Audit: clean up all op= output to include string quoting
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
1da177e4
LT
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
9c937dcc
AG
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
de6bbd1d
EP
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
851f7ff5
EP
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
1da177e4
LT
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
9c937dcc
AG
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
1b50eed9 113 u32 osid;
851f7ff5
EP
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
1da177e4
LT
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
e54dc243
AG
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
473ae30b
AV
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
bdf4c48a 132 struct mm_struct *mm;
473ae30b
AV
133};
134
e54dc243
AG
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 141 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
143 int pid_count;
144};
145
3fc689e9
EP
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
e68b75a0
EP
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
74c3cbe3
AV
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
1da177e4
LT
165/* The per-task audit context. */
166struct audit_context {
d51374ad 167 int dummy; /* must be the first element */
1da177e4 168 int in_syscall; /* 1 if task is in a syscall */
0590b933 169 enum audit_state state, current_state;
1da177e4
LT
170 unsigned int serial; /* serial number for record */
171 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
172 int major; /* syscall number */
173 unsigned long argv[4]; /* syscall arguments */
174 int return_valid; /* return code is valid */
2fd6f58b 175 long return_code;/* syscall return code */
0590b933 176 u64 prio;
1da177e4
LT
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
5adc8a6a 179 char * filterkey; /* key for rule that triggered record */
44707fdf 180 struct path pwd;
1da177e4
LT
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
e54dc243 183 struct audit_aux_data *aux_pids;
4f6b434f
AV
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
1da177e4 186 /* Save things to print about task_struct */
f46038ff 187 pid_t pid, ppid;
1da177e4
LT
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
2fd6f58b 191 int arch;
1da177e4 192
a5cb013d 193 pid_t target_pid;
c2a7780e
EP
194 uid_t target_auid;
195 uid_t target_uid;
4746ec5b 196 unsigned int target_sessionid;
a5cb013d 197 u32 target_sid;
c2a7780e 198 char target_comm[TASK_COMM_LEN];
a5cb013d 199
74c3cbe3
AV
200 struct audit_tree_refs *trees, *first_trees;
201 int tree_count;
202
f3298dc4
AV
203 int type;
204 union {
205 struct {
206 int nargs;
207 long args[6];
208 } socketcall;
a33e6751
AV
209 struct {
210 uid_t uid;
211 gid_t gid;
212 mode_t mode;
213 u32 osid;
e816f370
AV
214 int has_perm;
215 uid_t perm_uid;
216 gid_t perm_gid;
217 mode_t perm_mode;
218 unsigned long qbytes;
a33e6751 219 } ipc;
7392906e
AV
220 struct {
221 mqd_t mqdes;
222 struct mq_attr mqstat;
223 } mq_getsetattr;
20114f71
AV
224 struct {
225 mqd_t mqdes;
226 int sigev_signo;
227 } mq_notify;
c32c8af4
AV
228 struct {
229 mqd_t mqdes;
230 size_t msg_len;
231 unsigned int msg_prio;
232 struct timespec abs_timeout;
233 } mq_sendrecv;
564f6993
AV
234 struct {
235 int oflag;
236 mode_t mode;
237 struct mq_attr attr;
238 } mq_open;
57f71a0a
AV
239 struct {
240 pid_t pid;
241 struct audit_cap_data cap;
242 } capset;
f3298dc4 243 };
157cf649 244 int fds[2];
f3298dc4 245
1da177e4
LT
246#if AUDIT_DEBUG
247 int put_count;
248 int ino_count;
249#endif
250};
251
55669bfa
AV
252#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
253static inline int open_arg(int flags, int mask)
254{
255 int n = ACC_MODE(flags);
256 if (flags & (O_TRUNC | O_CREAT))
257 n |= AUDIT_PERM_WRITE;
258 return n & mask;
259}
260
261static int audit_match_perm(struct audit_context *ctx, int mask)
262{
c4bacefb 263 unsigned n;
1a61c88d 264 if (unlikely(!ctx))
265 return 0;
c4bacefb 266 n = ctx->major;
dbda4c0b 267
55669bfa
AV
268 switch (audit_classify_syscall(ctx->arch, n)) {
269 case 0: /* native */
270 if ((mask & AUDIT_PERM_WRITE) &&
271 audit_match_class(AUDIT_CLASS_WRITE, n))
272 return 1;
273 if ((mask & AUDIT_PERM_READ) &&
274 audit_match_class(AUDIT_CLASS_READ, n))
275 return 1;
276 if ((mask & AUDIT_PERM_ATTR) &&
277 audit_match_class(AUDIT_CLASS_CHATTR, n))
278 return 1;
279 return 0;
280 case 1: /* 32bit on biarch */
281 if ((mask & AUDIT_PERM_WRITE) &&
282 audit_match_class(AUDIT_CLASS_WRITE_32, n))
283 return 1;
284 if ((mask & AUDIT_PERM_READ) &&
285 audit_match_class(AUDIT_CLASS_READ_32, n))
286 return 1;
287 if ((mask & AUDIT_PERM_ATTR) &&
288 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
289 return 1;
290 return 0;
291 case 2: /* open */
292 return mask & ACC_MODE(ctx->argv[1]);
293 case 3: /* openat */
294 return mask & ACC_MODE(ctx->argv[2]);
295 case 4: /* socketcall */
296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
297 case 5: /* execve */
298 return mask & AUDIT_PERM_EXEC;
299 default:
300 return 0;
301 }
302}
303
8b67dca9
AV
304static int audit_match_filetype(struct audit_context *ctx, int which)
305{
306 unsigned index = which & ~S_IFMT;
307 mode_t mode = which & S_IFMT;
1a61c88d 308
309 if (unlikely(!ctx))
310 return 0;
311
8b67dca9
AV
312 if (index >= ctx->name_count)
313 return 0;
314 if (ctx->names[index].ino == -1)
315 return 0;
316 if ((ctx->names[index].mode ^ mode) & S_IFMT)
317 return 0;
318 return 1;
319}
320
74c3cbe3
AV
321/*
322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
323 * ->first_trees points to its beginning, ->trees - to the current end of data.
324 * ->tree_count is the number of free entries in array pointed to by ->trees.
325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
327 * it's going to remain 1-element for almost any setup) until we free context itself.
328 * References in it _are_ dropped - at the same time we free/drop aux stuff.
329 */
330
331#ifdef CONFIG_AUDIT_TREE
679173b7
EP
332static void audit_set_auditable(struct audit_context *ctx)
333{
334 if (!ctx->prio) {
335 ctx->prio = 1;
336 ctx->current_state = AUDIT_RECORD_CONTEXT;
337 }
338}
339
74c3cbe3
AV
340static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
341{
342 struct audit_tree_refs *p = ctx->trees;
343 int left = ctx->tree_count;
344 if (likely(left)) {
345 p->c[--left] = chunk;
346 ctx->tree_count = left;
347 return 1;
348 }
349 if (!p)
350 return 0;
351 p = p->next;
352 if (p) {
353 p->c[30] = chunk;
354 ctx->trees = p;
355 ctx->tree_count = 30;
356 return 1;
357 }
358 return 0;
359}
360
361static int grow_tree_refs(struct audit_context *ctx)
362{
363 struct audit_tree_refs *p = ctx->trees;
364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
365 if (!ctx->trees) {
366 ctx->trees = p;
367 return 0;
368 }
369 if (p)
370 p->next = ctx->trees;
371 else
372 ctx->first_trees = ctx->trees;
373 ctx->tree_count = 31;
374 return 1;
375}
376#endif
377
378static void unroll_tree_refs(struct audit_context *ctx,
379 struct audit_tree_refs *p, int count)
380{
381#ifdef CONFIG_AUDIT_TREE
382 struct audit_tree_refs *q;
383 int n;
384 if (!p) {
385 /* we started with empty chain */
386 p = ctx->first_trees;
387 count = 31;
388 /* if the very first allocation has failed, nothing to do */
389 if (!p)
390 return;
391 }
392 n = count;
393 for (q = p; q != ctx->trees; q = q->next, n = 31) {
394 while (n--) {
395 audit_put_chunk(q->c[n]);
396 q->c[n] = NULL;
397 }
398 }
399 while (n-- > ctx->tree_count) {
400 audit_put_chunk(q->c[n]);
401 q->c[n] = NULL;
402 }
403 ctx->trees = p;
404 ctx->tree_count = count;
405#endif
406}
407
408static void free_tree_refs(struct audit_context *ctx)
409{
410 struct audit_tree_refs *p, *q;
411 for (p = ctx->first_trees; p; p = q) {
412 q = p->next;
413 kfree(p);
414 }
415}
416
417static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
418{
419#ifdef CONFIG_AUDIT_TREE
420 struct audit_tree_refs *p;
421 int n;
422 if (!tree)
423 return 0;
424 /* full ones */
425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
426 for (n = 0; n < 31; n++)
427 if (audit_tree_match(p->c[n], tree))
428 return 1;
429 }
430 /* partial */
431 if (p) {
432 for (n = ctx->tree_count; n < 31; n++)
433 if (audit_tree_match(p->c[n], tree))
434 return 1;
435 }
436#endif
437 return 0;
438}
439
f368c07d 440/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
441/* Compare a task_struct with an audit_rule. Return 1 on match, 0
442 * otherwise. */
443static int audit_filter_rules(struct task_struct *tsk,
93315ed6 444 struct audit_krule *rule,
1da177e4 445 struct audit_context *ctx,
f368c07d 446 struct audit_names *name,
1da177e4
LT
447 enum audit_state *state)
448{
c69e8d9c 449 const struct cred *cred = get_task_cred(tsk);
2ad312d2 450 int i, j, need_sid = 1;
3dc7e315
DG
451 u32 sid;
452
1da177e4 453 for (i = 0; i < rule->field_count; i++) {
93315ed6 454 struct audit_field *f = &rule->fields[i];
1da177e4
LT
455 int result = 0;
456
93315ed6 457 switch (f->type) {
1da177e4 458 case AUDIT_PID:
93315ed6 459 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 460 break;
3c66251e 461 case AUDIT_PPID:
419c58f1
AV
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = sys_getppid();
3c66251e 465 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 466 }
3c66251e 467 break;
1da177e4 468 case AUDIT_UID:
b6dff3ec 469 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_EUID:
b6dff3ec 472 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_SUID:
b6dff3ec 475 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_FSUID:
b6dff3ec 478 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_GID:
b6dff3ec 481 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_EGID:
b6dff3ec 484 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
485 break;
486 case AUDIT_SGID:
b6dff3ec 487 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
488 break;
489 case AUDIT_FSGID:
b6dff3ec 490 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
491 break;
492 case AUDIT_PERS:
93315ed6 493 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 494 break;
2fd6f58b 495 case AUDIT_ARCH:
9f8dbe9c 496 if (ctx)
93315ed6 497 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 498 break;
1da177e4
LT
499
500 case AUDIT_EXIT:
501 if (ctx && ctx->return_valid)
93315ed6 502 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
503 break;
504 case AUDIT_SUCCESS:
b01f2cc1 505 if (ctx && ctx->return_valid) {
93315ed6
AG
506 if (f->val)
507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 508 else
93315ed6 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 510 }
1da177e4
LT
511 break;
512 case AUDIT_DEVMAJOR:
f368c07d
AG
513 if (name)
514 result = audit_comparator(MAJOR(name->dev),
515 f->op, f->val);
516 else if (ctx) {
1da177e4 517 for (j = 0; j < ctx->name_count; j++) {
93315ed6 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
519 ++result;
520 break;
521 }
522 }
523 }
524 break;
525 case AUDIT_DEVMINOR:
f368c07d
AG
526 if (name)
527 result = audit_comparator(MINOR(name->dev),
528 f->op, f->val);
529 else if (ctx) {
1da177e4 530 for (j = 0; j < ctx->name_count; j++) {
93315ed6 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
532 ++result;
533 break;
534 }
535 }
536 }
537 break;
538 case AUDIT_INODE:
f368c07d 539 if (name)
9c937dcc 540 result = (name->ino == f->val);
f368c07d 541 else if (ctx) {
1da177e4 542 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
f368c07d 550 case AUDIT_WATCH:
cfcad62c
EP
551 if (name && audit_watch_inode(rule->watch) != (unsigned long)-1)
552 result = (name->dev == audit_watch_dev(rule->watch) &&
553 name->ino == audit_watch_inode(rule->watch));
f368c07d 554 break;
74c3cbe3
AV
555 case AUDIT_DIR:
556 if (ctx)
557 result = match_tree_refs(ctx, rule->tree);
558 break;
1da177e4
LT
559 case AUDIT_LOGINUID:
560 result = 0;
561 if (ctx)
bfef93a5 562 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 563 break;
3a6b9f85
DG
564 case AUDIT_SUBJ_USER:
565 case AUDIT_SUBJ_ROLE:
566 case AUDIT_SUBJ_TYPE:
567 case AUDIT_SUBJ_SEN:
568 case AUDIT_SUBJ_CLR:
3dc7e315
DG
569 /* NOTE: this may return negative values indicating
570 a temporary error. We simply treat this as a
571 match for now to avoid losing information that
572 may be wanted. An error message will also be
573 logged upon error */
04305e4a 574 if (f->lsm_rule) {
2ad312d2 575 if (need_sid) {
2a862b32 576 security_task_getsecid(tsk, &sid);
2ad312d2
SG
577 need_sid = 0;
578 }
d7a96f3a 579 result = security_audit_rule_match(sid, f->type,
3dc7e315 580 f->op,
04305e4a 581 f->lsm_rule,
3dc7e315 582 ctx);
2ad312d2 583 }
3dc7e315 584 break;
6e5a2d1d
DG
585 case AUDIT_OBJ_USER:
586 case AUDIT_OBJ_ROLE:
587 case AUDIT_OBJ_TYPE:
588 case AUDIT_OBJ_LEV_LOW:
589 case AUDIT_OBJ_LEV_HIGH:
590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
591 also applies here */
04305e4a 592 if (f->lsm_rule) {
6e5a2d1d
DG
593 /* Find files that match */
594 if (name) {
d7a96f3a 595 result = security_audit_rule_match(
6e5a2d1d 596 name->osid, f->type, f->op,
04305e4a 597 f->lsm_rule, ctx);
6e5a2d1d
DG
598 } else if (ctx) {
599 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 600 if (security_audit_rule_match(
6e5a2d1d
DG
601 ctx->names[j].osid,
602 f->type, f->op,
04305e4a 603 f->lsm_rule, ctx)) {
6e5a2d1d
DG
604 ++result;
605 break;
606 }
607 }
608 }
609 /* Find ipc objects that match */
a33e6751
AV
610 if (!ctx || ctx->type != AUDIT_IPC)
611 break;
612 if (security_audit_rule_match(ctx->ipc.osid,
613 f->type, f->op,
614 f->lsm_rule, ctx))
615 ++result;
6e5a2d1d
DG
616 }
617 break;
1da177e4
LT
618 case AUDIT_ARG0:
619 case AUDIT_ARG1:
620 case AUDIT_ARG2:
621 case AUDIT_ARG3:
622 if (ctx)
93315ed6 623 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 624 break;
5adc8a6a
AG
625 case AUDIT_FILTERKEY:
626 /* ignore this field for filtering */
627 result = 1;
628 break;
55669bfa
AV
629 case AUDIT_PERM:
630 result = audit_match_perm(ctx, f->val);
631 break;
8b67dca9
AV
632 case AUDIT_FILETYPE:
633 result = audit_match_filetype(ctx, f->val);
634 break;
1da177e4
LT
635 }
636
c69e8d9c
DH
637 if (!result) {
638 put_cred(cred);
1da177e4 639 return 0;
c69e8d9c 640 }
1da177e4 641 }
0590b933
AV
642
643 if (ctx) {
644 if (rule->prio <= ctx->prio)
645 return 0;
646 if (rule->filterkey) {
647 kfree(ctx->filterkey);
648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
649 }
650 ctx->prio = rule->prio;
651 }
1da177e4
LT
652 switch (rule->action) {
653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
655 }
c69e8d9c 656 put_cred(cred);
1da177e4
LT
657 return 1;
658}
659
660/* At process creation time, we can determine if system-call auditing is
661 * completely disabled for this task. Since we only have the task
662 * structure at this point, we can only check uid and gid.
663 */
e048e02c 664static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
665{
666 struct audit_entry *e;
667 enum audit_state state;
668
669 rcu_read_lock();
0f45aa18 670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
e048e02c
AV
672 if (state == AUDIT_RECORD_CONTEXT)
673 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
674 rcu_read_unlock();
675 return state;
676 }
677 }
678 rcu_read_unlock();
679 return AUDIT_BUILD_CONTEXT;
680}
681
682/* At syscall entry and exit time, this filter is called if the
683 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 684 * also not high enough that we already know we have to write an audit
b0dd25a8 685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
686 */
687static enum audit_state audit_filter_syscall(struct task_struct *tsk,
688 struct audit_context *ctx,
689 struct list_head *list)
690{
691 struct audit_entry *e;
c3896495 692 enum audit_state state;
1da177e4 693
351bb722 694 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
695 return AUDIT_DISABLED;
696
1da177e4 697 rcu_read_lock();
c3896495 698 if (!list_empty(list)) {
b63862f4
DK
699 int word = AUDIT_WORD(ctx->major);
700 int bit = AUDIT_BIT(ctx->major);
701
702 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
703 if ((e->rule.mask[word] & bit) == bit &&
704 audit_filter_rules(tsk, &e->rule, ctx, NULL,
705 &state)) {
706 rcu_read_unlock();
0590b933 707 ctx->current_state = state;
f368c07d
AG
708 return state;
709 }
710 }
711 }
712 rcu_read_unlock();
713 return AUDIT_BUILD_CONTEXT;
714}
715
716/* At syscall exit time, this filter is called if any audit_names[] have been
717 * collected during syscall processing. We only check rules in sublists at hash
718 * buckets applicable to the inode numbers in audit_names[].
719 * Regarding audit_state, same rules apply as for audit_filter_syscall().
720 */
0590b933 721void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d
AG
722{
723 int i;
724 struct audit_entry *e;
725 enum audit_state state;
726
727 if (audit_pid && tsk->tgid == audit_pid)
0590b933 728 return;
f368c07d
AG
729
730 rcu_read_lock();
731 for (i = 0; i < ctx->name_count; i++) {
732 int word = AUDIT_WORD(ctx->major);
733 int bit = AUDIT_BIT(ctx->major);
734 struct audit_names *n = &ctx->names[i];
735 int h = audit_hash_ino((u32)n->ino);
736 struct list_head *list = &audit_inode_hash[h];
737
738 if (list_empty(list))
739 continue;
740
741 list_for_each_entry_rcu(e, list, list) {
742 if ((e->rule.mask[word] & bit) == bit &&
743 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4 744 rcu_read_unlock();
0590b933
AV
745 ctx->current_state = state;
746 return;
b63862f4 747 }
0f45aa18
DW
748 }
749 }
750 rcu_read_unlock();
0f45aa18
DW
751}
752
1da177e4
LT
753static inline struct audit_context *audit_get_context(struct task_struct *tsk,
754 int return_valid,
6d208da8 755 long return_code)
1da177e4
LT
756{
757 struct audit_context *context = tsk->audit_context;
758
759 if (likely(!context))
760 return NULL;
761 context->return_valid = return_valid;
f701b75e
EP
762
763 /*
764 * we need to fix up the return code in the audit logs if the actual
765 * return codes are later going to be fixed up by the arch specific
766 * signal handlers
767 *
768 * This is actually a test for:
769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
771 *
772 * but is faster than a bunch of ||
773 */
774 if (unlikely(return_code <= -ERESTARTSYS) &&
775 (return_code >= -ERESTART_RESTARTBLOCK) &&
776 (return_code != -ENOIOCTLCMD))
777 context->return_code = -EINTR;
778 else
779 context->return_code = return_code;
1da177e4 780
0590b933
AV
781 if (context->in_syscall && !context->dummy) {
782 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
783 audit_filter_inodes(tsk, context);
1da177e4
LT
784 }
785
1da177e4
LT
786 tsk->audit_context = NULL;
787 return context;
788}
789
790static inline void audit_free_names(struct audit_context *context)
791{
792 int i;
793
794#if AUDIT_DEBUG == 2
0590b933 795 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 796 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
797 " name_count=%d put_count=%d"
798 " ino_count=%d [NOT freeing]\n",
73241ccc 799 __FILE__, __LINE__,
1da177e4
LT
800 context->serial, context->major, context->in_syscall,
801 context->name_count, context->put_count,
802 context->ino_count);
8c8570fb 803 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
804 printk(KERN_ERR "names[%d] = %p = %s\n", i,
805 context->names[i].name,
73241ccc 806 context->names[i].name ?: "(null)");
8c8570fb 807 }
1da177e4
LT
808 dump_stack();
809 return;
810 }
811#endif
812#if AUDIT_DEBUG
813 context->put_count = 0;
814 context->ino_count = 0;
815#endif
816
8c8570fb 817 for (i = 0; i < context->name_count; i++) {
9c937dcc 818 if (context->names[i].name && context->names[i].name_put)
1da177e4 819 __putname(context->names[i].name);
8c8570fb 820 }
1da177e4 821 context->name_count = 0;
44707fdf
JB
822 path_put(&context->pwd);
823 context->pwd.dentry = NULL;
824 context->pwd.mnt = NULL;
1da177e4
LT
825}
826
827static inline void audit_free_aux(struct audit_context *context)
828{
829 struct audit_aux_data *aux;
830
831 while ((aux = context->aux)) {
832 context->aux = aux->next;
833 kfree(aux);
834 }
e54dc243
AG
835 while ((aux = context->aux_pids)) {
836 context->aux_pids = aux->next;
837 kfree(aux);
838 }
1da177e4
LT
839}
840
841static inline void audit_zero_context(struct audit_context *context,
842 enum audit_state state)
843{
1da177e4
LT
844 memset(context, 0, sizeof(*context));
845 context->state = state;
0590b933 846 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
847}
848
849static inline struct audit_context *audit_alloc_context(enum audit_state state)
850{
851 struct audit_context *context;
852
853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
854 return NULL;
855 audit_zero_context(context, state);
856 return context;
857}
858
b0dd25a8
RD
859/**
860 * audit_alloc - allocate an audit context block for a task
861 * @tsk: task
862 *
863 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
864 * if necessary. Doing so turns on system call auditing for the
865 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
866 * needed.
867 */
1da177e4
LT
868int audit_alloc(struct task_struct *tsk)
869{
870 struct audit_context *context;
871 enum audit_state state;
e048e02c 872 char *key = NULL;
1da177e4 873
b593d384 874 if (likely(!audit_ever_enabled))
1da177e4
LT
875 return 0; /* Return if not auditing. */
876
e048e02c 877 state = audit_filter_task(tsk, &key);
1da177e4
LT
878 if (likely(state == AUDIT_DISABLED))
879 return 0;
880
881 if (!(context = audit_alloc_context(state))) {
e048e02c 882 kfree(key);
1da177e4
LT
883 audit_log_lost("out of memory in audit_alloc");
884 return -ENOMEM;
885 }
e048e02c 886 context->filterkey = key;
1da177e4 887
1da177e4
LT
888 tsk->audit_context = context;
889 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
890 return 0;
891}
892
893static inline void audit_free_context(struct audit_context *context)
894{
895 struct audit_context *previous;
896 int count = 0;
897
898 do {
899 previous = context->previous;
900 if (previous || (count && count < 10)) {
901 ++count;
902 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
903 " freeing multiple contexts (%d)\n",
904 context->serial, context->major,
905 context->name_count, count);
906 }
907 audit_free_names(context);
74c3cbe3
AV
908 unroll_tree_refs(context, NULL, 0);
909 free_tree_refs(context);
1da177e4 910 audit_free_aux(context);
5adc8a6a 911 kfree(context->filterkey);
4f6b434f 912 kfree(context->sockaddr);
1da177e4
LT
913 kfree(context);
914 context = previous;
915 } while (context);
916 if (count >= 10)
917 printk(KERN_ERR "audit: freed %d contexts\n", count);
918}
919
161a09e7 920void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
921{
922 char *ctx = NULL;
c4823bce
AV
923 unsigned len;
924 int error;
925 u32 sid;
926
2a862b32 927 security_task_getsecid(current, &sid);
c4823bce
AV
928 if (!sid)
929 return;
8c8570fb 930
2a862b32 931 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
932 if (error) {
933 if (error != -EINVAL)
8c8570fb
DK
934 goto error_path;
935 return;
936 }
937
8c8570fb 938 audit_log_format(ab, " subj=%s", ctx);
2a862b32 939 security_release_secctx(ctx, len);
7306a0b9 940 return;
8c8570fb
DK
941
942error_path:
7306a0b9 943 audit_panic("error in audit_log_task_context");
8c8570fb
DK
944 return;
945}
946
161a09e7
JL
947EXPORT_SYMBOL(audit_log_task_context);
948
e495149b 949static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 950{
45d9bb0e
AV
951 char name[sizeof(tsk->comm)];
952 struct mm_struct *mm = tsk->mm;
219f0817
SS
953 struct vm_area_struct *vma;
954
e495149b
AV
955 /* tsk == current */
956
45d9bb0e 957 get_task_comm(name, tsk);
99e45eea
DW
958 audit_log_format(ab, " comm=");
959 audit_log_untrustedstring(ab, name);
219f0817 960
e495149b
AV
961 if (mm) {
962 down_read(&mm->mmap_sem);
963 vma = mm->mmap;
964 while (vma) {
965 if ((vma->vm_flags & VM_EXECUTABLE) &&
966 vma->vm_file) {
967 audit_log_d_path(ab, "exe=",
44707fdf 968 &vma->vm_file->f_path);
e495149b
AV
969 break;
970 }
971 vma = vma->vm_next;
219f0817 972 }
e495149b 973 up_read(&mm->mmap_sem);
219f0817 974 }
e495149b 975 audit_log_task_context(ab);
219f0817
SS
976}
977
e54dc243 978static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
979 uid_t auid, uid_t uid, unsigned int sessionid,
980 u32 sid, char *comm)
e54dc243
AG
981{
982 struct audit_buffer *ab;
2a862b32 983 char *ctx = NULL;
e54dc243
AG
984 u32 len;
985 int rc = 0;
986
987 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
988 if (!ab)
6246ccab 989 return rc;
e54dc243 990
4746ec5b
EP
991 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
992 uid, sessionid);
2a862b32 993 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 994 audit_log_format(ab, " obj=(none)");
e54dc243 995 rc = 1;
2a862b32
AD
996 } else {
997 audit_log_format(ab, " obj=%s", ctx);
998 security_release_secctx(ctx, len);
999 }
c2a7780e
EP
1000 audit_log_format(ab, " ocomm=");
1001 audit_log_untrustedstring(ab, comm);
e54dc243 1002 audit_log_end(ab);
e54dc243
AG
1003
1004 return rc;
1005}
1006
de6bbd1d
EP
1007/*
1008 * to_send and len_sent accounting are very loose estimates. We aren't
1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1010 * within about 500 bytes (next page boundry)
1011 *
1012 * why snprintf? an int is up to 12 digits long. if we just assumed when
1013 * logging that a[%d]= was going to be 16 characters long we would be wasting
1014 * space in every audit message. In one 7500 byte message we can log up to
1015 * about 1000 min size arguments. That comes down to about 50% waste of space
1016 * if we didn't do the snprintf to find out how long arg_num_len was.
1017 */
1018static int audit_log_single_execve_arg(struct audit_context *context,
1019 struct audit_buffer **ab,
1020 int arg_num,
1021 size_t *len_sent,
1022 const char __user *p,
1023 char *buf)
bdf4c48a 1024{
de6bbd1d
EP
1025 char arg_num_len_buf[12];
1026 const char __user *tmp_p = p;
b87ce6e4
EP
1027 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1028 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1029 size_t len, len_left, to_send;
1030 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1031 unsigned int i, has_cntl = 0, too_long = 0;
1032 int ret;
1033
1034 /* strnlen_user includes the null we don't want to send */
1035 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1036
de6bbd1d
EP
1037 /*
1038 * We just created this mm, if we can't find the strings
1039 * we just copied into it something is _very_ wrong. Similar
1040 * for strings that are too long, we should not have created
1041 * any.
1042 */
b0abcfc1 1043 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1044 WARN_ON(1);
1045 send_sig(SIGKILL, current, 0);
b0abcfc1 1046 return -1;
de6bbd1d 1047 }
040b3a2d 1048
de6bbd1d
EP
1049 /* walk the whole argument looking for non-ascii chars */
1050 do {
1051 if (len_left > MAX_EXECVE_AUDIT_LEN)
1052 to_send = MAX_EXECVE_AUDIT_LEN;
1053 else
1054 to_send = len_left;
1055 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1056 /*
de6bbd1d
EP
1057 * There is no reason for this copy to be short. We just
1058 * copied them here, and the mm hasn't been exposed to user-
1059 * space yet.
bdf4c48a 1060 */
de6bbd1d 1061 if (ret) {
bdf4c48a
PZ
1062 WARN_ON(1);
1063 send_sig(SIGKILL, current, 0);
b0abcfc1 1064 return -1;
bdf4c48a 1065 }
de6bbd1d
EP
1066 buf[to_send] = '\0';
1067 has_cntl = audit_string_contains_control(buf, to_send);
1068 if (has_cntl) {
1069 /*
1070 * hex messages get logged as 2 bytes, so we can only
1071 * send half as much in each message
1072 */
1073 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1074 break;
1075 }
de6bbd1d
EP
1076 len_left -= to_send;
1077 tmp_p += to_send;
1078 } while (len_left > 0);
1079
1080 len_left = len;
1081
1082 if (len > max_execve_audit_len)
1083 too_long = 1;
1084
1085 /* rewalk the argument actually logging the message */
1086 for (i = 0; len_left > 0; i++) {
1087 int room_left;
1088
1089 if (len_left > max_execve_audit_len)
1090 to_send = max_execve_audit_len;
1091 else
1092 to_send = len_left;
1093
1094 /* do we have space left to send this argument in this ab? */
1095 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1096 if (has_cntl)
1097 room_left -= (to_send * 2);
1098 else
1099 room_left -= to_send;
1100 if (room_left < 0) {
1101 *len_sent = 0;
1102 audit_log_end(*ab);
1103 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1104 if (!*ab)
1105 return 0;
1106 }
bdf4c48a 1107
bdf4c48a 1108 /*
de6bbd1d
EP
1109 * first record needs to say how long the original string was
1110 * so we can be sure nothing was lost.
1111 */
1112 if ((i == 0) && (too_long))
ca96a895 1113 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1114 has_cntl ? 2*len : len);
1115
1116 /*
1117 * normally arguments are small enough to fit and we already
1118 * filled buf above when we checked for control characters
1119 * so don't bother with another copy_from_user
bdf4c48a 1120 */
de6bbd1d
EP
1121 if (len >= max_execve_audit_len)
1122 ret = copy_from_user(buf, p, to_send);
1123 else
1124 ret = 0;
040b3a2d 1125 if (ret) {
bdf4c48a
PZ
1126 WARN_ON(1);
1127 send_sig(SIGKILL, current, 0);
b0abcfc1 1128 return -1;
bdf4c48a 1129 }
de6bbd1d
EP
1130 buf[to_send] = '\0';
1131
1132 /* actually log it */
ca96a895 1133 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1134 if (too_long)
1135 audit_log_format(*ab, "[%d]", i);
1136 audit_log_format(*ab, "=");
1137 if (has_cntl)
b556f8ad 1138 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1139 else
9d960985 1140 audit_log_string(*ab, buf);
de6bbd1d
EP
1141
1142 p += to_send;
1143 len_left -= to_send;
1144 *len_sent += arg_num_len;
1145 if (has_cntl)
1146 *len_sent += to_send * 2;
1147 else
1148 *len_sent += to_send;
1149 }
1150 /* include the null we didn't log */
1151 return len + 1;
1152}
1153
1154static void audit_log_execve_info(struct audit_context *context,
1155 struct audit_buffer **ab,
1156 struct audit_aux_data_execve *axi)
1157{
1158 int i;
1159 size_t len, len_sent = 0;
1160 const char __user *p;
1161 char *buf;
bdf4c48a 1162
de6bbd1d
EP
1163 if (axi->mm != current->mm)
1164 return; /* execve failed, no additional info */
1165
1166 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1167
ca96a895 1168 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1169
1170 /*
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1175 */
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177 if (!buf) {
1178 audit_panic("out of memory for argv string\n");
1179 return;
bdf4c48a 1180 }
de6bbd1d
EP
1181
1182 for (i = 0; i < axi->argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1184 &len_sent, p, buf);
1185 if (len <= 0)
1186 break;
1187 p += len;
1188 }
1189 kfree(buf);
bdf4c48a
PZ
1190}
1191
851f7ff5
EP
1192static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1193{
1194 int i;
1195
1196 audit_log_format(ab, " %s=", prefix);
1197 CAP_FOR_EACH_U32(i) {
1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1199 }
1200}
1201
1202static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1203{
1204 kernel_cap_t *perm = &name->fcap.permitted;
1205 kernel_cap_t *inh = &name->fcap.inheritable;
1206 int log = 0;
1207
1208 if (!cap_isclear(*perm)) {
1209 audit_log_cap(ab, "cap_fp", perm);
1210 log = 1;
1211 }
1212 if (!cap_isclear(*inh)) {
1213 audit_log_cap(ab, "cap_fi", inh);
1214 log = 1;
1215 }
1216
1217 if (log)
1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1219}
1220
a33e6751 1221static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1222{
1223 struct audit_buffer *ab;
1224 int i;
1225
1226 ab = audit_log_start(context, GFP_KERNEL, context->type);
1227 if (!ab)
1228 return;
1229
1230 switch (context->type) {
1231 case AUDIT_SOCKETCALL: {
1232 int nargs = context->socketcall.nargs;
1233 audit_log_format(ab, "nargs=%d", nargs);
1234 for (i = 0; i < nargs; i++)
1235 audit_log_format(ab, " a%d=%lx", i,
1236 context->socketcall.args[i]);
1237 break; }
a33e6751
AV
1238 case AUDIT_IPC: {
1239 u32 osid = context->ipc.osid;
1240
1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1243 if (osid) {
1244 char *ctx = NULL;
1245 u32 len;
1246 if (security_secid_to_secctx(osid, &ctx, &len)) {
1247 audit_log_format(ab, " osid=%u", osid);
1248 *call_panic = 1;
1249 } else {
1250 audit_log_format(ab, " obj=%s", ctx);
1251 security_release_secctx(ctx, len);
1252 }
1253 }
e816f370
AV
1254 if (context->ipc.has_perm) {
1255 audit_log_end(ab);
1256 ab = audit_log_start(context, GFP_KERNEL,
1257 AUDIT_IPC_SET_PERM);
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 if (!ab)
1265 return;
1266 }
a33e6751 1267 break; }
564f6993
AV
1268 case AUDIT_MQ_OPEN: {
1269 audit_log_format(ab,
1270 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1271 "mq_msgsize=%ld mq_curmsgs=%ld",
1272 context->mq_open.oflag, context->mq_open.mode,
1273 context->mq_open.attr.mq_flags,
1274 context->mq_open.attr.mq_maxmsg,
1275 context->mq_open.attr.mq_msgsize,
1276 context->mq_open.attr.mq_curmsgs);
1277 break; }
c32c8af4
AV
1278 case AUDIT_MQ_SENDRECV: {
1279 audit_log_format(ab,
1280 "mqdes=%d msg_len=%zd msg_prio=%u "
1281 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1282 context->mq_sendrecv.mqdes,
1283 context->mq_sendrecv.msg_len,
1284 context->mq_sendrecv.msg_prio,
1285 context->mq_sendrecv.abs_timeout.tv_sec,
1286 context->mq_sendrecv.abs_timeout.tv_nsec);
1287 break; }
20114f71
AV
1288 case AUDIT_MQ_NOTIFY: {
1289 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1290 context->mq_notify.mqdes,
1291 context->mq_notify.sigev_signo);
1292 break; }
7392906e
AV
1293 case AUDIT_MQ_GETSETATTR: {
1294 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1295 audit_log_format(ab,
1296 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1297 "mq_curmsgs=%ld ",
1298 context->mq_getsetattr.mqdes,
1299 attr->mq_flags, attr->mq_maxmsg,
1300 attr->mq_msgsize, attr->mq_curmsgs);
1301 break; }
57f71a0a
AV
1302 case AUDIT_CAPSET: {
1303 audit_log_format(ab, "pid=%d", context->capset.pid);
1304 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1305 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1306 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1307 break; }
f3298dc4
AV
1308 }
1309 audit_log_end(ab);
1310}
1311
e495149b 1312static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1313{
c69e8d9c 1314 const struct cred *cred;
9c7aa6aa 1315 int i, call_panic = 0;
1da177e4 1316 struct audit_buffer *ab;
7551ced3 1317 struct audit_aux_data *aux;
a6c043a8 1318 const char *tty;
1da177e4 1319
e495149b 1320 /* tsk == current */
3f2792ff 1321 context->pid = tsk->pid;
419c58f1
AV
1322 if (!context->ppid)
1323 context->ppid = sys_getppid();
c69e8d9c
DH
1324 cred = current_cred();
1325 context->uid = cred->uid;
1326 context->gid = cred->gid;
1327 context->euid = cred->euid;
1328 context->suid = cred->suid;
b6dff3ec 1329 context->fsuid = cred->fsuid;
c69e8d9c
DH
1330 context->egid = cred->egid;
1331 context->sgid = cred->sgid;
b6dff3ec 1332 context->fsgid = cred->fsgid;
3f2792ff 1333 context->personality = tsk->personality;
e495149b
AV
1334
1335 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1336 if (!ab)
1337 return; /* audit_panic has been called */
bccf6ae0
DW
1338 audit_log_format(ab, "arch=%x syscall=%d",
1339 context->arch, context->major);
1da177e4
LT
1340 if (context->personality != PER_LINUX)
1341 audit_log_format(ab, " per=%lx", context->personality);
1342 if (context->return_valid)
9f8dbe9c 1343 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1344 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1345 context->return_code);
eb84a20e 1346
dbda4c0b 1347 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1348 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1349 tty = tsk->signal->tty->name;
a6c043a8
SG
1350 else
1351 tty = "(none)";
dbda4c0b
AC
1352 spin_unlock_irq(&tsk->sighand->siglock);
1353
1da177e4
LT
1354 audit_log_format(ab,
1355 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1356 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1357 " euid=%u suid=%u fsuid=%u"
4746ec5b 1358 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1359 context->argv[0],
1360 context->argv[1],
1361 context->argv[2],
1362 context->argv[3],
1363 context->name_count,
f46038ff 1364 context->ppid,
1da177e4 1365 context->pid,
bfef93a5 1366 tsk->loginuid,
1da177e4
LT
1367 context->uid,
1368 context->gid,
1369 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1370 context->egid, context->sgid, context->fsgid, tty,
1371 tsk->sessionid);
eb84a20e 1372
eb84a20e 1373
e495149b 1374 audit_log_task_info(ab, tsk);
9d960985 1375 audit_log_key(ab, context->filterkey);
1da177e4 1376 audit_log_end(ab);
1da177e4 1377
7551ced3 1378 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1379
e495149b 1380 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1381 if (!ab)
1382 continue; /* audit_panic has been called */
1383
1da177e4 1384 switch (aux->type) {
20ca73bc 1385
473ae30b
AV
1386 case AUDIT_EXECVE: {
1387 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1388 audit_log_execve_info(context, &ab, axi);
473ae30b 1389 break; }
073115d6 1390
3fc689e9
EP
1391 case AUDIT_BPRM_FCAPS: {
1392 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1393 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1394 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1395 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1396 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1397 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1398 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1399 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1400 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1401 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1402 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1403 break; }
1404
1da177e4
LT
1405 }
1406 audit_log_end(ab);
1da177e4
LT
1407 }
1408
f3298dc4 1409 if (context->type)
a33e6751 1410 show_special(context, &call_panic);
f3298dc4 1411
157cf649
AV
1412 if (context->fds[0] >= 0) {
1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1414 if (ab) {
1415 audit_log_format(ab, "fd0=%d fd1=%d",
1416 context->fds[0], context->fds[1]);
1417 audit_log_end(ab);
1418 }
1419 }
1420
4f6b434f
AV
1421 if (context->sockaddr_len) {
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1423 if (ab) {
1424 audit_log_format(ab, "saddr=");
1425 audit_log_n_hex(ab, (void *)context->sockaddr,
1426 context->sockaddr_len);
1427 audit_log_end(ab);
1428 }
1429 }
1430
e54dc243
AG
1431 for (aux = context->aux_pids; aux; aux = aux->next) {
1432 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1433
1434 for (i = 0; i < axs->pid_count; i++)
1435 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1436 axs->target_auid[i],
1437 axs->target_uid[i],
4746ec5b 1438 axs->target_sessionid[i],
c2a7780e
EP
1439 axs->target_sid[i],
1440 axs->target_comm[i]))
e54dc243 1441 call_panic = 1;
a5cb013d
AV
1442 }
1443
e54dc243
AG
1444 if (context->target_pid &&
1445 audit_log_pid_context(context, context->target_pid,
c2a7780e 1446 context->target_auid, context->target_uid,
4746ec5b 1447 context->target_sessionid,
c2a7780e 1448 context->target_sid, context->target_comm))
e54dc243
AG
1449 call_panic = 1;
1450
44707fdf 1451 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1453 if (ab) {
44707fdf 1454 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1455 audit_log_end(ab);
1456 }
1457 }
1da177e4 1458 for (i = 0; i < context->name_count; i++) {
9c937dcc 1459 struct audit_names *n = &context->names[i];
73241ccc 1460
e495149b 1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1462 if (!ab)
1463 continue; /* audit_panic has been called */
8f37d47c 1464
1da177e4 1465 audit_log_format(ab, "item=%d", i);
73241ccc 1466
9c937dcc
AG
1467 if (n->name) {
1468 switch(n->name_len) {
1469 case AUDIT_NAME_FULL:
1470 /* log the full path */
1471 audit_log_format(ab, " name=");
1472 audit_log_untrustedstring(ab, n->name);
1473 break;
1474 case 0:
1475 /* name was specified as a relative path and the
1476 * directory component is the cwd */
def57543 1477 audit_log_d_path(ab, "name=", &context->pwd);
9c937dcc
AG
1478 break;
1479 default:
1480 /* log the name's directory component */
1481 audit_log_format(ab, " name=");
b556f8ad
EP
1482 audit_log_n_untrustedstring(ab, n->name,
1483 n->name_len);
9c937dcc
AG
1484 }
1485 } else
1486 audit_log_format(ab, " name=(null)");
1487
1488 if (n->ino != (unsigned long)-1) {
1489 audit_log_format(ab, " inode=%lu"
1490 " dev=%02x:%02x mode=%#o"
1491 " ouid=%u ogid=%u rdev=%02x:%02x",
1492 n->ino,
1493 MAJOR(n->dev),
1494 MINOR(n->dev),
1495 n->mode,
1496 n->uid,
1497 n->gid,
1498 MAJOR(n->rdev),
1499 MINOR(n->rdev));
1500 }
1501 if (n->osid != 0) {
1b50eed9
SG
1502 char *ctx = NULL;
1503 u32 len;
2a862b32 1504 if (security_secid_to_secctx(
9c937dcc
AG
1505 n->osid, &ctx, &len)) {
1506 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1507 call_panic = 2;
2a862b32 1508 } else {
1b50eed9 1509 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1510 security_release_secctx(ctx, len);
1511 }
8c8570fb
DK
1512 }
1513
851f7ff5
EP
1514 audit_log_fcaps(ab, n);
1515
1da177e4
LT
1516 audit_log_end(ab);
1517 }
c0641f28
EP
1518
1519 /* Send end of event record to help user space know we are finished */
1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1521 if (ab)
1522 audit_log_end(ab);
9c7aa6aa
SG
1523 if (call_panic)
1524 audit_panic("error converting sid to string");
1da177e4
LT
1525}
1526
b0dd25a8
RD
1527/**
1528 * audit_free - free a per-task audit context
1529 * @tsk: task whose audit context block to free
1530 *
fa84cb93 1531 * Called from copy_process and do_exit
b0dd25a8 1532 */
1da177e4
LT
1533void audit_free(struct task_struct *tsk)
1534{
1535 struct audit_context *context;
1536
1da177e4 1537 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1538 if (likely(!context))
1539 return;
1540
1541 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1542 * function (e.g., exit_group), then free context block.
1543 * We use GFP_ATOMIC here because we might be doing this
f5561964 1544 * in the context of the idle thread */
e495149b 1545 /* that can happen only if we are called from do_exit() */
0590b933 1546 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1547 audit_log_exit(context, tsk);
1da177e4
LT
1548
1549 audit_free_context(context);
1550}
1551
b0dd25a8
RD
1552/**
1553 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1554 * @arch: architecture type
1555 * @major: major syscall type (function)
1556 * @a1: additional syscall register 1
1557 * @a2: additional syscall register 2
1558 * @a3: additional syscall register 3
1559 * @a4: additional syscall register 4
1560 *
1561 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1562 * audit context was created when the task was created and the state or
1563 * filters demand the audit context be built. If the state from the
1564 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1565 * then the record will be written at syscall exit time (otherwise, it
1566 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1567 * be written).
1568 */
5411be59 1569void audit_syscall_entry(int arch, int major,
1da177e4
LT
1570 unsigned long a1, unsigned long a2,
1571 unsigned long a3, unsigned long a4)
1572{
5411be59 1573 struct task_struct *tsk = current;
1da177e4
LT
1574 struct audit_context *context = tsk->audit_context;
1575 enum audit_state state;
1576
86a1c34a
RM
1577 if (unlikely(!context))
1578 return;
1da177e4 1579
b0dd25a8
RD
1580 /*
1581 * This happens only on certain architectures that make system
1da177e4
LT
1582 * calls in kernel_thread via the entry.S interface, instead of
1583 * with direct calls. (If you are porting to a new
1584 * architecture, hitting this condition can indicate that you
1585 * got the _exit/_leave calls backward in entry.S.)
1586 *
1587 * i386 no
1588 * x86_64 no
2ef9481e 1589 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1590 *
1591 * This also happens with vm86 emulation in a non-nested manner
1592 * (entries without exits), so this case must be caught.
1593 */
1594 if (context->in_syscall) {
1595 struct audit_context *newctx;
1596
1da177e4
LT
1597#if AUDIT_DEBUG
1598 printk(KERN_ERR
1599 "audit(:%d) pid=%d in syscall=%d;"
1600 " entering syscall=%d\n",
1601 context->serial, tsk->pid, context->major, major);
1602#endif
1603 newctx = audit_alloc_context(context->state);
1604 if (newctx) {
1605 newctx->previous = context;
1606 context = newctx;
1607 tsk->audit_context = newctx;
1608 } else {
1609 /* If we can't alloc a new context, the best we
1610 * can do is to leak memory (any pending putname
1611 * will be lost). The only other alternative is
1612 * to abandon auditing. */
1613 audit_zero_context(context, context->state);
1614 }
1615 }
1616 BUG_ON(context->in_syscall || context->name_count);
1617
1618 if (!audit_enabled)
1619 return;
1620
2fd6f58b 1621 context->arch = arch;
1da177e4
LT
1622 context->major = major;
1623 context->argv[0] = a1;
1624 context->argv[1] = a2;
1625 context->argv[2] = a3;
1626 context->argv[3] = a4;
1627
1628 state = context->state;
d51374ad 1629 context->dummy = !audit_n_rules;
0590b933
AV
1630 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1631 context->prio = 0;
0f45aa18 1632 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1633 }
1da177e4
LT
1634 if (likely(state == AUDIT_DISABLED))
1635 return;
1636
ce625a80 1637 context->serial = 0;
1da177e4
LT
1638 context->ctime = CURRENT_TIME;
1639 context->in_syscall = 1;
0590b933 1640 context->current_state = state;
419c58f1 1641 context->ppid = 0;
1da177e4
LT
1642}
1643
a64e6494
AV
1644void audit_finish_fork(struct task_struct *child)
1645{
1646 struct audit_context *ctx = current->audit_context;
1647 struct audit_context *p = child->audit_context;
0590b933
AV
1648 if (!p || !ctx)
1649 return;
1650 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1651 return;
1652 p->arch = ctx->arch;
1653 p->major = ctx->major;
1654 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1655 p->ctime = ctx->ctime;
1656 p->dummy = ctx->dummy;
a64e6494
AV
1657 p->in_syscall = ctx->in_syscall;
1658 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1659 p->ppid = current->pid;
0590b933
AV
1660 p->prio = ctx->prio;
1661 p->current_state = ctx->current_state;
a64e6494
AV
1662}
1663
b0dd25a8
RD
1664/**
1665 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1666 * @valid: success/failure flag
1667 * @return_code: syscall return value
1668 *
1669 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1670 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1671 * filtering, or because some other part of the kernel write an audit
1672 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1673 * free the names stored from getname().
1674 */
5411be59 1675void audit_syscall_exit(int valid, long return_code)
1da177e4 1676{
5411be59 1677 struct task_struct *tsk = current;
1da177e4
LT
1678 struct audit_context *context;
1679
2fd6f58b 1680 context = audit_get_context(tsk, valid, return_code);
1da177e4 1681
1da177e4 1682 if (likely(!context))
97e94c45 1683 return;
1da177e4 1684
0590b933 1685 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1686 audit_log_exit(context, tsk);
1da177e4
LT
1687
1688 context->in_syscall = 0;
0590b933 1689 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1690
1da177e4
LT
1691 if (context->previous) {
1692 struct audit_context *new_context = context->previous;
1693 context->previous = NULL;
1694 audit_free_context(context);
1695 tsk->audit_context = new_context;
1696 } else {
1697 audit_free_names(context);
74c3cbe3 1698 unroll_tree_refs(context, NULL, 0);
1da177e4 1699 audit_free_aux(context);
e54dc243
AG
1700 context->aux = NULL;
1701 context->aux_pids = NULL;
a5cb013d 1702 context->target_pid = 0;
e54dc243 1703 context->target_sid = 0;
4f6b434f 1704 context->sockaddr_len = 0;
f3298dc4 1705 context->type = 0;
157cf649 1706 context->fds[0] = -1;
e048e02c
AV
1707 if (context->state != AUDIT_RECORD_CONTEXT) {
1708 kfree(context->filterkey);
1709 context->filterkey = NULL;
1710 }
1da177e4
LT
1711 tsk->audit_context = context;
1712 }
1da177e4
LT
1713}
1714
74c3cbe3
AV
1715static inline void handle_one(const struct inode *inode)
1716{
1717#ifdef CONFIG_AUDIT_TREE
1718 struct audit_context *context;
1719 struct audit_tree_refs *p;
1720 struct audit_chunk *chunk;
1721 int count;
1722 if (likely(list_empty(&inode->inotify_watches)))
1723 return;
1724 context = current->audit_context;
1725 p = context->trees;
1726 count = context->tree_count;
1727 rcu_read_lock();
1728 chunk = audit_tree_lookup(inode);
1729 rcu_read_unlock();
1730 if (!chunk)
1731 return;
1732 if (likely(put_tree_ref(context, chunk)))
1733 return;
1734 if (unlikely(!grow_tree_refs(context))) {
436c405c 1735 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1736 audit_set_auditable(context);
1737 audit_put_chunk(chunk);
1738 unroll_tree_refs(context, p, count);
1739 return;
1740 }
1741 put_tree_ref(context, chunk);
1742#endif
1743}
1744
1745static void handle_path(const struct dentry *dentry)
1746{
1747#ifdef CONFIG_AUDIT_TREE
1748 struct audit_context *context;
1749 struct audit_tree_refs *p;
1750 const struct dentry *d, *parent;
1751 struct audit_chunk *drop;
1752 unsigned long seq;
1753 int count;
1754
1755 context = current->audit_context;
1756 p = context->trees;
1757 count = context->tree_count;
1758retry:
1759 drop = NULL;
1760 d = dentry;
1761 rcu_read_lock();
1762 seq = read_seqbegin(&rename_lock);
1763 for(;;) {
1764 struct inode *inode = d->d_inode;
1765 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1766 struct audit_chunk *chunk;
1767 chunk = audit_tree_lookup(inode);
1768 if (chunk) {
1769 if (unlikely(!put_tree_ref(context, chunk))) {
1770 drop = chunk;
1771 break;
1772 }
1773 }
1774 }
1775 parent = d->d_parent;
1776 if (parent == d)
1777 break;
1778 d = parent;
1779 }
1780 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1781 rcu_read_unlock();
1782 if (!drop) {
1783 /* just a race with rename */
1784 unroll_tree_refs(context, p, count);
1785 goto retry;
1786 }
1787 audit_put_chunk(drop);
1788 if (grow_tree_refs(context)) {
1789 /* OK, got more space */
1790 unroll_tree_refs(context, p, count);
1791 goto retry;
1792 }
1793 /* too bad */
1794 printk(KERN_WARNING
436c405c 1795 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1796 unroll_tree_refs(context, p, count);
1797 audit_set_auditable(context);
1798 return;
1799 }
1800 rcu_read_unlock();
1801#endif
1802}
1803
b0dd25a8
RD
1804/**
1805 * audit_getname - add a name to the list
1806 * @name: name to add
1807 *
1808 * Add a name to the list of audit names for this context.
1809 * Called from fs/namei.c:getname().
1810 */
d8945bb5 1811void __audit_getname(const char *name)
1da177e4
LT
1812{
1813 struct audit_context *context = current->audit_context;
1814
d8945bb5 1815 if (IS_ERR(name) || !name)
1da177e4
LT
1816 return;
1817
1818 if (!context->in_syscall) {
1819#if AUDIT_DEBUG == 2
1820 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1821 __FILE__, __LINE__, context->serial, name);
1822 dump_stack();
1823#endif
1824 return;
1825 }
1826 BUG_ON(context->name_count >= AUDIT_NAMES);
1827 context->names[context->name_count].name = name;
9c937dcc
AG
1828 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1829 context->names[context->name_count].name_put = 1;
1da177e4 1830 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1831 context->names[context->name_count].osid = 0;
1da177e4 1832 ++context->name_count;
44707fdf 1833 if (!context->pwd.dentry) {
8f37d47c 1834 read_lock(&current->fs->lock);
44707fdf
JB
1835 context->pwd = current->fs->pwd;
1836 path_get(&current->fs->pwd);
8f37d47c
DW
1837 read_unlock(&current->fs->lock);
1838 }
9f8dbe9c 1839
1da177e4
LT
1840}
1841
b0dd25a8
RD
1842/* audit_putname - intercept a putname request
1843 * @name: name to intercept and delay for putname
1844 *
1845 * If we have stored the name from getname in the audit context,
1846 * then we delay the putname until syscall exit.
1847 * Called from include/linux/fs.h:putname().
1848 */
1da177e4
LT
1849void audit_putname(const char *name)
1850{
1851 struct audit_context *context = current->audit_context;
1852
1853 BUG_ON(!context);
1854 if (!context->in_syscall) {
1855#if AUDIT_DEBUG == 2
1856 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1857 __FILE__, __LINE__, context->serial, name);
1858 if (context->name_count) {
1859 int i;
1860 for (i = 0; i < context->name_count; i++)
1861 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1862 context->names[i].name,
73241ccc 1863 context->names[i].name ?: "(null)");
1da177e4
LT
1864 }
1865#endif
1866 __putname(name);
1867 }
1868#if AUDIT_DEBUG
1869 else {
1870 ++context->put_count;
1871 if (context->put_count > context->name_count) {
1872 printk(KERN_ERR "%s:%d(:%d): major=%d"
1873 " in_syscall=%d putname(%p) name_count=%d"
1874 " put_count=%d\n",
1875 __FILE__, __LINE__,
1876 context->serial, context->major,
1877 context->in_syscall, name, context->name_count,
1878 context->put_count);
1879 dump_stack();
1880 }
1881 }
1882#endif
1883}
1884
5712e88f
AG
1885static int audit_inc_name_count(struct audit_context *context,
1886 const struct inode *inode)
1887{
1888 if (context->name_count >= AUDIT_NAMES) {
1889 if (inode)
1890 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1891 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1892 MAJOR(inode->i_sb->s_dev),
1893 MINOR(inode->i_sb->s_dev),
1894 inode->i_ino);
1895
1896 else
436c405c 1897 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1898 return 1;
1899 }
1900 context->name_count++;
1901#if AUDIT_DEBUG
1902 context->ino_count++;
1903#endif
1904 return 0;
1905}
1906
851f7ff5
EP
1907
1908static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1909{
1910 struct cpu_vfs_cap_data caps;
1911 int rc;
1912
1913 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1914 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1915 name->fcap.fE = 0;
1916 name->fcap_ver = 0;
1917
1918 if (!dentry)
1919 return 0;
1920
1921 rc = get_vfs_caps_from_disk(dentry, &caps);
1922 if (rc)
1923 return rc;
1924
1925 name->fcap.permitted = caps.permitted;
1926 name->fcap.inheritable = caps.inheritable;
1927 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1928 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1929
1930 return 0;
1931}
1932
1933
3e2efce0 1934/* Copy inode data into an audit_names. */
851f7ff5
EP
1935static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1936 const struct inode *inode)
8c8570fb 1937{
3e2efce0
AG
1938 name->ino = inode->i_ino;
1939 name->dev = inode->i_sb->s_dev;
1940 name->mode = inode->i_mode;
1941 name->uid = inode->i_uid;
1942 name->gid = inode->i_gid;
1943 name->rdev = inode->i_rdev;
2a862b32 1944 security_inode_getsecid(inode, &name->osid);
851f7ff5 1945 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1946}
1947
b0dd25a8
RD
1948/**
1949 * audit_inode - store the inode and device from a lookup
1950 * @name: name being audited
481968f4 1951 * @dentry: dentry being audited
b0dd25a8
RD
1952 *
1953 * Called from fs/namei.c:path_lookup().
1954 */
5a190ae6 1955void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1956{
1957 int idx;
1958 struct audit_context *context = current->audit_context;
74c3cbe3 1959 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1960
1961 if (!context->in_syscall)
1962 return;
1963 if (context->name_count
1964 && context->names[context->name_count-1].name
1965 && context->names[context->name_count-1].name == name)
1966 idx = context->name_count - 1;
1967 else if (context->name_count > 1
1968 && context->names[context->name_count-2].name
1969 && context->names[context->name_count-2].name == name)
1970 idx = context->name_count - 2;
1971 else {
1972 /* FIXME: how much do we care about inodes that have no
1973 * associated name? */
5712e88f 1974 if (audit_inc_name_count(context, inode))
1da177e4 1975 return;
5712e88f 1976 idx = context->name_count - 1;
1da177e4 1977 context->names[idx].name = NULL;
1da177e4 1978 }
74c3cbe3 1979 handle_path(dentry);
851f7ff5 1980 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1981}
1982
1983/**
1984 * audit_inode_child - collect inode info for created/removed objects
1985 * @dname: inode's dentry name
481968f4 1986 * @dentry: dentry being audited
73d3ec5a 1987 * @parent: inode of dentry parent
73241ccc
AG
1988 *
1989 * For syscalls that create or remove filesystem objects, audit_inode
1990 * can only collect information for the filesystem object's parent.
1991 * This call updates the audit context with the child's information.
1992 * Syscalls that create a new filesystem object must be hooked after
1993 * the object is created. Syscalls that remove a filesystem object
1994 * must be hooked prior, in order to capture the target inode during
1995 * unsuccessful attempts.
1996 */
5a190ae6 1997void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1998 const struct inode *parent)
73241ccc
AG
1999{
2000 int idx;
2001 struct audit_context *context = current->audit_context;
5712e88f 2002 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2003 const struct inode *inode = dentry->d_inode;
9c937dcc 2004 int dirlen = 0;
73241ccc
AG
2005
2006 if (!context->in_syscall)
2007 return;
2008
74c3cbe3
AV
2009 if (inode)
2010 handle_one(inode);
73241ccc 2011 /* determine matching parent */
f368c07d 2012 if (!dname)
5712e88f 2013 goto add_names;
73241ccc 2014
5712e88f
AG
2015 /* parent is more likely, look for it first */
2016 for (idx = 0; idx < context->name_count; idx++) {
2017 struct audit_names *n = &context->names[idx];
f368c07d 2018
5712e88f
AG
2019 if (!n->name)
2020 continue;
2021
2022 if (n->ino == parent->i_ino &&
2023 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2024 n->name_len = dirlen; /* update parent data in place */
2025 found_parent = n->name;
2026 goto add_names;
f368c07d 2027 }
5712e88f 2028 }
73241ccc 2029
5712e88f
AG
2030 /* no matching parent, look for matching child */
2031 for (idx = 0; idx < context->name_count; idx++) {
2032 struct audit_names *n = &context->names[idx];
2033
2034 if (!n->name)
2035 continue;
2036
2037 /* strcmp() is the more likely scenario */
2038 if (!strcmp(dname, n->name) ||
2039 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2040 if (inode)
851f7ff5 2041 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2042 else
2043 n->ino = (unsigned long)-1;
2044 found_child = n->name;
2045 goto add_names;
2046 }
ac9910ce 2047 }
5712e88f
AG
2048
2049add_names:
2050 if (!found_parent) {
2051 if (audit_inc_name_count(context, parent))
ac9910ce 2052 return;
5712e88f
AG
2053 idx = context->name_count - 1;
2054 context->names[idx].name = NULL;
851f7ff5 2055 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2056 }
5712e88f
AG
2057
2058 if (!found_child) {
2059 if (audit_inc_name_count(context, inode))
2060 return;
2061 idx = context->name_count - 1;
2062
2063 /* Re-use the name belonging to the slot for a matching parent
2064 * directory. All names for this context are relinquished in
2065 * audit_free_names() */
2066 if (found_parent) {
2067 context->names[idx].name = found_parent;
2068 context->names[idx].name_len = AUDIT_NAME_FULL;
2069 /* don't call __putname() */
2070 context->names[idx].name_put = 0;
2071 } else {
2072 context->names[idx].name = NULL;
2073 }
2074
2075 if (inode)
851f7ff5 2076 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2077 else
2078 context->names[idx].ino = (unsigned long)-1;
2079 }
3e2efce0 2080}
50e437d5 2081EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2082
b0dd25a8
RD
2083/**
2084 * auditsc_get_stamp - get local copies of audit_context values
2085 * @ctx: audit_context for the task
2086 * @t: timespec to store time recorded in the audit_context
2087 * @serial: serial value that is recorded in the audit_context
2088 *
2089 * Also sets the context as auditable.
2090 */
48887e63 2091int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2092 struct timespec *t, unsigned int *serial)
1da177e4 2093{
48887e63
AV
2094 if (!ctx->in_syscall)
2095 return 0;
ce625a80
DW
2096 if (!ctx->serial)
2097 ctx->serial = audit_serial();
bfb4496e
DW
2098 t->tv_sec = ctx->ctime.tv_sec;
2099 t->tv_nsec = ctx->ctime.tv_nsec;
2100 *serial = ctx->serial;
0590b933
AV
2101 if (!ctx->prio) {
2102 ctx->prio = 1;
2103 ctx->current_state = AUDIT_RECORD_CONTEXT;
2104 }
48887e63 2105 return 1;
1da177e4
LT
2106}
2107
4746ec5b
EP
2108/* global counter which is incremented every time something logs in */
2109static atomic_t session_id = ATOMIC_INIT(0);
2110
b0dd25a8
RD
2111/**
2112 * audit_set_loginuid - set a task's audit_context loginuid
2113 * @task: task whose audit context is being modified
2114 * @loginuid: loginuid value
2115 *
2116 * Returns 0.
2117 *
2118 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2119 */
456be6cd 2120int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2121{
4746ec5b 2122 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2123 struct audit_context *context = task->audit_context;
2124
bfef93a5
AV
2125 if (context && context->in_syscall) {
2126 struct audit_buffer *ab;
2127
2128 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2129 if (ab) {
2130 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2131 "old auid=%u new auid=%u"
2132 " old ses=%u new ses=%u",
c69e8d9c 2133 task->pid, task_uid(task),
4746ec5b
EP
2134 task->loginuid, loginuid,
2135 task->sessionid, sessionid);
bfef93a5 2136 audit_log_end(ab);
c0404993 2137 }
1da177e4 2138 }
4746ec5b 2139 task->sessionid = sessionid;
bfef93a5 2140 task->loginuid = loginuid;
1da177e4
LT
2141 return 0;
2142}
2143
20ca73bc
GW
2144/**
2145 * __audit_mq_open - record audit data for a POSIX MQ open
2146 * @oflag: open flag
2147 * @mode: mode bits
6b962559 2148 * @attr: queue attributes
20ca73bc 2149 *
20ca73bc 2150 */
564f6993 2151void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2152{
20ca73bc
GW
2153 struct audit_context *context = current->audit_context;
2154
564f6993
AV
2155 if (attr)
2156 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2157 else
2158 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2159
564f6993
AV
2160 context->mq_open.oflag = oflag;
2161 context->mq_open.mode = mode;
20ca73bc 2162
564f6993 2163 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2164}
2165
2166/**
c32c8af4 2167 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2168 * @mqdes: MQ descriptor
2169 * @msg_len: Message length
2170 * @msg_prio: Message priority
c32c8af4 2171 * @abs_timeout: Message timeout in absolute time
20ca73bc 2172 *
20ca73bc 2173 */
c32c8af4
AV
2174void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2175 const struct timespec *abs_timeout)
20ca73bc 2176{
20ca73bc 2177 struct audit_context *context = current->audit_context;
c32c8af4 2178 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2179
c32c8af4
AV
2180 if (abs_timeout)
2181 memcpy(p, abs_timeout, sizeof(struct timespec));
2182 else
2183 memset(p, 0, sizeof(struct timespec));
20ca73bc 2184
c32c8af4
AV
2185 context->mq_sendrecv.mqdes = mqdes;
2186 context->mq_sendrecv.msg_len = msg_len;
2187 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2188
c32c8af4 2189 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2190}
2191
2192/**
2193 * __audit_mq_notify - record audit data for a POSIX MQ notify
2194 * @mqdes: MQ descriptor
6b962559 2195 * @notification: Notification event
20ca73bc 2196 *
20ca73bc
GW
2197 */
2198
20114f71 2199void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2200{
20ca73bc
GW
2201 struct audit_context *context = current->audit_context;
2202
20114f71
AV
2203 if (notification)
2204 context->mq_notify.sigev_signo = notification->sigev_signo;
2205 else
2206 context->mq_notify.sigev_signo = 0;
20ca73bc 2207
20114f71
AV
2208 context->mq_notify.mqdes = mqdes;
2209 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2210}
2211
2212/**
2213 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2214 * @mqdes: MQ descriptor
2215 * @mqstat: MQ flags
2216 *
20ca73bc 2217 */
7392906e 2218void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2219{
20ca73bc 2220 struct audit_context *context = current->audit_context;
7392906e
AV
2221 context->mq_getsetattr.mqdes = mqdes;
2222 context->mq_getsetattr.mqstat = *mqstat;
2223 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2224}
2225
b0dd25a8 2226/**
073115d6
SG
2227 * audit_ipc_obj - record audit data for ipc object
2228 * @ipcp: ipc permissions
2229 *
073115d6 2230 */
a33e6751 2231void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2232{
073115d6 2233 struct audit_context *context = current->audit_context;
a33e6751
AV
2234 context->ipc.uid = ipcp->uid;
2235 context->ipc.gid = ipcp->gid;
2236 context->ipc.mode = ipcp->mode;
e816f370 2237 context->ipc.has_perm = 0;
a33e6751
AV
2238 security_ipc_getsecid(ipcp, &context->ipc.osid);
2239 context->type = AUDIT_IPC;
073115d6
SG
2240}
2241
2242/**
2243 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2244 * @qbytes: msgq bytes
2245 * @uid: msgq user id
2246 * @gid: msgq group id
2247 * @mode: msgq mode (permissions)
2248 *
e816f370 2249 * Called only after audit_ipc_obj().
b0dd25a8 2250 */
e816f370 2251void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2252{
1da177e4
LT
2253 struct audit_context *context = current->audit_context;
2254
e816f370
AV
2255 context->ipc.qbytes = qbytes;
2256 context->ipc.perm_uid = uid;
2257 context->ipc.perm_gid = gid;
2258 context->ipc.perm_mode = mode;
2259 context->ipc.has_perm = 1;
1da177e4 2260}
c2f0c7c3 2261
473ae30b
AV
2262int audit_bprm(struct linux_binprm *bprm)
2263{
2264 struct audit_aux_data_execve *ax;
2265 struct audit_context *context = current->audit_context;
473ae30b 2266
5ac3a9c2 2267 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2268 return 0;
2269
bdf4c48a 2270 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2271 if (!ax)
2272 return -ENOMEM;
2273
2274 ax->argc = bprm->argc;
2275 ax->envc = bprm->envc;
bdf4c48a 2276 ax->mm = bprm->mm;
473ae30b
AV
2277 ax->d.type = AUDIT_EXECVE;
2278 ax->d.next = context->aux;
2279 context->aux = (void *)ax;
2280 return 0;
2281}
2282
2283
b0dd25a8
RD
2284/**
2285 * audit_socketcall - record audit data for sys_socketcall
2286 * @nargs: number of args
2287 * @args: args array
2288 *
b0dd25a8 2289 */
f3298dc4 2290void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2291{
3ec3b2fb
DW
2292 struct audit_context *context = current->audit_context;
2293
5ac3a9c2 2294 if (likely(!context || context->dummy))
f3298dc4 2295 return;
3ec3b2fb 2296
f3298dc4
AV
2297 context->type = AUDIT_SOCKETCALL;
2298 context->socketcall.nargs = nargs;
2299 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2300}
2301
db349509
AV
2302/**
2303 * __audit_fd_pair - record audit data for pipe and socketpair
2304 * @fd1: the first file descriptor
2305 * @fd2: the second file descriptor
2306 *
db349509 2307 */
157cf649 2308void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2309{
2310 struct audit_context *context = current->audit_context;
157cf649
AV
2311 context->fds[0] = fd1;
2312 context->fds[1] = fd2;
db349509
AV
2313}
2314
b0dd25a8
RD
2315/**
2316 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2317 * @len: data length in user space
2318 * @a: data address in kernel space
2319 *
2320 * Returns 0 for success or NULL context or < 0 on error.
2321 */
3ec3b2fb
DW
2322int audit_sockaddr(int len, void *a)
2323{
3ec3b2fb
DW
2324 struct audit_context *context = current->audit_context;
2325
5ac3a9c2 2326 if (likely(!context || context->dummy))
3ec3b2fb
DW
2327 return 0;
2328
4f6b434f
AV
2329 if (!context->sockaddr) {
2330 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2331 if (!p)
2332 return -ENOMEM;
2333 context->sockaddr = p;
2334 }
3ec3b2fb 2335
4f6b434f
AV
2336 context->sockaddr_len = len;
2337 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2338 return 0;
2339}
2340
a5cb013d
AV
2341void __audit_ptrace(struct task_struct *t)
2342{
2343 struct audit_context *context = current->audit_context;
2344
2345 context->target_pid = t->pid;
c2a7780e 2346 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2347 context->target_uid = task_uid(t);
4746ec5b 2348 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2349 security_task_getsecid(t, &context->target_sid);
c2a7780e 2350 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2351}
2352
b0dd25a8
RD
2353/**
2354 * audit_signal_info - record signal info for shutting down audit subsystem
2355 * @sig: signal value
2356 * @t: task being signaled
2357 *
2358 * If the audit subsystem is being terminated, record the task (pid)
2359 * and uid that is doing that.
2360 */
e54dc243 2361int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2362{
e54dc243
AG
2363 struct audit_aux_data_pids *axp;
2364 struct task_struct *tsk = current;
2365 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2366 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2367
175fc484 2368 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2369 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2370 audit_sig_pid = tsk->pid;
bfef93a5
AV
2371 if (tsk->loginuid != -1)
2372 audit_sig_uid = tsk->loginuid;
175fc484 2373 else
c69e8d9c 2374 audit_sig_uid = uid;
2a862b32 2375 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2376 }
2377 if (!audit_signals || audit_dummy_context())
2378 return 0;
c2f0c7c3 2379 }
e54dc243 2380
e54dc243
AG
2381 /* optimize the common case by putting first signal recipient directly
2382 * in audit_context */
2383 if (!ctx->target_pid) {
2384 ctx->target_pid = t->tgid;
c2a7780e 2385 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2386 ctx->target_uid = t_uid;
4746ec5b 2387 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2388 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2389 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2390 return 0;
2391 }
2392
2393 axp = (void *)ctx->aux_pids;
2394 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2395 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2396 if (!axp)
2397 return -ENOMEM;
2398
2399 axp->d.type = AUDIT_OBJ_PID;
2400 axp->d.next = ctx->aux_pids;
2401 ctx->aux_pids = (void *)axp;
2402 }
88ae704c 2403 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2404
2405 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2406 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2407 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2408 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2409 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2410 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2411 axp->pid_count++;
2412
2413 return 0;
c2f0c7c3 2414}
0a4ff8c2 2415
3fc689e9
EP
2416/**
2417 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2418 * @bprm: pointer to the bprm being processed
2419 * @new: the proposed new credentials
2420 * @old: the old credentials
3fc689e9
EP
2421 *
2422 * Simply check if the proc already has the caps given by the file and if not
2423 * store the priv escalation info for later auditing at the end of the syscall
2424 *
3fc689e9
EP
2425 * -Eric
2426 */
d84f4f99
DH
2427int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2428 const struct cred *new, const struct cred *old)
3fc689e9
EP
2429{
2430 struct audit_aux_data_bprm_fcaps *ax;
2431 struct audit_context *context = current->audit_context;
2432 struct cpu_vfs_cap_data vcaps;
2433 struct dentry *dentry;
2434
2435 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2436 if (!ax)
d84f4f99 2437 return -ENOMEM;
3fc689e9
EP
2438
2439 ax->d.type = AUDIT_BPRM_FCAPS;
2440 ax->d.next = context->aux;
2441 context->aux = (void *)ax;
2442
2443 dentry = dget(bprm->file->f_dentry);
2444 get_vfs_caps_from_disk(dentry, &vcaps);
2445 dput(dentry);
2446
2447 ax->fcap.permitted = vcaps.permitted;
2448 ax->fcap.inheritable = vcaps.inheritable;
2449 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2450 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2451
d84f4f99
DH
2452 ax->old_pcap.permitted = old->cap_permitted;
2453 ax->old_pcap.inheritable = old->cap_inheritable;
2454 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2455
d84f4f99
DH
2456 ax->new_pcap.permitted = new->cap_permitted;
2457 ax->new_pcap.inheritable = new->cap_inheritable;
2458 ax->new_pcap.effective = new->cap_effective;
2459 return 0;
3fc689e9
EP
2460}
2461
e68b75a0
EP
2462/**
2463 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2464 * @pid: target pid of the capset call
2465 * @new: the new credentials
2466 * @old: the old (current) credentials
e68b75a0
EP
2467 *
2468 * Record the aguments userspace sent to sys_capset for later printing by the
2469 * audit system if applicable
2470 */
57f71a0a 2471void __audit_log_capset(pid_t pid,
d84f4f99 2472 const struct cred *new, const struct cred *old)
e68b75a0 2473{
e68b75a0 2474 struct audit_context *context = current->audit_context;
57f71a0a
AV
2475 context->capset.pid = pid;
2476 context->capset.cap.effective = new->cap_effective;
2477 context->capset.cap.inheritable = new->cap_effective;
2478 context->capset.cap.permitted = new->cap_permitted;
2479 context->type = AUDIT_CAPSET;
e68b75a0
EP
2480}
2481
0a4ff8c2
SG
2482/**
2483 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2484 * @signr: signal value
0a4ff8c2
SG
2485 *
2486 * If a process ends with a core dump, something fishy is going on and we
2487 * should record the event for investigation.
2488 */
2489void audit_core_dumps(long signr)
2490{
2491 struct audit_buffer *ab;
2492 u32 sid;
76aac0e9
DH
2493 uid_t auid = audit_get_loginuid(current), uid;
2494 gid_t gid;
4746ec5b 2495 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2496
2497 if (!audit_enabled)
2498 return;
2499
2500 if (signr == SIGQUIT) /* don't care for those */
2501 return;
2502
2503 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2504 current_uid_gid(&uid, &gid);
4746ec5b 2505 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2506 auid, uid, gid, sessionid);
2a862b32 2507 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2508 if (sid) {
2509 char *ctx = NULL;
2510 u32 len;
2511
2a862b32 2512 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2513 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2514 else {
0a4ff8c2 2515 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2516 security_release_secctx(ctx, len);
2517 }
0a4ff8c2
SG
2518 }
2519 audit_log_format(ab, " pid=%d comm=", current->pid);
2520 audit_log_untrustedstring(ab, current->comm);
2521 audit_log_format(ab, " sig=%ld", signr);
2522 audit_log_end(ab);
2523}