memcg: fix endless loop caused by mem_cgroup_iter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
64769240 135static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
136static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
138static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139 struct inode *inode, struct page *page, loff_t from,
140 loff_t length, int flags);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 218 ext4_ioend_shutdown(inode);
0930fcc1
AV
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 227 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 228 ext4_ioend_shutdown(inode);
ac27a0ec
DK
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
12219aea
AK
322/*
323 * Calculate the number of metadata blocks need to reserve
9d0be502 324 * to allocate a block located at @lblock
12219aea 325 */
01f49d0b 326static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 327{
12e9b892 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 329 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 330
8bb2b247 331 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
332}
333
0637c6f4
TT
334/*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
5f634d06
AK
338void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
12219aea
AK
340{
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 342 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
343
344 spin_lock(&ei->i_block_reservation_lock);
d8990240 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 346 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 348 "with only %d reserved data blocks",
0637c6f4
TT
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
12219aea 354
97795d2a 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
97795d2a
BF
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
921f266b
DM
486#ifdef ES_AGGRESSIVE_TEST
487static void ext4_map_blocks_es_recheck(handle_t *handle,
488 struct inode *inode,
489 struct ext4_map_blocks *es_map,
490 struct ext4_map_blocks *map,
491 int flags)
492{
493 int retval;
494
495 map->m_flags = 0;
496 /*
497 * There is a race window that the result is not the same.
498 * e.g. xfstests #223 when dioread_nolock enables. The reason
499 * is that we lookup a block mapping in extent status tree with
500 * out taking i_data_sem. So at the time the unwritten extent
501 * could be converted.
502 */
503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 down_read((&EXT4_I(inode)->i_data_sem));
505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 EXT4_GET_BLOCKS_KEEP_SIZE);
508 } else {
509 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 EXT4_GET_BLOCKS_KEEP_SIZE);
511 }
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 up_read((&EXT4_I(inode)->i_data_sem));
514 /*
515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 * because it shouldn't be marked in es_map->m_flags.
517 */
518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520 /*
521 * We don't check m_len because extent will be collpased in status
522 * tree. So the m_len might not equal.
523 */
524 if (es_map->m_lblk != map->m_lblk ||
525 es_map->m_flags != map->m_flags ||
526 es_map->m_pblk != map->m_pblk) {
527 printk("ES cache assertation failed for inode: %lu "
528 "es_cached ex [%d/%d/%llu/%x] != "
529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 inode->i_ino, es_map->m_lblk, es_map->m_len,
531 es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 map->m_len, map->m_pblk, map->m_flags,
533 retval, flags);
534 }
535}
536#endif /* ES_AGGRESSIVE_TEST */
537
f5ab0d1f 538/*
e35fd660 539 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 540 * and returns if the blocks are already mapped.
f5ab0d1f 541 *
f5ab0d1f
MC
542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543 * and store the allocated blocks in the result buffer head and mark it
544 * mapped.
545 *
e35fd660
TT
546 * If file type is extents based, it will call ext4_ext_map_blocks(),
547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
548 * based files
549 *
550 * On success, it returns the number of blocks being mapped or allocate.
551 * if create==0 and the blocks are pre-allocated and uninitialized block,
552 * the result buffer head is unmapped. If the create ==1, it will make sure
553 * the buffer head is mapped.
554 *
555 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 556 * that case, buffer head is unmapped
f5ab0d1f
MC
557 *
558 * It returns the error in case of allocation failure.
559 */
e35fd660
TT
560int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 struct ext4_map_blocks *map, int flags)
0e855ac8 562{
d100eef2 563 struct extent_status es;
0e855ac8 564 int retval;
921f266b
DM
565#ifdef ES_AGGRESSIVE_TEST
566 struct ext4_map_blocks orig_map;
567
568 memcpy(&orig_map, map, sizeof(*map));
569#endif
f5ab0d1f 570
e35fd660
TT
571 map->m_flags = 0;
572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 (unsigned long) map->m_lblk);
d100eef2
ZL
575
576 /* Lookup extent status tree firstly */
577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 map->m_pblk = ext4_es_pblock(&es) +
580 map->m_lblk - es.es_lblk;
581 map->m_flags |= ext4_es_is_written(&es) ?
582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 retval = es.es_len - (map->m_lblk - es.es_lblk);
584 if (retval > map->m_len)
585 retval = map->m_len;
586 map->m_len = retval;
587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 retval = 0;
589 } else {
590 BUG_ON(1);
591 }
921f266b
DM
592#ifdef ES_AGGRESSIVE_TEST
593 ext4_map_blocks_es_recheck(handle, inode, map,
594 &orig_map, flags);
595#endif
d100eef2
ZL
596 goto found;
597 }
598
4df3d265 599 /*
b920c755
TT
600 * Try to see if we can get the block without requesting a new
601 * file system block.
4df3d265 602 */
729f52c6
ZL
603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
606 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 608 } else {
a4e5d88b
DM
609 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 611 }
f7fec032
ZL
612 if (retval > 0) {
613 int ret;
614 unsigned long long status;
615
921f266b
DM
616#ifdef ES_AGGRESSIVE_TEST
617 if (retval != map->m_len) {
618 printk("ES len assertation failed for inode: %lu "
619 "retval %d != map->m_len %d "
620 "in %s (lookup)\n", inode->i_ino, retval,
621 map->m_len, __func__);
622 }
623#endif
624
f7fec032
ZL
625 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 ext4_find_delalloc_range(inode, map->m_lblk,
629 map->m_lblk + map->m_len - 1))
630 status |= EXTENT_STATUS_DELAYED;
631 ret = ext4_es_insert_extent(inode, map->m_lblk,
632 map->m_len, map->m_pblk, status);
633 if (ret < 0)
634 retval = ret;
635 }
729f52c6
ZL
636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 638
d100eef2 639found:
e35fd660 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 641 int ret = check_block_validity(inode, map);
6fd058f7
TT
642 if (ret != 0)
643 return ret;
644 }
645
f5ab0d1f 646 /* If it is only a block(s) look up */
c2177057 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
648 return retval;
649
650 /*
651 * Returns if the blocks have already allocated
652 *
653 * Note that if blocks have been preallocated
df3ab170 654 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
655 * with buffer head unmapped.
656 */
e35fd660 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
658 return retval;
659
2a8964d6 660 /*
a25a4e1a
ZL
661 * Here we clear m_flags because after allocating an new extent,
662 * it will be set again.
2a8964d6 663 */
a25a4e1a 664 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 665
4df3d265 666 /*
f5ab0d1f
MC
667 * New blocks allocate and/or writing to uninitialized extent
668 * will possibly result in updating i_data, so we take
669 * the write lock of i_data_sem, and call get_blocks()
670 * with create == 1 flag.
4df3d265
AK
671 */
672 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
673
674 /*
675 * if the caller is from delayed allocation writeout path
676 * we have already reserved fs blocks for allocation
677 * let the underlying get_block() function know to
678 * avoid double accounting
679 */
c2177057 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
682 /*
683 * We need to check for EXT4 here because migrate
684 * could have changed the inode type in between
685 */
12e9b892 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 687 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 688 } else {
e35fd660 689 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 690
e35fd660 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
692 /*
693 * We allocated new blocks which will result in
694 * i_data's format changing. Force the migrate
695 * to fail by clearing migrate flags
696 */
19f5fb7a 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 698 }
d2a17637 699
5f634d06
AK
700 /*
701 * Update reserved blocks/metadata blocks after successful
702 * block allocation which had been deferred till now. We don't
703 * support fallocate for non extent files. So we can update
704 * reserve space here.
705 */
706 if ((retval > 0) &&
1296cc85 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
708 ext4_da_update_reserve_space(inode, retval, 1);
709 }
f7fec032 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 712
f7fec032
ZL
713 if (retval > 0) {
714 int ret;
715 unsigned long long status;
716
921f266b
DM
717#ifdef ES_AGGRESSIVE_TEST
718 if (retval != map->m_len) {
719 printk("ES len assertation failed for inode: %lu "
720 "retval %d != map->m_len %d "
721 "in %s (allocation)\n", inode->i_ino, retval,
722 map->m_len, __func__);
723 }
724#endif
725
adb23551
ZL
726 /*
727 * If the extent has been zeroed out, we don't need to update
728 * extent status tree.
729 */
730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 if (ext4_es_is_written(&es))
733 goto has_zeroout;
734 }
f7fec032
ZL
735 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 ext4_find_delalloc_range(inode, map->m_lblk,
739 map->m_lblk + map->m_len - 1))
740 status |= EXTENT_STATUS_DELAYED;
741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 map->m_pblk, status);
743 if (ret < 0)
744 retval = ret;
5356f261
AK
745 }
746
adb23551 747has_zeroout:
4df3d265 748 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 750 int ret = check_block_validity(inode, map);
6fd058f7
TT
751 if (ret != 0)
752 return ret;
753 }
0e855ac8
AK
754 return retval;
755}
756
f3bd1f3f
MC
757/* Maximum number of blocks we map for direct IO at once. */
758#define DIO_MAX_BLOCKS 4096
759
2ed88685
TT
760static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
ac27a0ec 762{
3e4fdaf8 763 handle_t *handle = ext4_journal_current_handle();
2ed88685 764 struct ext4_map_blocks map;
7fb5409d 765 int ret = 0, started = 0;
f3bd1f3f 766 int dio_credits;
ac27a0ec 767
46c7f254
TM
768 if (ext4_has_inline_data(inode))
769 return -ERANGE;
770
2ed88685
TT
771 map.m_lblk = iblock;
772 map.m_len = bh->b_size >> inode->i_blkbits;
773
8b0f165f 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 775 /* Direct IO write... */
2ed88685
TT
776 if (map.m_len > DIO_MAX_BLOCKS)
777 map.m_len = DIO_MAX_BLOCKS;
778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 dio_credits);
7fb5409d 781 if (IS_ERR(handle)) {
ac27a0ec 782 ret = PTR_ERR(handle);
2ed88685 783 return ret;
ac27a0ec 784 }
7fb5409d 785 started = 1;
ac27a0ec
DK
786 }
787
2ed88685 788 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 789 if (ret > 0) {
2ed88685
TT
790 map_bh(bh, inode->i_sb, map.m_pblk);
791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 793 ret = 0;
ac27a0ec 794 }
7fb5409d
JK
795 if (started)
796 ext4_journal_stop(handle);
ac27a0ec
DK
797 return ret;
798}
799
2ed88685
TT
800int ext4_get_block(struct inode *inode, sector_t iblock,
801 struct buffer_head *bh, int create)
802{
803 return _ext4_get_block(inode, iblock, bh,
804 create ? EXT4_GET_BLOCKS_CREATE : 0);
805}
806
ac27a0ec
DK
807/*
808 * `handle' can be NULL if create is zero
809 */
617ba13b 810struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 811 ext4_lblk_t block, int create, int *errp)
ac27a0ec 812{
2ed88685
TT
813 struct ext4_map_blocks map;
814 struct buffer_head *bh;
ac27a0ec
DK
815 int fatal = 0, err;
816
817 J_ASSERT(handle != NULL || create == 0);
818
2ed88685
TT
819 map.m_lblk = block;
820 map.m_len = 1;
821 err = ext4_map_blocks(handle, inode, &map,
822 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 823
90b0a973
CM
824 /* ensure we send some value back into *errp */
825 *errp = 0;
826
0f70b406
TT
827 if (create && err == 0)
828 err = -ENOSPC; /* should never happen */
2ed88685
TT
829 if (err < 0)
830 *errp = err;
831 if (err <= 0)
832 return NULL;
2ed88685
TT
833
834 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 835 if (unlikely(!bh)) {
860d21e2 836 *errp = -ENOMEM;
2ed88685 837 return NULL;
ac27a0ec 838 }
2ed88685
TT
839 if (map.m_flags & EXT4_MAP_NEW) {
840 J_ASSERT(create != 0);
841 J_ASSERT(handle != NULL);
ac27a0ec 842
2ed88685
TT
843 /*
844 * Now that we do not always journal data, we should
845 * keep in mind whether this should always journal the
846 * new buffer as metadata. For now, regular file
847 * writes use ext4_get_block instead, so it's not a
848 * problem.
849 */
850 lock_buffer(bh);
851 BUFFER_TRACE(bh, "call get_create_access");
852 fatal = ext4_journal_get_create_access(handle, bh);
853 if (!fatal && !buffer_uptodate(bh)) {
854 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 set_buffer_uptodate(bh);
ac27a0ec 856 }
2ed88685
TT
857 unlock_buffer(bh);
858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 err = ext4_handle_dirty_metadata(handle, inode, bh);
860 if (!fatal)
861 fatal = err;
862 } else {
863 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 864 }
2ed88685
TT
865 if (fatal) {
866 *errp = fatal;
867 brelse(bh);
868 bh = NULL;
869 }
870 return bh;
ac27a0ec
DK
871}
872
617ba13b 873struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 874 ext4_lblk_t block, int create, int *err)
ac27a0ec 875{
af5bc92d 876 struct buffer_head *bh;
ac27a0ec 877
617ba13b 878 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
879 if (!bh)
880 return bh;
881 if (buffer_uptodate(bh))
882 return bh;
65299a3b 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
884 wait_on_buffer(bh);
885 if (buffer_uptodate(bh))
886 return bh;
887 put_bh(bh);
888 *err = -EIO;
889 return NULL;
890}
891
f19d5870
TM
892int ext4_walk_page_buffers(handle_t *handle,
893 struct buffer_head *head,
894 unsigned from,
895 unsigned to,
896 int *partial,
897 int (*fn)(handle_t *handle,
898 struct buffer_head *bh))
ac27a0ec
DK
899{
900 struct buffer_head *bh;
901 unsigned block_start, block_end;
902 unsigned blocksize = head->b_size;
903 int err, ret = 0;
904 struct buffer_head *next;
905
af5bc92d
TT
906 for (bh = head, block_start = 0;
907 ret == 0 && (bh != head || !block_start);
de9a55b8 908 block_start = block_end, bh = next) {
ac27a0ec
DK
909 next = bh->b_this_page;
910 block_end = block_start + blocksize;
911 if (block_end <= from || block_start >= to) {
912 if (partial && !buffer_uptodate(bh))
913 *partial = 1;
914 continue;
915 }
916 err = (*fn)(handle, bh);
917 if (!ret)
918 ret = err;
919 }
920 return ret;
921}
922
923/*
924 * To preserve ordering, it is essential that the hole instantiation and
925 * the data write be encapsulated in a single transaction. We cannot
617ba13b 926 * close off a transaction and start a new one between the ext4_get_block()
dab291af 927 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
928 * prepare_write() is the right place.
929 *
36ade451
JK
930 * Also, this function can nest inside ext4_writepage(). In that case, we
931 * *know* that ext4_writepage() has generated enough buffer credits to do the
932 * whole page. So we won't block on the journal in that case, which is good,
933 * because the caller may be PF_MEMALLOC.
ac27a0ec 934 *
617ba13b 935 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
936 * quota file writes. If we were to commit the transaction while thus
937 * reentered, there can be a deadlock - we would be holding a quota
938 * lock, and the commit would never complete if another thread had a
939 * transaction open and was blocking on the quota lock - a ranking
940 * violation.
941 *
dab291af 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
943 * will _not_ run commit under these circumstances because handle->h_ref
944 * is elevated. We'll still have enough credits for the tiny quotafile
945 * write.
946 */
f19d5870
TM
947int do_journal_get_write_access(handle_t *handle,
948 struct buffer_head *bh)
ac27a0ec 949{
56d35a4c
JK
950 int dirty = buffer_dirty(bh);
951 int ret;
952
ac27a0ec
DK
953 if (!buffer_mapped(bh) || buffer_freed(bh))
954 return 0;
56d35a4c 955 /*
ebdec241 956 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
957 * the dirty bit as jbd2_journal_get_write_access() could complain
958 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 959 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
960 * the bit before releasing a page lock and thus writeback cannot
961 * ever write the buffer.
962 */
963 if (dirty)
964 clear_buffer_dirty(bh);
965 ret = ext4_journal_get_write_access(handle, bh);
966 if (!ret && dirty)
967 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 return ret;
ac27a0ec
DK
969}
970
8b0f165f
AP
971static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 struct buffer_head *bh_result, int create);
bfc1af65 973static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
ac27a0ec 976{
af5bc92d 977 struct inode *inode = mapping->host;
1938a150 978 int ret, needed_blocks;
ac27a0ec
DK
979 handle_t *handle;
980 int retries = 0;
af5bc92d 981 struct page *page;
de9a55b8 982 pgoff_t index;
af5bc92d 983 unsigned from, to;
bfc1af65 984
9bffad1e 985 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 991 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
ac27a0ec 994
f19d5870
TM
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
47564bfb
TT
999 return ret;
1000 if (ret == 1)
1001 return 0;
f19d5870
TM
1002 }
1003
47564bfb
TT
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017retry_journal:
9924a92a 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1019 if (IS_ERR(handle)) {
47564bfb
TT
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
7479d2b9 1022 }
ac27a0ec 1023
47564bfb
TT
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
cf108bca 1029 ext4_journal_stop(handle);
47564bfb 1030 goto retry_grab;
cf108bca 1031 }
47564bfb 1032 wait_on_page_writeback(page);
cf108bca 1033
744692dc 1034 if (ext4_should_dioread_nolock(inode))
6e1db88d 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1036 else
6e1db88d 1037 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1038
1039 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1040 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 from, to, NULL,
1042 do_journal_get_write_access);
ac27a0ec 1043 }
bfc1af65
NP
1044
1045 if (ret) {
af5bc92d 1046 unlock_page(page);
ae4d5372 1047 /*
6e1db88d 1048 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1049 * outside i_size. Trim these off again. Don't need
1050 * i_size_read because we hold i_mutex.
1938a150
AK
1051 *
1052 * Add inode to orphan list in case we crash before
1053 * truncate finishes
ae4d5372 1054 */
ffacfa7a 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1056 ext4_orphan_add(handle, inode);
1057
1058 ext4_journal_stop(handle);
1059 if (pos + len > inode->i_size) {
b9a4207d 1060 ext4_truncate_failed_write(inode);
de9a55b8 1061 /*
ffacfa7a 1062 * If truncate failed early the inode might
1938a150
AK
1063 * still be on the orphan list; we need to
1064 * make sure the inode is removed from the
1065 * orphan list in that case.
1066 */
1067 if (inode->i_nlink)
1068 ext4_orphan_del(NULL, inode);
1069 }
bfc1af65 1070
47564bfb
TT
1071 if (ret == -ENOSPC &&
1072 ext4_should_retry_alloc(inode->i_sb, &retries))
1073 goto retry_journal;
1074 page_cache_release(page);
1075 return ret;
1076 }
1077 *pagep = page;
ac27a0ec
DK
1078 return ret;
1079}
1080
bfc1af65
NP
1081/* For write_end() in data=journal mode */
1082static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1083{
13fca323 1084 int ret;
ac27a0ec
DK
1085 if (!buffer_mapped(bh) || buffer_freed(bh))
1086 return 0;
1087 set_buffer_uptodate(bh);
13fca323
TT
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 clear_buffer_meta(bh);
1090 clear_buffer_prio(bh);
1091 return ret;
ac27a0ec
DK
1092}
1093
eed4333f
ZL
1094/*
1095 * We need to pick up the new inode size which generic_commit_write gave us
1096 * `file' can be NULL - eg, when called from page_symlink().
1097 *
1098 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1099 * buffers are managed internally.
1100 */
1101static int ext4_write_end(struct file *file,
1102 struct address_space *mapping,
1103 loff_t pos, unsigned len, unsigned copied,
1104 struct page *page, void *fsdata)
f8514083 1105{
f8514083 1106 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1107 struct inode *inode = mapping->host;
1108 int ret = 0, ret2;
1109 int i_size_changed = 0;
1110
1111 trace_ext4_write_end(inode, pos, len, copied);
1112 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113 ret = ext4_jbd2_file_inode(handle, inode);
1114 if (ret) {
1115 unlock_page(page);
1116 page_cache_release(page);
1117 goto errout;
1118 }
1119 }
f8514083 1120
0529b225
TT
1121 if (ext4_has_inline_data(inode)) {
1122 ret = ext4_write_inline_data_end(inode, pos, len,
1123 copied, page);
1124 if (ret < 0)
1125 goto errout;
1126 copied = ret;
1127 } else
f19d5870
TM
1128 copied = block_write_end(file, mapping, pos,
1129 len, copied, page, fsdata);
f8514083
AK
1130
1131 /*
1132 * No need to use i_size_read() here, the i_size
eed4333f 1133 * cannot change under us because we hole i_mutex.
f8514083
AK
1134 *
1135 * But it's important to update i_size while still holding page lock:
1136 * page writeout could otherwise come in and zero beyond i_size.
1137 */
1138 if (pos + copied > inode->i_size) {
1139 i_size_write(inode, pos + copied);
1140 i_size_changed = 1;
1141 }
1142
eed4333f 1143 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1144 /* We need to mark inode dirty even if
1145 * new_i_size is less that inode->i_size
eed4333f 1146 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1147 */
1148 ext4_update_i_disksize(inode, (pos + copied));
1149 i_size_changed = 1;
1150 }
1151 unlock_page(page);
1152 page_cache_release(page);
1153
1154 /*
1155 * Don't mark the inode dirty under page lock. First, it unnecessarily
1156 * makes the holding time of page lock longer. Second, it forces lock
1157 * ordering of page lock and transaction start for journaling
1158 * filesystems.
1159 */
1160 if (i_size_changed)
1161 ext4_mark_inode_dirty(handle, inode);
1162
74d553aa
TT
1163 if (copied < 0)
1164 ret = copied;
ffacfa7a 1165 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1166 /* if we have allocated more blocks and copied
1167 * less. We will have blocks allocated outside
1168 * inode->i_size. So truncate them
1169 */
1170 ext4_orphan_add(handle, inode);
74d553aa 1171errout:
617ba13b 1172 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1173 if (!ret)
1174 ret = ret2;
bfc1af65 1175
f8514083 1176 if (pos + len > inode->i_size) {
b9a4207d 1177 ext4_truncate_failed_write(inode);
de9a55b8 1178 /*
ffacfa7a 1179 * If truncate failed early the inode might still be
f8514083
AK
1180 * on the orphan list; we need to make sure the inode
1181 * is removed from the orphan list in that case.
1182 */
1183 if (inode->i_nlink)
1184 ext4_orphan_del(NULL, inode);
1185 }
1186
bfc1af65 1187 return ret ? ret : copied;
ac27a0ec
DK
1188}
1189
bfc1af65 1190static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1191 struct address_space *mapping,
1192 loff_t pos, unsigned len, unsigned copied,
1193 struct page *page, void *fsdata)
ac27a0ec 1194{
617ba13b 1195 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1196 struct inode *inode = mapping->host;
ac27a0ec
DK
1197 int ret = 0, ret2;
1198 int partial = 0;
bfc1af65 1199 unsigned from, to;
cf17fea6 1200 loff_t new_i_size;
ac27a0ec 1201
9bffad1e 1202 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1203 from = pos & (PAGE_CACHE_SIZE - 1);
1204 to = from + len;
1205
441c8508
CW
1206 BUG_ON(!ext4_handle_valid(handle));
1207
3fdcfb66
TM
1208 if (ext4_has_inline_data(inode))
1209 copied = ext4_write_inline_data_end(inode, pos, len,
1210 copied, page);
1211 else {
1212 if (copied < len) {
1213 if (!PageUptodate(page))
1214 copied = 0;
1215 page_zero_new_buffers(page, from+copied, to);
1216 }
ac27a0ec 1217
3fdcfb66
TM
1218 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1219 to, &partial, write_end_fn);
1220 if (!partial)
1221 SetPageUptodate(page);
1222 }
cf17fea6
AK
1223 new_i_size = pos + copied;
1224 if (new_i_size > inode->i_size)
bfc1af65 1225 i_size_write(inode, pos+copied);
19f5fb7a 1226 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1227 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1228 if (new_i_size > EXT4_I(inode)->i_disksize) {
1229 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1230 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1231 if (!ret)
1232 ret = ret2;
1233 }
bfc1af65 1234
cf108bca 1235 unlock_page(page);
f8514083 1236 page_cache_release(page);
ffacfa7a 1237 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1238 /* if we have allocated more blocks and copied
1239 * less. We will have blocks allocated outside
1240 * inode->i_size. So truncate them
1241 */
1242 ext4_orphan_add(handle, inode);
1243
617ba13b 1244 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1245 if (!ret)
1246 ret = ret2;
f8514083 1247 if (pos + len > inode->i_size) {
b9a4207d 1248 ext4_truncate_failed_write(inode);
de9a55b8 1249 /*
ffacfa7a 1250 * If truncate failed early the inode might still be
f8514083
AK
1251 * on the orphan list; we need to make sure the inode
1252 * is removed from the orphan list in that case.
1253 */
1254 if (inode->i_nlink)
1255 ext4_orphan_del(NULL, inode);
1256 }
bfc1af65
NP
1257
1258 return ret ? ret : copied;
ac27a0ec 1259}
d2a17637 1260
386ad67c
LC
1261/*
1262 * Reserve a metadata for a single block located at lblock
1263 */
1264static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1265{
386ad67c
LC
1266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1267 struct ext4_inode_info *ei = EXT4_I(inode);
1268 unsigned int md_needed;
1269 ext4_lblk_t save_last_lblock;
1270 int save_len;
1271
1272 /*
1273 * recalculate the amount of metadata blocks to reserve
1274 * in order to allocate nrblocks
1275 * worse case is one extent per block
1276 */
386ad67c
LC
1277 spin_lock(&ei->i_block_reservation_lock);
1278 /*
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1281 */
1282 save_len = ei->i_da_metadata_calc_len;
1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 md_needed = EXT4_NUM_B2C(sbi,
1285 ext4_calc_metadata_amount(inode, lblock));
1286 trace_ext4_da_reserve_space(inode, md_needed);
1287
1288 /*
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1291 */
1292 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293 ei->i_da_metadata_calc_len = save_len;
1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1296 return -ENOSPC;
1297 }
1298 ei->i_reserved_meta_blocks += md_needed;
1299 spin_unlock(&ei->i_block_reservation_lock);
1300
1301 return 0; /* success */
1302}
1303
9d0be502 1304/*
7b415bf6 1305 * Reserve a single cluster located at lblock
9d0be502 1306 */
01f49d0b 1307static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1308{
60e58e0f 1309 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1310 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1311 unsigned int md_needed;
5dd4056d 1312 int ret;
03179fe9
TT
1313 ext4_lblk_t save_last_lblock;
1314 int save_len;
1315
1316 /*
1317 * We will charge metadata quota at writeout time; this saves
1318 * us from metadata over-estimation, though we may go over by
1319 * a small amount in the end. Here we just reserve for data.
1320 */
1321 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1322 if (ret)
1323 return ret;
d2a17637
MC
1324
1325 /*
1326 * recalculate the amount of metadata blocks to reserve
1327 * in order to allocate nrblocks
1328 * worse case is one extent per block
1329 */
0637c6f4 1330 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1331 /*
1332 * ext4_calc_metadata_amount() has side effects, which we have
1333 * to be prepared undo if we fail to claim space.
1334 */
1335 save_len = ei->i_da_metadata_calc_len;
1336 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1337 md_needed = EXT4_NUM_B2C(sbi,
1338 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1339 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1340
72b8ab9d
ES
1341 /*
1342 * We do still charge estimated metadata to the sb though;
1343 * we cannot afford to run out of free blocks.
1344 */
e7d5f315 1345 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1346 ei->i_da_metadata_calc_len = save_len;
1347 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1349 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1350 return -ENOSPC;
1351 }
9d0be502 1352 ei->i_reserved_data_blocks++;
0637c6f4
TT
1353 ei->i_reserved_meta_blocks += md_needed;
1354 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1355
d2a17637
MC
1356 return 0; /* success */
1357}
1358
12219aea 1359static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1360{
1361 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1362 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1363
cd213226
MC
1364 if (!to_free)
1365 return; /* Nothing to release, exit */
1366
d2a17637 1367 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1368
5a58ec87 1369 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1370 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1371 /*
0637c6f4
TT
1372 * if there aren't enough reserved blocks, then the
1373 * counter is messed up somewhere. Since this
1374 * function is called from invalidate page, it's
1375 * harmless to return without any action.
cd213226 1376 */
8de5c325 1377 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1378 "ino %lu, to_free %d with only %d reserved "
1084f252 1379 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1380 ei->i_reserved_data_blocks);
1381 WARN_ON(1);
1382 to_free = ei->i_reserved_data_blocks;
cd213226 1383 }
0637c6f4 1384 ei->i_reserved_data_blocks -= to_free;
cd213226 1385
0637c6f4
TT
1386 if (ei->i_reserved_data_blocks == 0) {
1387 /*
1388 * We can release all of the reserved metadata blocks
1389 * only when we have written all of the delayed
1390 * allocation blocks.
7b415bf6
AK
1391 * Note that in case of bigalloc, i_reserved_meta_blocks,
1392 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1393 */
57042651 1394 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1395 ei->i_reserved_meta_blocks);
ee5f4d9c 1396 ei->i_reserved_meta_blocks = 0;
9d0be502 1397 ei->i_da_metadata_calc_len = 0;
0637c6f4 1398 }
d2a17637 1399
72b8ab9d 1400 /* update fs dirty data blocks counter */
57042651 1401 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1402
d2a17637 1403 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1404
7b415bf6 1405 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1406}
1407
1408static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1409 unsigned long offset)
d2a17637
MC
1410{
1411 int to_release = 0;
1412 struct buffer_head *head, *bh;
1413 unsigned int curr_off = 0;
7b415bf6
AK
1414 struct inode *inode = page->mapping->host;
1415 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1416 int num_clusters;
51865fda 1417 ext4_fsblk_t lblk;
d2a17637
MC
1418
1419 head = page_buffers(page);
1420 bh = head;
1421 do {
1422 unsigned int next_off = curr_off + bh->b_size;
1423
1424 if ((offset <= curr_off) && (buffer_delay(bh))) {
1425 to_release++;
1426 clear_buffer_delay(bh);
1427 }
1428 curr_off = next_off;
1429 } while ((bh = bh->b_this_page) != head);
7b415bf6 1430
51865fda
ZL
1431 if (to_release) {
1432 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1433 ext4_es_remove_extent(inode, lblk, to_release);
1434 }
1435
7b415bf6
AK
1436 /* If we have released all the blocks belonging to a cluster, then we
1437 * need to release the reserved space for that cluster. */
1438 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1439 while (num_clusters > 0) {
7b415bf6
AK
1440 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1441 ((num_clusters - 1) << sbi->s_cluster_bits);
1442 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1443 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1444 ext4_da_release_space(inode, 1);
1445
1446 num_clusters--;
1447 }
d2a17637 1448}
ac27a0ec 1449
64769240
AT
1450/*
1451 * Delayed allocation stuff
1452 */
1453
64769240
AT
1454/*
1455 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1456 * them with writepage() call back
64769240
AT
1457 *
1458 * @mpd->inode: inode
1459 * @mpd->first_page: first page of the extent
1460 * @mpd->next_page: page after the last page of the extent
64769240
AT
1461 *
1462 * By the time mpage_da_submit_io() is called we expect all blocks
1463 * to be allocated. this may be wrong if allocation failed.
1464 *
1465 * As pages are already locked by write_cache_pages(), we can't use it
1466 */
1de3e3df
TT
1467static int mpage_da_submit_io(struct mpage_da_data *mpd,
1468 struct ext4_map_blocks *map)
64769240 1469{
791b7f08
AK
1470 struct pagevec pvec;
1471 unsigned long index, end;
1472 int ret = 0, err, nr_pages, i;
1473 struct inode *inode = mpd->inode;
1474 struct address_space *mapping = inode->i_mapping;
cb20d518 1475 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1476 unsigned int len, block_start;
1477 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1478 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1479 struct ext4_io_submit io_submit;
64769240
AT
1480
1481 BUG_ON(mpd->next_page <= mpd->first_page);
a549984b 1482 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1483 /*
1484 * We need to start from the first_page to the next_page - 1
1485 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1486 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1487 * at the currently mapped buffer_heads.
1488 */
64769240
AT
1489 index = mpd->first_page;
1490 end = mpd->next_page - 1;
1491
791b7f08 1492 pagevec_init(&pvec, 0);
64769240 1493 while (index <= end) {
791b7f08 1494 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1495 if (nr_pages == 0)
1496 break;
1497 for (i = 0; i < nr_pages; i++) {
f8bec370 1498 int skip_page = 0;
64769240
AT
1499 struct page *page = pvec.pages[i];
1500
791b7f08
AK
1501 index = page->index;
1502 if (index > end)
1503 break;
cb20d518
TT
1504
1505 if (index == size >> PAGE_CACHE_SHIFT)
1506 len = size & ~PAGE_CACHE_MASK;
1507 else
1508 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1509 if (map) {
1510 cur_logical = index << (PAGE_CACHE_SHIFT -
1511 inode->i_blkbits);
1512 pblock = map->m_pblk + (cur_logical -
1513 map->m_lblk);
1514 }
791b7f08
AK
1515 index++;
1516
1517 BUG_ON(!PageLocked(page));
1518 BUG_ON(PageWriteback(page));
1519
3ecdb3a1
TT
1520 bh = page_bufs = page_buffers(page);
1521 block_start = 0;
64769240 1522 do {
1de3e3df
TT
1523 if (map && (cur_logical >= map->m_lblk) &&
1524 (cur_logical <= (map->m_lblk +
1525 (map->m_len - 1)))) {
29fa89d0
AK
1526 if (buffer_delay(bh)) {
1527 clear_buffer_delay(bh);
1528 bh->b_blocknr = pblock;
29fa89d0 1529 }
1de3e3df
TT
1530 if (buffer_unwritten(bh) ||
1531 buffer_mapped(bh))
1532 BUG_ON(bh->b_blocknr != pblock);
1533 if (map->m_flags & EXT4_MAP_UNINIT)
1534 set_buffer_uninit(bh);
1535 clear_buffer_unwritten(bh);
1536 }
29fa89d0 1537
13a79a47
YY
1538 /*
1539 * skip page if block allocation undone and
1540 * block is dirty
1541 */
1542 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1543 skip_page = 1;
3ecdb3a1
TT
1544 bh = bh->b_this_page;
1545 block_start += bh->b_size;
64769240
AT
1546 cur_logical++;
1547 pblock++;
1de3e3df
TT
1548 } while (bh != page_bufs);
1549
f8bec370
JK
1550 if (skip_page) {
1551 unlock_page(page);
1552 continue;
1553 }
cb20d518 1554
97498956 1555 clear_page_dirty_for_io(page);
fe089c77
JK
1556 err = ext4_bio_write_page(&io_submit, page, len,
1557 mpd->wbc);
cb20d518 1558 if (!err)
a1d6cc56 1559 mpd->pages_written++;
64769240
AT
1560 /*
1561 * In error case, we have to continue because
1562 * remaining pages are still locked
64769240
AT
1563 */
1564 if (ret == 0)
1565 ret = err;
64769240
AT
1566 }
1567 pagevec_release(&pvec);
1568 }
bd2d0210 1569 ext4_io_submit(&io_submit);
64769240 1570 return ret;
64769240
AT
1571}
1572
c7f5938a 1573static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1574{
1575 int nr_pages, i;
1576 pgoff_t index, end;
1577 struct pagevec pvec;
1578 struct inode *inode = mpd->inode;
1579 struct address_space *mapping = inode->i_mapping;
51865fda 1580 ext4_lblk_t start, last;
c4a0c46e 1581
c7f5938a
CW
1582 index = mpd->first_page;
1583 end = mpd->next_page - 1;
51865fda
ZL
1584
1585 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1586 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1587 ext4_es_remove_extent(inode, start, last - start + 1);
1588
66bea92c 1589 pagevec_init(&pvec, 0);
c4a0c46e
AK
1590 while (index <= end) {
1591 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1592 if (nr_pages == 0)
1593 break;
1594 for (i = 0; i < nr_pages; i++) {
1595 struct page *page = pvec.pages[i];
9b1d0998 1596 if (page->index > end)
c4a0c46e 1597 break;
c4a0c46e
AK
1598 BUG_ON(!PageLocked(page));
1599 BUG_ON(PageWriteback(page));
1600 block_invalidatepage(page, 0);
1601 ClearPageUptodate(page);
1602 unlock_page(page);
1603 }
9b1d0998
JK
1604 index = pvec.pages[nr_pages - 1]->index + 1;
1605 pagevec_release(&pvec);
c4a0c46e
AK
1606 }
1607 return;
1608}
1609
df22291f
AK
1610static void ext4_print_free_blocks(struct inode *inode)
1611{
1612 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1613 struct super_block *sb = inode->i_sb;
f78ee70d 1614 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1615
1616 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1617 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1618 ext4_count_free_clusters(sb)));
92b97816
TT
1619 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1620 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1621 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1622 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1623 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1624 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1625 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1626 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1627 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1628 ei->i_reserved_data_blocks);
92b97816 1629 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1630 ei->i_reserved_meta_blocks);
1631 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1632 ei->i_allocated_meta_blocks);
df22291f
AK
1633 return;
1634}
1635
64769240 1636/*
5a87b7a5
TT
1637 * mpage_da_map_and_submit - go through given space, map them
1638 * if necessary, and then submit them for I/O
64769240 1639 *
8dc207c0 1640 * @mpd - bh describing space
64769240
AT
1641 *
1642 * The function skips space we know is already mapped to disk blocks.
1643 *
64769240 1644 */
5a87b7a5 1645static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1646{
2ac3b6e0 1647 int err, blks, get_blocks_flags;
1de3e3df 1648 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1649 sector_t next = mpd->b_blocknr;
1650 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1651 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1652 handle_t *handle = NULL;
64769240
AT
1653
1654 /*
5a87b7a5
TT
1655 * If the blocks are mapped already, or we couldn't accumulate
1656 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1657 */
5a87b7a5
TT
1658 if ((mpd->b_size == 0) ||
1659 ((mpd->b_state & (1 << BH_Mapped)) &&
1660 !(mpd->b_state & (1 << BH_Delay)) &&
1661 !(mpd->b_state & (1 << BH_Unwritten))))
1662 goto submit_io;
2fa3cdfb
TT
1663
1664 handle = ext4_journal_current_handle();
1665 BUG_ON(!handle);
1666
79ffab34 1667 /*
79e83036 1668 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1669 * blocks, or to convert an uninitialized extent to be
1670 * initialized (in the case where we have written into
1671 * one or more preallocated blocks).
1672 *
1673 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1674 * indicate that we are on the delayed allocation path. This
1675 * affects functions in many different parts of the allocation
1676 * call path. This flag exists primarily because we don't
79e83036 1677 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1678 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1679 * inode's allocation semaphore is taken.
1680 *
1681 * If the blocks in questions were delalloc blocks, set
1682 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1683 * variables are updated after the blocks have been allocated.
79ffab34 1684 */
2ed88685
TT
1685 map.m_lblk = next;
1686 map.m_len = max_blocks;
27dd4385
LC
1687 /*
1688 * We're in delalloc path and it is possible that we're going to
1689 * need more metadata blocks than previously reserved. However
1690 * we must not fail because we're in writeback and there is
1691 * nothing we can do about it so it might result in data loss.
1692 * So use reserved blocks to allocate metadata if possible.
1693 */
1694 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1695 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1696 if (ext4_should_dioread_nolock(mpd->inode))
1697 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1698 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1699 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1700
27dd4385 1701
2ed88685 1702 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1703 if (blks < 0) {
e3570639
ES
1704 struct super_block *sb = mpd->inode->i_sb;
1705
2fa3cdfb 1706 err = blks;
ed5bde0b 1707 /*
5a87b7a5 1708 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1709 * appears to be free blocks we will just let
1710 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1711 */
1712 if (err == -EAGAIN)
5a87b7a5 1713 goto submit_io;
df22291f 1714
5dee5437 1715 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1716 mpd->retval = err;
5a87b7a5 1717 goto submit_io;
df22291f
AK
1718 }
1719
c4a0c46e 1720 /*
ed5bde0b
TT
1721 * get block failure will cause us to loop in
1722 * writepages, because a_ops->writepage won't be able
1723 * to make progress. The page will be redirtied by
1724 * writepage and writepages will again try to write
1725 * the same.
c4a0c46e 1726 */
e3570639
ES
1727 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1728 ext4_msg(sb, KERN_CRIT,
1729 "delayed block allocation failed for inode %lu "
1730 "at logical offset %llu with max blocks %zd "
1731 "with error %d", mpd->inode->i_ino,
1732 (unsigned long long) next,
1733 mpd->b_size >> mpd->inode->i_blkbits, err);
1734 ext4_msg(sb, KERN_CRIT,
01a523eb 1735 "This should not happen!! Data will be lost");
e3570639
ES
1736 if (err == -ENOSPC)
1737 ext4_print_free_blocks(mpd->inode);
030ba6bc 1738 }
2fa3cdfb 1739 /* invalidate all the pages */
c7f5938a 1740 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1741
1742 /* Mark this page range as having been completed */
1743 mpd->io_done = 1;
5a87b7a5 1744 return;
c4a0c46e 1745 }
2fa3cdfb
TT
1746 BUG_ON(blks == 0);
1747
1de3e3df 1748 mapp = &map;
2ed88685
TT
1749 if (map.m_flags & EXT4_MAP_NEW) {
1750 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1751 int i;
64769240 1752
2ed88685
TT
1753 for (i = 0; i < map.m_len; i++)
1754 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1755 }
1756
1757 /*
03f5d8bc 1758 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1759 */
1760 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1761 if (disksize > i_size_read(mpd->inode))
1762 disksize = i_size_read(mpd->inode);
1763 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1764 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1765 err = ext4_mark_inode_dirty(handle, mpd->inode);
1766 if (err)
1767 ext4_error(mpd->inode->i_sb,
1768 "Failed to mark inode %lu dirty",
1769 mpd->inode->i_ino);
2fa3cdfb
TT
1770 }
1771
5a87b7a5 1772submit_io:
1de3e3df 1773 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1774 mpd->io_done = 1;
64769240
AT
1775}
1776
bf068ee2
AK
1777#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1778 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1779
1780/*
1781 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1782 *
1783 * @mpd->lbh - extent of blocks
1784 * @logical - logical number of the block in the file
b6a8e62f 1785 * @b_state - b_state of the buffer head added
64769240
AT
1786 *
1787 * the function is used to collect contig. blocks in same state
1788 */
b6a8e62f 1789static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1790 unsigned long b_state)
64769240 1791{
64769240 1792 sector_t next;
b6a8e62f
JK
1793 int blkbits = mpd->inode->i_blkbits;
1794 int nrblocks = mpd->b_size >> blkbits;
64769240 1795
c445e3e0
ES
1796 /*
1797 * XXX Don't go larger than mballoc is willing to allocate
1798 * This is a stopgap solution. We eventually need to fold
1799 * mpage_da_submit_io() into this function and then call
79e83036 1800 * ext4_map_blocks() multiple times in a loop
c445e3e0 1801 */
b6a8e62f 1802 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1803 goto flush_it;
1804
b6a8e62f
JK
1805 /* check if the reserved journal credits might overflow */
1806 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1807 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1808 /*
1809 * With non-extent format we are limited by the journal
1810 * credit available. Total credit needed to insert
1811 * nrblocks contiguous blocks is dependent on the
1812 * nrblocks. So limit nrblocks.
1813 */
1814 goto flush_it;
525f4ed8
MC
1815 }
1816 }
64769240
AT
1817 /*
1818 * First block in the extent
1819 */
8dc207c0
TT
1820 if (mpd->b_size == 0) {
1821 mpd->b_blocknr = logical;
b6a8e62f 1822 mpd->b_size = 1 << blkbits;
8dc207c0 1823 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1824 return;
1825 }
1826
8dc207c0 1827 next = mpd->b_blocknr + nrblocks;
64769240
AT
1828 /*
1829 * Can we merge the block to our big extent?
1830 */
8dc207c0 1831 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1832 mpd->b_size += 1 << blkbits;
64769240
AT
1833 return;
1834 }
1835
525f4ed8 1836flush_it:
64769240
AT
1837 /*
1838 * We couldn't merge the block to our extent, so we
1839 * need to flush current extent and start new one
1840 */
5a87b7a5 1841 mpage_da_map_and_submit(mpd);
a1d6cc56 1842 return;
64769240
AT
1843}
1844
c364b22c 1845static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1846{
c364b22c 1847 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1848}
1849
5356f261
AK
1850/*
1851 * This function is grabs code from the very beginning of
1852 * ext4_map_blocks, but assumes that the caller is from delayed write
1853 * time. This function looks up the requested blocks and sets the
1854 * buffer delay bit under the protection of i_data_sem.
1855 */
1856static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1857 struct ext4_map_blocks *map,
1858 struct buffer_head *bh)
1859{
d100eef2 1860 struct extent_status es;
5356f261
AK
1861 int retval;
1862 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1863#ifdef ES_AGGRESSIVE_TEST
1864 struct ext4_map_blocks orig_map;
1865
1866 memcpy(&orig_map, map, sizeof(*map));
1867#endif
5356f261
AK
1868
1869 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1870 invalid_block = ~0;
1871
1872 map->m_flags = 0;
1873 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1874 "logical block %lu\n", inode->i_ino, map->m_len,
1875 (unsigned long) map->m_lblk);
d100eef2
ZL
1876
1877 /* Lookup extent status tree firstly */
1878 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1879
1880 if (ext4_es_is_hole(&es)) {
1881 retval = 0;
1882 down_read((&EXT4_I(inode)->i_data_sem));
1883 goto add_delayed;
1884 }
1885
1886 /*
1887 * Delayed extent could be allocated by fallocate.
1888 * So we need to check it.
1889 */
1890 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1891 map_bh(bh, inode->i_sb, invalid_block);
1892 set_buffer_new(bh);
1893 set_buffer_delay(bh);
1894 return 0;
1895 }
1896
1897 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1898 retval = es.es_len - (iblock - es.es_lblk);
1899 if (retval > map->m_len)
1900 retval = map->m_len;
1901 map->m_len = retval;
1902 if (ext4_es_is_written(&es))
1903 map->m_flags |= EXT4_MAP_MAPPED;
1904 else if (ext4_es_is_unwritten(&es))
1905 map->m_flags |= EXT4_MAP_UNWRITTEN;
1906 else
1907 BUG_ON(1);
1908
921f266b
DM
1909#ifdef ES_AGGRESSIVE_TEST
1910 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1911#endif
d100eef2
ZL
1912 return retval;
1913 }
1914
5356f261
AK
1915 /*
1916 * Try to see if we can get the block without requesting a new
1917 * file system block.
1918 */
1919 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1920 if (ext4_has_inline_data(inode)) {
1921 /*
1922 * We will soon create blocks for this page, and let
1923 * us pretend as if the blocks aren't allocated yet.
1924 * In case of clusters, we have to handle the work
1925 * of mapping from cluster so that the reserved space
1926 * is calculated properly.
1927 */
1928 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1929 ext4_find_delalloc_cluster(inode, map->m_lblk))
1930 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1931 retval = 0;
1932 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1933 retval = ext4_ext_map_blocks(NULL, inode, map,
1934 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1935 else
d100eef2
ZL
1936 retval = ext4_ind_map_blocks(NULL, inode, map,
1937 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1938
d100eef2 1939add_delayed:
5356f261 1940 if (retval == 0) {
f7fec032 1941 int ret;
5356f261
AK
1942 /*
1943 * XXX: __block_prepare_write() unmaps passed block,
1944 * is it OK?
1945 */
386ad67c
LC
1946 /*
1947 * If the block was allocated from previously allocated cluster,
1948 * then we don't need to reserve it again. However we still need
1949 * to reserve metadata for every block we're going to write.
1950 */
5356f261 1951 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1952 ret = ext4_da_reserve_space(inode, iblock);
1953 if (ret) {
5356f261 1954 /* not enough space to reserve */
f7fec032 1955 retval = ret;
5356f261 1956 goto out_unlock;
f7fec032 1957 }
386ad67c
LC
1958 } else {
1959 ret = ext4_da_reserve_metadata(inode, iblock);
1960 if (ret) {
1961 /* not enough space to reserve */
1962 retval = ret;
1963 goto out_unlock;
1964 }
5356f261
AK
1965 }
1966
f7fec032
ZL
1967 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1968 ~0, EXTENT_STATUS_DELAYED);
1969 if (ret) {
1970 retval = ret;
51865fda 1971 goto out_unlock;
f7fec032 1972 }
51865fda 1973
5356f261
AK
1974 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1975 * and it should not appear on the bh->b_state.
1976 */
1977 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1978
1979 map_bh(bh, inode->i_sb, invalid_block);
1980 set_buffer_new(bh);
1981 set_buffer_delay(bh);
f7fec032
ZL
1982 } else if (retval > 0) {
1983 int ret;
1984 unsigned long long status;
1985
921f266b
DM
1986#ifdef ES_AGGRESSIVE_TEST
1987 if (retval != map->m_len) {
1988 printk("ES len assertation failed for inode: %lu "
1989 "retval %d != map->m_len %d "
1990 "in %s (lookup)\n", inode->i_ino, retval,
1991 map->m_len, __func__);
1992 }
1993#endif
1994
f7fec032
ZL
1995 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1996 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1997 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1998 map->m_pblk, status);
1999 if (ret != 0)
2000 retval = ret;
5356f261
AK
2001 }
2002
2003out_unlock:
2004 up_read((&EXT4_I(inode)->i_data_sem));
2005
2006 return retval;
2007}
2008
64769240 2009/*
b920c755
TT
2010 * This is a special get_blocks_t callback which is used by
2011 * ext4_da_write_begin(). It will either return mapped block or
2012 * reserve space for a single block.
29fa89d0
AK
2013 *
2014 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2015 * We also have b_blocknr = -1 and b_bdev initialized properly
2016 *
2017 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2018 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2019 * initialized properly.
64769240 2020 */
9c3569b5
TM
2021int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2022 struct buffer_head *bh, int create)
64769240 2023{
2ed88685 2024 struct ext4_map_blocks map;
64769240
AT
2025 int ret = 0;
2026
2027 BUG_ON(create == 0);
2ed88685
TT
2028 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2029
2030 map.m_lblk = iblock;
2031 map.m_len = 1;
64769240
AT
2032
2033 /*
2034 * first, we need to know whether the block is allocated already
2035 * preallocated blocks are unmapped but should treated
2036 * the same as allocated blocks.
2037 */
5356f261
AK
2038 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2039 if (ret <= 0)
2ed88685 2040 return ret;
64769240 2041
2ed88685
TT
2042 map_bh(bh, inode->i_sb, map.m_pblk);
2043 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2044
2045 if (buffer_unwritten(bh)) {
2046 /* A delayed write to unwritten bh should be marked
2047 * new and mapped. Mapped ensures that we don't do
2048 * get_block multiple times when we write to the same
2049 * offset and new ensures that we do proper zero out
2050 * for partial write.
2051 */
2052 set_buffer_new(bh);
c8205636 2053 set_buffer_mapped(bh);
2ed88685
TT
2054 }
2055 return 0;
64769240 2056}
61628a3f 2057
62e086be
AK
2058static int bget_one(handle_t *handle, struct buffer_head *bh)
2059{
2060 get_bh(bh);
2061 return 0;
2062}
2063
2064static int bput_one(handle_t *handle, struct buffer_head *bh)
2065{
2066 put_bh(bh);
2067 return 0;
2068}
2069
2070static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2071 unsigned int len)
2072{
2073 struct address_space *mapping = page->mapping;
2074 struct inode *inode = mapping->host;
3fdcfb66 2075 struct buffer_head *page_bufs = NULL;
62e086be 2076 handle_t *handle = NULL;
3fdcfb66
TM
2077 int ret = 0, err = 0;
2078 int inline_data = ext4_has_inline_data(inode);
2079 struct buffer_head *inode_bh = NULL;
62e086be 2080
cb20d518 2081 ClearPageChecked(page);
3fdcfb66
TM
2082
2083 if (inline_data) {
2084 BUG_ON(page->index != 0);
2085 BUG_ON(len > ext4_get_max_inline_size(inode));
2086 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2087 if (inode_bh == NULL)
2088 goto out;
2089 } else {
2090 page_bufs = page_buffers(page);
2091 if (!page_bufs) {
2092 BUG();
2093 goto out;
2094 }
2095 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2096 NULL, bget_one);
2097 }
62e086be
AK
2098 /* As soon as we unlock the page, it can go away, but we have
2099 * references to buffers so we are safe */
2100 unlock_page(page);
2101
9924a92a
TT
2102 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2103 ext4_writepage_trans_blocks(inode));
62e086be
AK
2104 if (IS_ERR(handle)) {
2105 ret = PTR_ERR(handle);
2106 goto out;
2107 }
2108
441c8508
CW
2109 BUG_ON(!ext4_handle_valid(handle));
2110
3fdcfb66
TM
2111 if (inline_data) {
2112 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2113
3fdcfb66
TM
2114 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2115
2116 } else {
2117 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2118 do_journal_get_write_access);
2119
2120 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2121 write_end_fn);
2122 }
62e086be
AK
2123 if (ret == 0)
2124 ret = err;
2d859db3 2125 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2126 err = ext4_journal_stop(handle);
2127 if (!ret)
2128 ret = err;
2129
3fdcfb66
TM
2130 if (!ext4_has_inline_data(inode))
2131 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2132 NULL, bput_one);
19f5fb7a 2133 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2134out:
3fdcfb66 2135 brelse(inode_bh);
62e086be
AK
2136 return ret;
2137}
2138
61628a3f 2139/*
43ce1d23
AK
2140 * Note that we don't need to start a transaction unless we're journaling data
2141 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2142 * need to file the inode to the transaction's list in ordered mode because if
2143 * we are writing back data added by write(), the inode is already there and if
25985edc 2144 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2145 * transaction the data will hit the disk. In case we are journaling data, we
2146 * cannot start transaction directly because transaction start ranks above page
2147 * lock so we have to do some magic.
2148 *
b920c755
TT
2149 * This function can get called via...
2150 * - ext4_da_writepages after taking page lock (have journal handle)
2151 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2152 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2153 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2154 *
2155 * We don't do any block allocation in this function. If we have page with
2156 * multiple blocks we need to write those buffer_heads that are mapped. This
2157 * is important for mmaped based write. So if we do with blocksize 1K
2158 * truncate(f, 1024);
2159 * a = mmap(f, 0, 4096);
2160 * a[0] = 'a';
2161 * truncate(f, 4096);
2162 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2163 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2164 * do_wp_page). So writepage should write the first block. If we modify
2165 * the mmap area beyond 1024 we will again get a page_fault and the
2166 * page_mkwrite callback will do the block allocation and mark the
2167 * buffer_heads mapped.
2168 *
2169 * We redirty the page if we have any buffer_heads that is either delay or
2170 * unwritten in the page.
2171 *
2172 * We can get recursively called as show below.
2173 *
2174 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2175 * ext4_writepage()
2176 *
2177 * But since we don't do any block allocation we should not deadlock.
2178 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2179 */
43ce1d23 2180static int ext4_writepage(struct page *page,
62e086be 2181 struct writeback_control *wbc)
64769240 2182{
f8bec370 2183 int ret = 0;
61628a3f 2184 loff_t size;
498e5f24 2185 unsigned int len;
744692dc 2186 struct buffer_head *page_bufs = NULL;
61628a3f 2187 struct inode *inode = page->mapping->host;
36ade451 2188 struct ext4_io_submit io_submit;
61628a3f 2189
a9c667f8 2190 trace_ext4_writepage(page);
f0e6c985
AK
2191 size = i_size_read(inode);
2192 if (page->index == size >> PAGE_CACHE_SHIFT)
2193 len = size & ~PAGE_CACHE_MASK;
2194 else
2195 len = PAGE_CACHE_SIZE;
64769240 2196
a42afc5f 2197 page_bufs = page_buffers(page);
a42afc5f 2198 /*
fe386132
JK
2199 * We cannot do block allocation or other extent handling in this
2200 * function. If there are buffers needing that, we have to redirty
2201 * the page. But we may reach here when we do a journal commit via
2202 * journal_submit_inode_data_buffers() and in that case we must write
2203 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2204 */
f19d5870
TM
2205 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2206 ext4_bh_delay_or_unwritten)) {
f8bec370 2207 redirty_page_for_writepage(wbc, page);
fe386132
JK
2208 if (current->flags & PF_MEMALLOC) {
2209 /*
2210 * For memory cleaning there's no point in writing only
2211 * some buffers. So just bail out. Warn if we came here
2212 * from direct reclaim.
2213 */
2214 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2215 == PF_MEMALLOC);
f0e6c985
AK
2216 unlock_page(page);
2217 return 0;
2218 }
a42afc5f 2219 }
64769240 2220
cb20d518 2221 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2222 /*
2223 * It's mmapped pagecache. Add buffers and journal it. There
2224 * doesn't seem much point in redirtying the page here.
2225 */
3f0ca309 2226 return __ext4_journalled_writepage(page, len);
43ce1d23 2227
a549984b 2228 memset(&io_submit, 0, sizeof(io_submit));
36ade451
JK
2229 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2230 ext4_io_submit(&io_submit);
64769240
AT
2231 return ret;
2232}
2233
61628a3f 2234/*
525f4ed8 2235 * This is called via ext4_da_writepages() to
25985edc 2236 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2237 * a single extent allocation into a single transaction,
2238 * ext4_da_writpeages() will loop calling this before
2239 * the block allocation.
61628a3f 2240 */
525f4ed8
MC
2241
2242static int ext4_da_writepages_trans_blocks(struct inode *inode)
2243{
2244 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2245
2246 /*
2247 * With non-extent format the journal credit needed to
2248 * insert nrblocks contiguous block is dependent on
2249 * number of contiguous block. So we will limit
2250 * number of contiguous block to a sane value
2251 */
12e9b892 2252 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2253 (max_blocks > EXT4_MAX_TRANS_DATA))
2254 max_blocks = EXT4_MAX_TRANS_DATA;
2255
2256 return ext4_chunk_trans_blocks(inode, max_blocks);
2257}
61628a3f 2258
8e48dcfb
TT
2259/*
2260 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2261 * address space and accumulate pages that need writing, and call
168fc022
TT
2262 * mpage_da_map_and_submit to map a single contiguous memory region
2263 * and then write them.
8e48dcfb 2264 */
9c3569b5
TM
2265static int write_cache_pages_da(handle_t *handle,
2266 struct address_space *mapping,
8e48dcfb 2267 struct writeback_control *wbc,
72f84e65
ES
2268 struct mpage_da_data *mpd,
2269 pgoff_t *done_index)
8e48dcfb 2270{
4f01b02c 2271 struct buffer_head *bh, *head;
168fc022 2272 struct inode *inode = mapping->host;
4f01b02c
TT
2273 struct pagevec pvec;
2274 unsigned int nr_pages;
2275 sector_t logical;
2276 pgoff_t index, end;
2277 long nr_to_write = wbc->nr_to_write;
2278 int i, tag, ret = 0;
8e48dcfb 2279
168fc022
TT
2280 memset(mpd, 0, sizeof(struct mpage_da_data));
2281 mpd->wbc = wbc;
2282 mpd->inode = inode;
8e48dcfb
TT
2283 pagevec_init(&pvec, 0);
2284 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2285 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2286
6e6938b6 2287 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2288 tag = PAGECACHE_TAG_TOWRITE;
2289 else
2290 tag = PAGECACHE_TAG_DIRTY;
2291
72f84e65 2292 *done_index = index;
4f01b02c 2293 while (index <= end) {
5b41d924 2294 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2295 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2296 if (nr_pages == 0)
4f01b02c 2297 return 0;
8e48dcfb
TT
2298
2299 for (i = 0; i < nr_pages; i++) {
2300 struct page *page = pvec.pages[i];
2301
2302 /*
2303 * At this point, the page may be truncated or
2304 * invalidated (changing page->mapping to NULL), or
2305 * even swizzled back from swapper_space to tmpfs file
2306 * mapping. However, page->index will not change
2307 * because we have a reference on the page.
2308 */
4f01b02c
TT
2309 if (page->index > end)
2310 goto out;
8e48dcfb 2311
72f84e65
ES
2312 *done_index = page->index + 1;
2313
78aaced3
TT
2314 /*
2315 * If we can't merge this page, and we have
2316 * accumulated an contiguous region, write it
2317 */
2318 if ((mpd->next_page != page->index) &&
2319 (mpd->next_page != mpd->first_page)) {
2320 mpage_da_map_and_submit(mpd);
2321 goto ret_extent_tail;
2322 }
2323
8e48dcfb
TT
2324 lock_page(page);
2325
2326 /*
4f01b02c
TT
2327 * If the page is no longer dirty, or its
2328 * mapping no longer corresponds to inode we
2329 * are writing (which means it has been
2330 * truncated or invalidated), or the page is
2331 * already under writeback and we are not
2332 * doing a data integrity writeback, skip the page
8e48dcfb 2333 */
4f01b02c
TT
2334 if (!PageDirty(page) ||
2335 (PageWriteback(page) &&
2336 (wbc->sync_mode == WB_SYNC_NONE)) ||
2337 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2338 unlock_page(page);
2339 continue;
2340 }
2341
7cb1a535 2342 wait_on_page_writeback(page);
8e48dcfb 2343 BUG_ON(PageWriteback(page));
8e48dcfb 2344
9c3569b5
TM
2345 /*
2346 * If we have inline data and arrive here, it means that
2347 * we will soon create the block for the 1st page, so
2348 * we'd better clear the inline data here.
2349 */
2350 if (ext4_has_inline_data(inode)) {
2351 BUG_ON(ext4_test_inode_state(inode,
2352 EXT4_STATE_MAY_INLINE_DATA));
2353 ext4_destroy_inline_data(handle, inode);
2354 }
2355
168fc022 2356 if (mpd->next_page != page->index)
8eb9e5ce 2357 mpd->first_page = page->index;
8eb9e5ce
TT
2358 mpd->next_page = page->index + 1;
2359 logical = (sector_t) page->index <<
2360 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2361
f8bec370
JK
2362 /* Add all dirty buffers to mpd */
2363 head = page_buffers(page);
2364 bh = head;
2365 do {
2366 BUG_ON(buffer_locked(bh));
8eb9e5ce 2367 /*
f8bec370
JK
2368 * We need to try to allocate unmapped blocks
2369 * in the same page. Otherwise we won't make
2370 * progress with the page in ext4_writepage
8eb9e5ce 2371 */
f8bec370
JK
2372 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2373 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2374 bh->b_state);
2375 if (mpd->io_done)
2376 goto ret_extent_tail;
2377 } else if (buffer_dirty(bh) &&
2378 buffer_mapped(bh)) {
8eb9e5ce 2379 /*
f8bec370
JK
2380 * mapped dirty buffer. We need to
2381 * update the b_state because we look
2382 * at b_state in mpage_da_map_blocks.
2383 * We don't update b_size because if we
2384 * find an unmapped buffer_head later
2385 * we need to use the b_state flag of
2386 * that buffer_head.
8eb9e5ce 2387 */
f8bec370
JK
2388 if (mpd->b_size == 0)
2389 mpd->b_state =
2390 bh->b_state & BH_FLAGS;
2391 }
2392 logical++;
2393 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2394
2395 if (nr_to_write > 0) {
2396 nr_to_write--;
2397 if (nr_to_write == 0 &&
4f01b02c 2398 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2399 /*
2400 * We stop writing back only if we are
2401 * not doing integrity sync. In case of
2402 * integrity sync we have to keep going
2403 * because someone may be concurrently
2404 * dirtying pages, and we might have
2405 * synced a lot of newly appeared dirty
2406 * pages, but have not synced all of the
2407 * old dirty pages.
2408 */
4f01b02c 2409 goto out;
8e48dcfb
TT
2410 }
2411 }
2412 pagevec_release(&pvec);
2413 cond_resched();
2414 }
4f01b02c
TT
2415 return 0;
2416ret_extent_tail:
2417 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2418out:
2419 pagevec_release(&pvec);
2420 cond_resched();
8e48dcfb
TT
2421 return ret;
2422}
2423
2424
64769240 2425static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2426 struct writeback_control *wbc)
64769240 2427{
22208ded
AK
2428 pgoff_t index;
2429 int range_whole = 0;
61628a3f 2430 handle_t *handle = NULL;
df22291f 2431 struct mpage_da_data mpd;
5e745b04 2432 struct inode *inode = mapping->host;
498e5f24 2433 int pages_written = 0;
55138e0b 2434 unsigned int max_pages;
2acf2c26 2435 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2436 int needed_blocks, ret = 0;
2437 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2438 loff_t range_start = wbc->range_start;
5e745b04 2439 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2440 pgoff_t done_index = 0;
5b41d924 2441 pgoff_t end;
1bce63d1 2442 struct blk_plug plug;
61628a3f 2443
9bffad1e 2444 trace_ext4_da_writepages(inode, wbc);
ba80b101 2445
61628a3f
MC
2446 /*
2447 * No pages to write? This is mainly a kludge to avoid starting
2448 * a transaction for special inodes like journal inode on last iput()
2449 * because that could violate lock ordering on umount
2450 */
a1d6cc56 2451 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2452 return 0;
2a21e37e
TT
2453
2454 /*
2455 * If the filesystem has aborted, it is read-only, so return
2456 * right away instead of dumping stack traces later on that
2457 * will obscure the real source of the problem. We test
4ab2f15b 2458 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2459 * the latter could be true if the filesystem is mounted
2460 * read-only, and in that case, ext4_da_writepages should
2461 * *never* be called, so if that ever happens, we would want
2462 * the stack trace.
2463 */
4ab2f15b 2464 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2465 return -EROFS;
2466
22208ded
AK
2467 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2468 range_whole = 1;
61628a3f 2469
2acf2c26
AK
2470 range_cyclic = wbc->range_cyclic;
2471 if (wbc->range_cyclic) {
22208ded 2472 index = mapping->writeback_index;
2acf2c26
AK
2473 if (index)
2474 cycled = 0;
2475 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476 wbc->range_end = LLONG_MAX;
2477 wbc->range_cyclic = 0;
5b41d924
ES
2478 end = -1;
2479 } else {
22208ded 2480 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2481 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2482 }
a1d6cc56 2483
55138e0b
TT
2484 /*
2485 * This works around two forms of stupidity. The first is in
2486 * the writeback code, which caps the maximum number of pages
2487 * written to be 1024 pages. This is wrong on multiple
2488 * levels; different architectues have a different page size,
2489 * which changes the maximum amount of data which gets
2490 * written. Secondly, 4 megabytes is way too small. XFS
2491 * forces this value to be 16 megabytes by multiplying
2492 * nr_to_write parameter by four, and then relies on its
2493 * allocator to allocate larger extents to make them
2494 * contiguous. Unfortunately this brings us to the second
2495 * stupidity, which is that ext4's mballoc code only allocates
2496 * at most 2048 blocks. So we force contiguous writes up to
2497 * the number of dirty blocks in the inode, or
2498 * sbi->max_writeback_mb_bump whichever is smaller.
2499 */
2500 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2501 if (!range_cyclic && range_whole) {
2502 if (wbc->nr_to_write == LONG_MAX)
2503 desired_nr_to_write = wbc->nr_to_write;
2504 else
2505 desired_nr_to_write = wbc->nr_to_write * 8;
2506 } else
55138e0b
TT
2507 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2508 max_pages);
2509 if (desired_nr_to_write > max_pages)
2510 desired_nr_to_write = max_pages;
2511
2512 if (wbc->nr_to_write < desired_nr_to_write) {
2513 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2514 wbc->nr_to_write = desired_nr_to_write;
2515 }
2516
2acf2c26 2517retry:
6e6938b6 2518 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2519 tag_pages_for_writeback(mapping, index, end);
2520
1bce63d1 2521 blk_start_plug(&plug);
22208ded 2522 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2523
2524 /*
2525 * we insert one extent at a time. So we need
2526 * credit needed for single extent allocation.
2527 * journalled mode is currently not supported
2528 * by delalloc
2529 */
2530 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2531 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2532
61628a3f 2533 /* start a new transaction*/
9924a92a
TT
2534 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2535 needed_blocks);
61628a3f
MC
2536 if (IS_ERR(handle)) {
2537 ret = PTR_ERR(handle);
1693918e 2538 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2539 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2540 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2541 blk_finish_plug(&plug);
61628a3f
MC
2542 goto out_writepages;
2543 }
f63e6005
TT
2544
2545 /*
8eb9e5ce 2546 * Now call write_cache_pages_da() to find the next
f63e6005 2547 * contiguous region of logical blocks that need
8eb9e5ce 2548 * blocks to be allocated by ext4 and submit them.
f63e6005 2549 */
9c3569b5
TM
2550 ret = write_cache_pages_da(handle, mapping,
2551 wbc, &mpd, &done_index);
f63e6005 2552 /*
af901ca1 2553 * If we have a contiguous extent of pages and we
f63e6005
TT
2554 * haven't done the I/O yet, map the blocks and submit
2555 * them for I/O.
2556 */
2557 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2558 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2559 ret = MPAGE_DA_EXTENT_TAIL;
2560 }
b3a3ca8c 2561 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2562 wbc->nr_to_write -= mpd.pages_written;
df22291f 2563
61628a3f 2564 ext4_journal_stop(handle);
df22291f 2565
8f64b32e 2566 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2567 /* commit the transaction which would
2568 * free blocks released in the transaction
2569 * and try again
2570 */
df22291f 2571 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2572 ret = 0;
2573 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2574 /*
8de49e67
KM
2575 * Got one extent now try with rest of the pages.
2576 * If mpd.retval is set -EIO, journal is aborted.
2577 * So we don't need to write any more.
a1d6cc56 2578 */
22208ded 2579 pages_written += mpd.pages_written;
8de49e67 2580 ret = mpd.retval;
2acf2c26 2581 io_done = 1;
22208ded 2582 } else if (wbc->nr_to_write)
61628a3f
MC
2583 /*
2584 * There is no more writeout needed
2585 * or we requested for a noblocking writeout
2586 * and we found the device congested
2587 */
61628a3f 2588 break;
a1d6cc56 2589 }
1bce63d1 2590 blk_finish_plug(&plug);
2acf2c26
AK
2591 if (!io_done && !cycled) {
2592 cycled = 1;
2593 index = 0;
2594 wbc->range_start = index << PAGE_CACHE_SHIFT;
2595 wbc->range_end = mapping->writeback_index - 1;
2596 goto retry;
2597 }
22208ded
AK
2598
2599 /* Update index */
2acf2c26 2600 wbc->range_cyclic = range_cyclic;
22208ded
AK
2601 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2602 /*
2603 * set the writeback_index so that range_cyclic
2604 * mode will write it back later
2605 */
72f84e65 2606 mapping->writeback_index = done_index;
a1d6cc56 2607
61628a3f 2608out_writepages:
2faf2e19 2609 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2610 wbc->range_start = range_start;
9bffad1e 2611 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2612 return ret;
64769240
AT
2613}
2614
79f0be8d
AK
2615static int ext4_nonda_switch(struct super_block *sb)
2616{
5c1ff336 2617 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2618 struct ext4_sb_info *sbi = EXT4_SB(sb);
2619
2620 /*
2621 * switch to non delalloc mode if we are running low
2622 * on free block. The free block accounting via percpu
179f7ebf 2623 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2624 * accumulated on each CPU without updating global counters
2625 * Delalloc need an accurate free block accounting. So switch
2626 * to non delalloc when we are near to error range.
2627 */
5c1ff336
EW
2628 free_clusters =
2629 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2630 dirty_clusters =
2631 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2632 /*
2633 * Start pushing delalloc when 1/2 of free blocks are dirty.
2634 */
5c1ff336 2635 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2636 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2637
5c1ff336
EW
2638 if (2 * free_clusters < 3 * dirty_clusters ||
2639 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2640 /*
c8afb446
ES
2641 * free block count is less than 150% of dirty blocks
2642 * or free blocks is less than watermark
79f0be8d
AK
2643 */
2644 return 1;
2645 }
2646 return 0;
2647}
2648
64769240 2649static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2650 loff_t pos, unsigned len, unsigned flags,
2651 struct page **pagep, void **fsdata)
64769240 2652{
72b8ab9d 2653 int ret, retries = 0;
64769240
AT
2654 struct page *page;
2655 pgoff_t index;
64769240
AT
2656 struct inode *inode = mapping->host;
2657 handle_t *handle;
2658
2659 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2660
2661 if (ext4_nonda_switch(inode->i_sb)) {
2662 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2663 return ext4_write_begin(file, mapping, pos,
2664 len, flags, pagep, fsdata);
2665 }
2666 *fsdata = (void *)0;
9bffad1e 2667 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2668
2669 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2670 ret = ext4_da_write_inline_data_begin(mapping, inode,
2671 pos, len, flags,
2672 pagep, fsdata);
2673 if (ret < 0)
47564bfb
TT
2674 return ret;
2675 if (ret == 1)
2676 return 0;
9c3569b5
TM
2677 }
2678
47564bfb
TT
2679 /*
2680 * grab_cache_page_write_begin() can take a long time if the
2681 * system is thrashing due to memory pressure, or if the page
2682 * is being written back. So grab it first before we start
2683 * the transaction handle. This also allows us to allocate
2684 * the page (if needed) without using GFP_NOFS.
2685 */
2686retry_grab:
2687 page = grab_cache_page_write_begin(mapping, index, flags);
2688 if (!page)
2689 return -ENOMEM;
2690 unlock_page(page);
2691
64769240
AT
2692 /*
2693 * With delayed allocation, we don't log the i_disksize update
2694 * if there is delayed block allocation. But we still need
2695 * to journalling the i_disksize update if writes to the end
2696 * of file which has an already mapped buffer.
2697 */
47564bfb 2698retry_journal:
9924a92a 2699 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2700 if (IS_ERR(handle)) {
47564bfb
TT
2701 page_cache_release(page);
2702 return PTR_ERR(handle);
64769240
AT
2703 }
2704
47564bfb
TT
2705 lock_page(page);
2706 if (page->mapping != mapping) {
2707 /* The page got truncated from under us */
2708 unlock_page(page);
2709 page_cache_release(page);
d5a0d4f7 2710 ext4_journal_stop(handle);
47564bfb 2711 goto retry_grab;
d5a0d4f7 2712 }
47564bfb
TT
2713 /* In case writeback began while the page was unlocked */
2714 wait_on_page_writeback(page);
64769240 2715
6e1db88d 2716 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2717 if (ret < 0) {
2718 unlock_page(page);
2719 ext4_journal_stop(handle);
ae4d5372
AK
2720 /*
2721 * block_write_begin may have instantiated a few blocks
2722 * outside i_size. Trim these off again. Don't need
2723 * i_size_read because we hold i_mutex.
2724 */
2725 if (pos + len > inode->i_size)
b9a4207d 2726 ext4_truncate_failed_write(inode);
47564bfb
TT
2727
2728 if (ret == -ENOSPC &&
2729 ext4_should_retry_alloc(inode->i_sb, &retries))
2730 goto retry_journal;
2731
2732 page_cache_release(page);
2733 return ret;
64769240
AT
2734 }
2735
47564bfb 2736 *pagep = page;
64769240
AT
2737 return ret;
2738}
2739
632eaeab
MC
2740/*
2741 * Check if we should update i_disksize
2742 * when write to the end of file but not require block allocation
2743 */
2744static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2745 unsigned long offset)
632eaeab
MC
2746{
2747 struct buffer_head *bh;
2748 struct inode *inode = page->mapping->host;
2749 unsigned int idx;
2750 int i;
2751
2752 bh = page_buffers(page);
2753 idx = offset >> inode->i_blkbits;
2754
af5bc92d 2755 for (i = 0; i < idx; i++)
632eaeab
MC
2756 bh = bh->b_this_page;
2757
29fa89d0 2758 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2759 return 0;
2760 return 1;
2761}
2762
64769240 2763static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2764 struct address_space *mapping,
2765 loff_t pos, unsigned len, unsigned copied,
2766 struct page *page, void *fsdata)
64769240
AT
2767{
2768 struct inode *inode = mapping->host;
2769 int ret = 0, ret2;
2770 handle_t *handle = ext4_journal_current_handle();
2771 loff_t new_i_size;
632eaeab 2772 unsigned long start, end;
79f0be8d
AK
2773 int write_mode = (int)(unsigned long)fsdata;
2774
74d553aa
TT
2775 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2776 return ext4_write_end(file, mapping, pos,
2777 len, copied, page, fsdata);
632eaeab 2778
9bffad1e 2779 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2780 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2781 end = start + copied - 1;
64769240
AT
2782
2783 /*
2784 * generic_write_end() will run mark_inode_dirty() if i_size
2785 * changes. So let's piggyback the i_disksize mark_inode_dirty
2786 * into that.
2787 */
64769240 2788 new_i_size = pos + copied;
ea51d132 2789 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2790 if (ext4_has_inline_data(inode) ||
2791 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2792 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2793 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2794 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2795 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2796 /* We need to mark inode dirty even if
2797 * new_i_size is less that inode->i_size
2798 * bu greater than i_disksize.(hint delalloc)
2799 */
2800 ext4_mark_inode_dirty(handle, inode);
64769240 2801 }
632eaeab 2802 }
9c3569b5
TM
2803
2804 if (write_mode != CONVERT_INLINE_DATA &&
2805 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2806 ext4_has_inline_data(inode))
2807 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2808 page);
2809 else
2810 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2811 page, fsdata);
9c3569b5 2812
64769240
AT
2813 copied = ret2;
2814 if (ret2 < 0)
2815 ret = ret2;
2816 ret2 = ext4_journal_stop(handle);
2817 if (!ret)
2818 ret = ret2;
2819
2820 return ret ? ret : copied;
2821}
2822
2823static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2824{
64769240
AT
2825 /*
2826 * Drop reserved blocks
2827 */
2828 BUG_ON(!PageLocked(page));
2829 if (!page_has_buffers(page))
2830 goto out;
2831
d2a17637 2832 ext4_da_page_release_reservation(page, offset);
64769240
AT
2833
2834out:
2835 ext4_invalidatepage(page, offset);
2836
2837 return;
2838}
2839
ccd2506b
TT
2840/*
2841 * Force all delayed allocation blocks to be allocated for a given inode.
2842 */
2843int ext4_alloc_da_blocks(struct inode *inode)
2844{
fb40ba0d
TT
2845 trace_ext4_alloc_da_blocks(inode);
2846
ccd2506b
TT
2847 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2848 !EXT4_I(inode)->i_reserved_meta_blocks)
2849 return 0;
2850
2851 /*
2852 * We do something simple for now. The filemap_flush() will
2853 * also start triggering a write of the data blocks, which is
2854 * not strictly speaking necessary (and for users of
2855 * laptop_mode, not even desirable). However, to do otherwise
2856 * would require replicating code paths in:
de9a55b8 2857 *
ccd2506b
TT
2858 * ext4_da_writepages() ->
2859 * write_cache_pages() ---> (via passed in callback function)
2860 * __mpage_da_writepage() -->
2861 * mpage_add_bh_to_extent()
2862 * mpage_da_map_blocks()
2863 *
2864 * The problem is that write_cache_pages(), located in
2865 * mm/page-writeback.c, marks pages clean in preparation for
2866 * doing I/O, which is not desirable if we're not planning on
2867 * doing I/O at all.
2868 *
2869 * We could call write_cache_pages(), and then redirty all of
380cf090 2870 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2871 * would be ugly in the extreme. So instead we would need to
2872 * replicate parts of the code in the above functions,
25985edc 2873 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2874 * write out the pages, but rather only collect contiguous
2875 * logical block extents, call the multi-block allocator, and
2876 * then update the buffer heads with the block allocations.
de9a55b8 2877 *
ccd2506b
TT
2878 * For now, though, we'll cheat by calling filemap_flush(),
2879 * which will map the blocks, and start the I/O, but not
2880 * actually wait for the I/O to complete.
2881 */
2882 return filemap_flush(inode->i_mapping);
2883}
64769240 2884
ac27a0ec
DK
2885/*
2886 * bmap() is special. It gets used by applications such as lilo and by
2887 * the swapper to find the on-disk block of a specific piece of data.
2888 *
2889 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2890 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2891 * filesystem and enables swap, then they may get a nasty shock when the
2892 * data getting swapped to that swapfile suddenly gets overwritten by
2893 * the original zero's written out previously to the journal and
2894 * awaiting writeback in the kernel's buffer cache.
2895 *
2896 * So, if we see any bmap calls here on a modified, data-journaled file,
2897 * take extra steps to flush any blocks which might be in the cache.
2898 */
617ba13b 2899static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2900{
2901 struct inode *inode = mapping->host;
2902 journal_t *journal;
2903 int err;
2904
46c7f254
TM
2905 /*
2906 * We can get here for an inline file via the FIBMAP ioctl
2907 */
2908 if (ext4_has_inline_data(inode))
2909 return 0;
2910
64769240
AT
2911 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2912 test_opt(inode->i_sb, DELALLOC)) {
2913 /*
2914 * With delalloc we want to sync the file
2915 * so that we can make sure we allocate
2916 * blocks for file
2917 */
2918 filemap_write_and_wait(mapping);
2919 }
2920
19f5fb7a
TT
2921 if (EXT4_JOURNAL(inode) &&
2922 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2923 /*
2924 * This is a REALLY heavyweight approach, but the use of
2925 * bmap on dirty files is expected to be extremely rare:
2926 * only if we run lilo or swapon on a freshly made file
2927 * do we expect this to happen.
2928 *
2929 * (bmap requires CAP_SYS_RAWIO so this does not
2930 * represent an unprivileged user DOS attack --- we'd be
2931 * in trouble if mortal users could trigger this path at
2932 * will.)
2933 *
617ba13b 2934 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2935 * regular files. If somebody wants to bmap a directory
2936 * or symlink and gets confused because the buffer
2937 * hasn't yet been flushed to disk, they deserve
2938 * everything they get.
2939 */
2940
19f5fb7a 2941 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2942 journal = EXT4_JOURNAL(inode);
dab291af
MC
2943 jbd2_journal_lock_updates(journal);
2944 err = jbd2_journal_flush(journal);
2945 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2946
2947 if (err)
2948 return 0;
2949 }
2950
af5bc92d 2951 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2952}
2953
617ba13b 2954static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2955{
46c7f254
TM
2956 int ret = -EAGAIN;
2957 struct inode *inode = page->mapping->host;
2958
0562e0ba 2959 trace_ext4_readpage(page);
46c7f254
TM
2960
2961 if (ext4_has_inline_data(inode))
2962 ret = ext4_readpage_inline(inode, page);
2963
2964 if (ret == -EAGAIN)
2965 return mpage_readpage(page, ext4_get_block);
2966
2967 return ret;
ac27a0ec
DK
2968}
2969
2970static int
617ba13b 2971ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2972 struct list_head *pages, unsigned nr_pages)
2973{
46c7f254
TM
2974 struct inode *inode = mapping->host;
2975
2976 /* If the file has inline data, no need to do readpages. */
2977 if (ext4_has_inline_data(inode))
2978 return 0;
2979
617ba13b 2980 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2981}
2982
617ba13b 2983static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2984{
0562e0ba
JZ
2985 trace_ext4_invalidatepage(page, offset);
2986
4520fb3c
JK
2987 /* No journalling happens on data buffers when this function is used */
2988 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2989
2990 block_invalidatepage(page, offset);
2991}
2992
53e87268
JK
2993static int __ext4_journalled_invalidatepage(struct page *page,
2994 unsigned long offset)
4520fb3c
JK
2995{
2996 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2997
2998 trace_ext4_journalled_invalidatepage(page, offset);
2999
ac27a0ec
DK
3000 /*
3001 * If it's a full truncate we just forget about the pending dirtying
3002 */
3003 if (offset == 0)
3004 ClearPageChecked(page);
3005
53e87268
JK
3006 return jbd2_journal_invalidatepage(journal, page, offset);
3007}
3008
3009/* Wrapper for aops... */
3010static void ext4_journalled_invalidatepage(struct page *page,
3011 unsigned long offset)
3012{
3013 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3014}
3015
617ba13b 3016static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3017{
617ba13b 3018 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3019
0562e0ba
JZ
3020 trace_ext4_releasepage(page);
3021
e1c36595
JK
3022 /* Page has dirty journalled data -> cannot release */
3023 if (PageChecked(page))
ac27a0ec 3024 return 0;
0390131b
FM
3025 if (journal)
3026 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3027 else
3028 return try_to_free_buffers(page);
ac27a0ec
DK
3029}
3030
2ed88685
TT
3031/*
3032 * ext4_get_block used when preparing for a DIO write or buffer write.
3033 * We allocate an uinitialized extent if blocks haven't been allocated.
3034 * The extent will be converted to initialized after the IO is complete.
3035 */
f19d5870 3036int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3037 struct buffer_head *bh_result, int create)
3038{
c7064ef1 3039 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3040 inode->i_ino, create);
2ed88685
TT
3041 return _ext4_get_block(inode, iblock, bh_result,
3042 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3043}
3044
729f52c6 3045static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3046 struct buffer_head *bh_result, int create)
729f52c6 3047{
8b0f165f
AP
3048 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3049 inode->i_ino, create);
3050 return _ext4_get_block(inode, iblock, bh_result,
3051 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3052}
3053
4c0425ff 3054static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3055 ssize_t size, void *private, int ret,
3056 bool is_async)
4c0425ff 3057{
496ad9aa 3058 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3059 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3060
a549984b
TT
3061 /* if not async direct IO or dio with 0 bytes write, just return */
3062 if (!io_end || !size)
3063 goto out;
4b70df18 3064
88635ca2 3065 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3066 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3067 iocb->private, io_end->inode->i_ino, iocb, offset,
3068 size);
8d5d02e6 3069
b5a7e970 3070 iocb->private = NULL;
a549984b
TT
3071
3072 /* if not aio dio with unwritten extents, just free io and return */
3073 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3074 ext4_free_io_end(io_end);
3075out:
3076 inode_dio_done(inode);
3077 if (is_async)
3078 aio_complete(iocb, ret, 0);
3079 return;
3080 }
3081
4c0425ff
MC
3082 io_end->offset = offset;
3083 io_end->size = size;
5b3ff237
JZ
3084 if (is_async) {
3085 io_end->iocb = iocb;
3086 io_end->result = ret;
3087 }
a549984b
TT
3088
3089 ext4_add_complete_io(io_end);
4c0425ff 3090}
c7064ef1 3091
4c0425ff
MC
3092/*
3093 * For ext4 extent files, ext4 will do direct-io write to holes,
3094 * preallocated extents, and those write extend the file, no need to
3095 * fall back to buffered IO.
3096 *
b595076a 3097 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3098 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3099 * still keep the range to write as uninitialized.
4c0425ff 3100 *
69c499d1 3101 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3102 * For async direct IO, since the IO may still pending when return, we
25985edc 3103 * set up an end_io call back function, which will do the conversion
8d5d02e6 3104 * when async direct IO completed.
4c0425ff
MC
3105 *
3106 * If the O_DIRECT write will extend the file then add this inode to the
3107 * orphan list. So recovery will truncate it back to the original size
3108 * if the machine crashes during the write.
3109 *
3110 */
3111static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3112 const struct iovec *iov, loff_t offset,
3113 unsigned long nr_segs)
3114{
3115 struct file *file = iocb->ki_filp;
3116 struct inode *inode = file->f_mapping->host;
3117 ssize_t ret;
3118 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3119 int overwrite = 0;
3120 get_block_t *get_block_func = NULL;
3121 int dio_flags = 0;
4c0425ff 3122 loff_t final_size = offset + count;
729f52c6 3123
69c499d1
TT
3124 /* Use the old path for reads and writes beyond i_size. */
3125 if (rw != WRITE || final_size > inode->i_size)
3126 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3127
69c499d1 3128 BUG_ON(iocb->private == NULL);
4bd809db 3129
69c499d1
TT
3130 /* If we do a overwrite dio, i_mutex locking can be released */
3131 overwrite = *((int *)iocb->private);
4bd809db 3132
69c499d1
TT
3133 if (overwrite) {
3134 atomic_inc(&inode->i_dio_count);
3135 down_read(&EXT4_I(inode)->i_data_sem);
3136 mutex_unlock(&inode->i_mutex);
3137 }
8d5d02e6 3138
69c499d1
TT
3139 /*
3140 * We could direct write to holes and fallocate.
3141 *
3142 * Allocated blocks to fill the hole are marked as
3143 * uninitialized to prevent parallel buffered read to expose
3144 * the stale data before DIO complete the data IO.
3145 *
3146 * As to previously fallocated extents, ext4 get_block will
3147 * just simply mark the buffer mapped but still keep the
3148 * extents uninitialized.
3149 *
3150 * For non AIO case, we will convert those unwritten extents
3151 * to written after return back from blockdev_direct_IO.
3152 *
3153 * For async DIO, the conversion needs to be deferred when the
3154 * IO is completed. The ext4 end_io callback function will be
3155 * called to take care of the conversion work. Here for async
3156 * case, we allocate an io_end structure to hook to the iocb.
3157 */
3158 iocb->private = NULL;
3159 ext4_inode_aio_set(inode, NULL);
3160 if (!is_sync_kiocb(iocb)) {
a549984b 3161 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3162 if (!io_end) {
3163 ret = -ENOMEM;
3164 goto retake_lock;
8b0f165f 3165 }
69c499d1 3166 io_end->flag |= EXT4_IO_END_DIRECT;
a549984b 3167 iocb->private = io_end;
8d5d02e6 3168 /*
69c499d1
TT
3169 * we save the io structure for current async direct
3170 * IO, so that later ext4_map_blocks() could flag the
3171 * io structure whether there is a unwritten extents
3172 * needs to be converted when IO is completed.
8d5d02e6 3173 */
69c499d1
TT
3174 ext4_inode_aio_set(inode, io_end);
3175 }
4bd809db 3176
69c499d1
TT
3177 if (overwrite) {
3178 get_block_func = ext4_get_block_write_nolock;
3179 } else {
3180 get_block_func = ext4_get_block_write;
3181 dio_flags = DIO_LOCKING;
3182 }
3183 ret = __blockdev_direct_IO(rw, iocb, inode,
3184 inode->i_sb->s_bdev, iov,
3185 offset, nr_segs,
3186 get_block_func,
3187 ext4_end_io_dio,
3188 NULL,
3189 dio_flags);
3190
a549984b
TT
3191 if (iocb->private)
3192 ext4_inode_aio_set(inode, NULL);
69c499d1 3193 /*
a549984b
TT
3194 * The io_end structure takes a reference to the inode, that
3195 * structure needs to be destroyed and the reference to the
3196 * inode need to be dropped, when IO is complete, even with 0
3197 * byte write, or failed.
3198 *
3199 * In the successful AIO DIO case, the io_end structure will
3200 * be destroyed and the reference to the inode will be dropped
3201 * after the end_io call back function is called.
3202 *
3203 * In the case there is 0 byte write, or error case, since VFS
3204 * direct IO won't invoke the end_io call back function, we
3205 * need to free the end_io structure here.
69c499d1 3206 */
a549984b
TT
3207 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3208 ext4_free_io_end(iocb->private);
3209 iocb->private = NULL;
3210 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3211 EXT4_STATE_DIO_UNWRITTEN)) {
3212 int err;
3213 /*
3214 * for non AIO case, since the IO is already
3215 * completed, we could do the conversion right here
3216 */
3217 err = ext4_convert_unwritten_extents(inode,
3218 offset, ret);
3219 if (err < 0)
3220 ret = err;
3221 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3222 }
4bd809db 3223
69c499d1
TT
3224retake_lock:
3225 /* take i_mutex locking again if we do a ovewrite dio */
3226 if (overwrite) {
3227 inode_dio_done(inode);
3228 up_read(&EXT4_I(inode)->i_data_sem);
3229 mutex_lock(&inode->i_mutex);
4c0425ff 3230 }
8d5d02e6 3231
69c499d1 3232 return ret;
4c0425ff
MC
3233}
3234
3235static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3236 const struct iovec *iov, loff_t offset,
3237 unsigned long nr_segs)
3238{
3239 struct file *file = iocb->ki_filp;
3240 struct inode *inode = file->f_mapping->host;
0562e0ba 3241 ssize_t ret;
4c0425ff 3242
84ebd795
TT
3243 /*
3244 * If we are doing data journalling we don't support O_DIRECT
3245 */
3246 if (ext4_should_journal_data(inode))
3247 return 0;
3248
46c7f254
TM
3249 /* Let buffer I/O handle the inline data case. */
3250 if (ext4_has_inline_data(inode))
3251 return 0;
3252
0562e0ba 3253 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3255 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3256 else
3257 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3258 trace_ext4_direct_IO_exit(inode, offset,
3259 iov_length(iov, nr_segs), rw, ret);
3260 return ret;
4c0425ff
MC
3261}
3262
ac27a0ec 3263/*
617ba13b 3264 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3265 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3266 * much here because ->set_page_dirty is called under VFS locks. The page is
3267 * not necessarily locked.
3268 *
3269 * We cannot just dirty the page and leave attached buffers clean, because the
3270 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3271 * or jbddirty because all the journalling code will explode.
3272 *
3273 * So what we do is to mark the page "pending dirty" and next time writepage
3274 * is called, propagate that into the buffers appropriately.
3275 */
617ba13b 3276static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3277{
3278 SetPageChecked(page);
3279 return __set_page_dirty_nobuffers(page);
3280}
3281
74d553aa 3282static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3283 .readpage = ext4_readpage,
3284 .readpages = ext4_readpages,
43ce1d23 3285 .writepage = ext4_writepage,
8ab22b9a 3286 .write_begin = ext4_write_begin,
74d553aa 3287 .write_end = ext4_write_end,
8ab22b9a
HH
3288 .bmap = ext4_bmap,
3289 .invalidatepage = ext4_invalidatepage,
3290 .releasepage = ext4_releasepage,
3291 .direct_IO = ext4_direct_IO,
3292 .migratepage = buffer_migrate_page,
3293 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3294 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3295};
3296
617ba13b 3297static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3298 .readpage = ext4_readpage,
3299 .readpages = ext4_readpages,
43ce1d23 3300 .writepage = ext4_writepage,
8ab22b9a
HH
3301 .write_begin = ext4_write_begin,
3302 .write_end = ext4_journalled_write_end,
3303 .set_page_dirty = ext4_journalled_set_page_dirty,
3304 .bmap = ext4_bmap,
4520fb3c 3305 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3306 .releasepage = ext4_releasepage,
84ebd795 3307 .direct_IO = ext4_direct_IO,
8ab22b9a 3308 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3309 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3310};
3311
64769240 3312static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3313 .readpage = ext4_readpage,
3314 .readpages = ext4_readpages,
43ce1d23 3315 .writepage = ext4_writepage,
8ab22b9a 3316 .writepages = ext4_da_writepages,
8ab22b9a
HH
3317 .write_begin = ext4_da_write_begin,
3318 .write_end = ext4_da_write_end,
3319 .bmap = ext4_bmap,
3320 .invalidatepage = ext4_da_invalidatepage,
3321 .releasepage = ext4_releasepage,
3322 .direct_IO = ext4_direct_IO,
3323 .migratepage = buffer_migrate_page,
3324 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3325 .error_remove_page = generic_error_remove_page,
64769240
AT
3326};
3327
617ba13b 3328void ext4_set_aops(struct inode *inode)
ac27a0ec 3329{
3d2b1582
LC
3330 switch (ext4_inode_journal_mode(inode)) {
3331 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3332 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3333 break;
3334 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3335 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3336 break;
3337 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3338 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3339 return;
3d2b1582
LC
3340 default:
3341 BUG();
3342 }
74d553aa
TT
3343 if (test_opt(inode->i_sb, DELALLOC))
3344 inode->i_mapping->a_ops = &ext4_da_aops;
3345 else
3346 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3347}
3348
4e96b2db
AH
3349
3350/*
3351 * ext4_discard_partial_page_buffers()
3352 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3353 * This function finds and locks the page containing the offset
3354 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3355 * Calling functions that already have the page locked should call
3356 * ext4_discard_partial_page_buffers_no_lock directly.
3357 */
3358int ext4_discard_partial_page_buffers(handle_t *handle,
3359 struct address_space *mapping, loff_t from,
3360 loff_t length, int flags)
3361{
3362 struct inode *inode = mapping->host;
3363 struct page *page;
3364 int err = 0;
3365
3366 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3367 mapping_gfp_mask(mapping) & ~__GFP_FS);
3368 if (!page)
5129d05f 3369 return -ENOMEM;
4e96b2db
AH
3370
3371 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3372 from, length, flags);
3373
3374 unlock_page(page);
3375 page_cache_release(page);
3376 return err;
3377}
3378
3379/*
3380 * ext4_discard_partial_page_buffers_no_lock()
3381 * Zeros a page range of length 'length' starting from offset 'from'.
3382 * Buffer heads that correspond to the block aligned regions of the
3383 * zeroed range will be unmapped. Unblock aligned regions
3384 * will have the corresponding buffer head mapped if needed so that
3385 * that region of the page can be updated with the partial zero out.
3386 *
3387 * This function assumes that the page has already been locked. The
3388 * The range to be discarded must be contained with in the given page.
3389 * If the specified range exceeds the end of the page it will be shortened
3390 * to the end of the page that corresponds to 'from'. This function is
3391 * appropriate for updating a page and it buffer heads to be unmapped and
3392 * zeroed for blocks that have been either released, or are going to be
3393 * released.
3394 *
3395 * handle: The journal handle
3396 * inode: The files inode
3397 * page: A locked page that contains the offset "from"
4907cb7b 3398 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3399 * to begin discarding
3400 * len: The length of bytes to discard
3401 * flags: Optional flags that may be used:
3402 *
3403 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3404 * Only zero the regions of the page whose buffer heads
3405 * have already been unmapped. This flag is appropriate
4907cb7b 3406 * for updating the contents of a page whose blocks may
4e96b2db
AH
3407 * have already been released, and we only want to zero
3408 * out the regions that correspond to those released blocks.
3409 *
4907cb7b 3410 * Returns zero on success or negative on failure.
4e96b2db 3411 */
5f163cc7 3412static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3413 struct inode *inode, struct page *page, loff_t from,
3414 loff_t length, int flags)
3415{
3416 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3417 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3418 unsigned int blocksize, max, pos;
4e96b2db
AH
3419 ext4_lblk_t iblock;
3420 struct buffer_head *bh;
3421 int err = 0;
3422
3423 blocksize = inode->i_sb->s_blocksize;
3424 max = PAGE_CACHE_SIZE - offset;
3425
3426 if (index != page->index)
3427 return -EINVAL;
3428
3429 /*
3430 * correct length if it does not fall between
3431 * 'from' and the end of the page
3432 */
3433 if (length > max || length < 0)
3434 length = max;
3435
3436 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3437
093e6e36
YY
3438 if (!page_has_buffers(page))
3439 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3440
3441 /* Find the buffer that contains "offset" */
3442 bh = page_buffers(page);
3443 pos = blocksize;
3444 while (offset >= pos) {
3445 bh = bh->b_this_page;
3446 iblock++;
3447 pos += blocksize;
3448 }
3449
3450 pos = offset;
3451 while (pos < offset + length) {
e260daf2
YY
3452 unsigned int end_of_block, range_to_discard;
3453
4e96b2db
AH
3454 err = 0;
3455
3456 /* The length of space left to zero and unmap */
3457 range_to_discard = offset + length - pos;
3458
3459 /* The length of space until the end of the block */
3460 end_of_block = blocksize - (pos & (blocksize-1));
3461
3462 /*
3463 * Do not unmap or zero past end of block
3464 * for this buffer head
3465 */
3466 if (range_to_discard > end_of_block)
3467 range_to_discard = end_of_block;
3468
3469
3470 /*
3471 * Skip this buffer head if we are only zeroing unampped
3472 * regions of the page
3473 */
3474 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3475 buffer_mapped(bh))
3476 goto next;
3477
3478 /* If the range is block aligned, unmap */
3479 if (range_to_discard == blocksize) {
3480 clear_buffer_dirty(bh);
3481 bh->b_bdev = NULL;
3482 clear_buffer_mapped(bh);
3483 clear_buffer_req(bh);
3484 clear_buffer_new(bh);
3485 clear_buffer_delay(bh);
3486 clear_buffer_unwritten(bh);
3487 clear_buffer_uptodate(bh);
3488 zero_user(page, pos, range_to_discard);
3489 BUFFER_TRACE(bh, "Buffer discarded");
3490 goto next;
3491 }
3492
3493 /*
3494 * If this block is not completely contained in the range
3495 * to be discarded, then it is not going to be released. Because
3496 * we need to keep this block, we need to make sure this part
3497 * of the page is uptodate before we modify it by writeing
3498 * partial zeros on it.
3499 */
3500 if (!buffer_mapped(bh)) {
3501 /*
3502 * Buffer head must be mapped before we can read
3503 * from the block
3504 */
3505 BUFFER_TRACE(bh, "unmapped");
3506 ext4_get_block(inode, iblock, bh, 0);
3507 /* unmapped? It's a hole - nothing to do */
3508 if (!buffer_mapped(bh)) {
3509 BUFFER_TRACE(bh, "still unmapped");
3510 goto next;
3511 }
3512 }
3513
3514 /* Ok, it's mapped. Make sure it's up-to-date */
3515 if (PageUptodate(page))
3516 set_buffer_uptodate(bh);
3517
3518 if (!buffer_uptodate(bh)) {
3519 err = -EIO;
3520 ll_rw_block(READ, 1, &bh);
3521 wait_on_buffer(bh);
3522 /* Uhhuh. Read error. Complain and punt.*/
3523 if (!buffer_uptodate(bh))
3524 goto next;
3525 }
3526
3527 if (ext4_should_journal_data(inode)) {
3528 BUFFER_TRACE(bh, "get write access");
3529 err = ext4_journal_get_write_access(handle, bh);
3530 if (err)
3531 goto next;
3532 }
3533
3534 zero_user(page, pos, range_to_discard);
3535
3536 err = 0;
3537 if (ext4_should_journal_data(inode)) {
3538 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3539 } else
4e96b2db 3540 mark_buffer_dirty(bh);
4e96b2db
AH
3541
3542 BUFFER_TRACE(bh, "Partial buffer zeroed");
3543next:
3544 bh = bh->b_this_page;
3545 iblock++;
3546 pos += range_to_discard;
3547 }
3548
3549 return err;
3550}
3551
91ef4caf
DG
3552int ext4_can_truncate(struct inode *inode)
3553{
91ef4caf
DG
3554 if (S_ISREG(inode->i_mode))
3555 return 1;
3556 if (S_ISDIR(inode->i_mode))
3557 return 1;
3558 if (S_ISLNK(inode->i_mode))
3559 return !ext4_inode_is_fast_symlink(inode);
3560 return 0;
3561}
3562
a4bb6b64
AH
3563/*
3564 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3565 * associated with the given offset and length
3566 *
3567 * @inode: File inode
3568 * @offset: The offset where the hole will begin
3569 * @len: The length of the hole
3570 *
4907cb7b 3571 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3572 */
3573
3574int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3575{
496ad9aa 3576 struct inode *inode = file_inode(file);
26a4c0c6
TT
3577 struct super_block *sb = inode->i_sb;
3578 ext4_lblk_t first_block, stop_block;
3579 struct address_space *mapping = inode->i_mapping;
3580 loff_t first_page, last_page, page_len;
3581 loff_t first_page_offset, last_page_offset;
3582 handle_t *handle;
3583 unsigned int credits;
3584 int ret = 0;
3585
a4bb6b64 3586 if (!S_ISREG(inode->i_mode))
73355192 3587 return -EOPNOTSUPP;
a4bb6b64 3588
26a4c0c6 3589 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3590 /* TODO: Add support for bigalloc file systems */
73355192 3591 return -EOPNOTSUPP;
bab08ab9
TT
3592 }
3593
aaddea81
ZL
3594 trace_ext4_punch_hole(inode, offset, length);
3595
26a4c0c6
TT
3596 /*
3597 * Write out all dirty pages to avoid race conditions
3598 * Then release them.
3599 */
3600 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3601 ret = filemap_write_and_wait_range(mapping, offset,
3602 offset + length - 1);
3603 if (ret)
3604 return ret;
3605 }
3606
3607 mutex_lock(&inode->i_mutex);
3608 /* It's not possible punch hole on append only file */
3609 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3610 ret = -EPERM;
3611 goto out_mutex;
3612 }
3613 if (IS_SWAPFILE(inode)) {
3614 ret = -ETXTBSY;
3615 goto out_mutex;
3616 }
3617
3618 /* No need to punch hole beyond i_size */
3619 if (offset >= inode->i_size)
3620 goto out_mutex;
3621
3622 /*
3623 * If the hole extends beyond i_size, set the hole
3624 * to end after the page that contains i_size
3625 */
3626 if (offset + length > inode->i_size) {
3627 length = inode->i_size +
3628 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3629 offset;
3630 }
3631
3632 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3633 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3634
3635 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3636 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3637
3638 /* Now release the pages */
3639 if (last_page_offset > first_page_offset) {
3640 truncate_pagecache_range(inode, first_page_offset,
3641 last_page_offset - 1);
3642 }
3643
3644 /* Wait all existing dio workers, newcomers will block on i_mutex */
3645 ext4_inode_block_unlocked_dio(inode);
3646 ret = ext4_flush_unwritten_io(inode);
3647 if (ret)
3648 goto out_dio;
3649 inode_dio_wait(inode);
3650
3651 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3652 credits = ext4_writepage_trans_blocks(inode);
3653 else
3654 credits = ext4_blocks_for_truncate(inode);
3655 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3656 if (IS_ERR(handle)) {
3657 ret = PTR_ERR(handle);
3658 ext4_std_error(sb, ret);
3659 goto out_dio;
3660 }
3661
3662 /*
3663 * Now we need to zero out the non-page-aligned data in the
3664 * pages at the start and tail of the hole, and unmap the
3665 * buffer heads for the block aligned regions of the page that
3666 * were completely zeroed.
3667 */
3668 if (first_page > last_page) {
3669 /*
3670 * If the file space being truncated is contained
3671 * within a page just zero out and unmap the middle of
3672 * that page
3673 */
3674 ret = ext4_discard_partial_page_buffers(handle,
3675 mapping, offset, length, 0);
3676
3677 if (ret)
3678 goto out_stop;
3679 } else {
3680 /*
3681 * zero out and unmap the partial page that contains
3682 * the start of the hole
3683 */
3684 page_len = first_page_offset - offset;
3685 if (page_len > 0) {
3686 ret = ext4_discard_partial_page_buffers(handle, mapping,
3687 offset, page_len, 0);
3688 if (ret)
3689 goto out_stop;
3690 }
3691
3692 /*
3693 * zero out and unmap the partial page that contains
3694 * the end of the hole
3695 */
3696 page_len = offset + length - last_page_offset;
3697 if (page_len > 0) {
3698 ret = ext4_discard_partial_page_buffers(handle, mapping,
3699 last_page_offset, page_len, 0);
3700 if (ret)
3701 goto out_stop;
3702 }
3703 }
3704
3705 /*
3706 * If i_size is contained in the last page, we need to
3707 * unmap and zero the partial page after i_size
3708 */
3709 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3710 inode->i_size % PAGE_CACHE_SIZE != 0) {
3711 page_len = PAGE_CACHE_SIZE -
3712 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3713
3714 if (page_len > 0) {
3715 ret = ext4_discard_partial_page_buffers(handle,
3716 mapping, inode->i_size, page_len, 0);
3717
3718 if (ret)
3719 goto out_stop;
3720 }
3721 }
3722
3723 first_block = (offset + sb->s_blocksize - 1) >>
3724 EXT4_BLOCK_SIZE_BITS(sb);
3725 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3726
3727 /* If there are no blocks to remove, return now */
3728 if (first_block >= stop_block)
3729 goto out_stop;
3730
3731 down_write(&EXT4_I(inode)->i_data_sem);
3732 ext4_discard_preallocations(inode);
3733
3734 ret = ext4_es_remove_extent(inode, first_block,
3735 stop_block - first_block);
3736 if (ret) {
3737 up_write(&EXT4_I(inode)->i_data_sem);
3738 goto out_stop;
3739 }
3740
3741 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3742 ret = ext4_ext_remove_space(inode, first_block,
3743 stop_block - 1);
3744 else
3745 ret = ext4_free_hole_blocks(handle, inode, first_block,
3746 stop_block);
3747
3748 ext4_discard_preallocations(inode);
819c4920 3749 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3750 if (IS_SYNC(inode))
3751 ext4_handle_sync(handle);
26a4c0c6
TT
3752 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3753 ext4_mark_inode_dirty(handle, inode);
3754out_stop:
3755 ext4_journal_stop(handle);
3756out_dio:
3757 ext4_inode_resume_unlocked_dio(inode);
3758out_mutex:
3759 mutex_unlock(&inode->i_mutex);
3760 return ret;
a4bb6b64
AH
3761}
3762
ac27a0ec 3763/*
617ba13b 3764 * ext4_truncate()
ac27a0ec 3765 *
617ba13b
MC
3766 * We block out ext4_get_block() block instantiations across the entire
3767 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3768 * simultaneously on behalf of the same inode.
3769 *
42b2aa86 3770 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3771 * is one core, guiding principle: the file's tree must always be consistent on
3772 * disk. We must be able to restart the truncate after a crash.
3773 *
3774 * The file's tree may be transiently inconsistent in memory (although it
3775 * probably isn't), but whenever we close off and commit a journal transaction,
3776 * the contents of (the filesystem + the journal) must be consistent and
3777 * restartable. It's pretty simple, really: bottom up, right to left (although
3778 * left-to-right works OK too).
3779 *
3780 * Note that at recovery time, journal replay occurs *before* the restart of
3781 * truncate against the orphan inode list.
3782 *
3783 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3784 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3785 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3786 * ext4_truncate() to have another go. So there will be instantiated blocks
3787 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3788 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3789 * ext4_truncate() run will find them and release them.
ac27a0ec 3790 */
617ba13b 3791void ext4_truncate(struct inode *inode)
ac27a0ec 3792{
819c4920
TT
3793 struct ext4_inode_info *ei = EXT4_I(inode);
3794 unsigned int credits;
3795 handle_t *handle;
3796 struct address_space *mapping = inode->i_mapping;
3797 loff_t page_len;
3798
19b5ef61
TT
3799 /*
3800 * There is a possibility that we're either freeing the inode
3801 * or it completely new indode. In those cases we might not
3802 * have i_mutex locked because it's not necessary.
3803 */
3804 if (!(inode->i_state & (I_NEW|I_FREEING)))
3805 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3806 trace_ext4_truncate_enter(inode);
3807
91ef4caf 3808 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3809 return;
3810
12e9b892 3811 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3812
5534fb5b 3813 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3814 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3815
aef1c851
TM
3816 if (ext4_has_inline_data(inode)) {
3817 int has_inline = 1;
3818
3819 ext4_inline_data_truncate(inode, &has_inline);
3820 if (has_inline)
3821 return;
3822 }
3823
819c4920
TT
3824 /*
3825 * finish any pending end_io work so we won't run the risk of
3826 * converting any truncated blocks to initialized later
3827 */
3828 ext4_flush_unwritten_io(inode);
3829
3830 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3831 credits = ext4_writepage_trans_blocks(inode);
3832 else
3833 credits = ext4_blocks_for_truncate(inode);
3834
3835 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3836 if (IS_ERR(handle)) {
3837 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3838 return;
3839 }
3840
3841 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3842 page_len = PAGE_CACHE_SIZE -
3843 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3844
3845 if (ext4_discard_partial_page_buffers(handle,
3846 mapping, inode->i_size, page_len, 0))
3847 goto out_stop;
3848 }
3849
3850 /*
3851 * We add the inode to the orphan list, so that if this
3852 * truncate spans multiple transactions, and we crash, we will
3853 * resume the truncate when the filesystem recovers. It also
3854 * marks the inode dirty, to catch the new size.
3855 *
3856 * Implication: the file must always be in a sane, consistent
3857 * truncatable state while each transaction commits.
3858 */
3859 if (ext4_orphan_add(handle, inode))
3860 goto out_stop;
3861
3862 down_write(&EXT4_I(inode)->i_data_sem);
3863
3864 ext4_discard_preallocations(inode);
3865
ff9893dc 3866 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3867 ext4_ext_truncate(handle, inode);
ff9893dc 3868 else
819c4920
TT
3869 ext4_ind_truncate(handle, inode);
3870
3871 up_write(&ei->i_data_sem);
3872
3873 if (IS_SYNC(inode))
3874 ext4_handle_sync(handle);
3875
3876out_stop:
3877 /*
3878 * If this was a simple ftruncate() and the file will remain alive,
3879 * then we need to clear up the orphan record which we created above.
3880 * However, if this was a real unlink then we were called by
3881 * ext4_delete_inode(), and we allow that function to clean up the
3882 * orphan info for us.
3883 */
3884 if (inode->i_nlink)
3885 ext4_orphan_del(handle, inode);
3886
3887 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3888 ext4_mark_inode_dirty(handle, inode);
3889 ext4_journal_stop(handle);
ac27a0ec 3890
0562e0ba 3891 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3892}
3893
ac27a0ec 3894/*
617ba13b 3895 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3896 * underlying buffer_head on success. If 'in_mem' is true, we have all
3897 * data in memory that is needed to recreate the on-disk version of this
3898 * inode.
3899 */
617ba13b
MC
3900static int __ext4_get_inode_loc(struct inode *inode,
3901 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3902{
240799cd
TT
3903 struct ext4_group_desc *gdp;
3904 struct buffer_head *bh;
3905 struct super_block *sb = inode->i_sb;
3906 ext4_fsblk_t block;
3907 int inodes_per_block, inode_offset;
3908
3a06d778 3909 iloc->bh = NULL;
240799cd
TT
3910 if (!ext4_valid_inum(sb, inode->i_ino))
3911 return -EIO;
ac27a0ec 3912
240799cd
TT
3913 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3914 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3915 if (!gdp)
ac27a0ec
DK
3916 return -EIO;
3917
240799cd
TT
3918 /*
3919 * Figure out the offset within the block group inode table
3920 */
00d09882 3921 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3922 inode_offset = ((inode->i_ino - 1) %
3923 EXT4_INODES_PER_GROUP(sb));
3924 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3925 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3926
3927 bh = sb_getblk(sb, block);
aebf0243 3928 if (unlikely(!bh))
860d21e2 3929 return -ENOMEM;
ac27a0ec
DK
3930 if (!buffer_uptodate(bh)) {
3931 lock_buffer(bh);
9c83a923
HK
3932
3933 /*
3934 * If the buffer has the write error flag, we have failed
3935 * to write out another inode in the same block. In this
3936 * case, we don't have to read the block because we may
3937 * read the old inode data successfully.
3938 */
3939 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3940 set_buffer_uptodate(bh);
3941
ac27a0ec
DK
3942 if (buffer_uptodate(bh)) {
3943 /* someone brought it uptodate while we waited */
3944 unlock_buffer(bh);
3945 goto has_buffer;
3946 }
3947
3948 /*
3949 * If we have all information of the inode in memory and this
3950 * is the only valid inode in the block, we need not read the
3951 * block.
3952 */
3953 if (in_mem) {
3954 struct buffer_head *bitmap_bh;
240799cd 3955 int i, start;
ac27a0ec 3956
240799cd 3957 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3958
240799cd
TT
3959 /* Is the inode bitmap in cache? */
3960 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3961 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3962 goto make_io;
3963
3964 /*
3965 * If the inode bitmap isn't in cache then the
3966 * optimisation may end up performing two reads instead
3967 * of one, so skip it.
3968 */
3969 if (!buffer_uptodate(bitmap_bh)) {
3970 brelse(bitmap_bh);
3971 goto make_io;
3972 }
240799cd 3973 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3974 if (i == inode_offset)
3975 continue;
617ba13b 3976 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3977 break;
3978 }
3979 brelse(bitmap_bh);
240799cd 3980 if (i == start + inodes_per_block) {
ac27a0ec
DK
3981 /* all other inodes are free, so skip I/O */
3982 memset(bh->b_data, 0, bh->b_size);
3983 set_buffer_uptodate(bh);
3984 unlock_buffer(bh);
3985 goto has_buffer;
3986 }
3987 }
3988
3989make_io:
240799cd
TT
3990 /*
3991 * If we need to do any I/O, try to pre-readahead extra
3992 * blocks from the inode table.
3993 */
3994 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3995 ext4_fsblk_t b, end, table;
3996 unsigned num;
0d606e2c 3997 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3998
3999 table = ext4_inode_table(sb, gdp);
b713a5ec 4000 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4001 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4002 if (table > b)
4003 b = table;
0d606e2c 4004 end = b + ra_blks;
240799cd 4005 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4006 if (ext4_has_group_desc_csum(sb))
560671a0 4007 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4008 table += num / inodes_per_block;
4009 if (end > table)
4010 end = table;
4011 while (b <= end)
4012 sb_breadahead(sb, b++);
4013 }
4014
ac27a0ec
DK
4015 /*
4016 * There are other valid inodes in the buffer, this inode
4017 * has in-inode xattrs, or we don't have this inode in memory.
4018 * Read the block from disk.
4019 */
0562e0ba 4020 trace_ext4_load_inode(inode);
ac27a0ec
DK
4021 get_bh(bh);
4022 bh->b_end_io = end_buffer_read_sync;
65299a3b 4023 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4024 wait_on_buffer(bh);
4025 if (!buffer_uptodate(bh)) {
c398eda0
TT
4026 EXT4_ERROR_INODE_BLOCK(inode, block,
4027 "unable to read itable block");
ac27a0ec
DK
4028 brelse(bh);
4029 return -EIO;
4030 }
4031 }
4032has_buffer:
4033 iloc->bh = bh;
4034 return 0;
4035}
4036
617ba13b 4037int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4038{
4039 /* We have all inode data except xattrs in memory here. */
617ba13b 4040 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4041 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4042}
4043
617ba13b 4044void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4045{
617ba13b 4046 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4047
4048 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4049 if (flags & EXT4_SYNC_FL)
ac27a0ec 4050 inode->i_flags |= S_SYNC;
617ba13b 4051 if (flags & EXT4_APPEND_FL)
ac27a0ec 4052 inode->i_flags |= S_APPEND;
617ba13b 4053 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4054 inode->i_flags |= S_IMMUTABLE;
617ba13b 4055 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4056 inode->i_flags |= S_NOATIME;
617ba13b 4057 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4058 inode->i_flags |= S_DIRSYNC;
4059}
4060
ff9ddf7e
JK
4061/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4062void ext4_get_inode_flags(struct ext4_inode_info *ei)
4063{
84a8dce2
DM
4064 unsigned int vfs_fl;
4065 unsigned long old_fl, new_fl;
4066
4067 do {
4068 vfs_fl = ei->vfs_inode.i_flags;
4069 old_fl = ei->i_flags;
4070 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4071 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4072 EXT4_DIRSYNC_FL);
4073 if (vfs_fl & S_SYNC)
4074 new_fl |= EXT4_SYNC_FL;
4075 if (vfs_fl & S_APPEND)
4076 new_fl |= EXT4_APPEND_FL;
4077 if (vfs_fl & S_IMMUTABLE)
4078 new_fl |= EXT4_IMMUTABLE_FL;
4079 if (vfs_fl & S_NOATIME)
4080 new_fl |= EXT4_NOATIME_FL;
4081 if (vfs_fl & S_DIRSYNC)
4082 new_fl |= EXT4_DIRSYNC_FL;
4083 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4084}
de9a55b8 4085
0fc1b451 4086static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4087 struct ext4_inode_info *ei)
0fc1b451
AK
4088{
4089 blkcnt_t i_blocks ;
8180a562
AK
4090 struct inode *inode = &(ei->vfs_inode);
4091 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4092
4093 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4094 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4095 /* we are using combined 48 bit field */
4096 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4097 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4098 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4099 /* i_blocks represent file system block size */
4100 return i_blocks << (inode->i_blkbits - 9);
4101 } else {
4102 return i_blocks;
4103 }
0fc1b451
AK
4104 } else {
4105 return le32_to_cpu(raw_inode->i_blocks_lo);
4106 }
4107}
ff9ddf7e 4108
152a7b0a
TM
4109static inline void ext4_iget_extra_inode(struct inode *inode,
4110 struct ext4_inode *raw_inode,
4111 struct ext4_inode_info *ei)
4112{
4113 __le32 *magic = (void *)raw_inode +
4114 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4115 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4116 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4117 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4118 } else
4119 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4120}
4121
1d1fe1ee 4122struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4123{
617ba13b
MC
4124 struct ext4_iloc iloc;
4125 struct ext4_inode *raw_inode;
1d1fe1ee 4126 struct ext4_inode_info *ei;
1d1fe1ee 4127 struct inode *inode;
b436b9be 4128 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4129 long ret;
ac27a0ec 4130 int block;
08cefc7a
EB
4131 uid_t i_uid;
4132 gid_t i_gid;
ac27a0ec 4133
1d1fe1ee
DH
4134 inode = iget_locked(sb, ino);
4135 if (!inode)
4136 return ERR_PTR(-ENOMEM);
4137 if (!(inode->i_state & I_NEW))
4138 return inode;
4139
4140 ei = EXT4_I(inode);
7dc57615 4141 iloc.bh = NULL;
ac27a0ec 4142
1d1fe1ee
DH
4143 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4144 if (ret < 0)
ac27a0ec 4145 goto bad_inode;
617ba13b 4146 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4147
4148 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4149 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4150 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4151 EXT4_INODE_SIZE(inode->i_sb)) {
4152 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4153 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4154 EXT4_INODE_SIZE(inode->i_sb));
4155 ret = -EIO;
4156 goto bad_inode;
4157 }
4158 } else
4159 ei->i_extra_isize = 0;
4160
4161 /* Precompute checksum seed for inode metadata */
4162 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4163 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4164 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4165 __u32 csum;
4166 __le32 inum = cpu_to_le32(inode->i_ino);
4167 __le32 gen = raw_inode->i_generation;
4168 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4169 sizeof(inum));
4170 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4171 sizeof(gen));
4172 }
4173
4174 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4175 EXT4_ERROR_INODE(inode, "checksum invalid");
4176 ret = -EIO;
4177 goto bad_inode;
4178 }
4179
ac27a0ec 4180 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4181 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4182 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4183 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4184 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4185 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4186 }
08cefc7a
EB
4187 i_uid_write(inode, i_uid);
4188 i_gid_write(inode, i_gid);
bfe86848 4189 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4190
353eb83c 4191 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4192 ei->i_inline_off = 0;
ac27a0ec
DK
4193 ei->i_dir_start_lookup = 0;
4194 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4195 /* We now have enough fields to check if the inode was active or not.
4196 * This is needed because nfsd might try to access dead inodes
4197 * the test is that same one that e2fsck uses
4198 * NeilBrown 1999oct15
4199 */
4200 if (inode->i_nlink == 0) {
393d1d1d
DTB
4201 if ((inode->i_mode == 0 ||
4202 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4203 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4204 /* this inode is deleted */
1d1fe1ee 4205 ret = -ESTALE;
ac27a0ec
DK
4206 goto bad_inode;
4207 }
4208 /* The only unlinked inodes we let through here have
4209 * valid i_mode and are being read by the orphan
4210 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4211 * the process of deleting those.
4212 * OR it is the EXT4_BOOT_LOADER_INO which is
4213 * not initialized on a new filesystem. */
ac27a0ec 4214 }
ac27a0ec 4215 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4216 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4217 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4218 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4219 ei->i_file_acl |=
4220 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4221 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4222 ei->i_disksize = inode->i_size;
a9e7f447
DM
4223#ifdef CONFIG_QUOTA
4224 ei->i_reserved_quota = 0;
4225#endif
ac27a0ec
DK
4226 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4227 ei->i_block_group = iloc.block_group;
a4912123 4228 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4229 /*
4230 * NOTE! The in-memory inode i_data array is in little-endian order
4231 * even on big-endian machines: we do NOT byteswap the block numbers!
4232 */
617ba13b 4233 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4234 ei->i_data[block] = raw_inode->i_block[block];
4235 INIT_LIST_HEAD(&ei->i_orphan);
4236
b436b9be
JK
4237 /*
4238 * Set transaction id's of transactions that have to be committed
4239 * to finish f[data]sync. We set them to currently running transaction
4240 * as we cannot be sure that the inode or some of its metadata isn't
4241 * part of the transaction - the inode could have been reclaimed and
4242 * now it is reread from disk.
4243 */
4244 if (journal) {
4245 transaction_t *transaction;
4246 tid_t tid;
4247
a931da6a 4248 read_lock(&journal->j_state_lock);
b436b9be
JK
4249 if (journal->j_running_transaction)
4250 transaction = journal->j_running_transaction;
4251 else
4252 transaction = journal->j_committing_transaction;
4253 if (transaction)
4254 tid = transaction->t_tid;
4255 else
4256 tid = journal->j_commit_sequence;
a931da6a 4257 read_unlock(&journal->j_state_lock);
b436b9be
JK
4258 ei->i_sync_tid = tid;
4259 ei->i_datasync_tid = tid;
4260 }
4261
0040d987 4262 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4263 if (ei->i_extra_isize == 0) {
4264 /* The extra space is currently unused. Use it. */
617ba13b
MC
4265 ei->i_extra_isize = sizeof(struct ext4_inode) -
4266 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4267 } else {
152a7b0a 4268 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4269 }
814525f4 4270 }
ac27a0ec 4271
ef7f3835
KS
4272 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4273 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4274 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4275 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4276
25ec56b5
JNC
4277 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4278 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4279 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4280 inode->i_version |=
4281 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4282 }
4283
c4b5a614 4284 ret = 0;
485c26ec 4285 if (ei->i_file_acl &&
1032988c 4286 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4287 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4288 ei->i_file_acl);
485c26ec
TT
4289 ret = -EIO;
4290 goto bad_inode;
f19d5870
TM
4291 } else if (!ext4_has_inline_data(inode)) {
4292 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4293 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4294 (S_ISLNK(inode->i_mode) &&
4295 !ext4_inode_is_fast_symlink(inode))))
4296 /* Validate extent which is part of inode */
4297 ret = ext4_ext_check_inode(inode);
4298 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4299 (S_ISLNK(inode->i_mode) &&
4300 !ext4_inode_is_fast_symlink(inode))) {
4301 /* Validate block references which are part of inode */
4302 ret = ext4_ind_check_inode(inode);
4303 }
fe2c8191 4304 }
567f3e9a 4305 if (ret)
de9a55b8 4306 goto bad_inode;
7a262f7c 4307
ac27a0ec 4308 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4309 inode->i_op = &ext4_file_inode_operations;
4310 inode->i_fop = &ext4_file_operations;
4311 ext4_set_aops(inode);
ac27a0ec 4312 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4313 inode->i_op = &ext4_dir_inode_operations;
4314 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4315 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4316 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4317 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4318 nd_terminate_link(ei->i_data, inode->i_size,
4319 sizeof(ei->i_data) - 1);
4320 } else {
617ba13b
MC
4321 inode->i_op = &ext4_symlink_inode_operations;
4322 ext4_set_aops(inode);
ac27a0ec 4323 }
563bdd61
TT
4324 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4325 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4326 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4327 if (raw_inode->i_block[0])
4328 init_special_inode(inode, inode->i_mode,
4329 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4330 else
4331 init_special_inode(inode, inode->i_mode,
4332 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4333 } else if (ino == EXT4_BOOT_LOADER_INO) {
4334 make_bad_inode(inode);
563bdd61 4335 } else {
563bdd61 4336 ret = -EIO;
24676da4 4337 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4338 goto bad_inode;
ac27a0ec 4339 }
af5bc92d 4340 brelse(iloc.bh);
617ba13b 4341 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4342 unlock_new_inode(inode);
4343 return inode;
ac27a0ec
DK
4344
4345bad_inode:
567f3e9a 4346 brelse(iloc.bh);
1d1fe1ee
DH
4347 iget_failed(inode);
4348 return ERR_PTR(ret);
ac27a0ec
DK
4349}
4350
0fc1b451
AK
4351static int ext4_inode_blocks_set(handle_t *handle,
4352 struct ext4_inode *raw_inode,
4353 struct ext4_inode_info *ei)
4354{
4355 struct inode *inode = &(ei->vfs_inode);
4356 u64 i_blocks = inode->i_blocks;
4357 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4358
4359 if (i_blocks <= ~0U) {
4360 /*
4907cb7b 4361 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4362 * as multiple of 512 bytes
4363 */
8180a562 4364 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4365 raw_inode->i_blocks_high = 0;
84a8dce2 4366 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4367 return 0;
4368 }
4369 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4370 return -EFBIG;
4371
4372 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4373 /*
4374 * i_blocks can be represented in a 48 bit variable
4375 * as multiple of 512 bytes
4376 */
8180a562 4377 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4378 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4379 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4380 } else {
84a8dce2 4381 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4382 /* i_block is stored in file system block size */
4383 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4384 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4385 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4386 }
f287a1a5 4387 return 0;
0fc1b451
AK
4388}
4389
ac27a0ec
DK
4390/*
4391 * Post the struct inode info into an on-disk inode location in the
4392 * buffer-cache. This gobbles the caller's reference to the
4393 * buffer_head in the inode location struct.
4394 *
4395 * The caller must have write access to iloc->bh.
4396 */
617ba13b 4397static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4398 struct inode *inode,
830156c7 4399 struct ext4_iloc *iloc)
ac27a0ec 4400{
617ba13b
MC
4401 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4403 struct buffer_head *bh = iloc->bh;
4404 int err = 0, rc, block;
b71fc079 4405 int need_datasync = 0;
08cefc7a
EB
4406 uid_t i_uid;
4407 gid_t i_gid;
ac27a0ec
DK
4408
4409 /* For fields not not tracking in the in-memory inode,
4410 * initialise them to zero for new inodes. */
19f5fb7a 4411 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4412 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4413
ff9ddf7e 4414 ext4_get_inode_flags(ei);
ac27a0ec 4415 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4416 i_uid = i_uid_read(inode);
4417 i_gid = i_gid_read(inode);
af5bc92d 4418 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4419 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4420 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4421/*
4422 * Fix up interoperability with old kernels. Otherwise, old inodes get
4423 * re-used with the upper 16 bits of the uid/gid intact
4424 */
af5bc92d 4425 if (!ei->i_dtime) {
ac27a0ec 4426 raw_inode->i_uid_high =
08cefc7a 4427 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4428 raw_inode->i_gid_high =
08cefc7a 4429 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4430 } else {
4431 raw_inode->i_uid_high = 0;
4432 raw_inode->i_gid_high = 0;
4433 }
4434 } else {
08cefc7a
EB
4435 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4436 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4437 raw_inode->i_uid_high = 0;
4438 raw_inode->i_gid_high = 0;
4439 }
4440 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4441
4442 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4443 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4444 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4445 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4446
0fc1b451
AK
4447 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4448 goto out_brelse;
ac27a0ec 4449 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4450 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4451 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4452 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4453 raw_inode->i_file_acl_high =
4454 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4455 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4456 if (ei->i_disksize != ext4_isize(raw_inode)) {
4457 ext4_isize_set(raw_inode, ei->i_disksize);
4458 need_datasync = 1;
4459 }
a48380f7
AK
4460 if (ei->i_disksize > 0x7fffffffULL) {
4461 struct super_block *sb = inode->i_sb;
4462 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4463 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4464 EXT4_SB(sb)->s_es->s_rev_level ==
4465 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4466 /* If this is the first large file
4467 * created, add a flag to the superblock.
4468 */
4469 err = ext4_journal_get_write_access(handle,
4470 EXT4_SB(sb)->s_sbh);
4471 if (err)
4472 goto out_brelse;
4473 ext4_update_dynamic_rev(sb);
4474 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4475 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4476 ext4_handle_sync(handle);
b50924c2 4477 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4478 }
4479 }
4480 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482 if (old_valid_dev(inode->i_rdev)) {
4483 raw_inode->i_block[0] =
4484 cpu_to_le32(old_encode_dev(inode->i_rdev));
4485 raw_inode->i_block[1] = 0;
4486 } else {
4487 raw_inode->i_block[0] = 0;
4488 raw_inode->i_block[1] =
4489 cpu_to_le32(new_encode_dev(inode->i_rdev));
4490 raw_inode->i_block[2] = 0;
4491 }
f19d5870 4492 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4493 for (block = 0; block < EXT4_N_BLOCKS; block++)
4494 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4495 }
ac27a0ec 4496
25ec56b5
JNC
4497 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4498 if (ei->i_extra_isize) {
4499 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4500 raw_inode->i_version_hi =
4501 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4502 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4503 }
4504
814525f4
DW
4505 ext4_inode_csum_set(inode, raw_inode, ei);
4506
830156c7 4507 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4508 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4509 if (!err)
4510 err = rc;
19f5fb7a 4511 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4512
b71fc079 4513 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4514out_brelse:
af5bc92d 4515 brelse(bh);
617ba13b 4516 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4517 return err;
4518}
4519
4520/*
617ba13b 4521 * ext4_write_inode()
ac27a0ec
DK
4522 *
4523 * We are called from a few places:
4524 *
4525 * - Within generic_file_write() for O_SYNC files.
4526 * Here, there will be no transaction running. We wait for any running
4907cb7b 4527 * transaction to commit.
ac27a0ec
DK
4528 *
4529 * - Within sys_sync(), kupdate and such.
4530 * We wait on commit, if tol to.
4531 *
4532 * - Within prune_icache() (PF_MEMALLOC == true)
4533 * Here we simply return. We can't afford to block kswapd on the
4534 * journal commit.
4535 *
4536 * In all cases it is actually safe for us to return without doing anything,
4537 * because the inode has been copied into a raw inode buffer in
617ba13b 4538 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4539 * knfsd.
4540 *
4541 * Note that we are absolutely dependent upon all inode dirtiers doing the
4542 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4543 * which we are interested.
4544 *
4545 * It would be a bug for them to not do this. The code:
4546 *
4547 * mark_inode_dirty(inode)
4548 * stuff();
4549 * inode->i_size = expr;
4550 *
4551 * is in error because a kswapd-driven write_inode() could occur while
4552 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4553 * will no longer be on the superblock's dirty inode list.
4554 */
a9185b41 4555int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4556{
91ac6f43
FM
4557 int err;
4558
ac27a0ec
DK
4559 if (current->flags & PF_MEMALLOC)
4560 return 0;
4561
91ac6f43
FM
4562 if (EXT4_SB(inode->i_sb)->s_journal) {
4563 if (ext4_journal_current_handle()) {
4564 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4565 dump_stack();
4566 return -EIO;
4567 }
ac27a0ec 4568
a9185b41 4569 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4570 return 0;
4571
4572 err = ext4_force_commit(inode->i_sb);
4573 } else {
4574 struct ext4_iloc iloc;
ac27a0ec 4575
8b472d73 4576 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4577 if (err)
4578 return err;
a9185b41 4579 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4580 sync_dirty_buffer(iloc.bh);
4581 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4582 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4583 "IO error syncing inode");
830156c7
FM
4584 err = -EIO;
4585 }
fd2dd9fb 4586 brelse(iloc.bh);
91ac6f43
FM
4587 }
4588 return err;
ac27a0ec
DK
4589}
4590
53e87268
JK
4591/*
4592 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4593 * buffers that are attached to a page stradding i_size and are undergoing
4594 * commit. In that case we have to wait for commit to finish and try again.
4595 */
4596static void ext4_wait_for_tail_page_commit(struct inode *inode)
4597{
4598 struct page *page;
4599 unsigned offset;
4600 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4601 tid_t commit_tid = 0;
4602 int ret;
4603
4604 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4605 /*
4606 * All buffers in the last page remain valid? Then there's nothing to
4607 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4608 * blocksize case
4609 */
4610 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4611 return;
4612 while (1) {
4613 page = find_lock_page(inode->i_mapping,
4614 inode->i_size >> PAGE_CACHE_SHIFT);
4615 if (!page)
4616 return;
4617 ret = __ext4_journalled_invalidatepage(page, offset);
4618 unlock_page(page);
4619 page_cache_release(page);
4620 if (ret != -EBUSY)
4621 return;
4622 commit_tid = 0;
4623 read_lock(&journal->j_state_lock);
4624 if (journal->j_committing_transaction)
4625 commit_tid = journal->j_committing_transaction->t_tid;
4626 read_unlock(&journal->j_state_lock);
4627 if (commit_tid)
4628 jbd2_log_wait_commit(journal, commit_tid);
4629 }
4630}
4631
ac27a0ec 4632/*
617ba13b 4633 * ext4_setattr()
ac27a0ec
DK
4634 *
4635 * Called from notify_change.
4636 *
4637 * We want to trap VFS attempts to truncate the file as soon as
4638 * possible. In particular, we want to make sure that when the VFS
4639 * shrinks i_size, we put the inode on the orphan list and modify
4640 * i_disksize immediately, so that during the subsequent flushing of
4641 * dirty pages and freeing of disk blocks, we can guarantee that any
4642 * commit will leave the blocks being flushed in an unused state on
4643 * disk. (On recovery, the inode will get truncated and the blocks will
4644 * be freed, so we have a strong guarantee that no future commit will
4645 * leave these blocks visible to the user.)
4646 *
678aaf48
JK
4647 * Another thing we have to assure is that if we are in ordered mode
4648 * and inode is still attached to the committing transaction, we must
4649 * we start writeout of all the dirty pages which are being truncated.
4650 * This way we are sure that all the data written in the previous
4651 * transaction are already on disk (truncate waits for pages under
4652 * writeback).
4653 *
4654 * Called with inode->i_mutex down.
ac27a0ec 4655 */
617ba13b 4656int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4657{
4658 struct inode *inode = dentry->d_inode;
4659 int error, rc = 0;
3d287de3 4660 int orphan = 0;
ac27a0ec
DK
4661 const unsigned int ia_valid = attr->ia_valid;
4662
4663 error = inode_change_ok(inode, attr);
4664 if (error)
4665 return error;
4666
12755627 4667 if (is_quota_modification(inode, attr))
871a2931 4668 dquot_initialize(inode);
08cefc7a
EB
4669 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4670 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4671 handle_t *handle;
4672
4673 /* (user+group)*(old+new) structure, inode write (sb,
4674 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4675 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4676 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4677 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4678 if (IS_ERR(handle)) {
4679 error = PTR_ERR(handle);
4680 goto err_out;
4681 }
b43fa828 4682 error = dquot_transfer(inode, attr);
ac27a0ec 4683 if (error) {
617ba13b 4684 ext4_journal_stop(handle);
ac27a0ec
DK
4685 return error;
4686 }
4687 /* Update corresponding info in inode so that everything is in
4688 * one transaction */
4689 if (attr->ia_valid & ATTR_UID)
4690 inode->i_uid = attr->ia_uid;
4691 if (attr->ia_valid & ATTR_GID)
4692 inode->i_gid = attr->ia_gid;
617ba13b
MC
4693 error = ext4_mark_inode_dirty(handle, inode);
4694 ext4_journal_stop(handle);
ac27a0ec
DK
4695 }
4696
263c784f
JK
4697 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4698 handle_t *handle;
4699 loff_t oldsize = inode->i_size;
562c72aa 4700
12e9b892 4701 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4702 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4703
0c095c7f
TT
4704 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4705 return -EFBIG;
e2b46574 4706 }
263c784f
JK
4707 if (S_ISREG(inode->i_mode) &&
4708 (attr->ia_size < inode->i_size)) {
4709 if (ext4_should_order_data(inode)) {
4710 error = ext4_begin_ordered_truncate(inode,
678aaf48 4711 attr->ia_size);
263c784f 4712 if (error)
678aaf48 4713 goto err_out;
263c784f
JK
4714 }
4715 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4716 if (IS_ERR(handle)) {
4717 error = PTR_ERR(handle);
4718 goto err_out;
4719 }
4720 if (ext4_handle_valid(handle)) {
4721 error = ext4_orphan_add(handle, inode);
4722 orphan = 1;
4723 }
4724 EXT4_I(inode)->i_disksize = attr->ia_size;
4725 rc = ext4_mark_inode_dirty(handle, inode);
4726 if (!error)
4727 error = rc;
4728 ext4_journal_stop(handle);
4729 if (error) {
4730 ext4_orphan_del(NULL, inode);
678aaf48
JK
4731 goto err_out;
4732 }
4733 }
53e87268 4734
263c784f
JK
4735 i_size_write(inode, attr->ia_size);
4736 /*
4737 * Blocks are going to be removed from the inode. Wait
4738 * for dio in flight. Temporarily disable
4739 * dioread_nolock to prevent livelock.
4740 */
4741 if (orphan) {
4742 if (!ext4_should_journal_data(inode)) {
4743 ext4_inode_block_unlocked_dio(inode);
4744 inode_dio_wait(inode);
4745 ext4_inode_resume_unlocked_dio(inode);
4746 } else
4747 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4748 }
263c784f
JK
4749 /*
4750 * Truncate pagecache after we've waited for commit
4751 * in data=journal mode to make pages freeable.
4752 */
4753 truncate_pagecache(inode, oldsize, inode->i_size);
072bd7ea 4754 }
263c784f
JK
4755 /*
4756 * We want to call ext4_truncate() even if attr->ia_size ==
4757 * inode->i_size for cases like truncation of fallocated space
4758 */
4759 if (attr->ia_valid & ATTR_SIZE)
4760 ext4_truncate(inode);
ac27a0ec 4761
1025774c
CH
4762 if (!rc) {
4763 setattr_copy(inode, attr);
4764 mark_inode_dirty(inode);
4765 }
4766
4767 /*
4768 * If the call to ext4_truncate failed to get a transaction handle at
4769 * all, we need to clean up the in-core orphan list manually.
4770 */
3d287de3 4771 if (orphan && inode->i_nlink)
617ba13b 4772 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4773
4774 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4775 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4776
4777err_out:
617ba13b 4778 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4779 if (!error)
4780 error = rc;
4781 return error;
4782}
4783
3e3398a0
MC
4784int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4785 struct kstat *stat)
4786{
4787 struct inode *inode;
bb39c83c 4788 unsigned long long delalloc_blocks;
3e3398a0
MC
4789
4790 inode = dentry->d_inode;
4791 generic_fillattr(inode, stat);
4792
4793 /*
4794 * We can't update i_blocks if the block allocation is delayed
4795 * otherwise in the case of system crash before the real block
4796 * allocation is done, we will have i_blocks inconsistent with
4797 * on-disk file blocks.
4798 * We always keep i_blocks updated together with real
4799 * allocation. But to not confuse with user, stat
4800 * will return the blocks that include the delayed allocation
4801 * blocks for this file.
4802 */
96607551
TM
4803 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4804 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4805
bb39c83c 4806 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4807 return 0;
4808}
ac27a0ec 4809
a02908f1
MC
4810static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4811{
12e9b892 4812 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4813 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4814 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4815}
ac51d837 4816
ac27a0ec 4817/*
a02908f1
MC
4818 * Account for index blocks, block groups bitmaps and block group
4819 * descriptor blocks if modify datablocks and index blocks
4820 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4821 *
a02908f1 4822 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4823 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4824 * they could still across block group boundary.
ac27a0ec 4825 *
a02908f1
MC
4826 * Also account for superblock, inode, quota and xattr blocks
4827 */
1f109d5a 4828static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4829{
8df9675f
TT
4830 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4831 int gdpblocks;
a02908f1
MC
4832 int idxblocks;
4833 int ret = 0;
4834
4835 /*
4836 * How many index blocks need to touch to modify nrblocks?
4837 * The "Chunk" flag indicating whether the nrblocks is
4838 * physically contiguous on disk
4839 *
4840 * For Direct IO and fallocate, they calls get_block to allocate
4841 * one single extent at a time, so they could set the "Chunk" flag
4842 */
4843 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4844
4845 ret = idxblocks;
4846
4847 /*
4848 * Now let's see how many group bitmaps and group descriptors need
4849 * to account
4850 */
4851 groups = idxblocks;
4852 if (chunk)
4853 groups += 1;
4854 else
4855 groups += nrblocks;
4856
4857 gdpblocks = groups;
8df9675f
TT
4858 if (groups > ngroups)
4859 groups = ngroups;
a02908f1
MC
4860 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4861 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4862
4863 /* bitmaps and block group descriptor blocks */
4864 ret += groups + gdpblocks;
4865
4866 /* Blocks for super block, inode, quota and xattr blocks */
4867 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4868
4869 return ret;
4870}
4871
4872/*
25985edc 4873 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4874 * the modification of a single pages into a single transaction,
4875 * which may include multiple chunks of block allocations.
ac27a0ec 4876 *
525f4ed8 4877 * This could be called via ext4_write_begin()
ac27a0ec 4878 *
525f4ed8 4879 * We need to consider the worse case, when
a02908f1 4880 * one new block per extent.
ac27a0ec 4881 */
a86c6181 4882int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4883{
617ba13b 4884 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4885 int ret;
4886
a02908f1 4887 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4888
a02908f1 4889 /* Account for data blocks for journalled mode */
617ba13b 4890 if (ext4_should_journal_data(inode))
a02908f1 4891 ret += bpp;
ac27a0ec
DK
4892 return ret;
4893}
f3bd1f3f
MC
4894
4895/*
4896 * Calculate the journal credits for a chunk of data modification.
4897 *
4898 * This is called from DIO, fallocate or whoever calling
79e83036 4899 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4900 *
4901 * journal buffers for data blocks are not included here, as DIO
4902 * and fallocate do no need to journal data buffers.
4903 */
4904int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4905{
4906 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4907}
4908
ac27a0ec 4909/*
617ba13b 4910 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4911 * Give this, we know that the caller already has write access to iloc->bh.
4912 */
617ba13b 4913int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4914 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4915{
4916 int err = 0;
4917
c64db50e 4918 if (IS_I_VERSION(inode))
25ec56b5
JNC
4919 inode_inc_iversion(inode);
4920
ac27a0ec
DK
4921 /* the do_update_inode consumes one bh->b_count */
4922 get_bh(iloc->bh);
4923
dab291af 4924 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4925 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4926 put_bh(iloc->bh);
4927 return err;
4928}
4929
4930/*
4931 * On success, We end up with an outstanding reference count against
4932 * iloc->bh. This _must_ be cleaned up later.
4933 */
4934
4935int
617ba13b
MC
4936ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4937 struct ext4_iloc *iloc)
ac27a0ec 4938{
0390131b
FM
4939 int err;
4940
4941 err = ext4_get_inode_loc(inode, iloc);
4942 if (!err) {
4943 BUFFER_TRACE(iloc->bh, "get_write_access");
4944 err = ext4_journal_get_write_access(handle, iloc->bh);
4945 if (err) {
4946 brelse(iloc->bh);
4947 iloc->bh = NULL;
ac27a0ec
DK
4948 }
4949 }
617ba13b 4950 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4951 return err;
4952}
4953
6dd4ee7c
KS
4954/*
4955 * Expand an inode by new_extra_isize bytes.
4956 * Returns 0 on success or negative error number on failure.
4957 */
1d03ec98
AK
4958static int ext4_expand_extra_isize(struct inode *inode,
4959 unsigned int new_extra_isize,
4960 struct ext4_iloc iloc,
4961 handle_t *handle)
6dd4ee7c
KS
4962{
4963 struct ext4_inode *raw_inode;
4964 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4965
4966 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4967 return 0;
4968
4969 raw_inode = ext4_raw_inode(&iloc);
4970
4971 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4972
4973 /* No extended attributes present */
19f5fb7a
TT
4974 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4975 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4976 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4977 new_extra_isize);
4978 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4979 return 0;
4980 }
4981
4982 /* try to expand with EAs present */
4983 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4984 raw_inode, handle);
4985}
4986
ac27a0ec
DK
4987/*
4988 * What we do here is to mark the in-core inode as clean with respect to inode
4989 * dirtiness (it may still be data-dirty).
4990 * This means that the in-core inode may be reaped by prune_icache
4991 * without having to perform any I/O. This is a very good thing,
4992 * because *any* task may call prune_icache - even ones which
4993 * have a transaction open against a different journal.
4994 *
4995 * Is this cheating? Not really. Sure, we haven't written the
4996 * inode out, but prune_icache isn't a user-visible syncing function.
4997 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4998 * we start and wait on commits.
ac27a0ec 4999 */
617ba13b 5000int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5001{
617ba13b 5002 struct ext4_iloc iloc;
6dd4ee7c
KS
5003 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5004 static unsigned int mnt_count;
5005 int err, ret;
ac27a0ec
DK
5006
5007 might_sleep();
7ff9c073 5008 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5009 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5010 if (ext4_handle_valid(handle) &&
5011 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5012 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5013 /*
5014 * We need extra buffer credits since we may write into EA block
5015 * with this same handle. If journal_extend fails, then it will
5016 * only result in a minor loss of functionality for that inode.
5017 * If this is felt to be critical, then e2fsck should be run to
5018 * force a large enough s_min_extra_isize.
5019 */
5020 if ((jbd2_journal_extend(handle,
5021 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5022 ret = ext4_expand_extra_isize(inode,
5023 sbi->s_want_extra_isize,
5024 iloc, handle);
5025 if (ret) {
19f5fb7a
TT
5026 ext4_set_inode_state(inode,
5027 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5028 if (mnt_count !=
5029 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5030 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5031 "Unable to expand inode %lu. Delete"
5032 " some EAs or run e2fsck.",
5033 inode->i_ino);
c1bddad9
AK
5034 mnt_count =
5035 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5036 }
5037 }
5038 }
5039 }
ac27a0ec 5040 if (!err)
617ba13b 5041 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5042 return err;
5043}
5044
5045/*
617ba13b 5046 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5047 *
5048 * We're really interested in the case where a file is being extended.
5049 * i_size has been changed by generic_commit_write() and we thus need
5050 * to include the updated inode in the current transaction.
5051 *
5dd4056d 5052 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5053 * are allocated to the file.
5054 *
5055 * If the inode is marked synchronous, we don't honour that here - doing
5056 * so would cause a commit on atime updates, which we don't bother doing.
5057 * We handle synchronous inodes at the highest possible level.
5058 */
aa385729 5059void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5060{
ac27a0ec
DK
5061 handle_t *handle;
5062
9924a92a 5063 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5064 if (IS_ERR(handle))
5065 goto out;
f3dc272f 5066
f3dc272f
CW
5067 ext4_mark_inode_dirty(handle, inode);
5068
617ba13b 5069 ext4_journal_stop(handle);
ac27a0ec
DK
5070out:
5071 return;
5072}
5073
5074#if 0
5075/*
5076 * Bind an inode's backing buffer_head into this transaction, to prevent
5077 * it from being flushed to disk early. Unlike
617ba13b 5078 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5079 * returns no iloc structure, so the caller needs to repeat the iloc
5080 * lookup to mark the inode dirty later.
5081 */
617ba13b 5082static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5083{
617ba13b 5084 struct ext4_iloc iloc;
ac27a0ec
DK
5085
5086 int err = 0;
5087 if (handle) {
617ba13b 5088 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5089 if (!err) {
5090 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5091 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5092 if (!err)
0390131b 5093 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5094 NULL,
0390131b 5095 iloc.bh);
ac27a0ec
DK
5096 brelse(iloc.bh);
5097 }
5098 }
617ba13b 5099 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5100 return err;
5101}
5102#endif
5103
617ba13b 5104int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5105{
5106 journal_t *journal;
5107 handle_t *handle;
5108 int err;
5109
5110 /*
5111 * We have to be very careful here: changing a data block's
5112 * journaling status dynamically is dangerous. If we write a
5113 * data block to the journal, change the status and then delete
5114 * that block, we risk forgetting to revoke the old log record
5115 * from the journal and so a subsequent replay can corrupt data.
5116 * So, first we make sure that the journal is empty and that
5117 * nobody is changing anything.
5118 */
5119
617ba13b 5120 journal = EXT4_JOURNAL(inode);
0390131b
FM
5121 if (!journal)
5122 return 0;
d699594d 5123 if (is_journal_aborted(journal))
ac27a0ec 5124 return -EROFS;
2aff57b0
YY
5125 /* We have to allocate physical blocks for delalloc blocks
5126 * before flushing journal. otherwise delalloc blocks can not
5127 * be allocated any more. even more truncate on delalloc blocks
5128 * could trigger BUG by flushing delalloc blocks in journal.
5129 * There is no delalloc block in non-journal data mode.
5130 */
5131 if (val && test_opt(inode->i_sb, DELALLOC)) {
5132 err = ext4_alloc_da_blocks(inode);
5133 if (err < 0)
5134 return err;
5135 }
ac27a0ec 5136
17335dcc
DM
5137 /* Wait for all existing dio workers */
5138 ext4_inode_block_unlocked_dio(inode);
5139 inode_dio_wait(inode);
5140
dab291af 5141 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5142
5143 /*
5144 * OK, there are no updates running now, and all cached data is
5145 * synced to disk. We are now in a completely consistent state
5146 * which doesn't have anything in the journal, and we know that
5147 * no filesystem updates are running, so it is safe to modify
5148 * the inode's in-core data-journaling state flag now.
5149 */
5150
5151 if (val)
12e9b892 5152 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5153 else {
5154 jbd2_journal_flush(journal);
12e9b892 5155 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5156 }
617ba13b 5157 ext4_set_aops(inode);
ac27a0ec 5158
dab291af 5159 jbd2_journal_unlock_updates(journal);
17335dcc 5160 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5161
5162 /* Finally we can mark the inode as dirty. */
5163
9924a92a 5164 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5165 if (IS_ERR(handle))
5166 return PTR_ERR(handle);
5167
617ba13b 5168 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5169 ext4_handle_sync(handle);
617ba13b
MC
5170 ext4_journal_stop(handle);
5171 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5172
5173 return err;
5174}
2e9ee850
AK
5175
5176static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5177{
5178 return !buffer_mapped(bh);
5179}
5180
c2ec175c 5181int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5182{
c2ec175c 5183 struct page *page = vmf->page;
2e9ee850
AK
5184 loff_t size;
5185 unsigned long len;
9ea7df53 5186 int ret;
2e9ee850 5187 struct file *file = vma->vm_file;
496ad9aa 5188 struct inode *inode = file_inode(file);
2e9ee850 5189 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5190 handle_t *handle;
5191 get_block_t *get_block;
5192 int retries = 0;
2e9ee850 5193
8e8ad8a5 5194 sb_start_pagefault(inode->i_sb);
041bbb6d 5195 file_update_time(vma->vm_file);
9ea7df53
JK
5196 /* Delalloc case is easy... */
5197 if (test_opt(inode->i_sb, DELALLOC) &&
5198 !ext4_should_journal_data(inode) &&
5199 !ext4_nonda_switch(inode->i_sb)) {
5200 do {
5201 ret = __block_page_mkwrite(vma, vmf,
5202 ext4_da_get_block_prep);
5203 } while (ret == -ENOSPC &&
5204 ext4_should_retry_alloc(inode->i_sb, &retries));
5205 goto out_ret;
2e9ee850 5206 }
0e499890
DW
5207
5208 lock_page(page);
9ea7df53
JK
5209 size = i_size_read(inode);
5210 /* Page got truncated from under us? */
5211 if (page->mapping != mapping || page_offset(page) > size) {
5212 unlock_page(page);
5213 ret = VM_FAULT_NOPAGE;
5214 goto out;
0e499890 5215 }
2e9ee850
AK
5216
5217 if (page->index == size >> PAGE_CACHE_SHIFT)
5218 len = size & ~PAGE_CACHE_MASK;
5219 else
5220 len = PAGE_CACHE_SIZE;
a827eaff 5221 /*
9ea7df53
JK
5222 * Return if we have all the buffers mapped. This avoids the need to do
5223 * journal_start/journal_stop which can block and take a long time
a827eaff 5224 */
2e9ee850 5225 if (page_has_buffers(page)) {
f19d5870
TM
5226 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5227 0, len, NULL,
5228 ext4_bh_unmapped)) {
9ea7df53 5229 /* Wait so that we don't change page under IO */
1d1d1a76 5230 wait_for_stable_page(page);
9ea7df53
JK
5231 ret = VM_FAULT_LOCKED;
5232 goto out;
a827eaff 5233 }
2e9ee850 5234 }
a827eaff 5235 unlock_page(page);
9ea7df53
JK
5236 /* OK, we need to fill the hole... */
5237 if (ext4_should_dioread_nolock(inode))
5238 get_block = ext4_get_block_write;
5239 else
5240 get_block = ext4_get_block;
5241retry_alloc:
9924a92a
TT
5242 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5243 ext4_writepage_trans_blocks(inode));
9ea7df53 5244 if (IS_ERR(handle)) {
c2ec175c 5245 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5246 goto out;
5247 }
5248 ret = __block_page_mkwrite(vma, vmf, get_block);
5249 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5250 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5251 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5252 unlock_page(page);
5253 ret = VM_FAULT_SIGBUS;
fcbb5515 5254 ext4_journal_stop(handle);
9ea7df53
JK
5255 goto out;
5256 }
5257 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5258 }
5259 ext4_journal_stop(handle);
5260 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5261 goto retry_alloc;
5262out_ret:
5263 ret = block_page_mkwrite_return(ret);
5264out:
8e8ad8a5 5265 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5266 return ret;
5267}