task_struct *tsk)
644{
645 struct audit_entry *e;
646 enum audit_state state;
647
648 rcu_read_lock();
0f45aa18 649 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 650 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
651 rcu_read_unlock();
652 return state;
653 }
654 }
655 rcu_read_unlock();
656 return AUDIT_BUILD_CONTEXT;
657}
658
659/* At syscall entry and exit time, this filter is called if the
660 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 661 * also not high enough that we already know we have to write an audit
b0dd25a8 662 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
663 */
664static enum audit_state audit_filter_syscall(struct task_struct *tsk,
665 struct audit_context *ctx,
666 struct list_head *list)
667{
668 struct audit_entry *e;
c3896495 669 enum audit_state state;
1da177e4 670
351bb722 671 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
672 return AUDIT_DISABLED;
673
1da177e4 674 rcu_read_lock();
c3896495 675 if (!list_empty(list)) {
b63862f4
DK
676 int word = AUDIT_WORD(ctx->major);
677 int bit = AUDIT_BIT(ctx->major);
678
679 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
680 if ((e->rule.mask[word] & bit) == bit &&
681 audit_filter_rules(tsk, &e->rule, ctx, NULL,
682 &state)) {
683 rcu_read_unlock();
684 return state;
685 }
686 }
687 }
688 rcu_read_unlock();
689 return AUDIT_BUILD_CONTEXT;
690}
691
692/* At syscall exit time, this filter is called if any audit_names[] have been
693 * collected during syscall processing. We only check rules in sublists at hash
694 * buckets applicable to the inode numbers in audit_names[].
695 * Regarding audit_state, same rules apply as for audit_filter_syscall().
696 */
697enum audit_state audit_filter_inodes(struct task_struct *tsk,
698 struct audit_context *ctx)
699{
700 int i;
701 struct audit_entry *e;
702 enum audit_state state;
703
704 if (audit_pid && tsk->tgid == audit_pid)
705 return AUDIT_DISABLED;
706
707 rcu_read_lock();
708 for (i = 0; i < ctx->name_count; i++) {
709 int word = AUDIT_WORD(ctx->major);
710 int bit = AUDIT_BIT(ctx->major);
711 struct audit_names *n = &ctx->names[i];
712 int h = audit_hash_ino((u32)n->ino);
713 struct list_head *list = &audit_inode_hash[h];
714
715 if (list_empty(list))
716 continue;
717
718 list_for_each_entry_rcu(e, list, list) {
719 if ((e->rule.mask[word] & bit) == bit &&
720 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
721 rcu_read_unlock();
722 return state;
723 }
0f45aa18
DW
724 }
725 }
726 rcu_read_unlock();
1da177e4 727 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
728}
729
f368c07d
AG
730void audit_set_auditable(struct audit_context *ctx)
731{
732 ctx->auditable = 1;
733}
734
1da177e4
LT
735static inline struct audit_context *audit_get_context(struct task_struct *tsk,
736 int return_valid,
737 int return_code)
738{
739 struct audit_context *context = tsk->audit_context;
740
741 if (likely(!context))
742 return NULL;
743 context->return_valid = return_valid;
f701b75e
EP
744
745 /*
746 * we need to fix up the return code in the audit logs if the actual
747 * return codes are later going to be fixed up by the arch specific
748 * signal handlers
749 *
750 * This is actually a test for:
751 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
752 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
753 *
754 * but is faster than a bunch of ||
755 */
756 if (unlikely(return_code <= -ERESTARTSYS) &&
757 (return_code >= -ERESTART_RESTARTBLOCK) &&
758 (return_code != -ENOIOCTLCMD))
759 context->return_code = -EINTR;
760 else
761 context->return_code = return_code;
1da177e4 762
d51374ad 763 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 764 enum audit_state state;
f368c07d 765
0f45aa18 766 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
767 if (state == AUDIT_RECORD_CONTEXT) {
768 context->auditable = 1;
769 goto get_context;
770 }
771
772 state = audit_filter_inodes(tsk, context);
1da177e4
LT
773 if (state == AUDIT_RECORD_CONTEXT)
774 context->auditable = 1;
f368c07d 775
1da177e4
LT
776 }
777
f368c07d 778get_context:
3f2792ff 779
1da177e4
LT
780 tsk->audit_context = NULL;
781 return context;
782}
783
784static inline void audit_free_names(struct audit_context *context)
785{
786 int i;
787
788#if AUDIT_DEBUG == 2
789 if (context->auditable
790 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 791 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
792 " name_count=%d put_count=%d"
793 " ino_count=%d [NOT freeing]\n",
73241ccc 794 __FILE__, __LINE__,
1da177e4
LT
795 context->serial, context->major, context->in_syscall,
796 context->name_count, context->put_count,
797 context->ino_count);
8c8570fb 798 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
799 printk(KERN_ERR "names[%d] = %p = %s\n", i,
800 context->names[i].name,
73241ccc 801 context->names[i].name ?: "(null)");
8c8570fb 802 }
1da177e4
LT
803 dump_stack();
804 return;
805 }
806#endif
807#if AUDIT_DEBUG
808 context->put_count = 0;
809 context->ino_count = 0;
810#endif
811
8c8570fb 812 for (i = 0; i < context->name_count; i++) {
9c937dcc 813 if (context->names[i].name && context->names[i].name_put)
1da177e4 814 __putname(context->names[i].name);
8c8570fb 815 }
1da177e4 816 context->name_count = 0;
44707fdf
JB
817 path_put(&context->pwd);
818 context->pwd.dentry = NULL;
819 context->pwd.mnt = NULL;
1da177e4
LT
820}
821
822static inline void audit_free_aux(struct audit_context *context)
823{
824 struct audit_aux_data *aux;
825
826 while ((aux = context->aux)) {
827 context->aux = aux->next;
828 kfree(aux);
829 }
e54dc243
AG
830 while ((aux = context->aux_pids)) {
831 context->aux_pids = aux->next;
832 kfree(aux);
833 }
1da177e4
LT
834}
835
836static inline void audit_zero_context(struct audit_context *context,
837 enum audit_state state)
838{
1da177e4
LT
839 memset(context, 0, sizeof(*context));
840 context->state = state;
1da177e4
LT
841}
842
843static inline struct audit_context *audit_alloc_context(enum audit_state state)
844{
845 struct audit_context *context;
846
847 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
848 return NULL;
849 audit_zero_context(context, state);
850 return context;
851}
852
b0dd25a8
RD
853/**
854 * audit_alloc - allocate an audit context block for a task
855 * @tsk: task
856 *
857 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
858 * if necessary. Doing so turns on system call auditing for the
859 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
860 * needed.
861 */
1da177e4
LT
862int audit_alloc(struct task_struct *tsk)
863{
864 struct audit_context *context;
865 enum audit_state state;
866
b593d384 867 if (likely(!audit_ever_enabled))
1da177e4
LT
868 return 0; /* Return if not auditing. */
869
870 state = audit_filter_task(tsk);
871 if (likely(state == AUDIT_DISABLED))
872 return 0;
873
874 if (!(context = audit_alloc_context(state))) {
875 audit_log_lost("out of memory in audit_alloc");
876 return -ENOMEM;
877 }
878
1da177e4
LT
879 tsk->audit_context = context;
880 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
881 return 0;
882}
883
884static inline void audit_free_context(struct audit_context *context)
885{
886 struct audit_context *previous;
887 int count = 0;
888
889 do {
890 previous = context->previous;
891 if (previous || (count && count < 10)) {
892 ++count;
893 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
894 " freeing multiple contexts (%d)\n",
895 context->serial, context->major,
896 context->name_count, count);
897 }
898 audit_free_names(context);
74c3cbe3
AV
899 unroll_tree_refs(context, NULL, 0);
900 free_tree_refs(context);
1da177e4 901 audit_free_aux(context);
5adc8a6a 902 kfree(context->filterkey);
4f6b434f 903 kfree(context->sockaddr);
1da177e4
LT
904 kfree(context);
905 context = previous;
906 } while (context);
907 if (count >= 10)
908 printk(KERN_ERR "audit: freed %d contexts\n", count);
909}
910
161a09e7 911void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
912{
913 char *ctx = NULL;
c4823bce
AV
914 unsigned len;
915 int error;
916 u32 sid;
917
2a862b32 918 security_task_getsecid(current, &sid);
c4823bce
AV
919 if (!sid)
920 return;
8c8570fb 921
2a862b32 922 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
923 if (error) {
924 if (error != -EINVAL)
8c8570fb
DK
925 goto error_path;
926 return;
927 }
928
8c8570fb 929 audit_log_format(ab, " subj=%s", ctx);
2a862b32 930 security_release_secctx(ctx, len);
7306a0b9 931 return;
8c8570fb
DK
932
933error_path:
7306a0b9 934 audit_panic("error in audit_log_task_context");
8c8570fb
DK
935 return;
936}
937
161a09e7
JL
938EXPORT_SYMBOL(audit_log_task_context);
939
e495149b 940static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 941{
45d9bb0e
AV
942 char name[sizeof(tsk->comm)];
943 struct mm_struct *mm = tsk->mm;
219f0817
SS
944 struct vm_area_struct *vma;
945
e495149b
AV
946 /* tsk == current */
947
45d9bb0e 948 get_task_comm(name, tsk);
99e45eea
DW
949 audit_log_format(ab, " comm=");
950 audit_log_untrustedstring(ab, name);
219f0817 951
e495149b
AV
952 if (mm) {
953 down_read(&mm->mmap_sem);
954 vma = mm->mmap;
955 while (vma) {
956 if ((vma->vm_flags & VM_EXECUTABLE) &&
957 vma->vm_file) {
958 audit_log_d_path(ab, "exe=",
44707fdf 959 &vma->vm_file->f_path);
e495149b
AV
960 break;
961 }
962 vma = vma->vm_next;
219f0817 963 }
e495149b 964 up_read(&mm->mmap_sem);
219f0817 965 }
e495149b 966 audit_log_task_context(ab);
219f0817
SS
967}
968
e54dc243 969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
970 uid_t auid, uid_t uid, unsigned int sessionid,
971 u32 sid, char *comm)
e54dc243
AG
972{
973 struct audit_buffer *ab;
2a862b32 974 char *ctx = NULL;
e54dc243
AG
975 u32 len;
976 int rc = 0;
977
978 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
979 if (!ab)
6246ccab 980 return rc;
e54dc243 981
4746ec5b
EP
982 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
983 uid, sessionid);
2a862b32 984 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 985 audit_log_format(ab, " obj=(none)");
e54dc243 986 rc = 1;
2a862b32
AD
987 } else {
988 audit_log_format(ab, " obj=%s", ctx);
989 security_release_secctx(ctx, len);
990 }
c2a7780e
EP
991 audit_log_format(ab, " ocomm=");
992 audit_log_untrustedstring(ab, comm);
e54dc243 993 audit_log_end(ab);
e54dc243
AG
994
995 return rc;
996}
997
de6bbd1d
EP
998/*
999 * to_send and len_sent accounting are very loose estimates. We aren't
1000 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1001 * within about 500 bytes (next page boundry)
1002 *
1003 * why snprintf? an int is up to 12 digits long. if we just assumed when
1004 * logging that a[%d]= was going to be 16 characters long we would be wasting
1005 * space in every audit message. In one 7500 byte message we can log up to
1006 * about 1000 min size arguments. That comes down to about 50% waste of space
1007 * if we didn't do the snprintf to find out how long arg_num_len was.
1008 */
1009static int audit_log_single_execve_arg(struct audit_context *context,
1010 struct audit_buffer **ab,
1011 int arg_num,
1012 size_t *len_sent,
1013 const char __user *p,
1014 char *buf)
bdf4c48a 1015{
de6bbd1d
EP
1016 char arg_num_len_buf[12];
1017 const char __user *tmp_p = p;
1018 /* how many digits are in arg_num? 3 is the length of a=\n */
1019 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1020 size_t len, len_left, to_send;
1021 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1022 unsigned int i, has_cntl = 0, too_long = 0;
1023 int ret;
1024
1025 /* strnlen_user includes the null we don't want to send */
1026 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1027
de6bbd1d
EP
1028 /*
1029 * We just created this mm, if we can't find the strings
1030 * we just copied into it something is _very_ wrong. Similar
1031 * for strings that are too long, we should not have created
1032 * any.
1033 */
b0abcfc1 1034 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1035 WARN_ON(1);
1036 send_sig(SIGKILL, current, 0);
b0abcfc1 1037 return -1;
de6bbd1d 1038 }
040b3a2d 1039
de6bbd1d
EP
1040 /* walk the whole argument looking for non-ascii chars */
1041 do {
1042 if (len_left > MAX_EXECVE_AUDIT_LEN)
1043 to_send = MAX_EXECVE_AUDIT_LEN;
1044 else
1045 to_send = len_left;
1046 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1047 /*
de6bbd1d
EP
1048 * There is no reason for this copy to be short. We just
1049 * copied them here, and the mm hasn't been exposed to user-
1050 * space yet.
bdf4c48a 1051 */
de6bbd1d 1052 if (ret) {
bdf4c48a
PZ
1053 WARN_ON(1);
1054 send_sig(SIGKILL, current, 0);
b0abcfc1 1055 return -1;
bdf4c48a 1056 }
de6bbd1d
EP
1057 buf[to_send] = '\0';
1058 has_cntl = audit_string_contains_control(buf, to_send);
1059 if (has_cntl) {
1060 /*
1061 * hex messages get logged as 2 bytes, so we can only
1062 * send half as much in each message
1063 */
1064 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1065 break;
1066 }
de6bbd1d
EP
1067 len_left -= to_send;
1068 tmp_p += to_send;
1069 } while (len_left > 0);
1070
1071 len_left = len;
1072
1073 if (len > max_execve_audit_len)
1074 too_long = 1;
1075
1076 /* rewalk the argument actually logging the message */
1077 for (i = 0; len_left > 0; i++) {
1078 int room_left;
1079
1080 if (len_left > max_execve_audit_len)
1081 to_send = max_execve_audit_len;
1082 else
1083 to_send = len_left;
1084
1085 /* do we have space left to send this argument in this ab? */
1086 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1087 if (has_cntl)
1088 room_left -= (to_send * 2);
1089 else
1090 room_left -= to_send;
1091 if (room_left < 0) {
1092 *len_sent = 0;
1093 audit_log_end(*ab);
1094 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1095 if (!*ab)
1096 return 0;
1097 }
bdf4c48a 1098
bdf4c48a 1099 /*
de6bbd1d
EP
1100 * first record needs to say how long the original string was
1101 * so we can be sure nothing was lost.
1102 */
1103 if ((i == 0) && (too_long))
422b03cf 1104 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1105 has_cntl ? 2*len : len);
1106
1107 /*
1108 * normally arguments are small enough to fit and we already
1109 * filled buf above when we checked for control characters
1110 * so don't bother with another copy_from_user
bdf4c48a 1111 */
de6bbd1d
EP
1112 if (len >= max_execve_audit_len)
1113 ret = copy_from_user(buf, p, to_send);
1114 else
1115 ret = 0;
040b3a2d 1116 if (ret) {
bdf4c48a
PZ
1117 WARN_ON(1);
1118 send_sig(SIGKILL, current, 0);
b0abcfc1 1119 return -1;
bdf4c48a 1120 }
de6bbd1d
EP
1121 buf[to_send] = '\0';
1122
1123 /* actually log it */
1124 audit_log_format(*ab, "a%d", arg_num);
1125 if (too_long)
1126 audit_log_format(*ab, "[%d]", i);
1127 audit_log_format(*ab, "=");
1128 if (has_cntl)
b556f8ad 1129 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1130 else
1131 audit_log_format(*ab, "\"%s\"", buf);
1132 audit_log_format(*ab, "\n");
1133
1134 p += to_send;
1135 len_left -= to_send;
1136 *len_sent += arg_num_len;
1137 if (has_cntl)
1138 *len_sent += to_send * 2;
1139 else
1140 *len_sent += to_send;
1141 }
1142 /* include the null we didn't log */
1143 return len + 1;
1144}
1145
1146static void audit_log_execve_info(struct audit_context *context,
1147 struct audit_buffer **ab,
1148 struct audit_aux_data_execve *axi)
1149{
1150 int i;
1151 size_t len, len_sent = 0;
1152 const char __user *p;
1153 char *buf;
bdf4c48a 1154
de6bbd1d
EP
1155 if (axi->mm != current->mm)
1156 return; /* execve failed, no additional info */
1157
1158 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1159
de6bbd1d
EP
1160 audit_log_format(*ab, "argc=%d ", axi->argc);
1161
1162 /*
1163 * we need some kernel buffer to hold the userspace args. Just
1164 * allocate one big one rather than allocating one of the right size
1165 * for every single argument inside audit_log_single_execve_arg()
1166 * should be <8k allocation so should be pretty safe.
1167 */
1168 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1169 if (!buf) {
1170 audit_panic("out of memory for argv string\n");
1171 return;
bdf4c48a 1172 }
de6bbd1d
EP
1173
1174 for (i = 0; i < axi->argc; i++) {
1175 len = audit_log_single_execve_arg(context, ab, i,
1176 &len_sent, p, buf);
1177 if (len <= 0)
1178 break;
1179 p += len;
1180 }
1181 kfree(buf);
bdf4c48a
PZ
1182}
1183
851f7ff5
EP
1184static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1185{
1186 int i;
1187
1188 audit_log_format(ab, " %s=", prefix);
1189 CAP_FOR_EACH_U32(i) {
1190 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1191 }
1192}
1193
1194static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1195{
1196 kernel_cap_t *perm = &name->fcap.permitted;
1197 kernel_cap_t *inh = &name->fcap.inheritable;
1198 int log = 0;
1199
1200 if (!cap_isclear(*perm)) {
1201 audit_log_cap(ab, "cap_fp", perm);
1202 log = 1;
1203 }
1204 if (!cap_isclear(*inh)) {
1205 audit_log_cap(ab, "cap_fi", inh);
1206 log = 1;
1207 }
1208
1209 if (log)
1210 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1211}
1212
a33e6751 1213static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1214{
1215 struct audit_buffer *ab;
1216 int i;
1217
1218 ab = audit_log_start(context, GFP_KERNEL, context->type);
1219 if (!ab)
1220 return;
1221
1222 switch (context->type) {
1223 case AUDIT_SOCKETCALL: {
1224 int nargs = context->socketcall.nargs;
1225 audit_log_format(ab, "nargs=%d", nargs);
1226 for (i = 0; i < nargs; i++)
1227 audit_log_format(ab, " a%d=%lx", i,
1228 context->socketcall.args[i]);
1229 break; }
a33e6751
AV
1230 case AUDIT_IPC: {
1231 u32 osid = context->ipc.osid;
1232
1233 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1234 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1235 if (osid) {
1236 char *ctx = NULL;
1237 u32 len;
1238 if (security_secid_to_secctx(osid, &ctx, &len)) {
1239 audit_log_format(ab, " osid=%u", osid);
1240 *call_panic = 1;
1241 } else {
1242 audit_log_format(ab, " obj=%s", ctx);
1243 security_release_secctx(ctx, len);
1244 }
1245 }
e816f370
AV
1246 if (context->ipc.has_perm) {
1247 audit_log_end(ab);
1248 ab = audit_log_start(context, GFP_KERNEL,
1249 AUDIT_IPC_SET_PERM);
1250 audit_log_format(ab,
1251 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1252 context->ipc.qbytes,
1253 context->ipc.perm_uid,
1254 context->ipc.perm_gid,
1255 context->ipc.perm_mode);
1256 if (!ab)
1257 return;
1258 }
a33e6751 1259 break; }
564f6993
AV
1260 case AUDIT_MQ_OPEN: {
1261 audit_log_format(ab,
1262 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1263 "mq_msgsize=%ld mq_curmsgs=%ld",
1264 context->mq_open.oflag, context->mq_open.mode,
1265 context->mq_open.attr.mq_flags,
1266 context->mq_open.attr.mq_maxmsg,
1267 context->mq_open.attr.mq_msgsize,
1268 context->mq_open.attr.mq_curmsgs);
1269 break; }
c32c8af4
AV
1270 case AUDIT_MQ_SENDRECV: {
1271 audit_log_format(ab,
1272 "mqdes=%d msg_len=%zd msg_prio=%u "
1273 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1274 context->mq_sendrecv.mqdes,
1275 context->mq_sendrecv.msg_len,
1276 context->mq_sendrecv.msg_prio,
1277 context->mq_sendrecv.abs_timeout.tv_sec,
1278 context->mq_sendrecv.abs_timeout.tv_nsec);
1279 break; }
20114f71
AV
1280 case AUDIT_MQ_NOTIFY: {
1281 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1282 context->mq_notify.mqdes,
1283 context->mq_notify.sigev_signo);
1284 break; }
7392906e
AV
1285 case AUDIT_MQ_GETSETATTR: {
1286 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1287 audit_log_format(ab,
1288 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1289 "mq_curmsgs=%ld ",
1290 context->mq_getsetattr.mqdes,
1291 attr->mq_flags, attr->mq_maxmsg,
1292 attr->mq_msgsize, attr->mq_curmsgs);
1293 break; }
f3298dc4
AV
1294 }
1295 audit_log_end(ab);
1296}
1297
e495149b 1298static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1299{
c69e8d9c 1300 const struct cred *cred;
9c7aa6aa 1301 int i, call_panic = 0;
1da177e4 1302 struct audit_buffer *ab;
7551ced3 1303 struct audit_aux_data *aux;
a6c043a8 1304 const char *tty;
1da177e4 1305
e495149b 1306 /* tsk == current */
3f2792ff 1307 context->pid = tsk->pid;
419c58f1
AV
1308 if (!context->ppid)
1309 context->ppid = sys_getppid();
c69e8d9c
DH
1310 cred = current_cred();
1311 context->uid = cred->uid;
1312 context->gid = cred->gid;
1313 context->euid = cred->euid;
1314 context->suid = cred->suid;
b6dff3ec 1315 context->fsuid = cred->fsuid;
c69e8d9c
DH
1316 context->egid = cred->egid;
1317 context->sgid = cred->sgid;
b6dff3ec 1318 context->fsgid = cred->fsgid;
3f2792ff 1319 context->personality = tsk->personality;
e495149b
AV
1320
1321 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1322 if (!ab)
1323 return; /* audit_panic has been called */
bccf6ae0
DW
1324 audit_log_format(ab, "arch=%x syscall=%d",
1325 context->arch, context->major);
1da177e4
LT
1326 if (context->personality != PER_LINUX)
1327 audit_log_format(ab, " per=%lx", context->personality);
1328 if (context->return_valid)
9f8dbe9c 1329 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1330 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1331 context->return_code);
eb84a20e 1332
dbda4c0b 1333 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1334 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1335 tty = tsk->signal->tty->name;
a6c043a8
SG
1336 else
1337 tty = "(none)";
dbda4c0b
AC
1338 spin_unlock_irq(&tsk->sighand->siglock);
1339
1da177e4
LT
1340 audit_log_format(ab,
1341 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1342 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1343 " euid=%u suid=%u fsuid=%u"
4746ec5b 1344 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1345 context->argv[0],
1346 context->argv[1],
1347 context->argv[2],
1348 context->argv[3],
1349 context->name_count,
f46038ff 1350 context->ppid,
1da177e4 1351 context->pid,
bfef93a5 1352 tsk->loginuid,
1da177e4
LT
1353 context->uid,
1354 context->gid,
1355 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1356 context->egid, context->sgid, context->fsgid, tty,
1357 tsk->sessionid);
eb84a20e 1358
eb84a20e 1359
e495149b 1360 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1361 if (context->filterkey) {
1362 audit_log_format(ab, " key=");
1363 audit_log_untrustedstring(ab, context->filterkey);
1364 } else
1365 audit_log_format(ab, " key=(null)");
1da177e4 1366 audit_log_end(ab);
1da177e4 1367
7551ced3 1368 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1369
e495149b 1370 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1371 if (!ab)
1372 continue; /* audit_panic has been called */
1373
1da177e4 1374 switch (aux->type) {
20ca73bc 1375
473ae30b
AV
1376 case AUDIT_EXECVE: {
1377 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1378 audit_log_execve_info(context, &ab, axi);
473ae30b 1379 break; }
073115d6 1380
3fc689e9
EP
1381 case AUDIT_BPRM_FCAPS: {
1382 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1383 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1384 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1385 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1386 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1387 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1388 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1389 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1390 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1391 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1392 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1393 break; }
1394
e68b75a0
EP
1395 case AUDIT_CAPSET: {
1396 struct audit_aux_data_capset *axs = (void *)aux;
1397 audit_log_format(ab, "pid=%d", axs->pid);
1398 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1399 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1400 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1401 break; }
1402
1da177e4
LT
1403 }
1404 audit_log_end(ab);
1da177e4
LT
1405 }
1406
f3298dc4 1407 if (context->type)
a33e6751 1408 show_special(context, &call_panic);
f3298dc4 1409
157cf649
AV
1410 if (context->fds[0] >= 0) {
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1412 if (ab) {
1413 audit_log_format(ab, "fd0=%d fd1=%d",
1414 context->fds[0], context->fds[1]);
1415 audit_log_end(ab);
1416 }
1417 }
1418
4f6b434f
AV
1419 if (context->sockaddr_len) {
1420 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1421 if (ab) {
1422 audit_log_format(ab, "saddr=");
1423 audit_log_n_hex(ab, (void *)context->sockaddr,
1424 context->sockaddr_len);
1425 audit_log_end(ab);
1426 }
1427 }
1428
e54dc243
AG
1429 for (aux = context->aux_pids; aux; aux = aux->next) {
1430 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1431
1432 for (i = 0; i < axs->pid_count; i++)
1433 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1434 axs->target_auid[i],
1435 axs->target_uid[i],
4746ec5b 1436 axs->target_sessionid[i],
c2a7780e
EP
1437 axs->target_sid[i],
1438 axs->target_comm[i]))
e54dc243 1439 call_panic = 1;
a5cb013d
AV
1440 }
1441
e54dc243
AG
1442 if (context->target_pid &&
1443 audit_log_pid_context(context, context->target_pid,
c2a7780e 1444 context->target_auid, context->target_uid,
4746ec5b 1445 context->target_sessionid,
c2a7780e 1446 context->target_sid, context->target_comm))
e54dc243
AG
1447 call_panic = 1;
1448
44707fdf 1449 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1451 if (ab) {
44707fdf 1452 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1453 audit_log_end(ab);
1454 }
1455 }
1da177e4 1456 for (i = 0; i < context->name_count; i++) {
9c937dcc 1457 struct audit_names *n = &context->names[i];
73241ccc 1458
e495149b 1459 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1460 if (!ab)
1461 continue; /* audit_panic has been called */
8f37d47c 1462
1da177e4 1463 audit_log_format(ab, "item=%d", i);
73241ccc 1464
9c937dcc
AG
1465 if (n->name) {
1466 switch(n->name_len) {
1467 case AUDIT_NAME_FULL:
1468 /* log the full path */
1469 audit_log_format(ab, " name=");
1470 audit_log_untrustedstring(ab, n->name);
1471 break;
1472 case 0:
1473 /* name was specified as a relative path and the
1474 * directory component is the cwd */
44707fdf 1475 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1476 break;
1477 default:
1478 /* log the name's directory component */
1479 audit_log_format(ab, " name=");
b556f8ad
EP
1480 audit_log_n_untrustedstring(ab, n->name,
1481 n->name_len);
9c937dcc
AG
1482 }
1483 } else
1484 audit_log_format(ab, " name=(null)");
1485
1486 if (n->ino != (unsigned long)-1) {
1487 audit_log_format(ab, " inode=%lu"
1488 " dev=%02x:%02x mode=%#o"
1489 " ouid=%u ogid=%u rdev=%02x:%02x",
1490 n->ino,
1491 MAJOR(n->dev),
1492 MINOR(n->dev),
1493 n->mode,
1494 n->uid,
1495 n->gid,
1496 MAJOR(n->rdev),
1497 MINOR(n->rdev));
1498 }
1499 if (n->osid != 0) {
1b50eed9
SG
1500 char *ctx = NULL;
1501 u32 len;
2a862b32 1502 if (security_secid_to_secctx(
9c937dcc
AG
1503 n->osid, &ctx, &len)) {
1504 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1505 call_panic = 2;
2a862b32 1506 } else {
1b50eed9 1507 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1508 security_release_secctx(ctx, len);
1509 }
8c8570fb
DK
1510 }
1511
851f7ff5
EP
1512 audit_log_fcaps(ab, n);
1513
1da177e4
LT
1514 audit_log_end(ab);
1515 }
c0641f28
EP
1516
1517 /* Send end of event record to help user space know we are finished */
1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1519 if (ab)
1520 audit_log_end(ab);
9c7aa6aa
SG
1521 if (call_panic)
1522 audit_panic("error converting sid to string");
1da177e4
LT
1523}
1524
b0dd25a8
RD
1525/**
1526 * audit_free - free a per-task audit context
1527 * @tsk: task whose audit context block to free
1528 *
fa84cb93 1529 * Called from copy_process and do_exit
b0dd25a8 1530 */
1da177e4
LT
1531void audit_free(struct task_struct *tsk)
1532{
1533 struct audit_context *context;
1534
1da177e4 1535 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1536 if (likely(!context))
1537 return;
1538
1539 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1540 * function (e.g., exit_group), then free context block.
1541 * We use GFP_ATOMIC here because we might be doing this
f5561964 1542 * in the context of the idle thread */
e495149b 1543 /* that can happen only if we are called from do_exit() */
f7056d64 1544 if (context->in_syscall && context->auditable)
e495149b 1545 audit_log_exit(context, tsk);
1da177e4
LT
1546
1547 audit_free_context(context);
1548}
1549
b0dd25a8
RD
1550/**
1551 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1552 * @arch: architecture type
1553 * @major: major syscall type (function)
1554 * @a1: additional syscall register 1
1555 * @a2: additional syscall register 2
1556 * @a3: additional syscall register 3
1557 * @a4: additional syscall register 4
1558 *
1559 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1560 * audit context was created when the task was created and the state or
1561 * filters demand the audit context be built. If the state from the
1562 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1563 * then the record will be written at syscall exit time (otherwise, it
1564 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1565 * be written).
1566 */
5411be59 1567void audit_syscall_entry(int arch, int major,
1da177e4
LT
1568 unsigned long a1, unsigned long a2,
1569 unsigned long a3, unsigned long a4)
1570{
5411be59 1571 struct task_struct *tsk = current;
1da177e4
LT
1572 struct audit_context *context = tsk->audit_context;
1573 enum audit_state state;
1574
86a1c34a
RM
1575 if (unlikely(!context))
1576 return;
1da177e4 1577
b0dd25a8
RD
1578 /*
1579 * This happens only on certain architectures that make system
1da177e4
LT
1580 * calls in kernel_thread via the entry.S interface, instead of
1581 * with direct calls. (If you are porting to a new
1582 * architecture, hitting this condition can indicate that you
1583 * got the _exit/_leave calls backward in entry.S.)
1584 *
1585 * i386 no
1586 * x86_64 no
2ef9481e 1587 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1588 *
1589 * This also happens with vm86 emulation in a non-nested manner
1590 * (entries without exits), so this case must be caught.
1591 */
1592 if (context->in_syscall) {
1593 struct audit_context *newctx;
1594
1da177e4
LT
1595#if AUDIT_DEBUG
1596 printk(KERN_ERR
1597 "audit(:%d) pid=%d in syscall=%d;"
1598 " entering syscall=%d\n",
1599 context->serial, tsk->pid, context->major, major);
1600#endif
1601 newctx = audit_alloc_context(context->state);
1602 if (newctx) {
1603 newctx->previous = context;
1604 context = newctx;
1605 tsk->audit_context = newctx;
1606 } else {
1607 /* If we can't alloc a new context, the best we
1608 * can do is to leak memory (any pending putname
1609 * will be lost). The only other alternative is
1610 * to abandon auditing. */
1611 audit_zero_context(context, context->state);
1612 }
1613 }
1614 BUG_ON(context->in_syscall || context->name_count);
1615
1616 if (!audit_enabled)
1617 return;
1618
2fd6f58b 1619 context->arch = arch;
1da177e4
LT
1620 context->major = major;
1621 context->argv[0] = a1;
1622 context->argv[1] = a2;
1623 context->argv[2] = a3;
1624 context->argv[3] = a4;
1625
1626 state = context->state;
d51374ad
AV
1627 context->dummy = !audit_n_rules;
1628 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1629 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1630 if (likely(state == AUDIT_DISABLED))
1631 return;
1632
ce625a80 1633 context->serial = 0;
1da177e4
LT
1634 context->ctime = CURRENT_TIME;
1635 context->in_syscall = 1;
1636 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1637 context->ppid = 0;
1da177e4
LT
1638}
1639
a64e6494
AV
1640void audit_finish_fork(struct task_struct *child)
1641{
1642 struct audit_context *ctx = current->audit_context;
1643 struct audit_context *p = child->audit_context;
1644 if (!p || !ctx || !ctx->auditable)
1645 return;
1646 p->arch = ctx->arch;
1647 p->major = ctx->major;
1648 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1649 p->ctime = ctx->ctime;
1650 p->dummy = ctx->dummy;
1651 p->auditable = ctx->auditable;
1652 p->in_syscall = ctx->in_syscall;
1653 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1654 p->ppid = current->pid;
1655}
1656
b0dd25a8
RD
1657/**
1658 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1659 * @valid: success/failure flag
1660 * @return_code: syscall return value
1661 *
1662 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1663 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1664 * filtering, or because some other part of the kernel write an audit
1665 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1666 * free the names stored from getname().
1667 */
5411be59 1668void audit_syscall_exit(int valid, long return_code)
1da177e4 1669{
5411be59 1670 struct task_struct *tsk = current;
1da177e4
LT
1671 struct audit_context *context;
1672
2fd6f58b 1673 context = audit_get_context(tsk, valid, return_code);
1da177e4 1674
1da177e4 1675 if (likely(!context))
97e94c45 1676 return;
1da177e4 1677
f7056d64 1678 if (context->in_syscall && context->auditable)
e495149b 1679 audit_log_exit(context, tsk);
1da177e4
LT
1680
1681 context->in_syscall = 0;
1682 context->auditable = 0;
2fd6f58b 1683
1da177e4
LT
1684 if (context->previous) {
1685 struct audit_context *new_context = context->previous;
1686 context->previous = NULL;
1687 audit_free_context(context);
1688 tsk->audit_context = new_context;
1689 } else {
1690 audit_free_names(context);
74c3cbe3 1691 unroll_tree_refs(context, NULL, 0);
1da177e4 1692 audit_free_aux(context);
e54dc243
AG
1693 context->aux = NULL;
1694 context->aux_pids = NULL;
a5cb013d 1695 context->target_pid = 0;
e54dc243 1696 context->target_sid = 0;
4f6b434f 1697 context->sockaddr_len = 0;
f3298dc4 1698 context->type = 0;
157cf649 1699 context->fds[0] = -1;
5adc8a6a
AG
1700 kfree(context->filterkey);
1701 context->filterkey = NULL;
1da177e4
LT
1702 tsk->audit_context = context;
1703 }
1da177e4
LT
1704}
1705
74c3cbe3
AV
1706static inline void handle_one(const struct inode *inode)
1707{
1708#ifdef CONFIG_AUDIT_TREE
1709 struct audit_context *context;
1710 struct audit_tree_refs *p;
1711 struct audit_chunk *chunk;
1712 int count;
1713 if (likely(list_empty(&inode->inotify_watches)))
1714 return;
1715 context = current->audit_context;
1716 p = context->trees;
1717 count = context->tree_count;
1718 rcu_read_lock();
1719 chunk = audit_tree_lookup(inode);
1720 rcu_read_unlock();
1721 if (!chunk)
1722 return;
1723 if (likely(put_tree_ref(context, chunk)))
1724 return;
1725 if (unlikely(!grow_tree_refs(context))) {
436c405c 1726 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1727 audit_set_auditable(context);
1728 audit_put_chunk(chunk);
1729 unroll_tree_refs(context, p, count);
1730 return;
1731 }
1732 put_tree_ref(context, chunk);
1733#endif
1734}
1735
1736static void handle_path(const struct dentry *dentry)
1737{
1738#ifdef CONFIG_AUDIT_TREE
1739 struct audit_context *context;
1740 struct audit_tree_refs *p;
1741 const struct dentry *d, *parent;
1742 struct audit_chunk *drop;
1743 unsigned long seq;
1744 int count;
1745
1746 context = current->audit_context;
1747 p = context->trees;
1748 count = context->tree_count;
1749retry:
1750 drop = NULL;
1751 d = dentry;
1752 rcu_read_lock();
1753 seq = read_seqbegin(&rename_lock);
1754 for(;;) {
1755 struct inode *inode = d->d_inode;
1756 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1757 struct audit_chunk *chunk;
1758 chunk = audit_tree_lookup(inode);
1759 if (chunk) {
1760 if (unlikely(!put_tree_ref(context, chunk))) {
1761 drop = chunk;
1762 break;
1763 }
1764 }
1765 }
1766 parent = d->d_parent;
1767 if (parent == d)
1768 break;
1769 d = parent;
1770 }
1771 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1772 rcu_read_unlock();
1773 if (!drop) {
1774 /* just a race with rename */
1775 unroll_tree_refs(context, p, count);
1776 goto retry;
1777 }
1778 audit_put_chunk(drop);
1779 if (grow_tree_refs(context)) {
1780 /* OK, got more space */
1781 unroll_tree_refs(context, p, count);
1782 goto retry;
1783 }
1784 /* too bad */
1785 printk(KERN_WARNING
436c405c 1786 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1787 unroll_tree_refs(context, p, count);
1788 audit_set_auditable(context);
1789 return;
1790 }
1791 rcu_read_unlock();
1792#endif
1793}
1794
b0dd25a8
RD
1795/**
1796 * audit_getname - add a name to the list
1797 * @name: name to add
1798 *
1799 * Add a name to the list of audit names for this context.
1800 * Called from fs/namei.c:getname().
1801 */
d8945bb5 1802void __audit_getname(const char *name)
1da177e4
LT
1803{
1804 struct audit_context *context = current->audit_context;
1805
d8945bb5 1806 if (IS_ERR(name) || !name)
1da177e4
LT
1807 return;
1808
1809 if (!context->in_syscall) {
1810#if AUDIT_DEBUG == 2
1811 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1812 __FILE__, __LINE__, context->serial, name);
1813 dump_stack();
1814#endif
1815 return;
1816 }
1817 BUG_ON(context->name_count >= AUDIT_NAMES);
1818 context->names[context->name_count].name = name;
9c937dcc
AG
1819 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1820 context->names[context->name_count].name_put = 1;
1da177e4 1821 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1822 context->names[context->name_count].osid = 0;
1da177e4 1823 ++context->name_count;
44707fdf 1824 if (!context->pwd.dentry) {
8f37d47c 1825 read_lock(&current->fs->lock);
44707fdf
JB
1826 context->pwd = current->fs->pwd;
1827 path_get(&current->fs->pwd);
8f37d47c
DW
1828 read_unlock(&current->fs->lock);
1829 }
9f8dbe9c 1830
1da177e4
LT
1831}
1832
b0dd25a8
RD
1833/* audit_putname - intercept a putname request
1834 * @name: name to intercept and delay for putname
1835 *
1836 * If we have stored the name from getname in the audit context,
1837 * then we delay the putname until syscall exit.
1838 * Called from include/linux/fs.h:putname().
1839 */
1da177e4
LT
1840void audit_putname(const char *name)
1841{
1842 struct audit_context *context = current->audit_context;
1843
1844 BUG_ON(!context);
1845 if (!context->in_syscall) {
1846#if AUDIT_DEBUG == 2
1847 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1848 __FILE__, __LINE__, context->serial, name);
1849 if (context->name_count) {
1850 int i;
1851 for (i = 0; i < context->name_count; i++)
1852 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1853 context->names[i].name,
73241ccc 1854 context->names[i].name ?: "(null)");
1da177e4
LT
1855 }
1856#endif
1857 __putname(name);
1858 }
1859#if AUDIT_DEBUG
1860 else {
1861 ++context->put_count;
1862 if (context->put_count > context->name_count) {
1863 printk(KERN_ERR "%s:%d(:%d): major=%d"
1864 " in_syscall=%d putname(%p) name_count=%d"
1865 " put_count=%d\n",
1866 __FILE__, __LINE__,
1867 context->serial, context->major,
1868 context->in_syscall, name, context->name_count,
1869 context->put_count);
1870 dump_stack();
1871 }
1872 }
1873#endif
1874}
1875
5712e88f
AG
1876static int audit_inc_name_count(struct audit_context *context,
1877 const struct inode *inode)
1878{
1879 if (context->name_count >= AUDIT_NAMES) {
1880 if (inode)
1881 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1882 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1883 MAJOR(inode->i_sb->s_dev),
1884 MINOR(inode->i_sb->s_dev),
1885 inode->i_ino);
1886
1887 else
436c405c 1888 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1889 return 1;
1890 }
1891 context->name_count++;
1892#if AUDIT_DEBUG
1893 context->ino_count++;
1894#endif
1895 return 0;
1896}
1897
851f7ff5
EP
1898
1899static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1900{
1901 struct cpu_vfs_cap_data caps;
1902 int rc;
1903
1904 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1905 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1906 name->fcap.fE = 0;
1907 name->fcap_ver = 0;
1908
1909 if (!dentry)
1910 return 0;
1911
1912 rc = get_vfs_caps_from_disk(dentry, &caps);
1913 if (rc)
1914 return rc;
1915
1916 name->fcap.permitted = caps.permitted;
1917 name->fcap.inheritable = caps.inheritable;
1918 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1919 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1920
1921 return 0;
1922}
1923
1924
3e2efce0 1925/* Copy inode data into an audit_names. */
851f7ff5
EP
1926static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1927 const struct inode *inode)
8c8570fb 1928{
3e2efce0
AG
1929 name->ino = inode->i_ino;
1930 name->dev = inode->i_sb->s_dev;
1931 name->mode = inode->i_mode;
1932 name->uid = inode->i_uid;
1933 name->gid = inode->i_gid;
1934 name->rdev = inode->i_rdev;
2a862b32 1935 security_inode_getsecid(inode, &name->osid);
851f7ff5 1936 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1937}
1938
b0dd25a8
RD
1939/**
1940 * audit_inode - store the inode and device from a lookup
1941 * @name: name being audited
481968f4 1942 * @dentry: dentry being audited
b0dd25a8
RD
1943 *
1944 * Called from fs/namei.c:path_lookup().
1945 */
5a190ae6 1946void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1947{
1948 int idx;
1949 struct audit_context *context = current->audit_context;
74c3cbe3 1950 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1951
1952 if (!context->in_syscall)
1953 return;
1954 if (context->name_count
1955 && context->names[context->name_count-1].name
1956 && context->names[context->name_count-1].name == name)
1957 idx = context->name_count - 1;
1958 else if (context->name_count > 1
1959 && context->names[context->name_count-2].name
1960 && context->names[context->name_count-2].name == name)
1961 idx = context->name_count - 2;
1962 else {
1963 /* FIXME: how much do we care about inodes that have no
1964 * associated name? */
5712e88f 1965 if (audit_inc_name_count(context, inode))
1da177e4 1966 return;
5712e88f 1967 idx = context->name_count - 1;
1da177e4 1968 context->names[idx].name = NULL;
1da177e4 1969 }
74c3cbe3 1970 handle_path(dentry);
851f7ff5 1971 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1972}
1973
1974/**
1975 * audit_inode_child - collect inode info for created/removed objects
1976 * @dname: inode's dentry name
481968f4 1977 * @dentry: dentry being audited
73d3ec5a 1978 * @parent: inode of dentry parent
73241ccc
AG
1979 *
1980 * For syscalls that create or remove filesystem objects, audit_inode
1981 * can only collect information for the filesystem object's parent.
1982 * This call updates the audit context with the child's information.
1983 * Syscalls that create a new filesystem object must be hooked after
1984 * the object is created. Syscalls that remove a filesystem object
1985 * must be hooked prior, in order to capture the target inode during
1986 * unsuccessful attempts.
1987 */
5a190ae6 1988void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1989 const struct inode *parent)
73241ccc
AG
1990{
1991 int idx;
1992 struct audit_context *context = current->audit_context;
5712e88f 1993 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1994 const struct inode *inode = dentry->d_inode;
9c937dcc 1995 int dirlen = 0;
73241ccc
AG
1996
1997 if (!context->in_syscall)
1998 return;
1999
74c3cbe3
AV
2000 if (inode)
2001 handle_one(inode);
73241ccc 2002 /* determine matching parent */
f368c07d 2003 if (!dname)
5712e88f 2004 goto add_names;
73241ccc 2005
5712e88f
AG
2006 /* parent is more likely, look for it first */
2007 for (idx = 0; idx < context->name_count; idx++) {
2008 struct audit_names *n = &context->names[idx];
f368c07d 2009
5712e88f
AG
2010 if (!n->name)
2011 continue;
2012
2013 if (n->ino == parent->i_ino &&
2014 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2015 n->name_len = dirlen; /* update parent data in place */
2016 found_parent = n->name;
2017 goto add_names;
f368c07d 2018 }
5712e88f 2019 }
73241ccc 2020
5712e88f
AG
2021 /* no matching parent, look for matching child */
2022 for (idx = 0; idx < context->name_count; idx++) {
2023 struct audit_names *n = &context->names[idx];
2024
2025 if (!n->name)
2026 continue;
2027
2028 /* strcmp() is the more likely scenario */
2029 if (!strcmp(dname, n->name) ||
2030 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2031 if (inode)
851f7ff5 2032 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2033 else
2034 n->ino = (unsigned long)-1;
2035 found_child = n->name;
2036 goto add_names;
2037 }
ac9910ce 2038 }
5712e88f
AG
2039
2040add_names:
2041 if (!found_parent) {
2042 if (audit_inc_name_count(context, parent))
ac9910ce 2043 return;
5712e88f
AG
2044 idx = context->name_count - 1;
2045 context->names[idx].name = NULL;
851f7ff5 2046 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2047 }
5712e88f
AG
2048
2049 if (!found_child) {
2050 if (audit_inc_name_count(context, inode))
2051 return;
2052 idx = context->name_count - 1;
2053
2054 /* Re-use the name belonging to the slot for a matching parent
2055 * directory. All names for this context are relinquished in
2056 * audit_free_names() */
2057 if (found_parent) {
2058 context->names[idx].name = found_parent;
2059 context->names[idx].name_len = AUDIT_NAME_FULL;
2060 /* don't call __putname() */
2061 context->names[idx].name_put = 0;
2062 } else {
2063 context->names[idx].name = NULL;
2064 }
2065
2066 if (inode)
851f7ff5 2067 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2068 else
2069 context->names[idx].ino = (unsigned long)-1;
2070 }
3e2efce0 2071}
50e437d5 2072EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2073
b0dd25a8
RD
2074/**
2075 * auditsc_get_stamp - get local copies of audit_context values
2076 * @ctx: audit_context for the task
2077 * @t: timespec to store time recorded in the audit_context
2078 * @serial: serial value that is recorded in the audit_context
2079 *
2080 * Also sets the context as auditable.
2081 */
48887e63 2082int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2083 struct timespec *t, unsigned int *serial)
1da177e4 2084{
48887e63
AV
2085 if (!ctx->in_syscall)
2086 return 0;
ce625a80
DW
2087 if (!ctx->serial)
2088 ctx->serial = audit_serial();
bfb4496e
DW
2089 t->tv_sec = ctx->ctime.tv_sec;
2090 t->tv_nsec = ctx->ctime.tv_nsec;
2091 *serial = ctx->serial;
2092 ctx->auditable = 1;
48887e63 2093 return 1;
1da177e4
LT
2094}
2095
4746ec5b
EP
2096/* global counter which is incremented every time something logs in */
2097static atomic_t session_id = ATOMIC_INIT(0);
2098
b0dd25a8
RD
2099/**
2100 * audit_set_loginuid - set a task's audit_context loginuid
2101 * @task: task whose audit context is being modified
2102 * @loginuid: loginuid value
2103 *
2104 * Returns 0.
2105 *
2106 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2107 */
456be6cd 2108int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2109{
4746ec5b 2110 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2111 struct audit_context *context = task->audit_context;
2112
bfef93a5
AV
2113 if (context && context->in_syscall) {
2114 struct audit_buffer *ab;
2115
2116 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2117 if (ab) {
2118 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2119 "old auid=%u new auid=%u"
2120 " old ses=%u new ses=%u",
c69e8d9c 2121 task->pid, task_uid(task),
4746ec5b
EP
2122 task->loginuid, loginuid,
2123 task->sessionid, sessionid);
bfef93a5 2124 audit_log_end(ab);
c0404993 2125 }
1da177e4 2126 }
4746ec5b 2127 task->sessionid = sessionid;
bfef93a5 2128 task->loginuid = loginuid;
1da177e4
LT
2129 return 0;
2130}
2131
20ca73bc
GW
2132/**
2133 * __audit_mq_open - record audit data for a POSIX MQ open
2134 * @oflag: open flag
2135 * @mode: mode bits
2136 * @u_attr: queue attributes
2137 *
20ca73bc 2138 */
564f6993 2139void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2140{
20ca73bc
GW
2141 struct audit_context *context = current->audit_context;
2142
564f6993
AV
2143 if (attr)
2144 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2145 else
2146 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2147
564f6993
AV
2148 context->mq_open.oflag = oflag;
2149 context->mq_open.mode = mode;
20ca73bc 2150
564f6993 2151 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2152}
2153
2154/**
c32c8af4 2155 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2156 * @mqdes: MQ descriptor
2157 * @msg_len: Message length
2158 * @msg_prio: Message priority
c32c8af4 2159 * @abs_timeout: Message timeout in absolute time
20ca73bc 2160 *
20ca73bc 2161 */
c32c8af4
AV
2162void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2163 const struct timespec *abs_timeout)
20ca73bc 2164{
20ca73bc 2165 struct audit_context *context = current->audit_context;
c32c8af4 2166 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2167
c32c8af4
AV
2168 if (abs_timeout)
2169 memcpy(p, abs_timeout, sizeof(struct timespec));
2170 else
2171 memset(p, 0, sizeof(struct timespec));
20ca73bc 2172
c32c8af4
AV
2173 context->mq_sendrecv.mqdes = mqdes;
2174 context->mq_sendrecv.msg_len = msg_len;
2175 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2176
c32c8af4 2177 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2178}
2179
2180/**
2181 * __audit_mq_notify - record audit data for a POSIX MQ notify
2182 * @mqdes: MQ descriptor
2183 * @u_notification: Notification event
2184 *
20ca73bc
GW
2185 */
2186
20114f71 2187void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2188{
20ca73bc
GW
2189 struct audit_context *context = current->audit_context;
2190
20114f71
AV
2191 if (notification)
2192 context->mq_notify.sigev_signo = notification->sigev_signo;
2193 else
2194 context->mq_notify.sigev_signo = 0;
20ca73bc 2195
20114f71
AV
2196 context->mq_notify.mqdes = mqdes;
2197 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2198}
2199
2200/**
2201 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2202 * @mqdes: MQ descriptor
2203 * @mqstat: MQ flags
2204 *
20ca73bc 2205 */
7392906e 2206void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2207{
20ca73bc 2208 struct audit_context *context = current->audit_context;
7392906e
AV
2209 context->mq_getsetattr.mqdes = mqdes;
2210 context->mq_getsetattr.mqstat = *mqstat;
2211 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2212}
2213
b0dd25a8 2214/**
073115d6
SG
2215 * audit_ipc_obj - record audit data for ipc object
2216 * @ipcp: ipc permissions
2217 *
073115d6 2218 */
a33e6751 2219void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2220{
073115d6 2221 struct audit_context *context = current->audit_context;
a33e6751
AV
2222 context->ipc.uid = ipcp->uid;
2223 context->ipc.gid = ipcp->gid;
2224 context->ipc.mode = ipcp->mode;
e816f370 2225 context->ipc.has_perm = 0;
a33e6751
AV
2226 security_ipc_getsecid(ipcp, &context->ipc.osid);
2227 context->type = AUDIT_IPC;
073115d6
SG
2228}
2229
2230/**
2231 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2232 * @qbytes: msgq bytes
2233 * @uid: msgq user id
2234 * @gid: msgq group id
2235 * @mode: msgq mode (permissions)
2236 *
e816f370 2237 * Called only after audit_ipc_obj().
b0dd25a8 2238 */
e816f370 2239void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2240{
1da177e4
LT
2241 struct audit_context *context = current->audit_context;
2242
e816f370
AV
2243 context->ipc.qbytes = qbytes;
2244 context->ipc.perm_uid = uid;
2245 context->ipc.perm_gid = gid;
2246 context->ipc.perm_mode = mode;
2247 context->ipc.has_perm = 1;
1da177e4 2248}
c2f0c7c3 2249
473ae30b
AV
2250int audit_bprm(struct linux_binprm *bprm)
2251{
2252 struct audit_aux_data_execve *ax;
2253 struct audit_context *context = current->audit_context;
473ae30b 2254
5ac3a9c2 2255 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2256 return 0;
2257
bdf4c48a 2258 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2259 if (!ax)
2260 return -ENOMEM;
2261
2262 ax->argc = bprm->argc;
2263 ax->envc = bprm->envc;
bdf4c48a 2264 ax->mm = bprm->mm;
473ae30b
AV
2265 ax->d.type = AUDIT_EXECVE;
2266 ax->d.next = context->aux;
2267 context->aux = (void *)ax;
2268 return 0;
2269}
2270
2271
b0dd25a8
RD
2272/**
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2275 * @args: args array
2276 *
b0dd25a8 2277 */
f3298dc4 2278void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2279{
3ec3b2fb
DW
2280 struct audit_context *context = current->audit_context;
2281
5ac3a9c2 2282 if (likely(!context || context->dummy))
f3298dc4 2283 return;
3ec3b2fb 2284
f3298dc4
AV
2285 context->type = AUDIT_SOCKETCALL;
2286 context->socketcall.nargs = nargs;
2287 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2288}
2289
db349509
AV
2290/**
2291 * __audit_fd_pair - record audit data for pipe and socketpair
2292 * @fd1: the first file descriptor
2293 * @fd2: the second file descriptor
2294 *
db349509 2295 */
157cf649 2296void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2297{
2298 struct audit_context *context = current->audit_context;
157cf649
AV
2299 context->fds[0] = fd1;
2300 context->fds[1] = fd2;
db349509
AV
2301}
2302
b0dd25a8
RD
2303/**
2304 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2305 * @len: data length in user space
2306 * @a: data address in kernel space
2307 *
2308 * Returns 0 for success or NULL context or < 0 on error.
2309 */
3ec3b2fb
DW
2310int audit_sockaddr(int len, void *a)
2311{
3ec3b2fb
DW
2312 struct audit_context *context = current->audit_context;
2313
5ac3a9c2 2314 if (likely(!context || context->dummy))
3ec3b2fb
DW
2315 return 0;
2316
4f6b434f
AV
2317 if (!context->sockaddr) {
2318 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2319 if (!p)
2320 return -ENOMEM;
2321 context->sockaddr = p;
2322 }
3ec3b2fb 2323
4f6b434f
AV
2324 context->sockaddr_len = len;
2325 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2326 return 0;
2327}
2328
a5cb013d
AV
2329void __audit_ptrace(struct task_struct *t)
2330{
2331 struct audit_context *context = current->audit_context;
2332
2333 context->target_pid = t->pid;
c2a7780e 2334 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2335 context->target_uid = task_uid(t);
4746ec5b 2336 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2337 security_task_getsecid(t, &context->target_sid);
c2a7780e 2338 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2339}
2340
b0dd25a8
RD
2341/**
2342 * audit_signal_info - record signal info for shutting down audit subsystem
2343 * @sig: signal value
2344 * @t: task being signaled
2345 *
2346 * If the audit subsystem is being terminated, record the task (pid)
2347 * and uid that is doing that.
2348 */
e54dc243 2349int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2350{
e54dc243
AG
2351 struct audit_aux_data_pids *axp;
2352 struct task_struct *tsk = current;
2353 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2354 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2355
175fc484 2356 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2357 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2358 audit_sig_pid = tsk->pid;
bfef93a5
AV
2359 if (tsk->loginuid != -1)
2360 audit_sig_uid = tsk->loginuid;
175fc484 2361 else
c69e8d9c 2362 audit_sig_uid = uid;
2a862b32 2363 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2364 }
2365 if (!audit_signals || audit_dummy_context())
2366 return 0;
c2f0c7c3 2367 }
e54dc243 2368
e54dc243
AG
2369 /* optimize the common case by putting first signal recipient directly
2370 * in audit_context */
2371 if (!ctx->target_pid) {
2372 ctx->target_pid = t->tgid;
c2a7780e 2373 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2374 ctx->target_uid = t_uid;
4746ec5b 2375 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2376 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2377 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2378 return 0;
2379 }
2380
2381 axp = (void *)ctx->aux_pids;
2382 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2383 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2384 if (!axp)
2385 return -ENOMEM;
2386
2387 axp->d.type = AUDIT_OBJ_PID;
2388 axp->d.next = ctx->aux_pids;
2389 ctx->aux_pids = (void *)axp;
2390 }
88ae704c 2391 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2392
2393 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2394 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2395 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2396 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2397 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2398 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2399 axp->pid_count++;
2400
2401 return 0;
c2f0c7c3 2402}
0a4ff8c2 2403
3fc689e9
EP
2404/**
2405 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2406 * @bprm: pointer to the bprm being processed
2407 * @new: the proposed new credentials
2408 * @old: the old credentials
3fc689e9
EP
2409 *
2410 * Simply check if the proc already has the caps given by the file and if not
2411 * store the priv escalation info for later auditing at the end of the syscall
2412 *
3fc689e9
EP
2413 * -Eric
2414 */
d84f4f99
DH
2415int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2416 const struct cred *new, const struct cred *old)
3fc689e9
EP
2417{
2418 struct audit_aux_data_bprm_fcaps *ax;
2419 struct audit_context *context = current->audit_context;
2420 struct cpu_vfs_cap_data vcaps;
2421 struct dentry *dentry;
2422
2423 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2424 if (!ax)
d84f4f99 2425 return -ENOMEM;
3fc689e9
EP
2426
2427 ax->d.type = AUDIT_BPRM_FCAPS;
2428 ax->d.next = context->aux;
2429 context->aux = (void *)ax;
2430
2431 dentry = dget(bprm->file->f_dentry);
2432 get_vfs_caps_from_disk(dentry, &vcaps);
2433 dput(dentry);
2434
2435 ax->fcap.permitted = vcaps.permitted;
2436 ax->fcap.inheritable = vcaps.inheritable;
2437 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2438 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2439
d84f4f99
DH
2440 ax->old_pcap.permitted = old->cap_permitted;
2441 ax->old_pcap.inheritable = old->cap_inheritable;
2442 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2443
d84f4f99
DH
2444 ax->new_pcap.permitted = new->cap_permitted;
2445 ax->new_pcap.inheritable = new->cap_inheritable;
2446 ax->new_pcap.effective = new->cap_effective;
2447 return 0;
3fc689e9
EP
2448}
2449
e68b75a0
EP
2450/**
2451 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2452 * @pid: target pid of the capset call
2453 * @new: the new credentials
2454 * @old: the old (current) credentials
e68b75a0
EP
2455 *
2456 * Record the aguments userspace sent to sys_capset for later printing by the
2457 * audit system if applicable
2458 */
d84f4f99
DH
2459int __audit_log_capset(pid_t pid,
2460 const struct cred *new, const struct cred *old)
e68b75a0
EP
2461{
2462 struct audit_aux_data_capset *ax;
2463 struct audit_context *context = current->audit_context;
2464
2465 if (likely(!audit_enabled || !context || context->dummy))
2466 return 0;
2467
2468 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2469 if (!ax)
2470 return -ENOMEM;
2471
2472 ax->d.type = AUDIT_CAPSET;
2473 ax->d.next = context->aux;
2474 context->aux = (void *)ax;
2475
2476 ax->pid = pid;
d84f4f99
DH
2477 ax->cap.effective = new->cap_effective;
2478 ax->cap.inheritable = new->cap_effective;
2479 ax->cap.permitted = new->cap_permitted;
e68b75a0
EP
2480
2481 return 0;
2482}
2483
0a4ff8c2
SG
2484/**
2485 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2486 * @signr: signal value
0a4ff8c2
SG
2487 *
2488 * If a process ends with a core dump, something fishy is going on and we
2489 * should record the event for investigation.
2490 */
2491void audit_core_dumps(long signr)
2492{
2493 struct audit_buffer *ab;
2494 u32 sid;
76aac0e9
DH
2495 uid_t auid = audit_get_loginuid(current), uid;
2496 gid_t gid;
4746ec5b 2497 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2498
2499 if (!audit_enabled)
2500 return;
2501
2502 if (signr == SIGQUIT) /* don't care for those */
2503 return;
2504
2505 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2506 current_uid_gid(&uid, &gid);
4746ec5b 2507 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2508 auid, uid, gid, sessionid);
2a862b32 2509 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2510 if (sid) {
2511 char *ctx = NULL;
2512 u32 len;
2513
2a862b32 2514 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2515 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2516 else {
0a4ff8c2 2517 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2518 security_release_secctx(ctx, len);
2519 }
0a4ff8c2
SG
2520 }
2521 audit_log_format(ab, " pid=%d comm=", current->pid);
2522 audit_log_untrustedstring(ab, current->comm);
2523 audit_log_format(ab, " sig=%ld", signr);
2524 audit_log_end(ab);
2525}