ext3: ensure fast symlinks are NUL-terminated
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
a1d6cc56
AK
44#define MPAGE_DA_EXTENT_TAIL 0x01
45
678aaf48
JK
46static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48{
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51}
52
64769240
AT
53static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
ac27a0ec
DK
55/*
56 * Test whether an inode is a fast symlink.
57 */
617ba13b 58static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 59{
617ba13b 60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64}
65
66/*
617ba13b 67 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
617ba13b
MC
75int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
77{
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
617ba13b
MC
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 96 if (bh) {
dab291af 97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 98 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
617ba13b
MC
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 108 if (err)
46e665e9 109 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113}
114
115/*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119static unsigned long blocks_for_truncate(struct inode *inode)
120{
725d26d3 121 ext4_lblk_t needed;
ac27a0ec
DK
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
617ba13b 128 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
617ba13b
MC
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 138
617ba13b 139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
140}
141
142/*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152static handle_t *start_transaction(struct inode *inode)
153{
154 handle_t *result;
155
617ba13b 156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
157 if (!IS_ERR(result))
158 return result;
159
617ba13b 160 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
161 return result;
162}
163
164/*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171{
617ba13b 172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 173 return 0;
617ba13b 174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
175 return 0;
176 return 1;
177}
178
179/*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
617ba13b 184static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
185{
186 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
188}
189
190/*
191 * Called at the last iput() if i_nlink is zero.
192 */
af5bc92d 193void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
194{
195 handle_t *handle;
bc965ab3 196 int err;
ac27a0ec 197
678aaf48
JK
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
bc965ab3 205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 206 if (IS_ERR(handle)) {
bc965ab3 207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
617ba13b 213 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
bc965ab3
TT
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
ac27a0ec 226 if (inode->i_blocks)
617ba13b 227 ext4_truncate(inode);
bc965ab3
TT
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
ac27a0ec 248 /*
617ba13b 249 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 250 * AKPM: I think this can be inside the above `if'.
617ba13b 251 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 252 * deletion of a non-existent orphan - this is because we don't
617ba13b 253 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
254 * (Well, we could do this if we need to, but heck - it works)
255 */
617ba13b
MC
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
617ba13b 266 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
617ba13b
MC
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
ac27a0ec
DK
272 return;
273no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275}
276
277typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281} Indirect;
282
283static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284{
285 p->key = *(p->p = v);
286 p->bh = bh;
287}
288
ac27a0ec 289/**
617ba13b 290 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
8c55e204
DK
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
ac27a0ec 296 *
617ba13b 297 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310/*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
617ba13b 320static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 323{
617ba13b
MC
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
af5bc92d 333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
af5bc92d 337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 338 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 342 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 347 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
e2b46574 353 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 354 "block %lu > max",
e2b46574
ES
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
ac27a0ec
DK
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361}
362
363/**
617ba13b 364 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
ac27a0ec
DK
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
389 *
390 * Need to be called with
0e855ac8 391 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 392 */
725d26d3
AK
393static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
ac27a0ec
DK
395 Indirect chain[4], int *err)
396{
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
af5bc92d 403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
af5bc92d 410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
ac27a0ec
DK
417failure:
418 *err = -EIO;
419no_block:
420 return p;
421}
422
423/**
617ba13b 424 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
1cc8dcf5 428 * This function returns the preferred place for block allocation.
ac27a0ec
DK
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
617ba13b 443static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 444{
617ba13b 445 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 447 __le32 *p;
617ba13b 448 ext4_fsblk_t bg_start;
74d3487f 449 ext4_fsblk_t last_block;
617ba13b 450 ext4_grpblk_t colour;
ac27a0ec
DK
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
617ba13b 466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
617ba13b 471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
474 return bg_start + colour;
475}
476
477/**
1cc8dcf5 478 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
479 * @inode: owner
480 * @block: block we want
ac27a0ec 481 * @partial: pointer to the last triple within a chain
ac27a0ec 482 *
1cc8dcf5 483 * Normally this function find the preferred place for block allocation,
fb01bfda 484 * returns it.
ac27a0ec 485 */
725d26d3 486static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 487 Indirect *partial)
ac27a0ec 488{
ac27a0ec 489 /*
c2ea3fde 490 * XXX need to get goal block from mballoc's data structures
ac27a0ec 491 */
ac27a0ec 492
617ba13b 493 return ext4_find_near(inode, partial);
ac27a0ec
DK
494}
495
496/**
617ba13b 497 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
498 * of direct blocks need to be allocated for the given branch.
499 *
500 * @branch: chain of indirect blocks
501 * @k: number of blocks need for indirect blocks
502 * @blks: number of data blocks to be mapped.
503 * @blocks_to_boundary: the offset in the indirect block
504 *
505 * return the total number of blocks to be allocate, including the
506 * direct and indirect blocks.
507 */
617ba13b 508static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
509 int blocks_to_boundary)
510{
511 unsigned long count = 0;
512
513 /*
514 * Simple case, [t,d]Indirect block(s) has not allocated yet
515 * then it's clear blocks on that path have not allocated
516 */
517 if (k > 0) {
518 /* right now we don't handle cross boundary allocation */
519 if (blks < blocks_to_boundary + 1)
520 count += blks;
521 else
522 count += blocks_to_boundary + 1;
523 return count;
524 }
525
526 count++;
527 while (count < blks && count <= blocks_to_boundary &&
528 le32_to_cpu(*(branch[0].p + count)) == 0) {
529 count++;
530 }
531 return count;
532}
533
534/**
617ba13b 535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
536 * @indirect_blks: the number of blocks need to allocate for indirect
537 * blocks
538 *
539 * @new_blocks: on return it will store the new block numbers for
540 * the indirect blocks(if needed) and the first direct block,
541 * @blks: on return it will store the total number of allocated
542 * direct blocks
543 */
617ba13b 544static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
545 ext4_lblk_t iblock, ext4_fsblk_t goal,
546 int indirect_blks, int blks,
547 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
548{
549 int target, i;
7061eba7 550 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 551 int index = 0;
617ba13b 552 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
553 int ret = 0;
554
555 /*
556 * Here we try to allocate the requested multiple blocks at once,
557 * on a best-effort basis.
558 * To build a branch, we should allocate blocks for
559 * the indirect blocks(if not allocated yet), and at least
560 * the first direct block of this branch. That's the
561 * minimum number of blocks need to allocate(required)
562 */
7061eba7
AK
563 /* first we try to allocate the indirect blocks */
564 target = indirect_blks;
565 while (target > 0) {
ac27a0ec
DK
566 count = target;
567 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
568 current_block = ext4_new_meta_blocks(handle, inode,
569 goal, &count, err);
ac27a0ec
DK
570 if (*err)
571 goto failed_out;
572
573 target -= count;
574 /* allocate blocks for indirect blocks */
575 while (index < indirect_blks && count) {
576 new_blocks[index++] = current_block++;
577 count--;
578 }
7061eba7
AK
579 if (count > 0) {
580 /*
581 * save the new block number
582 * for the first direct block
583 */
584 new_blocks[index] = current_block;
585 printk(KERN_INFO "%s returned more blocks than "
586 "requested\n", __func__);
587 WARN_ON(1);
ac27a0ec 588 break;
7061eba7 589 }
ac27a0ec
DK
590 }
591
7061eba7
AK
592 target = blks - count ;
593 blk_allocated = count;
594 if (!target)
595 goto allocated;
596 /* Now allocate data blocks */
597 count = target;
654b4908 598 /* allocating blocks for data blocks */
7061eba7
AK
599 current_block = ext4_new_blocks(handle, inode, iblock,
600 goal, &count, err);
601 if (*err && (target == blks)) {
602 /*
603 * if the allocation failed and we didn't allocate
604 * any blocks before
605 */
606 goto failed_out;
607 }
608 if (!*err) {
609 if (target == blks) {
610 /*
611 * save the new block number
612 * for the first direct block
613 */
614 new_blocks[index] = current_block;
615 }
616 blk_allocated += count;
617 }
618allocated:
ac27a0ec 619 /* total number of blocks allocated for direct blocks */
7061eba7 620 ret = blk_allocated;
ac27a0ec
DK
621 *err = 0;
622 return ret;
623failed_out:
af5bc92d 624 for (i = 0; i < index; i++)
c9de560d 625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
626 return ret;
627}
628
629/**
617ba13b 630 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
631 * @inode: owner
632 * @indirect_blks: number of allocated indirect blocks
633 * @blks: number of allocated direct blocks
634 * @offsets: offsets (in the blocks) to store the pointers to next.
635 * @branch: place to store the chain in.
636 *
637 * This function allocates blocks, zeroes out all but the last one,
638 * links them into chain and (if we are synchronous) writes them to disk.
639 * In other words, it prepares a branch that can be spliced onto the
640 * inode. It stores the information about that chain in the branch[], in
617ba13b 641 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
642 * we had read the existing part of chain and partial points to the last
643 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 644 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
645 * place chain is disconnected - *branch->p is still zero (we did not
646 * set the last link), but branch->key contains the number that should
647 * be placed into *branch->p to fill that gap.
648 *
649 * If allocation fails we free all blocks we've allocated (and forget
650 * their buffer_heads) and return the error value the from failed
617ba13b 651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
652 * as described above and return 0.
653 */
617ba13b 654static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
655 ext4_lblk_t iblock, int indirect_blks,
656 int *blks, ext4_fsblk_t goal,
657 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
658{
659 int blocksize = inode->i_sb->s_blocksize;
660 int i, n = 0;
661 int err = 0;
662 struct buffer_head *bh;
663 int num;
617ba13b
MC
664 ext4_fsblk_t new_blocks[4];
665 ext4_fsblk_t current_block;
ac27a0ec 666
7061eba7 667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
668 *blks, new_blocks, &err);
669 if (err)
670 return err;
671
672 branch[0].key = cpu_to_le32(new_blocks[0]);
673 /*
674 * metadata blocks and data blocks are allocated.
675 */
676 for (n = 1; n <= indirect_blks; n++) {
677 /*
678 * Get buffer_head for parent block, zero it out
679 * and set the pointer to new one, then send
680 * parent to disk.
681 */
682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683 branch[n].bh = bh;
684 lock_buffer(bh);
685 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 686 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
687 if (err) {
688 unlock_buffer(bh);
689 brelse(bh);
690 goto failed;
691 }
692
693 memset(bh->b_data, 0, blocksize);
694 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695 branch[n].key = cpu_to_le32(new_blocks[n]);
696 *branch[n].p = branch[n].key;
af5bc92d 697 if (n == indirect_blks) {
ac27a0ec
DK
698 current_block = new_blocks[n];
699 /*
700 * End of chain, update the last new metablock of
701 * the chain to point to the new allocated
702 * data blocks numbers
703 */
704 for (i=1; i < num; i++)
705 *(branch[n].p + i) = cpu_to_le32(++current_block);
706 }
707 BUFFER_TRACE(bh, "marking uptodate");
708 set_buffer_uptodate(bh);
709 unlock_buffer(bh);
710
617ba13b
MC
711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
713 if (err)
714 goto failed;
715 }
716 *blks = num;
717 return err;
718failed:
719 /* Allocation failed, free what we already allocated */
720 for (i = 1; i <= n ; i++) {
dab291af 721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 722 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 723 }
af5bc92d 724 for (i = 0; i < indirect_blks; i++)
c9de560d 725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 726
c9de560d 727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
728
729 return err;
730}
731
732/**
617ba13b 733 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
734 * @inode: owner
735 * @block: (logical) number of block we are adding
736 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 737 * ext4_alloc_branch)
ac27a0ec
DK
738 * @where: location of missing link
739 * @num: number of indirect blocks we are adding
740 * @blks: number of direct blocks we are adding
741 *
742 * This function fills the missing link and does all housekeeping needed in
743 * inode (->i_blocks, etc.). In case of success we end up with the full
744 * chain to new block and return 0.
745 */
617ba13b 746static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 747 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
748{
749 int i;
750 int err = 0;
617ba13b 751 ext4_fsblk_t current_block;
ac27a0ec 752
ac27a0ec
DK
753 /*
754 * If we're splicing into a [td]indirect block (as opposed to the
755 * inode) then we need to get write access to the [td]indirect block
756 * before the splice.
757 */
758 if (where->bh) {
759 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 760 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
761 if (err)
762 goto err_out;
763 }
764 /* That's it */
765
766 *where->p = where->key;
767
768 /*
769 * Update the host buffer_head or inode to point to more just allocated
770 * direct blocks blocks
771 */
772 if (num == 0 && blks > 1) {
773 current_block = le32_to_cpu(where->key) + 1;
774 for (i = 1; i < blks; i++)
af5bc92d 775 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
776 }
777
ac27a0ec
DK
778 /* We are done with atomic stuff, now do the rest of housekeeping */
779
ef7f3835 780 inode->i_ctime = ext4_current_time(inode);
617ba13b 781 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
782
783 /* had we spliced it onto indirect block? */
784 if (where->bh) {
785 /*
786 * If we spliced it onto an indirect block, we haven't
787 * altered the inode. Note however that if it is being spliced
788 * onto an indirect block at the very end of the file (the
789 * file is growing) then we *will* alter the inode to reflect
790 * the new i_size. But that is not done here - it is done in
617ba13b 791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
792 */
793 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
796 if (err)
797 goto err_out;
798 } else {
799 /*
800 * OK, we spliced it into the inode itself on a direct block.
801 * Inode was dirtied above.
802 */
803 jbd_debug(5, "splicing direct\n");
804 }
805 return err;
806
807err_out:
808 for (i = 1; i <= num; i++) {
dab291af 809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 810 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
811 ext4_free_blocks(handle, inode,
812 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 813 }
c9de560d 814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
815
816 return err;
817}
818
819/*
820 * Allocation strategy is simple: if we have to allocate something, we will
821 * have to go the whole way to leaf. So let's do it before attaching anything
822 * to tree, set linkage between the newborn blocks, write them if sync is
823 * required, recheck the path, free and repeat if check fails, otherwise
824 * set the last missing link (that will protect us from any truncate-generated
825 * removals - all blocks on the path are immune now) and possibly force the
826 * write on the parent block.
827 * That has a nice additional property: no special recovery from the failed
828 * allocations is needed - we simply release blocks and do not touch anything
829 * reachable from inode.
830 *
831 * `handle' can be NULL if create == 0.
832 *
ac27a0ec
DK
833 * return > 0, # of blocks mapped or allocated.
834 * return = 0, if plain lookup failed.
835 * return < 0, error case.
c278bfec
AK
836 *
837 *
838 * Need to be called with
0e855ac8
AK
839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 841 */
617ba13b 842int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 843 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
844 struct buffer_head *bh_result,
845 int create, int extend_disksize)
846{
847 int err = -EIO;
725d26d3 848 ext4_lblk_t offsets[4];
ac27a0ec
DK
849 Indirect chain[4];
850 Indirect *partial;
617ba13b 851 ext4_fsblk_t goal;
ac27a0ec
DK
852 int indirect_blks;
853 int blocks_to_boundary = 0;
854 int depth;
617ba13b 855 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 856 int count = 0;
617ba13b 857 ext4_fsblk_t first_block = 0;
61628a3f 858 loff_t disksize;
ac27a0ec
DK
859
860
a86c6181 861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 862 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
863 depth = ext4_block_to_path(inode, iblock, offsets,
864 &blocks_to_boundary);
ac27a0ec
DK
865
866 if (depth == 0)
867 goto out;
868
617ba13b 869 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
870
871 /* Simplest case - block found, no allocation needed */
872 if (!partial) {
873 first_block = le32_to_cpu(chain[depth - 1].key);
874 clear_buffer_new(bh_result);
875 count++;
876 /*map more blocks*/
877 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 878 ext4_fsblk_t blk;
ac27a0ec 879
ac27a0ec
DK
880 blk = le32_to_cpu(*(chain[depth-1].p + count));
881
882 if (blk == first_block + count)
883 count++;
884 else
885 break;
886 }
c278bfec 887 goto got_it;
ac27a0ec
DK
888 }
889
890 /* Next simple case - plain lookup or failed read of indirect block */
891 if (!create || err == -EIO)
892 goto cleanup;
893
ac27a0ec 894 /*
c2ea3fde 895 * Okay, we need to do block allocation.
ac27a0ec 896 */
fb01bfda 897 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
898
899 /* the number of blocks need to allocate for [d,t]indirect blocks */
900 indirect_blks = (chain + depth) - partial - 1;
901
902 /*
903 * Next look up the indirect map to count the totoal number of
904 * direct blocks to allocate for this branch.
905 */
617ba13b 906 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
907 maxblocks, blocks_to_boundary);
908 /*
617ba13b 909 * Block out ext4_truncate while we alter the tree
ac27a0ec 910 */
7061eba7
AK
911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912 &count, goal,
913 offsets + (partial - chain), partial);
ac27a0ec
DK
914
915 /*
617ba13b 916 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
917 * on the new chain if there is a failure, but that risks using
918 * up transaction credits, especially for bitmaps where the
919 * credits cannot be returned. Can we handle this somehow? We
920 * may need to return -EAGAIN upwards in the worst case. --sct
921 */
922 if (!err)
617ba13b 923 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
924 partial, indirect_blks, count);
925 /*
0e855ac8 926 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 927 * protect it if you're about to implement concurrent
617ba13b 928 * ext4_get_block() -bzzz
ac27a0ec 929 */
61628a3f
MC
930 if (!err && extend_disksize) {
931 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932 if (disksize > i_size_read(inode))
933 disksize = i_size_read(inode);
934 if (disksize > ei->i_disksize)
935 ei->i_disksize = disksize;
936 }
ac27a0ec
DK
937 if (err)
938 goto cleanup;
939
940 set_buffer_new(bh_result);
941got_it:
942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943 if (count > blocks_to_boundary)
944 set_buffer_boundary(bh_result);
945 err = count;
946 /* Clean up and exit */
947 partial = chain + depth - 1; /* the whole chain */
948cleanup:
949 while (partial > chain) {
950 BUFFER_TRACE(partial->bh, "call brelse");
951 brelse(partial->bh);
952 partial--;
953 }
954 BUFFER_TRACE(bh_result, "returned");
955out:
956 return err;
957}
958
12219aea
AK
959/*
960 * Calculate the number of metadata blocks need to reserve
961 * to allocate @blocks for non extent file based file
962 */
963static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964{
965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966 int ind_blks, dind_blks, tind_blks;
967
968 /* number of new indirect blocks needed */
969 ind_blks = (blocks + icap - 1) / icap;
970
971 dind_blks = (ind_blks + icap - 1) / icap;
972
973 tind_blks = 1;
974
975 return ind_blks + dind_blks + tind_blks;
976}
977
978/*
979 * Calculate the number of metadata blocks need to reserve
980 * to allocate given number of blocks
981 */
982static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983{
cd213226
MC
984 if (!blocks)
985 return 0;
986
12219aea
AK
987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988 return ext4_ext_calc_metadata_amount(inode, blocks);
989
990 return ext4_indirect_calc_metadata_amount(inode, blocks);
991}
992
993static void ext4_da_update_reserve_space(struct inode *inode, int used)
994{
995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996 int total, mdb, mdb_free;
997
998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999 /* recalculate the number of metablocks still need to be reserved */
1000 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001 mdb = ext4_calc_metadata_amount(inode, total);
1002
1003 /* figure out how many metablocks to release */
1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006
6bc6e63f
AK
1007 if (mdb_free) {
1008 /* Account for allocated meta_blocks */
1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010
1011 /* update fs dirty blocks counter */
1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015 }
12219aea
AK
1016
1017 /* update per-inode reservations */
1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1019 EXT4_I(inode)->i_reserved_data_blocks -= used;
1020
12219aea
AK
1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022}
1023
f5ab0d1f 1024/*
2b2d6d01
TT
1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026 * and returns if the blocks are already mapped.
f5ab0d1f 1027 *
f5ab0d1f
MC
1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029 * and store the allocated blocks in the result buffer head and mark it
1030 * mapped.
1031 *
1032 * If file type is extents based, it will call ext4_ext_get_blocks(),
1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034 * based files
1035 *
1036 * On success, it returns the number of blocks being mapped or allocate.
1037 * if create==0 and the blocks are pre-allocated and uninitialized block,
1038 * the result buffer head is unmapped. If the create ==1, it will make sure
1039 * the buffer head is mapped.
1040 *
1041 * It returns 0 if plain look up failed (blocks have not been allocated), in
1042 * that casem, buffer head is unmapped
1043 *
1044 * It returns the error in case of allocation failure.
1045 */
0e855ac8
AK
1046int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1048 int create, int extend_disksize, int flag)
0e855ac8
AK
1049{
1050 int retval;
f5ab0d1f
MC
1051
1052 clear_buffer_mapped(bh);
1053
4df3d265
AK
1054 /*
1055 * Try to see if we can get the block without requesting
1056 * for new file system block.
1057 */
1058 down_read((&EXT4_I(inode)->i_data_sem));
1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061 bh, 0, 0);
0e855ac8 1062 } else {
4df3d265
AK
1063 retval = ext4_get_blocks_handle(handle,
1064 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1065 }
4df3d265 1066 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1067
1068 /* If it is only a block(s) look up */
1069 if (!create)
1070 return retval;
1071
1072 /*
1073 * Returns if the blocks have already allocated
1074 *
1075 * Note that if blocks have been preallocated
1076 * ext4_ext_get_block() returns th create = 0
1077 * with buffer head unmapped.
1078 */
1079 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1080 return retval;
1081
1082 /*
f5ab0d1f
MC
1083 * New blocks allocate and/or writing to uninitialized extent
1084 * will possibly result in updating i_data, so we take
1085 * the write lock of i_data_sem, and call get_blocks()
1086 * with create == 1 flag.
4df3d265
AK
1087 */
1088 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1089
1090 /*
1091 * if the caller is from delayed allocation writeout path
1092 * we have already reserved fs blocks for allocation
1093 * let the underlying get_block() function know to
1094 * avoid double accounting
1095 */
1096 if (flag)
1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1098 /*
1099 * We need to check for EXT4 here because migrate
1100 * could have changed the inode type in between
1101 */
0e855ac8
AK
1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104 bh, create, extend_disksize);
1105 } else {
1106 retval = ext4_get_blocks_handle(handle, inode, block,
1107 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1108
1109 if (retval > 0 && buffer_new(bh)) {
1110 /*
1111 * We allocated new blocks which will result in
1112 * i_data's format changing. Force the migrate
1113 * to fail by clearing migrate flags
1114 */
1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116 ~EXT4_EXT_MIGRATE;
1117 }
0e855ac8 1118 }
d2a17637
MC
1119
1120 if (flag) {
1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122 /*
1123 * Update reserved blocks/metadata blocks
1124 * after successful block allocation
1125 * which were deferred till now
1126 */
1127 if ((retval > 0) && buffer_delay(bh))
12219aea 1128 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1129 }
1130
4df3d265 1131 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1132 return retval;
1133}
1134
f3bd1f3f
MC
1135/* Maximum number of blocks we map for direct IO at once. */
1136#define DIO_MAX_BLOCKS 4096
1137
6873fa0d
ES
1138int ext4_get_block(struct inode *inode, sector_t iblock,
1139 struct buffer_head *bh_result, int create)
ac27a0ec 1140{
3e4fdaf8 1141 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1142 int ret = 0, started = 0;
ac27a0ec 1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1144 int dio_credits;
ac27a0ec 1145
7fb5409d
JK
1146 if (create && !handle) {
1147 /* Direct IO write... */
1148 if (max_blocks > DIO_MAX_BLOCKS)
1149 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1152 if (IS_ERR(handle)) {
ac27a0ec 1153 ret = PTR_ERR(handle);
7fb5409d 1154 goto out;
ac27a0ec 1155 }
7fb5409d 1156 started = 1;
ac27a0ec
DK
1157 }
1158
7fb5409d 1159 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1160 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1161 if (ret > 0) {
1162 bh_result->b_size = (ret << inode->i_blkbits);
1163 ret = 0;
ac27a0ec 1164 }
7fb5409d
JK
1165 if (started)
1166 ext4_journal_stop(handle);
1167out:
ac27a0ec
DK
1168 return ret;
1169}
1170
1171/*
1172 * `handle' can be NULL if create is zero
1173 */
617ba13b 1174struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1175 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1176{
1177 struct buffer_head dummy;
1178 int fatal = 0, err;
1179
1180 J_ASSERT(handle != NULL || create == 0);
1181
1182 dummy.b_state = 0;
1183 dummy.b_blocknr = -1000;
1184 buffer_trace_init(&dummy.b_history);
a86c6181 1185 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1186 &dummy, create, 1, 0);
ac27a0ec 1187 /*
617ba13b 1188 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1189 * mapped. 0 in case of a HOLE.
1190 */
1191 if (err > 0) {
1192 if (err > 1)
1193 WARN_ON(1);
1194 err = 0;
1195 }
1196 *errp = err;
1197 if (!err && buffer_mapped(&dummy)) {
1198 struct buffer_head *bh;
1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200 if (!bh) {
1201 *errp = -EIO;
1202 goto err;
1203 }
1204 if (buffer_new(&dummy)) {
1205 J_ASSERT(create != 0);
ac39849d 1206 J_ASSERT(handle != NULL);
ac27a0ec
DK
1207
1208 /*
1209 * Now that we do not always journal data, we should
1210 * keep in mind whether this should always journal the
1211 * new buffer as metadata. For now, regular file
617ba13b 1212 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1213 * problem.
1214 */
1215 lock_buffer(bh);
1216 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1217 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1218 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1220 set_buffer_uptodate(bh);
1221 }
1222 unlock_buffer(bh);
617ba13b
MC
1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1225 if (!fatal)
1226 fatal = err;
1227 } else {
1228 BUFFER_TRACE(bh, "not a new buffer");
1229 }
1230 if (fatal) {
1231 *errp = fatal;
1232 brelse(bh);
1233 bh = NULL;
1234 }
1235 return bh;
1236 }
1237err:
1238 return NULL;
1239}
1240
617ba13b 1241struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1242 ext4_lblk_t block, int create, int *err)
ac27a0ec 1243{
af5bc92d 1244 struct buffer_head *bh;
ac27a0ec 1245
617ba13b 1246 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1247 if (!bh)
1248 return bh;
1249 if (buffer_uptodate(bh))
1250 return bh;
1251 ll_rw_block(READ_META, 1, &bh);
1252 wait_on_buffer(bh);
1253 if (buffer_uptodate(bh))
1254 return bh;
1255 put_bh(bh);
1256 *err = -EIO;
1257 return NULL;
1258}
1259
af5bc92d
TT
1260static int walk_page_buffers(handle_t *handle,
1261 struct buffer_head *head,
1262 unsigned from,
1263 unsigned to,
1264 int *partial,
1265 int (*fn)(handle_t *handle,
1266 struct buffer_head *bh))
ac27a0ec
DK
1267{
1268 struct buffer_head *bh;
1269 unsigned block_start, block_end;
1270 unsigned blocksize = head->b_size;
1271 int err, ret = 0;
1272 struct buffer_head *next;
1273
af5bc92d
TT
1274 for (bh = head, block_start = 0;
1275 ret == 0 && (bh != head || !block_start);
1276 block_start = block_end, bh = next)
ac27a0ec
DK
1277 {
1278 next = bh->b_this_page;
1279 block_end = block_start + blocksize;
1280 if (block_end <= from || block_start >= to) {
1281 if (partial && !buffer_uptodate(bh))
1282 *partial = 1;
1283 continue;
1284 }
1285 err = (*fn)(handle, bh);
1286 if (!ret)
1287 ret = err;
1288 }
1289 return ret;
1290}
1291
1292/*
1293 * To preserve ordering, it is essential that the hole instantiation and
1294 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1295 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1296 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1297 * prepare_write() is the right place.
1298 *
617ba13b
MC
1299 * Also, this function can nest inside ext4_writepage() ->
1300 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1301 * has generated enough buffer credits to do the whole page. So we won't
1302 * block on the journal in that case, which is good, because the caller may
1303 * be PF_MEMALLOC.
1304 *
617ba13b 1305 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1306 * quota file writes. If we were to commit the transaction while thus
1307 * reentered, there can be a deadlock - we would be holding a quota
1308 * lock, and the commit would never complete if another thread had a
1309 * transaction open and was blocking on the quota lock - a ranking
1310 * violation.
1311 *
dab291af 1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1313 * will _not_ run commit under these circumstances because handle->h_ref
1314 * is elevated. We'll still have enough credits for the tiny quotafile
1315 * write.
1316 */
1317static int do_journal_get_write_access(handle_t *handle,
1318 struct buffer_head *bh)
1319{
1320 if (!buffer_mapped(bh) || buffer_freed(bh))
1321 return 0;
617ba13b 1322 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1323}
1324
bfc1af65
NP
1325static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned flags,
1327 struct page **pagep, void **fsdata)
ac27a0ec 1328{
af5bc92d 1329 struct inode *inode = mapping->host;
7479d2b9 1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1331 handle_t *handle;
1332 int retries = 0;
af5bc92d 1333 struct page *page;
bfc1af65 1334 pgoff_t index;
af5bc92d 1335 unsigned from, to;
bfc1af65
NP
1336
1337 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1338 from = pos & (PAGE_CACHE_SIZE - 1);
1339 to = from + len;
ac27a0ec
DK
1340
1341retry:
af5bc92d
TT
1342 handle = ext4_journal_start(inode, needed_blocks);
1343 if (IS_ERR(handle)) {
1344 ret = PTR_ERR(handle);
1345 goto out;
7479d2b9 1346 }
ac27a0ec 1347
cf108bca
JK
1348 page = __grab_cache_page(mapping, index);
1349 if (!page) {
1350 ext4_journal_stop(handle);
1351 ret = -ENOMEM;
1352 goto out;
1353 }
1354 *pagep = page;
1355
bfc1af65
NP
1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357 ext4_get_block);
1358
1359 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1360 ret = walk_page_buffers(handle, page_buffers(page),
1361 from, to, NULL, do_journal_get_write_access);
1362 }
bfc1af65
NP
1363
1364 if (ret) {
af5bc92d 1365 unlock_page(page);
cf108bca 1366 ext4_journal_stop(handle);
af5bc92d 1367 page_cache_release(page);
ae4d5372
AK
1368 /*
1369 * block_write_begin may have instantiated a few blocks
1370 * outside i_size. Trim these off again. Don't need
1371 * i_size_read because we hold i_mutex.
1372 */
1373 if (pos + len > inode->i_size)
1374 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1375 }
1376
617ba13b 1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1378 goto retry;
7479d2b9 1379out:
ac27a0ec
DK
1380 return ret;
1381}
1382
bfc1af65
NP
1383/* For write_end() in data=journal mode */
1384static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1385{
1386 if (!buffer_mapped(bh) || buffer_freed(bh))
1387 return 0;
1388 set_buffer_uptodate(bh);
617ba13b 1389 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1390}
1391
1392/*
1393 * We need to pick up the new inode size which generic_commit_write gave us
1394 * `file' can be NULL - eg, when called from page_symlink().
1395 *
617ba13b 1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1397 * buffers are managed internally.
1398 */
bfc1af65
NP
1399static int ext4_ordered_write_end(struct file *file,
1400 struct address_space *mapping,
1401 loff_t pos, unsigned len, unsigned copied,
1402 struct page *page, void *fsdata)
ac27a0ec 1403{
617ba13b 1404 handle_t *handle = ext4_journal_current_handle();
cf108bca 1405 struct inode *inode = mapping->host;
ac27a0ec
DK
1406 int ret = 0, ret2;
1407
678aaf48 1408 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1409
1410 if (ret == 0) {
ac27a0ec
DK
1411 loff_t new_i_size;
1412
bfc1af65 1413 new_i_size = pos + copied;
cf17fea6
AK
1414 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415 ext4_update_i_disksize(inode, new_i_size);
1416 /* We need to mark inode dirty even if
1417 * new_i_size is less that inode->i_size
1418 * bu greater than i_disksize.(hint delalloc)
1419 */
1420 ext4_mark_inode_dirty(handle, inode);
1421 }
1422
cf108bca 1423 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1424 page, fsdata);
f8a87d89
RK
1425 copied = ret2;
1426 if (ret2 < 0)
1427 ret = ret2;
ac27a0ec 1428 }
617ba13b 1429 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1430 if (!ret)
1431 ret = ret2;
bfc1af65
NP
1432
1433 return ret ? ret : copied;
ac27a0ec
DK
1434}
1435
bfc1af65
NP
1436static int ext4_writeback_write_end(struct file *file,
1437 struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned copied,
1439 struct page *page, void *fsdata)
ac27a0ec 1440{
617ba13b 1441 handle_t *handle = ext4_journal_current_handle();
cf108bca 1442 struct inode *inode = mapping->host;
ac27a0ec
DK
1443 int ret = 0, ret2;
1444 loff_t new_i_size;
1445
bfc1af65 1446 new_i_size = pos + copied;
cf17fea6
AK
1447 if (new_i_size > EXT4_I(inode)->i_disksize) {
1448 ext4_update_i_disksize(inode, new_i_size);
1449 /* We need to mark inode dirty even if
1450 * new_i_size is less that inode->i_size
1451 * bu greater than i_disksize.(hint delalloc)
1452 */
1453 ext4_mark_inode_dirty(handle, inode);
1454 }
ac27a0ec 1455
cf108bca 1456 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1457 page, fsdata);
f8a87d89
RK
1458 copied = ret2;
1459 if (ret2 < 0)
1460 ret = ret2;
ac27a0ec 1461
617ba13b 1462 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1463 if (!ret)
1464 ret = ret2;
bfc1af65
NP
1465
1466 return ret ? ret : copied;
ac27a0ec
DK
1467}
1468
bfc1af65
NP
1469static int ext4_journalled_write_end(struct file *file,
1470 struct address_space *mapping,
1471 loff_t pos, unsigned len, unsigned copied,
1472 struct page *page, void *fsdata)
ac27a0ec 1473{
617ba13b 1474 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1475 struct inode *inode = mapping->host;
ac27a0ec
DK
1476 int ret = 0, ret2;
1477 int partial = 0;
bfc1af65 1478 unsigned from, to;
cf17fea6 1479 loff_t new_i_size;
ac27a0ec 1480
bfc1af65
NP
1481 from = pos & (PAGE_CACHE_SIZE - 1);
1482 to = from + len;
1483
1484 if (copied < len) {
1485 if (!PageUptodate(page))
1486 copied = 0;
1487 page_zero_new_buffers(page, from+copied, to);
1488 }
ac27a0ec
DK
1489
1490 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1491 to, &partial, write_end_fn);
ac27a0ec
DK
1492 if (!partial)
1493 SetPageUptodate(page);
cf17fea6
AK
1494 new_i_size = pos + copied;
1495 if (new_i_size > inode->i_size)
bfc1af65 1496 i_size_write(inode, pos+copied);
617ba13b 1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1498 if (new_i_size > EXT4_I(inode)->i_disksize) {
1499 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1500 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1501 if (!ret)
1502 ret = ret2;
1503 }
bfc1af65 1504
cf108bca 1505 unlock_page(page);
617ba13b 1506 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1507 if (!ret)
1508 ret = ret2;
bfc1af65
NP
1509 page_cache_release(page);
1510
1511 return ret ? ret : copied;
ac27a0ec 1512}
d2a17637
MC
1513
1514static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515{
030ba6bc 1516 int retries = 0;
d2a17637
MC
1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518 unsigned long md_needed, mdblocks, total = 0;
1519
1520 /*
1521 * recalculate the amount of metadata blocks to reserve
1522 * in order to allocate nrblocks
1523 * worse case is one extent per block
1524 */
030ba6bc 1525repeat:
d2a17637
MC
1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528 mdblocks = ext4_calc_metadata_amount(inode, total);
1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530
1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532 total = md_needed + nrblocks;
1533
a30d542a 1534 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537 yield();
1538 goto repeat;
1539 }
d2a17637
MC
1540 return -ENOSPC;
1541 }
d2a17637
MC
1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544
1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546 return 0; /* success */
1547}
1548
12219aea 1549static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1550{
1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552 int total, mdb, mdb_free, release;
1553
cd213226
MC
1554 if (!to_free)
1555 return; /* Nothing to release, exit */
1556
d2a17637 1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1558
1559 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560 /*
1561 * if there is no reserved blocks, but we try to free some
1562 * then the counter is messed up somewhere.
1563 * but since this function is called from invalidate
1564 * page, it's harmless to return without any action
1565 */
1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567 "blocks for inode %lu, but there is no reserved "
1568 "data blocks\n", to_free, inode->i_ino);
1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570 return;
1571 }
1572
d2a17637 1573 /* recalculate the number of metablocks still need to be reserved */
12219aea 1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1575 mdb = ext4_calc_metadata_amount(inode, total);
1576
1577 /* figure out how many metablocks to release */
1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580
d2a17637
MC
1581 release = to_free + mdb_free;
1582
6bc6e63f
AK
1583 /* update fs dirty blocks counter for truncate case */
1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1585
1586 /* update per-inode reservations */
12219aea
AK
1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1589
1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593}
1594
1595static void ext4_da_page_release_reservation(struct page *page,
1596 unsigned long offset)
1597{
1598 int to_release = 0;
1599 struct buffer_head *head, *bh;
1600 unsigned int curr_off = 0;
1601
1602 head = page_buffers(page);
1603 bh = head;
1604 do {
1605 unsigned int next_off = curr_off + bh->b_size;
1606
1607 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608 to_release++;
1609 clear_buffer_delay(bh);
1610 }
1611 curr_off = next_off;
1612 } while ((bh = bh->b_this_page) != head);
12219aea 1613 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1614}
ac27a0ec 1615
64769240
AT
1616/*
1617 * Delayed allocation stuff
1618 */
1619
1620struct mpage_da_data {
1621 struct inode *inode;
1622 struct buffer_head lbh; /* extent of blocks */
1623 unsigned long first_page, next_page; /* extent of pages */
1624 get_block_t *get_block;
1625 struct writeback_control *wbc;
a1d6cc56
AK
1626 int io_done;
1627 long pages_written;
df22291f 1628 int retval;
64769240
AT
1629};
1630
1631/*
1632 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1633 * them with writepage() call back
64769240
AT
1634 *
1635 * @mpd->inode: inode
1636 * @mpd->first_page: first page of the extent
1637 * @mpd->next_page: page after the last page of the extent
1638 * @mpd->get_block: the filesystem's block mapper function
1639 *
1640 * By the time mpage_da_submit_io() is called we expect all blocks
1641 * to be allocated. this may be wrong if allocation failed.
1642 *
1643 * As pages are already locked by write_cache_pages(), we can't use it
1644 */
1645static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646{
1647 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1648 int ret = 0, err, nr_pages, i;
1649 unsigned long index, end;
1650 struct pagevec pvec;
22208ded 1651 long pages_skipped;
64769240
AT
1652
1653 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1654 pagevec_init(&pvec, 0);
1655 index = mpd->first_page;
1656 end = mpd->next_page - 1;
1657
1658 while (index <= end) {
af6f029d
AK
1659 /*
1660 * We can use PAGECACHE_TAG_DIRTY lookup here because
1661 * even though we have cleared the dirty flag on the page
1662 * We still keep the page in the radix tree with tag
1663 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1664 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1665 * which is called via the below writepage callback.
1666 */
1667 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1668 PAGECACHE_TAG_DIRTY,
1669 min(end - index,
1670 (pgoff_t)PAGEVEC_SIZE-1) + 1);
64769240
AT
1671 if (nr_pages == 0)
1672 break;
1673 for (i = 0; i < nr_pages; i++) {
1674 struct page *page = pvec.pages[i];
1675
22208ded 1676 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1677 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1678 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1679 /*
1680 * have successfully written the page
1681 * without skipping the same
1682 */
a1d6cc56 1683 mpd->pages_written++;
64769240
AT
1684 /*
1685 * In error case, we have to continue because
1686 * remaining pages are still locked
1687 * XXX: unlock and re-dirty them?
1688 */
1689 if (ret == 0)
1690 ret = err;
1691 }
1692 pagevec_release(&pvec);
1693 }
64769240
AT
1694 return ret;
1695}
1696
1697/*
1698 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1699 *
1700 * @mpd->inode - inode to walk through
1701 * @exbh->b_blocknr - first block on a disk
1702 * @exbh->b_size - amount of space in bytes
1703 * @logical - first logical block to start assignment with
1704 *
1705 * the function goes through all passed space and put actual disk
1706 * block numbers into buffer heads, dropping BH_Delay
1707 */
1708static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1709 struct buffer_head *exbh)
1710{
1711 struct inode *inode = mpd->inode;
1712 struct address_space *mapping = inode->i_mapping;
1713 int blocks = exbh->b_size >> inode->i_blkbits;
1714 sector_t pblock = exbh->b_blocknr, cur_logical;
1715 struct buffer_head *head, *bh;
a1d6cc56 1716 pgoff_t index, end;
64769240
AT
1717 struct pagevec pvec;
1718 int nr_pages, i;
1719
1720 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723
1724 pagevec_init(&pvec, 0);
1725
1726 while (index <= end) {
1727 /* XXX: optimize tail */
1728 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1729 if (nr_pages == 0)
1730 break;
1731 for (i = 0; i < nr_pages; i++) {
1732 struct page *page = pvec.pages[i];
1733
1734 index = page->index;
1735 if (index > end)
1736 break;
1737 index++;
1738
1739 BUG_ON(!PageLocked(page));
1740 BUG_ON(PageWriteback(page));
1741 BUG_ON(!page_has_buffers(page));
1742
1743 bh = page_buffers(page);
1744 head = bh;
1745
1746 /* skip blocks out of the range */
1747 do {
1748 if (cur_logical >= logical)
1749 break;
1750 cur_logical++;
1751 } while ((bh = bh->b_this_page) != head);
1752
1753 do {
1754 if (cur_logical >= logical + blocks)
1755 break;
64769240
AT
1756 if (buffer_delay(bh)) {
1757 bh->b_blocknr = pblock;
1758 clear_buffer_delay(bh);
bf068ee2
AK
1759 bh->b_bdev = inode->i_sb->s_bdev;
1760 } else if (buffer_unwritten(bh)) {
1761 bh->b_blocknr = pblock;
1762 clear_buffer_unwritten(bh);
1763 set_buffer_mapped(bh);
1764 set_buffer_new(bh);
1765 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1766 } else if (buffer_mapped(bh))
64769240 1767 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1768
1769 cur_logical++;
1770 pblock++;
1771 } while ((bh = bh->b_this_page) != head);
1772 }
1773 pagevec_release(&pvec);
1774 }
1775}
1776
1777
1778/*
1779 * __unmap_underlying_blocks - just a helper function to unmap
1780 * set of blocks described by @bh
1781 */
1782static inline void __unmap_underlying_blocks(struct inode *inode,
1783 struct buffer_head *bh)
1784{
1785 struct block_device *bdev = inode->i_sb->s_bdev;
1786 int blocks, i;
1787
1788 blocks = bh->b_size >> inode->i_blkbits;
1789 for (i = 0; i < blocks; i++)
1790 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1791}
1792
c4a0c46e
AK
1793static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1794 sector_t logical, long blk_cnt)
1795{
1796 int nr_pages, i;
1797 pgoff_t index, end;
1798 struct pagevec pvec;
1799 struct inode *inode = mpd->inode;
1800 struct address_space *mapping = inode->i_mapping;
1801
1802 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1803 end = (logical + blk_cnt - 1) >>
1804 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1805 while (index <= end) {
1806 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1807 if (nr_pages == 0)
1808 break;
1809 for (i = 0; i < nr_pages; i++) {
1810 struct page *page = pvec.pages[i];
1811 index = page->index;
1812 if (index > end)
1813 break;
1814 index++;
1815
1816 BUG_ON(!PageLocked(page));
1817 BUG_ON(PageWriteback(page));
1818 block_invalidatepage(page, 0);
1819 ClearPageUptodate(page);
1820 unlock_page(page);
1821 }
1822 }
1823 return;
1824}
1825
df22291f
AK
1826static void ext4_print_free_blocks(struct inode *inode)
1827{
1828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1829 printk(KERN_EMERG "Total free blocks count %lld\n",
1830 ext4_count_free_blocks(inode->i_sb));
1831 printk(KERN_EMERG "Free/Dirty block details\n");
1832 printk(KERN_EMERG "free_blocks=%lld\n",
1833 percpu_counter_sum(&sbi->s_freeblocks_counter));
1834 printk(KERN_EMERG "dirty_blocks=%lld\n",
1835 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1836 printk(KERN_EMERG "Block reservation details\n");
1837 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1838 EXT4_I(inode)->i_reserved_data_blocks);
1839 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1840 EXT4_I(inode)->i_reserved_meta_blocks);
1841 return;
1842}
1843
64769240
AT
1844/*
1845 * mpage_da_map_blocks - go through given space
1846 *
1847 * @mpd->lbh - bh describing space
1848 * @mpd->get_block - the filesystem's block mapper function
1849 *
1850 * The function skips space we know is already mapped to disk blocks.
1851 *
64769240 1852 */
c4a0c46e 1853static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1854{
a1d6cc56 1855 int err = 0;
030ba6bc 1856 struct buffer_head new;
64769240 1857 struct buffer_head *lbh = &mpd->lbh;
df22291f 1858 sector_t next;
64769240
AT
1859
1860 /*
1861 * We consider only non-mapped and non-allocated blocks
1862 */
1863 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1864 return 0;
a1d6cc56
AK
1865 new.b_state = lbh->b_state;
1866 new.b_blocknr = 0;
1867 new.b_size = lbh->b_size;
df22291f 1868 next = lbh->b_blocknr;
a1d6cc56
AK
1869 /*
1870 * If we didn't accumulate anything
1871 * to write simply return
1872 */
1873 if (!new.b_size)
c4a0c46e 1874 return 0;
a1d6cc56 1875 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1876 if (err) {
1877
1878 /* If get block returns with error
1879 * we simply return. Later writepage
1880 * will redirty the page and writepages
1881 * will find the dirty page again
1882 */
1883 if (err == -EAGAIN)
1884 return 0;
df22291f
AK
1885
1886 if (err == -ENOSPC &&
1887 ext4_count_free_blocks(mpd->inode->i_sb)) {
1888 mpd->retval = err;
1889 return 0;
1890 }
1891
c4a0c46e
AK
1892 /*
1893 * get block failure will cause us
1894 * to loop in writepages. Because
1895 * a_ops->writepage won't be able to
1896 * make progress. The page will be redirtied
1897 * by writepage and writepages will again
1898 * try to write the same.
1899 */
1900 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1901 "at logical offset %llu with max blocks "
1902 "%zd with error %d\n",
1903 __func__, mpd->inode->i_ino,
1904 (unsigned long long)next,
1905 lbh->b_size >> mpd->inode->i_blkbits, err);
1906 printk(KERN_EMERG "This should not happen.!! "
1907 "Data will be lost\n");
030ba6bc 1908 if (err == -ENOSPC) {
df22291f 1909 ext4_print_free_blocks(mpd->inode);
030ba6bc 1910 }
c4a0c46e
AK
1911 /* invlaidate all the pages */
1912 ext4_da_block_invalidatepages(mpd, next,
1913 lbh->b_size >> mpd->inode->i_blkbits);
1914 return err;
1915 }
a1d6cc56 1916 BUG_ON(new.b_size == 0);
64769240 1917
a1d6cc56
AK
1918 if (buffer_new(&new))
1919 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1920
a1d6cc56
AK
1921 /*
1922 * If blocks are delayed marked, we need to
1923 * put actual blocknr and drop delayed bit
1924 */
1925 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1926 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1927
c4a0c46e 1928 return 0;
64769240
AT
1929}
1930
bf068ee2
AK
1931#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1932 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1933
1934/*
1935 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1936 *
1937 * @mpd->lbh - extent of blocks
1938 * @logical - logical number of the block in the file
1939 * @bh - bh of the block (used to access block's state)
1940 *
1941 * the function is used to collect contig. blocks in same state
1942 */
1943static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1944 sector_t logical, struct buffer_head *bh)
1945{
64769240 1946 sector_t next;
525f4ed8
MC
1947 size_t b_size = bh->b_size;
1948 struct buffer_head *lbh = &mpd->lbh;
1949 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1950
525f4ed8
MC
1951 /* check if thereserved journal credits might overflow */
1952 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1953 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1954 /*
1955 * With non-extent format we are limited by the journal
1956 * credit available. Total credit needed to insert
1957 * nrblocks contiguous blocks is dependent on the
1958 * nrblocks. So limit nrblocks.
1959 */
1960 goto flush_it;
1961 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1962 EXT4_MAX_TRANS_DATA) {
1963 /*
1964 * Adding the new buffer_head would make it cross the
1965 * allowed limit for which we have journal credit
1966 * reserved. So limit the new bh->b_size
1967 */
1968 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1969 mpd->inode->i_blkbits;
1970 /* we will do mpage_da_submit_io in the next loop */
1971 }
1972 }
64769240
AT
1973 /*
1974 * First block in the extent
1975 */
1976 if (lbh->b_size == 0) {
1977 lbh->b_blocknr = logical;
525f4ed8 1978 lbh->b_size = b_size;
64769240
AT
1979 lbh->b_state = bh->b_state & BH_FLAGS;
1980 return;
1981 }
1982
525f4ed8 1983 next = lbh->b_blocknr + nrblocks;
64769240
AT
1984 /*
1985 * Can we merge the block to our big extent?
1986 */
1987 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 1988 lbh->b_size += b_size;
64769240
AT
1989 return;
1990 }
1991
525f4ed8 1992flush_it:
64769240
AT
1993 /*
1994 * We couldn't merge the block to our extent, so we
1995 * need to flush current extent and start new one
1996 */
c4a0c46e
AK
1997 if (mpage_da_map_blocks(mpd) == 0)
1998 mpage_da_submit_io(mpd);
a1d6cc56
AK
1999 mpd->io_done = 1;
2000 return;
64769240
AT
2001}
2002
2003/*
2004 * __mpage_da_writepage - finds extent of pages and blocks
2005 *
2006 * @page: page to consider
2007 * @wbc: not used, we just follow rules
2008 * @data: context
2009 *
2010 * The function finds extents of pages and scan them for all blocks.
2011 */
2012static int __mpage_da_writepage(struct page *page,
2013 struct writeback_control *wbc, void *data)
2014{
2015 struct mpage_da_data *mpd = data;
2016 struct inode *inode = mpd->inode;
2017 struct buffer_head *bh, *head, fake;
2018 sector_t logical;
2019
a1d6cc56
AK
2020 if (mpd->io_done) {
2021 /*
2022 * Rest of the page in the page_vec
2023 * redirty then and skip then. We will
2024 * try to to write them again after
2025 * starting a new transaction
2026 */
2027 redirty_page_for_writepage(wbc, page);
2028 unlock_page(page);
2029 return MPAGE_DA_EXTENT_TAIL;
2030 }
64769240
AT
2031 /*
2032 * Can we merge this page to current extent?
2033 */
2034 if (mpd->next_page != page->index) {
2035 /*
2036 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2037 * and start IO on them using writepage()
64769240
AT
2038 */
2039 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2040 if (mpage_da_map_blocks(mpd) == 0)
2041 mpage_da_submit_io(mpd);
a1d6cc56
AK
2042 /*
2043 * skip rest of the page in the page_vec
2044 */
2045 mpd->io_done = 1;
2046 redirty_page_for_writepage(wbc, page);
2047 unlock_page(page);
2048 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2049 }
2050
2051 /*
2052 * Start next extent of pages ...
2053 */
2054 mpd->first_page = page->index;
2055
2056 /*
2057 * ... and blocks
2058 */
2059 mpd->lbh.b_size = 0;
2060 mpd->lbh.b_state = 0;
2061 mpd->lbh.b_blocknr = 0;
2062 }
2063
2064 mpd->next_page = page->index + 1;
2065 logical = (sector_t) page->index <<
2066 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2067
2068 if (!page_has_buffers(page)) {
2069 /*
2070 * There is no attached buffer heads yet (mmap?)
2071 * we treat the page asfull of dirty blocks
2072 */
2073 bh = &fake;
2074 bh->b_size = PAGE_CACHE_SIZE;
2075 bh->b_state = 0;
2076 set_buffer_dirty(bh);
2077 set_buffer_uptodate(bh);
2078 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2079 if (mpd->io_done)
2080 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2081 } else {
2082 /*
2083 * Page with regular buffer heads, just add all dirty ones
2084 */
2085 head = page_buffers(page);
2086 bh = head;
2087 do {
2088 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
2089 if (buffer_dirty(bh) &&
2090 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2091 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2092 if (mpd->io_done)
2093 return MPAGE_DA_EXTENT_TAIL;
2094 }
64769240
AT
2095 logical++;
2096 } while ((bh = bh->b_this_page) != head);
2097 }
2098
2099 return 0;
2100}
2101
2102/*
2103 * mpage_da_writepages - walk the list of dirty pages of the given
2104 * address space, allocates non-allocated blocks, maps newly-allocated
2105 * blocks to existing bhs and issue IO them
2106 *
2107 * @mapping: address space structure to write
2108 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2109 * @get_block: the filesystem's block mapper function.
2110 *
2111 * This is a library function, which implements the writepages()
2112 * address_space_operation.
64769240
AT
2113 */
2114static int mpage_da_writepages(struct address_space *mapping,
2115 struct writeback_control *wbc,
df22291f 2116 struct mpage_da_data *mpd)
64769240 2117{
64769240
AT
2118 int ret;
2119
df22291f 2120 if (!mpd->get_block)
64769240
AT
2121 return generic_writepages(mapping, wbc);
2122
df22291f
AK
2123 mpd->lbh.b_size = 0;
2124 mpd->lbh.b_state = 0;
2125 mpd->lbh.b_blocknr = 0;
2126 mpd->first_page = 0;
2127 mpd->next_page = 0;
2128 mpd->io_done = 0;
2129 mpd->pages_written = 0;
2130 mpd->retval = 0;
a1d6cc56 2131
df22291f 2132 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2133 /*
2134 * Handle last extent of pages
2135 */
df22291f
AK
2136 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2137 if (mpage_da_map_blocks(mpd) == 0)
2138 mpage_da_submit_io(mpd);
64769240 2139
22208ded
AK
2140 mpd->io_done = 1;
2141 ret = MPAGE_DA_EXTENT_TAIL;
2142 }
2143 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2144 return ret;
2145}
2146
2147/*
2148 * this is a special callback for ->write_begin() only
2149 * it's intention is to return mapped block or reserve space
2150 */
2151static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2152 struct buffer_head *bh_result, int create)
2153{
2154 int ret = 0;
2155
2156 BUG_ON(create == 0);
2157 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2158
2159 /*
2160 * first, we need to know whether the block is allocated already
2161 * preallocated blocks are unmapped but should treated
2162 * the same as allocated blocks.
2163 */
d2a17637
MC
2164 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2165 if ((ret == 0) && !buffer_delay(bh_result)) {
2166 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2167 /*
2168 * XXX: __block_prepare_write() unmaps passed block,
2169 * is it OK?
2170 */
d2a17637
MC
2171 ret = ext4_da_reserve_space(inode, 1);
2172 if (ret)
2173 /* not enough space to reserve */
2174 return ret;
2175
64769240
AT
2176 map_bh(bh_result, inode->i_sb, 0);
2177 set_buffer_new(bh_result);
2178 set_buffer_delay(bh_result);
2179 } else if (ret > 0) {
2180 bh_result->b_size = (ret << inode->i_blkbits);
2181 ret = 0;
2182 }
2183
2184 return ret;
2185}
d2a17637 2186#define EXT4_DELALLOC_RSVED 1
64769240
AT
2187static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2188 struct buffer_head *bh_result, int create)
2189{
61628a3f 2190 int ret;
64769240
AT
2191 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2192 loff_t disksize = EXT4_I(inode)->i_disksize;
2193 handle_t *handle = NULL;
2194
61628a3f 2195 handle = ext4_journal_current_handle();
166348dd
AK
2196 BUG_ON(!handle);
2197 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2198 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2199 if (ret > 0) {
166348dd 2200
64769240
AT
2201 bh_result->b_size = (ret << inode->i_blkbits);
2202
166348dd
AK
2203 if (ext4_should_order_data(inode)) {
2204 int retval;
2205 retval = ext4_jbd2_file_inode(handle, inode);
2206 if (retval)
2207 /*
2208 * Failed to add inode for ordered
2209 * mode. Don't update file size
2210 */
2211 return retval;
2212 }
2213
64769240
AT
2214 /*
2215 * Update on-disk size along with block allocation
2216 * we don't use 'extend_disksize' as size may change
2217 * within already allocated block -bzzz
2218 */
2219 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2220 if (disksize > i_size_read(inode))
2221 disksize = i_size_read(inode);
2222 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2223 ext4_update_i_disksize(inode, disksize);
2224 ret = ext4_mark_inode_dirty(handle, inode);
2225 return ret;
64769240 2226 }
64769240
AT
2227 ret = 0;
2228 }
64769240
AT
2229 return ret;
2230}
61628a3f
MC
2231
2232static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2233{
f0e6c985
AK
2234 /*
2235 * unmapped buffer is possible for holes.
2236 * delay buffer is possible with delayed allocation
2237 */
2238 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2239}
2240
2241static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2242 struct buffer_head *bh_result, int create)
2243{
2244 int ret = 0;
2245 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2246
2247 /*
2248 * we don't want to do block allocation in writepage
2249 * so call get_block_wrap with create = 0
2250 */
2251 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2252 bh_result, 0, 0, 0);
2253 if (ret > 0) {
2254 bh_result->b_size = (ret << inode->i_blkbits);
2255 ret = 0;
2256 }
2257 return ret;
61628a3f
MC
2258}
2259
61628a3f 2260/*
f0e6c985
AK
2261 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2262 * get called via journal_submit_inode_data_buffers (no journal handle)
2263 * get called via shrink_page_list via pdflush (no journal handle)
2264 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2265 */
64769240
AT
2266static int ext4_da_writepage(struct page *page,
2267 struct writeback_control *wbc)
2268{
64769240 2269 int ret = 0;
61628a3f
MC
2270 loff_t size;
2271 unsigned long len;
61628a3f
MC
2272 struct buffer_head *page_bufs;
2273 struct inode *inode = page->mapping->host;
2274
f0e6c985
AK
2275 size = i_size_read(inode);
2276 if (page->index == size >> PAGE_CACHE_SHIFT)
2277 len = size & ~PAGE_CACHE_MASK;
2278 else
2279 len = PAGE_CACHE_SIZE;
64769240 2280
f0e6c985 2281 if (page_has_buffers(page)) {
61628a3f 2282 page_bufs = page_buffers(page);
f0e6c985
AK
2283 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2284 ext4_bh_unmapped_or_delay)) {
61628a3f 2285 /*
f0e6c985
AK
2286 * We don't want to do block allocation
2287 * So redirty the page and return
cd1aac32
AK
2288 * We may reach here when we do a journal commit
2289 * via journal_submit_inode_data_buffers.
2290 * If we don't have mapping block we just ignore
f0e6c985
AK
2291 * them. We can also reach here via shrink_page_list
2292 */
2293 redirty_page_for_writepage(wbc, page);
2294 unlock_page(page);
2295 return 0;
2296 }
2297 } else {
2298 /*
2299 * The test for page_has_buffers() is subtle:
2300 * We know the page is dirty but it lost buffers. That means
2301 * that at some moment in time after write_begin()/write_end()
2302 * has been called all buffers have been clean and thus they
2303 * must have been written at least once. So they are all
2304 * mapped and we can happily proceed with mapping them
2305 * and writing the page.
2306 *
2307 * Try to initialize the buffer_heads and check whether
2308 * all are mapped and non delay. We don't want to
2309 * do block allocation here.
2310 */
2311 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2312 ext4_normal_get_block_write);
2313 if (!ret) {
2314 page_bufs = page_buffers(page);
2315 /* check whether all are mapped and non delay */
2316 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2317 ext4_bh_unmapped_or_delay)) {
2318 redirty_page_for_writepage(wbc, page);
2319 unlock_page(page);
2320 return 0;
2321 }
2322 } else {
2323 /*
2324 * We can't do block allocation here
2325 * so just redity the page and unlock
2326 * and return
61628a3f 2327 */
61628a3f
MC
2328 redirty_page_for_writepage(wbc, page);
2329 unlock_page(page);
2330 return 0;
2331 }
ed9b3e33
AK
2332 /* now mark the buffer_heads as dirty and uptodate */
2333 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2334 }
2335
2336 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2337 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2338 else
f0e6c985
AK
2339 ret = block_write_full_page(page,
2340 ext4_normal_get_block_write,
2341 wbc);
64769240 2342
64769240
AT
2343 return ret;
2344}
2345
61628a3f 2346/*
525f4ed8
MC
2347 * This is called via ext4_da_writepages() to
2348 * calulate the total number of credits to reserve to fit
2349 * a single extent allocation into a single transaction,
2350 * ext4_da_writpeages() will loop calling this before
2351 * the block allocation.
61628a3f 2352 */
525f4ed8
MC
2353
2354static int ext4_da_writepages_trans_blocks(struct inode *inode)
2355{
2356 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2357
2358 /*
2359 * With non-extent format the journal credit needed to
2360 * insert nrblocks contiguous block is dependent on
2361 * number of contiguous block. So we will limit
2362 * number of contiguous block to a sane value
2363 */
2364 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2365 (max_blocks > EXT4_MAX_TRANS_DATA))
2366 max_blocks = EXT4_MAX_TRANS_DATA;
2367
2368 return ext4_chunk_trans_blocks(inode, max_blocks);
2369}
61628a3f 2370
64769240 2371static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2372 struct writeback_control *wbc)
64769240 2373{
22208ded
AK
2374 pgoff_t index;
2375 int range_whole = 0;
61628a3f 2376 handle_t *handle = NULL;
df22291f 2377 struct mpage_da_data mpd;
5e745b04 2378 struct inode *inode = mapping->host;
22208ded
AK
2379 int no_nrwrite_index_update;
2380 long pages_written = 0, pages_skipped;
5e745b04 2381 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2382 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2383
2384 /*
2385 * No pages to write? This is mainly a kludge to avoid starting
2386 * a transaction for special inodes like journal inode on last iput()
2387 * because that could violate lock ordering on umount
2388 */
a1d6cc56 2389 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2390 return 0;
5e745b04
AK
2391 /*
2392 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2393 * This make sure small files blocks are allocated in
2394 * single attempt. This ensure that small files
2395 * get less fragmented.
2396 */
2397 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2398 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2399 wbc->nr_to_write = sbi->s_mb_stream_request;
2400 }
22208ded
AK
2401 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2402 range_whole = 1;
61628a3f 2403
22208ded
AK
2404 if (wbc->range_cyclic)
2405 index = mapping->writeback_index;
2406 else
2407 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2408
df22291f
AK
2409 mpd.wbc = wbc;
2410 mpd.inode = mapping->host;
2411
22208ded
AK
2412 /*
2413 * we don't want write_cache_pages to update
2414 * nr_to_write and writeback_index
2415 */
2416 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2417 wbc->no_nrwrite_index_update = 1;
2418 pages_skipped = wbc->pages_skipped;
2419
2420 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2421
2422 /*
2423 * we insert one extent at a time. So we need
2424 * credit needed for single extent allocation.
2425 * journalled mode is currently not supported
2426 * by delalloc
2427 */
2428 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2429 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2430
61628a3f
MC
2431 /* start a new transaction*/
2432 handle = ext4_journal_start(inode, needed_blocks);
2433 if (IS_ERR(handle)) {
2434 ret = PTR_ERR(handle);
a1d6cc56
AK
2435 printk(KERN_EMERG "%s: jbd2_start: "
2436 "%ld pages, ino %lu; err %d\n", __func__,
2437 wbc->nr_to_write, inode->i_ino, ret);
2438 dump_stack();
61628a3f
MC
2439 goto out_writepages;
2440 }
df22291f
AK
2441 mpd.get_block = ext4_da_get_block_write;
2442 ret = mpage_da_writepages(mapping, wbc, &mpd);
2443
61628a3f 2444 ext4_journal_stop(handle);
df22291f 2445
22208ded
AK
2446 if (mpd.retval == -ENOSPC) {
2447 /* commit the transaction which would
2448 * free blocks released in the transaction
2449 * and try again
2450 */
df22291f 2451 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2452 wbc->pages_skipped = pages_skipped;
2453 ret = 0;
2454 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2455 /*
2456 * got one extent now try with
2457 * rest of the pages
2458 */
22208ded
AK
2459 pages_written += mpd.pages_written;
2460 wbc->pages_skipped = pages_skipped;
a1d6cc56 2461 ret = 0;
22208ded 2462 } else if (wbc->nr_to_write)
61628a3f
MC
2463 /*
2464 * There is no more writeout needed
2465 * or we requested for a noblocking writeout
2466 * and we found the device congested
2467 */
61628a3f 2468 break;
a1d6cc56 2469 }
22208ded
AK
2470 if (pages_skipped != wbc->pages_skipped)
2471 printk(KERN_EMERG "This should not happen leaving %s "
2472 "with nr_to_write = %ld ret = %d\n",
2473 __func__, wbc->nr_to_write, ret);
2474
2475 /* Update index */
2476 index += pages_written;
2477 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2478 /*
2479 * set the writeback_index so that range_cyclic
2480 * mode will write it back later
2481 */
2482 mapping->writeback_index = index;
a1d6cc56 2483
61628a3f 2484out_writepages:
22208ded
AK
2485 if (!no_nrwrite_index_update)
2486 wbc->no_nrwrite_index_update = 0;
2487 wbc->nr_to_write -= nr_to_writebump;
61628a3f 2488 return ret;
64769240
AT
2489}
2490
79f0be8d
AK
2491#define FALL_BACK_TO_NONDELALLOC 1
2492static int ext4_nonda_switch(struct super_block *sb)
2493{
2494 s64 free_blocks, dirty_blocks;
2495 struct ext4_sb_info *sbi = EXT4_SB(sb);
2496
2497 /*
2498 * switch to non delalloc mode if we are running low
2499 * on free block. The free block accounting via percpu
2500 * counters can get slightly wrong with FBC_BATCH getting
2501 * accumulated on each CPU without updating global counters
2502 * Delalloc need an accurate free block accounting. So switch
2503 * to non delalloc when we are near to error range.
2504 */
2505 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2506 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2507 if (2 * free_blocks < 3 * dirty_blocks ||
2508 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2509 /*
2510 * free block count is less that 150% of dirty blocks
2511 * or free blocks is less that watermark
2512 */
2513 return 1;
2514 }
2515 return 0;
2516}
2517
64769240
AT
2518static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2519 loff_t pos, unsigned len, unsigned flags,
2520 struct page **pagep, void **fsdata)
2521{
d2a17637 2522 int ret, retries = 0;
64769240
AT
2523 struct page *page;
2524 pgoff_t index;
2525 unsigned from, to;
2526 struct inode *inode = mapping->host;
2527 handle_t *handle;
2528
2529 index = pos >> PAGE_CACHE_SHIFT;
2530 from = pos & (PAGE_CACHE_SIZE - 1);
2531 to = from + len;
79f0be8d
AK
2532
2533 if (ext4_nonda_switch(inode->i_sb)) {
2534 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2535 return ext4_write_begin(file, mapping, pos,
2536 len, flags, pagep, fsdata);
2537 }
2538 *fsdata = (void *)0;
d2a17637 2539retry:
64769240
AT
2540 /*
2541 * With delayed allocation, we don't log the i_disksize update
2542 * if there is delayed block allocation. But we still need
2543 * to journalling the i_disksize update if writes to the end
2544 * of file which has an already mapped buffer.
2545 */
2546 handle = ext4_journal_start(inode, 1);
2547 if (IS_ERR(handle)) {
2548 ret = PTR_ERR(handle);
2549 goto out;
2550 }
2551
2552 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2553 if (!page) {
2554 ext4_journal_stop(handle);
2555 ret = -ENOMEM;
2556 goto out;
2557 }
64769240
AT
2558 *pagep = page;
2559
2560 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2561 ext4_da_get_block_prep);
2562 if (ret < 0) {
2563 unlock_page(page);
2564 ext4_journal_stop(handle);
2565 page_cache_release(page);
ae4d5372
AK
2566 /*
2567 * block_write_begin may have instantiated a few blocks
2568 * outside i_size. Trim these off again. Don't need
2569 * i_size_read because we hold i_mutex.
2570 */
2571 if (pos + len > inode->i_size)
2572 vmtruncate(inode, inode->i_size);
64769240
AT
2573 }
2574
d2a17637
MC
2575 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2576 goto retry;
64769240
AT
2577out:
2578 return ret;
2579}
2580
632eaeab
MC
2581/*
2582 * Check if we should update i_disksize
2583 * when write to the end of file but not require block allocation
2584 */
2585static int ext4_da_should_update_i_disksize(struct page *page,
2586 unsigned long offset)
2587{
2588 struct buffer_head *bh;
2589 struct inode *inode = page->mapping->host;
2590 unsigned int idx;
2591 int i;
2592
2593 bh = page_buffers(page);
2594 idx = offset >> inode->i_blkbits;
2595
af5bc92d 2596 for (i = 0; i < idx; i++)
632eaeab
MC
2597 bh = bh->b_this_page;
2598
2599 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2600 return 0;
2601 return 1;
2602}
2603
64769240
AT
2604static int ext4_da_write_end(struct file *file,
2605 struct address_space *mapping,
2606 loff_t pos, unsigned len, unsigned copied,
2607 struct page *page, void *fsdata)
2608{
2609 struct inode *inode = mapping->host;
2610 int ret = 0, ret2;
2611 handle_t *handle = ext4_journal_current_handle();
2612 loff_t new_i_size;
632eaeab 2613 unsigned long start, end;
79f0be8d
AK
2614 int write_mode = (int)(unsigned long)fsdata;
2615
2616 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2617 if (ext4_should_order_data(inode)) {
2618 return ext4_ordered_write_end(file, mapping, pos,
2619 len, copied, page, fsdata);
2620 } else if (ext4_should_writeback_data(inode)) {
2621 return ext4_writeback_write_end(file, mapping, pos,
2622 len, copied, page, fsdata);
2623 } else {
2624 BUG();
2625 }
2626 }
632eaeab
MC
2627
2628 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2629 end = start + copied - 1;
64769240
AT
2630
2631 /*
2632 * generic_write_end() will run mark_inode_dirty() if i_size
2633 * changes. So let's piggyback the i_disksize mark_inode_dirty
2634 * into that.
2635 */
2636
2637 new_i_size = pos + copied;
632eaeab
MC
2638 if (new_i_size > EXT4_I(inode)->i_disksize) {
2639 if (ext4_da_should_update_i_disksize(page, end)) {
2640 down_write(&EXT4_I(inode)->i_data_sem);
2641 if (new_i_size > EXT4_I(inode)->i_disksize) {
2642 /*
2643 * Updating i_disksize when extending file
2644 * without needing block allocation
2645 */
2646 if (ext4_should_order_data(inode))
2647 ret = ext4_jbd2_file_inode(handle,
2648 inode);
64769240 2649
632eaeab
MC
2650 EXT4_I(inode)->i_disksize = new_i_size;
2651 }
2652 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2653 /* We need to mark inode dirty even if
2654 * new_i_size is less that inode->i_size
2655 * bu greater than i_disksize.(hint delalloc)
2656 */
2657 ext4_mark_inode_dirty(handle, inode);
64769240 2658 }
632eaeab 2659 }
64769240
AT
2660 ret2 = generic_write_end(file, mapping, pos, len, copied,
2661 page, fsdata);
2662 copied = ret2;
2663 if (ret2 < 0)
2664 ret = ret2;
2665 ret2 = ext4_journal_stop(handle);
2666 if (!ret)
2667 ret = ret2;
2668
2669 return ret ? ret : copied;
2670}
2671
2672static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2673{
64769240
AT
2674 /*
2675 * Drop reserved blocks
2676 */
2677 BUG_ON(!PageLocked(page));
2678 if (!page_has_buffers(page))
2679 goto out;
2680
d2a17637 2681 ext4_da_page_release_reservation(page, offset);
64769240
AT
2682
2683out:
2684 ext4_invalidatepage(page, offset);
2685
2686 return;
2687}
2688
2689
ac27a0ec
DK
2690/*
2691 * bmap() is special. It gets used by applications such as lilo and by
2692 * the swapper to find the on-disk block of a specific piece of data.
2693 *
2694 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2695 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2696 * filesystem and enables swap, then they may get a nasty shock when the
2697 * data getting swapped to that swapfile suddenly gets overwritten by
2698 * the original zero's written out previously to the journal and
2699 * awaiting writeback in the kernel's buffer cache.
2700 *
2701 * So, if we see any bmap calls here on a modified, data-journaled file,
2702 * take extra steps to flush any blocks which might be in the cache.
2703 */
617ba13b 2704static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2705{
2706 struct inode *inode = mapping->host;
2707 journal_t *journal;
2708 int err;
2709
64769240
AT
2710 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2711 test_opt(inode->i_sb, DELALLOC)) {
2712 /*
2713 * With delalloc we want to sync the file
2714 * so that we can make sure we allocate
2715 * blocks for file
2716 */
2717 filemap_write_and_wait(mapping);
2718 }
2719
617ba13b 2720 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2721 /*
2722 * This is a REALLY heavyweight approach, but the use of
2723 * bmap on dirty files is expected to be extremely rare:
2724 * only if we run lilo or swapon on a freshly made file
2725 * do we expect this to happen.
2726 *
2727 * (bmap requires CAP_SYS_RAWIO so this does not
2728 * represent an unprivileged user DOS attack --- we'd be
2729 * in trouble if mortal users could trigger this path at
2730 * will.)
2731 *
617ba13b 2732 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2733 * regular files. If somebody wants to bmap a directory
2734 * or symlink and gets confused because the buffer
2735 * hasn't yet been flushed to disk, they deserve
2736 * everything they get.
2737 */
2738
617ba13b
MC
2739 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2740 journal = EXT4_JOURNAL(inode);
dab291af
MC
2741 jbd2_journal_lock_updates(journal);
2742 err = jbd2_journal_flush(journal);
2743 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2744
2745 if (err)
2746 return 0;
2747 }
2748
af5bc92d 2749 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2750}
2751
2752static int bget_one(handle_t *handle, struct buffer_head *bh)
2753{
2754 get_bh(bh);
2755 return 0;
2756}
2757
2758static int bput_one(handle_t *handle, struct buffer_head *bh)
2759{
2760 put_bh(bh);
2761 return 0;
2762}
2763
ac27a0ec 2764/*
678aaf48
JK
2765 * Note that we don't need to start a transaction unless we're journaling data
2766 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2767 * need to file the inode to the transaction's list in ordered mode because if
2768 * we are writing back data added by write(), the inode is already there and if
2769 * we are writing back data modified via mmap(), noone guarantees in which
2770 * transaction the data will hit the disk. In case we are journaling data, we
2771 * cannot start transaction directly because transaction start ranks above page
2772 * lock so we have to do some magic.
ac27a0ec 2773 *
678aaf48 2774 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2775 *
2776 * Problem:
2777 *
617ba13b
MC
2778 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2779 * ext4_writepage()
ac27a0ec
DK
2780 *
2781 * Similar for:
2782 *
617ba13b 2783 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2784 *
617ba13b 2785 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2786 * lock_journal and i_data_sem
ac27a0ec
DK
2787 *
2788 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2789 * allocations fail.
2790 *
2791 * 16May01: If we're reentered then journal_current_handle() will be
2792 * non-zero. We simply *return*.
2793 *
2794 * 1 July 2001: @@@ FIXME:
2795 * In journalled data mode, a data buffer may be metadata against the
2796 * current transaction. But the same file is part of a shared mapping
2797 * and someone does a writepage() on it.
2798 *
2799 * We will move the buffer onto the async_data list, but *after* it has
2800 * been dirtied. So there's a small window where we have dirty data on
2801 * BJ_Metadata.
2802 *
2803 * Note that this only applies to the last partial page in the file. The
2804 * bit which block_write_full_page() uses prepare/commit for. (That's
2805 * broken code anyway: it's wrong for msync()).
2806 *
2807 * It's a rare case: affects the final partial page, for journalled data
2808 * where the file is subject to bith write() and writepage() in the same
2809 * transction. To fix it we'll need a custom block_write_full_page().
2810 * We'll probably need that anyway for journalling writepage() output.
2811 *
2812 * We don't honour synchronous mounts for writepage(). That would be
2813 * disastrous. Any write() or metadata operation will sync the fs for
2814 * us.
2815 *
ac27a0ec 2816 */
678aaf48 2817static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2818 struct writeback_control *wbc)
2819{
2820 struct inode *inode = page->mapping->host;
2821
2822 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2823 return nobh_writepage(page,
2824 ext4_normal_get_block_write, wbc);
cf108bca 2825 else
f0e6c985
AK
2826 return block_write_full_page(page,
2827 ext4_normal_get_block_write,
2828 wbc);
cf108bca
JK
2829}
2830
678aaf48 2831static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2832 struct writeback_control *wbc)
2833{
2834 struct inode *inode = page->mapping->host;
cf108bca
JK
2835 loff_t size = i_size_read(inode);
2836 loff_t len;
2837
2838 J_ASSERT(PageLocked(page));
cf108bca
JK
2839 if (page->index == size >> PAGE_CACHE_SHIFT)
2840 len = size & ~PAGE_CACHE_MASK;
2841 else
2842 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2843
2844 if (page_has_buffers(page)) {
2845 /* if page has buffers it should all be mapped
2846 * and allocated. If there are not buffers attached
2847 * to the page we know the page is dirty but it lost
2848 * buffers. That means that at some moment in time
2849 * after write_begin() / write_end() has been called
2850 * all buffers have been clean and thus they must have been
2851 * written at least once. So they are all mapped and we can
2852 * happily proceed with mapping them and writing the page.
2853 */
2854 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2855 ext4_bh_unmapped_or_delay));
2856 }
cf108bca
JK
2857
2858 if (!ext4_journal_current_handle())
678aaf48 2859 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2860
2861 redirty_page_for_writepage(wbc, page);
2862 unlock_page(page);
2863 return 0;
2864}
2865
2866static int __ext4_journalled_writepage(struct page *page,
2867 struct writeback_control *wbc)
2868{
2869 struct address_space *mapping = page->mapping;
2870 struct inode *inode = mapping->host;
2871 struct buffer_head *page_bufs;
ac27a0ec
DK
2872 handle_t *handle = NULL;
2873 int ret = 0;
2874 int err;
2875
f0e6c985
AK
2876 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2877 ext4_normal_get_block_write);
cf108bca
JK
2878 if (ret != 0)
2879 goto out_unlock;
2880
2881 page_bufs = page_buffers(page);
2882 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2883 bget_one);
2884 /* As soon as we unlock the page, it can go away, but we have
2885 * references to buffers so we are safe */
2886 unlock_page(page);
ac27a0ec 2887
617ba13b 2888 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2889 if (IS_ERR(handle)) {
2890 ret = PTR_ERR(handle);
cf108bca 2891 goto out;
ac27a0ec
DK
2892 }
2893
cf108bca
JK
2894 ret = walk_page_buffers(handle, page_bufs, 0,
2895 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2896
cf108bca
JK
2897 err = walk_page_buffers(handle, page_bufs, 0,
2898 PAGE_CACHE_SIZE, NULL, write_end_fn);
2899 if (ret == 0)
2900 ret = err;
617ba13b 2901 err = ext4_journal_stop(handle);
ac27a0ec
DK
2902 if (!ret)
2903 ret = err;
ac27a0ec 2904
cf108bca
JK
2905 walk_page_buffers(handle, page_bufs, 0,
2906 PAGE_CACHE_SIZE, NULL, bput_one);
2907 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2908 goto out;
2909
2910out_unlock:
ac27a0ec 2911 unlock_page(page);
cf108bca 2912out:
ac27a0ec
DK
2913 return ret;
2914}
2915
617ba13b 2916static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2917 struct writeback_control *wbc)
2918{
2919 struct inode *inode = page->mapping->host;
cf108bca
JK
2920 loff_t size = i_size_read(inode);
2921 loff_t len;
ac27a0ec 2922
cf108bca 2923 J_ASSERT(PageLocked(page));
cf108bca
JK
2924 if (page->index == size >> PAGE_CACHE_SHIFT)
2925 len = size & ~PAGE_CACHE_MASK;
2926 else
2927 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2928
2929 if (page_has_buffers(page)) {
2930 /* if page has buffers it should all be mapped
2931 * and allocated. If there are not buffers attached
2932 * to the page we know the page is dirty but it lost
2933 * buffers. That means that at some moment in time
2934 * after write_begin() / write_end() has been called
2935 * all buffers have been clean and thus they must have been
2936 * written at least once. So they are all mapped and we can
2937 * happily proceed with mapping them and writing the page.
2938 */
2939 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2940 ext4_bh_unmapped_or_delay));
2941 }
ac27a0ec 2942
cf108bca 2943 if (ext4_journal_current_handle())
ac27a0ec 2944 goto no_write;
ac27a0ec 2945
cf108bca 2946 if (PageChecked(page)) {
ac27a0ec
DK
2947 /*
2948 * It's mmapped pagecache. Add buffers and journal it. There
2949 * doesn't seem much point in redirtying the page here.
2950 */
2951 ClearPageChecked(page);
cf108bca 2952 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2953 } else {
2954 /*
2955 * It may be a page full of checkpoint-mode buffers. We don't
2956 * really know unless we go poke around in the buffer_heads.
2957 * But block_write_full_page will do the right thing.
2958 */
f0e6c985
AK
2959 return block_write_full_page(page,
2960 ext4_normal_get_block_write,
2961 wbc);
ac27a0ec 2962 }
ac27a0ec
DK
2963no_write:
2964 redirty_page_for_writepage(wbc, page);
ac27a0ec 2965 unlock_page(page);
cf108bca 2966 return 0;
ac27a0ec
DK
2967}
2968
617ba13b 2969static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2970{
617ba13b 2971 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2972}
2973
2974static int
617ba13b 2975ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2976 struct list_head *pages, unsigned nr_pages)
2977{
617ba13b 2978 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2979}
2980
617ba13b 2981static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2982{
617ba13b 2983 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2984
2985 /*
2986 * If it's a full truncate we just forget about the pending dirtying
2987 */
2988 if (offset == 0)
2989 ClearPageChecked(page);
2990
dab291af 2991 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2992}
2993
617ba13b 2994static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2995{
617ba13b 2996 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2997
2998 WARN_ON(PageChecked(page));
2999 if (!page_has_buffers(page))
3000 return 0;
dab291af 3001 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
3002}
3003
3004/*
3005 * If the O_DIRECT write will extend the file then add this inode to the
3006 * orphan list. So recovery will truncate it back to the original size
3007 * if the machine crashes during the write.
3008 *
3009 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3010 * crashes then stale disk data _may_ be exposed inside the file. But current
3011 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3012 */
617ba13b 3013static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3014 const struct iovec *iov, loff_t offset,
3015 unsigned long nr_segs)
3016{
3017 struct file *file = iocb->ki_filp;
3018 struct inode *inode = file->f_mapping->host;
617ba13b 3019 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3020 handle_t *handle;
ac27a0ec
DK
3021 ssize_t ret;
3022 int orphan = 0;
3023 size_t count = iov_length(iov, nr_segs);
3024
3025 if (rw == WRITE) {
3026 loff_t final_size = offset + count;
3027
ac27a0ec 3028 if (final_size > inode->i_size) {
7fb5409d
JK
3029 /* Credits for sb + inode write */
3030 handle = ext4_journal_start(inode, 2);
3031 if (IS_ERR(handle)) {
3032 ret = PTR_ERR(handle);
3033 goto out;
3034 }
617ba13b 3035 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3036 if (ret) {
3037 ext4_journal_stop(handle);
3038 goto out;
3039 }
ac27a0ec
DK
3040 orphan = 1;
3041 ei->i_disksize = inode->i_size;
7fb5409d 3042 ext4_journal_stop(handle);
ac27a0ec
DK
3043 }
3044 }
3045
3046 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3047 offset, nr_segs,
617ba13b 3048 ext4_get_block, NULL);
ac27a0ec 3049
7fb5409d 3050 if (orphan) {
ac27a0ec
DK
3051 int err;
3052
7fb5409d
JK
3053 /* Credits for sb + inode write */
3054 handle = ext4_journal_start(inode, 2);
3055 if (IS_ERR(handle)) {
3056 /* This is really bad luck. We've written the data
3057 * but cannot extend i_size. Bail out and pretend
3058 * the write failed... */
3059 ret = PTR_ERR(handle);
3060 goto out;
3061 }
3062 if (inode->i_nlink)
617ba13b 3063 ext4_orphan_del(handle, inode);
7fb5409d 3064 if (ret > 0) {
ac27a0ec
DK
3065 loff_t end = offset + ret;
3066 if (end > inode->i_size) {
3067 ei->i_disksize = end;
3068 i_size_write(inode, end);
3069 /*
3070 * We're going to return a positive `ret'
3071 * here due to non-zero-length I/O, so there's
3072 * no way of reporting error returns from
617ba13b 3073 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3074 * ignore it.
3075 */
617ba13b 3076 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3077 }
3078 }
617ba13b 3079 err = ext4_journal_stop(handle);
ac27a0ec
DK
3080 if (ret == 0)
3081 ret = err;
3082 }
3083out:
3084 return ret;
3085}
3086
3087/*
617ba13b 3088 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3089 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3090 * much here because ->set_page_dirty is called under VFS locks. The page is
3091 * not necessarily locked.
3092 *
3093 * We cannot just dirty the page and leave attached buffers clean, because the
3094 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3095 * or jbddirty because all the journalling code will explode.
3096 *
3097 * So what we do is to mark the page "pending dirty" and next time writepage
3098 * is called, propagate that into the buffers appropriately.
3099 */
617ba13b 3100static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3101{
3102 SetPageChecked(page);
3103 return __set_page_dirty_nobuffers(page);
3104}
3105
617ba13b 3106static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3107 .readpage = ext4_readpage,
3108 .readpages = ext4_readpages,
3109 .writepage = ext4_normal_writepage,
3110 .sync_page = block_sync_page,
3111 .write_begin = ext4_write_begin,
3112 .write_end = ext4_ordered_write_end,
3113 .bmap = ext4_bmap,
3114 .invalidatepage = ext4_invalidatepage,
3115 .releasepage = ext4_releasepage,
3116 .direct_IO = ext4_direct_IO,
3117 .migratepage = buffer_migrate_page,
3118 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3119};
3120
617ba13b 3121static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3122 .readpage = ext4_readpage,
3123 .readpages = ext4_readpages,
3124 .writepage = ext4_normal_writepage,
3125 .sync_page = block_sync_page,
3126 .write_begin = ext4_write_begin,
3127 .write_end = ext4_writeback_write_end,
3128 .bmap = ext4_bmap,
3129 .invalidatepage = ext4_invalidatepage,
3130 .releasepage = ext4_releasepage,
3131 .direct_IO = ext4_direct_IO,
3132 .migratepage = buffer_migrate_page,
3133 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3134};
3135
617ba13b 3136static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3137 .readpage = ext4_readpage,
3138 .readpages = ext4_readpages,
3139 .writepage = ext4_journalled_writepage,
3140 .sync_page = block_sync_page,
3141 .write_begin = ext4_write_begin,
3142 .write_end = ext4_journalled_write_end,
3143 .set_page_dirty = ext4_journalled_set_page_dirty,
3144 .bmap = ext4_bmap,
3145 .invalidatepage = ext4_invalidatepage,
3146 .releasepage = ext4_releasepage,
3147 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3148};
3149
64769240 3150static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3151 .readpage = ext4_readpage,
3152 .readpages = ext4_readpages,
3153 .writepage = ext4_da_writepage,
3154 .writepages = ext4_da_writepages,
3155 .sync_page = block_sync_page,
3156 .write_begin = ext4_da_write_begin,
3157 .write_end = ext4_da_write_end,
3158 .bmap = ext4_bmap,
3159 .invalidatepage = ext4_da_invalidatepage,
3160 .releasepage = ext4_releasepage,
3161 .direct_IO = ext4_direct_IO,
3162 .migratepage = buffer_migrate_page,
3163 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3164};
3165
617ba13b 3166void ext4_set_aops(struct inode *inode)
ac27a0ec 3167{
cd1aac32
AK
3168 if (ext4_should_order_data(inode) &&
3169 test_opt(inode->i_sb, DELALLOC))
3170 inode->i_mapping->a_ops = &ext4_da_aops;
3171 else if (ext4_should_order_data(inode))
617ba13b 3172 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3173 else if (ext4_should_writeback_data(inode) &&
3174 test_opt(inode->i_sb, DELALLOC))
3175 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3176 else if (ext4_should_writeback_data(inode))
3177 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3178 else
617ba13b 3179 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3180}
3181
3182/*
617ba13b 3183 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3184 * up to the end of the block which corresponds to `from'.
3185 * This required during truncate. We need to physically zero the tail end
3186 * of that block so it doesn't yield old data if the file is later grown.
3187 */
cf108bca 3188int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3189 struct address_space *mapping, loff_t from)
3190{
617ba13b 3191 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3192 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3193 unsigned blocksize, length, pos;
3194 ext4_lblk_t iblock;
ac27a0ec
DK
3195 struct inode *inode = mapping->host;
3196 struct buffer_head *bh;
cf108bca 3197 struct page *page;
ac27a0ec 3198 int err = 0;
ac27a0ec 3199
cf108bca
JK
3200 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3201 if (!page)
3202 return -EINVAL;
3203
ac27a0ec
DK
3204 blocksize = inode->i_sb->s_blocksize;
3205 length = blocksize - (offset & (blocksize - 1));
3206 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3207
3208 /*
3209 * For "nobh" option, we can only work if we don't need to
3210 * read-in the page - otherwise we create buffers to do the IO.
3211 */
3212 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3213 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3214 zero_user(page, offset, length);
ac27a0ec
DK
3215 set_page_dirty(page);
3216 goto unlock;
3217 }
3218
3219 if (!page_has_buffers(page))
3220 create_empty_buffers(page, blocksize, 0);
3221
3222 /* Find the buffer that contains "offset" */
3223 bh = page_buffers(page);
3224 pos = blocksize;
3225 while (offset >= pos) {
3226 bh = bh->b_this_page;
3227 iblock++;
3228 pos += blocksize;
3229 }
3230
3231 err = 0;
3232 if (buffer_freed(bh)) {
3233 BUFFER_TRACE(bh, "freed: skip");
3234 goto unlock;
3235 }
3236
3237 if (!buffer_mapped(bh)) {
3238 BUFFER_TRACE(bh, "unmapped");
617ba13b 3239 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3240 /* unmapped? It's a hole - nothing to do */
3241 if (!buffer_mapped(bh)) {
3242 BUFFER_TRACE(bh, "still unmapped");
3243 goto unlock;
3244 }
3245 }
3246
3247 /* Ok, it's mapped. Make sure it's up-to-date */
3248 if (PageUptodate(page))
3249 set_buffer_uptodate(bh);
3250
3251 if (!buffer_uptodate(bh)) {
3252 err = -EIO;
3253 ll_rw_block(READ, 1, &bh);
3254 wait_on_buffer(bh);
3255 /* Uhhuh. Read error. Complain and punt. */
3256 if (!buffer_uptodate(bh))
3257 goto unlock;
3258 }
3259
617ba13b 3260 if (ext4_should_journal_data(inode)) {
ac27a0ec 3261 BUFFER_TRACE(bh, "get write access");
617ba13b 3262 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3263 if (err)
3264 goto unlock;
3265 }
3266
eebd2aa3 3267 zero_user(page, offset, length);
ac27a0ec
DK
3268
3269 BUFFER_TRACE(bh, "zeroed end of block");
3270
3271 err = 0;
617ba13b
MC
3272 if (ext4_should_journal_data(inode)) {
3273 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3274 } else {
617ba13b 3275 if (ext4_should_order_data(inode))
678aaf48 3276 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3277 mark_buffer_dirty(bh);
3278 }
3279
3280unlock:
3281 unlock_page(page);
3282 page_cache_release(page);
3283 return err;
3284}
3285
3286/*
3287 * Probably it should be a library function... search for first non-zero word
3288 * or memcmp with zero_page, whatever is better for particular architecture.
3289 * Linus?
3290 */
3291static inline int all_zeroes(__le32 *p, __le32 *q)
3292{
3293 while (p < q)
3294 if (*p++)
3295 return 0;
3296 return 1;
3297}
3298
3299/**
617ba13b 3300 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3301 * @inode: inode in question
3302 * @depth: depth of the affected branch
617ba13b 3303 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3304 * @chain: place to store the pointers to partial indirect blocks
3305 * @top: place to the (detached) top of branch
3306 *
617ba13b 3307 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3308 *
3309 * When we do truncate() we may have to clean the ends of several
3310 * indirect blocks but leave the blocks themselves alive. Block is
3311 * partially truncated if some data below the new i_size is refered
3312 * from it (and it is on the path to the first completely truncated
3313 * data block, indeed). We have to free the top of that path along
3314 * with everything to the right of the path. Since no allocation
617ba13b 3315 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3316 * finishes, we may safely do the latter, but top of branch may
3317 * require special attention - pageout below the truncation point
3318 * might try to populate it.
3319 *
3320 * We atomically detach the top of branch from the tree, store the
3321 * block number of its root in *@top, pointers to buffer_heads of
3322 * partially truncated blocks - in @chain[].bh and pointers to
3323 * their last elements that should not be removed - in
3324 * @chain[].p. Return value is the pointer to last filled element
3325 * of @chain.
3326 *
3327 * The work left to caller to do the actual freeing of subtrees:
3328 * a) free the subtree starting from *@top
3329 * b) free the subtrees whose roots are stored in
3330 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3331 * c) free the subtrees growing from the inode past the @chain[0].
3332 * (no partially truncated stuff there). */
3333
617ba13b 3334static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3335 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3336{
3337 Indirect *partial, *p;
3338 int k, err;
3339
3340 *top = 0;
3341 /* Make k index the deepest non-null offest + 1 */
3342 for (k = depth; k > 1 && !offsets[k-1]; k--)
3343 ;
617ba13b 3344 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3345 /* Writer: pointers */
3346 if (!partial)
3347 partial = chain + k-1;
3348 /*
3349 * If the branch acquired continuation since we've looked at it -
3350 * fine, it should all survive and (new) top doesn't belong to us.
3351 */
3352 if (!partial->key && *partial->p)
3353 /* Writer: end */
3354 goto no_top;
af5bc92d 3355 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3356 ;
3357 /*
3358 * OK, we've found the last block that must survive. The rest of our
3359 * branch should be detached before unlocking. However, if that rest
3360 * of branch is all ours and does not grow immediately from the inode
3361 * it's easier to cheat and just decrement partial->p.
3362 */
3363 if (p == chain + k - 1 && p > chain) {
3364 p->p--;
3365 } else {
3366 *top = *p->p;
617ba13b 3367 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3368#if 0
3369 *p->p = 0;
3370#endif
3371 }
3372 /* Writer: end */
3373
af5bc92d 3374 while (partial > p) {
ac27a0ec
DK
3375 brelse(partial->bh);
3376 partial--;
3377 }
3378no_top:
3379 return partial;
3380}
3381
3382/*
3383 * Zero a number of block pointers in either an inode or an indirect block.
3384 * If we restart the transaction we must again get write access to the
3385 * indirect block for further modification.
3386 *
3387 * We release `count' blocks on disk, but (last - first) may be greater
3388 * than `count' because there can be holes in there.
3389 */
617ba13b
MC
3390static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3391 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3392 unsigned long count, __le32 *first, __le32 *last)
3393{
3394 __le32 *p;
3395 if (try_to_extend_transaction(handle, inode)) {
3396 if (bh) {
617ba13b
MC
3397 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3398 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3399 }
617ba13b
MC
3400 ext4_mark_inode_dirty(handle, inode);
3401 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3402 if (bh) {
3403 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3404 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3405 }
3406 }
3407
3408 /*
3409 * Any buffers which are on the journal will be in memory. We find
dab291af 3410 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3411 * on them. We've already detached each block from the file, so
dab291af 3412 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3413 *
dab291af 3414 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3415 */
3416 for (p = first; p < last; p++) {
3417 u32 nr = le32_to_cpu(*p);
3418 if (nr) {
1d03ec98 3419 struct buffer_head *tbh;
ac27a0ec
DK
3420
3421 *p = 0;
1d03ec98
AK
3422 tbh = sb_find_get_block(inode->i_sb, nr);
3423 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3424 }
3425 }
3426
c9de560d 3427 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3428}
3429
3430/**
617ba13b 3431 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3432 * @handle: handle for this transaction
3433 * @inode: inode we are dealing with
3434 * @this_bh: indirect buffer_head which contains *@first and *@last
3435 * @first: array of block numbers
3436 * @last: points immediately past the end of array
3437 *
3438 * We are freeing all blocks refered from that array (numbers are stored as
3439 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3440 *
3441 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3442 * blocks are contiguous then releasing them at one time will only affect one
3443 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3444 * actually use a lot of journal space.
3445 *
3446 * @this_bh will be %NULL if @first and @last point into the inode's direct
3447 * block pointers.
3448 */
617ba13b 3449static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3450 struct buffer_head *this_bh,
3451 __le32 *first, __le32 *last)
3452{
617ba13b 3453 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3454 unsigned long count = 0; /* Number of blocks in the run */
3455 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3456 corresponding to
3457 block_to_free */
617ba13b 3458 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3459 __le32 *p; /* Pointer into inode/ind
3460 for current block */
3461 int err;
3462
3463 if (this_bh) { /* For indirect block */
3464 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3465 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3466 /* Important: if we can't update the indirect pointers
3467 * to the blocks, we can't free them. */
3468 if (err)
3469 return;
3470 }
3471
3472 for (p = first; p < last; p++) {
3473 nr = le32_to_cpu(*p);
3474 if (nr) {
3475 /* accumulate blocks to free if they're contiguous */
3476 if (count == 0) {
3477 block_to_free = nr;
3478 block_to_free_p = p;
3479 count = 1;
3480 } else if (nr == block_to_free + count) {
3481 count++;
3482 } else {
617ba13b 3483 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3484 block_to_free,
3485 count, block_to_free_p, p);
3486 block_to_free = nr;
3487 block_to_free_p = p;
3488 count = 1;
3489 }
3490 }
3491 }
3492
3493 if (count > 0)
617ba13b 3494 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3495 count, block_to_free_p, p);
3496
3497 if (this_bh) {
617ba13b 3498 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3499
3500 /*
3501 * The buffer head should have an attached journal head at this
3502 * point. However, if the data is corrupted and an indirect
3503 * block pointed to itself, it would have been detached when
3504 * the block was cleared. Check for this instead of OOPSing.
3505 */
3506 if (bh2jh(this_bh))
3507 ext4_journal_dirty_metadata(handle, this_bh);
3508 else
3509 ext4_error(inode->i_sb, __func__,
3510 "circular indirect block detected, "
3511 "inode=%lu, block=%llu",
3512 inode->i_ino,
3513 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3514 }
3515}
3516
3517/**
617ba13b 3518 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3519 * @handle: JBD handle for this transaction
3520 * @inode: inode we are dealing with
3521 * @parent_bh: the buffer_head which contains *@first and *@last
3522 * @first: array of block numbers
3523 * @last: pointer immediately past the end of array
3524 * @depth: depth of the branches to free
3525 *
3526 * We are freeing all blocks refered from these branches (numbers are
3527 * stored as little-endian 32-bit) and updating @inode->i_blocks
3528 * appropriately.
3529 */
617ba13b 3530static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3531 struct buffer_head *parent_bh,
3532 __le32 *first, __le32 *last, int depth)
3533{
617ba13b 3534 ext4_fsblk_t nr;
ac27a0ec
DK
3535 __le32 *p;
3536
3537 if (is_handle_aborted(handle))
3538 return;
3539
3540 if (depth--) {
3541 struct buffer_head *bh;
617ba13b 3542 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3543 p = last;
3544 while (--p >= first) {
3545 nr = le32_to_cpu(*p);
3546 if (!nr)
3547 continue; /* A hole */
3548
3549 /* Go read the buffer for the next level down */
3550 bh = sb_bread(inode->i_sb, nr);
3551
3552 /*
3553 * A read failure? Report error and clear slot
3554 * (should be rare).
3555 */
3556 if (!bh) {
617ba13b 3557 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3558 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3559 inode->i_ino, nr);
3560 continue;
3561 }
3562
3563 /* This zaps the entire block. Bottom up. */
3564 BUFFER_TRACE(bh, "free child branches");
617ba13b 3565 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3566 (__le32 *) bh->b_data,
3567 (__le32 *) bh->b_data + addr_per_block,
3568 depth);
ac27a0ec
DK
3569
3570 /*
3571 * We've probably journalled the indirect block several
3572 * times during the truncate. But it's no longer
3573 * needed and we now drop it from the transaction via
dab291af 3574 * jbd2_journal_revoke().
ac27a0ec
DK
3575 *
3576 * That's easy if it's exclusively part of this
3577 * transaction. But if it's part of the committing
dab291af 3578 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3579 * brelse() it. That means that if the underlying
617ba13b 3580 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3581 * unmap_underlying_metadata() will find this block
3582 * and will try to get rid of it. damn, damn.
3583 *
3584 * If this block has already been committed to the
3585 * journal, a revoke record will be written. And
3586 * revoke records must be emitted *before* clearing
3587 * this block's bit in the bitmaps.
3588 */
617ba13b 3589 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3590
3591 /*
3592 * Everything below this this pointer has been
3593 * released. Now let this top-of-subtree go.
3594 *
3595 * We want the freeing of this indirect block to be
3596 * atomic in the journal with the updating of the
3597 * bitmap block which owns it. So make some room in
3598 * the journal.
3599 *
3600 * We zero the parent pointer *after* freeing its
3601 * pointee in the bitmaps, so if extend_transaction()
3602 * for some reason fails to put the bitmap changes and
3603 * the release into the same transaction, recovery
3604 * will merely complain about releasing a free block,
3605 * rather than leaking blocks.
3606 */
3607 if (is_handle_aborted(handle))
3608 return;
3609 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3610 ext4_mark_inode_dirty(handle, inode);
3611 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3612 }
3613
c9de560d 3614 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3615
3616 if (parent_bh) {
3617 /*
3618 * The block which we have just freed is
3619 * pointed to by an indirect block: journal it
3620 */
3621 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3622 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3623 parent_bh)){
3624 *p = 0;
3625 BUFFER_TRACE(parent_bh,
617ba13b
MC
3626 "call ext4_journal_dirty_metadata");
3627 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3628 parent_bh);
3629 }
3630 }
3631 }
3632 } else {
3633 /* We have reached the bottom of the tree. */
3634 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3635 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3636 }
3637}
3638
91ef4caf
DG
3639int ext4_can_truncate(struct inode *inode)
3640{
3641 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3642 return 0;
3643 if (S_ISREG(inode->i_mode))
3644 return 1;
3645 if (S_ISDIR(inode->i_mode))
3646 return 1;
3647 if (S_ISLNK(inode->i_mode))
3648 return !ext4_inode_is_fast_symlink(inode);
3649 return 0;
3650}
3651
ac27a0ec 3652/*
617ba13b 3653 * ext4_truncate()
ac27a0ec 3654 *
617ba13b
MC
3655 * We block out ext4_get_block() block instantiations across the entire
3656 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3657 * simultaneously on behalf of the same inode.
3658 *
3659 * As we work through the truncate and commmit bits of it to the journal there
3660 * is one core, guiding principle: the file's tree must always be consistent on
3661 * disk. We must be able to restart the truncate after a crash.
3662 *
3663 * The file's tree may be transiently inconsistent in memory (although it
3664 * probably isn't), but whenever we close off and commit a journal transaction,
3665 * the contents of (the filesystem + the journal) must be consistent and
3666 * restartable. It's pretty simple, really: bottom up, right to left (although
3667 * left-to-right works OK too).
3668 *
3669 * Note that at recovery time, journal replay occurs *before* the restart of
3670 * truncate against the orphan inode list.
3671 *
3672 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3673 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3674 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3675 * ext4_truncate() to have another go. So there will be instantiated blocks
3676 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3677 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3678 * ext4_truncate() run will find them and release them.
ac27a0ec 3679 */
617ba13b 3680void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3681{
3682 handle_t *handle;
617ba13b 3683 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3684 __le32 *i_data = ei->i_data;
617ba13b 3685 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3686 struct address_space *mapping = inode->i_mapping;
725d26d3 3687 ext4_lblk_t offsets[4];
ac27a0ec
DK
3688 Indirect chain[4];
3689 Indirect *partial;
3690 __le32 nr = 0;
3691 int n;
725d26d3 3692 ext4_lblk_t last_block;
ac27a0ec 3693 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3694
91ef4caf 3695 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3696 return;
3697
1d03ec98 3698 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3699 ext4_ext_truncate(inode);
1d03ec98
AK
3700 return;
3701 }
a86c6181 3702
ac27a0ec 3703 handle = start_transaction(inode);
cf108bca 3704 if (IS_ERR(handle))
ac27a0ec 3705 return; /* AKPM: return what? */
ac27a0ec
DK
3706
3707 last_block = (inode->i_size + blocksize-1)
617ba13b 3708 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3709
cf108bca
JK
3710 if (inode->i_size & (blocksize - 1))
3711 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3712 goto out_stop;
ac27a0ec 3713
617ba13b 3714 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3715 if (n == 0)
3716 goto out_stop; /* error */
3717
3718 /*
3719 * OK. This truncate is going to happen. We add the inode to the
3720 * orphan list, so that if this truncate spans multiple transactions,
3721 * and we crash, we will resume the truncate when the filesystem
3722 * recovers. It also marks the inode dirty, to catch the new size.
3723 *
3724 * Implication: the file must always be in a sane, consistent
3725 * truncatable state while each transaction commits.
3726 */
617ba13b 3727 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3728 goto out_stop;
3729
632eaeab
MC
3730 /*
3731 * From here we block out all ext4_get_block() callers who want to
3732 * modify the block allocation tree.
3733 */
3734 down_write(&ei->i_data_sem);
b4df2030 3735
c2ea3fde 3736 ext4_discard_preallocations(inode);
b4df2030 3737
ac27a0ec
DK
3738 /*
3739 * The orphan list entry will now protect us from any crash which
3740 * occurs before the truncate completes, so it is now safe to propagate
3741 * the new, shorter inode size (held for now in i_size) into the
3742 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3743 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3744 */
3745 ei->i_disksize = inode->i_size;
3746
ac27a0ec 3747 if (n == 1) { /* direct blocks */
617ba13b
MC
3748 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3749 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3750 goto do_indirects;
3751 }
3752
617ba13b 3753 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3754 /* Kill the top of shared branch (not detached) */
3755 if (nr) {
3756 if (partial == chain) {
3757 /* Shared branch grows from the inode */
617ba13b 3758 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3759 &nr, &nr+1, (chain+n-1) - partial);
3760 *partial->p = 0;
3761 /*
3762 * We mark the inode dirty prior to restart,
3763 * and prior to stop. No need for it here.
3764 */
3765 } else {
3766 /* Shared branch grows from an indirect block */
3767 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3768 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3769 partial->p,
3770 partial->p+1, (chain+n-1) - partial);
3771 }
3772 }
3773 /* Clear the ends of indirect blocks on the shared branch */
3774 while (partial > chain) {
617ba13b 3775 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3776 (__le32*)partial->bh->b_data+addr_per_block,
3777 (chain+n-1) - partial);
3778 BUFFER_TRACE(partial->bh, "call brelse");
3779 brelse (partial->bh);
3780 partial--;
3781 }
3782do_indirects:
3783 /* Kill the remaining (whole) subtrees */
3784 switch (offsets[0]) {
3785 default:
617ba13b 3786 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3787 if (nr) {
617ba13b
MC
3788 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3789 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3790 }
617ba13b
MC
3791 case EXT4_IND_BLOCK:
3792 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3793 if (nr) {
617ba13b
MC
3794 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3795 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3796 }
617ba13b
MC
3797 case EXT4_DIND_BLOCK:
3798 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3799 if (nr) {
617ba13b
MC
3800 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3801 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3802 }
617ba13b 3803 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3804 ;
3805 }
3806
0e855ac8 3807 up_write(&ei->i_data_sem);
ef7f3835 3808 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3809 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3810
3811 /*
3812 * In a multi-transaction truncate, we only make the final transaction
3813 * synchronous
3814 */
3815 if (IS_SYNC(inode))
3816 handle->h_sync = 1;
3817out_stop:
3818 /*
3819 * If this was a simple ftruncate(), and the file will remain alive
3820 * then we need to clear up the orphan record which we created above.
3821 * However, if this was a real unlink then we were called by
617ba13b 3822 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3823 * orphan info for us.
3824 */
3825 if (inode->i_nlink)
617ba13b 3826 ext4_orphan_del(handle, inode);
ac27a0ec 3827
617ba13b 3828 ext4_journal_stop(handle);
ac27a0ec
DK
3829}
3830
ac27a0ec 3831/*
617ba13b 3832 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3833 * underlying buffer_head on success. If 'in_mem' is true, we have all
3834 * data in memory that is needed to recreate the on-disk version of this
3835 * inode.
3836 */
617ba13b
MC
3837static int __ext4_get_inode_loc(struct inode *inode,
3838 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3839{
240799cd
TT
3840 struct ext4_group_desc *gdp;
3841 struct buffer_head *bh;
3842 struct super_block *sb = inode->i_sb;
3843 ext4_fsblk_t block;
3844 int inodes_per_block, inode_offset;
3845
3846 iloc->bh = 0;
3847 if (!ext4_valid_inum(sb, inode->i_ino))
3848 return -EIO;
ac27a0ec 3849
240799cd
TT
3850 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3851 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3852 if (!gdp)
ac27a0ec
DK
3853 return -EIO;
3854
240799cd
TT
3855 /*
3856 * Figure out the offset within the block group inode table
3857 */
3858 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3859 inode_offset = ((inode->i_ino - 1) %
3860 EXT4_INODES_PER_GROUP(sb));
3861 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3862 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3863
3864 bh = sb_getblk(sb, block);
ac27a0ec 3865 if (!bh) {
240799cd
TT
3866 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3867 "inode block - inode=%lu, block=%llu",
3868 inode->i_ino, block);
ac27a0ec
DK
3869 return -EIO;
3870 }
3871 if (!buffer_uptodate(bh)) {
3872 lock_buffer(bh);
9c83a923
HK
3873
3874 /*
3875 * If the buffer has the write error flag, we have failed
3876 * to write out another inode in the same block. In this
3877 * case, we don't have to read the block because we may
3878 * read the old inode data successfully.
3879 */
3880 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3881 set_buffer_uptodate(bh);
3882
ac27a0ec
DK
3883 if (buffer_uptodate(bh)) {
3884 /* someone brought it uptodate while we waited */
3885 unlock_buffer(bh);
3886 goto has_buffer;
3887 }
3888
3889 /*
3890 * If we have all information of the inode in memory and this
3891 * is the only valid inode in the block, we need not read the
3892 * block.
3893 */
3894 if (in_mem) {
3895 struct buffer_head *bitmap_bh;
240799cd 3896 int i, start;
ac27a0ec 3897
240799cd 3898 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3899
240799cd
TT
3900 /* Is the inode bitmap in cache? */
3901 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3902 if (!bitmap_bh)
3903 goto make_io;
3904
3905 /*
3906 * If the inode bitmap isn't in cache then the
3907 * optimisation may end up performing two reads instead
3908 * of one, so skip it.
3909 */
3910 if (!buffer_uptodate(bitmap_bh)) {
3911 brelse(bitmap_bh);
3912 goto make_io;
3913 }
240799cd 3914 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3915 if (i == inode_offset)
3916 continue;
617ba13b 3917 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3918 break;
3919 }
3920 brelse(bitmap_bh);
240799cd 3921 if (i == start + inodes_per_block) {
ac27a0ec
DK
3922 /* all other inodes are free, so skip I/O */
3923 memset(bh->b_data, 0, bh->b_size);
3924 set_buffer_uptodate(bh);
3925 unlock_buffer(bh);
3926 goto has_buffer;
3927 }
3928 }
3929
3930make_io:
240799cd
TT
3931 /*
3932 * If we need to do any I/O, try to pre-readahead extra
3933 * blocks from the inode table.
3934 */
3935 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3936 ext4_fsblk_t b, end, table;
3937 unsigned num;
3938
3939 table = ext4_inode_table(sb, gdp);
3940 /* Make sure s_inode_readahead_blks is a power of 2 */
3941 while (EXT4_SB(sb)->s_inode_readahead_blks &
3942 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3943 EXT4_SB(sb)->s_inode_readahead_blks =
3944 (EXT4_SB(sb)->s_inode_readahead_blks &
3945 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3946 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3947 if (table > b)
3948 b = table;
3949 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3950 num = EXT4_INODES_PER_GROUP(sb);
3951 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3952 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3953 num -= le16_to_cpu(gdp->bg_itable_unused);
3954 table += num / inodes_per_block;
3955 if (end > table)
3956 end = table;
3957 while (b <= end)
3958 sb_breadahead(sb, b++);
3959 }
3960
ac27a0ec
DK
3961 /*
3962 * There are other valid inodes in the buffer, this inode
3963 * has in-inode xattrs, or we don't have this inode in memory.
3964 * Read the block from disk.
3965 */
3966 get_bh(bh);
3967 bh->b_end_io = end_buffer_read_sync;
3968 submit_bh(READ_META, bh);
3969 wait_on_buffer(bh);
3970 if (!buffer_uptodate(bh)) {
240799cd
TT
3971 ext4_error(sb, __func__,
3972 "unable to read inode block - inode=%lu, "
3973 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
3974 brelse(bh);
3975 return -EIO;
3976 }
3977 }
3978has_buffer:
3979 iloc->bh = bh;
3980 return 0;
3981}
3982
617ba13b 3983int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3984{
3985 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3986 return __ext4_get_inode_loc(inode, iloc,
3987 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3988}
3989
617ba13b 3990void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3991{
617ba13b 3992 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3993
3994 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3995 if (flags & EXT4_SYNC_FL)
ac27a0ec 3996 inode->i_flags |= S_SYNC;
617ba13b 3997 if (flags & EXT4_APPEND_FL)
ac27a0ec 3998 inode->i_flags |= S_APPEND;
617ba13b 3999 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4000 inode->i_flags |= S_IMMUTABLE;
617ba13b 4001 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4002 inode->i_flags |= S_NOATIME;
617ba13b 4003 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4004 inode->i_flags |= S_DIRSYNC;
4005}
4006
ff9ddf7e
JK
4007/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4008void ext4_get_inode_flags(struct ext4_inode_info *ei)
4009{
4010 unsigned int flags = ei->vfs_inode.i_flags;
4011
4012 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4013 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4014 if (flags & S_SYNC)
4015 ei->i_flags |= EXT4_SYNC_FL;
4016 if (flags & S_APPEND)
4017 ei->i_flags |= EXT4_APPEND_FL;
4018 if (flags & S_IMMUTABLE)
4019 ei->i_flags |= EXT4_IMMUTABLE_FL;
4020 if (flags & S_NOATIME)
4021 ei->i_flags |= EXT4_NOATIME_FL;
4022 if (flags & S_DIRSYNC)
4023 ei->i_flags |= EXT4_DIRSYNC_FL;
4024}
0fc1b451
AK
4025static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4026 struct ext4_inode_info *ei)
4027{
4028 blkcnt_t i_blocks ;
8180a562
AK
4029 struct inode *inode = &(ei->vfs_inode);
4030 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4031
4032 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4033 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4034 /* we are using combined 48 bit field */
4035 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4036 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4037 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4038 /* i_blocks represent file system block size */
4039 return i_blocks << (inode->i_blkbits - 9);
4040 } else {
4041 return i_blocks;
4042 }
0fc1b451
AK
4043 } else {
4044 return le32_to_cpu(raw_inode->i_blocks_lo);
4045 }
4046}
ff9ddf7e 4047
1d1fe1ee 4048struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4049{
617ba13b
MC
4050 struct ext4_iloc iloc;
4051 struct ext4_inode *raw_inode;
1d1fe1ee 4052 struct ext4_inode_info *ei;
ac27a0ec 4053 struct buffer_head *bh;
1d1fe1ee
DH
4054 struct inode *inode;
4055 long ret;
ac27a0ec
DK
4056 int block;
4057
1d1fe1ee
DH
4058 inode = iget_locked(sb, ino);
4059 if (!inode)
4060 return ERR_PTR(-ENOMEM);
4061 if (!(inode->i_state & I_NEW))
4062 return inode;
4063
4064 ei = EXT4_I(inode);
03010a33 4065#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4066 ei->i_acl = EXT4_ACL_NOT_CACHED;
4067 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4068#endif
ac27a0ec 4069
1d1fe1ee
DH
4070 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4071 if (ret < 0)
ac27a0ec
DK
4072 goto bad_inode;
4073 bh = iloc.bh;
617ba13b 4074 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4075 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4076 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4077 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4078 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4079 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4080 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4081 }
4082 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4083
4084 ei->i_state = 0;
4085 ei->i_dir_start_lookup = 0;
4086 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4087 /* We now have enough fields to check if the inode was active or not.
4088 * This is needed because nfsd might try to access dead inodes
4089 * the test is that same one that e2fsck uses
4090 * NeilBrown 1999oct15
4091 */
4092 if (inode->i_nlink == 0) {
4093 if (inode->i_mode == 0 ||
617ba13b 4094 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4095 /* this inode is deleted */
af5bc92d 4096 brelse(bh);
1d1fe1ee 4097 ret = -ESTALE;
ac27a0ec
DK
4098 goto bad_inode;
4099 }
4100 /* The only unlinked inodes we let through here have
4101 * valid i_mode and are being read by the orphan
4102 * recovery code: that's fine, we're about to complete
4103 * the process of deleting those. */
4104 }
ac27a0ec 4105 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4106 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4107 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4109 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4110 ei->i_file_acl |=
4111 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4112 }
a48380f7 4113 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4114 ei->i_disksize = inode->i_size;
4115 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4116 ei->i_block_group = iloc.block_group;
4117 /*
4118 * NOTE! The in-memory inode i_data array is in little-endian order
4119 * even on big-endian machines: we do NOT byteswap the block numbers!
4120 */
617ba13b 4121 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4122 ei->i_data[block] = raw_inode->i_block[block];
4123 INIT_LIST_HEAD(&ei->i_orphan);
4124
0040d987 4125 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4126 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4127 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4128 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4129 brelse(bh);
1d1fe1ee 4130 ret = -EIO;
ac27a0ec 4131 goto bad_inode;
e5d2861f 4132 }
ac27a0ec
DK
4133 if (ei->i_extra_isize == 0) {
4134 /* The extra space is currently unused. Use it. */
617ba13b
MC
4135 ei->i_extra_isize = sizeof(struct ext4_inode) -
4136 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4137 } else {
4138 __le32 *magic = (void *)raw_inode +
617ba13b 4139 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4140 ei->i_extra_isize;
617ba13b
MC
4141 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4142 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4143 }
4144 } else
4145 ei->i_extra_isize = 0;
4146
ef7f3835
KS
4147 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4148 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4149 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4150 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4151
25ec56b5
JNC
4152 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4153 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4154 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4155 inode->i_version |=
4156 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4157 }
4158
ac27a0ec 4159 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4160 inode->i_op = &ext4_file_inode_operations;
4161 inode->i_fop = &ext4_file_operations;
4162 ext4_set_aops(inode);
ac27a0ec 4163 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4164 inode->i_op = &ext4_dir_inode_operations;
4165 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4166 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
4167 if (ext4_inode_is_fast_symlink(inode))
4168 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 4169 else {
617ba13b
MC
4170 inode->i_op = &ext4_symlink_inode_operations;
4171 ext4_set_aops(inode);
ac27a0ec
DK
4172 }
4173 } else {
617ba13b 4174 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4175 if (raw_inode->i_block[0])
4176 init_special_inode(inode, inode->i_mode,
4177 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4178 else
4179 init_special_inode(inode, inode->i_mode,
4180 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4181 }
af5bc92d 4182 brelse(iloc.bh);
617ba13b 4183 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4184 unlock_new_inode(inode);
4185 return inode;
ac27a0ec
DK
4186
4187bad_inode:
1d1fe1ee
DH
4188 iget_failed(inode);
4189 return ERR_PTR(ret);
ac27a0ec
DK
4190}
4191
0fc1b451
AK
4192static int ext4_inode_blocks_set(handle_t *handle,
4193 struct ext4_inode *raw_inode,
4194 struct ext4_inode_info *ei)
4195{
4196 struct inode *inode = &(ei->vfs_inode);
4197 u64 i_blocks = inode->i_blocks;
4198 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4199
4200 if (i_blocks <= ~0U) {
4201 /*
4202 * i_blocks can be represnted in a 32 bit variable
4203 * as multiple of 512 bytes
4204 */
8180a562 4205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4206 raw_inode->i_blocks_high = 0;
8180a562 4207 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4208 return 0;
4209 }
4210 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4211 return -EFBIG;
4212
4213 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4214 /*
4215 * i_blocks can be represented in a 48 bit variable
4216 * as multiple of 512 bytes
4217 */
8180a562 4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4220 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4221 } else {
8180a562
AK
4222 ei->i_flags |= EXT4_HUGE_FILE_FL;
4223 /* i_block is stored in file system block size */
4224 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4227 }
f287a1a5 4228 return 0;
0fc1b451
AK
4229}
4230
ac27a0ec
DK
4231/*
4232 * Post the struct inode info into an on-disk inode location in the
4233 * buffer-cache. This gobbles the caller's reference to the
4234 * buffer_head in the inode location struct.
4235 *
4236 * The caller must have write access to iloc->bh.
4237 */
617ba13b 4238static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4239 struct inode *inode,
617ba13b 4240 struct ext4_iloc *iloc)
ac27a0ec 4241{
617ba13b
MC
4242 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4243 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4244 struct buffer_head *bh = iloc->bh;
4245 int err = 0, rc, block;
4246
4247 /* For fields not not tracking in the in-memory inode,
4248 * initialise them to zero for new inodes. */
617ba13b
MC
4249 if (ei->i_state & EXT4_STATE_NEW)
4250 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4251
ff9ddf7e 4252 ext4_get_inode_flags(ei);
ac27a0ec 4253 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4254 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4255 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4256 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4257/*
4258 * Fix up interoperability with old kernels. Otherwise, old inodes get
4259 * re-used with the upper 16 bits of the uid/gid intact
4260 */
af5bc92d 4261 if (!ei->i_dtime) {
ac27a0ec
DK
4262 raw_inode->i_uid_high =
4263 cpu_to_le16(high_16_bits(inode->i_uid));
4264 raw_inode->i_gid_high =
4265 cpu_to_le16(high_16_bits(inode->i_gid));
4266 } else {
4267 raw_inode->i_uid_high = 0;
4268 raw_inode->i_gid_high = 0;
4269 }
4270 } else {
4271 raw_inode->i_uid_low =
4272 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4273 raw_inode->i_gid_low =
4274 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4275 raw_inode->i_uid_high = 0;
4276 raw_inode->i_gid_high = 0;
4277 }
4278 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4279
4280 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4281 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4282 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4283 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4284
0fc1b451
AK
4285 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4286 goto out_brelse;
ac27a0ec 4287 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4288 /* clear the migrate flag in the raw_inode */
4289 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4290 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4291 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4292 raw_inode->i_file_acl_high =
4293 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4294 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4295 ext4_isize_set(raw_inode, ei->i_disksize);
4296 if (ei->i_disksize > 0x7fffffffULL) {
4297 struct super_block *sb = inode->i_sb;
4298 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4299 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4300 EXT4_SB(sb)->s_es->s_rev_level ==
4301 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4302 /* If this is the first large file
4303 * created, add a flag to the superblock.
4304 */
4305 err = ext4_journal_get_write_access(handle,
4306 EXT4_SB(sb)->s_sbh);
4307 if (err)
4308 goto out_brelse;
4309 ext4_update_dynamic_rev(sb);
4310 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4311 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4312 sb->s_dirt = 1;
4313 handle->h_sync = 1;
4314 err = ext4_journal_dirty_metadata(handle,
4315 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4316 }
4317 }
4318 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4319 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4320 if (old_valid_dev(inode->i_rdev)) {
4321 raw_inode->i_block[0] =
4322 cpu_to_le32(old_encode_dev(inode->i_rdev));
4323 raw_inode->i_block[1] = 0;
4324 } else {
4325 raw_inode->i_block[0] = 0;
4326 raw_inode->i_block[1] =
4327 cpu_to_le32(new_encode_dev(inode->i_rdev));
4328 raw_inode->i_block[2] = 0;
4329 }
617ba13b 4330 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4331 raw_inode->i_block[block] = ei->i_data[block];
4332
25ec56b5
JNC
4333 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4334 if (ei->i_extra_isize) {
4335 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4336 raw_inode->i_version_hi =
4337 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4338 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4339 }
4340
ac27a0ec 4341
617ba13b
MC
4342 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4343 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4344 if (!err)
4345 err = rc;
617ba13b 4346 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4347
4348out_brelse:
af5bc92d 4349 brelse(bh);
617ba13b 4350 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4351 return err;
4352}
4353
4354/*
617ba13b 4355 * ext4_write_inode()
ac27a0ec
DK
4356 *
4357 * We are called from a few places:
4358 *
4359 * - Within generic_file_write() for O_SYNC files.
4360 * Here, there will be no transaction running. We wait for any running
4361 * trasnaction to commit.
4362 *
4363 * - Within sys_sync(), kupdate and such.
4364 * We wait on commit, if tol to.
4365 *
4366 * - Within prune_icache() (PF_MEMALLOC == true)
4367 * Here we simply return. We can't afford to block kswapd on the
4368 * journal commit.
4369 *
4370 * In all cases it is actually safe for us to return without doing anything,
4371 * because the inode has been copied into a raw inode buffer in
617ba13b 4372 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4373 * knfsd.
4374 *
4375 * Note that we are absolutely dependent upon all inode dirtiers doing the
4376 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4377 * which we are interested.
4378 *
4379 * It would be a bug for them to not do this. The code:
4380 *
4381 * mark_inode_dirty(inode)
4382 * stuff();
4383 * inode->i_size = expr;
4384 *
4385 * is in error because a kswapd-driven write_inode() could occur while
4386 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4387 * will no longer be on the superblock's dirty inode list.
4388 */
617ba13b 4389int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4390{
4391 if (current->flags & PF_MEMALLOC)
4392 return 0;
4393
617ba13b 4394 if (ext4_journal_current_handle()) {
b38bd33a 4395 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4396 dump_stack();
4397 return -EIO;
4398 }
4399
4400 if (!wait)
4401 return 0;
4402
617ba13b 4403 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4404}
4405
4406/*
617ba13b 4407 * ext4_setattr()
ac27a0ec
DK
4408 *
4409 * Called from notify_change.
4410 *
4411 * We want to trap VFS attempts to truncate the file as soon as
4412 * possible. In particular, we want to make sure that when the VFS
4413 * shrinks i_size, we put the inode on the orphan list and modify
4414 * i_disksize immediately, so that during the subsequent flushing of
4415 * dirty pages and freeing of disk blocks, we can guarantee that any
4416 * commit will leave the blocks being flushed in an unused state on
4417 * disk. (On recovery, the inode will get truncated and the blocks will
4418 * be freed, so we have a strong guarantee that no future commit will
4419 * leave these blocks visible to the user.)
4420 *
678aaf48
JK
4421 * Another thing we have to assure is that if we are in ordered mode
4422 * and inode is still attached to the committing transaction, we must
4423 * we start writeout of all the dirty pages which are being truncated.
4424 * This way we are sure that all the data written in the previous
4425 * transaction are already on disk (truncate waits for pages under
4426 * writeback).
4427 *
4428 * Called with inode->i_mutex down.
ac27a0ec 4429 */
617ba13b 4430int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4431{
4432 struct inode *inode = dentry->d_inode;
4433 int error, rc = 0;
4434 const unsigned int ia_valid = attr->ia_valid;
4435
4436 error = inode_change_ok(inode, attr);
4437 if (error)
4438 return error;
4439
4440 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4441 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4442 handle_t *handle;
4443
4444 /* (user+group)*(old+new) structure, inode write (sb,
4445 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4446 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4447 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4448 if (IS_ERR(handle)) {
4449 error = PTR_ERR(handle);
4450 goto err_out;
4451 }
4452 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4453 if (error) {
617ba13b 4454 ext4_journal_stop(handle);
ac27a0ec
DK
4455 return error;
4456 }
4457 /* Update corresponding info in inode so that everything is in
4458 * one transaction */
4459 if (attr->ia_valid & ATTR_UID)
4460 inode->i_uid = attr->ia_uid;
4461 if (attr->ia_valid & ATTR_GID)
4462 inode->i_gid = attr->ia_gid;
617ba13b
MC
4463 error = ext4_mark_inode_dirty(handle, inode);
4464 ext4_journal_stop(handle);
ac27a0ec
DK
4465 }
4466
e2b46574
ES
4467 if (attr->ia_valid & ATTR_SIZE) {
4468 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4469 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4470
4471 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4472 error = -EFBIG;
4473 goto err_out;
4474 }
4475 }
4476 }
4477
ac27a0ec
DK
4478 if (S_ISREG(inode->i_mode) &&
4479 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4480 handle_t *handle;
4481
617ba13b 4482 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4483 if (IS_ERR(handle)) {
4484 error = PTR_ERR(handle);
4485 goto err_out;
4486 }
4487
617ba13b
MC
4488 error = ext4_orphan_add(handle, inode);
4489 EXT4_I(inode)->i_disksize = attr->ia_size;
4490 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4491 if (!error)
4492 error = rc;
617ba13b 4493 ext4_journal_stop(handle);
678aaf48
JK
4494
4495 if (ext4_should_order_data(inode)) {
4496 error = ext4_begin_ordered_truncate(inode,
4497 attr->ia_size);
4498 if (error) {
4499 /* Do as much error cleanup as possible */
4500 handle = ext4_journal_start(inode, 3);
4501 if (IS_ERR(handle)) {
4502 ext4_orphan_del(NULL, inode);
4503 goto err_out;
4504 }
4505 ext4_orphan_del(handle, inode);
4506 ext4_journal_stop(handle);
4507 goto err_out;
4508 }
4509 }
ac27a0ec
DK
4510 }
4511
4512 rc = inode_setattr(inode, attr);
4513
617ba13b 4514 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4515 * transaction handle at all, we need to clean up the in-core
4516 * orphan list manually. */
4517 if (inode->i_nlink)
617ba13b 4518 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4519
4520 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4521 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4522
4523err_out:
617ba13b 4524 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4525 if (!error)
4526 error = rc;
4527 return error;
4528}
4529
3e3398a0
MC
4530int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4531 struct kstat *stat)
4532{
4533 struct inode *inode;
4534 unsigned long delalloc_blocks;
4535
4536 inode = dentry->d_inode;
4537 generic_fillattr(inode, stat);
4538
4539 /*
4540 * We can't update i_blocks if the block allocation is delayed
4541 * otherwise in the case of system crash before the real block
4542 * allocation is done, we will have i_blocks inconsistent with
4543 * on-disk file blocks.
4544 * We always keep i_blocks updated together with real
4545 * allocation. But to not confuse with user, stat
4546 * will return the blocks that include the delayed allocation
4547 * blocks for this file.
4548 */
4549 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4550 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4551 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4552
4553 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4554 return 0;
4555}
ac27a0ec 4556
a02908f1
MC
4557static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4558 int chunk)
4559{
4560 int indirects;
4561
4562 /* if nrblocks are contiguous */
4563 if (chunk) {
4564 /*
4565 * With N contiguous data blocks, it need at most
4566 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4567 * 2 dindirect blocks
4568 * 1 tindirect block
4569 */
4570 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4571 return indirects + 3;
4572 }
4573 /*
4574 * if nrblocks are not contiguous, worse case, each block touch
4575 * a indirect block, and each indirect block touch a double indirect
4576 * block, plus a triple indirect block
4577 */
4578 indirects = nrblocks * 2 + 1;
4579 return indirects;
4580}
4581
4582static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4583{
4584 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4585 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4586 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4587}
ac51d837 4588
ac27a0ec 4589/*
a02908f1
MC
4590 * Account for index blocks, block groups bitmaps and block group
4591 * descriptor blocks if modify datablocks and index blocks
4592 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4593 *
a02908f1
MC
4594 * If datablocks are discontiguous, they are possible to spread over
4595 * different block groups too. If they are contiugous, with flexbg,
4596 * they could still across block group boundary.
ac27a0ec 4597 *
a02908f1
MC
4598 * Also account for superblock, inode, quota and xattr blocks
4599 */
4600int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4601{
4602 int groups, gdpblocks;
4603 int idxblocks;
4604 int ret = 0;
4605
4606 /*
4607 * How many index blocks need to touch to modify nrblocks?
4608 * The "Chunk" flag indicating whether the nrblocks is
4609 * physically contiguous on disk
4610 *
4611 * For Direct IO and fallocate, they calls get_block to allocate
4612 * one single extent at a time, so they could set the "Chunk" flag
4613 */
4614 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4615
4616 ret = idxblocks;
4617
4618 /*
4619 * Now let's see how many group bitmaps and group descriptors need
4620 * to account
4621 */
4622 groups = idxblocks;
4623 if (chunk)
4624 groups += 1;
4625 else
4626 groups += nrblocks;
4627
4628 gdpblocks = groups;
4629 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4630 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4631 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4632 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4633
4634 /* bitmaps and block group descriptor blocks */
4635 ret += groups + gdpblocks;
4636
4637 /* Blocks for super block, inode, quota and xattr blocks */
4638 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4639
4640 return ret;
4641}
4642
4643/*
4644 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4645 * the modification of a single pages into a single transaction,
4646 * which may include multiple chunks of block allocations.
ac27a0ec 4647 *
525f4ed8 4648 * This could be called via ext4_write_begin()
ac27a0ec 4649 *
525f4ed8 4650 * We need to consider the worse case, when
a02908f1 4651 * one new block per extent.
ac27a0ec 4652 */
a86c6181 4653int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4654{
617ba13b 4655 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4656 int ret;
4657
a02908f1 4658 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4659
a02908f1 4660 /* Account for data blocks for journalled mode */
617ba13b 4661 if (ext4_should_journal_data(inode))
a02908f1 4662 ret += bpp;
ac27a0ec
DK
4663 return ret;
4664}
f3bd1f3f
MC
4665
4666/*
4667 * Calculate the journal credits for a chunk of data modification.
4668 *
4669 * This is called from DIO, fallocate or whoever calling
4670 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4671 *
4672 * journal buffers for data blocks are not included here, as DIO
4673 * and fallocate do no need to journal data buffers.
4674 */
4675int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4676{
4677 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4678}
4679
ac27a0ec 4680/*
617ba13b 4681 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4682 * Give this, we know that the caller already has write access to iloc->bh.
4683 */
617ba13b
MC
4684int ext4_mark_iloc_dirty(handle_t *handle,
4685 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4686{
4687 int err = 0;
4688
25ec56b5
JNC
4689 if (test_opt(inode->i_sb, I_VERSION))
4690 inode_inc_iversion(inode);
4691
ac27a0ec
DK
4692 /* the do_update_inode consumes one bh->b_count */
4693 get_bh(iloc->bh);
4694
dab291af 4695 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4696 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4697 put_bh(iloc->bh);
4698 return err;
4699}
4700
4701/*
4702 * On success, We end up with an outstanding reference count against
4703 * iloc->bh. This _must_ be cleaned up later.
4704 */
4705
4706int
617ba13b
MC
4707ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4708 struct ext4_iloc *iloc)
ac27a0ec
DK
4709{
4710 int err = 0;
4711 if (handle) {
617ba13b 4712 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4713 if (!err) {
4714 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4715 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4716 if (err) {
4717 brelse(iloc->bh);
4718 iloc->bh = NULL;
4719 }
4720 }
4721 }
617ba13b 4722 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4723 return err;
4724}
4725
6dd4ee7c
KS
4726/*
4727 * Expand an inode by new_extra_isize bytes.
4728 * Returns 0 on success or negative error number on failure.
4729 */
1d03ec98
AK
4730static int ext4_expand_extra_isize(struct inode *inode,
4731 unsigned int new_extra_isize,
4732 struct ext4_iloc iloc,
4733 handle_t *handle)
6dd4ee7c
KS
4734{
4735 struct ext4_inode *raw_inode;
4736 struct ext4_xattr_ibody_header *header;
4737 struct ext4_xattr_entry *entry;
4738
4739 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4740 return 0;
4741
4742 raw_inode = ext4_raw_inode(&iloc);
4743
4744 header = IHDR(inode, raw_inode);
4745 entry = IFIRST(header);
4746
4747 /* No extended attributes present */
4748 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4749 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4750 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4751 new_extra_isize);
4752 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4753 return 0;
4754 }
4755
4756 /* try to expand with EAs present */
4757 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4758 raw_inode, handle);
4759}
4760
ac27a0ec
DK
4761/*
4762 * What we do here is to mark the in-core inode as clean with respect to inode
4763 * dirtiness (it may still be data-dirty).
4764 * This means that the in-core inode may be reaped by prune_icache
4765 * without having to perform any I/O. This is a very good thing,
4766 * because *any* task may call prune_icache - even ones which
4767 * have a transaction open against a different journal.
4768 *
4769 * Is this cheating? Not really. Sure, we haven't written the
4770 * inode out, but prune_icache isn't a user-visible syncing function.
4771 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4772 * we start and wait on commits.
4773 *
4774 * Is this efficient/effective? Well, we're being nice to the system
4775 * by cleaning up our inodes proactively so they can be reaped
4776 * without I/O. But we are potentially leaving up to five seconds'
4777 * worth of inodes floating about which prune_icache wants us to
4778 * write out. One way to fix that would be to get prune_icache()
4779 * to do a write_super() to free up some memory. It has the desired
4780 * effect.
4781 */
617ba13b 4782int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4783{
617ba13b 4784 struct ext4_iloc iloc;
6dd4ee7c
KS
4785 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4786 static unsigned int mnt_count;
4787 int err, ret;
ac27a0ec
DK
4788
4789 might_sleep();
617ba13b 4790 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4791 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4792 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4793 /*
4794 * We need extra buffer credits since we may write into EA block
4795 * with this same handle. If journal_extend fails, then it will
4796 * only result in a minor loss of functionality for that inode.
4797 * If this is felt to be critical, then e2fsck should be run to
4798 * force a large enough s_min_extra_isize.
4799 */
4800 if ((jbd2_journal_extend(handle,
4801 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4802 ret = ext4_expand_extra_isize(inode,
4803 sbi->s_want_extra_isize,
4804 iloc, handle);
4805 if (ret) {
4806 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4807 if (mnt_count !=
4808 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4809 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4810 "Unable to expand inode %lu. Delete"
4811 " some EAs or run e2fsck.",
4812 inode->i_ino);
c1bddad9
AK
4813 mnt_count =
4814 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4815 }
4816 }
4817 }
4818 }
ac27a0ec 4819 if (!err)
617ba13b 4820 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4821 return err;
4822}
4823
4824/*
617ba13b 4825 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4826 *
4827 * We're really interested in the case where a file is being extended.
4828 * i_size has been changed by generic_commit_write() and we thus need
4829 * to include the updated inode in the current transaction.
4830 *
4831 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4832 * are allocated to the file.
4833 *
4834 * If the inode is marked synchronous, we don't honour that here - doing
4835 * so would cause a commit on atime updates, which we don't bother doing.
4836 * We handle synchronous inodes at the highest possible level.
4837 */
617ba13b 4838void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4839{
617ba13b 4840 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4841 handle_t *handle;
4842
617ba13b 4843 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4844 if (IS_ERR(handle))
4845 goto out;
4846 if (current_handle &&
4847 current_handle->h_transaction != handle->h_transaction) {
4848 /* This task has a transaction open against a different fs */
4849 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4850 __func__);
ac27a0ec
DK
4851 } else {
4852 jbd_debug(5, "marking dirty. outer handle=%p\n",
4853 current_handle);
617ba13b 4854 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4855 }
617ba13b 4856 ext4_journal_stop(handle);
ac27a0ec
DK
4857out:
4858 return;
4859}
4860
4861#if 0
4862/*
4863 * Bind an inode's backing buffer_head into this transaction, to prevent
4864 * it from being flushed to disk early. Unlike
617ba13b 4865 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4866 * returns no iloc structure, so the caller needs to repeat the iloc
4867 * lookup to mark the inode dirty later.
4868 */
617ba13b 4869static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4870{
617ba13b 4871 struct ext4_iloc iloc;
ac27a0ec
DK
4872
4873 int err = 0;
4874 if (handle) {
617ba13b 4875 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4876 if (!err) {
4877 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4878 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4879 if (!err)
617ba13b 4880 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4881 iloc.bh);
4882 brelse(iloc.bh);
4883 }
4884 }
617ba13b 4885 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4886 return err;
4887}
4888#endif
4889
617ba13b 4890int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4891{
4892 journal_t *journal;
4893 handle_t *handle;
4894 int err;
4895
4896 /*
4897 * We have to be very careful here: changing a data block's
4898 * journaling status dynamically is dangerous. If we write a
4899 * data block to the journal, change the status and then delete
4900 * that block, we risk forgetting to revoke the old log record
4901 * from the journal and so a subsequent replay can corrupt data.
4902 * So, first we make sure that the journal is empty and that
4903 * nobody is changing anything.
4904 */
4905
617ba13b 4906 journal = EXT4_JOURNAL(inode);
d699594d 4907 if (is_journal_aborted(journal))
ac27a0ec
DK
4908 return -EROFS;
4909
dab291af
MC
4910 jbd2_journal_lock_updates(journal);
4911 jbd2_journal_flush(journal);
ac27a0ec
DK
4912
4913 /*
4914 * OK, there are no updates running now, and all cached data is
4915 * synced to disk. We are now in a completely consistent state
4916 * which doesn't have anything in the journal, and we know that
4917 * no filesystem updates are running, so it is safe to modify
4918 * the inode's in-core data-journaling state flag now.
4919 */
4920
4921 if (val)
617ba13b 4922 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4923 else
617ba13b
MC
4924 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4925 ext4_set_aops(inode);
ac27a0ec 4926
dab291af 4927 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4928
4929 /* Finally we can mark the inode as dirty. */
4930
617ba13b 4931 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4932 if (IS_ERR(handle))
4933 return PTR_ERR(handle);
4934
617ba13b 4935 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4936 handle->h_sync = 1;
617ba13b
MC
4937 ext4_journal_stop(handle);
4938 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4939
4940 return err;
4941}
2e9ee850
AK
4942
4943static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4944{
4945 return !buffer_mapped(bh);
4946}
4947
4948int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4949{
4950 loff_t size;
4951 unsigned long len;
4952 int ret = -EINVAL;
79f0be8d 4953 void *fsdata;
2e9ee850
AK
4954 struct file *file = vma->vm_file;
4955 struct inode *inode = file->f_path.dentry->d_inode;
4956 struct address_space *mapping = inode->i_mapping;
4957
4958 /*
4959 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4960 * get i_mutex because we are already holding mmap_sem.
4961 */
4962 down_read(&inode->i_alloc_sem);
4963 size = i_size_read(inode);
4964 if (page->mapping != mapping || size <= page_offset(page)
4965 || !PageUptodate(page)) {
4966 /* page got truncated from under us? */
4967 goto out_unlock;
4968 }
4969 ret = 0;
4970 if (PageMappedToDisk(page))
4971 goto out_unlock;
4972
4973 if (page->index == size >> PAGE_CACHE_SHIFT)
4974 len = size & ~PAGE_CACHE_MASK;
4975 else
4976 len = PAGE_CACHE_SIZE;
4977
4978 if (page_has_buffers(page)) {
4979 /* return if we have all the buffers mapped */
4980 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4981 ext4_bh_unmapped))
4982 goto out_unlock;
4983 }
4984 /*
4985 * OK, we need to fill the hole... Do write_begin write_end
4986 * to do block allocation/reservation.We are not holding
4987 * inode.i__mutex here. That allow * parallel write_begin,
4988 * write_end call. lock_page prevent this from happening
4989 * on the same page though
4990 */
4991 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 4992 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
4993 if (ret < 0)
4994 goto out_unlock;
4995 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 4996 len, len, page, fsdata);
2e9ee850
AK
4997 if (ret < 0)
4998 goto out_unlock;
4999 ret = 0;
5000out_unlock:
5001 up_read(&inode->i_alloc_sem);
5002 return ret;
5003}