sanitize audit_mq_getsetattr()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
20ca73bc
GW
127struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132};
133
134struct audit_aux_data_mq_sendrecv {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 size_t msg_len;
138 unsigned int msg_prio;
139 struct timespec abs_timeout;
140};
141
142struct audit_aux_data_mq_notify {
143 struct audit_aux_data d;
144 mqd_t mqdes;
145 struct sigevent notification;
146};
147
473ae30b
AV
148struct audit_aux_data_execve {
149 struct audit_aux_data d;
150 int argc;
151 int envc;
bdf4c48a 152 struct mm_struct *mm;
473ae30b
AV
153};
154
db349509
AV
155struct audit_aux_data_fd_pair {
156 struct audit_aux_data d;
157 int fd[2];
158};
159
e54dc243
AG
160struct audit_aux_data_pids {
161 struct audit_aux_data d;
162 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
163 uid_t target_auid[AUDIT_AUX_PIDS];
164 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 165 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 166 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 167 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
168 int pid_count;
169};
170
3fc689e9
EP
171struct audit_aux_data_bprm_fcaps {
172 struct audit_aux_data d;
173 struct audit_cap_data fcap;
174 unsigned int fcap_ver;
175 struct audit_cap_data old_pcap;
176 struct audit_cap_data new_pcap;
177};
178
e68b75a0
EP
179struct audit_aux_data_capset {
180 struct audit_aux_data d;
181 pid_t pid;
182 struct audit_cap_data cap;
183};
184
74c3cbe3
AV
185struct audit_tree_refs {
186 struct audit_tree_refs *next;
187 struct audit_chunk *c[31];
188};
189
1da177e4
LT
190/* The per-task audit context. */
191struct audit_context {
d51374ad 192 int dummy; /* must be the first element */
1da177e4
LT
193 int in_syscall; /* 1 if task is in a syscall */
194 enum audit_state state;
195 unsigned int serial; /* serial number for record */
196 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
197 int major; /* syscall number */
198 unsigned long argv[4]; /* syscall arguments */
199 int return_valid; /* return code is valid */
2fd6f58b 200 long return_code;/* syscall return code */
1da177e4
LT
201 int auditable; /* 1 if record should be written */
202 int name_count;
203 struct audit_names names[AUDIT_NAMES];
5adc8a6a 204 char * filterkey; /* key for rule that triggered record */
44707fdf 205 struct path pwd;
1da177e4
LT
206 struct audit_context *previous; /* For nested syscalls */
207 struct audit_aux_data *aux;
e54dc243 208 struct audit_aux_data *aux_pids;
4f6b434f
AV
209 struct sockaddr_storage *sockaddr;
210 size_t sockaddr_len;
1da177e4 211 /* Save things to print about task_struct */
f46038ff 212 pid_t pid, ppid;
1da177e4
LT
213 uid_t uid, euid, suid, fsuid;
214 gid_t gid, egid, sgid, fsgid;
215 unsigned long personality;
2fd6f58b 216 int arch;
1da177e4 217
a5cb013d 218 pid_t target_pid;
c2a7780e
EP
219 uid_t target_auid;
220 uid_t target_uid;
4746ec5b 221 unsigned int target_sessionid;
a5cb013d 222 u32 target_sid;
c2a7780e 223 char target_comm[TASK_COMM_LEN];
a5cb013d 224
74c3cbe3
AV
225 struct audit_tree_refs *trees, *first_trees;
226 int tree_count;
227
f3298dc4
AV
228 int type;
229 union {
230 struct {
231 int nargs;
232 long args[6];
233 } socketcall;
a33e6751
AV
234 struct {
235 uid_t uid;
236 gid_t gid;
237 mode_t mode;
238 u32 osid;
e816f370
AV
239 int has_perm;
240 uid_t perm_uid;
241 gid_t perm_gid;
242 mode_t perm_mode;
243 unsigned long qbytes;
a33e6751 244 } ipc;
7392906e
AV
245 struct {
246 mqd_t mqdes;
247 struct mq_attr mqstat;
248 } mq_getsetattr;
f3298dc4
AV
249 };
250
1da177e4
LT
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
55669bfa
AV
257#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
258static inline int open_arg(int flags, int mask)
259{
260 int n = ACC_MODE(flags);
261 if (flags & (O_TRUNC | O_CREAT))
262 n |= AUDIT_PERM_WRITE;
263 return n & mask;
264}
265
266static int audit_match_perm(struct audit_context *ctx, int mask)
267{
c4bacefb 268 unsigned n;
1a61c88d 269 if (unlikely(!ctx))
270 return 0;
c4bacefb 271 n = ctx->major;
dbda4c0b 272
55669bfa
AV
273 switch (audit_classify_syscall(ctx->arch, n)) {
274 case 0: /* native */
275 if ((mask & AUDIT_PERM_WRITE) &&
276 audit_match_class(AUDIT_CLASS_WRITE, n))
277 return 1;
278 if ((mask & AUDIT_PERM_READ) &&
279 audit_match_class(AUDIT_CLASS_READ, n))
280 return 1;
281 if ((mask & AUDIT_PERM_ATTR) &&
282 audit_match_class(AUDIT_CLASS_CHATTR, n))
283 return 1;
284 return 0;
285 case 1: /* 32bit on biarch */
286 if ((mask & AUDIT_PERM_WRITE) &&
287 audit_match_class(AUDIT_CLASS_WRITE_32, n))
288 return 1;
289 if ((mask & AUDIT_PERM_READ) &&
290 audit_match_class(AUDIT_CLASS_READ_32, n))
291 return 1;
292 if ((mask & AUDIT_PERM_ATTR) &&
293 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
294 return 1;
295 return 0;
296 case 2: /* open */
297 return mask & ACC_MODE(ctx->argv[1]);
298 case 3: /* openat */
299 return mask & ACC_MODE(ctx->argv[2]);
300 case 4: /* socketcall */
301 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
302 case 5: /* execve */
303 return mask & AUDIT_PERM_EXEC;
304 default:
305 return 0;
306 }
307}
308
8b67dca9
AV
309static int audit_match_filetype(struct audit_context *ctx, int which)
310{
311 unsigned index = which & ~S_IFMT;
312 mode_t mode = which & S_IFMT;
1a61c88d 313
314 if (unlikely(!ctx))
315 return 0;
316
8b67dca9
AV
317 if (index >= ctx->name_count)
318 return 0;
319 if (ctx->names[index].ino == -1)
320 return 0;
321 if ((ctx->names[index].mode ^ mode) & S_IFMT)
322 return 0;
323 return 1;
324}
325
74c3cbe3
AV
326/*
327 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
328 * ->first_trees points to its beginning, ->trees - to the current end of data.
329 * ->tree_count is the number of free entries in array pointed to by ->trees.
330 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
331 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
332 * it's going to remain 1-element for almost any setup) until we free context itself.
333 * References in it _are_ dropped - at the same time we free/drop aux stuff.
334 */
335
336#ifdef CONFIG_AUDIT_TREE
337static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
338{
339 struct audit_tree_refs *p = ctx->trees;
340 int left = ctx->tree_count;
341 if (likely(left)) {
342 p->c[--left] = chunk;
343 ctx->tree_count = left;
344 return 1;
345 }
346 if (!p)
347 return 0;
348 p = p->next;
349 if (p) {
350 p->c[30] = chunk;
351 ctx->trees = p;
352 ctx->tree_count = 30;
353 return 1;
354 }
355 return 0;
356}
357
358static int grow_tree_refs(struct audit_context *ctx)
359{
360 struct audit_tree_refs *p = ctx->trees;
361 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
362 if (!ctx->trees) {
363 ctx->trees = p;
364 return 0;
365 }
366 if (p)
367 p->next = ctx->trees;
368 else
369 ctx->first_trees = ctx->trees;
370 ctx->tree_count = 31;
371 return 1;
372}
373#endif
374
375static void unroll_tree_refs(struct audit_context *ctx,
376 struct audit_tree_refs *p, int count)
377{
378#ifdef CONFIG_AUDIT_TREE
379 struct audit_tree_refs *q;
380 int n;
381 if (!p) {
382 /* we started with empty chain */
383 p = ctx->first_trees;
384 count = 31;
385 /* if the very first allocation has failed, nothing to do */
386 if (!p)
387 return;
388 }
389 n = count;
390 for (q = p; q != ctx->trees; q = q->next, n = 31) {
391 while (n--) {
392 audit_put_chunk(q->c[n]);
393 q->c[n] = NULL;
394 }
395 }
396 while (n-- > ctx->tree_count) {
397 audit_put_chunk(q->c[n]);
398 q->c[n] = NULL;
399 }
400 ctx->trees = p;
401 ctx->tree_count = count;
402#endif
403}
404
405static void free_tree_refs(struct audit_context *ctx)
406{
407 struct audit_tree_refs *p, *q;
408 for (p = ctx->first_trees; p; p = q) {
409 q = p->next;
410 kfree(p);
411 }
412}
413
414static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
415{
416#ifdef CONFIG_AUDIT_TREE
417 struct audit_tree_refs *p;
418 int n;
419 if (!tree)
420 return 0;
421 /* full ones */
422 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
423 for (n = 0; n < 31; n++)
424 if (audit_tree_match(p->c[n], tree))
425 return 1;
426 }
427 /* partial */
428 if (p) {
429 for (n = ctx->tree_count; n < 31; n++)
430 if (audit_tree_match(p->c[n], tree))
431 return 1;
432 }
433#endif
434 return 0;
435}
436
f368c07d 437/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
438/* Compare a task_struct with an audit_rule. Return 1 on match, 0
439 * otherwise. */
440static int audit_filter_rules(struct task_struct *tsk,
93315ed6 441 struct audit_krule *rule,
1da177e4 442 struct audit_context *ctx,
f368c07d 443 struct audit_names *name,
1da177e4
LT
444 enum audit_state *state)
445{
c69e8d9c 446 const struct cred *cred = get_task_cred(tsk);
2ad312d2 447 int i, j, need_sid = 1;
3dc7e315
DG
448 u32 sid;
449
1da177e4 450 for (i = 0; i < rule->field_count; i++) {
93315ed6 451 struct audit_field *f = &rule->fields[i];
1da177e4
LT
452 int result = 0;
453
93315ed6 454 switch (f->type) {
1da177e4 455 case AUDIT_PID:
93315ed6 456 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 457 break;
3c66251e 458 case AUDIT_PPID:
419c58f1
AV
459 if (ctx) {
460 if (!ctx->ppid)
461 ctx->ppid = sys_getppid();
3c66251e 462 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 463 }
3c66251e 464 break;
1da177e4 465 case AUDIT_UID:
b6dff3ec 466 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
467 break;
468 case AUDIT_EUID:
b6dff3ec 469 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_SUID:
b6dff3ec 472 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_FSUID:
b6dff3ec 475 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_GID:
b6dff3ec 478 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_EGID:
b6dff3ec 481 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_SGID:
b6dff3ec 484 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
485 break;
486 case AUDIT_FSGID:
b6dff3ec 487 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
488 break;
489 case AUDIT_PERS:
93315ed6 490 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 491 break;
2fd6f58b 492 case AUDIT_ARCH:
9f8dbe9c 493 if (ctx)
93315ed6 494 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 495 break;
1da177e4
LT
496
497 case AUDIT_EXIT:
498 if (ctx && ctx->return_valid)
93315ed6 499 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
500 break;
501 case AUDIT_SUCCESS:
b01f2cc1 502 if (ctx && ctx->return_valid) {
93315ed6
AG
503 if (f->val)
504 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 505 else
93315ed6 506 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 507 }
1da177e4
LT
508 break;
509 case AUDIT_DEVMAJOR:
f368c07d
AG
510 if (name)
511 result = audit_comparator(MAJOR(name->dev),
512 f->op, f->val);
513 else if (ctx) {
1da177e4 514 for (j = 0; j < ctx->name_count; j++) {
93315ed6 515 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
516 ++result;
517 break;
518 }
519 }
520 }
521 break;
522 case AUDIT_DEVMINOR:
f368c07d
AG
523 if (name)
524 result = audit_comparator(MINOR(name->dev),
525 f->op, f->val);
526 else if (ctx) {
1da177e4 527 for (j = 0; j < ctx->name_count; j++) {
93315ed6 528 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
529 ++result;
530 break;
531 }
532 }
533 }
534 break;
535 case AUDIT_INODE:
f368c07d 536 if (name)
9c937dcc 537 result = (name->ino == f->val);
f368c07d 538 else if (ctx) {
1da177e4 539 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 540 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
541 ++result;
542 break;
543 }
544 }
545 }
546 break;
f368c07d
AG
547 case AUDIT_WATCH:
548 if (name && rule->watch->ino != (unsigned long)-1)
549 result = (name->dev == rule->watch->dev &&
9c937dcc 550 name->ino == rule->watch->ino);
f368c07d 551 break;
74c3cbe3
AV
552 case AUDIT_DIR:
553 if (ctx)
554 result = match_tree_refs(ctx, rule->tree);
555 break;
1da177e4
LT
556 case AUDIT_LOGINUID:
557 result = 0;
558 if (ctx)
bfef93a5 559 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 560 break;
3a6b9f85
DG
561 case AUDIT_SUBJ_USER:
562 case AUDIT_SUBJ_ROLE:
563 case AUDIT_SUBJ_TYPE:
564 case AUDIT_SUBJ_SEN:
565 case AUDIT_SUBJ_CLR:
3dc7e315
DG
566 /* NOTE: this may return negative values indicating
567 a temporary error. We simply treat this as a
568 match for now to avoid losing information that
569 may be wanted. An error message will also be
570 logged upon error */
04305e4a 571 if (f->lsm_rule) {
2ad312d2 572 if (need_sid) {
2a862b32 573 security_task_getsecid(tsk, &sid);
2ad312d2
SG
574 need_sid = 0;
575 }
d7a96f3a 576 result = security_audit_rule_match(sid, f->type,
3dc7e315 577 f->op,
04305e4a 578 f->lsm_rule,
3dc7e315 579 ctx);
2ad312d2 580 }
3dc7e315 581 break;
6e5a2d1d
DG
582 case AUDIT_OBJ_USER:
583 case AUDIT_OBJ_ROLE:
584 case AUDIT_OBJ_TYPE:
585 case AUDIT_OBJ_LEV_LOW:
586 case AUDIT_OBJ_LEV_HIGH:
587 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
588 also applies here */
04305e4a 589 if (f->lsm_rule) {
6e5a2d1d
DG
590 /* Find files that match */
591 if (name) {
d7a96f3a 592 result = security_audit_rule_match(
6e5a2d1d 593 name->osid, f->type, f->op,
04305e4a 594 f->lsm_rule, ctx);
6e5a2d1d
DG
595 } else if (ctx) {
596 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 597 if (security_audit_rule_match(
6e5a2d1d
DG
598 ctx->names[j].osid,
599 f->type, f->op,
04305e4a 600 f->lsm_rule, ctx)) {
6e5a2d1d
DG
601 ++result;
602 break;
603 }
604 }
605 }
606 /* Find ipc objects that match */
a33e6751
AV
607 if (!ctx || ctx->type != AUDIT_IPC)
608 break;
609 if (security_audit_rule_match(ctx->ipc.osid,
610 f->type, f->op,
611 f->lsm_rule, ctx))
612 ++result;
6e5a2d1d
DG
613 }
614 break;
1da177e4
LT
615 case AUDIT_ARG0:
616 case AUDIT_ARG1:
617 case AUDIT_ARG2:
618 case AUDIT_ARG3:
619 if (ctx)
93315ed6 620 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 621 break;
5adc8a6a
AG
622 case AUDIT_FILTERKEY:
623 /* ignore this field for filtering */
624 result = 1;
625 break;
55669bfa
AV
626 case AUDIT_PERM:
627 result = audit_match_perm(ctx, f->val);
628 break;
8b67dca9
AV
629 case AUDIT_FILETYPE:
630 result = audit_match_filetype(ctx, f->val);
631 break;
1da177e4
LT
632 }
633
c69e8d9c
DH
634 if (!result) {
635 put_cred(cred);
1da177e4 636 return 0;
c69e8d9c 637 }
1da177e4 638 }
980dfb0d 639 if (rule->filterkey && ctx)
5adc8a6a 640 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
641 switch (rule->action) {
642 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
643 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
644 }
c69e8d9c 645 put_cred(cred);
1da177e4
LT
646 return 1;
647}
648
649/* At process creation time, we can determine if system-call auditing is
650 * completely disabled for this task. Since we only have the task
651 * structure at this point, we can only check uid and gid.
652 */
653static enum audit_state audit_filter_task(struct task_struct *tsk)
654{
655 struct audit_entry *e;
656 enum audit_state state;
657
658 rcu_read_lock();
0f45aa18 659 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 660 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
661 rcu_read_unlock();
662 return state;
663 }
664 }
665 rcu_read_unlock();
666 return AUDIT_BUILD_CONTEXT;
667}
668
669/* At syscall entry and exit time, this filter is called if the
670 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 671 * also not high enough that we already know we have to write an audit
b0dd25a8 672 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
673 */
674static enum audit_state audit_filter_syscall(struct task_struct *tsk,
675 struct audit_context *ctx,
676 struct list_head *list)
677{
678 struct audit_entry *e;
c3896495 679 enum audit_state state;
1da177e4 680
351bb722 681 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
682 return AUDIT_DISABLED;
683
1da177e4 684 rcu_read_lock();
c3896495 685 if (!list_empty(list)) {
b63862f4
DK
686 int word = AUDIT_WORD(ctx->major);
687 int bit = AUDIT_BIT(ctx->major);
688
689 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
690 if ((e->rule.mask[word] & bit) == bit &&
691 audit_filter_rules(tsk, &e->rule, ctx, NULL,
692 &state)) {
693 rcu_read_unlock();
694 return state;
695 }
696 }
697 }
698 rcu_read_unlock();
699 return AUDIT_BUILD_CONTEXT;
700}
701
702/* At syscall exit time, this filter is called if any audit_names[] have been
703 * collected during syscall processing. We only check rules in sublists at hash
704 * buckets applicable to the inode numbers in audit_names[].
705 * Regarding audit_state, same rules apply as for audit_filter_syscall().
706 */
707enum audit_state audit_filter_inodes(struct task_struct *tsk,
708 struct audit_context *ctx)
709{
710 int i;
711 struct audit_entry *e;
712 enum audit_state state;
713
714 if (audit_pid && tsk->tgid == audit_pid)
715 return AUDIT_DISABLED;
716
717 rcu_read_lock();
718 for (i = 0; i < ctx->name_count; i++) {
719 int word = AUDIT_WORD(ctx->major);
720 int bit = AUDIT_BIT(ctx->major);
721 struct audit_names *n = &ctx->names[i];
722 int h = audit_hash_ino((u32)n->ino);
723 struct list_head *list = &audit_inode_hash[h];
724
725 if (list_empty(list))
726 continue;
727
728 list_for_each_entry_rcu(e, list, list) {
729 if ((e->rule.mask[word] & bit) == bit &&
730 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
731 rcu_read_unlock();
732 return state;
733 }
0f45aa18
DW
734 }
735 }
736 rcu_read_unlock();
1da177e4 737 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
738}
739
f368c07d
AG
740void audit_set_auditable(struct audit_context *ctx)
741{
742 ctx->auditable = 1;
743}
744
1da177e4
LT
745static inline struct audit_context *audit_get_context(struct task_struct *tsk,
746 int return_valid,
747 int return_code)
748{
749 struct audit_context *context = tsk->audit_context;
750
751 if (likely(!context))
752 return NULL;
753 context->return_valid = return_valid;
f701b75e
EP
754
755 /*
756 * we need to fix up the return code in the audit logs if the actual
757 * return codes are later going to be fixed up by the arch specific
758 * signal handlers
759 *
760 * This is actually a test for:
761 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
762 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
763 *
764 * but is faster than a bunch of ||
765 */
766 if (unlikely(return_code <= -ERESTARTSYS) &&
767 (return_code >= -ERESTART_RESTARTBLOCK) &&
768 (return_code != -ENOIOCTLCMD))
769 context->return_code = -EINTR;
770 else
771 context->return_code = return_code;
1da177e4 772
d51374ad 773 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 774 enum audit_state state;
f368c07d 775
0f45aa18 776 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
777 if (state == AUDIT_RECORD_CONTEXT) {
778 context->auditable = 1;
779 goto get_context;
780 }
781
782 state = audit_filter_inodes(tsk, context);
1da177e4
LT
783 if (state == AUDIT_RECORD_CONTEXT)
784 context->auditable = 1;
f368c07d 785
1da177e4
LT
786 }
787
f368c07d 788get_context:
3f2792ff 789
1da177e4
LT
790 tsk->audit_context = NULL;
791 return context;
792}
793
794static inline void audit_free_names(struct audit_context *context)
795{
796 int i;
797
798#if AUDIT_DEBUG == 2
799 if (context->auditable
800 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 801 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
802 " name_count=%d put_count=%d"
803 " ino_count=%d [NOT freeing]\n",
73241ccc 804 __FILE__, __LINE__,
1da177e4
LT
805 context->serial, context->major, context->in_syscall,
806 context->name_count, context->put_count,
807 context->ino_count);
8c8570fb 808 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
809 printk(KERN_ERR "names[%d] = %p = %s\n", i,
810 context->names[i].name,
73241ccc 811 context->names[i].name ?: "(null)");
8c8570fb 812 }
1da177e4
LT
813 dump_stack();
814 return;
815 }
816#endif
817#if AUDIT_DEBUG
818 context->put_count = 0;
819 context->ino_count = 0;
820#endif
821
8c8570fb 822 for (i = 0; i < context->name_count; i++) {
9c937dcc 823 if (context->names[i].name && context->names[i].name_put)
1da177e4 824 __putname(context->names[i].name);
8c8570fb 825 }
1da177e4 826 context->name_count = 0;
44707fdf
JB
827 path_put(&context->pwd);
828 context->pwd.dentry = NULL;
829 context->pwd.mnt = NULL;
1da177e4
LT
830}
831
832static inline void audit_free_aux(struct audit_context *context)
833{
834 struct audit_aux_data *aux;
835
836 while ((aux = context->aux)) {
837 context->aux = aux->next;
838 kfree(aux);
839 }
e54dc243
AG
840 while ((aux = context->aux_pids)) {
841 context->aux_pids = aux->next;
842 kfree(aux);
843 }
1da177e4
LT
844}
845
846static inline void audit_zero_context(struct audit_context *context,
847 enum audit_state state)
848{
1da177e4
LT
849 memset(context, 0, sizeof(*context));
850 context->state = state;
1da177e4
LT
851}
852
853static inline struct audit_context *audit_alloc_context(enum audit_state state)
854{
855 struct audit_context *context;
856
857 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
858 return NULL;
859 audit_zero_context(context, state);
860 return context;
861}
862
b0dd25a8
RD
863/**
864 * audit_alloc - allocate an audit context block for a task
865 * @tsk: task
866 *
867 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
868 * if necessary. Doing so turns on system call auditing for the
869 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
870 * needed.
871 */
1da177e4
LT
872int audit_alloc(struct task_struct *tsk)
873{
874 struct audit_context *context;
875 enum audit_state state;
876
b593d384 877 if (likely(!audit_ever_enabled))
1da177e4
LT
878 return 0; /* Return if not auditing. */
879
880 state = audit_filter_task(tsk);
881 if (likely(state == AUDIT_DISABLED))
882 return 0;
883
884 if (!(context = audit_alloc_context(state))) {
885 audit_log_lost("out of memory in audit_alloc");
886 return -ENOMEM;
887 }
888
1da177e4
LT
889 tsk->audit_context = context;
890 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
891 return 0;
892}
893
894static inline void audit_free_context(struct audit_context *context)
895{
896 struct audit_context *previous;
897 int count = 0;
898
899 do {
900 previous = context->previous;
901 if (previous || (count && count < 10)) {
902 ++count;
903 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
904 " freeing multiple contexts (%d)\n",
905 context->serial, context->major,
906 context->name_count, count);
907 }
908 audit_free_names(context);
74c3cbe3
AV
909 unroll_tree_refs(context, NULL, 0);
910 free_tree_refs(context);
1da177e4 911 audit_free_aux(context);
5adc8a6a 912 kfree(context->filterkey);
4f6b434f 913 kfree(context->sockaddr);
1da177e4
LT
914 kfree(context);
915 context = previous;
916 } while (context);
917 if (count >= 10)
918 printk(KERN_ERR "audit: freed %d contexts\n", count);
919}
920
161a09e7 921void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
922{
923 char *ctx = NULL;
c4823bce
AV
924 unsigned len;
925 int error;
926 u32 sid;
927
2a862b32 928 security_task_getsecid(current, &sid);
c4823bce
AV
929 if (!sid)
930 return;
8c8570fb 931
2a862b32 932 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
933 if (error) {
934 if (error != -EINVAL)
8c8570fb
DK
935 goto error_path;
936 return;
937 }
938
8c8570fb 939 audit_log_format(ab, " subj=%s", ctx);
2a862b32 940 security_release_secctx(ctx, len);
7306a0b9 941 return;
8c8570fb
DK
942
943error_path:
7306a0b9 944 audit_panic("error in audit_log_task_context");
8c8570fb
DK
945 return;
946}
947
161a09e7
JL
948EXPORT_SYMBOL(audit_log_task_context);
949
e495149b 950static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 951{
45d9bb0e
AV
952 char name[sizeof(tsk->comm)];
953 struct mm_struct *mm = tsk->mm;
219f0817
SS
954 struct vm_area_struct *vma;
955
e495149b
AV
956 /* tsk == current */
957
45d9bb0e 958 get_task_comm(name, tsk);
99e45eea
DW
959 audit_log_format(ab, " comm=");
960 audit_log_untrustedstring(ab, name);
219f0817 961
e495149b
AV
962 if (mm) {
963 down_read(&mm->mmap_sem);
964 vma = mm->mmap;
965 while (vma) {
966 if ((vma->vm_flags & VM_EXECUTABLE) &&
967 vma->vm_file) {
968 audit_log_d_path(ab, "exe=",
44707fdf 969 &vma->vm_file->f_path);
e495149b
AV
970 break;
971 }
972 vma = vma->vm_next;
219f0817 973 }
e495149b 974 up_read(&mm->mmap_sem);
219f0817 975 }
e495149b 976 audit_log_task_context(ab);
219f0817
SS
977}
978
e54dc243 979static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
980 uid_t auid, uid_t uid, unsigned int sessionid,
981 u32 sid, char *comm)
e54dc243
AG
982{
983 struct audit_buffer *ab;
2a862b32 984 char *ctx = NULL;
e54dc243
AG
985 u32 len;
986 int rc = 0;
987
988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
989 if (!ab)
6246ccab 990 return rc;
e54dc243 991
4746ec5b
EP
992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
993 uid, sessionid);
2a862b32 994 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 995 audit_log_format(ab, " obj=(none)");
e54dc243 996 rc = 1;
2a862b32
AD
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1000 }
c2a7780e
EP
1001 audit_log_format(ab, " ocomm=");
1002 audit_log_untrustedstring(ab, comm);
e54dc243 1003 audit_log_end(ab);
e54dc243
AG
1004
1005 return rc;
1006}
1007
de6bbd1d
EP
1008/*
1009 * to_send and len_sent accounting are very loose estimates. We aren't
1010 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1011 * within about 500 bytes (next page boundry)
1012 *
1013 * why snprintf? an int is up to 12 digits long. if we just assumed when
1014 * logging that a[%d]= was going to be 16 characters long we would be wasting
1015 * space in every audit message. In one 7500 byte message we can log up to
1016 * about 1000 min size arguments. That comes down to about 50% waste of space
1017 * if we didn't do the snprintf to find out how long arg_num_len was.
1018 */
1019static int audit_log_single_execve_arg(struct audit_context *context,
1020 struct audit_buffer **ab,
1021 int arg_num,
1022 size_t *len_sent,
1023 const char __user *p,
1024 char *buf)
bdf4c48a 1025{
de6bbd1d
EP
1026 char arg_num_len_buf[12];
1027 const char __user *tmp_p = p;
1028 /* how many digits are in arg_num? 3 is the length of a=\n */
1029 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1030 size_t len, len_left, to_send;
1031 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1032 unsigned int i, has_cntl = 0, too_long = 0;
1033 int ret;
1034
1035 /* strnlen_user includes the null we don't want to send */
1036 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1037
de6bbd1d
EP
1038 /*
1039 * We just created this mm, if we can't find the strings
1040 * we just copied into it something is _very_ wrong. Similar
1041 * for strings that are too long, we should not have created
1042 * any.
1043 */
b0abcfc1 1044 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1045 WARN_ON(1);
1046 send_sig(SIGKILL, current, 0);
b0abcfc1 1047 return -1;
de6bbd1d 1048 }
040b3a2d 1049
de6bbd1d
EP
1050 /* walk the whole argument looking for non-ascii chars */
1051 do {
1052 if (len_left > MAX_EXECVE_AUDIT_LEN)
1053 to_send = MAX_EXECVE_AUDIT_LEN;
1054 else
1055 to_send = len_left;
1056 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1057 /*
de6bbd1d
EP
1058 * There is no reason for this copy to be short. We just
1059 * copied them here, and the mm hasn't been exposed to user-
1060 * space yet.
bdf4c48a 1061 */
de6bbd1d 1062 if (ret) {
bdf4c48a
PZ
1063 WARN_ON(1);
1064 send_sig(SIGKILL, current, 0);
b0abcfc1 1065 return -1;
bdf4c48a 1066 }
de6bbd1d
EP
1067 buf[to_send] = '\0';
1068 has_cntl = audit_string_contains_control(buf, to_send);
1069 if (has_cntl) {
1070 /*
1071 * hex messages get logged as 2 bytes, so we can only
1072 * send half as much in each message
1073 */
1074 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1075 break;
1076 }
de6bbd1d
EP
1077 len_left -= to_send;
1078 tmp_p += to_send;
1079 } while (len_left > 0);
1080
1081 len_left = len;
1082
1083 if (len > max_execve_audit_len)
1084 too_long = 1;
1085
1086 /* rewalk the argument actually logging the message */
1087 for (i = 0; len_left > 0; i++) {
1088 int room_left;
1089
1090 if (len_left > max_execve_audit_len)
1091 to_send = max_execve_audit_len;
1092 else
1093 to_send = len_left;
1094
1095 /* do we have space left to send this argument in this ab? */
1096 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1097 if (has_cntl)
1098 room_left -= (to_send * 2);
1099 else
1100 room_left -= to_send;
1101 if (room_left < 0) {
1102 *len_sent = 0;
1103 audit_log_end(*ab);
1104 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1105 if (!*ab)
1106 return 0;
1107 }
bdf4c48a 1108
bdf4c48a 1109 /*
de6bbd1d
EP
1110 * first record needs to say how long the original string was
1111 * so we can be sure nothing was lost.
1112 */
1113 if ((i == 0) && (too_long))
422b03cf 1114 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1115 has_cntl ? 2*len : len);
1116
1117 /*
1118 * normally arguments are small enough to fit and we already
1119 * filled buf above when we checked for control characters
1120 * so don't bother with another copy_from_user
bdf4c48a 1121 */
de6bbd1d
EP
1122 if (len >= max_execve_audit_len)
1123 ret = copy_from_user(buf, p, to_send);
1124 else
1125 ret = 0;
040b3a2d 1126 if (ret) {
bdf4c48a
PZ
1127 WARN_ON(1);
1128 send_sig(SIGKILL, current, 0);
b0abcfc1 1129 return -1;
bdf4c48a 1130 }
de6bbd1d
EP
1131 buf[to_send] = '\0';
1132
1133 /* actually log it */
1134 audit_log_format(*ab, "a%d", arg_num);
1135 if (too_long)
1136 audit_log_format(*ab, "[%d]", i);
1137 audit_log_format(*ab, "=");
1138 if (has_cntl)
b556f8ad 1139 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1140 else
1141 audit_log_format(*ab, "\"%s\"", buf);
1142 audit_log_format(*ab, "\n");
1143
1144 p += to_send;
1145 len_left -= to_send;
1146 *len_sent += arg_num_len;
1147 if (has_cntl)
1148 *len_sent += to_send * 2;
1149 else
1150 *len_sent += to_send;
1151 }
1152 /* include the null we didn't log */
1153 return len + 1;
1154}
1155
1156static void audit_log_execve_info(struct audit_context *context,
1157 struct audit_buffer **ab,
1158 struct audit_aux_data_execve *axi)
1159{
1160 int i;
1161 size_t len, len_sent = 0;
1162 const char __user *p;
1163 char *buf;
bdf4c48a 1164
de6bbd1d
EP
1165 if (axi->mm != current->mm)
1166 return; /* execve failed, no additional info */
1167
1168 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1169
de6bbd1d
EP
1170 audit_log_format(*ab, "argc=%d ", axi->argc);
1171
1172 /*
1173 * we need some kernel buffer to hold the userspace args. Just
1174 * allocate one big one rather than allocating one of the right size
1175 * for every single argument inside audit_log_single_execve_arg()
1176 * should be <8k allocation so should be pretty safe.
1177 */
1178 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179 if (!buf) {
1180 audit_panic("out of memory for argv string\n");
1181 return;
bdf4c48a 1182 }
de6bbd1d
EP
1183
1184 for (i = 0; i < axi->argc; i++) {
1185 len = audit_log_single_execve_arg(context, ab, i,
1186 &len_sent, p, buf);
1187 if (len <= 0)
1188 break;
1189 p += len;
1190 }
1191 kfree(buf);
bdf4c48a
PZ
1192}
1193
851f7ff5
EP
1194static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1195{
1196 int i;
1197
1198 audit_log_format(ab, " %s=", prefix);
1199 CAP_FOR_EACH_U32(i) {
1200 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1201 }
1202}
1203
1204static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205{
1206 kernel_cap_t *perm = &name->fcap.permitted;
1207 kernel_cap_t *inh = &name->fcap.inheritable;
1208 int log = 0;
1209
1210 if (!cap_isclear(*perm)) {
1211 audit_log_cap(ab, "cap_fp", perm);
1212 log = 1;
1213 }
1214 if (!cap_isclear(*inh)) {
1215 audit_log_cap(ab, "cap_fi", inh);
1216 log = 1;
1217 }
1218
1219 if (log)
1220 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1221}
1222
a33e6751 1223static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1224{
1225 struct audit_buffer *ab;
1226 int i;
1227
1228 ab = audit_log_start(context, GFP_KERNEL, context->type);
1229 if (!ab)
1230 return;
1231
1232 switch (context->type) {
1233 case AUDIT_SOCKETCALL: {
1234 int nargs = context->socketcall.nargs;
1235 audit_log_format(ab, "nargs=%d", nargs);
1236 for (i = 0; i < nargs; i++)
1237 audit_log_format(ab, " a%d=%lx", i,
1238 context->socketcall.args[i]);
1239 break; }
a33e6751
AV
1240 case AUDIT_IPC: {
1241 u32 osid = context->ipc.osid;
1242
1243 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1244 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1245 if (osid) {
1246 char *ctx = NULL;
1247 u32 len;
1248 if (security_secid_to_secctx(osid, &ctx, &len)) {
1249 audit_log_format(ab, " osid=%u", osid);
1250 *call_panic = 1;
1251 } else {
1252 audit_log_format(ab, " obj=%s", ctx);
1253 security_release_secctx(ctx, len);
1254 }
1255 }
e816f370
AV
1256 if (context->ipc.has_perm) {
1257 audit_log_end(ab);
1258 ab = audit_log_start(context, GFP_KERNEL,
1259 AUDIT_IPC_SET_PERM);
1260 audit_log_format(ab,
1261 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1262 context->ipc.qbytes,
1263 context->ipc.perm_uid,
1264 context->ipc.perm_gid,
1265 context->ipc.perm_mode);
1266 if (!ab)
1267 return;
1268 }
a33e6751 1269 break; }
7392906e
AV
1270 case AUDIT_MQ_GETSETATTR: {
1271 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1272 audit_log_format(ab,
1273 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1274 "mq_curmsgs=%ld ",
1275 context->mq_getsetattr.mqdes,
1276 attr->mq_flags, attr->mq_maxmsg,
1277 attr->mq_msgsize, attr->mq_curmsgs);
1278 break; }
f3298dc4
AV
1279 }
1280 audit_log_end(ab);
1281}
1282
e495149b 1283static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1284{
c69e8d9c 1285 const struct cred *cred;
9c7aa6aa 1286 int i, call_panic = 0;
1da177e4 1287 struct audit_buffer *ab;
7551ced3 1288 struct audit_aux_data *aux;
a6c043a8 1289 const char *tty;
1da177e4 1290
e495149b 1291 /* tsk == current */
3f2792ff 1292 context->pid = tsk->pid;
419c58f1
AV
1293 if (!context->ppid)
1294 context->ppid = sys_getppid();
c69e8d9c
DH
1295 cred = current_cred();
1296 context->uid = cred->uid;
1297 context->gid = cred->gid;
1298 context->euid = cred->euid;
1299 context->suid = cred->suid;
b6dff3ec 1300 context->fsuid = cred->fsuid;
c69e8d9c
DH
1301 context->egid = cred->egid;
1302 context->sgid = cred->sgid;
b6dff3ec 1303 context->fsgid = cred->fsgid;
3f2792ff 1304 context->personality = tsk->personality;
e495149b
AV
1305
1306 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1307 if (!ab)
1308 return; /* audit_panic has been called */
bccf6ae0
DW
1309 audit_log_format(ab, "arch=%x syscall=%d",
1310 context->arch, context->major);
1da177e4
LT
1311 if (context->personality != PER_LINUX)
1312 audit_log_format(ab, " per=%lx", context->personality);
1313 if (context->return_valid)
9f8dbe9c 1314 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1315 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1316 context->return_code);
eb84a20e 1317
dbda4c0b 1318 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1319 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1320 tty = tsk->signal->tty->name;
a6c043a8
SG
1321 else
1322 tty = "(none)";
dbda4c0b
AC
1323 spin_unlock_irq(&tsk->sighand->siglock);
1324
1da177e4
LT
1325 audit_log_format(ab,
1326 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1327 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1328 " euid=%u suid=%u fsuid=%u"
4746ec5b 1329 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1330 context->argv[0],
1331 context->argv[1],
1332 context->argv[2],
1333 context->argv[3],
1334 context->name_count,
f46038ff 1335 context->ppid,
1da177e4 1336 context->pid,
bfef93a5 1337 tsk->loginuid,
1da177e4
LT
1338 context->uid,
1339 context->gid,
1340 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1341 context->egid, context->sgid, context->fsgid, tty,
1342 tsk->sessionid);
eb84a20e 1343
eb84a20e 1344
e495149b 1345 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1346 if (context->filterkey) {
1347 audit_log_format(ab, " key=");
1348 audit_log_untrustedstring(ab, context->filterkey);
1349 } else
1350 audit_log_format(ab, " key=(null)");
1da177e4 1351 audit_log_end(ab);
1da177e4 1352
7551ced3 1353 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1354
e495149b 1355 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1356 if (!ab)
1357 continue; /* audit_panic has been called */
1358
1da177e4 1359 switch (aux->type) {
20ca73bc
GW
1360 case AUDIT_MQ_OPEN: {
1361 struct audit_aux_data_mq_open *axi = (void *)aux;
1362 audit_log_format(ab,
1363 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1364 "mq_msgsize=%ld mq_curmsgs=%ld",
1365 axi->oflag, axi->mode, axi->attr.mq_flags,
1366 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1367 axi->attr.mq_curmsgs);
1368 break; }
1369
1370 case AUDIT_MQ_SENDRECV: {
1371 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1372 audit_log_format(ab,
1373 "mqdes=%d msg_len=%zd msg_prio=%u "
1374 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1375 axi->mqdes, axi->msg_len, axi->msg_prio,
1376 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1377 break; }
1378
1379 case AUDIT_MQ_NOTIFY: {
1380 struct audit_aux_data_mq_notify *axi = (void *)aux;
1381 audit_log_format(ab,
1382 "mqdes=%d sigev_signo=%d",
1383 axi->mqdes,
1384 axi->notification.sigev_signo);
1385 break; }
1386
473ae30b
AV
1387 case AUDIT_EXECVE: {
1388 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1389 audit_log_execve_info(context, &ab, axi);
473ae30b 1390 break; }
073115d6 1391
db349509
AV
1392 case AUDIT_FD_PAIR: {
1393 struct audit_aux_data_fd_pair *axs = (void *)aux;
1394 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1395 break; }
1396
3fc689e9
EP
1397 case AUDIT_BPRM_FCAPS: {
1398 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1399 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1400 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1401 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1402 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1403 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1404 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1405 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1406 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1407 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1408 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1409 break; }
1410
e68b75a0
EP
1411 case AUDIT_CAPSET: {
1412 struct audit_aux_data_capset *axs = (void *)aux;
1413 audit_log_format(ab, "pid=%d", axs->pid);
1414 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1415 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1416 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1417 break; }
1418
1da177e4
LT
1419 }
1420 audit_log_end(ab);
1da177e4
LT
1421 }
1422
f3298dc4 1423 if (context->type)
a33e6751 1424 show_special(context, &call_panic);
f3298dc4 1425
4f6b434f
AV
1426 if (context->sockaddr_len) {
1427 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1428 if (ab) {
1429 audit_log_format(ab, "saddr=");
1430 audit_log_n_hex(ab, (void *)context->sockaddr,
1431 context->sockaddr_len);
1432 audit_log_end(ab);
1433 }
1434 }
1435
e54dc243
AG
1436 for (aux = context->aux_pids; aux; aux = aux->next) {
1437 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1438
1439 for (i = 0; i < axs->pid_count; i++)
1440 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1441 axs->target_auid[i],
1442 axs->target_uid[i],
4746ec5b 1443 axs->target_sessionid[i],
c2a7780e
EP
1444 axs->target_sid[i],
1445 axs->target_comm[i]))
e54dc243 1446 call_panic = 1;
a5cb013d
AV
1447 }
1448
e54dc243
AG
1449 if (context->target_pid &&
1450 audit_log_pid_context(context, context->target_pid,
c2a7780e 1451 context->target_auid, context->target_uid,
4746ec5b 1452 context->target_sessionid,
c2a7780e 1453 context->target_sid, context->target_comm))
e54dc243
AG
1454 call_panic = 1;
1455
44707fdf 1456 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1457 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1458 if (ab) {
44707fdf 1459 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1460 audit_log_end(ab);
1461 }
1462 }
1da177e4 1463 for (i = 0; i < context->name_count; i++) {
9c937dcc 1464 struct audit_names *n = &context->names[i];
73241ccc 1465
e495149b 1466 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1467 if (!ab)
1468 continue; /* audit_panic has been called */
8f37d47c 1469
1da177e4 1470 audit_log_format(ab, "item=%d", i);
73241ccc 1471
9c937dcc
AG
1472 if (n->name) {
1473 switch(n->name_len) {
1474 case AUDIT_NAME_FULL:
1475 /* log the full path */
1476 audit_log_format(ab, " name=");
1477 audit_log_untrustedstring(ab, n->name);
1478 break;
1479 case 0:
1480 /* name was specified as a relative path and the
1481 * directory component is the cwd */
44707fdf 1482 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1483 break;
1484 default:
1485 /* log the name's directory component */
1486 audit_log_format(ab, " name=");
b556f8ad
EP
1487 audit_log_n_untrustedstring(ab, n->name,
1488 n->name_len);
9c937dcc
AG
1489 }
1490 } else
1491 audit_log_format(ab, " name=(null)");
1492
1493 if (n->ino != (unsigned long)-1) {
1494 audit_log_format(ab, " inode=%lu"
1495 " dev=%02x:%02x mode=%#o"
1496 " ouid=%u ogid=%u rdev=%02x:%02x",
1497 n->ino,
1498 MAJOR(n->dev),
1499 MINOR(n->dev),
1500 n->mode,
1501 n->uid,
1502 n->gid,
1503 MAJOR(n->rdev),
1504 MINOR(n->rdev));
1505 }
1506 if (n->osid != 0) {
1b50eed9
SG
1507 char *ctx = NULL;
1508 u32 len;
2a862b32 1509 if (security_secid_to_secctx(
9c937dcc
AG
1510 n->osid, &ctx, &len)) {
1511 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1512 call_panic = 2;
2a862b32 1513 } else {
1b50eed9 1514 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1515 security_release_secctx(ctx, len);
1516 }
8c8570fb
DK
1517 }
1518
851f7ff5
EP
1519 audit_log_fcaps(ab, n);
1520
1da177e4
LT
1521 audit_log_end(ab);
1522 }
c0641f28
EP
1523
1524 /* Send end of event record to help user space know we are finished */
1525 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1526 if (ab)
1527 audit_log_end(ab);
9c7aa6aa
SG
1528 if (call_panic)
1529 audit_panic("error converting sid to string");
1da177e4
LT
1530}
1531
b0dd25a8
RD
1532/**
1533 * audit_free - free a per-task audit context
1534 * @tsk: task whose audit context block to free
1535 *
fa84cb93 1536 * Called from copy_process and do_exit
b0dd25a8 1537 */
1da177e4
LT
1538void audit_free(struct task_struct *tsk)
1539{
1540 struct audit_context *context;
1541
1da177e4 1542 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1543 if (likely(!context))
1544 return;
1545
1546 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1547 * function (e.g., exit_group), then free context block.
1548 * We use GFP_ATOMIC here because we might be doing this
f5561964 1549 * in the context of the idle thread */
e495149b 1550 /* that can happen only if we are called from do_exit() */
f7056d64 1551 if (context->in_syscall && context->auditable)
e495149b 1552 audit_log_exit(context, tsk);
1da177e4
LT
1553
1554 audit_free_context(context);
1555}
1556
b0dd25a8
RD
1557/**
1558 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1559 * @arch: architecture type
1560 * @major: major syscall type (function)
1561 * @a1: additional syscall register 1
1562 * @a2: additional syscall register 2
1563 * @a3: additional syscall register 3
1564 * @a4: additional syscall register 4
1565 *
1566 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1567 * audit context was created when the task was created and the state or
1568 * filters demand the audit context be built. If the state from the
1569 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1570 * then the record will be written at syscall exit time (otherwise, it
1571 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1572 * be written).
1573 */
5411be59 1574void audit_syscall_entry(int arch, int major,
1da177e4
LT
1575 unsigned long a1, unsigned long a2,
1576 unsigned long a3, unsigned long a4)
1577{
5411be59 1578 struct task_struct *tsk = current;
1da177e4
LT
1579 struct audit_context *context = tsk->audit_context;
1580 enum audit_state state;
1581
86a1c34a
RM
1582 if (unlikely(!context))
1583 return;
1da177e4 1584
b0dd25a8
RD
1585 /*
1586 * This happens only on certain architectures that make system
1da177e4
LT
1587 * calls in kernel_thread via the entry.S interface, instead of
1588 * with direct calls. (If you are porting to a new
1589 * architecture, hitting this condition can indicate that you
1590 * got the _exit/_leave calls backward in entry.S.)
1591 *
1592 * i386 no
1593 * x86_64 no
2ef9481e 1594 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1595 *
1596 * This also happens with vm86 emulation in a non-nested manner
1597 * (entries without exits), so this case must be caught.
1598 */
1599 if (context->in_syscall) {
1600 struct audit_context *newctx;
1601
1da177e4
LT
1602#if AUDIT_DEBUG
1603 printk(KERN_ERR
1604 "audit(:%d) pid=%d in syscall=%d;"
1605 " entering syscall=%d\n",
1606 context->serial, tsk->pid, context->major, major);
1607#endif
1608 newctx = audit_alloc_context(context->state);
1609 if (newctx) {
1610 newctx->previous = context;
1611 context = newctx;
1612 tsk->audit_context = newctx;
1613 } else {
1614 /* If we can't alloc a new context, the best we
1615 * can do is to leak memory (any pending putname
1616 * will be lost). The only other alternative is
1617 * to abandon auditing. */
1618 audit_zero_context(context, context->state);
1619 }
1620 }
1621 BUG_ON(context->in_syscall || context->name_count);
1622
1623 if (!audit_enabled)
1624 return;
1625
2fd6f58b 1626 context->arch = arch;
1da177e4
LT
1627 context->major = major;
1628 context->argv[0] = a1;
1629 context->argv[1] = a2;
1630 context->argv[2] = a3;
1631 context->argv[3] = a4;
1632
1633 state = context->state;
d51374ad
AV
1634 context->dummy = !audit_n_rules;
1635 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1636 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1637 if (likely(state == AUDIT_DISABLED))
1638 return;
1639
ce625a80 1640 context->serial = 0;
1da177e4
LT
1641 context->ctime = CURRENT_TIME;
1642 context->in_syscall = 1;
1643 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1644 context->ppid = 0;
1da177e4
LT
1645}
1646
a64e6494
AV
1647void audit_finish_fork(struct task_struct *child)
1648{
1649 struct audit_context *ctx = current->audit_context;
1650 struct audit_context *p = child->audit_context;
1651 if (!p || !ctx || !ctx->auditable)
1652 return;
1653 p->arch = ctx->arch;
1654 p->major = ctx->major;
1655 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1656 p->ctime = ctx->ctime;
1657 p->dummy = ctx->dummy;
1658 p->auditable = ctx->auditable;
1659 p->in_syscall = ctx->in_syscall;
1660 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1661 p->ppid = current->pid;
1662}
1663
b0dd25a8
RD
1664/**
1665 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1666 * @valid: success/failure flag
1667 * @return_code: syscall return value
1668 *
1669 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1670 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1671 * filtering, or because some other part of the kernel write an audit
1672 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1673 * free the names stored from getname().
1674 */
5411be59 1675void audit_syscall_exit(int valid, long return_code)
1da177e4 1676{
5411be59 1677 struct task_struct *tsk = current;
1da177e4
LT
1678 struct audit_context *context;
1679
2fd6f58b 1680 context = audit_get_context(tsk, valid, return_code);
1da177e4 1681
1da177e4 1682 if (likely(!context))
97e94c45 1683 return;
1da177e4 1684
f7056d64 1685 if (context->in_syscall && context->auditable)
e495149b 1686 audit_log_exit(context, tsk);
1da177e4
LT
1687
1688 context->in_syscall = 0;
1689 context->auditable = 0;
2fd6f58b 1690
1da177e4
LT
1691 if (context->previous) {
1692 struct audit_context *new_context = context->previous;
1693 context->previous = NULL;
1694 audit_free_context(context);
1695 tsk->audit_context = new_context;
1696 } else {
1697 audit_free_names(context);
74c3cbe3 1698 unroll_tree_refs(context, NULL, 0);
1da177e4 1699 audit_free_aux(context);
e54dc243
AG
1700 context->aux = NULL;
1701 context->aux_pids = NULL;
a5cb013d 1702 context->target_pid = 0;
e54dc243 1703 context->target_sid = 0;
4f6b434f 1704 context->sockaddr_len = 0;
f3298dc4 1705 context->type = 0;
5adc8a6a
AG
1706 kfree(context->filterkey);
1707 context->filterkey = NULL;
1da177e4
LT
1708 tsk->audit_context = context;
1709 }
1da177e4
LT
1710}
1711
74c3cbe3
AV
1712static inline void handle_one(const struct inode *inode)
1713{
1714#ifdef CONFIG_AUDIT_TREE
1715 struct audit_context *context;
1716 struct audit_tree_refs *p;
1717 struct audit_chunk *chunk;
1718 int count;
1719 if (likely(list_empty(&inode->inotify_watches)))
1720 return;
1721 context = current->audit_context;
1722 p = context->trees;
1723 count = context->tree_count;
1724 rcu_read_lock();
1725 chunk = audit_tree_lookup(inode);
1726 rcu_read_unlock();
1727 if (!chunk)
1728 return;
1729 if (likely(put_tree_ref(context, chunk)))
1730 return;
1731 if (unlikely(!grow_tree_refs(context))) {
436c405c 1732 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1733 audit_set_auditable(context);
1734 audit_put_chunk(chunk);
1735 unroll_tree_refs(context, p, count);
1736 return;
1737 }
1738 put_tree_ref(context, chunk);
1739#endif
1740}
1741
1742static void handle_path(const struct dentry *dentry)
1743{
1744#ifdef CONFIG_AUDIT_TREE
1745 struct audit_context *context;
1746 struct audit_tree_refs *p;
1747 const struct dentry *d, *parent;
1748 struct audit_chunk *drop;
1749 unsigned long seq;
1750 int count;
1751
1752 context = current->audit_context;
1753 p = context->trees;
1754 count = context->tree_count;
1755retry:
1756 drop = NULL;
1757 d = dentry;
1758 rcu_read_lock();
1759 seq = read_seqbegin(&rename_lock);
1760 for(;;) {
1761 struct inode *inode = d->d_inode;
1762 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1763 struct audit_chunk *chunk;
1764 chunk = audit_tree_lookup(inode);
1765 if (chunk) {
1766 if (unlikely(!put_tree_ref(context, chunk))) {
1767 drop = chunk;
1768 break;
1769 }
1770 }
1771 }
1772 parent = d->d_parent;
1773 if (parent == d)
1774 break;
1775 d = parent;
1776 }
1777 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1778 rcu_read_unlock();
1779 if (!drop) {
1780 /* just a race with rename */
1781 unroll_tree_refs(context, p, count);
1782 goto retry;
1783 }
1784 audit_put_chunk(drop);
1785 if (grow_tree_refs(context)) {
1786 /* OK, got more space */
1787 unroll_tree_refs(context, p, count);
1788 goto retry;
1789 }
1790 /* too bad */
1791 printk(KERN_WARNING
436c405c 1792 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1793 unroll_tree_refs(context, p, count);
1794 audit_set_auditable(context);
1795 return;
1796 }
1797 rcu_read_unlock();
1798#endif
1799}
1800
b0dd25a8
RD
1801/**
1802 * audit_getname - add a name to the list
1803 * @name: name to add
1804 *
1805 * Add a name to the list of audit names for this context.
1806 * Called from fs/namei.c:getname().
1807 */
d8945bb5 1808void __audit_getname(const char *name)
1da177e4
LT
1809{
1810 struct audit_context *context = current->audit_context;
1811
d8945bb5 1812 if (IS_ERR(name) || !name)
1da177e4
LT
1813 return;
1814
1815 if (!context->in_syscall) {
1816#if AUDIT_DEBUG == 2
1817 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1818 __FILE__, __LINE__, context->serial, name);
1819 dump_stack();
1820#endif
1821 return;
1822 }
1823 BUG_ON(context->name_count >= AUDIT_NAMES);
1824 context->names[context->name_count].name = name;
9c937dcc
AG
1825 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1826 context->names[context->name_count].name_put = 1;
1da177e4 1827 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1828 context->names[context->name_count].osid = 0;
1da177e4 1829 ++context->name_count;
44707fdf 1830 if (!context->pwd.dentry) {
8f37d47c 1831 read_lock(&current->fs->lock);
44707fdf
JB
1832 context->pwd = current->fs->pwd;
1833 path_get(&current->fs->pwd);
8f37d47c
DW
1834 read_unlock(&current->fs->lock);
1835 }
9f8dbe9c 1836
1da177e4
LT
1837}
1838
b0dd25a8
RD
1839/* audit_putname - intercept a putname request
1840 * @name: name to intercept and delay for putname
1841 *
1842 * If we have stored the name from getname in the audit context,
1843 * then we delay the putname until syscall exit.
1844 * Called from include/linux/fs.h:putname().
1845 */
1da177e4
LT
1846void audit_putname(const char *name)
1847{
1848 struct audit_context *context = current->audit_context;
1849
1850 BUG_ON(!context);
1851 if (!context->in_syscall) {
1852#if AUDIT_DEBUG == 2
1853 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1854 __FILE__, __LINE__, context->serial, name);
1855 if (context->name_count) {
1856 int i;
1857 for (i = 0; i < context->name_count; i++)
1858 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1859 context->names[i].name,
73241ccc 1860 context->names[i].name ?: "(null)");
1da177e4
LT
1861 }
1862#endif
1863 __putname(name);
1864 }
1865#if AUDIT_DEBUG
1866 else {
1867 ++context->put_count;
1868 if (context->put_count > context->name_count) {
1869 printk(KERN_ERR "%s:%d(:%d): major=%d"
1870 " in_syscall=%d putname(%p) name_count=%d"
1871 " put_count=%d\n",
1872 __FILE__, __LINE__,
1873 context->serial, context->major,
1874 context->in_syscall, name, context->name_count,
1875 context->put_count);
1876 dump_stack();
1877 }
1878 }
1879#endif
1880}
1881
5712e88f
AG
1882static int audit_inc_name_count(struct audit_context *context,
1883 const struct inode *inode)
1884{
1885 if (context->name_count >= AUDIT_NAMES) {
1886 if (inode)
1887 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1888 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1889 MAJOR(inode->i_sb->s_dev),
1890 MINOR(inode->i_sb->s_dev),
1891 inode->i_ino);
1892
1893 else
436c405c 1894 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1895 return 1;
1896 }
1897 context->name_count++;
1898#if AUDIT_DEBUG
1899 context->ino_count++;
1900#endif
1901 return 0;
1902}
1903
851f7ff5
EP
1904
1905static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1906{
1907 struct cpu_vfs_cap_data caps;
1908 int rc;
1909
1910 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1911 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1912 name->fcap.fE = 0;
1913 name->fcap_ver = 0;
1914
1915 if (!dentry)
1916 return 0;
1917
1918 rc = get_vfs_caps_from_disk(dentry, &caps);
1919 if (rc)
1920 return rc;
1921
1922 name->fcap.permitted = caps.permitted;
1923 name->fcap.inheritable = caps.inheritable;
1924 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1925 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1926
1927 return 0;
1928}
1929
1930
3e2efce0 1931/* Copy inode data into an audit_names. */
851f7ff5
EP
1932static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1933 const struct inode *inode)
8c8570fb 1934{
3e2efce0
AG
1935 name->ino = inode->i_ino;
1936 name->dev = inode->i_sb->s_dev;
1937 name->mode = inode->i_mode;
1938 name->uid = inode->i_uid;
1939 name->gid = inode->i_gid;
1940 name->rdev = inode->i_rdev;
2a862b32 1941 security_inode_getsecid(inode, &name->osid);
851f7ff5 1942 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1943}
1944
b0dd25a8
RD
1945/**
1946 * audit_inode - store the inode and device from a lookup
1947 * @name: name being audited
481968f4 1948 * @dentry: dentry being audited
b0dd25a8
RD
1949 *
1950 * Called from fs/namei.c:path_lookup().
1951 */
5a190ae6 1952void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1953{
1954 int idx;
1955 struct audit_context *context = current->audit_context;
74c3cbe3 1956 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1957
1958 if (!context->in_syscall)
1959 return;
1960 if (context->name_count
1961 && context->names[context->name_count-1].name
1962 && context->names[context->name_count-1].name == name)
1963 idx = context->name_count - 1;
1964 else if (context->name_count > 1
1965 && context->names[context->name_count-2].name
1966 && context->names[context->name_count-2].name == name)
1967 idx = context->name_count - 2;
1968 else {
1969 /* FIXME: how much do we care about inodes that have no
1970 * associated name? */
5712e88f 1971 if (audit_inc_name_count(context, inode))
1da177e4 1972 return;
5712e88f 1973 idx = context->name_count - 1;
1da177e4 1974 context->names[idx].name = NULL;
1da177e4 1975 }
74c3cbe3 1976 handle_path(dentry);
851f7ff5 1977 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1978}
1979
1980/**
1981 * audit_inode_child - collect inode info for created/removed objects
1982 * @dname: inode's dentry name
481968f4 1983 * @dentry: dentry being audited
73d3ec5a 1984 * @parent: inode of dentry parent
73241ccc
AG
1985 *
1986 * For syscalls that create or remove filesystem objects, audit_inode
1987 * can only collect information for the filesystem object's parent.
1988 * This call updates the audit context with the child's information.
1989 * Syscalls that create a new filesystem object must be hooked after
1990 * the object is created. Syscalls that remove a filesystem object
1991 * must be hooked prior, in order to capture the target inode during
1992 * unsuccessful attempts.
1993 */
5a190ae6 1994void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1995 const struct inode *parent)
73241ccc
AG
1996{
1997 int idx;
1998 struct audit_context *context = current->audit_context;
5712e88f 1999 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2000 const struct inode *inode = dentry->d_inode;
9c937dcc 2001 int dirlen = 0;
73241ccc
AG
2002
2003 if (!context->in_syscall)
2004 return;
2005
74c3cbe3
AV
2006 if (inode)
2007 handle_one(inode);
73241ccc 2008 /* determine matching parent */
f368c07d 2009 if (!dname)
5712e88f 2010 goto add_names;
73241ccc 2011
5712e88f
AG
2012 /* parent is more likely, look for it first */
2013 for (idx = 0; idx < context->name_count; idx++) {
2014 struct audit_names *n = &context->names[idx];
f368c07d 2015
5712e88f
AG
2016 if (!n->name)
2017 continue;
2018
2019 if (n->ino == parent->i_ino &&
2020 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2021 n->name_len = dirlen; /* update parent data in place */
2022 found_parent = n->name;
2023 goto add_names;
f368c07d 2024 }
5712e88f 2025 }
73241ccc 2026
5712e88f
AG
2027 /* no matching parent, look for matching child */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2030
2031 if (!n->name)
2032 continue;
2033
2034 /* strcmp() is the more likely scenario */
2035 if (!strcmp(dname, n->name) ||
2036 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2037 if (inode)
851f7ff5 2038 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2039 else
2040 n->ino = (unsigned long)-1;
2041 found_child = n->name;
2042 goto add_names;
2043 }
ac9910ce 2044 }
5712e88f
AG
2045
2046add_names:
2047 if (!found_parent) {
2048 if (audit_inc_name_count(context, parent))
ac9910ce 2049 return;
5712e88f
AG
2050 idx = context->name_count - 1;
2051 context->names[idx].name = NULL;
851f7ff5 2052 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2053 }
5712e88f
AG
2054
2055 if (!found_child) {
2056 if (audit_inc_name_count(context, inode))
2057 return;
2058 idx = context->name_count - 1;
2059
2060 /* Re-use the name belonging to the slot for a matching parent
2061 * directory. All names for this context are relinquished in
2062 * audit_free_names() */
2063 if (found_parent) {
2064 context->names[idx].name = found_parent;
2065 context->names[idx].name_len = AUDIT_NAME_FULL;
2066 /* don't call __putname() */
2067 context->names[idx].name_put = 0;
2068 } else {
2069 context->names[idx].name = NULL;
2070 }
2071
2072 if (inode)
851f7ff5 2073 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2074 else
2075 context->names[idx].ino = (unsigned long)-1;
2076 }
3e2efce0 2077}
50e437d5 2078EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2079
b0dd25a8
RD
2080/**
2081 * auditsc_get_stamp - get local copies of audit_context values
2082 * @ctx: audit_context for the task
2083 * @t: timespec to store time recorded in the audit_context
2084 * @serial: serial value that is recorded in the audit_context
2085 *
2086 * Also sets the context as auditable.
2087 */
48887e63 2088int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2089 struct timespec *t, unsigned int *serial)
1da177e4 2090{
48887e63
AV
2091 if (!ctx->in_syscall)
2092 return 0;
ce625a80
DW
2093 if (!ctx->serial)
2094 ctx->serial = audit_serial();
bfb4496e
DW
2095 t->tv_sec = ctx->ctime.tv_sec;
2096 t->tv_nsec = ctx->ctime.tv_nsec;
2097 *serial = ctx->serial;
2098 ctx->auditable = 1;
48887e63 2099 return 1;
1da177e4
LT
2100}
2101
4746ec5b
EP
2102/* global counter which is incremented every time something logs in */
2103static atomic_t session_id = ATOMIC_INIT(0);
2104
b0dd25a8
RD
2105/**
2106 * audit_set_loginuid - set a task's audit_context loginuid
2107 * @task: task whose audit context is being modified
2108 * @loginuid: loginuid value
2109 *
2110 * Returns 0.
2111 *
2112 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2113 */
456be6cd 2114int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2115{
4746ec5b 2116 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2117 struct audit_context *context = task->audit_context;
2118
bfef93a5
AV
2119 if (context && context->in_syscall) {
2120 struct audit_buffer *ab;
2121
2122 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2123 if (ab) {
2124 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2125 "old auid=%u new auid=%u"
2126 " old ses=%u new ses=%u",
c69e8d9c 2127 task->pid, task_uid(task),
4746ec5b
EP
2128 task->loginuid, loginuid,
2129 task->sessionid, sessionid);
bfef93a5 2130 audit_log_end(ab);
c0404993 2131 }
1da177e4 2132 }
4746ec5b 2133 task->sessionid = sessionid;
bfef93a5 2134 task->loginuid = loginuid;
1da177e4
LT
2135 return 0;
2136}
2137
20ca73bc
GW
2138/**
2139 * __audit_mq_open - record audit data for a POSIX MQ open
2140 * @oflag: open flag
2141 * @mode: mode bits
2142 * @u_attr: queue attributes
2143 *
2144 * Returns 0 for success or NULL context or < 0 on error.
2145 */
2146int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2147{
2148 struct audit_aux_data_mq_open *ax;
2149 struct audit_context *context = current->audit_context;
2150
2151 if (!audit_enabled)
2152 return 0;
2153
2154 if (likely(!context))
2155 return 0;
2156
2157 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2158 if (!ax)
2159 return -ENOMEM;
2160
2161 if (u_attr != NULL) {
2162 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2163 kfree(ax);
2164 return -EFAULT;
2165 }
2166 } else
2167 memset(&ax->attr, 0, sizeof(ax->attr));
2168
2169 ax->oflag = oflag;
2170 ax->mode = mode;
2171
2172 ax->d.type = AUDIT_MQ_OPEN;
2173 ax->d.next = context->aux;
2174 context->aux = (void *)ax;
2175 return 0;
2176}
2177
2178/**
2179 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
1dbe83c3 2183 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2184 *
2185 * Returns 0 for success or NULL context or < 0 on error.
2186 */
2187int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2188 const struct timespec __user *u_abs_timeout)
2189{
2190 struct audit_aux_data_mq_sendrecv *ax;
2191 struct audit_context *context = current->audit_context;
2192
2193 if (!audit_enabled)
2194 return 0;
2195
2196 if (likely(!context))
2197 return 0;
2198
2199 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2200 if (!ax)
2201 return -ENOMEM;
2202
2203 if (u_abs_timeout != NULL) {
2204 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2205 kfree(ax);
2206 return -EFAULT;
2207 }
2208 } else
2209 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2210
2211 ax->mqdes = mqdes;
2212 ax->msg_len = msg_len;
2213 ax->msg_prio = msg_prio;
2214
2215 ax->d.type = AUDIT_MQ_SENDRECV;
2216 ax->d.next = context->aux;
2217 context->aux = (void *)ax;
2218 return 0;
2219}
2220
2221/**
2222 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2223 * @mqdes: MQ descriptor
2224 * @msg_len: Message length
1dbe83c3
RD
2225 * @u_msg_prio: Message priority
2226 * @u_abs_timeout: Message timeout in absolute time
20ca73bc
GW
2227 *
2228 * Returns 0 for success or NULL context or < 0 on error.
2229 */
2230int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2231 unsigned int __user *u_msg_prio,
2232 const struct timespec __user *u_abs_timeout)
2233{
2234 struct audit_aux_data_mq_sendrecv *ax;
2235 struct audit_context *context = current->audit_context;
2236
2237 if (!audit_enabled)
2238 return 0;
2239
2240 if (likely(!context))
2241 return 0;
2242
2243 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2244 if (!ax)
2245 return -ENOMEM;
2246
2247 if (u_msg_prio != NULL) {
2248 if (get_user(ax->msg_prio, u_msg_prio)) {
2249 kfree(ax);
2250 return -EFAULT;
2251 }
2252 } else
2253 ax->msg_prio = 0;
2254
2255 if (u_abs_timeout != NULL) {
2256 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2257 kfree(ax);
2258 return -EFAULT;
2259 }
2260 } else
2261 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2262
2263 ax->mqdes = mqdes;
2264 ax->msg_len = msg_len;
2265
2266 ax->d.type = AUDIT_MQ_SENDRECV;
2267 ax->d.next = context->aux;
2268 context->aux = (void *)ax;
2269 return 0;
2270}
2271
2272/**
2273 * __audit_mq_notify - record audit data for a POSIX MQ notify
2274 * @mqdes: MQ descriptor
2275 * @u_notification: Notification event
2276 *
2277 * Returns 0 for success or NULL context or < 0 on error.
2278 */
2279
2280int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2281{
2282 struct audit_aux_data_mq_notify *ax;
2283 struct audit_context *context = current->audit_context;
2284
2285 if (!audit_enabled)
2286 return 0;
2287
2288 if (likely(!context))
2289 return 0;
2290
2291 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2292 if (!ax)
2293 return -ENOMEM;
2294
2295 if (u_notification != NULL) {
2296 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2297 kfree(ax);
2298 return -EFAULT;
2299 }
2300 } else
2301 memset(&ax->notification, 0, sizeof(ax->notification));
2302
2303 ax->mqdes = mqdes;
2304
2305 ax->d.type = AUDIT_MQ_NOTIFY;
2306 ax->d.next = context->aux;
2307 context->aux = (void *)ax;
2308 return 0;
2309}
2310
2311/**
2312 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2313 * @mqdes: MQ descriptor
2314 * @mqstat: MQ flags
2315 *
20ca73bc 2316 */
7392906e 2317void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2318{
20ca73bc 2319 struct audit_context *context = current->audit_context;
7392906e
AV
2320 context->mq_getsetattr.mqdes = mqdes;
2321 context->mq_getsetattr.mqstat = *mqstat;
2322 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2323}
2324
b0dd25a8 2325/**
073115d6
SG
2326 * audit_ipc_obj - record audit data for ipc object
2327 * @ipcp: ipc permissions
2328 *
073115d6 2329 */
a33e6751 2330void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2331{
073115d6 2332 struct audit_context *context = current->audit_context;
a33e6751
AV
2333 context->ipc.uid = ipcp->uid;
2334 context->ipc.gid = ipcp->gid;
2335 context->ipc.mode = ipcp->mode;
e816f370 2336 context->ipc.has_perm = 0;
a33e6751
AV
2337 security_ipc_getsecid(ipcp, &context->ipc.osid);
2338 context->type = AUDIT_IPC;
073115d6
SG
2339}
2340
2341/**
2342 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2343 * @qbytes: msgq bytes
2344 * @uid: msgq user id
2345 * @gid: msgq group id
2346 * @mode: msgq mode (permissions)
2347 *
e816f370 2348 * Called only after audit_ipc_obj().
b0dd25a8 2349 */
e816f370 2350void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2351{
1da177e4
LT
2352 struct audit_context *context = current->audit_context;
2353
e816f370
AV
2354 context->ipc.qbytes = qbytes;
2355 context->ipc.perm_uid = uid;
2356 context->ipc.perm_gid = gid;
2357 context->ipc.perm_mode = mode;
2358 context->ipc.has_perm = 1;
1da177e4 2359}
c2f0c7c3 2360
473ae30b
AV
2361int audit_bprm(struct linux_binprm *bprm)
2362{
2363 struct audit_aux_data_execve *ax;
2364 struct audit_context *context = current->audit_context;
473ae30b 2365
5ac3a9c2 2366 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2367 return 0;
2368
bdf4c48a 2369 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2370 if (!ax)
2371 return -ENOMEM;
2372
2373 ax->argc = bprm->argc;
2374 ax->envc = bprm->envc;
bdf4c48a 2375 ax->mm = bprm->mm;
473ae30b
AV
2376 ax->d.type = AUDIT_EXECVE;
2377 ax->d.next = context->aux;
2378 context->aux = (void *)ax;
2379 return 0;
2380}
2381
2382
b0dd25a8
RD
2383/**
2384 * audit_socketcall - record audit data for sys_socketcall
2385 * @nargs: number of args
2386 * @args: args array
2387 *
b0dd25a8 2388 */
f3298dc4 2389void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2390{
3ec3b2fb
DW
2391 struct audit_context *context = current->audit_context;
2392
5ac3a9c2 2393 if (likely(!context || context->dummy))
f3298dc4 2394 return;
3ec3b2fb 2395
f3298dc4
AV
2396 context->type = AUDIT_SOCKETCALL;
2397 context->socketcall.nargs = nargs;
2398 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2399}
2400
db349509
AV
2401/**
2402 * __audit_fd_pair - record audit data for pipe and socketpair
2403 * @fd1: the first file descriptor
2404 * @fd2: the second file descriptor
2405 *
2406 * Returns 0 for success or NULL context or < 0 on error.
2407 */
2408int __audit_fd_pair(int fd1, int fd2)
2409{
2410 struct audit_context *context = current->audit_context;
2411 struct audit_aux_data_fd_pair *ax;
2412
2413 if (likely(!context)) {
2414 return 0;
2415 }
2416
2417 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2418 if (!ax) {
2419 return -ENOMEM;
2420 }
2421
2422 ax->fd[0] = fd1;
2423 ax->fd[1] = fd2;
2424
2425 ax->d.type = AUDIT_FD_PAIR;
2426 ax->d.next = context->aux;
2427 context->aux = (void *)ax;
2428 return 0;
2429}
2430
b0dd25a8
RD
2431/**
2432 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2433 * @len: data length in user space
2434 * @a: data address in kernel space
2435 *
2436 * Returns 0 for success or NULL context or < 0 on error.
2437 */
3ec3b2fb
DW
2438int audit_sockaddr(int len, void *a)
2439{
3ec3b2fb
DW
2440 struct audit_context *context = current->audit_context;
2441
5ac3a9c2 2442 if (likely(!context || context->dummy))
3ec3b2fb
DW
2443 return 0;
2444
4f6b434f
AV
2445 if (!context->sockaddr) {
2446 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2447 if (!p)
2448 return -ENOMEM;
2449 context->sockaddr = p;
2450 }
3ec3b2fb 2451
4f6b434f
AV
2452 context->sockaddr_len = len;
2453 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2454 return 0;
2455}
2456
a5cb013d
AV
2457void __audit_ptrace(struct task_struct *t)
2458{
2459 struct audit_context *context = current->audit_context;
2460
2461 context->target_pid = t->pid;
c2a7780e 2462 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2463 context->target_uid = task_uid(t);
4746ec5b 2464 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2465 security_task_getsecid(t, &context->target_sid);
c2a7780e 2466 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2467}
2468
b0dd25a8
RD
2469/**
2470 * audit_signal_info - record signal info for shutting down audit subsystem
2471 * @sig: signal value
2472 * @t: task being signaled
2473 *
2474 * If the audit subsystem is being terminated, record the task (pid)
2475 * and uid that is doing that.
2476 */
e54dc243 2477int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2478{
e54dc243
AG
2479 struct audit_aux_data_pids *axp;
2480 struct task_struct *tsk = current;
2481 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2482 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2483
175fc484 2484 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2485 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2486 audit_sig_pid = tsk->pid;
bfef93a5
AV
2487 if (tsk->loginuid != -1)
2488 audit_sig_uid = tsk->loginuid;
175fc484 2489 else
c69e8d9c 2490 audit_sig_uid = uid;
2a862b32 2491 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2492 }
2493 if (!audit_signals || audit_dummy_context())
2494 return 0;
c2f0c7c3 2495 }
e54dc243 2496
e54dc243
AG
2497 /* optimize the common case by putting first signal recipient directly
2498 * in audit_context */
2499 if (!ctx->target_pid) {
2500 ctx->target_pid = t->tgid;
c2a7780e 2501 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2502 ctx->target_uid = t_uid;
4746ec5b 2503 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2504 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2505 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2506 return 0;
2507 }
2508
2509 axp = (void *)ctx->aux_pids;
2510 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2511 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2512 if (!axp)
2513 return -ENOMEM;
2514
2515 axp->d.type = AUDIT_OBJ_PID;
2516 axp->d.next = ctx->aux_pids;
2517 ctx->aux_pids = (void *)axp;
2518 }
88ae704c 2519 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2520
2521 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2522 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2523 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2524 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2525 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2526 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2527 axp->pid_count++;
2528
2529 return 0;
c2f0c7c3 2530}
0a4ff8c2 2531
3fc689e9
EP
2532/**
2533 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2534 * @bprm: pointer to the bprm being processed
2535 * @new: the proposed new credentials
2536 * @old: the old credentials
3fc689e9
EP
2537 *
2538 * Simply check if the proc already has the caps given by the file and if not
2539 * store the priv escalation info for later auditing at the end of the syscall
2540 *
3fc689e9
EP
2541 * -Eric
2542 */
d84f4f99
DH
2543int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2544 const struct cred *new, const struct cred *old)
3fc689e9
EP
2545{
2546 struct audit_aux_data_bprm_fcaps *ax;
2547 struct audit_context *context = current->audit_context;
2548 struct cpu_vfs_cap_data vcaps;
2549 struct dentry *dentry;
2550
2551 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2552 if (!ax)
d84f4f99 2553 return -ENOMEM;
3fc689e9
EP
2554
2555 ax->d.type = AUDIT_BPRM_FCAPS;
2556 ax->d.next = context->aux;
2557 context->aux = (void *)ax;
2558
2559 dentry = dget(bprm->file->f_dentry);
2560 get_vfs_caps_from_disk(dentry, &vcaps);
2561 dput(dentry);
2562
2563 ax->fcap.permitted = vcaps.permitted;
2564 ax->fcap.inheritable = vcaps.inheritable;
2565 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2566 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2567
d84f4f99
DH
2568 ax->old_pcap.permitted = old->cap_permitted;
2569 ax->old_pcap.inheritable = old->cap_inheritable;
2570 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2571
d84f4f99
DH
2572 ax->new_pcap.permitted = new->cap_permitted;
2573 ax->new_pcap.inheritable = new->cap_inheritable;
2574 ax->new_pcap.effective = new->cap_effective;
2575 return 0;
3fc689e9
EP
2576}
2577
e68b75a0
EP
2578/**
2579 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2580 * @pid: target pid of the capset call
2581 * @new: the new credentials
2582 * @old: the old (current) credentials
e68b75a0
EP
2583 *
2584 * Record the aguments userspace sent to sys_capset for later printing by the
2585 * audit system if applicable
2586 */
d84f4f99
DH
2587int __audit_log_capset(pid_t pid,
2588 const struct cred *new, const struct cred *old)
e68b75a0
EP
2589{
2590 struct audit_aux_data_capset *ax;
2591 struct audit_context *context = current->audit_context;
2592
2593 if (likely(!audit_enabled || !context || context->dummy))
2594 return 0;
2595
2596 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2597 if (!ax)
2598 return -ENOMEM;
2599
2600 ax->d.type = AUDIT_CAPSET;
2601 ax->d.next = context->aux;
2602 context->aux = (void *)ax;
2603
2604 ax->pid = pid;
d84f4f99
DH
2605 ax->cap.effective = new->cap_effective;
2606 ax->cap.inheritable = new->cap_effective;
2607 ax->cap.permitted = new->cap_permitted;
e68b75a0
EP
2608
2609 return 0;
2610}
2611
0a4ff8c2
SG
2612/**
2613 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2614 * @signr: signal value
0a4ff8c2
SG
2615 *
2616 * If a process ends with a core dump, something fishy is going on and we
2617 * should record the event for investigation.
2618 */
2619void audit_core_dumps(long signr)
2620{
2621 struct audit_buffer *ab;
2622 u32 sid;
76aac0e9
DH
2623 uid_t auid = audit_get_loginuid(current), uid;
2624 gid_t gid;
4746ec5b 2625 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2626
2627 if (!audit_enabled)
2628 return;
2629
2630 if (signr == SIGQUIT) /* don't care for those */
2631 return;
2632
2633 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2634 current_uid_gid(&uid, &gid);
4746ec5b 2635 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2636 auid, uid, gid, sessionid);
2a862b32 2637 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2638 if (sid) {
2639 char *ctx = NULL;
2640 u32 len;
2641
2a862b32 2642 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2643 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2644 else {
0a4ff8c2 2645 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2646 security_release_secctx(ctx, len);
2647 }
0a4ff8c2
SG
2648 }
2649 audit_log_format(ab, " pid=%d comm=", current->pid);
2650 audit_log_untrustedstring(ab, current->comm);
2651 audit_log_format(ab, " sig=%ld", signr);
2652 audit_log_end(ab);
2653}