Kernel: Audit Support For The ARM Platform
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
d7e7528b
EP
73/* flags stating the success for a syscall */
74#define AUDITSC_INVALID 0
75#define AUDITSC_SUCCESS 1
76#define AUDITSC_FAILURE 2
77
1da177e4 78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81#define AUDIT_NAMES 5
1da177e4 82
9c937dcc
AG
83/* Indicates that audit should log the full pathname. */
84#define AUDIT_NAME_FULL -1
85
de6bbd1d
EP
86/* no execve audit message should be longer than this (userspace limits) */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
851f7ff5
EP
95struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102};
103
1da177e4
LT
104/* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109struct audit_names {
5195d8e2 110 struct list_head list; /* audit_context->names_list */
1da177e4
LT
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
1b50eed9 118 u32 osid;
851f7ff5
EP
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
5195d8e2
EP
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4
LT
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
e54dc243 205 struct audit_aux_data *aux_pids;
4f6b434f
AV
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
1da177e4 208 /* Save things to print about task_struct */
f46038ff 209 pid_t pid, ppid;
1da177e4
LT
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
2fd6f58b 213 int arch;
1da177e4 214
a5cb013d 215 pid_t target_pid;
c2a7780e
EP
216 uid_t target_auid;
217 uid_t target_uid;
4746ec5b 218 unsigned int target_sessionid;
a5cb013d 219 u32 target_sid;
c2a7780e 220 char target_comm[TASK_COMM_LEN];
a5cb013d 221
74c3cbe3 222 struct audit_tree_refs *trees, *first_trees;
916d7576 223 struct list_head killed_trees;
44e51a1b 224 int tree_count;
74c3cbe3 225
f3298dc4
AV
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
a33e6751
AV
232 struct {
233 uid_t uid;
234 gid_t gid;
2570ebbd 235 umode_t mode;
a33e6751 236 u32 osid;
e816f370
AV
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
2570ebbd 240 umode_t perm_mode;
e816f370 241 unsigned long qbytes;
a33e6751 242 } ipc;
7392906e
AV
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
20114f71
AV
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
c32c8af4
AV
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
564f6993
AV
257 struct {
258 int oflag;
df0a4283 259 umode_t mode;
564f6993
AV
260 struct mq_attr attr;
261 } mq_open;
57f71a0a
AV
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
120a795d
AV
266 struct {
267 int fd;
268 int flags;
269 } mmap;
f3298dc4 270 };
157cf649 271 int fds[2];
f3298dc4 272
1da177e4
LT
273#if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276#endif
277};
278
55669bfa
AV
279static inline int open_arg(int flags, int mask)
280{
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285}
286
287static int audit_match_perm(struct audit_context *ctx, int mask)
288{
c4bacefb 289 unsigned n;
1a61c88d 290 if (unlikely(!ctx))
291 return 0;
c4bacefb 292 n = ctx->major;
dbda4c0b 293
55669bfa
AV
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328}
329
5ef30ee5 330static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 331{
5195d8e2 332 struct audit_names *n;
5ef30ee5 333 umode_t mode = (umode_t)val;
1a61c88d 334
335 if (unlikely(!ctx))
336 return 0;
337
5195d8e2
EP
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
341 return 1;
342 }
5195d8e2 343
5ef30ee5 344 return 0;
8b67dca9
AV
345}
346
74c3cbe3
AV
347/*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357#ifdef CONFIG_AUDIT_TREE
679173b7
EP
358static void audit_set_auditable(struct audit_context *ctx)
359{
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364}
365
74c3cbe3
AV
366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367{
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385}
386
387static int grow_tree_refs(struct audit_context *ctx)
388{
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401}
402#endif
403
404static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406{
407#ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431#endif
432}
433
434static void free_tree_refs(struct audit_context *ctx)
435{
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441}
442
443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444{
445#ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462#endif
463 return 0;
464}
465
f368c07d 466/* Determine if any context name data matches a rule's watch data */
1da177e4 467/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
468 * otherwise.
469 *
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
473 */
1da177e4 474static int audit_filter_rules(struct task_struct *tsk,
93315ed6 475 struct audit_krule *rule,
1da177e4 476 struct audit_context *ctx,
f368c07d 477 struct audit_names *name,
f5629883
TJ
478 enum audit_state *state,
479 bool task_creation)
1da177e4 480{
f5629883 481 const struct cred *cred;
5195d8e2 482 int i, need_sid = 1;
3dc7e315
DG
483 u32 sid;
484
f5629883
TJ
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
486
1da177e4 487 for (i = 0; i < rule->field_count; i++) {
93315ed6 488 struct audit_field *f = &rule->fields[i];
5195d8e2 489 struct audit_names *n;
1da177e4
LT
490 int result = 0;
491
93315ed6 492 switch (f->type) {
1da177e4 493 case AUDIT_PID:
93315ed6 494 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 495 break;
3c66251e 496 case AUDIT_PPID:
419c58f1
AV
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
3c66251e 500 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 501 }
3c66251e 502 break;
1da177e4 503 case AUDIT_UID:
b6dff3ec 504 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
505 break;
506 case AUDIT_EUID:
b6dff3ec 507 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
508 break;
509 case AUDIT_SUID:
b6dff3ec 510 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
511 break;
512 case AUDIT_FSUID:
b6dff3ec 513 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
514 break;
515 case AUDIT_GID:
b6dff3ec 516 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
517 break;
518 case AUDIT_EGID:
b6dff3ec 519 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
520 break;
521 case AUDIT_SGID:
b6dff3ec 522 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
523 break;
524 case AUDIT_FSGID:
b6dff3ec 525 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
526 break;
527 case AUDIT_PERS:
93315ed6 528 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 529 break;
2fd6f58b 530 case AUDIT_ARCH:
9f8dbe9c 531 if (ctx)
93315ed6 532 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 533 break;
1da177e4
LT
534
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
93315ed6 537 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
538 break;
539 case AUDIT_SUCCESS:
b01f2cc1 540 if (ctx && ctx->return_valid) {
93315ed6
AG
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 543 else
93315ed6 544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 545 }
1da177e4
LT
546 break;
547 case AUDIT_DEVMAJOR:
16c174bd
EP
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
5195d8e2 553 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_DEVMINOR:
16c174bd
EP
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
5195d8e2 568 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
571 ++result;
572 break;
573 }
574 }
575 }
576 break;
577 case AUDIT_INODE:
f368c07d 578 if (name)
9c937dcc 579 result = (name->ino == f->val);
f368c07d 580 else if (ctx) {
5195d8e2
EP
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
583 ++result;
584 break;
585 }
586 }
587 }
588 break;
efaffd6e
EP
589 case AUDIT_OBJ_UID:
590 if (name) {
591 result = audit_comparator(name->uid, f->op, f->val);
592 } else if (ctx) {
593 list_for_each_entry(n, &ctx->names_list, list) {
594 if (audit_comparator(n->uid, f->op, f->val)) {
595 ++result;
596 break;
597 }
598 }
599 }
600 break;
54d3218b
EP
601 case AUDIT_OBJ_GID:
602 if (name) {
603 result = audit_comparator(name->gid, f->op, f->val);
604 } else if (ctx) {
605 list_for_each_entry(n, &ctx->names_list, list) {
606 if (audit_comparator(n->gid, f->op, f->val)) {
607 ++result;
608 break;
609 }
610 }
611 }
612 break;
f368c07d 613 case AUDIT_WATCH:
ae7b8f41
EP
614 if (name)
615 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 616 break;
74c3cbe3
AV
617 case AUDIT_DIR:
618 if (ctx)
619 result = match_tree_refs(ctx, rule->tree);
620 break;
1da177e4
LT
621 case AUDIT_LOGINUID:
622 result = 0;
623 if (ctx)
bfef93a5 624 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 625 break;
3a6b9f85
DG
626 case AUDIT_SUBJ_USER:
627 case AUDIT_SUBJ_ROLE:
628 case AUDIT_SUBJ_TYPE:
629 case AUDIT_SUBJ_SEN:
630 case AUDIT_SUBJ_CLR:
3dc7e315
DG
631 /* NOTE: this may return negative values indicating
632 a temporary error. We simply treat this as a
633 match for now to avoid losing information that
634 may be wanted. An error message will also be
635 logged upon error */
04305e4a 636 if (f->lsm_rule) {
2ad312d2 637 if (need_sid) {
2a862b32 638 security_task_getsecid(tsk, &sid);
2ad312d2
SG
639 need_sid = 0;
640 }
d7a96f3a 641 result = security_audit_rule_match(sid, f->type,
3dc7e315 642 f->op,
04305e4a 643 f->lsm_rule,
3dc7e315 644 ctx);
2ad312d2 645 }
3dc7e315 646 break;
6e5a2d1d
DG
647 case AUDIT_OBJ_USER:
648 case AUDIT_OBJ_ROLE:
649 case AUDIT_OBJ_TYPE:
650 case AUDIT_OBJ_LEV_LOW:
651 case AUDIT_OBJ_LEV_HIGH:
652 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
653 also applies here */
04305e4a 654 if (f->lsm_rule) {
6e5a2d1d
DG
655 /* Find files that match */
656 if (name) {
d7a96f3a 657 result = security_audit_rule_match(
6e5a2d1d 658 name->osid, f->type, f->op,
04305e4a 659 f->lsm_rule, ctx);
6e5a2d1d 660 } else if (ctx) {
5195d8e2
EP
661 list_for_each_entry(n, &ctx->names_list, list) {
662 if (security_audit_rule_match(n->osid, f->type,
663 f->op, f->lsm_rule,
664 ctx)) {
6e5a2d1d
DG
665 ++result;
666 break;
667 }
668 }
669 }
670 /* Find ipc objects that match */
a33e6751
AV
671 if (!ctx || ctx->type != AUDIT_IPC)
672 break;
673 if (security_audit_rule_match(ctx->ipc.osid,
674 f->type, f->op,
675 f->lsm_rule, ctx))
676 ++result;
6e5a2d1d
DG
677 }
678 break;
1da177e4
LT
679 case AUDIT_ARG0:
680 case AUDIT_ARG1:
681 case AUDIT_ARG2:
682 case AUDIT_ARG3:
683 if (ctx)
93315ed6 684 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 685 break;
5adc8a6a
AG
686 case AUDIT_FILTERKEY:
687 /* ignore this field for filtering */
688 result = 1;
689 break;
55669bfa
AV
690 case AUDIT_PERM:
691 result = audit_match_perm(ctx, f->val);
692 break;
8b67dca9
AV
693 case AUDIT_FILETYPE:
694 result = audit_match_filetype(ctx, f->val);
695 break;
1da177e4
LT
696 }
697
f5629883 698 if (!result)
1da177e4
LT
699 return 0;
700 }
0590b933
AV
701
702 if (ctx) {
703 if (rule->prio <= ctx->prio)
704 return 0;
705 if (rule->filterkey) {
706 kfree(ctx->filterkey);
707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
708 }
709 ctx->prio = rule->prio;
710 }
1da177e4
LT
711 switch (rule->action) {
712 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
713 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
714 }
715 return 1;
716}
717
718/* At process creation time, we can determine if system-call auditing is
719 * completely disabled for this task. Since we only have the task
720 * structure at this point, we can only check uid and gid.
721 */
e048e02c 722static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
723{
724 struct audit_entry *e;
725 enum audit_state state;
726
727 rcu_read_lock();
0f45aa18 728 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
729 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
730 &state, true)) {
e048e02c
AV
731 if (state == AUDIT_RECORD_CONTEXT)
732 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
733 rcu_read_unlock();
734 return state;
735 }
736 }
737 rcu_read_unlock();
738 return AUDIT_BUILD_CONTEXT;
739}
740
741/* At syscall entry and exit time, this filter is called if the
742 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 743 * also not high enough that we already know we have to write an audit
b0dd25a8 744 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
745 */
746static enum audit_state audit_filter_syscall(struct task_struct *tsk,
747 struct audit_context *ctx,
748 struct list_head *list)
749{
750 struct audit_entry *e;
c3896495 751 enum audit_state state;
1da177e4 752
351bb722 753 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
754 return AUDIT_DISABLED;
755
1da177e4 756 rcu_read_lock();
c3896495 757 if (!list_empty(list)) {
b63862f4
DK
758 int word = AUDIT_WORD(ctx->major);
759 int bit = AUDIT_BIT(ctx->major);
760
761 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
762 if ((e->rule.mask[word] & bit) == bit &&
763 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 764 &state, false)) {
f368c07d 765 rcu_read_unlock();
0590b933 766 ctx->current_state = state;
f368c07d
AG
767 return state;
768 }
769 }
770 }
771 rcu_read_unlock();
772 return AUDIT_BUILD_CONTEXT;
773}
774
5195d8e2
EP
775/*
776 * Given an audit_name check the inode hash table to see if they match.
777 * Called holding the rcu read lock to protect the use of audit_inode_hash
778 */
779static int audit_filter_inode_name(struct task_struct *tsk,
780 struct audit_names *n,
781 struct audit_context *ctx) {
782 int word, bit;
783 int h = audit_hash_ino((u32)n->ino);
784 struct list_head *list = &audit_inode_hash[h];
785 struct audit_entry *e;
786 enum audit_state state;
787
788 word = AUDIT_WORD(ctx->major);
789 bit = AUDIT_BIT(ctx->major);
790
791 if (list_empty(list))
792 return 0;
793
794 list_for_each_entry_rcu(e, list, list) {
795 if ((e->rule.mask[word] & bit) == bit &&
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
799 }
800 }
801
802 return 0;
803}
804
805/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 806 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 807 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 */
0590b933 810void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 811{
5195d8e2 812 struct audit_names *n;
f368c07d
AG
813
814 if (audit_pid && tsk->tgid == audit_pid)
0590b933 815 return;
f368c07d
AG
816
817 rcu_read_lock();
f368c07d 818
5195d8e2
EP
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
0f45aa18
DW
822 }
823 rcu_read_unlock();
0f45aa18
DW
824}
825
1da177e4
LT
826static inline struct audit_context *audit_get_context(struct task_struct *tsk,
827 int return_valid,
6d208da8 828 long return_code)
1da177e4
LT
829{
830 struct audit_context *context = tsk->audit_context;
831
56179a6e 832 if (!context)
1da177e4
LT
833 return NULL;
834 context->return_valid = return_valid;
f701b75e
EP
835
836 /*
837 * we need to fix up the return code in the audit logs if the actual
838 * return codes are later going to be fixed up by the arch specific
839 * signal handlers
840 *
841 * This is actually a test for:
842 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
843 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
844 *
845 * but is faster than a bunch of ||
846 */
847 if (unlikely(return_code <= -ERESTARTSYS) &&
848 (return_code >= -ERESTART_RESTARTBLOCK) &&
849 (return_code != -ENOIOCTLCMD))
850 context->return_code = -EINTR;
851 else
852 context->return_code = return_code;
1da177e4 853
0590b933
AV
854 if (context->in_syscall && !context->dummy) {
855 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
856 audit_filter_inodes(tsk, context);
1da177e4
LT
857 }
858
1da177e4
LT
859 tsk->audit_context = NULL;
860 return context;
861}
862
863static inline void audit_free_names(struct audit_context *context)
864{
5195d8e2 865 struct audit_names *n, *next;
1da177e4
LT
866
867#if AUDIT_DEBUG == 2
0590b933 868 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 869 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
870 " name_count=%d put_count=%d"
871 " ino_count=%d [NOT freeing]\n",
73241ccc 872 __FILE__, __LINE__,
1da177e4
LT
873 context->serial, context->major, context->in_syscall,
874 context->name_count, context->put_count,
875 context->ino_count);
5195d8e2 876 list_for_each_entry(n, &context->names_list, list) {
1da177e4 877 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 878 n->name, n->name ?: "(null)");
8c8570fb 879 }
1da177e4
LT
880 dump_stack();
881 return;
882 }
883#endif
884#if AUDIT_DEBUG
885 context->put_count = 0;
886 context->ino_count = 0;
887#endif
888
5195d8e2
EP
889 list_for_each_entry_safe(n, next, &context->names_list, list) {
890 list_del(&n->list);
891 if (n->name && n->name_put)
892 __putname(n->name);
893 if (n->should_free)
894 kfree(n);
8c8570fb 895 }
1da177e4 896 context->name_count = 0;
44707fdf
JB
897 path_put(&context->pwd);
898 context->pwd.dentry = NULL;
899 context->pwd.mnt = NULL;
1da177e4
LT
900}
901
902static inline void audit_free_aux(struct audit_context *context)
903{
904 struct audit_aux_data *aux;
905
906 while ((aux = context->aux)) {
907 context->aux = aux->next;
908 kfree(aux);
909 }
e54dc243
AG
910 while ((aux = context->aux_pids)) {
911 context->aux_pids = aux->next;
912 kfree(aux);
913 }
1da177e4
LT
914}
915
916static inline void audit_zero_context(struct audit_context *context,
917 enum audit_state state)
918{
1da177e4
LT
919 memset(context, 0, sizeof(*context));
920 context->state = state;
0590b933 921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
922}
923
924static inline struct audit_context *audit_alloc_context(enum audit_state state)
925{
926 struct audit_context *context;
927
928 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
929 return NULL;
930 audit_zero_context(context, state);
916d7576 931 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 932 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
933 return context;
934}
935
b0dd25a8
RD
936/**
937 * audit_alloc - allocate an audit context block for a task
938 * @tsk: task
939 *
940 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
941 * if necessary. Doing so turns on system call auditing for the
942 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
943 * needed.
944 */
1da177e4
LT
945int audit_alloc(struct task_struct *tsk)
946{
947 struct audit_context *context;
948 enum audit_state state;
e048e02c 949 char *key = NULL;
1da177e4 950
b593d384 951 if (likely(!audit_ever_enabled))
1da177e4
LT
952 return 0; /* Return if not auditing. */
953
e048e02c 954 state = audit_filter_task(tsk, &key);
56179a6e 955 if (state == AUDIT_DISABLED)
1da177e4
LT
956 return 0;
957
958 if (!(context = audit_alloc_context(state))) {
e048e02c 959 kfree(key);
1da177e4
LT
960 audit_log_lost("out of memory in audit_alloc");
961 return -ENOMEM;
962 }
e048e02c 963 context->filterkey = key;
1da177e4 964
1da177e4
LT
965 tsk->audit_context = context;
966 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
967 return 0;
968}
969
970static inline void audit_free_context(struct audit_context *context)
971{
972 struct audit_context *previous;
973 int count = 0;
974
975 do {
976 previous = context->previous;
977 if (previous || (count && count < 10)) {
978 ++count;
979 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
980 " freeing multiple contexts (%d)\n",
981 context->serial, context->major,
982 context->name_count, count);
983 }
984 audit_free_names(context);
74c3cbe3
AV
985 unroll_tree_refs(context, NULL, 0);
986 free_tree_refs(context);
1da177e4 987 audit_free_aux(context);
5adc8a6a 988 kfree(context->filterkey);
4f6b434f 989 kfree(context->sockaddr);
1da177e4
LT
990 kfree(context);
991 context = previous;
992 } while (context);
993 if (count >= 10)
994 printk(KERN_ERR "audit: freed %d contexts\n", count);
995}
996
161a09e7 997void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
998{
999 char *ctx = NULL;
c4823bce
AV
1000 unsigned len;
1001 int error;
1002 u32 sid;
1003
2a862b32 1004 security_task_getsecid(current, &sid);
c4823bce
AV
1005 if (!sid)
1006 return;
8c8570fb 1007
2a862b32 1008 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1009 if (error) {
1010 if (error != -EINVAL)
8c8570fb
DK
1011 goto error_path;
1012 return;
1013 }
1014
8c8570fb 1015 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1016 security_release_secctx(ctx, len);
7306a0b9 1017 return;
8c8570fb
DK
1018
1019error_path:
7306a0b9 1020 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1021 return;
1022}
1023
161a09e7
JL
1024EXPORT_SYMBOL(audit_log_task_context);
1025
e495149b 1026static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1027{
45d9bb0e
AV
1028 char name[sizeof(tsk->comm)];
1029 struct mm_struct *mm = tsk->mm;
219f0817
SS
1030 struct vm_area_struct *vma;
1031
e495149b
AV
1032 /* tsk == current */
1033
45d9bb0e 1034 get_task_comm(name, tsk);
99e45eea
DW
1035 audit_log_format(ab, " comm=");
1036 audit_log_untrustedstring(ab, name);
219f0817 1037
e495149b
AV
1038 if (mm) {
1039 down_read(&mm->mmap_sem);
1040 vma = mm->mmap;
1041 while (vma) {
1042 if ((vma->vm_flags & VM_EXECUTABLE) &&
1043 vma->vm_file) {
1044 audit_log_d_path(ab, "exe=",
44707fdf 1045 &vma->vm_file->f_path);
e495149b
AV
1046 break;
1047 }
1048 vma = vma->vm_next;
219f0817 1049 }
e495149b 1050 up_read(&mm->mmap_sem);
219f0817 1051 }
e495149b 1052 audit_log_task_context(ab);
219f0817
SS
1053}
1054
e54dc243 1055static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1056 uid_t auid, uid_t uid, unsigned int sessionid,
1057 u32 sid, char *comm)
e54dc243
AG
1058{
1059 struct audit_buffer *ab;
2a862b32 1060 char *ctx = NULL;
e54dc243
AG
1061 u32 len;
1062 int rc = 0;
1063
1064 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1065 if (!ab)
6246ccab 1066 return rc;
e54dc243 1067
4746ec5b
EP
1068 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1069 uid, sessionid);
2a862b32 1070 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1071 audit_log_format(ab, " obj=(none)");
e54dc243 1072 rc = 1;
2a862b32
AD
1073 } else {
1074 audit_log_format(ab, " obj=%s", ctx);
1075 security_release_secctx(ctx, len);
1076 }
c2a7780e
EP
1077 audit_log_format(ab, " ocomm=");
1078 audit_log_untrustedstring(ab, comm);
e54dc243 1079 audit_log_end(ab);
e54dc243
AG
1080
1081 return rc;
1082}
1083
de6bbd1d
EP
1084/*
1085 * to_send and len_sent accounting are very loose estimates. We aren't
1086 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1087 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1088 *
1089 * why snprintf? an int is up to 12 digits long. if we just assumed when
1090 * logging that a[%d]= was going to be 16 characters long we would be wasting
1091 * space in every audit message. In one 7500 byte message we can log up to
1092 * about 1000 min size arguments. That comes down to about 50% waste of space
1093 * if we didn't do the snprintf to find out how long arg_num_len was.
1094 */
1095static int audit_log_single_execve_arg(struct audit_context *context,
1096 struct audit_buffer **ab,
1097 int arg_num,
1098 size_t *len_sent,
1099 const char __user *p,
1100 char *buf)
bdf4c48a 1101{
de6bbd1d
EP
1102 char arg_num_len_buf[12];
1103 const char __user *tmp_p = p;
b87ce6e4
EP
1104 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1105 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1106 size_t len, len_left, to_send;
1107 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1108 unsigned int i, has_cntl = 0, too_long = 0;
1109 int ret;
1110
1111 /* strnlen_user includes the null we don't want to send */
1112 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1113
de6bbd1d
EP
1114 /*
1115 * We just created this mm, if we can't find the strings
1116 * we just copied into it something is _very_ wrong. Similar
1117 * for strings that are too long, we should not have created
1118 * any.
1119 */
b0abcfc1 1120 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
b0abcfc1 1123 return -1;
de6bbd1d 1124 }
040b3a2d 1125
de6bbd1d
EP
1126 /* walk the whole argument looking for non-ascii chars */
1127 do {
1128 if (len_left > MAX_EXECVE_AUDIT_LEN)
1129 to_send = MAX_EXECVE_AUDIT_LEN;
1130 else
1131 to_send = len_left;
1132 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1133 /*
de6bbd1d
EP
1134 * There is no reason for this copy to be short. We just
1135 * copied them here, and the mm hasn't been exposed to user-
1136 * space yet.
bdf4c48a 1137 */
de6bbd1d 1138 if (ret) {
bdf4c48a
PZ
1139 WARN_ON(1);
1140 send_sig(SIGKILL, current, 0);
b0abcfc1 1141 return -1;
bdf4c48a 1142 }
de6bbd1d
EP
1143 buf[to_send] = '\0';
1144 has_cntl = audit_string_contains_control(buf, to_send);
1145 if (has_cntl) {
1146 /*
1147 * hex messages get logged as 2 bytes, so we can only
1148 * send half as much in each message
1149 */
1150 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1151 break;
1152 }
de6bbd1d
EP
1153 len_left -= to_send;
1154 tmp_p += to_send;
1155 } while (len_left > 0);
1156
1157 len_left = len;
1158
1159 if (len > max_execve_audit_len)
1160 too_long = 1;
1161
1162 /* rewalk the argument actually logging the message */
1163 for (i = 0; len_left > 0; i++) {
1164 int room_left;
1165
1166 if (len_left > max_execve_audit_len)
1167 to_send = max_execve_audit_len;
1168 else
1169 to_send = len_left;
1170
1171 /* do we have space left to send this argument in this ab? */
1172 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1173 if (has_cntl)
1174 room_left -= (to_send * 2);
1175 else
1176 room_left -= to_send;
1177 if (room_left < 0) {
1178 *len_sent = 0;
1179 audit_log_end(*ab);
1180 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1181 if (!*ab)
1182 return 0;
1183 }
bdf4c48a 1184
bdf4c48a 1185 /*
de6bbd1d
EP
1186 * first record needs to say how long the original string was
1187 * so we can be sure nothing was lost.
1188 */
1189 if ((i == 0) && (too_long))
ca96a895 1190 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1191 has_cntl ? 2*len : len);
1192
1193 /*
1194 * normally arguments are small enough to fit and we already
1195 * filled buf above when we checked for control characters
1196 * so don't bother with another copy_from_user
bdf4c48a 1197 */
de6bbd1d
EP
1198 if (len >= max_execve_audit_len)
1199 ret = copy_from_user(buf, p, to_send);
1200 else
1201 ret = 0;
040b3a2d 1202 if (ret) {
bdf4c48a
PZ
1203 WARN_ON(1);
1204 send_sig(SIGKILL, current, 0);
b0abcfc1 1205 return -1;
bdf4c48a 1206 }
de6bbd1d
EP
1207 buf[to_send] = '\0';
1208
1209 /* actually log it */
ca96a895 1210 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1211 if (too_long)
1212 audit_log_format(*ab, "[%d]", i);
1213 audit_log_format(*ab, "=");
1214 if (has_cntl)
b556f8ad 1215 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1216 else
9d960985 1217 audit_log_string(*ab, buf);
de6bbd1d
EP
1218
1219 p += to_send;
1220 len_left -= to_send;
1221 *len_sent += arg_num_len;
1222 if (has_cntl)
1223 *len_sent += to_send * 2;
1224 else
1225 *len_sent += to_send;
1226 }
1227 /* include the null we didn't log */
1228 return len + 1;
1229}
1230
1231static void audit_log_execve_info(struct audit_context *context,
1232 struct audit_buffer **ab,
1233 struct audit_aux_data_execve *axi)
1234{
1235 int i;
1236 size_t len, len_sent = 0;
1237 const char __user *p;
1238 char *buf;
bdf4c48a 1239
de6bbd1d
EP
1240 if (axi->mm != current->mm)
1241 return; /* execve failed, no additional info */
1242
1243 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1244
ca96a895 1245 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1246
1247 /*
1248 * we need some kernel buffer to hold the userspace args. Just
1249 * allocate one big one rather than allocating one of the right size
1250 * for every single argument inside audit_log_single_execve_arg()
1251 * should be <8k allocation so should be pretty safe.
1252 */
1253 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1254 if (!buf) {
1255 audit_panic("out of memory for argv string\n");
1256 return;
bdf4c48a 1257 }
de6bbd1d
EP
1258
1259 for (i = 0; i < axi->argc; i++) {
1260 len = audit_log_single_execve_arg(context, ab, i,
1261 &len_sent, p, buf);
1262 if (len <= 0)
1263 break;
1264 p += len;
1265 }
1266 kfree(buf);
bdf4c48a
PZ
1267}
1268
851f7ff5
EP
1269static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1270{
1271 int i;
1272
1273 audit_log_format(ab, " %s=", prefix);
1274 CAP_FOR_EACH_U32(i) {
1275 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1276 }
1277}
1278
1279static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1280{
1281 kernel_cap_t *perm = &name->fcap.permitted;
1282 kernel_cap_t *inh = &name->fcap.inheritable;
1283 int log = 0;
1284
1285 if (!cap_isclear(*perm)) {
1286 audit_log_cap(ab, "cap_fp", perm);
1287 log = 1;
1288 }
1289 if (!cap_isclear(*inh)) {
1290 audit_log_cap(ab, "cap_fi", inh);
1291 log = 1;
1292 }
1293
1294 if (log)
1295 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1296}
1297
a33e6751 1298static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1299{
1300 struct audit_buffer *ab;
1301 int i;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, context->type);
1304 if (!ab)
1305 return;
1306
1307 switch (context->type) {
1308 case AUDIT_SOCKETCALL: {
1309 int nargs = context->socketcall.nargs;
1310 audit_log_format(ab, "nargs=%d", nargs);
1311 for (i = 0; i < nargs; i++)
1312 audit_log_format(ab, " a%d=%lx", i,
1313 context->socketcall.args[i]);
1314 break; }
a33e6751
AV
1315 case AUDIT_IPC: {
1316 u32 osid = context->ipc.osid;
1317
2570ebbd 1318 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1319 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1320 if (osid) {
1321 char *ctx = NULL;
1322 u32 len;
1323 if (security_secid_to_secctx(osid, &ctx, &len)) {
1324 audit_log_format(ab, " osid=%u", osid);
1325 *call_panic = 1;
1326 } else {
1327 audit_log_format(ab, " obj=%s", ctx);
1328 security_release_secctx(ctx, len);
1329 }
1330 }
e816f370
AV
1331 if (context->ipc.has_perm) {
1332 audit_log_end(ab);
1333 ab = audit_log_start(context, GFP_KERNEL,
1334 AUDIT_IPC_SET_PERM);
1335 audit_log_format(ab,
2570ebbd 1336 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1337 context->ipc.qbytes,
1338 context->ipc.perm_uid,
1339 context->ipc.perm_gid,
1340 context->ipc.perm_mode);
1341 if (!ab)
1342 return;
1343 }
a33e6751 1344 break; }
564f6993
AV
1345 case AUDIT_MQ_OPEN: {
1346 audit_log_format(ab,
df0a4283 1347 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1348 "mq_msgsize=%ld mq_curmsgs=%ld",
1349 context->mq_open.oflag, context->mq_open.mode,
1350 context->mq_open.attr.mq_flags,
1351 context->mq_open.attr.mq_maxmsg,
1352 context->mq_open.attr.mq_msgsize,
1353 context->mq_open.attr.mq_curmsgs);
1354 break; }
c32c8af4
AV
1355 case AUDIT_MQ_SENDRECV: {
1356 audit_log_format(ab,
1357 "mqdes=%d msg_len=%zd msg_prio=%u "
1358 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1359 context->mq_sendrecv.mqdes,
1360 context->mq_sendrecv.msg_len,
1361 context->mq_sendrecv.msg_prio,
1362 context->mq_sendrecv.abs_timeout.tv_sec,
1363 context->mq_sendrecv.abs_timeout.tv_nsec);
1364 break; }
20114f71
AV
1365 case AUDIT_MQ_NOTIFY: {
1366 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1367 context->mq_notify.mqdes,
1368 context->mq_notify.sigev_signo);
1369 break; }
7392906e
AV
1370 case AUDIT_MQ_GETSETATTR: {
1371 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1372 audit_log_format(ab,
1373 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1374 "mq_curmsgs=%ld ",
1375 context->mq_getsetattr.mqdes,
1376 attr->mq_flags, attr->mq_maxmsg,
1377 attr->mq_msgsize, attr->mq_curmsgs);
1378 break; }
57f71a0a
AV
1379 case AUDIT_CAPSET: {
1380 audit_log_format(ab, "pid=%d", context->capset.pid);
1381 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1382 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1383 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1384 break; }
120a795d
AV
1385 case AUDIT_MMAP: {
1386 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1387 context->mmap.flags);
1388 break; }
f3298dc4
AV
1389 }
1390 audit_log_end(ab);
1391}
1392
5195d8e2
EP
1393static void audit_log_name(struct audit_context *context, struct audit_names *n,
1394 int record_num, int *call_panic)
1395{
1396 struct audit_buffer *ab;
1397 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1398 if (!ab)
1399 return; /* audit_panic has been called */
1400
1401 audit_log_format(ab, "item=%d", record_num);
1402
1403 if (n->name) {
1404 switch (n->name_len) {
1405 case AUDIT_NAME_FULL:
1406 /* log the full path */
1407 audit_log_format(ab, " name=");
1408 audit_log_untrustedstring(ab, n->name);
1409 break;
1410 case 0:
1411 /* name was specified as a relative path and the
1412 * directory component is the cwd */
1413 audit_log_d_path(ab, "name=", &context->pwd);
1414 break;
1415 default:
1416 /* log the name's directory component */
1417 audit_log_format(ab, " name=");
1418 audit_log_n_untrustedstring(ab, n->name,
1419 n->name_len);
1420 }
1421 } else
1422 audit_log_format(ab, " name=(null)");
1423
1424 if (n->ino != (unsigned long)-1) {
1425 audit_log_format(ab, " inode=%lu"
1426 " dev=%02x:%02x mode=%#ho"
1427 " ouid=%u ogid=%u rdev=%02x:%02x",
1428 n->ino,
1429 MAJOR(n->dev),
1430 MINOR(n->dev),
1431 n->mode,
1432 n->uid,
1433 n->gid,
1434 MAJOR(n->rdev),
1435 MINOR(n->rdev));
1436 }
1437 if (n->osid != 0) {
1438 char *ctx = NULL;
1439 u32 len;
1440 if (security_secid_to_secctx(
1441 n->osid, &ctx, &len)) {
1442 audit_log_format(ab, " osid=%u", n->osid);
1443 *call_panic = 2;
1444 } else {
1445 audit_log_format(ab, " obj=%s", ctx);
1446 security_release_secctx(ctx, len);
1447 }
1448 }
1449
1450 audit_log_fcaps(ab, n);
1451
1452 audit_log_end(ab);
1453}
1454
e495149b 1455static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1456{
c69e8d9c 1457 const struct cred *cred;
9c7aa6aa 1458 int i, call_panic = 0;
1da177e4 1459 struct audit_buffer *ab;
7551ced3 1460 struct audit_aux_data *aux;
a6c043a8 1461 const char *tty;
5195d8e2 1462 struct audit_names *n;
1da177e4 1463
e495149b 1464 /* tsk == current */
3f2792ff 1465 context->pid = tsk->pid;
419c58f1
AV
1466 if (!context->ppid)
1467 context->ppid = sys_getppid();
c69e8d9c
DH
1468 cred = current_cred();
1469 context->uid = cred->uid;
1470 context->gid = cred->gid;
1471 context->euid = cred->euid;
1472 context->suid = cred->suid;
b6dff3ec 1473 context->fsuid = cred->fsuid;
c69e8d9c
DH
1474 context->egid = cred->egid;
1475 context->sgid = cred->sgid;
b6dff3ec 1476 context->fsgid = cred->fsgid;
3f2792ff 1477 context->personality = tsk->personality;
e495149b
AV
1478
1479 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1480 if (!ab)
1481 return; /* audit_panic has been called */
bccf6ae0
DW
1482 audit_log_format(ab, "arch=%x syscall=%d",
1483 context->arch, context->major);
1da177e4
LT
1484 if (context->personality != PER_LINUX)
1485 audit_log_format(ab, " per=%lx", context->personality);
1486 if (context->return_valid)
9f8dbe9c 1487 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1488 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1489 context->return_code);
eb84a20e 1490
dbda4c0b 1491 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1492 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1493 tty = tsk->signal->tty->name;
a6c043a8
SG
1494 else
1495 tty = "(none)";
dbda4c0b
AC
1496 spin_unlock_irq(&tsk->sighand->siglock);
1497
1da177e4
LT
1498 audit_log_format(ab,
1499 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1500 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1501 " euid=%u suid=%u fsuid=%u"
4746ec5b 1502 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1503 context->argv[0],
1504 context->argv[1],
1505 context->argv[2],
1506 context->argv[3],
1507 context->name_count,
f46038ff 1508 context->ppid,
1da177e4 1509 context->pid,
bfef93a5 1510 tsk->loginuid,
1da177e4
LT
1511 context->uid,
1512 context->gid,
1513 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1514 context->egid, context->sgid, context->fsgid, tty,
1515 tsk->sessionid);
eb84a20e 1516
eb84a20e 1517
e495149b 1518 audit_log_task_info(ab, tsk);
9d960985 1519 audit_log_key(ab, context->filterkey);
1da177e4 1520 audit_log_end(ab);
1da177e4 1521
7551ced3 1522 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1523
e495149b 1524 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1525 if (!ab)
1526 continue; /* audit_panic has been called */
1527
1da177e4 1528 switch (aux->type) {
20ca73bc 1529
473ae30b
AV
1530 case AUDIT_EXECVE: {
1531 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1532 audit_log_execve_info(context, &ab, axi);
473ae30b 1533 break; }
073115d6 1534
3fc689e9
EP
1535 case AUDIT_BPRM_FCAPS: {
1536 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1537 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1538 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1539 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1540 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1541 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1542 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1543 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1544 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1545 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1546 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1547 break; }
1548
1da177e4
LT
1549 }
1550 audit_log_end(ab);
1da177e4
LT
1551 }
1552
f3298dc4 1553 if (context->type)
a33e6751 1554 show_special(context, &call_panic);
f3298dc4 1555
157cf649
AV
1556 if (context->fds[0] >= 0) {
1557 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1558 if (ab) {
1559 audit_log_format(ab, "fd0=%d fd1=%d",
1560 context->fds[0], context->fds[1]);
1561 audit_log_end(ab);
1562 }
1563 }
1564
4f6b434f
AV
1565 if (context->sockaddr_len) {
1566 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1567 if (ab) {
1568 audit_log_format(ab, "saddr=");
1569 audit_log_n_hex(ab, (void *)context->sockaddr,
1570 context->sockaddr_len);
1571 audit_log_end(ab);
1572 }
1573 }
1574
e54dc243
AG
1575 for (aux = context->aux_pids; aux; aux = aux->next) {
1576 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1577
1578 for (i = 0; i < axs->pid_count; i++)
1579 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1580 axs->target_auid[i],
1581 axs->target_uid[i],
4746ec5b 1582 axs->target_sessionid[i],
c2a7780e
EP
1583 axs->target_sid[i],
1584 axs->target_comm[i]))
e54dc243 1585 call_panic = 1;
a5cb013d
AV
1586 }
1587
e54dc243
AG
1588 if (context->target_pid &&
1589 audit_log_pid_context(context, context->target_pid,
c2a7780e 1590 context->target_auid, context->target_uid,
4746ec5b 1591 context->target_sessionid,
c2a7780e 1592 context->target_sid, context->target_comm))
e54dc243
AG
1593 call_panic = 1;
1594
44707fdf 1595 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1596 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1597 if (ab) {
44707fdf 1598 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1599 audit_log_end(ab);
1600 }
1601 }
73241ccc 1602
5195d8e2
EP
1603 i = 0;
1604 list_for_each_entry(n, &context->names_list, list)
1605 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1606
1607 /* Send end of event record to help user space know we are finished */
1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609 if (ab)
1610 audit_log_end(ab);
9c7aa6aa
SG
1611 if (call_panic)
1612 audit_panic("error converting sid to string");
1da177e4
LT
1613}
1614
b0dd25a8
RD
1615/**
1616 * audit_free - free a per-task audit context
1617 * @tsk: task whose audit context block to free
1618 *
fa84cb93 1619 * Called from copy_process and do_exit
b0dd25a8 1620 */
a4ff8dba 1621void __audit_free(struct task_struct *tsk)
1da177e4
LT
1622{
1623 struct audit_context *context;
1624
1da177e4 1625 context = audit_get_context(tsk, 0, 0);
56179a6e 1626 if (!context)
1da177e4
LT
1627 return;
1628
1629 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1630 * function (e.g., exit_group), then free context block.
1631 * We use GFP_ATOMIC here because we might be doing this
f5561964 1632 * in the context of the idle thread */
e495149b 1633 /* that can happen only if we are called from do_exit() */
0590b933 1634 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1635 audit_log_exit(context, tsk);
916d7576
AV
1636 if (!list_empty(&context->killed_trees))
1637 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1638
1639 audit_free_context(context);
1640}
1641
b0dd25a8
RD
1642/**
1643 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1644 * @arch: architecture type
1645 * @major: major syscall type (function)
1646 * @a1: additional syscall register 1
1647 * @a2: additional syscall register 2
1648 * @a3: additional syscall register 3
1649 * @a4: additional syscall register 4
1650 *
1651 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1652 * audit context was created when the task was created and the state or
1653 * filters demand the audit context be built. If the state from the
1654 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1655 * then the record will be written at syscall exit time (otherwise, it
1656 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1657 * be written).
1658 */
b05d8447 1659void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1660 unsigned long a1, unsigned long a2,
1661 unsigned long a3, unsigned long a4)
1662{
5411be59 1663 struct task_struct *tsk = current;
1da177e4
LT
1664 struct audit_context *context = tsk->audit_context;
1665 enum audit_state state;
1666
56179a6e 1667 if (!context)
86a1c34a 1668 return;
1da177e4 1669
b0dd25a8
RD
1670 /*
1671 * This happens only on certain architectures that make system
1da177e4
LT
1672 * calls in kernel_thread via the entry.S interface, instead of
1673 * with direct calls. (If you are porting to a new
1674 * architecture, hitting this condition can indicate that you
1675 * got the _exit/_leave calls backward in entry.S.)
1676 *
1677 * i386 no
1678 * x86_64 no
2ef9481e 1679 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1680 *
1681 * This also happens with vm86 emulation in a non-nested manner
1682 * (entries without exits), so this case must be caught.
1683 */
1684 if (context->in_syscall) {
1685 struct audit_context *newctx;
1686
1da177e4
LT
1687#if AUDIT_DEBUG
1688 printk(KERN_ERR
1689 "audit(:%d) pid=%d in syscall=%d;"
1690 " entering syscall=%d\n",
1691 context->serial, tsk->pid, context->major, major);
1692#endif
1693 newctx = audit_alloc_context(context->state);
1694 if (newctx) {
1695 newctx->previous = context;
1696 context = newctx;
1697 tsk->audit_context = newctx;
1698 } else {
1699 /* If we can't alloc a new context, the best we
1700 * can do is to leak memory (any pending putname
1701 * will be lost). The only other alternative is
1702 * to abandon auditing. */
1703 audit_zero_context(context, context->state);
1704 }
1705 }
1706 BUG_ON(context->in_syscall || context->name_count);
1707
1708 if (!audit_enabled)
1709 return;
1710
2fd6f58b 1711 context->arch = arch;
1da177e4
LT
1712 context->major = major;
1713 context->argv[0] = a1;
1714 context->argv[1] = a2;
1715 context->argv[2] = a3;
1716 context->argv[3] = a4;
1717
1718 state = context->state;
d51374ad 1719 context->dummy = !audit_n_rules;
0590b933
AV
1720 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1721 context->prio = 0;
0f45aa18 1722 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1723 }
56179a6e 1724 if (state == AUDIT_DISABLED)
1da177e4
LT
1725 return;
1726
ce625a80 1727 context->serial = 0;
1da177e4
LT
1728 context->ctime = CURRENT_TIME;
1729 context->in_syscall = 1;
0590b933 1730 context->current_state = state;
419c58f1 1731 context->ppid = 0;
1da177e4
LT
1732}
1733
b0dd25a8
RD
1734/**
1735 * audit_syscall_exit - deallocate audit context after a system call
d7e7528b 1736 * @pt_regs: syscall registers
b0dd25a8
RD
1737 *
1738 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1739 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1740 * filtering, or because some other part of the kernel write an audit
1741 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1742 * free the names stored from getname().
1743 */
d7e7528b 1744void __audit_syscall_exit(int success, long return_code)
1da177e4 1745{
5411be59 1746 struct task_struct *tsk = current;
1da177e4
LT
1747 struct audit_context *context;
1748
d7e7528b
EP
1749 if (success)
1750 success = AUDITSC_SUCCESS;
1751 else
1752 success = AUDITSC_FAILURE;
1da177e4 1753
d7e7528b 1754 context = audit_get_context(tsk, success, return_code);
56179a6e 1755 if (!context)
97e94c45 1756 return;
1da177e4 1757
0590b933 1758 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1759 audit_log_exit(context, tsk);
1da177e4
LT
1760
1761 context->in_syscall = 0;
0590b933 1762 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1763
916d7576
AV
1764 if (!list_empty(&context->killed_trees))
1765 audit_kill_trees(&context->killed_trees);
1766
1da177e4
LT
1767 if (context->previous) {
1768 struct audit_context *new_context = context->previous;
1769 context->previous = NULL;
1770 audit_free_context(context);
1771 tsk->audit_context = new_context;
1772 } else {
1773 audit_free_names(context);
74c3cbe3 1774 unroll_tree_refs(context, NULL, 0);
1da177e4 1775 audit_free_aux(context);
e54dc243
AG
1776 context->aux = NULL;
1777 context->aux_pids = NULL;
a5cb013d 1778 context->target_pid = 0;
e54dc243 1779 context->target_sid = 0;
4f6b434f 1780 context->sockaddr_len = 0;
f3298dc4 1781 context->type = 0;
157cf649 1782 context->fds[0] = -1;
e048e02c
AV
1783 if (context->state != AUDIT_RECORD_CONTEXT) {
1784 kfree(context->filterkey);
1785 context->filterkey = NULL;
1786 }
1da177e4
LT
1787 tsk->audit_context = context;
1788 }
1da177e4
LT
1789}
1790
74c3cbe3
AV
1791static inline void handle_one(const struct inode *inode)
1792{
1793#ifdef CONFIG_AUDIT_TREE
1794 struct audit_context *context;
1795 struct audit_tree_refs *p;
1796 struct audit_chunk *chunk;
1797 int count;
e61ce867 1798 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1799 return;
1800 context = current->audit_context;
1801 p = context->trees;
1802 count = context->tree_count;
1803 rcu_read_lock();
1804 chunk = audit_tree_lookup(inode);
1805 rcu_read_unlock();
1806 if (!chunk)
1807 return;
1808 if (likely(put_tree_ref(context, chunk)))
1809 return;
1810 if (unlikely(!grow_tree_refs(context))) {
436c405c 1811 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1812 audit_set_auditable(context);
1813 audit_put_chunk(chunk);
1814 unroll_tree_refs(context, p, count);
1815 return;
1816 }
1817 put_tree_ref(context, chunk);
1818#endif
1819}
1820
1821static void handle_path(const struct dentry *dentry)
1822{
1823#ifdef CONFIG_AUDIT_TREE
1824 struct audit_context *context;
1825 struct audit_tree_refs *p;
1826 const struct dentry *d, *parent;
1827 struct audit_chunk *drop;
1828 unsigned long seq;
1829 int count;
1830
1831 context = current->audit_context;
1832 p = context->trees;
1833 count = context->tree_count;
1834retry:
1835 drop = NULL;
1836 d = dentry;
1837 rcu_read_lock();
1838 seq = read_seqbegin(&rename_lock);
1839 for(;;) {
1840 struct inode *inode = d->d_inode;
e61ce867 1841 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1842 struct audit_chunk *chunk;
1843 chunk = audit_tree_lookup(inode);
1844 if (chunk) {
1845 if (unlikely(!put_tree_ref(context, chunk))) {
1846 drop = chunk;
1847 break;
1848 }
1849 }
1850 }
1851 parent = d->d_parent;
1852 if (parent == d)
1853 break;
1854 d = parent;
1855 }
1856 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1857 rcu_read_unlock();
1858 if (!drop) {
1859 /* just a race with rename */
1860 unroll_tree_refs(context, p, count);
1861 goto retry;
1862 }
1863 audit_put_chunk(drop);
1864 if (grow_tree_refs(context)) {
1865 /* OK, got more space */
1866 unroll_tree_refs(context, p, count);
1867 goto retry;
1868 }
1869 /* too bad */
1870 printk(KERN_WARNING
436c405c 1871 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1872 unroll_tree_refs(context, p, count);
1873 audit_set_auditable(context);
1874 return;
1875 }
1876 rcu_read_unlock();
1877#endif
1878}
1879
5195d8e2
EP
1880static struct audit_names *audit_alloc_name(struct audit_context *context)
1881{
1882 struct audit_names *aname;
1883
1884 if (context->name_count < AUDIT_NAMES) {
1885 aname = &context->preallocated_names[context->name_count];
1886 memset(aname, 0, sizeof(*aname));
1887 } else {
1888 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1889 if (!aname)
1890 return NULL;
1891 aname->should_free = true;
1892 }
1893
1894 aname->ino = (unsigned long)-1;
1895 list_add_tail(&aname->list, &context->names_list);
1896
1897 context->name_count++;
1898#if AUDIT_DEBUG
1899 context->ino_count++;
1900#endif
1901 return aname;
1902}
1903
b0dd25a8
RD
1904/**
1905 * audit_getname - add a name to the list
1906 * @name: name to add
1907 *
1908 * Add a name to the list of audit names for this context.
1909 * Called from fs/namei.c:getname().
1910 */
d8945bb5 1911void __audit_getname(const char *name)
1da177e4
LT
1912{
1913 struct audit_context *context = current->audit_context;
5195d8e2 1914 struct audit_names *n;
1da177e4 1915
1da177e4
LT
1916 if (!context->in_syscall) {
1917#if AUDIT_DEBUG == 2
1918 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1919 __FILE__, __LINE__, context->serial, name);
1920 dump_stack();
1921#endif
1922 return;
1923 }
5195d8e2
EP
1924
1925 n = audit_alloc_name(context);
1926 if (!n)
1927 return;
1928
1929 n->name = name;
1930 n->name_len = AUDIT_NAME_FULL;
1931 n->name_put = true;
1932
f7ad3c6b
MS
1933 if (!context->pwd.dentry)
1934 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1935}
1936
b0dd25a8
RD
1937/* audit_putname - intercept a putname request
1938 * @name: name to intercept and delay for putname
1939 *
1940 * If we have stored the name from getname in the audit context,
1941 * then we delay the putname until syscall exit.
1942 * Called from include/linux/fs.h:putname().
1943 */
1da177e4
LT
1944void audit_putname(const char *name)
1945{
1946 struct audit_context *context = current->audit_context;
1947
1948 BUG_ON(!context);
1949 if (!context->in_syscall) {
1950#if AUDIT_DEBUG == 2
1951 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1952 __FILE__, __LINE__, context->serial, name);
1953 if (context->name_count) {
5195d8e2 1954 struct audit_names *n;
1da177e4 1955 int i;
5195d8e2
EP
1956
1957 list_for_each_entry(n, &context->names_list, list)
1da177e4 1958 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
1959 n->name, n->name ?: "(null)");
1960 }
1da177e4
LT
1961#endif
1962 __putname(name);
1963 }
1964#if AUDIT_DEBUG
1965 else {
1966 ++context->put_count;
1967 if (context->put_count > context->name_count) {
1968 printk(KERN_ERR "%s:%d(:%d): major=%d"
1969 " in_syscall=%d putname(%p) name_count=%d"
1970 " put_count=%d\n",
1971 __FILE__, __LINE__,
1972 context->serial, context->major,
1973 context->in_syscall, name, context->name_count,
1974 context->put_count);
1975 dump_stack();
1976 }
1977 }
1978#endif
1979}
1980
851f7ff5
EP
1981static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1982{
1983 struct cpu_vfs_cap_data caps;
1984 int rc;
1985
851f7ff5
EP
1986 if (!dentry)
1987 return 0;
1988
1989 rc = get_vfs_caps_from_disk(dentry, &caps);
1990 if (rc)
1991 return rc;
1992
1993 name->fcap.permitted = caps.permitted;
1994 name->fcap.inheritable = caps.inheritable;
1995 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1996 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1997
1998 return 0;
1999}
2000
2001
3e2efce0 2002/* Copy inode data into an audit_names. */
851f7ff5
EP
2003static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2004 const struct inode *inode)
8c8570fb 2005{
3e2efce0
AG
2006 name->ino = inode->i_ino;
2007 name->dev = inode->i_sb->s_dev;
2008 name->mode = inode->i_mode;
2009 name->uid = inode->i_uid;
2010 name->gid = inode->i_gid;
2011 name->rdev = inode->i_rdev;
2a862b32 2012 security_inode_getsecid(inode, &name->osid);
851f7ff5 2013 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2014}
2015
b0dd25a8
RD
2016/**
2017 * audit_inode - store the inode and device from a lookup
2018 * @name: name being audited
481968f4 2019 * @dentry: dentry being audited
b0dd25a8
RD
2020 *
2021 * Called from fs/namei.c:path_lookup().
2022 */
5a190ae6 2023void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2024{
1da177e4 2025 struct audit_context *context = current->audit_context;
74c3cbe3 2026 const struct inode *inode = dentry->d_inode;
5195d8e2 2027 struct audit_names *n;
1da177e4
LT
2028
2029 if (!context->in_syscall)
2030 return;
5195d8e2
EP
2031
2032 list_for_each_entry_reverse(n, &context->names_list, list) {
2033 if (n->name && (n->name == name))
2034 goto out;
1da177e4 2035 }
5195d8e2
EP
2036
2037 /* unable to find the name from a previous getname() */
2038 n = audit_alloc_name(context);
2039 if (!n)
2040 return;
2041out:
74c3cbe3 2042 handle_path(dentry);
5195d8e2 2043 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2044}
2045
2046/**
2047 * audit_inode_child - collect inode info for created/removed objects
481968f4 2048 * @dentry: dentry being audited
73d3ec5a 2049 * @parent: inode of dentry parent
73241ccc
AG
2050 *
2051 * For syscalls that create or remove filesystem objects, audit_inode
2052 * can only collect information for the filesystem object's parent.
2053 * This call updates the audit context with the child's information.
2054 * Syscalls that create a new filesystem object must be hooked after
2055 * the object is created. Syscalls that remove a filesystem object
2056 * must be hooked prior, in order to capture the target inode during
2057 * unsuccessful attempts.
2058 */
cccc6bba 2059void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2060 const struct inode *parent)
73241ccc 2061{
73241ccc 2062 struct audit_context *context = current->audit_context;
5712e88f 2063 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2064 const struct inode *inode = dentry->d_inode;
cccc6bba 2065 const char *dname = dentry->d_name.name;
5195d8e2 2066 struct audit_names *n;
9c937dcc 2067 int dirlen = 0;
73241ccc
AG
2068
2069 if (!context->in_syscall)
2070 return;
2071
74c3cbe3
AV
2072 if (inode)
2073 handle_one(inode);
73241ccc 2074
5712e88f 2075 /* parent is more likely, look for it first */
5195d8e2 2076 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2077 if (!n->name)
2078 continue;
2079
2080 if (n->ino == parent->i_ino &&
2081 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2082 n->name_len = dirlen; /* update parent data in place */
2083 found_parent = n->name;
2084 goto add_names;
f368c07d 2085 }
5712e88f 2086 }
73241ccc 2087
5712e88f 2088 /* no matching parent, look for matching child */
5195d8e2 2089 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2090 if (!n->name)
2091 continue;
2092
2093 /* strcmp() is the more likely scenario */
2094 if (!strcmp(dname, n->name) ||
2095 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2096 if (inode)
851f7ff5 2097 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2098 else
2099 n->ino = (unsigned long)-1;
2100 found_child = n->name;
2101 goto add_names;
2102 }
ac9910ce 2103 }
5712e88f
AG
2104
2105add_names:
2106 if (!found_parent) {
5195d8e2
EP
2107 n = audit_alloc_name(context);
2108 if (!n)
ac9910ce 2109 return;
5195d8e2 2110 audit_copy_inode(n, NULL, parent);
73d3ec5a 2111 }
5712e88f
AG
2112
2113 if (!found_child) {
5195d8e2
EP
2114 n = audit_alloc_name(context);
2115 if (!n)
5712e88f 2116 return;
5712e88f
AG
2117
2118 /* Re-use the name belonging to the slot for a matching parent
2119 * directory. All names for this context are relinquished in
2120 * audit_free_names() */
2121 if (found_parent) {
5195d8e2
EP
2122 n->name = found_parent;
2123 n->name_len = AUDIT_NAME_FULL;
5712e88f 2124 /* don't call __putname() */
5195d8e2 2125 n->name_put = false;
5712e88f
AG
2126 }
2127
2128 if (inode)
5195d8e2 2129 audit_copy_inode(n, NULL, inode);
5712e88f 2130 }
3e2efce0 2131}
50e437d5 2132EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2133
b0dd25a8
RD
2134/**
2135 * auditsc_get_stamp - get local copies of audit_context values
2136 * @ctx: audit_context for the task
2137 * @t: timespec to store time recorded in the audit_context
2138 * @serial: serial value that is recorded in the audit_context
2139 *
2140 * Also sets the context as auditable.
2141 */
48887e63 2142int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2143 struct timespec *t, unsigned int *serial)
1da177e4 2144{
48887e63
AV
2145 if (!ctx->in_syscall)
2146 return 0;
ce625a80
DW
2147 if (!ctx->serial)
2148 ctx->serial = audit_serial();
bfb4496e
DW
2149 t->tv_sec = ctx->ctime.tv_sec;
2150 t->tv_nsec = ctx->ctime.tv_nsec;
2151 *serial = ctx->serial;
0590b933
AV
2152 if (!ctx->prio) {
2153 ctx->prio = 1;
2154 ctx->current_state = AUDIT_RECORD_CONTEXT;
2155 }
48887e63 2156 return 1;
1da177e4
LT
2157}
2158
4746ec5b
EP
2159/* global counter which is incremented every time something logs in */
2160static atomic_t session_id = ATOMIC_INIT(0);
2161
b0dd25a8 2162/**
0a300be6 2163 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2164 * @loginuid: loginuid value
2165 *
2166 * Returns 0.
2167 *
2168 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2169 */
0a300be6 2170int audit_set_loginuid(uid_t loginuid)
1da177e4 2171{
0a300be6 2172 struct task_struct *task = current;
41757106 2173 struct audit_context *context = task->audit_context;
633b4545 2174 unsigned int sessionid;
41757106 2175
633b4545
EP
2176#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2177 if (task->loginuid != -1)
2178 return -EPERM;
2179#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2180 if (!capable(CAP_AUDIT_CONTROL))
2181 return -EPERM;
2182#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2183
2184 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2185 if (context && context->in_syscall) {
2186 struct audit_buffer *ab;
2187
2188 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2189 if (ab) {
2190 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2191 "old auid=%u new auid=%u"
2192 " old ses=%u new ses=%u",
c69e8d9c 2193 task->pid, task_uid(task),
4746ec5b
EP
2194 task->loginuid, loginuid,
2195 task->sessionid, sessionid);
bfef93a5 2196 audit_log_end(ab);
c0404993 2197 }
1da177e4 2198 }
4746ec5b 2199 task->sessionid = sessionid;
bfef93a5 2200 task->loginuid = loginuid;
1da177e4
LT
2201 return 0;
2202}
2203
20ca73bc
GW
2204/**
2205 * __audit_mq_open - record audit data for a POSIX MQ open
2206 * @oflag: open flag
2207 * @mode: mode bits
6b962559 2208 * @attr: queue attributes
20ca73bc 2209 *
20ca73bc 2210 */
df0a4283 2211void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2212{
20ca73bc
GW
2213 struct audit_context *context = current->audit_context;
2214
564f6993
AV
2215 if (attr)
2216 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2217 else
2218 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2219
564f6993
AV
2220 context->mq_open.oflag = oflag;
2221 context->mq_open.mode = mode;
20ca73bc 2222
564f6993 2223 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2224}
2225
2226/**
c32c8af4 2227 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2228 * @mqdes: MQ descriptor
2229 * @msg_len: Message length
2230 * @msg_prio: Message priority
c32c8af4 2231 * @abs_timeout: Message timeout in absolute time
20ca73bc 2232 *
20ca73bc 2233 */
c32c8af4
AV
2234void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2235 const struct timespec *abs_timeout)
20ca73bc 2236{
20ca73bc 2237 struct audit_context *context = current->audit_context;
c32c8af4 2238 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2239
c32c8af4
AV
2240 if (abs_timeout)
2241 memcpy(p, abs_timeout, sizeof(struct timespec));
2242 else
2243 memset(p, 0, sizeof(struct timespec));
20ca73bc 2244
c32c8af4
AV
2245 context->mq_sendrecv.mqdes = mqdes;
2246 context->mq_sendrecv.msg_len = msg_len;
2247 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2248
c32c8af4 2249 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2250}
2251
2252/**
2253 * __audit_mq_notify - record audit data for a POSIX MQ notify
2254 * @mqdes: MQ descriptor
6b962559 2255 * @notification: Notification event
20ca73bc 2256 *
20ca73bc
GW
2257 */
2258
20114f71 2259void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2260{
20ca73bc
GW
2261 struct audit_context *context = current->audit_context;
2262
20114f71
AV
2263 if (notification)
2264 context->mq_notify.sigev_signo = notification->sigev_signo;
2265 else
2266 context->mq_notify.sigev_signo = 0;
20ca73bc 2267
20114f71
AV
2268 context->mq_notify.mqdes = mqdes;
2269 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2270}
2271
2272/**
2273 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2274 * @mqdes: MQ descriptor
2275 * @mqstat: MQ flags
2276 *
20ca73bc 2277 */
7392906e 2278void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2279{
20ca73bc 2280 struct audit_context *context = current->audit_context;
7392906e
AV
2281 context->mq_getsetattr.mqdes = mqdes;
2282 context->mq_getsetattr.mqstat = *mqstat;
2283 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2284}
2285
b0dd25a8 2286/**
073115d6
SG
2287 * audit_ipc_obj - record audit data for ipc object
2288 * @ipcp: ipc permissions
2289 *
073115d6 2290 */
a33e6751 2291void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2292{
073115d6 2293 struct audit_context *context = current->audit_context;
a33e6751
AV
2294 context->ipc.uid = ipcp->uid;
2295 context->ipc.gid = ipcp->gid;
2296 context->ipc.mode = ipcp->mode;
e816f370 2297 context->ipc.has_perm = 0;
a33e6751
AV
2298 security_ipc_getsecid(ipcp, &context->ipc.osid);
2299 context->type = AUDIT_IPC;
073115d6
SG
2300}
2301
2302/**
2303 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2304 * @qbytes: msgq bytes
2305 * @uid: msgq user id
2306 * @gid: msgq group id
2307 * @mode: msgq mode (permissions)
2308 *
e816f370 2309 * Called only after audit_ipc_obj().
b0dd25a8 2310 */
2570ebbd 2311void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2312{
1da177e4
LT
2313 struct audit_context *context = current->audit_context;
2314
e816f370
AV
2315 context->ipc.qbytes = qbytes;
2316 context->ipc.perm_uid = uid;
2317 context->ipc.perm_gid = gid;
2318 context->ipc.perm_mode = mode;
2319 context->ipc.has_perm = 1;
1da177e4 2320}
c2f0c7c3 2321
07c49417 2322int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2323{
2324 struct audit_aux_data_execve *ax;
2325 struct audit_context *context = current->audit_context;
473ae30b 2326
bdf4c48a 2327 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2328 if (!ax)
2329 return -ENOMEM;
2330
2331 ax->argc = bprm->argc;
2332 ax->envc = bprm->envc;
bdf4c48a 2333 ax->mm = bprm->mm;
473ae30b
AV
2334 ax->d.type = AUDIT_EXECVE;
2335 ax->d.next = context->aux;
2336 context->aux = (void *)ax;
2337 return 0;
2338}
2339
2340
b0dd25a8
RD
2341/**
2342 * audit_socketcall - record audit data for sys_socketcall
2343 * @nargs: number of args
2344 * @args: args array
2345 *
b0dd25a8 2346 */
07c49417 2347void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2348{
3ec3b2fb
DW
2349 struct audit_context *context = current->audit_context;
2350
f3298dc4
AV
2351 context->type = AUDIT_SOCKETCALL;
2352 context->socketcall.nargs = nargs;
2353 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2354}
2355
db349509
AV
2356/**
2357 * __audit_fd_pair - record audit data for pipe and socketpair
2358 * @fd1: the first file descriptor
2359 * @fd2: the second file descriptor
2360 *
db349509 2361 */
157cf649 2362void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2363{
2364 struct audit_context *context = current->audit_context;
157cf649
AV
2365 context->fds[0] = fd1;
2366 context->fds[1] = fd2;
db349509
AV
2367}
2368
b0dd25a8
RD
2369/**
2370 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2371 * @len: data length in user space
2372 * @a: data address in kernel space
2373 *
2374 * Returns 0 for success or NULL context or < 0 on error.
2375 */
07c49417 2376int __audit_sockaddr(int len, void *a)
3ec3b2fb 2377{
3ec3b2fb
DW
2378 struct audit_context *context = current->audit_context;
2379
4f6b434f
AV
2380 if (!context->sockaddr) {
2381 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2382 if (!p)
2383 return -ENOMEM;
2384 context->sockaddr = p;
2385 }
3ec3b2fb 2386
4f6b434f
AV
2387 context->sockaddr_len = len;
2388 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2389 return 0;
2390}
2391
a5cb013d
AV
2392void __audit_ptrace(struct task_struct *t)
2393{
2394 struct audit_context *context = current->audit_context;
2395
2396 context->target_pid = t->pid;
c2a7780e 2397 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2398 context->target_uid = task_uid(t);
4746ec5b 2399 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2400 security_task_getsecid(t, &context->target_sid);
c2a7780e 2401 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2402}
2403
b0dd25a8
RD
2404/**
2405 * audit_signal_info - record signal info for shutting down audit subsystem
2406 * @sig: signal value
2407 * @t: task being signaled
2408 *
2409 * If the audit subsystem is being terminated, record the task (pid)
2410 * and uid that is doing that.
2411 */
e54dc243 2412int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2413{
e54dc243
AG
2414 struct audit_aux_data_pids *axp;
2415 struct task_struct *tsk = current;
2416 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2417 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2418
175fc484 2419 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2420 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2421 audit_sig_pid = tsk->pid;
bfef93a5
AV
2422 if (tsk->loginuid != -1)
2423 audit_sig_uid = tsk->loginuid;
175fc484 2424 else
c69e8d9c 2425 audit_sig_uid = uid;
2a862b32 2426 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2427 }
2428 if (!audit_signals || audit_dummy_context())
2429 return 0;
c2f0c7c3 2430 }
e54dc243 2431
e54dc243
AG
2432 /* optimize the common case by putting first signal recipient directly
2433 * in audit_context */
2434 if (!ctx->target_pid) {
2435 ctx->target_pid = t->tgid;
c2a7780e 2436 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2437 ctx->target_uid = t_uid;
4746ec5b 2438 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2439 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2440 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2441 return 0;
2442 }
2443
2444 axp = (void *)ctx->aux_pids;
2445 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2446 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2447 if (!axp)
2448 return -ENOMEM;
2449
2450 axp->d.type = AUDIT_OBJ_PID;
2451 axp->d.next = ctx->aux_pids;
2452 ctx->aux_pids = (void *)axp;
2453 }
88ae704c 2454 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2455
2456 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2457 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2458 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2459 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2460 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2461 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2462 axp->pid_count++;
2463
2464 return 0;
c2f0c7c3 2465}
0a4ff8c2 2466
3fc689e9
EP
2467/**
2468 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2469 * @bprm: pointer to the bprm being processed
2470 * @new: the proposed new credentials
2471 * @old: the old credentials
3fc689e9
EP
2472 *
2473 * Simply check if the proc already has the caps given by the file and if not
2474 * store the priv escalation info for later auditing at the end of the syscall
2475 *
3fc689e9
EP
2476 * -Eric
2477 */
d84f4f99
DH
2478int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2479 const struct cred *new, const struct cred *old)
3fc689e9
EP
2480{
2481 struct audit_aux_data_bprm_fcaps *ax;
2482 struct audit_context *context = current->audit_context;
2483 struct cpu_vfs_cap_data vcaps;
2484 struct dentry *dentry;
2485
2486 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2487 if (!ax)
d84f4f99 2488 return -ENOMEM;
3fc689e9
EP
2489
2490 ax->d.type = AUDIT_BPRM_FCAPS;
2491 ax->d.next = context->aux;
2492 context->aux = (void *)ax;
2493
2494 dentry = dget(bprm->file->f_dentry);
2495 get_vfs_caps_from_disk(dentry, &vcaps);
2496 dput(dentry);
2497
2498 ax->fcap.permitted = vcaps.permitted;
2499 ax->fcap.inheritable = vcaps.inheritable;
2500 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2501 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2502
d84f4f99
DH
2503 ax->old_pcap.permitted = old->cap_permitted;
2504 ax->old_pcap.inheritable = old->cap_inheritable;
2505 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2506
d84f4f99
DH
2507 ax->new_pcap.permitted = new->cap_permitted;
2508 ax->new_pcap.inheritable = new->cap_inheritable;
2509 ax->new_pcap.effective = new->cap_effective;
2510 return 0;
3fc689e9
EP
2511}
2512
e68b75a0
EP
2513/**
2514 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2515 * @pid: target pid of the capset call
2516 * @new: the new credentials
2517 * @old: the old (current) credentials
e68b75a0
EP
2518 *
2519 * Record the aguments userspace sent to sys_capset for later printing by the
2520 * audit system if applicable
2521 */
57f71a0a 2522void __audit_log_capset(pid_t pid,
d84f4f99 2523 const struct cred *new, const struct cred *old)
e68b75a0 2524{
e68b75a0 2525 struct audit_context *context = current->audit_context;
57f71a0a
AV
2526 context->capset.pid = pid;
2527 context->capset.cap.effective = new->cap_effective;
2528 context->capset.cap.inheritable = new->cap_effective;
2529 context->capset.cap.permitted = new->cap_permitted;
2530 context->type = AUDIT_CAPSET;
e68b75a0
EP
2531}
2532
120a795d
AV
2533void __audit_mmap_fd(int fd, int flags)
2534{
2535 struct audit_context *context = current->audit_context;
2536 context->mmap.fd = fd;
2537 context->mmap.flags = flags;
2538 context->type = AUDIT_MMAP;
2539}
2540
85e7bac3
EP
2541static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2542{
2543 uid_t auid, uid;
2544 gid_t gid;
2545 unsigned int sessionid;
2546
2547 auid = audit_get_loginuid(current);
2548 sessionid = audit_get_sessionid(current);
2549 current_uid_gid(&uid, &gid);
2550
2551 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2552 auid, uid, gid, sessionid);
2553 audit_log_task_context(ab);
2554 audit_log_format(ab, " pid=%d comm=", current->pid);
2555 audit_log_untrustedstring(ab, current->comm);
2556 audit_log_format(ab, " reason=");
2557 audit_log_string(ab, reason);
2558 audit_log_format(ab, " sig=%ld", signr);
2559}
0a4ff8c2
SG
2560/**
2561 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2562 * @signr: signal value
0a4ff8c2
SG
2563 *
2564 * If a process ends with a core dump, something fishy is going on and we
2565 * should record the event for investigation.
2566 */
2567void audit_core_dumps(long signr)
2568{
2569 struct audit_buffer *ab;
0a4ff8c2
SG
2570
2571 if (!audit_enabled)
2572 return;
2573
2574 if (signr == SIGQUIT) /* don't care for those */
2575 return;
2576
2577 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2578 audit_log_abend(ab, "memory violation", signr);
2579 audit_log_end(ab);
2580}
0a4ff8c2 2581
85e7bac3
EP
2582void __audit_seccomp(unsigned long syscall)
2583{
2584 struct audit_buffer *ab;
2585
2586 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2587 audit_log_abend(ab, "seccomp", SIGKILL);
2588 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2589 audit_log_end(ab);
2590}
916d7576
AV
2591
2592struct list_head *audit_killed_trees(void)
2593{
2594 struct audit_context *ctx = current->audit_context;
2595 if (likely(!ctx || !ctx->in_syscall))
2596 return NULL;
2597 return &ctx->killed_trees;
2598}