audit: reverse arguments to audit_inode_child
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
1da177e4 79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
1da177e4 83
9c937dcc
AG
84/* Indicates that audit should log the full pathname. */
85#define AUDIT_NAME_FULL -1
86
de6bbd1d
EP
87/* no execve audit message should be longer than this (userspace limits) */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
471a5c7c
AV
90/* number of audit rules */
91int audit_n_rules;
92
e54dc243
AG
93/* determines whether we collect data for signals sent */
94int audit_signals;
95
851f7ff5
EP
96struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103};
104
1da177e4
LT
105/* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110struct audit_names {
5195d8e2 111 struct list_head list; /* audit_context->names_list */
1da177e4
LT
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
ca57ec0f
EB
116 kuid_t uid;
117 kgid_t gid;
1da177e4 118 dev_t rdev;
1b50eed9 119 u32 osid;
851f7ff5
EP
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
5195d8e2
EP
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
1da177e4
LT
130};
131
132struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135};
136
137#define AUDIT_AUX_IPCPERM 0
138
e54dc243
AG
139/* Number of target pids per aux struct. */
140#define AUDIT_AUX_PIDS 16
141
473ae30b
AV
142struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
bdf4c48a 146 struct mm_struct *mm;
473ae30b
AV
147};
148
e54dc243
AG
149struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 152 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 153 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 155 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
157 int pid_count;
158};
159
3fc689e9
EP
160struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166};
167
e68b75a0
EP
168struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172};
173
74c3cbe3
AV
174struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177};
178
1da177e4
LT
179/* The per-task audit context. */
180struct audit_context {
d51374ad 181 int dummy; /* must be the first element */
1da177e4 182 int in_syscall; /* 1 if task is in a syscall */
0590b933 183 enum audit_state state, current_state;
1da177e4 184 unsigned int serial; /* serial number for record */
1da177e4 185 int major; /* syscall number */
44e51a1b 186 struct timespec ctime; /* time of syscall entry */
1da177e4 187 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 188 long return_code;/* syscall return code */
0590b933 189 u64 prio;
44e51a1b 190 int return_valid; /* return code is valid */
5195d8e2
EP
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 202 char * filterkey; /* key for rule that triggered record */
44707fdf 203 struct path pwd;
1da177e4
LT
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
e54dc243 206 struct audit_aux_data *aux_pids;
4f6b434f
AV
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
1da177e4 209 /* Save things to print about task_struct */
f46038ff 210 pid_t pid, ppid;
cca080d9
EB
211 kuid_t uid, euid, suid, fsuid;
212 kgid_t gid, egid, sgid, fsgid;
1da177e4 213 unsigned long personality;
2fd6f58b 214 int arch;
1da177e4 215
a5cb013d 216 pid_t target_pid;
e1760bd5 217 kuid_t target_auid;
cca080d9 218 kuid_t target_uid;
4746ec5b 219 unsigned int target_sessionid;
a5cb013d 220 u32 target_sid;
c2a7780e 221 char target_comm[TASK_COMM_LEN];
a5cb013d 222
74c3cbe3 223 struct audit_tree_refs *trees, *first_trees;
916d7576 224 struct list_head killed_trees;
44e51a1b 225 int tree_count;
74c3cbe3 226
f3298dc4
AV
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
a33e6751 233 struct {
cca080d9
EB
234 kuid_t uid;
235 kgid_t gid;
2570ebbd 236 umode_t mode;
a33e6751 237 u32 osid;
e816f370
AV
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
2570ebbd 241 umode_t perm_mode;
e816f370 242 unsigned long qbytes;
a33e6751 243 } ipc;
7392906e
AV
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
20114f71
AV
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
c32c8af4
AV
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
564f6993
AV
258 struct {
259 int oflag;
df0a4283 260 umode_t mode;
564f6993
AV
261 struct mq_attr attr;
262 } mq_open;
57f71a0a
AV
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
120a795d
AV
267 struct {
268 int fd;
269 int flags;
270 } mmap;
f3298dc4 271 };
157cf649 272 int fds[2];
f3298dc4 273
1da177e4
LT
274#if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277#endif
278};
279
55669bfa
AV
280static inline int open_arg(int flags, int mask)
281{
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286}
287
288static int audit_match_perm(struct audit_context *ctx, int mask)
289{
c4bacefb 290 unsigned n;
1a61c88d 291 if (unlikely(!ctx))
292 return 0;
c4bacefb 293 n = ctx->major;
dbda4c0b 294
55669bfa
AV
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329}
330
5ef30ee5 331static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 332{
5195d8e2 333 struct audit_names *n;
5ef30ee5 334 umode_t mode = (umode_t)val;
1a61c88d 335
336 if (unlikely(!ctx))
337 return 0;
338
5195d8e2
EP
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
342 return 1;
343 }
5195d8e2 344
5ef30ee5 345 return 0;
8b67dca9
AV
346}
347
74c3cbe3
AV
348/*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358#ifdef CONFIG_AUDIT_TREE
679173b7
EP
359static void audit_set_auditable(struct audit_context *ctx)
360{
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365}
366
74c3cbe3
AV
367static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368{
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386}
387
388static int grow_tree_refs(struct audit_context *ctx)
389{
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402}
403#endif
404
405static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407{
408#ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432#endif
433}
434
435static void free_tree_refs(struct audit_context *ctx)
436{
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442}
443
444static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445{
446#ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463#endif
464 return 0;
465}
466
ca57ec0f
EB
467static int audit_compare_uid(kuid_t uid,
468 struct audit_names *name,
469 struct audit_field *f,
470 struct audit_context *ctx)
b34b0393
EP
471{
472 struct audit_names *n;
b34b0393 473 int rc;
ca57ec0f 474
b34b0393 475 if (name) {
ca57ec0f 476 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
477 if (rc)
478 return rc;
479 }
ca57ec0f 480
b34b0393
EP
481 if (ctx) {
482 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
483 rc = audit_uid_comparator(uid, f->op, n->uid);
484 if (rc)
485 return rc;
486 }
487 }
488 return 0;
489}
b34b0393 490
ca57ec0f
EB
491static int audit_compare_gid(kgid_t gid,
492 struct audit_names *name,
493 struct audit_field *f,
494 struct audit_context *ctx)
495{
496 struct audit_names *n;
497 int rc;
498
499 if (name) {
500 rc = audit_gid_comparator(gid, f->op, name->gid);
501 if (rc)
502 return rc;
503 }
504
505 if (ctx) {
506 list_for_each_entry(n, &ctx->names_list, list) {
507 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
508 if (rc)
509 return rc;
510 }
511 }
512 return 0;
513}
514
02d86a56
EP
515static int audit_field_compare(struct task_struct *tsk,
516 const struct cred *cred,
517 struct audit_field *f,
518 struct audit_context *ctx,
519 struct audit_names *name)
520{
02d86a56 521 switch (f->val) {
4a6633ed 522 /* process to file object comparisons */
02d86a56 523 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 524 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 525 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 526 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 527 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 528 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 529 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 530 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 531 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 532 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 534 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 535 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 536 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 537 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 538 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 539 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 540 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
541 /* uid comparisons */
542 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 543 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 544 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 545 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 546 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 547 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 548 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 549 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
550 /* auid comparisons */
551 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 552 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 553 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 554 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 555 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 556 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
557 /* euid comparisons */
558 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 559 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 560 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 561 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
562 /* suid comparisons */
563 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 564 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
565 /* gid comparisons */
566 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 567 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 568 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 569 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 570 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 571 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
572 /* egid comparisons */
573 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 574 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 575 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 576 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
577 /* sgid comparison */
578 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 579 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
580 default:
581 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
582 return 0;
583 }
584 return 0;
585}
586
f368c07d 587/* Determine if any context name data matches a rule's watch data */
1da177e4 588/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
589 * otherwise.
590 *
591 * If task_creation is true, this is an explicit indication that we are
592 * filtering a task rule at task creation time. This and tsk == current are
593 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 */
1da177e4 595static int audit_filter_rules(struct task_struct *tsk,
93315ed6 596 struct audit_krule *rule,
1da177e4 597 struct audit_context *ctx,
f368c07d 598 struct audit_names *name,
f5629883
TJ
599 enum audit_state *state,
600 bool task_creation)
1da177e4 601{
f5629883 602 const struct cred *cred;
5195d8e2 603 int i, need_sid = 1;
3dc7e315
DG
604 u32 sid;
605
f5629883
TJ
606 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607
1da177e4 608 for (i = 0; i < rule->field_count; i++) {
93315ed6 609 struct audit_field *f = &rule->fields[i];
5195d8e2 610 struct audit_names *n;
1da177e4
LT
611 int result = 0;
612
93315ed6 613 switch (f->type) {
1da177e4 614 case AUDIT_PID:
93315ed6 615 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 616 break;
3c66251e 617 case AUDIT_PPID:
419c58f1
AV
618 if (ctx) {
619 if (!ctx->ppid)
620 ctx->ppid = sys_getppid();
3c66251e 621 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 622 }
3c66251e 623 break;
1da177e4 624 case AUDIT_UID:
ca57ec0f 625 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
626 break;
627 case AUDIT_EUID:
ca57ec0f 628 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
629 break;
630 case AUDIT_SUID:
ca57ec0f 631 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
632 break;
633 case AUDIT_FSUID:
ca57ec0f 634 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
635 break;
636 case AUDIT_GID:
ca57ec0f 637 result = audit_gid_comparator(cred->gid, f->op, f->gid);
1da177e4
LT
638 break;
639 case AUDIT_EGID:
ca57ec0f 640 result = audit_gid_comparator(cred->egid, f->op, f->gid);
1da177e4
LT
641 break;
642 case AUDIT_SGID:
ca57ec0f 643 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
644 break;
645 case AUDIT_FSGID:
ca57ec0f 646 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
647 break;
648 case AUDIT_PERS:
93315ed6 649 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 650 break;
2fd6f58b 651 case AUDIT_ARCH:
9f8dbe9c 652 if (ctx)
93315ed6 653 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 654 break;
1da177e4
LT
655
656 case AUDIT_EXIT:
657 if (ctx && ctx->return_valid)
93315ed6 658 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
659 break;
660 case AUDIT_SUCCESS:
b01f2cc1 661 if (ctx && ctx->return_valid) {
93315ed6
AG
662 if (f->val)
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 664 else
93315ed6 665 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 666 }
1da177e4
LT
667 break;
668 case AUDIT_DEVMAJOR:
16c174bd
EP
669 if (name) {
670 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 audit_comparator(MAJOR(name->rdev), f->op, f->val))
672 ++result;
673 } else if (ctx) {
5195d8e2 674 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
675 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
677 ++result;
678 break;
679 }
680 }
681 }
682 break;
683 case AUDIT_DEVMINOR:
16c174bd
EP
684 if (name) {
685 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 audit_comparator(MINOR(name->rdev), f->op, f->val))
687 ++result;
688 } else if (ctx) {
5195d8e2 689 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
690 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
692 ++result;
693 break;
694 }
695 }
696 }
697 break;
698 case AUDIT_INODE:
f368c07d 699 if (name)
9c937dcc 700 result = (name->ino == f->val);
f368c07d 701 else if (ctx) {
5195d8e2
EP
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
efaffd6e
EP
710 case AUDIT_OBJ_UID:
711 if (name) {
ca57ec0f 712 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
713 } else if (ctx) {
714 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 715 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
54d3218b
EP
722 case AUDIT_OBJ_GID:
723 if (name) {
ca57ec0f 724 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 727 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
f368c07d 734 case AUDIT_WATCH:
ae7b8f41
EP
735 if (name)
736 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 737 break;
74c3cbe3
AV
738 case AUDIT_DIR:
739 if (ctx)
740 result = match_tree_refs(ctx, rule->tree);
741 break;
1da177e4
LT
742 case AUDIT_LOGINUID:
743 result = 0;
744 if (ctx)
ca57ec0f 745 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 746 break;
3a6b9f85
DG
747 case AUDIT_SUBJ_USER:
748 case AUDIT_SUBJ_ROLE:
749 case AUDIT_SUBJ_TYPE:
750 case AUDIT_SUBJ_SEN:
751 case AUDIT_SUBJ_CLR:
3dc7e315
DG
752 /* NOTE: this may return negative values indicating
753 a temporary error. We simply treat this as a
754 match for now to avoid losing information that
755 may be wanted. An error message will also be
756 logged upon error */
04305e4a 757 if (f->lsm_rule) {
2ad312d2 758 if (need_sid) {
2a862b32 759 security_task_getsecid(tsk, &sid);
2ad312d2
SG
760 need_sid = 0;
761 }
d7a96f3a 762 result = security_audit_rule_match(sid, f->type,
3dc7e315 763 f->op,
04305e4a 764 f->lsm_rule,
3dc7e315 765 ctx);
2ad312d2 766 }
3dc7e315 767 break;
6e5a2d1d
DG
768 case AUDIT_OBJ_USER:
769 case AUDIT_OBJ_ROLE:
770 case AUDIT_OBJ_TYPE:
771 case AUDIT_OBJ_LEV_LOW:
772 case AUDIT_OBJ_LEV_HIGH:
773 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 also applies here */
04305e4a 775 if (f->lsm_rule) {
6e5a2d1d
DG
776 /* Find files that match */
777 if (name) {
d7a96f3a 778 result = security_audit_rule_match(
6e5a2d1d 779 name->osid, f->type, f->op,
04305e4a 780 f->lsm_rule, ctx);
6e5a2d1d 781 } else if (ctx) {
5195d8e2
EP
782 list_for_each_entry(n, &ctx->names_list, list) {
783 if (security_audit_rule_match(n->osid, f->type,
784 f->op, f->lsm_rule,
785 ctx)) {
6e5a2d1d
DG
786 ++result;
787 break;
788 }
789 }
790 }
791 /* Find ipc objects that match */
a33e6751
AV
792 if (!ctx || ctx->type != AUDIT_IPC)
793 break;
794 if (security_audit_rule_match(ctx->ipc.osid,
795 f->type, f->op,
796 f->lsm_rule, ctx))
797 ++result;
6e5a2d1d
DG
798 }
799 break;
1da177e4
LT
800 case AUDIT_ARG0:
801 case AUDIT_ARG1:
802 case AUDIT_ARG2:
803 case AUDIT_ARG3:
804 if (ctx)
93315ed6 805 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 806 break;
5adc8a6a
AG
807 case AUDIT_FILTERKEY:
808 /* ignore this field for filtering */
809 result = 1;
810 break;
55669bfa
AV
811 case AUDIT_PERM:
812 result = audit_match_perm(ctx, f->val);
813 break;
8b67dca9
AV
814 case AUDIT_FILETYPE:
815 result = audit_match_filetype(ctx, f->val);
816 break;
02d86a56
EP
817 case AUDIT_FIELD_COMPARE:
818 result = audit_field_compare(tsk, cred, f, ctx, name);
819 break;
1da177e4 820 }
f5629883 821 if (!result)
1da177e4
LT
822 return 0;
823 }
0590b933
AV
824
825 if (ctx) {
826 if (rule->prio <= ctx->prio)
827 return 0;
828 if (rule->filterkey) {
829 kfree(ctx->filterkey);
830 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 }
832 ctx->prio = rule->prio;
833 }
1da177e4
LT
834 switch (rule->action) {
835 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
836 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
837 }
838 return 1;
839}
840
841/* At process creation time, we can determine if system-call auditing is
842 * completely disabled for this task. Since we only have the task
843 * structure at this point, we can only check uid and gid.
844 */
e048e02c 845static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
846{
847 struct audit_entry *e;
848 enum audit_state state;
849
850 rcu_read_lock();
0f45aa18 851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
852 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 &state, true)) {
e048e02c
AV
854 if (state == AUDIT_RECORD_CONTEXT)
855 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
856 rcu_read_unlock();
857 return state;
858 }
859 }
860 rcu_read_unlock();
861 return AUDIT_BUILD_CONTEXT;
862}
863
864/* At syscall entry and exit time, this filter is called if the
865 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 866 * also not high enough that we already know we have to write an audit
b0dd25a8 867 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
868 */
869static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx,
871 struct list_head *list)
872{
873 struct audit_entry *e;
c3896495 874 enum audit_state state;
1da177e4 875
351bb722 876 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
877 return AUDIT_DISABLED;
878
1da177e4 879 rcu_read_lock();
c3896495 880 if (!list_empty(list)) {
b63862f4
DK
881 int word = AUDIT_WORD(ctx->major);
882 int bit = AUDIT_BIT(ctx->major);
883
884 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
885 if ((e->rule.mask[word] & bit) == bit &&
886 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 887 &state, false)) {
f368c07d 888 rcu_read_unlock();
0590b933 889 ctx->current_state = state;
f368c07d
AG
890 return state;
891 }
892 }
893 }
894 rcu_read_unlock();
895 return AUDIT_BUILD_CONTEXT;
896}
897
5195d8e2
EP
898/*
899 * Given an audit_name check the inode hash table to see if they match.
900 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 */
902static int audit_filter_inode_name(struct task_struct *tsk,
903 struct audit_names *n,
904 struct audit_context *ctx) {
905 int word, bit;
906 int h = audit_hash_ino((u32)n->ino);
907 struct list_head *list = &audit_inode_hash[h];
908 struct audit_entry *e;
909 enum audit_state state;
910
911 word = AUDIT_WORD(ctx->major);
912 bit = AUDIT_BIT(ctx->major);
913
914 if (list_empty(list))
915 return 0;
916
917 list_for_each_entry_rcu(e, list, list) {
918 if ((e->rule.mask[word] & bit) == bit &&
919 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 ctx->current_state = state;
921 return 1;
922 }
923 }
924
925 return 0;
926}
927
928/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 929 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 930 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
931 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 */
0590b933 933void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 934{
5195d8e2 935 struct audit_names *n;
f368c07d
AG
936
937 if (audit_pid && tsk->tgid == audit_pid)
0590b933 938 return;
f368c07d
AG
939
940 rcu_read_lock();
f368c07d 941
5195d8e2
EP
942 list_for_each_entry(n, &ctx->names_list, list) {
943 if (audit_filter_inode_name(tsk, n, ctx))
944 break;
0f45aa18
DW
945 }
946 rcu_read_unlock();
0f45aa18
DW
947}
948
1da177e4
LT
949static inline struct audit_context *audit_get_context(struct task_struct *tsk,
950 int return_valid,
6d208da8 951 long return_code)
1da177e4
LT
952{
953 struct audit_context *context = tsk->audit_context;
954
56179a6e 955 if (!context)
1da177e4
LT
956 return NULL;
957 context->return_valid = return_valid;
f701b75e
EP
958
959 /*
960 * we need to fix up the return code in the audit logs if the actual
961 * return codes are later going to be fixed up by the arch specific
962 * signal handlers
963 *
964 * This is actually a test for:
965 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 *
968 * but is faster than a bunch of ||
969 */
970 if (unlikely(return_code <= -ERESTARTSYS) &&
971 (return_code >= -ERESTART_RESTARTBLOCK) &&
972 (return_code != -ENOIOCTLCMD))
973 context->return_code = -EINTR;
974 else
975 context->return_code = return_code;
1da177e4 976
0590b933
AV
977 if (context->in_syscall && !context->dummy) {
978 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 audit_filter_inodes(tsk, context);
1da177e4
LT
980 }
981
1da177e4
LT
982 tsk->audit_context = NULL;
983 return context;
984}
985
986static inline void audit_free_names(struct audit_context *context)
987{
5195d8e2 988 struct audit_names *n, *next;
1da177e4
LT
989
990#if AUDIT_DEBUG == 2
0590b933 991 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 992 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
993 " name_count=%d put_count=%d"
994 " ino_count=%d [NOT freeing]\n",
73241ccc 995 __FILE__, __LINE__,
1da177e4
LT
996 context->serial, context->major, context->in_syscall,
997 context->name_count, context->put_count,
998 context->ino_count);
5195d8e2 999 list_for_each_entry(n, &context->names_list, list) {
1da177e4 1000 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 1001 n->name, n->name ?: "(null)");
8c8570fb 1002 }
1da177e4
LT
1003 dump_stack();
1004 return;
1005 }
1006#endif
1007#if AUDIT_DEBUG
1008 context->put_count = 0;
1009 context->ino_count = 0;
1010#endif
1011
5195d8e2
EP
1012 list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 list_del(&n->list);
1014 if (n->name && n->name_put)
1015 __putname(n->name);
1016 if (n->should_free)
1017 kfree(n);
8c8570fb 1018 }
1da177e4 1019 context->name_count = 0;
44707fdf
JB
1020 path_put(&context->pwd);
1021 context->pwd.dentry = NULL;
1022 context->pwd.mnt = NULL;
1da177e4
LT
1023}
1024
1025static inline void audit_free_aux(struct audit_context *context)
1026{
1027 struct audit_aux_data *aux;
1028
1029 while ((aux = context->aux)) {
1030 context->aux = aux->next;
1031 kfree(aux);
1032 }
e54dc243
AG
1033 while ((aux = context->aux_pids)) {
1034 context->aux_pids = aux->next;
1035 kfree(aux);
1036 }
1da177e4
LT
1037}
1038
1039static inline void audit_zero_context(struct audit_context *context,
1040 enum audit_state state)
1041{
1da177e4
LT
1042 memset(context, 0, sizeof(*context));
1043 context->state = state;
0590b933 1044 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
1045}
1046
1047static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048{
1049 struct audit_context *context;
1050
1051 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 return NULL;
1053 audit_zero_context(context, state);
916d7576 1054 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1055 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
1056 return context;
1057}
1058
b0dd25a8
RD
1059/**
1060 * audit_alloc - allocate an audit context block for a task
1061 * @tsk: task
1062 *
1063 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1064 * if necessary. Doing so turns on system call auditing for the
1065 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1066 * needed.
1067 */
1da177e4
LT
1068int audit_alloc(struct task_struct *tsk)
1069{
1070 struct audit_context *context;
1071 enum audit_state state;
e048e02c 1072 char *key = NULL;
1da177e4 1073
b593d384 1074 if (likely(!audit_ever_enabled))
1da177e4
LT
1075 return 0; /* Return if not auditing. */
1076
e048e02c 1077 state = audit_filter_task(tsk, &key);
56179a6e 1078 if (state == AUDIT_DISABLED)
1da177e4
LT
1079 return 0;
1080
1081 if (!(context = audit_alloc_context(state))) {
e048e02c 1082 kfree(key);
1da177e4
LT
1083 audit_log_lost("out of memory in audit_alloc");
1084 return -ENOMEM;
1085 }
e048e02c 1086 context->filterkey = key;
1da177e4 1087
1da177e4
LT
1088 tsk->audit_context = context;
1089 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1090 return 0;
1091}
1092
1093static inline void audit_free_context(struct audit_context *context)
1094{
1095 struct audit_context *previous;
1096 int count = 0;
1097
1098 do {
1099 previous = context->previous;
1100 if (previous || (count && count < 10)) {
1101 ++count;
1102 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 " freeing multiple contexts (%d)\n",
1104 context->serial, context->major,
1105 context->name_count, count);
1106 }
1107 audit_free_names(context);
74c3cbe3
AV
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1da177e4 1110 audit_free_aux(context);
5adc8a6a 1111 kfree(context->filterkey);
4f6b434f 1112 kfree(context->sockaddr);
1da177e4
LT
1113 kfree(context);
1114 context = previous;
1115 } while (context);
1116 if (count >= 10)
1117 printk(KERN_ERR "audit: freed %d contexts\n", count);
1118}
1119
161a09e7 1120void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1121{
1122 char *ctx = NULL;
c4823bce
AV
1123 unsigned len;
1124 int error;
1125 u32 sid;
1126
2a862b32 1127 security_task_getsecid(current, &sid);
c4823bce
AV
1128 if (!sid)
1129 return;
8c8570fb 1130
2a862b32 1131 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1132 if (error) {
1133 if (error != -EINVAL)
8c8570fb
DK
1134 goto error_path;
1135 return;
1136 }
1137
8c8570fb 1138 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1139 security_release_secctx(ctx, len);
7306a0b9 1140 return;
8c8570fb
DK
1141
1142error_path:
7306a0b9 1143 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1144 return;
1145}
1146
161a09e7
JL
1147EXPORT_SYMBOL(audit_log_task_context);
1148
e23eb920 1149void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1150{
e23eb920 1151 const struct cred *cred;
45d9bb0e
AV
1152 char name[sizeof(tsk->comm)];
1153 struct mm_struct *mm = tsk->mm;
e23eb920
PM
1154 char *tty;
1155
1156 if (!ab)
1157 return;
219f0817 1158
e495149b 1159 /* tsk == current */
e23eb920
PM
1160 cred = current_cred();
1161
1162 spin_lock_irq(&tsk->sighand->siglock);
1163 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1164 tty = tsk->signal->tty->name;
1165 else
1166 tty = "(none)";
1167 spin_unlock_irq(&tsk->sighand->siglock);
1168
1169
1170 audit_log_format(ab,
1171 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1172 " euid=%u suid=%u fsuid=%u"
1173 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1174 sys_getppid(),
1175 tsk->pid,
88265322
LT
1176 from_kuid(&init_user_ns, tsk->loginuid),
1177 from_kuid(&init_user_ns, cred->uid),
1178 from_kgid(&init_user_ns, cred->gid),
1179 from_kuid(&init_user_ns, cred->euid),
1180 from_kuid(&init_user_ns, cred->suid),
1181 from_kuid(&init_user_ns, cred->fsuid),
1182 from_kgid(&init_user_ns, cred->egid),
1183 from_kgid(&init_user_ns, cred->sgid),
1184 from_kgid(&init_user_ns, cred->fsgid),
e23eb920 1185 tsk->sessionid, tty);
e495149b 1186
45d9bb0e 1187 get_task_comm(name, tsk);
99e45eea
DW
1188 audit_log_format(ab, " comm=");
1189 audit_log_untrustedstring(ab, name);
219f0817 1190
e495149b
AV
1191 if (mm) {
1192 down_read(&mm->mmap_sem);
2dd8ad81
KK
1193 if (mm->exe_file)
1194 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
e495149b 1195 up_read(&mm->mmap_sem);
219f0817 1196 }
e495149b 1197 audit_log_task_context(ab);
219f0817
SS
1198}
1199
e23eb920
PM
1200EXPORT_SYMBOL(audit_log_task_info);
1201
e54dc243 1202static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1203 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1204 u32 sid, char *comm)
e54dc243
AG
1205{
1206 struct audit_buffer *ab;
2a862b32 1207 char *ctx = NULL;
e54dc243
AG
1208 u32 len;
1209 int rc = 0;
1210
1211 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1212 if (!ab)
6246ccab 1213 return rc;
e54dc243 1214
e1760bd5
EB
1215 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1216 from_kuid(&init_user_ns, auid),
cca080d9 1217 from_kuid(&init_user_ns, uid), sessionid);
2a862b32 1218 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1219 audit_log_format(ab, " obj=(none)");
e54dc243 1220 rc = 1;
2a862b32
AD
1221 } else {
1222 audit_log_format(ab, " obj=%s", ctx);
1223 security_release_secctx(ctx, len);
1224 }
c2a7780e
EP
1225 audit_log_format(ab, " ocomm=");
1226 audit_log_untrustedstring(ab, comm);
e54dc243 1227 audit_log_end(ab);
e54dc243
AG
1228
1229 return rc;
1230}
1231
de6bbd1d
EP
1232/*
1233 * to_send and len_sent accounting are very loose estimates. We aren't
1234 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1235 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1236 *
1237 * why snprintf? an int is up to 12 digits long. if we just assumed when
1238 * logging that a[%d]= was going to be 16 characters long we would be wasting
1239 * space in every audit message. In one 7500 byte message we can log up to
1240 * about 1000 min size arguments. That comes down to about 50% waste of space
1241 * if we didn't do the snprintf to find out how long arg_num_len was.
1242 */
1243static int audit_log_single_execve_arg(struct audit_context *context,
1244 struct audit_buffer **ab,
1245 int arg_num,
1246 size_t *len_sent,
1247 const char __user *p,
1248 char *buf)
bdf4c48a 1249{
de6bbd1d
EP
1250 char arg_num_len_buf[12];
1251 const char __user *tmp_p = p;
b87ce6e4
EP
1252 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1253 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1254 size_t len, len_left, to_send;
1255 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1256 unsigned int i, has_cntl = 0, too_long = 0;
1257 int ret;
1258
1259 /* strnlen_user includes the null we don't want to send */
1260 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1261
de6bbd1d
EP
1262 /*
1263 * We just created this mm, if we can't find the strings
1264 * we just copied into it something is _very_ wrong. Similar
1265 * for strings that are too long, we should not have created
1266 * any.
1267 */
b0abcfc1 1268 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1269 WARN_ON(1);
1270 send_sig(SIGKILL, current, 0);
b0abcfc1 1271 return -1;
de6bbd1d 1272 }
040b3a2d 1273
de6bbd1d
EP
1274 /* walk the whole argument looking for non-ascii chars */
1275 do {
1276 if (len_left > MAX_EXECVE_AUDIT_LEN)
1277 to_send = MAX_EXECVE_AUDIT_LEN;
1278 else
1279 to_send = len_left;
1280 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1281 /*
de6bbd1d
EP
1282 * There is no reason for this copy to be short. We just
1283 * copied them here, and the mm hasn't been exposed to user-
1284 * space yet.
bdf4c48a 1285 */
de6bbd1d 1286 if (ret) {
bdf4c48a
PZ
1287 WARN_ON(1);
1288 send_sig(SIGKILL, current, 0);
b0abcfc1 1289 return -1;
bdf4c48a 1290 }
de6bbd1d
EP
1291 buf[to_send] = '\0';
1292 has_cntl = audit_string_contains_control(buf, to_send);
1293 if (has_cntl) {
1294 /*
1295 * hex messages get logged as 2 bytes, so we can only
1296 * send half as much in each message
1297 */
1298 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1299 break;
1300 }
de6bbd1d
EP
1301 len_left -= to_send;
1302 tmp_p += to_send;
1303 } while (len_left > 0);
1304
1305 len_left = len;
1306
1307 if (len > max_execve_audit_len)
1308 too_long = 1;
1309
1310 /* rewalk the argument actually logging the message */
1311 for (i = 0; len_left > 0; i++) {
1312 int room_left;
1313
1314 if (len_left > max_execve_audit_len)
1315 to_send = max_execve_audit_len;
1316 else
1317 to_send = len_left;
1318
1319 /* do we have space left to send this argument in this ab? */
1320 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1321 if (has_cntl)
1322 room_left -= (to_send * 2);
1323 else
1324 room_left -= to_send;
1325 if (room_left < 0) {
1326 *len_sent = 0;
1327 audit_log_end(*ab);
1328 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1329 if (!*ab)
1330 return 0;
1331 }
bdf4c48a 1332
bdf4c48a 1333 /*
de6bbd1d
EP
1334 * first record needs to say how long the original string was
1335 * so we can be sure nothing was lost.
1336 */
1337 if ((i == 0) && (too_long))
ca96a895 1338 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1339 has_cntl ? 2*len : len);
1340
1341 /*
1342 * normally arguments are small enough to fit and we already
1343 * filled buf above when we checked for control characters
1344 * so don't bother with another copy_from_user
bdf4c48a 1345 */
de6bbd1d
EP
1346 if (len >= max_execve_audit_len)
1347 ret = copy_from_user(buf, p, to_send);
1348 else
1349 ret = 0;
040b3a2d 1350 if (ret) {
bdf4c48a
PZ
1351 WARN_ON(1);
1352 send_sig(SIGKILL, current, 0);
b0abcfc1 1353 return -1;
bdf4c48a 1354 }
de6bbd1d
EP
1355 buf[to_send] = '\0';
1356
1357 /* actually log it */
ca96a895 1358 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1359 if (too_long)
1360 audit_log_format(*ab, "[%d]", i);
1361 audit_log_format(*ab, "=");
1362 if (has_cntl)
b556f8ad 1363 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1364 else
9d960985 1365 audit_log_string(*ab, buf);
de6bbd1d
EP
1366
1367 p += to_send;
1368 len_left -= to_send;
1369 *len_sent += arg_num_len;
1370 if (has_cntl)
1371 *len_sent += to_send * 2;
1372 else
1373 *len_sent += to_send;
1374 }
1375 /* include the null we didn't log */
1376 return len + 1;
1377}
1378
1379static void audit_log_execve_info(struct audit_context *context,
1380 struct audit_buffer **ab,
1381 struct audit_aux_data_execve *axi)
1382{
5afb8a3f
XW
1383 int i, len;
1384 size_t len_sent = 0;
de6bbd1d
EP
1385 const char __user *p;
1386 char *buf;
bdf4c48a 1387
de6bbd1d
EP
1388 if (axi->mm != current->mm)
1389 return; /* execve failed, no additional info */
1390
1391 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1392
ca96a895 1393 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1394
1395 /*
1396 * we need some kernel buffer to hold the userspace args. Just
1397 * allocate one big one rather than allocating one of the right size
1398 * for every single argument inside audit_log_single_execve_arg()
1399 * should be <8k allocation so should be pretty safe.
1400 */
1401 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1402 if (!buf) {
1403 audit_panic("out of memory for argv string\n");
1404 return;
bdf4c48a 1405 }
de6bbd1d
EP
1406
1407 for (i = 0; i < axi->argc; i++) {
1408 len = audit_log_single_execve_arg(context, ab, i,
1409 &len_sent, p, buf);
1410 if (len <= 0)
1411 break;
1412 p += len;
1413 }
1414 kfree(buf);
bdf4c48a
PZ
1415}
1416
851f7ff5
EP
1417static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1418{
1419 int i;
1420
1421 audit_log_format(ab, " %s=", prefix);
1422 CAP_FOR_EACH_U32(i) {
1423 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1424 }
1425}
1426
1427static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1428{
1429 kernel_cap_t *perm = &name->fcap.permitted;
1430 kernel_cap_t *inh = &name->fcap.inheritable;
1431 int log = 0;
1432
1433 if (!cap_isclear(*perm)) {
1434 audit_log_cap(ab, "cap_fp", perm);
1435 log = 1;
1436 }
1437 if (!cap_isclear(*inh)) {
1438 audit_log_cap(ab, "cap_fi", inh);
1439 log = 1;
1440 }
1441
1442 if (log)
1443 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1444}
1445
a33e6751 1446static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1447{
1448 struct audit_buffer *ab;
1449 int i;
1450
1451 ab = audit_log_start(context, GFP_KERNEL, context->type);
1452 if (!ab)
1453 return;
1454
1455 switch (context->type) {
1456 case AUDIT_SOCKETCALL: {
1457 int nargs = context->socketcall.nargs;
1458 audit_log_format(ab, "nargs=%d", nargs);
1459 for (i = 0; i < nargs; i++)
1460 audit_log_format(ab, " a%d=%lx", i,
1461 context->socketcall.args[i]);
1462 break; }
a33e6751
AV
1463 case AUDIT_IPC: {
1464 u32 osid = context->ipc.osid;
1465
2570ebbd 1466 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1467 from_kuid(&init_user_ns, context->ipc.uid),
1468 from_kgid(&init_user_ns, context->ipc.gid),
1469 context->ipc.mode);
a33e6751
AV
1470 if (osid) {
1471 char *ctx = NULL;
1472 u32 len;
1473 if (security_secid_to_secctx(osid, &ctx, &len)) {
1474 audit_log_format(ab, " osid=%u", osid);
1475 *call_panic = 1;
1476 } else {
1477 audit_log_format(ab, " obj=%s", ctx);
1478 security_release_secctx(ctx, len);
1479 }
1480 }
e816f370
AV
1481 if (context->ipc.has_perm) {
1482 audit_log_end(ab);
1483 ab = audit_log_start(context, GFP_KERNEL,
1484 AUDIT_IPC_SET_PERM);
1485 audit_log_format(ab,
2570ebbd 1486 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1487 context->ipc.qbytes,
1488 context->ipc.perm_uid,
1489 context->ipc.perm_gid,
1490 context->ipc.perm_mode);
1491 if (!ab)
1492 return;
1493 }
a33e6751 1494 break; }
564f6993
AV
1495 case AUDIT_MQ_OPEN: {
1496 audit_log_format(ab,
df0a4283 1497 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1498 "mq_msgsize=%ld mq_curmsgs=%ld",
1499 context->mq_open.oflag, context->mq_open.mode,
1500 context->mq_open.attr.mq_flags,
1501 context->mq_open.attr.mq_maxmsg,
1502 context->mq_open.attr.mq_msgsize,
1503 context->mq_open.attr.mq_curmsgs);
1504 break; }
c32c8af4
AV
1505 case AUDIT_MQ_SENDRECV: {
1506 audit_log_format(ab,
1507 "mqdes=%d msg_len=%zd msg_prio=%u "
1508 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1509 context->mq_sendrecv.mqdes,
1510 context->mq_sendrecv.msg_len,
1511 context->mq_sendrecv.msg_prio,
1512 context->mq_sendrecv.abs_timeout.tv_sec,
1513 context->mq_sendrecv.abs_timeout.tv_nsec);
1514 break; }
20114f71
AV
1515 case AUDIT_MQ_NOTIFY: {
1516 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1517 context->mq_notify.mqdes,
1518 context->mq_notify.sigev_signo);
1519 break; }
7392906e
AV
1520 case AUDIT_MQ_GETSETATTR: {
1521 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1522 audit_log_format(ab,
1523 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1524 "mq_curmsgs=%ld ",
1525 context->mq_getsetattr.mqdes,
1526 attr->mq_flags, attr->mq_maxmsg,
1527 attr->mq_msgsize, attr->mq_curmsgs);
1528 break; }
57f71a0a
AV
1529 case AUDIT_CAPSET: {
1530 audit_log_format(ab, "pid=%d", context->capset.pid);
1531 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1532 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1533 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1534 break; }
120a795d
AV
1535 case AUDIT_MMAP: {
1536 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1537 context->mmap.flags);
1538 break; }
f3298dc4
AV
1539 }
1540 audit_log_end(ab);
1541}
1542
5195d8e2
EP
1543static void audit_log_name(struct audit_context *context, struct audit_names *n,
1544 int record_num, int *call_panic)
1545{
1546 struct audit_buffer *ab;
1547 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1548 if (!ab)
1549 return; /* audit_panic has been called */
1550
1551 audit_log_format(ab, "item=%d", record_num);
1552
1553 if (n->name) {
1554 switch (n->name_len) {
1555 case AUDIT_NAME_FULL:
1556 /* log the full path */
1557 audit_log_format(ab, " name=");
1558 audit_log_untrustedstring(ab, n->name);
1559 break;
1560 case 0:
1561 /* name was specified as a relative path and the
1562 * directory component is the cwd */
c158a35c 1563 audit_log_d_path(ab, " name=", &context->pwd);
5195d8e2
EP
1564 break;
1565 default:
1566 /* log the name's directory component */
1567 audit_log_format(ab, " name=");
1568 audit_log_n_untrustedstring(ab, n->name,
1569 n->name_len);
1570 }
1571 } else
1572 audit_log_format(ab, " name=(null)");
1573
1574 if (n->ino != (unsigned long)-1) {
1575 audit_log_format(ab, " inode=%lu"
1576 " dev=%02x:%02x mode=%#ho"
1577 " ouid=%u ogid=%u rdev=%02x:%02x",
1578 n->ino,
1579 MAJOR(n->dev),
1580 MINOR(n->dev),
1581 n->mode,
cca080d9
EB
1582 from_kuid(&init_user_ns, n->uid),
1583 from_kgid(&init_user_ns, n->gid),
5195d8e2
EP
1584 MAJOR(n->rdev),
1585 MINOR(n->rdev));
1586 }
1587 if (n->osid != 0) {
1588 char *ctx = NULL;
1589 u32 len;
1590 if (security_secid_to_secctx(
1591 n->osid, &ctx, &len)) {
1592 audit_log_format(ab, " osid=%u", n->osid);
1593 *call_panic = 2;
1594 } else {
1595 audit_log_format(ab, " obj=%s", ctx);
1596 security_release_secctx(ctx, len);
1597 }
1598 }
1599
1600 audit_log_fcaps(ab, n);
1601
1602 audit_log_end(ab);
1603}
1604
e495149b 1605static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1606{
9c7aa6aa 1607 int i, call_panic = 0;
1da177e4 1608 struct audit_buffer *ab;
7551ced3 1609 struct audit_aux_data *aux;
5195d8e2 1610 struct audit_names *n;
1da177e4 1611
e495149b 1612 /* tsk == current */
3f2792ff 1613 context->personality = tsk->personality;
e495149b
AV
1614
1615 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1616 if (!ab)
1617 return; /* audit_panic has been called */
bccf6ae0
DW
1618 audit_log_format(ab, "arch=%x syscall=%d",
1619 context->arch, context->major);
1da177e4
LT
1620 if (context->personality != PER_LINUX)
1621 audit_log_format(ab, " per=%lx", context->personality);
1622 if (context->return_valid)
9f8dbe9c 1623 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1624 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1625 context->return_code);
eb84a20e 1626
1da177e4 1627 audit_log_format(ab,
e23eb920
PM
1628 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1629 context->argv[0],
1630 context->argv[1],
1631 context->argv[2],
1632 context->argv[3],
1633 context->name_count);
eb84a20e 1634
e495149b 1635 audit_log_task_info(ab, tsk);
9d960985 1636 audit_log_key(ab, context->filterkey);
1da177e4 1637 audit_log_end(ab);
1da177e4 1638
7551ced3 1639 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1640
e495149b 1641 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1642 if (!ab)
1643 continue; /* audit_panic has been called */
1644
1da177e4 1645 switch (aux->type) {
20ca73bc 1646
473ae30b
AV
1647 case AUDIT_EXECVE: {
1648 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1649 audit_log_execve_info(context, &ab, axi);
473ae30b 1650 break; }
073115d6 1651
3fc689e9
EP
1652 case AUDIT_BPRM_FCAPS: {
1653 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1654 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1655 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1656 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1657 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1658 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1659 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1660 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1661 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1662 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1663 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1664 break; }
1665
1da177e4
LT
1666 }
1667 audit_log_end(ab);
1da177e4
LT
1668 }
1669
f3298dc4 1670 if (context->type)
a33e6751 1671 show_special(context, &call_panic);
f3298dc4 1672
157cf649
AV
1673 if (context->fds[0] >= 0) {
1674 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1675 if (ab) {
1676 audit_log_format(ab, "fd0=%d fd1=%d",
1677 context->fds[0], context->fds[1]);
1678 audit_log_end(ab);
1679 }
1680 }
1681
4f6b434f
AV
1682 if (context->sockaddr_len) {
1683 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1684 if (ab) {
1685 audit_log_format(ab, "saddr=");
1686 audit_log_n_hex(ab, (void *)context->sockaddr,
1687 context->sockaddr_len);
1688 audit_log_end(ab);
1689 }
1690 }
1691
e54dc243
AG
1692 for (aux = context->aux_pids; aux; aux = aux->next) {
1693 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1694
1695 for (i = 0; i < axs->pid_count; i++)
1696 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1697 axs->target_auid[i],
1698 axs->target_uid[i],
4746ec5b 1699 axs->target_sessionid[i],
c2a7780e
EP
1700 axs->target_sid[i],
1701 axs->target_comm[i]))
e54dc243 1702 call_panic = 1;
a5cb013d
AV
1703 }
1704
e54dc243
AG
1705 if (context->target_pid &&
1706 audit_log_pid_context(context, context->target_pid,
c2a7780e 1707 context->target_auid, context->target_uid,
4746ec5b 1708 context->target_sessionid,
c2a7780e 1709 context->target_sid, context->target_comm))
e54dc243
AG
1710 call_panic = 1;
1711
44707fdf 1712 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1713 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1714 if (ab) {
c158a35c 1715 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1716 audit_log_end(ab);
1717 }
1718 }
73241ccc 1719
5195d8e2
EP
1720 i = 0;
1721 list_for_each_entry(n, &context->names_list, list)
1722 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1723
1724 /* Send end of event record to help user space know we are finished */
1725 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1726 if (ab)
1727 audit_log_end(ab);
9c7aa6aa
SG
1728 if (call_panic)
1729 audit_panic("error converting sid to string");
1da177e4
LT
1730}
1731
b0dd25a8
RD
1732/**
1733 * audit_free - free a per-task audit context
1734 * @tsk: task whose audit context block to free
1735 *
fa84cb93 1736 * Called from copy_process and do_exit
b0dd25a8 1737 */
a4ff8dba 1738void __audit_free(struct task_struct *tsk)
1da177e4
LT
1739{
1740 struct audit_context *context;
1741
1da177e4 1742 context = audit_get_context(tsk, 0, 0);
56179a6e 1743 if (!context)
1da177e4
LT
1744 return;
1745
1746 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1747 * function (e.g., exit_group), then free context block.
1748 * We use GFP_ATOMIC here because we might be doing this
f5561964 1749 * in the context of the idle thread */
e495149b 1750 /* that can happen only if we are called from do_exit() */
0590b933 1751 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1752 audit_log_exit(context, tsk);
916d7576
AV
1753 if (!list_empty(&context->killed_trees))
1754 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1755
1756 audit_free_context(context);
1757}
1758
b0dd25a8
RD
1759/**
1760 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1761 * @arch: architecture type
1762 * @major: major syscall type (function)
1763 * @a1: additional syscall register 1
1764 * @a2: additional syscall register 2
1765 * @a3: additional syscall register 3
1766 * @a4: additional syscall register 4
1767 *
1768 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1769 * audit context was created when the task was created and the state or
1770 * filters demand the audit context be built. If the state from the
1771 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1772 * then the record will be written at syscall exit time (otherwise, it
1773 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1774 * be written).
1775 */
b05d8447 1776void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1777 unsigned long a1, unsigned long a2,
1778 unsigned long a3, unsigned long a4)
1779{
5411be59 1780 struct task_struct *tsk = current;
1da177e4
LT
1781 struct audit_context *context = tsk->audit_context;
1782 enum audit_state state;
1783
56179a6e 1784 if (!context)
86a1c34a 1785 return;
1da177e4 1786
b0dd25a8
RD
1787 /*
1788 * This happens only on certain architectures that make system
1da177e4
LT
1789 * calls in kernel_thread via the entry.S interface, instead of
1790 * with direct calls. (If you are porting to a new
1791 * architecture, hitting this condition can indicate that you
1792 * got the _exit/_leave calls backward in entry.S.)
1793 *
1794 * i386 no
1795 * x86_64 no
2ef9481e 1796 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1797 *
1798 * This also happens with vm86 emulation in a non-nested manner
1799 * (entries without exits), so this case must be caught.
1800 */
1801 if (context->in_syscall) {
1802 struct audit_context *newctx;
1803
1da177e4
LT
1804#if AUDIT_DEBUG
1805 printk(KERN_ERR
1806 "audit(:%d) pid=%d in syscall=%d;"
1807 " entering syscall=%d\n",
1808 context->serial, tsk->pid, context->major, major);
1809#endif
1810 newctx = audit_alloc_context(context->state);
1811 if (newctx) {
1812 newctx->previous = context;
1813 context = newctx;
1814 tsk->audit_context = newctx;
1815 } else {
1816 /* If we can't alloc a new context, the best we
1817 * can do is to leak memory (any pending putname
1818 * will be lost). The only other alternative is
1819 * to abandon auditing. */
1820 audit_zero_context(context, context->state);
1821 }
1822 }
1823 BUG_ON(context->in_syscall || context->name_count);
1824
1825 if (!audit_enabled)
1826 return;
1827
2fd6f58b 1828 context->arch = arch;
1da177e4
LT
1829 context->major = major;
1830 context->argv[0] = a1;
1831 context->argv[1] = a2;
1832 context->argv[2] = a3;
1833 context->argv[3] = a4;
1834
1835 state = context->state;
d51374ad 1836 context->dummy = !audit_n_rules;
0590b933
AV
1837 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1838 context->prio = 0;
0f45aa18 1839 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1840 }
56179a6e 1841 if (state == AUDIT_DISABLED)
1da177e4
LT
1842 return;
1843
ce625a80 1844 context->serial = 0;
1da177e4
LT
1845 context->ctime = CURRENT_TIME;
1846 context->in_syscall = 1;
0590b933 1847 context->current_state = state;
419c58f1 1848 context->ppid = 0;
1da177e4
LT
1849}
1850
b0dd25a8
RD
1851/**
1852 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1853 * @success: success value of the syscall
1854 * @return_code: return value of the syscall
b0dd25a8
RD
1855 *
1856 * Tear down after system call. If the audit context has been marked as
1da177e4 1857 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1858 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1859 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1860 * free the names stored from getname().
1861 */
d7e7528b 1862void __audit_syscall_exit(int success, long return_code)
1da177e4 1863{
5411be59 1864 struct task_struct *tsk = current;
1da177e4
LT
1865 struct audit_context *context;
1866
d7e7528b
EP
1867 if (success)
1868 success = AUDITSC_SUCCESS;
1869 else
1870 success = AUDITSC_FAILURE;
1da177e4 1871
d7e7528b 1872 context = audit_get_context(tsk, success, return_code);
56179a6e 1873 if (!context)
97e94c45 1874 return;
1da177e4 1875
0590b933 1876 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1877 audit_log_exit(context, tsk);
1da177e4
LT
1878
1879 context->in_syscall = 0;
0590b933 1880 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1881
916d7576
AV
1882 if (!list_empty(&context->killed_trees))
1883 audit_kill_trees(&context->killed_trees);
1884
1da177e4
LT
1885 if (context->previous) {
1886 struct audit_context *new_context = context->previous;
1887 context->previous = NULL;
1888 audit_free_context(context);
1889 tsk->audit_context = new_context;
1890 } else {
1891 audit_free_names(context);
74c3cbe3 1892 unroll_tree_refs(context, NULL, 0);
1da177e4 1893 audit_free_aux(context);
e54dc243
AG
1894 context->aux = NULL;
1895 context->aux_pids = NULL;
a5cb013d 1896 context->target_pid = 0;
e54dc243 1897 context->target_sid = 0;
4f6b434f 1898 context->sockaddr_len = 0;
f3298dc4 1899 context->type = 0;
157cf649 1900 context->fds[0] = -1;
e048e02c
AV
1901 if (context->state != AUDIT_RECORD_CONTEXT) {
1902 kfree(context->filterkey);
1903 context->filterkey = NULL;
1904 }
1da177e4
LT
1905 tsk->audit_context = context;
1906 }
1da177e4
LT
1907}
1908
74c3cbe3
AV
1909static inline void handle_one(const struct inode *inode)
1910{
1911#ifdef CONFIG_AUDIT_TREE
1912 struct audit_context *context;
1913 struct audit_tree_refs *p;
1914 struct audit_chunk *chunk;
1915 int count;
e61ce867 1916 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1917 return;
1918 context = current->audit_context;
1919 p = context->trees;
1920 count = context->tree_count;
1921 rcu_read_lock();
1922 chunk = audit_tree_lookup(inode);
1923 rcu_read_unlock();
1924 if (!chunk)
1925 return;
1926 if (likely(put_tree_ref(context, chunk)))
1927 return;
1928 if (unlikely(!grow_tree_refs(context))) {
436c405c 1929 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1930 audit_set_auditable(context);
1931 audit_put_chunk(chunk);
1932 unroll_tree_refs(context, p, count);
1933 return;
1934 }
1935 put_tree_ref(context, chunk);
1936#endif
1937}
1938
1939static void handle_path(const struct dentry *dentry)
1940{
1941#ifdef CONFIG_AUDIT_TREE
1942 struct audit_context *context;
1943 struct audit_tree_refs *p;
1944 const struct dentry *d, *parent;
1945 struct audit_chunk *drop;
1946 unsigned long seq;
1947 int count;
1948
1949 context = current->audit_context;
1950 p = context->trees;
1951 count = context->tree_count;
1952retry:
1953 drop = NULL;
1954 d = dentry;
1955 rcu_read_lock();
1956 seq = read_seqbegin(&rename_lock);
1957 for(;;) {
1958 struct inode *inode = d->d_inode;
e61ce867 1959 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1960 struct audit_chunk *chunk;
1961 chunk = audit_tree_lookup(inode);
1962 if (chunk) {
1963 if (unlikely(!put_tree_ref(context, chunk))) {
1964 drop = chunk;
1965 break;
1966 }
1967 }
1968 }
1969 parent = d->d_parent;
1970 if (parent == d)
1971 break;
1972 d = parent;
1973 }
1974 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1975 rcu_read_unlock();
1976 if (!drop) {
1977 /* just a race with rename */
1978 unroll_tree_refs(context, p, count);
1979 goto retry;
1980 }
1981 audit_put_chunk(drop);
1982 if (grow_tree_refs(context)) {
1983 /* OK, got more space */
1984 unroll_tree_refs(context, p, count);
1985 goto retry;
1986 }
1987 /* too bad */
1988 printk(KERN_WARNING
436c405c 1989 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1990 unroll_tree_refs(context, p, count);
1991 audit_set_auditable(context);
1992 return;
1993 }
1994 rcu_read_unlock();
1995#endif
1996}
1997
5195d8e2
EP
1998static struct audit_names *audit_alloc_name(struct audit_context *context)
1999{
2000 struct audit_names *aname;
2001
2002 if (context->name_count < AUDIT_NAMES) {
2003 aname = &context->preallocated_names[context->name_count];
2004 memset(aname, 0, sizeof(*aname));
2005 } else {
2006 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2007 if (!aname)
2008 return NULL;
2009 aname->should_free = true;
2010 }
2011
2012 aname->ino = (unsigned long)-1;
2013 list_add_tail(&aname->list, &context->names_list);
2014
2015 context->name_count++;
2016#if AUDIT_DEBUG
2017 context->ino_count++;
2018#endif
2019 return aname;
2020}
2021
b0dd25a8
RD
2022/**
2023 * audit_getname - add a name to the list
2024 * @name: name to add
2025 *
2026 * Add a name to the list of audit names for this context.
2027 * Called from fs/namei.c:getname().
2028 */
d8945bb5 2029void __audit_getname(const char *name)
1da177e4
LT
2030{
2031 struct audit_context *context = current->audit_context;
5195d8e2 2032 struct audit_names *n;
1da177e4 2033
1da177e4
LT
2034 if (!context->in_syscall) {
2035#if AUDIT_DEBUG == 2
2036 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2037 __FILE__, __LINE__, context->serial, name);
2038 dump_stack();
2039#endif
2040 return;
2041 }
5195d8e2
EP
2042
2043 n = audit_alloc_name(context);
2044 if (!n)
2045 return;
2046
2047 n->name = name;
2048 n->name_len = AUDIT_NAME_FULL;
2049 n->name_put = true;
2050
f7ad3c6b
MS
2051 if (!context->pwd.dentry)
2052 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
2053}
2054
b0dd25a8
RD
2055/* audit_putname - intercept a putname request
2056 * @name: name to intercept and delay for putname
2057 *
2058 * If we have stored the name from getname in the audit context,
2059 * then we delay the putname until syscall exit.
2060 * Called from include/linux/fs.h:putname().
2061 */
1da177e4
LT
2062void audit_putname(const char *name)
2063{
2064 struct audit_context *context = current->audit_context;
2065
2066 BUG_ON(!context);
2067 if (!context->in_syscall) {
2068#if AUDIT_DEBUG == 2
2069 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2070 __FILE__, __LINE__, context->serial, name);
2071 if (context->name_count) {
5195d8e2 2072 struct audit_names *n;
1da177e4 2073 int i;
5195d8e2
EP
2074
2075 list_for_each_entry(n, &context->names_list, list)
1da177e4 2076 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
2077 n->name, n->name ?: "(null)");
2078 }
1da177e4
LT
2079#endif
2080 __putname(name);
2081 }
2082#if AUDIT_DEBUG
2083 else {
2084 ++context->put_count;
2085 if (context->put_count > context->name_count) {
2086 printk(KERN_ERR "%s:%d(:%d): major=%d"
2087 " in_syscall=%d putname(%p) name_count=%d"
2088 " put_count=%d\n",
2089 __FILE__, __LINE__,
2090 context->serial, context->major,
2091 context->in_syscall, name, context->name_count,
2092 context->put_count);
2093 dump_stack();
2094 }
2095 }
2096#endif
2097}
2098
851f7ff5
EP
2099static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2100{
2101 struct cpu_vfs_cap_data caps;
2102 int rc;
2103
851f7ff5
EP
2104 if (!dentry)
2105 return 0;
2106
2107 rc = get_vfs_caps_from_disk(dentry, &caps);
2108 if (rc)
2109 return rc;
2110
2111 name->fcap.permitted = caps.permitted;
2112 name->fcap.inheritable = caps.inheritable;
2113 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2114 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2115
2116 return 0;
2117}
2118
2119
3e2efce0 2120/* Copy inode data into an audit_names. */
851f7ff5
EP
2121static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2122 const struct inode *inode)
8c8570fb 2123{
3e2efce0
AG
2124 name->ino = inode->i_ino;
2125 name->dev = inode->i_sb->s_dev;
2126 name->mode = inode->i_mode;
2127 name->uid = inode->i_uid;
2128 name->gid = inode->i_gid;
2129 name->rdev = inode->i_rdev;
2a862b32 2130 security_inode_getsecid(inode, &name->osid);
851f7ff5 2131 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2132}
2133
b0dd25a8
RD
2134/**
2135 * audit_inode - store the inode and device from a lookup
2136 * @name: name being audited
481968f4 2137 * @dentry: dentry being audited
b0dd25a8
RD
2138 *
2139 * Called from fs/namei.c:path_lookup().
2140 */
5a190ae6 2141void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2142{
1da177e4 2143 struct audit_context *context = current->audit_context;
74c3cbe3 2144 const struct inode *inode = dentry->d_inode;
5195d8e2 2145 struct audit_names *n;
1da177e4
LT
2146
2147 if (!context->in_syscall)
2148 return;
5195d8e2 2149
9cec9d68
JL
2150 if (!name)
2151 goto out_alloc;
2152
5195d8e2 2153 list_for_each_entry_reverse(n, &context->names_list, list) {
9cec9d68 2154 if (n->name == name)
5195d8e2 2155 goto out;
1da177e4 2156 }
5195d8e2 2157
9cec9d68 2158out_alloc:
5195d8e2
EP
2159 /* unable to find the name from a previous getname() */
2160 n = audit_alloc_name(context);
2161 if (!n)
2162 return;
2163out:
74c3cbe3 2164 handle_path(dentry);
5195d8e2 2165 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2166}
2167
2168/**
c43a25ab 2169 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2170 * @parent: inode of dentry parent
c43a25ab 2171 * @dentry: dentry being audited
73241ccc
AG
2172 *
2173 * For syscalls that create or remove filesystem objects, audit_inode
2174 * can only collect information for the filesystem object's parent.
2175 * This call updates the audit context with the child's information.
2176 * Syscalls that create a new filesystem object must be hooked after
2177 * the object is created. Syscalls that remove a filesystem object
2178 * must be hooked prior, in order to capture the target inode during
2179 * unsuccessful attempts.
2180 */
c43a25ab
JL
2181void __audit_inode_child(const struct inode *parent,
2182 const struct dentry *dentry)
73241ccc 2183{
73241ccc 2184 struct audit_context *context = current->audit_context;
5712e88f 2185 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2186 const struct inode *inode = dentry->d_inode;
cccc6bba 2187 const char *dname = dentry->d_name.name;
5195d8e2 2188 struct audit_names *n;
9c937dcc 2189 int dirlen = 0;
73241ccc
AG
2190
2191 if (!context->in_syscall)
2192 return;
2193
74c3cbe3
AV
2194 if (inode)
2195 handle_one(inode);
73241ccc 2196
5712e88f 2197 /* parent is more likely, look for it first */
5195d8e2 2198 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2199 if (!n->name)
2200 continue;
2201
2202 if (n->ino == parent->i_ino &&
2203 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2204 n->name_len = dirlen; /* update parent data in place */
2205 found_parent = n->name;
2206 goto add_names;
f368c07d 2207 }
5712e88f 2208 }
73241ccc 2209
5712e88f 2210 /* no matching parent, look for matching child */
5195d8e2 2211 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2212 if (!n->name)
2213 continue;
2214
2215 /* strcmp() is the more likely scenario */
2216 if (!strcmp(dname, n->name) ||
2217 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2218 if (inode)
1c2e51e8 2219 audit_copy_inode(n, dentry, inode);
5712e88f
AG
2220 else
2221 n->ino = (unsigned long)-1;
2222 found_child = n->name;
2223 goto add_names;
2224 }
ac9910ce 2225 }
5712e88f
AG
2226
2227add_names:
2228 if (!found_parent) {
5195d8e2
EP
2229 n = audit_alloc_name(context);
2230 if (!n)
ac9910ce 2231 return;
5195d8e2 2232 audit_copy_inode(n, NULL, parent);
73d3ec5a 2233 }
5712e88f
AG
2234
2235 if (!found_child) {
5195d8e2
EP
2236 n = audit_alloc_name(context);
2237 if (!n)
5712e88f 2238 return;
5712e88f
AG
2239
2240 /* Re-use the name belonging to the slot for a matching parent
2241 * directory. All names for this context are relinquished in
2242 * audit_free_names() */
2243 if (found_parent) {
5195d8e2
EP
2244 n->name = found_parent;
2245 n->name_len = AUDIT_NAME_FULL;
5712e88f 2246 /* don't call __putname() */
5195d8e2 2247 n->name_put = false;
5712e88f
AG
2248 }
2249
2250 if (inode)
1c2e51e8 2251 audit_copy_inode(n, dentry, inode);
5712e88f 2252 }
3e2efce0 2253}
50e437d5 2254EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2255
b0dd25a8
RD
2256/**
2257 * auditsc_get_stamp - get local copies of audit_context values
2258 * @ctx: audit_context for the task
2259 * @t: timespec to store time recorded in the audit_context
2260 * @serial: serial value that is recorded in the audit_context
2261 *
2262 * Also sets the context as auditable.
2263 */
48887e63 2264int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2265 struct timespec *t, unsigned int *serial)
1da177e4 2266{
48887e63
AV
2267 if (!ctx->in_syscall)
2268 return 0;
ce625a80
DW
2269 if (!ctx->serial)
2270 ctx->serial = audit_serial();
bfb4496e
DW
2271 t->tv_sec = ctx->ctime.tv_sec;
2272 t->tv_nsec = ctx->ctime.tv_nsec;
2273 *serial = ctx->serial;
0590b933
AV
2274 if (!ctx->prio) {
2275 ctx->prio = 1;
2276 ctx->current_state = AUDIT_RECORD_CONTEXT;
2277 }
48887e63 2278 return 1;
1da177e4
LT
2279}
2280
4746ec5b
EP
2281/* global counter which is incremented every time something logs in */
2282static atomic_t session_id = ATOMIC_INIT(0);
2283
b0dd25a8 2284/**
0a300be6 2285 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2286 * @loginuid: loginuid value
2287 *
2288 * Returns 0.
2289 *
2290 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2291 */
e1760bd5 2292int audit_set_loginuid(kuid_t loginuid)
1da177e4 2293{
0a300be6 2294 struct task_struct *task = current;
41757106 2295 struct audit_context *context = task->audit_context;
633b4545 2296 unsigned int sessionid;
41757106 2297
633b4545 2298#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
e1760bd5 2299 if (uid_valid(task->loginuid))
633b4545
EP
2300 return -EPERM;
2301#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2302 if (!capable(CAP_AUDIT_CONTROL))
2303 return -EPERM;
2304#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2305
2306 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2307 if (context && context->in_syscall) {
2308 struct audit_buffer *ab;
2309
2310 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2311 if (ab) {
2312 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2313 "old auid=%u new auid=%u"
2314 " old ses=%u new ses=%u",
cca080d9
EB
2315 task->pid,
2316 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
2317 from_kuid(&init_user_ns, task->loginuid),
2318 from_kuid(&init_user_ns, loginuid),
4746ec5b 2319 task->sessionid, sessionid);
bfef93a5 2320 audit_log_end(ab);
c0404993 2321 }
1da177e4 2322 }
4746ec5b 2323 task->sessionid = sessionid;
bfef93a5 2324 task->loginuid = loginuid;
1da177e4
LT
2325 return 0;
2326}
2327
20ca73bc
GW
2328/**
2329 * __audit_mq_open - record audit data for a POSIX MQ open
2330 * @oflag: open flag
2331 * @mode: mode bits
6b962559 2332 * @attr: queue attributes
20ca73bc 2333 *
20ca73bc 2334 */
df0a4283 2335void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2336{
20ca73bc
GW
2337 struct audit_context *context = current->audit_context;
2338
564f6993
AV
2339 if (attr)
2340 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2341 else
2342 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2343
564f6993
AV
2344 context->mq_open.oflag = oflag;
2345 context->mq_open.mode = mode;
20ca73bc 2346
564f6993 2347 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2348}
2349
2350/**
c32c8af4 2351 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2352 * @mqdes: MQ descriptor
2353 * @msg_len: Message length
2354 * @msg_prio: Message priority
c32c8af4 2355 * @abs_timeout: Message timeout in absolute time
20ca73bc 2356 *
20ca73bc 2357 */
c32c8af4
AV
2358void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2359 const struct timespec *abs_timeout)
20ca73bc 2360{
20ca73bc 2361 struct audit_context *context = current->audit_context;
c32c8af4 2362 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2363
c32c8af4
AV
2364 if (abs_timeout)
2365 memcpy(p, abs_timeout, sizeof(struct timespec));
2366 else
2367 memset(p, 0, sizeof(struct timespec));
20ca73bc 2368
c32c8af4
AV
2369 context->mq_sendrecv.mqdes = mqdes;
2370 context->mq_sendrecv.msg_len = msg_len;
2371 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2372
c32c8af4 2373 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2374}
2375
2376/**
2377 * __audit_mq_notify - record audit data for a POSIX MQ notify
2378 * @mqdes: MQ descriptor
6b962559 2379 * @notification: Notification event
20ca73bc 2380 *
20ca73bc
GW
2381 */
2382
20114f71 2383void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2384{
20ca73bc
GW
2385 struct audit_context *context = current->audit_context;
2386
20114f71
AV
2387 if (notification)
2388 context->mq_notify.sigev_signo = notification->sigev_signo;
2389 else
2390 context->mq_notify.sigev_signo = 0;
20ca73bc 2391
20114f71
AV
2392 context->mq_notify.mqdes = mqdes;
2393 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2394}
2395
2396/**
2397 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2398 * @mqdes: MQ descriptor
2399 * @mqstat: MQ flags
2400 *
20ca73bc 2401 */
7392906e 2402void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2403{
20ca73bc 2404 struct audit_context *context = current->audit_context;
7392906e
AV
2405 context->mq_getsetattr.mqdes = mqdes;
2406 context->mq_getsetattr.mqstat = *mqstat;
2407 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2408}
2409
b0dd25a8 2410/**
073115d6
SG
2411 * audit_ipc_obj - record audit data for ipc object
2412 * @ipcp: ipc permissions
2413 *
073115d6 2414 */
a33e6751 2415void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2416{
073115d6 2417 struct audit_context *context = current->audit_context;
a33e6751
AV
2418 context->ipc.uid = ipcp->uid;
2419 context->ipc.gid = ipcp->gid;
2420 context->ipc.mode = ipcp->mode;
e816f370 2421 context->ipc.has_perm = 0;
a33e6751
AV
2422 security_ipc_getsecid(ipcp, &context->ipc.osid);
2423 context->type = AUDIT_IPC;
073115d6
SG
2424}
2425
2426/**
2427 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2428 * @qbytes: msgq bytes
2429 * @uid: msgq user id
2430 * @gid: msgq group id
2431 * @mode: msgq mode (permissions)
2432 *
e816f370 2433 * Called only after audit_ipc_obj().
b0dd25a8 2434 */
2570ebbd 2435void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2436{
1da177e4
LT
2437 struct audit_context *context = current->audit_context;
2438
e816f370
AV
2439 context->ipc.qbytes = qbytes;
2440 context->ipc.perm_uid = uid;
2441 context->ipc.perm_gid = gid;
2442 context->ipc.perm_mode = mode;
2443 context->ipc.has_perm = 1;
1da177e4 2444}
c2f0c7c3 2445
07c49417 2446int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2447{
2448 struct audit_aux_data_execve *ax;
2449 struct audit_context *context = current->audit_context;
473ae30b 2450
bdf4c48a 2451 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2452 if (!ax)
2453 return -ENOMEM;
2454
2455 ax->argc = bprm->argc;
2456 ax->envc = bprm->envc;
bdf4c48a 2457 ax->mm = bprm->mm;
473ae30b
AV
2458 ax->d.type = AUDIT_EXECVE;
2459 ax->d.next = context->aux;
2460 context->aux = (void *)ax;
2461 return 0;
2462}
2463
2464
b0dd25a8
RD
2465/**
2466 * audit_socketcall - record audit data for sys_socketcall
2467 * @nargs: number of args
2468 * @args: args array
2469 *
b0dd25a8 2470 */
07c49417 2471void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2472{
3ec3b2fb
DW
2473 struct audit_context *context = current->audit_context;
2474
f3298dc4
AV
2475 context->type = AUDIT_SOCKETCALL;
2476 context->socketcall.nargs = nargs;
2477 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2478}
2479
db349509
AV
2480/**
2481 * __audit_fd_pair - record audit data for pipe and socketpair
2482 * @fd1: the first file descriptor
2483 * @fd2: the second file descriptor
2484 *
db349509 2485 */
157cf649 2486void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2487{
2488 struct audit_context *context = current->audit_context;
157cf649
AV
2489 context->fds[0] = fd1;
2490 context->fds[1] = fd2;
db349509
AV
2491}
2492
b0dd25a8
RD
2493/**
2494 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2495 * @len: data length in user space
2496 * @a: data address in kernel space
2497 *
2498 * Returns 0 for success or NULL context or < 0 on error.
2499 */
07c49417 2500int __audit_sockaddr(int len, void *a)
3ec3b2fb 2501{
3ec3b2fb
DW
2502 struct audit_context *context = current->audit_context;
2503
4f6b434f
AV
2504 if (!context->sockaddr) {
2505 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2506 if (!p)
2507 return -ENOMEM;
2508 context->sockaddr = p;
2509 }
3ec3b2fb 2510
4f6b434f
AV
2511 context->sockaddr_len = len;
2512 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2513 return 0;
2514}
2515
a5cb013d
AV
2516void __audit_ptrace(struct task_struct *t)
2517{
2518 struct audit_context *context = current->audit_context;
2519
2520 context->target_pid = t->pid;
c2a7780e 2521 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2522 context->target_uid = task_uid(t);
4746ec5b 2523 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2524 security_task_getsecid(t, &context->target_sid);
c2a7780e 2525 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2526}
2527
b0dd25a8
RD
2528/**
2529 * audit_signal_info - record signal info for shutting down audit subsystem
2530 * @sig: signal value
2531 * @t: task being signaled
2532 *
2533 * If the audit subsystem is being terminated, record the task (pid)
2534 * and uid that is doing that.
2535 */
e54dc243 2536int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2537{
e54dc243
AG
2538 struct audit_aux_data_pids *axp;
2539 struct task_struct *tsk = current;
2540 struct audit_context *ctx = tsk->audit_context;
cca080d9 2541 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2542
175fc484 2543 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2544 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2545 audit_sig_pid = tsk->pid;
e1760bd5 2546 if (uid_valid(tsk->loginuid))
bfef93a5 2547 audit_sig_uid = tsk->loginuid;
175fc484 2548 else
c69e8d9c 2549 audit_sig_uid = uid;
2a862b32 2550 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2551 }
2552 if (!audit_signals || audit_dummy_context())
2553 return 0;
c2f0c7c3 2554 }
e54dc243 2555
e54dc243
AG
2556 /* optimize the common case by putting first signal recipient directly
2557 * in audit_context */
2558 if (!ctx->target_pid) {
2559 ctx->target_pid = t->tgid;
c2a7780e 2560 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2561 ctx->target_uid = t_uid;
4746ec5b 2562 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2563 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2564 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2565 return 0;
2566 }
2567
2568 axp = (void *)ctx->aux_pids;
2569 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2570 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2571 if (!axp)
2572 return -ENOMEM;
2573
2574 axp->d.type = AUDIT_OBJ_PID;
2575 axp->d.next = ctx->aux_pids;
2576 ctx->aux_pids = (void *)axp;
2577 }
88ae704c 2578 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2579
2580 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2581 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2582 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2583 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2584 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2585 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2586 axp->pid_count++;
2587
2588 return 0;
c2f0c7c3 2589}
0a4ff8c2 2590
3fc689e9
EP
2591/**
2592 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2593 * @bprm: pointer to the bprm being processed
2594 * @new: the proposed new credentials
2595 * @old: the old credentials
3fc689e9
EP
2596 *
2597 * Simply check if the proc already has the caps given by the file and if not
2598 * store the priv escalation info for later auditing at the end of the syscall
2599 *
3fc689e9
EP
2600 * -Eric
2601 */
d84f4f99
DH
2602int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2603 const struct cred *new, const struct cred *old)
3fc689e9
EP
2604{
2605 struct audit_aux_data_bprm_fcaps *ax;
2606 struct audit_context *context = current->audit_context;
2607 struct cpu_vfs_cap_data vcaps;
2608 struct dentry *dentry;
2609
2610 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2611 if (!ax)
d84f4f99 2612 return -ENOMEM;
3fc689e9
EP
2613
2614 ax->d.type = AUDIT_BPRM_FCAPS;
2615 ax->d.next = context->aux;
2616 context->aux = (void *)ax;
2617
2618 dentry = dget(bprm->file->f_dentry);
2619 get_vfs_caps_from_disk(dentry, &vcaps);
2620 dput(dentry);
2621
2622 ax->fcap.permitted = vcaps.permitted;
2623 ax->fcap.inheritable = vcaps.inheritable;
2624 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2625 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2626
d84f4f99
DH
2627 ax->old_pcap.permitted = old->cap_permitted;
2628 ax->old_pcap.inheritable = old->cap_inheritable;
2629 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2630
d84f4f99
DH
2631 ax->new_pcap.permitted = new->cap_permitted;
2632 ax->new_pcap.inheritable = new->cap_inheritable;
2633 ax->new_pcap.effective = new->cap_effective;
2634 return 0;
3fc689e9
EP
2635}
2636
e68b75a0
EP
2637/**
2638 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2639 * @pid: target pid of the capset call
2640 * @new: the new credentials
2641 * @old: the old (current) credentials
e68b75a0
EP
2642 *
2643 * Record the aguments userspace sent to sys_capset for later printing by the
2644 * audit system if applicable
2645 */
57f71a0a 2646void __audit_log_capset(pid_t pid,
d84f4f99 2647 const struct cred *new, const struct cred *old)
e68b75a0 2648{
e68b75a0 2649 struct audit_context *context = current->audit_context;
57f71a0a
AV
2650 context->capset.pid = pid;
2651 context->capset.cap.effective = new->cap_effective;
2652 context->capset.cap.inheritable = new->cap_effective;
2653 context->capset.cap.permitted = new->cap_permitted;
2654 context->type = AUDIT_CAPSET;
e68b75a0
EP
2655}
2656
120a795d
AV
2657void __audit_mmap_fd(int fd, int flags)
2658{
2659 struct audit_context *context = current->audit_context;
2660 context->mmap.fd = fd;
2661 context->mmap.flags = flags;
2662 context->type = AUDIT_MMAP;
2663}
2664
85e7bac3
EP
2665static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2666{
cca080d9
EB
2667 kuid_t auid, uid;
2668 kgid_t gid;
85e7bac3
EP
2669 unsigned int sessionid;
2670
2671 auid = audit_get_loginuid(current);
2672 sessionid = audit_get_sessionid(current);
2673 current_uid_gid(&uid, &gid);
2674
2675 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2676 from_kuid(&init_user_ns, auid),
2677 from_kuid(&init_user_ns, uid),
2678 from_kgid(&init_user_ns, gid),
2679 sessionid);
85e7bac3
EP
2680 audit_log_task_context(ab);
2681 audit_log_format(ab, " pid=%d comm=", current->pid);
2682 audit_log_untrustedstring(ab, current->comm);
2683 audit_log_format(ab, " reason=");
2684 audit_log_string(ab, reason);
2685 audit_log_format(ab, " sig=%ld", signr);
2686}
0a4ff8c2
SG
2687/**
2688 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2689 * @signr: signal value
0a4ff8c2
SG
2690 *
2691 * If a process ends with a core dump, something fishy is going on and we
2692 * should record the event for investigation.
2693 */
2694void audit_core_dumps(long signr)
2695{
2696 struct audit_buffer *ab;
0a4ff8c2
SG
2697
2698 if (!audit_enabled)
2699 return;
2700
2701 if (signr == SIGQUIT) /* don't care for those */
2702 return;
2703
2704 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2705 audit_log_abend(ab, "memory violation", signr);
2706 audit_log_end(ab);
2707}
0a4ff8c2 2708
3dc1c1b2 2709void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2710{
2711 struct audit_buffer *ab;
2712
2713 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
3dc1c1b2 2714 audit_log_abend(ab, "seccomp", signr);
85e7bac3 2715 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2716 audit_log_format(ab, " compat=%d", is_compat_task());
2717 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2718 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2719 audit_log_end(ab);
2720}
916d7576
AV
2721
2722struct list_head *audit_killed_trees(void)
2723{
2724 struct audit_context *ctx = current->audit_context;
2725 if (likely(!ctx || !ctx->in_syscall))
2726 return NULL;
2727 return &ctx->killed_trees;
2728}