Allow times and time system calls to return small negative values
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
52}
53
64769240
AT
54static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
ac27a0ec
DK
56/*
57 * Test whether an inode is a fast symlink.
58 */
617ba13b 59static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 60{
617ba13b 61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
62 (inode->i_sb->s_blocksize >> 9) : 0;
63
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65}
66
67/*
617ba13b 68 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
71 *
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
75 */
617ba13b
MC
76int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
78{
79 int err;
80
81 might_sleep();
82
83 BUFFER_TRACE(bh, "enter");
84
85 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86 "data mode %lx\n",
87 bh, is_metadata, inode->i_mode,
88 test_opt(inode->i_sb, DATA_FLAGS));
89
90 /* Never use the revoke function if we are doing full data
91 * journaling: there is no need to, and a V1 superblock won't
92 * support it. Otherwise, only skip the revoke on un-journaled
93 * data blocks. */
94
617ba13b
MC
95 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 97 if (bh) {
dab291af 98 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 99 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
100 }
101 return 0;
102 }
103
104 /*
105 * data!=journal && (is_metadata || should_journal_data(inode))
106 */
617ba13b
MC
107 BUFFER_TRACE(bh, "call ext4_journal_revoke");
108 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 109 if (err)
46e665e9 110 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
111 "error %d when attempting revoke", err);
112 BUFFER_TRACE(bh, "exit");
113 return err;
114}
115
116/*
117 * Work out how many blocks we need to proceed with the next chunk of a
118 * truncate transaction.
119 */
120static unsigned long blocks_for_truncate(struct inode *inode)
121{
725d26d3 122 ext4_lblk_t needed;
ac27a0ec
DK
123
124 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125
126 /* Give ourselves just enough room to cope with inodes in which
127 * i_blocks is corrupt: we've seen disk corruptions in the past
128 * which resulted in random data in an inode which looked enough
617ba13b 129 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
130 * will go a bit crazy if that happens, but at least we should
131 * try not to panic the whole kernel. */
132 if (needed < 2)
133 needed = 2;
134
135 /* But we need to bound the transaction so we don't overflow the
136 * journal. */
617ba13b
MC
137 if (needed > EXT4_MAX_TRANS_DATA)
138 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 139
617ba13b 140 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
141}
142
143/*
144 * Truncate transactions can be complex and absolutely huge. So we need to
145 * be able to restart the transaction at a conventient checkpoint to make
146 * sure we don't overflow the journal.
147 *
148 * start_transaction gets us a new handle for a truncate transaction,
149 * and extend_transaction tries to extend the existing one a bit. If
150 * extend fails, we need to propagate the failure up and restart the
151 * transaction in the top-level truncate loop. --sct
152 */
153static handle_t *start_transaction(struct inode *inode)
154{
155 handle_t *result;
156
617ba13b 157 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
158 if (!IS_ERR(result))
159 return result;
160
617ba13b 161 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
162 return result;
163}
164
165/*
166 * Try to extend this transaction for the purposes of truncation.
167 *
168 * Returns 0 if we managed to create more room. If we can't create more
169 * room, and the transaction must be restarted we return 1.
170 */
171static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172{
617ba13b 173 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 174 return 0;
617ba13b 175 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
176 return 0;
177 return 1;
178}
179
180/*
181 * Restart the transaction associated with *handle. This does a commit,
182 * so before we call here everything must be consistently dirtied against
183 * this transaction.
184 */
617ba13b 185static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
186{
187 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 188 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
189}
190
191/*
192 * Called at the last iput() if i_nlink is zero.
193 */
af5bc92d 194void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
195{
196 handle_t *handle;
bc965ab3 197 int err;
ac27a0ec 198
678aaf48
JK
199 if (ext4_should_order_data(inode))
200 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
201 truncate_inode_pages(&inode->i_data, 0);
202
203 if (is_bad_inode(inode))
204 goto no_delete;
205
bc965ab3 206 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 207 if (IS_ERR(handle)) {
bc965ab3 208 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
209 /*
210 * If we're going to skip the normal cleanup, we still need to
211 * make sure that the in-core orphan linked list is properly
212 * cleaned up.
213 */
617ba13b 214 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
215 goto no_delete;
216 }
217
218 if (IS_SYNC(inode))
219 handle->h_sync = 1;
220 inode->i_size = 0;
bc965ab3
TT
221 err = ext4_mark_inode_dirty(handle, inode);
222 if (err) {
223 ext4_warning(inode->i_sb, __func__,
224 "couldn't mark inode dirty (err %d)", err);
225 goto stop_handle;
226 }
ac27a0ec 227 if (inode->i_blocks)
617ba13b 228 ext4_truncate(inode);
bc965ab3
TT
229
230 /*
231 * ext4_ext_truncate() doesn't reserve any slop when it
232 * restarts journal transactions; therefore there may not be
233 * enough credits left in the handle to remove the inode from
234 * the orphan list and set the dtime field.
235 */
236 if (handle->h_buffer_credits < 3) {
237 err = ext4_journal_extend(handle, 3);
238 if (err > 0)
239 err = ext4_journal_restart(handle, 3);
240 if (err != 0) {
241 ext4_warning(inode->i_sb, __func__,
242 "couldn't extend journal (err %d)", err);
243 stop_handle:
244 ext4_journal_stop(handle);
245 goto no_delete;
246 }
247 }
248
ac27a0ec 249 /*
617ba13b 250 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 251 * AKPM: I think this can be inside the above `if'.
617ba13b 252 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 253 * deletion of a non-existent orphan - this is because we don't
617ba13b 254 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
255 * (Well, we could do this if we need to, but heck - it works)
256 */
617ba13b
MC
257 ext4_orphan_del(handle, inode);
258 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
259
260 /*
261 * One subtle ordering requirement: if anything has gone wrong
262 * (transaction abort, IO errors, whatever), then we can still
263 * do these next steps (the fs will already have been marked as
264 * having errors), but we can't free the inode if the mark_dirty
265 * fails.
266 */
617ba13b 267 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
268 /* If that failed, just do the required in-core inode clear. */
269 clear_inode(inode);
270 else
617ba13b
MC
271 ext4_free_inode(handle, inode);
272 ext4_journal_stop(handle);
ac27a0ec
DK
273 return;
274no_delete:
275 clear_inode(inode); /* We must guarantee clearing of inode... */
276}
277
278typedef struct {
279 __le32 *p;
280 __le32 key;
281 struct buffer_head *bh;
282} Indirect;
283
284static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285{
286 p->key = *(p->p = v);
287 p->bh = bh;
288}
289
ac27a0ec 290/**
617ba13b 291 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
292 * @inode: inode in question (we are only interested in its superblock)
293 * @i_block: block number to be parsed
294 * @offsets: array to store the offsets in
8c55e204
DK
295 * @boundary: set this non-zero if the referred-to block is likely to be
296 * followed (on disk) by an indirect block.
ac27a0ec 297 *
617ba13b 298 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
299 * for UNIX filesystems - tree of pointers anchored in the inode, with
300 * data blocks at leaves and indirect blocks in intermediate nodes.
301 * This function translates the block number into path in that tree -
302 * return value is the path length and @offsets[n] is the offset of
303 * pointer to (n+1)th node in the nth one. If @block is out of range
304 * (negative or too large) warning is printed and zero returned.
305 *
306 * Note: function doesn't find node addresses, so no IO is needed. All
307 * we need to know is the capacity of indirect blocks (taken from the
308 * inode->i_sb).
309 */
310
311/*
312 * Portability note: the last comparison (check that we fit into triple
313 * indirect block) is spelled differently, because otherwise on an
314 * architecture with 32-bit longs and 8Kb pages we might get into trouble
315 * if our filesystem had 8Kb blocks. We might use long long, but that would
316 * kill us on x86. Oh, well, at least the sign propagation does not matter -
317 * i_block would have to be negative in the very beginning, so we would not
318 * get there at all.
319 */
320
617ba13b 321static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
322 ext4_lblk_t i_block,
323 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 324{
617ba13b
MC
325 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
328 indirect_blocks = ptrs,
329 double_blocks = (1 << (ptrs_bits * 2));
330 int n = 0;
331 int final = 0;
332
333 if (i_block < 0) {
af5bc92d 334 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
335 } else if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
af5bc92d 338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 339 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 343 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 348 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
e2b46574 354 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 355 "block %lu > max",
e2b46574
ES
356 i_block + direct_blocks +
357 indirect_blocks + double_blocks);
ac27a0ec
DK
358 }
359 if (boundary)
360 *boundary = final - 1 - (i_block & (ptrs - 1));
361 return n;
362}
363
364/**
617ba13b 365 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
366 * @inode: inode in question
367 * @depth: depth of the chain (1 - direct pointer, etc.)
368 * @offsets: offsets of pointers in inode/indirect blocks
369 * @chain: place to store the result
370 * @err: here we store the error value
371 *
372 * Function fills the array of triples <key, p, bh> and returns %NULL
373 * if everything went OK or the pointer to the last filled triple
374 * (incomplete one) otherwise. Upon the return chain[i].key contains
375 * the number of (i+1)-th block in the chain (as it is stored in memory,
376 * i.e. little-endian 32-bit), chain[i].p contains the address of that
377 * number (it points into struct inode for i==0 and into the bh->b_data
378 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379 * block for i>0 and NULL for i==0. In other words, it holds the block
380 * numbers of the chain, addresses they were taken from (and where we can
381 * verify that chain did not change) and buffer_heads hosting these
382 * numbers.
383 *
384 * Function stops when it stumbles upon zero pointer (absent block)
385 * (pointer to last triple returned, *@err == 0)
386 * or when it gets an IO error reading an indirect block
387 * (ditto, *@err == -EIO)
ac27a0ec
DK
388 * or when it reads all @depth-1 indirect blocks successfully and finds
389 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
390 *
391 * Need to be called with
0e855ac8 392 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 393 */
725d26d3
AK
394static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 ext4_lblk_t *offsets,
ac27a0ec
DK
396 Indirect chain[4], int *err)
397{
398 struct super_block *sb = inode->i_sb;
399 Indirect *p = chain;
400 struct buffer_head *bh;
401
402 *err = 0;
403 /* i_data is not going away, no lock needed */
af5bc92d 404 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
405 if (!p->key)
406 goto no_block;
407 while (--depth) {
408 bh = sb_bread(sb, le32_to_cpu(p->key));
409 if (!bh)
410 goto failure;
af5bc92d 411 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
412 /* Reader: end */
413 if (!p->key)
414 goto no_block;
415 }
416 return NULL;
417
ac27a0ec
DK
418failure:
419 *err = -EIO;
420no_block:
421 return p;
422}
423
424/**
617ba13b 425 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
426 * @inode: owner
427 * @ind: descriptor of indirect block.
428 *
1cc8dcf5 429 * This function returns the preferred place for block allocation.
ac27a0ec
DK
430 * It is used when heuristic for sequential allocation fails.
431 * Rules are:
432 * + if there is a block to the left of our position - allocate near it.
433 * + if pointer will live in indirect block - allocate near that block.
434 * + if pointer will live in inode - allocate in the same
435 * cylinder group.
436 *
437 * In the latter case we colour the starting block by the callers PID to
438 * prevent it from clashing with concurrent allocations for a different inode
439 * in the same block group. The PID is used here so that functionally related
440 * files will be close-by on-disk.
441 *
442 * Caller must make sure that @ind is valid and will stay that way.
443 */
617ba13b 444static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 445{
617ba13b 446 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 447 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 448 __le32 *p;
617ba13b 449 ext4_fsblk_t bg_start;
74d3487f 450 ext4_fsblk_t last_block;
617ba13b 451 ext4_grpblk_t colour;
ac27a0ec
DK
452
453 /* Try to find previous block */
454 for (p = ind->p - 1; p >= start; p--) {
455 if (*p)
456 return le32_to_cpu(*p);
457 }
458
459 /* No such thing, so let's try location of indirect block */
460 if (ind->bh)
461 return ind->bh->b_blocknr;
462
463 /*
464 * It is going to be referred to from the inode itself? OK, just put it
465 * into the same cylinder group then.
466 */
617ba13b 467 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
468 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469
470 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471 colour = (current->pid % 16) *
617ba13b 472 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
473 else
474 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
475 return bg_start + colour;
476}
477
478/**
1cc8dcf5 479 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
480 * @inode: owner
481 * @block: block we want
ac27a0ec 482 * @partial: pointer to the last triple within a chain
ac27a0ec 483 *
1cc8dcf5 484 * Normally this function find the preferred place for block allocation,
fb01bfda 485 * returns it.
ac27a0ec 486 */
725d26d3 487static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 488 Indirect *partial)
ac27a0ec 489{
ac27a0ec 490 /*
c2ea3fde 491 * XXX need to get goal block from mballoc's data structures
ac27a0ec 492 */
ac27a0ec 493
617ba13b 494 return ext4_find_near(inode, partial);
ac27a0ec
DK
495}
496
497/**
617ba13b 498 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
499 * of direct blocks need to be allocated for the given branch.
500 *
501 * @branch: chain of indirect blocks
502 * @k: number of blocks need for indirect blocks
503 * @blks: number of data blocks to be mapped.
504 * @blocks_to_boundary: the offset in the indirect block
505 *
506 * return the total number of blocks to be allocate, including the
507 * direct and indirect blocks.
508 */
617ba13b 509static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
510 int blocks_to_boundary)
511{
512 unsigned long count = 0;
513
514 /*
515 * Simple case, [t,d]Indirect block(s) has not allocated yet
516 * then it's clear blocks on that path have not allocated
517 */
518 if (k > 0) {
519 /* right now we don't handle cross boundary allocation */
520 if (blks < blocks_to_boundary + 1)
521 count += blks;
522 else
523 count += blocks_to_boundary + 1;
524 return count;
525 }
526
527 count++;
528 while (count < blks && count <= blocks_to_boundary &&
529 le32_to_cpu(*(branch[0].p + count)) == 0) {
530 count++;
531 }
532 return count;
533}
534
535/**
617ba13b 536 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
537 * @indirect_blks: the number of blocks need to allocate for indirect
538 * blocks
539 *
540 * @new_blocks: on return it will store the new block numbers for
541 * the indirect blocks(if needed) and the first direct block,
542 * @blks: on return it will store the total number of allocated
543 * direct blocks
544 */
617ba13b 545static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
546 ext4_lblk_t iblock, ext4_fsblk_t goal,
547 int indirect_blks, int blks,
548 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
549{
550 int target, i;
7061eba7 551 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 552 int index = 0;
617ba13b 553 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
554 int ret = 0;
555
556 /*
557 * Here we try to allocate the requested multiple blocks at once,
558 * on a best-effort basis.
559 * To build a branch, we should allocate blocks for
560 * the indirect blocks(if not allocated yet), and at least
561 * the first direct block of this branch. That's the
562 * minimum number of blocks need to allocate(required)
563 */
7061eba7
AK
564 /* first we try to allocate the indirect blocks */
565 target = indirect_blks;
566 while (target > 0) {
ac27a0ec
DK
567 count = target;
568 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
569 current_block = ext4_new_meta_blocks(handle, inode,
570 goal, &count, err);
ac27a0ec
DK
571 if (*err)
572 goto failed_out;
573
574 target -= count;
575 /* allocate blocks for indirect blocks */
576 while (index < indirect_blks && count) {
577 new_blocks[index++] = current_block++;
578 count--;
579 }
7061eba7
AK
580 if (count > 0) {
581 /*
582 * save the new block number
583 * for the first direct block
584 */
585 new_blocks[index] = current_block;
586 printk(KERN_INFO "%s returned more blocks than "
587 "requested\n", __func__);
588 WARN_ON(1);
ac27a0ec 589 break;
7061eba7 590 }
ac27a0ec
DK
591 }
592
7061eba7
AK
593 target = blks - count ;
594 blk_allocated = count;
595 if (!target)
596 goto allocated;
597 /* Now allocate data blocks */
598 count = target;
654b4908 599 /* allocating blocks for data blocks */
7061eba7
AK
600 current_block = ext4_new_blocks(handle, inode, iblock,
601 goal, &count, err);
602 if (*err && (target == blks)) {
603 /*
604 * if the allocation failed and we didn't allocate
605 * any blocks before
606 */
607 goto failed_out;
608 }
609 if (!*err) {
610 if (target == blks) {
611 /*
612 * save the new block number
613 * for the first direct block
614 */
615 new_blocks[index] = current_block;
616 }
617 blk_allocated += count;
618 }
619allocated:
ac27a0ec 620 /* total number of blocks allocated for direct blocks */
7061eba7 621 ret = blk_allocated;
ac27a0ec
DK
622 *err = 0;
623 return ret;
624failed_out:
af5bc92d 625 for (i = 0; i < index; i++)
c9de560d 626 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
627 return ret;
628}
629
630/**
617ba13b 631 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
632 * @inode: owner
633 * @indirect_blks: number of allocated indirect blocks
634 * @blks: number of allocated direct blocks
635 * @offsets: offsets (in the blocks) to store the pointers to next.
636 * @branch: place to store the chain in.
637 *
638 * This function allocates blocks, zeroes out all but the last one,
639 * links them into chain and (if we are synchronous) writes them to disk.
640 * In other words, it prepares a branch that can be spliced onto the
641 * inode. It stores the information about that chain in the branch[], in
617ba13b 642 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
643 * we had read the existing part of chain and partial points to the last
644 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 645 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
646 * place chain is disconnected - *branch->p is still zero (we did not
647 * set the last link), but branch->key contains the number that should
648 * be placed into *branch->p to fill that gap.
649 *
650 * If allocation fails we free all blocks we've allocated (and forget
651 * their buffer_heads) and return the error value the from failed
617ba13b 652 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
653 * as described above and return 0.
654 */
617ba13b 655static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
656 ext4_lblk_t iblock, int indirect_blks,
657 int *blks, ext4_fsblk_t goal,
658 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
659{
660 int blocksize = inode->i_sb->s_blocksize;
661 int i, n = 0;
662 int err = 0;
663 struct buffer_head *bh;
664 int num;
617ba13b
MC
665 ext4_fsblk_t new_blocks[4];
666 ext4_fsblk_t current_block;
ac27a0ec 667
7061eba7 668 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
669 *blks, new_blocks, &err);
670 if (err)
671 return err;
672
673 branch[0].key = cpu_to_le32(new_blocks[0]);
674 /*
675 * metadata blocks and data blocks are allocated.
676 */
677 for (n = 1; n <= indirect_blks; n++) {
678 /*
679 * Get buffer_head for parent block, zero it out
680 * and set the pointer to new one, then send
681 * parent to disk.
682 */
683 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
684 branch[n].bh = bh;
685 lock_buffer(bh);
686 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 687 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
688 if (err) {
689 unlock_buffer(bh);
690 brelse(bh);
691 goto failed;
692 }
693
694 memset(bh->b_data, 0, blocksize);
695 branch[n].p = (__le32 *) bh->b_data + offsets[n];
696 branch[n].key = cpu_to_le32(new_blocks[n]);
697 *branch[n].p = branch[n].key;
af5bc92d 698 if (n == indirect_blks) {
ac27a0ec
DK
699 current_block = new_blocks[n];
700 /*
701 * End of chain, update the last new metablock of
702 * the chain to point to the new allocated
703 * data blocks numbers
704 */
705 for (i=1; i < num; i++)
706 *(branch[n].p + i) = cpu_to_le32(++current_block);
707 }
708 BUFFER_TRACE(bh, "marking uptodate");
709 set_buffer_uptodate(bh);
710 unlock_buffer(bh);
711
617ba13b
MC
712 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
713 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
714 if (err)
715 goto failed;
716 }
717 *blks = num;
718 return err;
719failed:
720 /* Allocation failed, free what we already allocated */
721 for (i = 1; i <= n ; i++) {
dab291af 722 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 723 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 724 }
af5bc92d 725 for (i = 0; i < indirect_blks; i++)
c9de560d 726 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 727
c9de560d 728 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
729
730 return err;
731}
732
733/**
617ba13b 734 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
735 * @inode: owner
736 * @block: (logical) number of block we are adding
737 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 738 * ext4_alloc_branch)
ac27a0ec
DK
739 * @where: location of missing link
740 * @num: number of indirect blocks we are adding
741 * @blks: number of direct blocks we are adding
742 *
743 * This function fills the missing link and does all housekeeping needed in
744 * inode (->i_blocks, etc.). In case of success we end up with the full
745 * chain to new block and return 0.
746 */
617ba13b 747static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 748 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
749{
750 int i;
751 int err = 0;
617ba13b 752 ext4_fsblk_t current_block;
ac27a0ec 753
ac27a0ec
DK
754 /*
755 * If we're splicing into a [td]indirect block (as opposed to the
756 * inode) then we need to get write access to the [td]indirect block
757 * before the splice.
758 */
759 if (where->bh) {
760 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 761 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
762 if (err)
763 goto err_out;
764 }
765 /* That's it */
766
767 *where->p = where->key;
768
769 /*
770 * Update the host buffer_head or inode to point to more just allocated
771 * direct blocks blocks
772 */
773 if (num == 0 && blks > 1) {
774 current_block = le32_to_cpu(where->key) + 1;
775 for (i = 1; i < blks; i++)
af5bc92d 776 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
777 }
778
ac27a0ec
DK
779 /* We are done with atomic stuff, now do the rest of housekeeping */
780
ef7f3835 781 inode->i_ctime = ext4_current_time(inode);
617ba13b 782 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
783
784 /* had we spliced it onto indirect block? */
785 if (where->bh) {
786 /*
787 * If we spliced it onto an indirect block, we haven't
788 * altered the inode. Note however that if it is being spliced
789 * onto an indirect block at the very end of the file (the
790 * file is growing) then we *will* alter the inode to reflect
791 * the new i_size. But that is not done here - it is done in
617ba13b 792 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
793 */
794 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
795 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
796 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
797 if (err)
798 goto err_out;
799 } else {
800 /*
801 * OK, we spliced it into the inode itself on a direct block.
802 * Inode was dirtied above.
803 */
804 jbd_debug(5, "splicing direct\n");
805 }
806 return err;
807
808err_out:
809 for (i = 1; i <= num; i++) {
dab291af 810 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 811 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
812 ext4_free_blocks(handle, inode,
813 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 814 }
c9de560d 815 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
816
817 return err;
818}
819
820/*
821 * Allocation strategy is simple: if we have to allocate something, we will
822 * have to go the whole way to leaf. So let's do it before attaching anything
823 * to tree, set linkage between the newborn blocks, write them if sync is
824 * required, recheck the path, free and repeat if check fails, otherwise
825 * set the last missing link (that will protect us from any truncate-generated
826 * removals - all blocks on the path are immune now) and possibly force the
827 * write on the parent block.
828 * That has a nice additional property: no special recovery from the failed
829 * allocations is needed - we simply release blocks and do not touch anything
830 * reachable from inode.
831 *
832 * `handle' can be NULL if create == 0.
833 *
ac27a0ec
DK
834 * return > 0, # of blocks mapped or allocated.
835 * return = 0, if plain lookup failed.
836 * return < 0, error case.
c278bfec
AK
837 *
838 *
839 * Need to be called with
0e855ac8
AK
840 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
841 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 842 */
617ba13b 843int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 844 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
845 struct buffer_head *bh_result,
846 int create, int extend_disksize)
847{
848 int err = -EIO;
725d26d3 849 ext4_lblk_t offsets[4];
ac27a0ec
DK
850 Indirect chain[4];
851 Indirect *partial;
617ba13b 852 ext4_fsblk_t goal;
ac27a0ec
DK
853 int indirect_blks;
854 int blocks_to_boundary = 0;
855 int depth;
617ba13b 856 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 857 int count = 0;
617ba13b 858 ext4_fsblk_t first_block = 0;
61628a3f 859 loff_t disksize;
ac27a0ec
DK
860
861
a86c6181 862 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 863 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
864 depth = ext4_block_to_path(inode, iblock, offsets,
865 &blocks_to_boundary);
ac27a0ec
DK
866
867 if (depth == 0)
868 goto out;
869
617ba13b 870 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
871
872 /* Simplest case - block found, no allocation needed */
873 if (!partial) {
874 first_block = le32_to_cpu(chain[depth - 1].key);
875 clear_buffer_new(bh_result);
876 count++;
877 /*map more blocks*/
878 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 879 ext4_fsblk_t blk;
ac27a0ec 880
ac27a0ec
DK
881 blk = le32_to_cpu(*(chain[depth-1].p + count));
882
883 if (blk == first_block + count)
884 count++;
885 else
886 break;
887 }
c278bfec 888 goto got_it;
ac27a0ec
DK
889 }
890
891 /* Next simple case - plain lookup or failed read of indirect block */
892 if (!create || err == -EIO)
893 goto cleanup;
894
ac27a0ec 895 /*
c2ea3fde 896 * Okay, we need to do block allocation.
ac27a0ec 897 */
fb01bfda 898 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
899
900 /* the number of blocks need to allocate for [d,t]indirect blocks */
901 indirect_blks = (chain + depth) - partial - 1;
902
903 /*
904 * Next look up the indirect map to count the totoal number of
905 * direct blocks to allocate for this branch.
906 */
617ba13b 907 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
908 maxblocks, blocks_to_boundary);
909 /*
617ba13b 910 * Block out ext4_truncate while we alter the tree
ac27a0ec 911 */
7061eba7
AK
912 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
913 &count, goal,
914 offsets + (partial - chain), partial);
ac27a0ec
DK
915
916 /*
617ba13b 917 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
918 * on the new chain if there is a failure, but that risks using
919 * up transaction credits, especially for bitmaps where the
920 * credits cannot be returned. Can we handle this somehow? We
921 * may need to return -EAGAIN upwards in the worst case. --sct
922 */
923 if (!err)
617ba13b 924 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
925 partial, indirect_blks, count);
926 /*
0e855ac8 927 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 928 * protect it if you're about to implement concurrent
617ba13b 929 * ext4_get_block() -bzzz
ac27a0ec 930 */
61628a3f
MC
931 if (!err && extend_disksize) {
932 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
933 if (disksize > i_size_read(inode))
934 disksize = i_size_read(inode);
935 if (disksize > ei->i_disksize)
936 ei->i_disksize = disksize;
937 }
ac27a0ec
DK
938 if (err)
939 goto cleanup;
940
941 set_buffer_new(bh_result);
942got_it:
943 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
944 if (count > blocks_to_boundary)
945 set_buffer_boundary(bh_result);
946 err = count;
947 /* Clean up and exit */
948 partial = chain + depth - 1; /* the whole chain */
949cleanup:
950 while (partial > chain) {
951 BUFFER_TRACE(partial->bh, "call brelse");
952 brelse(partial->bh);
953 partial--;
954 }
955 BUFFER_TRACE(bh_result, "returned");
956out:
957 return err;
958}
959
12219aea
AK
960/*
961 * Calculate the number of metadata blocks need to reserve
962 * to allocate @blocks for non extent file based file
963 */
964static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
965{
966 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
967 int ind_blks, dind_blks, tind_blks;
968
969 /* number of new indirect blocks needed */
970 ind_blks = (blocks + icap - 1) / icap;
971
972 dind_blks = (ind_blks + icap - 1) / icap;
973
974 tind_blks = 1;
975
976 return ind_blks + dind_blks + tind_blks;
977}
978
979/*
980 * Calculate the number of metadata blocks need to reserve
981 * to allocate given number of blocks
982 */
983static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
984{
cd213226
MC
985 if (!blocks)
986 return 0;
987
12219aea
AK
988 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
989 return ext4_ext_calc_metadata_amount(inode, blocks);
990
991 return ext4_indirect_calc_metadata_amount(inode, blocks);
992}
993
994static void ext4_da_update_reserve_space(struct inode *inode, int used)
995{
996 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
997 int total, mdb, mdb_free;
998
999 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1000 /* recalculate the number of metablocks still need to be reserved */
1001 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1002 mdb = ext4_calc_metadata_amount(inode, total);
1003
1004 /* figure out how many metablocks to release */
1005 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1006 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1007
6bc6e63f
AK
1008 if (mdb_free) {
1009 /* Account for allocated meta_blocks */
1010 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1011
1012 /* update fs dirty blocks counter */
1013 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1014 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1015 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1016 }
12219aea
AK
1017
1018 /* update per-inode reservations */
1019 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1020 EXT4_I(inode)->i_reserved_data_blocks -= used;
1021
12219aea
AK
1022 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1023}
1024
f5ab0d1f 1025/*
2b2d6d01
TT
1026 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1027 * and returns if the blocks are already mapped.
f5ab0d1f 1028 *
f5ab0d1f
MC
1029 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1030 * and store the allocated blocks in the result buffer head and mark it
1031 * mapped.
1032 *
1033 * If file type is extents based, it will call ext4_ext_get_blocks(),
1034 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1035 * based files
1036 *
1037 * On success, it returns the number of blocks being mapped or allocate.
1038 * if create==0 and the blocks are pre-allocated and uninitialized block,
1039 * the result buffer head is unmapped. If the create ==1, it will make sure
1040 * the buffer head is mapped.
1041 *
1042 * It returns 0 if plain look up failed (blocks have not been allocated), in
1043 * that casem, buffer head is unmapped
1044 *
1045 * It returns the error in case of allocation failure.
1046 */
0e855ac8
AK
1047int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1048 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1049 int create, int extend_disksize, int flag)
0e855ac8
AK
1050{
1051 int retval;
f5ab0d1f
MC
1052
1053 clear_buffer_mapped(bh);
1054
4df3d265
AK
1055 /*
1056 * Try to see if we can get the block without requesting
1057 * for new file system block.
1058 */
1059 down_read((&EXT4_I(inode)->i_data_sem));
1060 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1061 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1062 bh, 0, 0);
0e855ac8 1063 } else {
4df3d265
AK
1064 retval = ext4_get_blocks_handle(handle,
1065 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1066 }
4df3d265 1067 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1068
1069 /* If it is only a block(s) look up */
1070 if (!create)
1071 return retval;
1072
1073 /*
1074 * Returns if the blocks have already allocated
1075 *
1076 * Note that if blocks have been preallocated
1077 * ext4_ext_get_block() returns th create = 0
1078 * with buffer head unmapped.
1079 */
1080 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1081 return retval;
1082
1083 /*
f5ab0d1f
MC
1084 * New blocks allocate and/or writing to uninitialized extent
1085 * will possibly result in updating i_data, so we take
1086 * the write lock of i_data_sem, and call get_blocks()
1087 * with create == 1 flag.
4df3d265
AK
1088 */
1089 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1090
1091 /*
1092 * if the caller is from delayed allocation writeout path
1093 * we have already reserved fs blocks for allocation
1094 * let the underlying get_block() function know to
1095 * avoid double accounting
1096 */
1097 if (flag)
1098 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1099 /*
1100 * We need to check for EXT4 here because migrate
1101 * could have changed the inode type in between
1102 */
0e855ac8
AK
1103 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1104 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1105 bh, create, extend_disksize);
1106 } else {
1107 retval = ext4_get_blocks_handle(handle, inode, block,
1108 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1109
1110 if (retval > 0 && buffer_new(bh)) {
1111 /*
1112 * We allocated new blocks which will result in
1113 * i_data's format changing. Force the migrate
1114 * to fail by clearing migrate flags
1115 */
1116 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1117 ~EXT4_EXT_MIGRATE;
1118 }
0e855ac8 1119 }
d2a17637
MC
1120
1121 if (flag) {
1122 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1123 /*
1124 * Update reserved blocks/metadata blocks
1125 * after successful block allocation
1126 * which were deferred till now
1127 */
1128 if ((retval > 0) && buffer_delay(bh))
12219aea 1129 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1130 }
1131
4df3d265 1132 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1133 return retval;
1134}
1135
f3bd1f3f
MC
1136/* Maximum number of blocks we map for direct IO at once. */
1137#define DIO_MAX_BLOCKS 4096
1138
6873fa0d
ES
1139int ext4_get_block(struct inode *inode, sector_t iblock,
1140 struct buffer_head *bh_result, int create)
ac27a0ec 1141{
3e4fdaf8 1142 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1143 int ret = 0, started = 0;
ac27a0ec 1144 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1145 int dio_credits;
ac27a0ec 1146
7fb5409d
JK
1147 if (create && !handle) {
1148 /* Direct IO write... */
1149 if (max_blocks > DIO_MAX_BLOCKS)
1150 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1151 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1152 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1153 if (IS_ERR(handle)) {
ac27a0ec 1154 ret = PTR_ERR(handle);
7fb5409d 1155 goto out;
ac27a0ec 1156 }
7fb5409d 1157 started = 1;
ac27a0ec
DK
1158 }
1159
7fb5409d 1160 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1161 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1162 if (ret > 0) {
1163 bh_result->b_size = (ret << inode->i_blkbits);
1164 ret = 0;
ac27a0ec 1165 }
7fb5409d
JK
1166 if (started)
1167 ext4_journal_stop(handle);
1168out:
ac27a0ec
DK
1169 return ret;
1170}
1171
1172/*
1173 * `handle' can be NULL if create is zero
1174 */
617ba13b 1175struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1176 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1177{
1178 struct buffer_head dummy;
1179 int fatal = 0, err;
1180
1181 J_ASSERT(handle != NULL || create == 0);
1182
1183 dummy.b_state = 0;
1184 dummy.b_blocknr = -1000;
1185 buffer_trace_init(&dummy.b_history);
a86c6181 1186 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1187 &dummy, create, 1, 0);
ac27a0ec 1188 /*
617ba13b 1189 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1190 * mapped. 0 in case of a HOLE.
1191 */
1192 if (err > 0) {
1193 if (err > 1)
1194 WARN_ON(1);
1195 err = 0;
1196 }
1197 *errp = err;
1198 if (!err && buffer_mapped(&dummy)) {
1199 struct buffer_head *bh;
1200 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1201 if (!bh) {
1202 *errp = -EIO;
1203 goto err;
1204 }
1205 if (buffer_new(&dummy)) {
1206 J_ASSERT(create != 0);
ac39849d 1207 J_ASSERT(handle != NULL);
ac27a0ec
DK
1208
1209 /*
1210 * Now that we do not always journal data, we should
1211 * keep in mind whether this should always journal the
1212 * new buffer as metadata. For now, regular file
617ba13b 1213 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1214 * problem.
1215 */
1216 lock_buffer(bh);
1217 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1218 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1219 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1220 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1221 set_buffer_uptodate(bh);
1222 }
1223 unlock_buffer(bh);
617ba13b
MC
1224 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1225 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1226 if (!fatal)
1227 fatal = err;
1228 } else {
1229 BUFFER_TRACE(bh, "not a new buffer");
1230 }
1231 if (fatal) {
1232 *errp = fatal;
1233 brelse(bh);
1234 bh = NULL;
1235 }
1236 return bh;
1237 }
1238err:
1239 return NULL;
1240}
1241
617ba13b 1242struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1243 ext4_lblk_t block, int create, int *err)
ac27a0ec 1244{
af5bc92d 1245 struct buffer_head *bh;
ac27a0ec 1246
617ba13b 1247 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1248 if (!bh)
1249 return bh;
1250 if (buffer_uptodate(bh))
1251 return bh;
1252 ll_rw_block(READ_META, 1, &bh);
1253 wait_on_buffer(bh);
1254 if (buffer_uptodate(bh))
1255 return bh;
1256 put_bh(bh);
1257 *err = -EIO;
1258 return NULL;
1259}
1260
af5bc92d
TT
1261static int walk_page_buffers(handle_t *handle,
1262 struct buffer_head *head,
1263 unsigned from,
1264 unsigned to,
1265 int *partial,
1266 int (*fn)(handle_t *handle,
1267 struct buffer_head *bh))
ac27a0ec
DK
1268{
1269 struct buffer_head *bh;
1270 unsigned block_start, block_end;
1271 unsigned blocksize = head->b_size;
1272 int err, ret = 0;
1273 struct buffer_head *next;
1274
af5bc92d
TT
1275 for (bh = head, block_start = 0;
1276 ret == 0 && (bh != head || !block_start);
1277 block_start = block_end, bh = next)
ac27a0ec
DK
1278 {
1279 next = bh->b_this_page;
1280 block_end = block_start + blocksize;
1281 if (block_end <= from || block_start >= to) {
1282 if (partial && !buffer_uptodate(bh))
1283 *partial = 1;
1284 continue;
1285 }
1286 err = (*fn)(handle, bh);
1287 if (!ret)
1288 ret = err;
1289 }
1290 return ret;
1291}
1292
1293/*
1294 * To preserve ordering, it is essential that the hole instantiation and
1295 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1296 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1297 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1298 * prepare_write() is the right place.
1299 *
617ba13b
MC
1300 * Also, this function can nest inside ext4_writepage() ->
1301 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1302 * has generated enough buffer credits to do the whole page. So we won't
1303 * block on the journal in that case, which is good, because the caller may
1304 * be PF_MEMALLOC.
1305 *
617ba13b 1306 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1307 * quota file writes. If we were to commit the transaction while thus
1308 * reentered, there can be a deadlock - we would be holding a quota
1309 * lock, and the commit would never complete if another thread had a
1310 * transaction open and was blocking on the quota lock - a ranking
1311 * violation.
1312 *
dab291af 1313 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1314 * will _not_ run commit under these circumstances because handle->h_ref
1315 * is elevated. We'll still have enough credits for the tiny quotafile
1316 * write.
1317 */
1318static int do_journal_get_write_access(handle_t *handle,
1319 struct buffer_head *bh)
1320{
1321 if (!buffer_mapped(bh) || buffer_freed(bh))
1322 return 0;
617ba13b 1323 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1324}
1325
bfc1af65
NP
1326static int ext4_write_begin(struct file *file, struct address_space *mapping,
1327 loff_t pos, unsigned len, unsigned flags,
1328 struct page **pagep, void **fsdata)
ac27a0ec 1329{
af5bc92d 1330 struct inode *inode = mapping->host;
7479d2b9 1331 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1332 handle_t *handle;
1333 int retries = 0;
af5bc92d 1334 struct page *page;
bfc1af65 1335 pgoff_t index;
af5bc92d 1336 unsigned from, to;
bfc1af65
NP
1337
1338 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1339 from = pos & (PAGE_CACHE_SIZE - 1);
1340 to = from + len;
ac27a0ec
DK
1341
1342retry:
af5bc92d
TT
1343 handle = ext4_journal_start(inode, needed_blocks);
1344 if (IS_ERR(handle)) {
1345 ret = PTR_ERR(handle);
1346 goto out;
7479d2b9 1347 }
ac27a0ec 1348
54566b2c 1349 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1350 if (!page) {
1351 ext4_journal_stop(handle);
1352 ret = -ENOMEM;
1353 goto out;
1354 }
1355 *pagep = page;
1356
bfc1af65
NP
1357 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1358 ext4_get_block);
1359
1360 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1361 ret = walk_page_buffers(handle, page_buffers(page),
1362 from, to, NULL, do_journal_get_write_access);
1363 }
bfc1af65
NP
1364
1365 if (ret) {
af5bc92d 1366 unlock_page(page);
cf108bca 1367 ext4_journal_stop(handle);
af5bc92d 1368 page_cache_release(page);
ae4d5372
AK
1369 /*
1370 * block_write_begin may have instantiated a few blocks
1371 * outside i_size. Trim these off again. Don't need
1372 * i_size_read because we hold i_mutex.
1373 */
1374 if (pos + len > inode->i_size)
1375 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1376 }
1377
617ba13b 1378 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1379 goto retry;
7479d2b9 1380out:
ac27a0ec
DK
1381 return ret;
1382}
1383
bfc1af65
NP
1384/* For write_end() in data=journal mode */
1385static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1386{
1387 if (!buffer_mapped(bh) || buffer_freed(bh))
1388 return 0;
1389 set_buffer_uptodate(bh);
617ba13b 1390 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1391}
1392
1393/*
1394 * We need to pick up the new inode size which generic_commit_write gave us
1395 * `file' can be NULL - eg, when called from page_symlink().
1396 *
617ba13b 1397 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1398 * buffers are managed internally.
1399 */
bfc1af65
NP
1400static int ext4_ordered_write_end(struct file *file,
1401 struct address_space *mapping,
1402 loff_t pos, unsigned len, unsigned copied,
1403 struct page *page, void *fsdata)
ac27a0ec 1404{
617ba13b 1405 handle_t *handle = ext4_journal_current_handle();
cf108bca 1406 struct inode *inode = mapping->host;
ac27a0ec
DK
1407 int ret = 0, ret2;
1408
678aaf48 1409 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1410
1411 if (ret == 0) {
ac27a0ec
DK
1412 loff_t new_i_size;
1413
bfc1af65 1414 new_i_size = pos + copied;
cf17fea6
AK
1415 if (new_i_size > EXT4_I(inode)->i_disksize) {
1416 ext4_update_i_disksize(inode, new_i_size);
1417 /* We need to mark inode dirty even if
1418 * new_i_size is less that inode->i_size
1419 * bu greater than i_disksize.(hint delalloc)
1420 */
1421 ext4_mark_inode_dirty(handle, inode);
1422 }
1423
cf108bca 1424 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1425 page, fsdata);
f8a87d89
RK
1426 copied = ret2;
1427 if (ret2 < 0)
1428 ret = ret2;
ac27a0ec 1429 }
617ba13b 1430 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1431 if (!ret)
1432 ret = ret2;
bfc1af65
NP
1433
1434 return ret ? ret : copied;
ac27a0ec
DK
1435}
1436
bfc1af65
NP
1437static int ext4_writeback_write_end(struct file *file,
1438 struct address_space *mapping,
1439 loff_t pos, unsigned len, unsigned copied,
1440 struct page *page, void *fsdata)
ac27a0ec 1441{
617ba13b 1442 handle_t *handle = ext4_journal_current_handle();
cf108bca 1443 struct inode *inode = mapping->host;
ac27a0ec
DK
1444 int ret = 0, ret2;
1445 loff_t new_i_size;
1446
bfc1af65 1447 new_i_size = pos + copied;
cf17fea6
AK
1448 if (new_i_size > EXT4_I(inode)->i_disksize) {
1449 ext4_update_i_disksize(inode, new_i_size);
1450 /* We need to mark inode dirty even if
1451 * new_i_size is less that inode->i_size
1452 * bu greater than i_disksize.(hint delalloc)
1453 */
1454 ext4_mark_inode_dirty(handle, inode);
1455 }
ac27a0ec 1456
cf108bca 1457 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1458 page, fsdata);
f8a87d89
RK
1459 copied = ret2;
1460 if (ret2 < 0)
1461 ret = ret2;
ac27a0ec 1462
617ba13b 1463 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1464 if (!ret)
1465 ret = ret2;
bfc1af65
NP
1466
1467 return ret ? ret : copied;
ac27a0ec
DK
1468}
1469
bfc1af65
NP
1470static int ext4_journalled_write_end(struct file *file,
1471 struct address_space *mapping,
1472 loff_t pos, unsigned len, unsigned copied,
1473 struct page *page, void *fsdata)
ac27a0ec 1474{
617ba13b 1475 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1476 struct inode *inode = mapping->host;
ac27a0ec
DK
1477 int ret = 0, ret2;
1478 int partial = 0;
bfc1af65 1479 unsigned from, to;
cf17fea6 1480 loff_t new_i_size;
ac27a0ec 1481
bfc1af65
NP
1482 from = pos & (PAGE_CACHE_SIZE - 1);
1483 to = from + len;
1484
1485 if (copied < len) {
1486 if (!PageUptodate(page))
1487 copied = 0;
1488 page_zero_new_buffers(page, from+copied, to);
1489 }
ac27a0ec
DK
1490
1491 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1492 to, &partial, write_end_fn);
ac27a0ec
DK
1493 if (!partial)
1494 SetPageUptodate(page);
cf17fea6
AK
1495 new_i_size = pos + copied;
1496 if (new_i_size > inode->i_size)
bfc1af65 1497 i_size_write(inode, pos+copied);
617ba13b 1498 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1499 if (new_i_size > EXT4_I(inode)->i_disksize) {
1500 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1501 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1502 if (!ret)
1503 ret = ret2;
1504 }
bfc1af65 1505
cf108bca 1506 unlock_page(page);
617ba13b 1507 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1508 if (!ret)
1509 ret = ret2;
bfc1af65
NP
1510 page_cache_release(page);
1511
1512 return ret ? ret : copied;
ac27a0ec 1513}
d2a17637
MC
1514
1515static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1516{
030ba6bc 1517 int retries = 0;
d2a17637
MC
1518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 unsigned long md_needed, mdblocks, total = 0;
1520
1521 /*
1522 * recalculate the amount of metadata blocks to reserve
1523 * in order to allocate nrblocks
1524 * worse case is one extent per block
1525 */
030ba6bc 1526repeat:
d2a17637
MC
1527 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1529 mdblocks = ext4_calc_metadata_amount(inode, total);
1530 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1531
1532 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1533 total = md_needed + nrblocks;
1534
a30d542a 1535 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1536 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1537 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1538 yield();
1539 goto repeat;
1540 }
d2a17637
MC
1541 return -ENOSPC;
1542 }
d2a17637
MC
1543 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1544 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1545
1546 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547 return 0; /* success */
1548}
1549
12219aea 1550static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1551{
1552 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1553 int total, mdb, mdb_free, release;
1554
cd213226
MC
1555 if (!to_free)
1556 return; /* Nothing to release, exit */
1557
d2a17637 1558 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1559
1560 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1561 /*
1562 * if there is no reserved blocks, but we try to free some
1563 * then the counter is messed up somewhere.
1564 * but since this function is called from invalidate
1565 * page, it's harmless to return without any action
1566 */
1567 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1568 "blocks for inode %lu, but there is no reserved "
1569 "data blocks\n", to_free, inode->i_ino);
1570 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1571 return;
1572 }
1573
d2a17637 1574 /* recalculate the number of metablocks still need to be reserved */
12219aea 1575 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1576 mdb = ext4_calc_metadata_amount(inode, total);
1577
1578 /* figure out how many metablocks to release */
1579 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1580 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1581
d2a17637
MC
1582 release = to_free + mdb_free;
1583
6bc6e63f
AK
1584 /* update fs dirty blocks counter for truncate case */
1585 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1586
1587 /* update per-inode reservations */
12219aea
AK
1588 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1589 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1590
1591 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1592 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1593 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1594}
1595
1596static void ext4_da_page_release_reservation(struct page *page,
1597 unsigned long offset)
1598{
1599 int to_release = 0;
1600 struct buffer_head *head, *bh;
1601 unsigned int curr_off = 0;
1602
1603 head = page_buffers(page);
1604 bh = head;
1605 do {
1606 unsigned int next_off = curr_off + bh->b_size;
1607
1608 if ((offset <= curr_off) && (buffer_delay(bh))) {
1609 to_release++;
1610 clear_buffer_delay(bh);
1611 }
1612 curr_off = next_off;
1613 } while ((bh = bh->b_this_page) != head);
12219aea 1614 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1615}
ac27a0ec 1616
64769240
AT
1617/*
1618 * Delayed allocation stuff
1619 */
1620
1621struct mpage_da_data {
1622 struct inode *inode;
1623 struct buffer_head lbh; /* extent of blocks */
1624 unsigned long first_page, next_page; /* extent of pages */
1625 get_block_t *get_block;
1626 struct writeback_control *wbc;
a1d6cc56
AK
1627 int io_done;
1628 long pages_written;
df22291f 1629 int retval;
64769240
AT
1630};
1631
1632/*
1633 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1634 * them with writepage() call back
64769240
AT
1635 *
1636 * @mpd->inode: inode
1637 * @mpd->first_page: first page of the extent
1638 * @mpd->next_page: page after the last page of the extent
1639 * @mpd->get_block: the filesystem's block mapper function
1640 *
1641 * By the time mpage_da_submit_io() is called we expect all blocks
1642 * to be allocated. this may be wrong if allocation failed.
1643 *
1644 * As pages are already locked by write_cache_pages(), we can't use it
1645 */
1646static int mpage_da_submit_io(struct mpage_da_data *mpd)
1647{
1648 struct address_space *mapping = mpd->inode->i_mapping;
64769240
AT
1649 int ret = 0, err, nr_pages, i;
1650 unsigned long index, end;
1651 struct pagevec pvec;
22208ded 1652 long pages_skipped;
64769240
AT
1653
1654 BUG_ON(mpd->next_page <= mpd->first_page);
64769240
AT
1655 pagevec_init(&pvec, 0);
1656 index = mpd->first_page;
1657 end = mpd->next_page - 1;
1658
1659 while (index <= end) {
af6f029d
AK
1660 /*
1661 * We can use PAGECACHE_TAG_DIRTY lookup here because
1662 * even though we have cleared the dirty flag on the page
1663 * We still keep the page in the radix tree with tag
1664 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1665 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1666 * which is called via the below writepage callback.
1667 */
1668 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1669 PAGECACHE_TAG_DIRTY,
1670 min(end - index,
1671 (pgoff_t)PAGEVEC_SIZE-1) + 1);
64769240
AT
1672 if (nr_pages == 0)
1673 break;
1674 for (i = 0; i < nr_pages; i++) {
1675 struct page *page = pvec.pages[i];
1676
22208ded 1677 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1678 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1679 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1680 /*
1681 * have successfully written the page
1682 * without skipping the same
1683 */
a1d6cc56 1684 mpd->pages_written++;
64769240
AT
1685 /*
1686 * In error case, we have to continue because
1687 * remaining pages are still locked
1688 * XXX: unlock and re-dirty them?
1689 */
1690 if (ret == 0)
1691 ret = err;
1692 }
1693 pagevec_release(&pvec);
1694 }
64769240
AT
1695 return ret;
1696}
1697
1698/*
1699 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1700 *
1701 * @mpd->inode - inode to walk through
1702 * @exbh->b_blocknr - first block on a disk
1703 * @exbh->b_size - amount of space in bytes
1704 * @logical - first logical block to start assignment with
1705 *
1706 * the function goes through all passed space and put actual disk
1707 * block numbers into buffer heads, dropping BH_Delay
1708 */
1709static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1710 struct buffer_head *exbh)
1711{
1712 struct inode *inode = mpd->inode;
1713 struct address_space *mapping = inode->i_mapping;
1714 int blocks = exbh->b_size >> inode->i_blkbits;
1715 sector_t pblock = exbh->b_blocknr, cur_logical;
1716 struct buffer_head *head, *bh;
a1d6cc56 1717 pgoff_t index, end;
64769240
AT
1718 struct pagevec pvec;
1719 int nr_pages, i;
1720
1721 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1722 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1723 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1724
1725 pagevec_init(&pvec, 0);
1726
1727 while (index <= end) {
1728 /* XXX: optimize tail */
1729 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1730 if (nr_pages == 0)
1731 break;
1732 for (i = 0; i < nr_pages; i++) {
1733 struct page *page = pvec.pages[i];
1734
1735 index = page->index;
1736 if (index > end)
1737 break;
1738 index++;
1739
1740 BUG_ON(!PageLocked(page));
1741 BUG_ON(PageWriteback(page));
1742 BUG_ON(!page_has_buffers(page));
1743
1744 bh = page_buffers(page);
1745 head = bh;
1746
1747 /* skip blocks out of the range */
1748 do {
1749 if (cur_logical >= logical)
1750 break;
1751 cur_logical++;
1752 } while ((bh = bh->b_this_page) != head);
1753
1754 do {
1755 if (cur_logical >= logical + blocks)
1756 break;
64769240
AT
1757 if (buffer_delay(bh)) {
1758 bh->b_blocknr = pblock;
1759 clear_buffer_delay(bh);
bf068ee2
AK
1760 bh->b_bdev = inode->i_sb->s_bdev;
1761 } else if (buffer_unwritten(bh)) {
1762 bh->b_blocknr = pblock;
1763 clear_buffer_unwritten(bh);
1764 set_buffer_mapped(bh);
1765 set_buffer_new(bh);
1766 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1767 } else if (buffer_mapped(bh))
64769240 1768 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1769
1770 cur_logical++;
1771 pblock++;
1772 } while ((bh = bh->b_this_page) != head);
1773 }
1774 pagevec_release(&pvec);
1775 }
1776}
1777
1778
1779/*
1780 * __unmap_underlying_blocks - just a helper function to unmap
1781 * set of blocks described by @bh
1782 */
1783static inline void __unmap_underlying_blocks(struct inode *inode,
1784 struct buffer_head *bh)
1785{
1786 struct block_device *bdev = inode->i_sb->s_bdev;
1787 int blocks, i;
1788
1789 blocks = bh->b_size >> inode->i_blkbits;
1790 for (i = 0; i < blocks; i++)
1791 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1792}
1793
c4a0c46e
AK
1794static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1795 sector_t logical, long blk_cnt)
1796{
1797 int nr_pages, i;
1798 pgoff_t index, end;
1799 struct pagevec pvec;
1800 struct inode *inode = mpd->inode;
1801 struct address_space *mapping = inode->i_mapping;
1802
1803 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1804 end = (logical + blk_cnt - 1) >>
1805 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1806 while (index <= end) {
1807 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1808 if (nr_pages == 0)
1809 break;
1810 for (i = 0; i < nr_pages; i++) {
1811 struct page *page = pvec.pages[i];
1812 index = page->index;
1813 if (index > end)
1814 break;
1815 index++;
1816
1817 BUG_ON(!PageLocked(page));
1818 BUG_ON(PageWriteback(page));
1819 block_invalidatepage(page, 0);
1820 ClearPageUptodate(page);
1821 unlock_page(page);
1822 }
1823 }
1824 return;
1825}
1826
df22291f
AK
1827static void ext4_print_free_blocks(struct inode *inode)
1828{
1829 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1830 printk(KERN_EMERG "Total free blocks count %lld\n",
1831 ext4_count_free_blocks(inode->i_sb));
1832 printk(KERN_EMERG "Free/Dirty block details\n");
1833 printk(KERN_EMERG "free_blocks=%lld\n",
1834 percpu_counter_sum(&sbi->s_freeblocks_counter));
1835 printk(KERN_EMERG "dirty_blocks=%lld\n",
1836 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1837 printk(KERN_EMERG "Block reservation details\n");
1838 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1839 EXT4_I(inode)->i_reserved_data_blocks);
1840 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1841 EXT4_I(inode)->i_reserved_meta_blocks);
1842 return;
1843}
1844
64769240
AT
1845/*
1846 * mpage_da_map_blocks - go through given space
1847 *
1848 * @mpd->lbh - bh describing space
1849 * @mpd->get_block - the filesystem's block mapper function
1850 *
1851 * The function skips space we know is already mapped to disk blocks.
1852 *
64769240 1853 */
c4a0c46e 1854static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1855{
a1d6cc56 1856 int err = 0;
030ba6bc 1857 struct buffer_head new;
64769240 1858 struct buffer_head *lbh = &mpd->lbh;
df22291f 1859 sector_t next;
64769240
AT
1860
1861 /*
1862 * We consider only non-mapped and non-allocated blocks
1863 */
1864 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1865 return 0;
a1d6cc56
AK
1866 new.b_state = lbh->b_state;
1867 new.b_blocknr = 0;
1868 new.b_size = lbh->b_size;
df22291f 1869 next = lbh->b_blocknr;
a1d6cc56
AK
1870 /*
1871 * If we didn't accumulate anything
1872 * to write simply return
1873 */
1874 if (!new.b_size)
c4a0c46e 1875 return 0;
a1d6cc56 1876 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1877 if (err) {
1878
1879 /* If get block returns with error
1880 * we simply return. Later writepage
1881 * will redirty the page and writepages
1882 * will find the dirty page again
1883 */
1884 if (err == -EAGAIN)
1885 return 0;
df22291f
AK
1886
1887 if (err == -ENOSPC &&
1888 ext4_count_free_blocks(mpd->inode->i_sb)) {
1889 mpd->retval = err;
1890 return 0;
1891 }
1892
c4a0c46e
AK
1893 /*
1894 * get block failure will cause us
1895 * to loop in writepages. Because
1896 * a_ops->writepage won't be able to
1897 * make progress. The page will be redirtied
1898 * by writepage and writepages will again
1899 * try to write the same.
1900 */
1901 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1902 "at logical offset %llu with max blocks "
1903 "%zd with error %d\n",
1904 __func__, mpd->inode->i_ino,
1905 (unsigned long long)next,
1906 lbh->b_size >> mpd->inode->i_blkbits, err);
1907 printk(KERN_EMERG "This should not happen.!! "
1908 "Data will be lost\n");
030ba6bc 1909 if (err == -ENOSPC) {
df22291f 1910 ext4_print_free_blocks(mpd->inode);
030ba6bc 1911 }
c4a0c46e
AK
1912 /* invlaidate all the pages */
1913 ext4_da_block_invalidatepages(mpd, next,
1914 lbh->b_size >> mpd->inode->i_blkbits);
1915 return err;
1916 }
a1d6cc56 1917 BUG_ON(new.b_size == 0);
64769240 1918
a1d6cc56
AK
1919 if (buffer_new(&new))
1920 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1921
a1d6cc56
AK
1922 /*
1923 * If blocks are delayed marked, we need to
1924 * put actual blocknr and drop delayed bit
1925 */
1926 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1927 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1928
c4a0c46e 1929 return 0;
64769240
AT
1930}
1931
bf068ee2
AK
1932#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1933 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1934
1935/*
1936 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1937 *
1938 * @mpd->lbh - extent of blocks
1939 * @logical - logical number of the block in the file
1940 * @bh - bh of the block (used to access block's state)
1941 *
1942 * the function is used to collect contig. blocks in same state
1943 */
1944static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1945 sector_t logical, struct buffer_head *bh)
1946{
64769240 1947 sector_t next;
525f4ed8
MC
1948 size_t b_size = bh->b_size;
1949 struct buffer_head *lbh = &mpd->lbh;
1950 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1951
525f4ed8
MC
1952 /* check if thereserved journal credits might overflow */
1953 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1954 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1955 /*
1956 * With non-extent format we are limited by the journal
1957 * credit available. Total credit needed to insert
1958 * nrblocks contiguous blocks is dependent on the
1959 * nrblocks. So limit nrblocks.
1960 */
1961 goto flush_it;
1962 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1963 EXT4_MAX_TRANS_DATA) {
1964 /*
1965 * Adding the new buffer_head would make it cross the
1966 * allowed limit for which we have journal credit
1967 * reserved. So limit the new bh->b_size
1968 */
1969 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1970 mpd->inode->i_blkbits;
1971 /* we will do mpage_da_submit_io in the next loop */
1972 }
1973 }
64769240
AT
1974 /*
1975 * First block in the extent
1976 */
1977 if (lbh->b_size == 0) {
1978 lbh->b_blocknr = logical;
525f4ed8 1979 lbh->b_size = b_size;
64769240
AT
1980 lbh->b_state = bh->b_state & BH_FLAGS;
1981 return;
1982 }
1983
525f4ed8 1984 next = lbh->b_blocknr + nrblocks;
64769240
AT
1985 /*
1986 * Can we merge the block to our big extent?
1987 */
1988 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 1989 lbh->b_size += b_size;
64769240
AT
1990 return;
1991 }
1992
525f4ed8 1993flush_it:
64769240
AT
1994 /*
1995 * We couldn't merge the block to our extent, so we
1996 * need to flush current extent and start new one
1997 */
c4a0c46e
AK
1998 if (mpage_da_map_blocks(mpd) == 0)
1999 mpage_da_submit_io(mpd);
a1d6cc56
AK
2000 mpd->io_done = 1;
2001 return;
64769240
AT
2002}
2003
2004/*
2005 * __mpage_da_writepage - finds extent of pages and blocks
2006 *
2007 * @page: page to consider
2008 * @wbc: not used, we just follow rules
2009 * @data: context
2010 *
2011 * The function finds extents of pages and scan them for all blocks.
2012 */
2013static int __mpage_da_writepage(struct page *page,
2014 struct writeback_control *wbc, void *data)
2015{
2016 struct mpage_da_data *mpd = data;
2017 struct inode *inode = mpd->inode;
2018 struct buffer_head *bh, *head, fake;
2019 sector_t logical;
2020
a1d6cc56
AK
2021 if (mpd->io_done) {
2022 /*
2023 * Rest of the page in the page_vec
2024 * redirty then and skip then. We will
2025 * try to to write them again after
2026 * starting a new transaction
2027 */
2028 redirty_page_for_writepage(wbc, page);
2029 unlock_page(page);
2030 return MPAGE_DA_EXTENT_TAIL;
2031 }
64769240
AT
2032 /*
2033 * Can we merge this page to current extent?
2034 */
2035 if (mpd->next_page != page->index) {
2036 /*
2037 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2038 * and start IO on them using writepage()
64769240
AT
2039 */
2040 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2041 if (mpage_da_map_blocks(mpd) == 0)
2042 mpage_da_submit_io(mpd);
a1d6cc56
AK
2043 /*
2044 * skip rest of the page in the page_vec
2045 */
2046 mpd->io_done = 1;
2047 redirty_page_for_writepage(wbc, page);
2048 unlock_page(page);
2049 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2050 }
2051
2052 /*
2053 * Start next extent of pages ...
2054 */
2055 mpd->first_page = page->index;
2056
2057 /*
2058 * ... and blocks
2059 */
2060 mpd->lbh.b_size = 0;
2061 mpd->lbh.b_state = 0;
2062 mpd->lbh.b_blocknr = 0;
2063 }
2064
2065 mpd->next_page = page->index + 1;
2066 logical = (sector_t) page->index <<
2067 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068
2069 if (!page_has_buffers(page)) {
2070 /*
2071 * There is no attached buffer heads yet (mmap?)
2072 * we treat the page asfull of dirty blocks
2073 */
2074 bh = &fake;
2075 bh->b_size = PAGE_CACHE_SIZE;
2076 bh->b_state = 0;
2077 set_buffer_dirty(bh);
2078 set_buffer_uptodate(bh);
2079 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2080 if (mpd->io_done)
2081 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2082 } else {
2083 /*
2084 * Page with regular buffer heads, just add all dirty ones
2085 */
2086 head = page_buffers(page);
2087 bh = head;
2088 do {
2089 BUG_ON(buffer_locked(bh));
a1d6cc56
AK
2090 if (buffer_dirty(bh) &&
2091 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2092 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2093 if (mpd->io_done)
2094 return MPAGE_DA_EXTENT_TAIL;
2095 }
64769240
AT
2096 logical++;
2097 } while ((bh = bh->b_this_page) != head);
2098 }
2099
2100 return 0;
2101}
2102
2103/*
2104 * mpage_da_writepages - walk the list of dirty pages of the given
2105 * address space, allocates non-allocated blocks, maps newly-allocated
2106 * blocks to existing bhs and issue IO them
2107 *
2108 * @mapping: address space structure to write
2109 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2110 * @get_block: the filesystem's block mapper function.
2111 *
2112 * This is a library function, which implements the writepages()
2113 * address_space_operation.
64769240
AT
2114 */
2115static int mpage_da_writepages(struct address_space *mapping,
2116 struct writeback_control *wbc,
df22291f 2117 struct mpage_da_data *mpd)
64769240 2118{
64769240
AT
2119 int ret;
2120
df22291f 2121 if (!mpd->get_block)
64769240
AT
2122 return generic_writepages(mapping, wbc);
2123
df22291f
AK
2124 mpd->lbh.b_size = 0;
2125 mpd->lbh.b_state = 0;
2126 mpd->lbh.b_blocknr = 0;
2127 mpd->first_page = 0;
2128 mpd->next_page = 0;
2129 mpd->io_done = 0;
2130 mpd->pages_written = 0;
2131 mpd->retval = 0;
a1d6cc56 2132
df22291f 2133 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2134 /*
2135 * Handle last extent of pages
2136 */
df22291f
AK
2137 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2138 if (mpage_da_map_blocks(mpd) == 0)
2139 mpage_da_submit_io(mpd);
64769240 2140
22208ded
AK
2141 mpd->io_done = 1;
2142 ret = MPAGE_DA_EXTENT_TAIL;
2143 }
2144 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2145 return ret;
2146}
2147
2148/*
2149 * this is a special callback for ->write_begin() only
2150 * it's intention is to return mapped block or reserve space
2151 */
2152static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2153 struct buffer_head *bh_result, int create)
2154{
2155 int ret = 0;
2156
2157 BUG_ON(create == 0);
2158 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2159
2160 /*
2161 * first, we need to know whether the block is allocated already
2162 * preallocated blocks are unmapped but should treated
2163 * the same as allocated blocks.
2164 */
d2a17637
MC
2165 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2166 if ((ret == 0) && !buffer_delay(bh_result)) {
2167 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2168 /*
2169 * XXX: __block_prepare_write() unmaps passed block,
2170 * is it OK?
2171 */
d2a17637
MC
2172 ret = ext4_da_reserve_space(inode, 1);
2173 if (ret)
2174 /* not enough space to reserve */
2175 return ret;
2176
64769240
AT
2177 map_bh(bh_result, inode->i_sb, 0);
2178 set_buffer_new(bh_result);
2179 set_buffer_delay(bh_result);
2180 } else if (ret > 0) {
2181 bh_result->b_size = (ret << inode->i_blkbits);
2182 ret = 0;
2183 }
2184
2185 return ret;
2186}
d2a17637 2187#define EXT4_DELALLOC_RSVED 1
64769240
AT
2188static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2189 struct buffer_head *bh_result, int create)
2190{
61628a3f 2191 int ret;
64769240
AT
2192 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2193 loff_t disksize = EXT4_I(inode)->i_disksize;
2194 handle_t *handle = NULL;
2195
61628a3f 2196 handle = ext4_journal_current_handle();
166348dd
AK
2197 BUG_ON(!handle);
2198 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2199 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2200 if (ret > 0) {
166348dd 2201
64769240
AT
2202 bh_result->b_size = (ret << inode->i_blkbits);
2203
166348dd
AK
2204 if (ext4_should_order_data(inode)) {
2205 int retval;
2206 retval = ext4_jbd2_file_inode(handle, inode);
2207 if (retval)
2208 /*
2209 * Failed to add inode for ordered
2210 * mode. Don't update file size
2211 */
2212 return retval;
2213 }
2214
64769240
AT
2215 /*
2216 * Update on-disk size along with block allocation
2217 * we don't use 'extend_disksize' as size may change
2218 * within already allocated block -bzzz
2219 */
2220 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2221 if (disksize > i_size_read(inode))
2222 disksize = i_size_read(inode);
2223 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2224 ext4_update_i_disksize(inode, disksize);
2225 ret = ext4_mark_inode_dirty(handle, inode);
2226 return ret;
64769240 2227 }
64769240
AT
2228 ret = 0;
2229 }
64769240
AT
2230 return ret;
2231}
61628a3f
MC
2232
2233static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2234{
f0e6c985
AK
2235 /*
2236 * unmapped buffer is possible for holes.
2237 * delay buffer is possible with delayed allocation
2238 */
2239 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2240}
2241
2242static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2243 struct buffer_head *bh_result, int create)
2244{
2245 int ret = 0;
2246 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2247
2248 /*
2249 * we don't want to do block allocation in writepage
2250 * so call get_block_wrap with create = 0
2251 */
2252 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2253 bh_result, 0, 0, 0);
2254 if (ret > 0) {
2255 bh_result->b_size = (ret << inode->i_blkbits);
2256 ret = 0;
2257 }
2258 return ret;
61628a3f
MC
2259}
2260
61628a3f 2261/*
f0e6c985
AK
2262 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2263 * get called via journal_submit_inode_data_buffers (no journal handle)
2264 * get called via shrink_page_list via pdflush (no journal handle)
2265 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2266 */
64769240
AT
2267static int ext4_da_writepage(struct page *page,
2268 struct writeback_control *wbc)
2269{
64769240 2270 int ret = 0;
61628a3f
MC
2271 loff_t size;
2272 unsigned long len;
61628a3f
MC
2273 struct buffer_head *page_bufs;
2274 struct inode *inode = page->mapping->host;
2275
f0e6c985
AK
2276 size = i_size_read(inode);
2277 if (page->index == size >> PAGE_CACHE_SHIFT)
2278 len = size & ~PAGE_CACHE_MASK;
2279 else
2280 len = PAGE_CACHE_SIZE;
64769240 2281
f0e6c985 2282 if (page_has_buffers(page)) {
61628a3f 2283 page_bufs = page_buffers(page);
f0e6c985
AK
2284 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2285 ext4_bh_unmapped_or_delay)) {
61628a3f 2286 /*
f0e6c985
AK
2287 * We don't want to do block allocation
2288 * So redirty the page and return
cd1aac32
AK
2289 * We may reach here when we do a journal commit
2290 * via journal_submit_inode_data_buffers.
2291 * If we don't have mapping block we just ignore
f0e6c985
AK
2292 * them. We can also reach here via shrink_page_list
2293 */
2294 redirty_page_for_writepage(wbc, page);
2295 unlock_page(page);
2296 return 0;
2297 }
2298 } else {
2299 /*
2300 * The test for page_has_buffers() is subtle:
2301 * We know the page is dirty but it lost buffers. That means
2302 * that at some moment in time after write_begin()/write_end()
2303 * has been called all buffers have been clean and thus they
2304 * must have been written at least once. So they are all
2305 * mapped and we can happily proceed with mapping them
2306 * and writing the page.
2307 *
2308 * Try to initialize the buffer_heads and check whether
2309 * all are mapped and non delay. We don't want to
2310 * do block allocation here.
2311 */
2312 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2313 ext4_normal_get_block_write);
2314 if (!ret) {
2315 page_bufs = page_buffers(page);
2316 /* check whether all are mapped and non delay */
2317 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2318 ext4_bh_unmapped_or_delay)) {
2319 redirty_page_for_writepage(wbc, page);
2320 unlock_page(page);
2321 return 0;
2322 }
2323 } else {
2324 /*
2325 * We can't do block allocation here
2326 * so just redity the page and unlock
2327 * and return
61628a3f 2328 */
61628a3f
MC
2329 redirty_page_for_writepage(wbc, page);
2330 unlock_page(page);
2331 return 0;
2332 }
ed9b3e33
AK
2333 /* now mark the buffer_heads as dirty and uptodate */
2334 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2335 }
2336
2337 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2338 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2339 else
f0e6c985
AK
2340 ret = block_write_full_page(page,
2341 ext4_normal_get_block_write,
2342 wbc);
64769240 2343
64769240
AT
2344 return ret;
2345}
2346
61628a3f 2347/*
525f4ed8
MC
2348 * This is called via ext4_da_writepages() to
2349 * calulate the total number of credits to reserve to fit
2350 * a single extent allocation into a single transaction,
2351 * ext4_da_writpeages() will loop calling this before
2352 * the block allocation.
61628a3f 2353 */
525f4ed8
MC
2354
2355static int ext4_da_writepages_trans_blocks(struct inode *inode)
2356{
2357 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2358
2359 /*
2360 * With non-extent format the journal credit needed to
2361 * insert nrblocks contiguous block is dependent on
2362 * number of contiguous block. So we will limit
2363 * number of contiguous block to a sane value
2364 */
2365 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2366 (max_blocks > EXT4_MAX_TRANS_DATA))
2367 max_blocks = EXT4_MAX_TRANS_DATA;
2368
2369 return ext4_chunk_trans_blocks(inode, max_blocks);
2370}
61628a3f 2371
64769240 2372static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2373 struct writeback_control *wbc)
64769240 2374{
22208ded
AK
2375 pgoff_t index;
2376 int range_whole = 0;
61628a3f 2377 handle_t *handle = NULL;
df22291f 2378 struct mpage_da_data mpd;
5e745b04 2379 struct inode *inode = mapping->host;
22208ded
AK
2380 int no_nrwrite_index_update;
2381 long pages_written = 0, pages_skipped;
5e745b04 2382 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2383 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2384
2385 /*
2386 * No pages to write? This is mainly a kludge to avoid starting
2387 * a transaction for special inodes like journal inode on last iput()
2388 * because that could violate lock ordering on umount
2389 */
a1d6cc56 2390 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2391 return 0;
5e745b04
AK
2392 /*
2393 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2394 * This make sure small files blocks are allocated in
2395 * single attempt. This ensure that small files
2396 * get less fragmented.
2397 */
2398 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2399 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2400 wbc->nr_to_write = sbi->s_mb_stream_request;
2401 }
22208ded
AK
2402 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2403 range_whole = 1;
61628a3f 2404
22208ded
AK
2405 if (wbc->range_cyclic)
2406 index = mapping->writeback_index;
2407 else
2408 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2409
df22291f
AK
2410 mpd.wbc = wbc;
2411 mpd.inode = mapping->host;
2412
22208ded
AK
2413 /*
2414 * we don't want write_cache_pages to update
2415 * nr_to_write and writeback_index
2416 */
2417 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2418 wbc->no_nrwrite_index_update = 1;
2419 pages_skipped = wbc->pages_skipped;
2420
2421 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2422
2423 /*
2424 * we insert one extent at a time. So we need
2425 * credit needed for single extent allocation.
2426 * journalled mode is currently not supported
2427 * by delalloc
2428 */
2429 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2430 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2431
61628a3f
MC
2432 /* start a new transaction*/
2433 handle = ext4_journal_start(inode, needed_blocks);
2434 if (IS_ERR(handle)) {
2435 ret = PTR_ERR(handle);
a1d6cc56
AK
2436 printk(KERN_EMERG "%s: jbd2_start: "
2437 "%ld pages, ino %lu; err %d\n", __func__,
2438 wbc->nr_to_write, inode->i_ino, ret);
2439 dump_stack();
61628a3f
MC
2440 goto out_writepages;
2441 }
df22291f
AK
2442 mpd.get_block = ext4_da_get_block_write;
2443 ret = mpage_da_writepages(mapping, wbc, &mpd);
2444
61628a3f 2445 ext4_journal_stop(handle);
df22291f 2446
22208ded
AK
2447 if (mpd.retval == -ENOSPC) {
2448 /* commit the transaction which would
2449 * free blocks released in the transaction
2450 * and try again
2451 */
df22291f 2452 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2453 wbc->pages_skipped = pages_skipped;
2454 ret = 0;
2455 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2456 /*
2457 * got one extent now try with
2458 * rest of the pages
2459 */
22208ded
AK
2460 pages_written += mpd.pages_written;
2461 wbc->pages_skipped = pages_skipped;
a1d6cc56 2462 ret = 0;
22208ded 2463 } else if (wbc->nr_to_write)
61628a3f
MC
2464 /*
2465 * There is no more writeout needed
2466 * or we requested for a noblocking writeout
2467 * and we found the device congested
2468 */
61628a3f 2469 break;
a1d6cc56 2470 }
22208ded
AK
2471 if (pages_skipped != wbc->pages_skipped)
2472 printk(KERN_EMERG "This should not happen leaving %s "
2473 "with nr_to_write = %ld ret = %d\n",
2474 __func__, wbc->nr_to_write, ret);
2475
2476 /* Update index */
2477 index += pages_written;
2478 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2479 /*
2480 * set the writeback_index so that range_cyclic
2481 * mode will write it back later
2482 */
2483 mapping->writeback_index = index;
a1d6cc56 2484
61628a3f 2485out_writepages:
22208ded
AK
2486 if (!no_nrwrite_index_update)
2487 wbc->no_nrwrite_index_update = 0;
2488 wbc->nr_to_write -= nr_to_writebump;
61628a3f 2489 return ret;
64769240
AT
2490}
2491
79f0be8d
AK
2492#define FALL_BACK_TO_NONDELALLOC 1
2493static int ext4_nonda_switch(struct super_block *sb)
2494{
2495 s64 free_blocks, dirty_blocks;
2496 struct ext4_sb_info *sbi = EXT4_SB(sb);
2497
2498 /*
2499 * switch to non delalloc mode if we are running low
2500 * on free block. The free block accounting via percpu
2501 * counters can get slightly wrong with FBC_BATCH getting
2502 * accumulated on each CPU without updating global counters
2503 * Delalloc need an accurate free block accounting. So switch
2504 * to non delalloc when we are near to error range.
2505 */
2506 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2507 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2508 if (2 * free_blocks < 3 * dirty_blocks ||
2509 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2510 /*
2511 * free block count is less that 150% of dirty blocks
2512 * or free blocks is less that watermark
2513 */
2514 return 1;
2515 }
2516 return 0;
2517}
2518
64769240
AT
2519static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2520 loff_t pos, unsigned len, unsigned flags,
2521 struct page **pagep, void **fsdata)
2522{
d2a17637 2523 int ret, retries = 0;
64769240
AT
2524 struct page *page;
2525 pgoff_t index;
2526 unsigned from, to;
2527 struct inode *inode = mapping->host;
2528 handle_t *handle;
2529
2530 index = pos >> PAGE_CACHE_SHIFT;
2531 from = pos & (PAGE_CACHE_SIZE - 1);
2532 to = from + len;
79f0be8d
AK
2533
2534 if (ext4_nonda_switch(inode->i_sb)) {
2535 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2536 return ext4_write_begin(file, mapping, pos,
2537 len, flags, pagep, fsdata);
2538 }
2539 *fsdata = (void *)0;
d2a17637 2540retry:
64769240
AT
2541 /*
2542 * With delayed allocation, we don't log the i_disksize update
2543 * if there is delayed block allocation. But we still need
2544 * to journalling the i_disksize update if writes to the end
2545 * of file which has an already mapped buffer.
2546 */
2547 handle = ext4_journal_start(inode, 1);
2548 if (IS_ERR(handle)) {
2549 ret = PTR_ERR(handle);
2550 goto out;
2551 }
2552
54566b2c 2553 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2554 if (!page) {
2555 ext4_journal_stop(handle);
2556 ret = -ENOMEM;
2557 goto out;
2558 }
64769240
AT
2559 *pagep = page;
2560
2561 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2562 ext4_da_get_block_prep);
2563 if (ret < 0) {
2564 unlock_page(page);
2565 ext4_journal_stop(handle);
2566 page_cache_release(page);
ae4d5372
AK
2567 /*
2568 * block_write_begin may have instantiated a few blocks
2569 * outside i_size. Trim these off again. Don't need
2570 * i_size_read because we hold i_mutex.
2571 */
2572 if (pos + len > inode->i_size)
2573 vmtruncate(inode, inode->i_size);
64769240
AT
2574 }
2575
d2a17637
MC
2576 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2577 goto retry;
64769240
AT
2578out:
2579 return ret;
2580}
2581
632eaeab
MC
2582/*
2583 * Check if we should update i_disksize
2584 * when write to the end of file but not require block allocation
2585 */
2586static int ext4_da_should_update_i_disksize(struct page *page,
2587 unsigned long offset)
2588{
2589 struct buffer_head *bh;
2590 struct inode *inode = page->mapping->host;
2591 unsigned int idx;
2592 int i;
2593
2594 bh = page_buffers(page);
2595 idx = offset >> inode->i_blkbits;
2596
af5bc92d 2597 for (i = 0; i < idx; i++)
632eaeab
MC
2598 bh = bh->b_this_page;
2599
2600 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2601 return 0;
2602 return 1;
2603}
2604
64769240
AT
2605static int ext4_da_write_end(struct file *file,
2606 struct address_space *mapping,
2607 loff_t pos, unsigned len, unsigned copied,
2608 struct page *page, void *fsdata)
2609{
2610 struct inode *inode = mapping->host;
2611 int ret = 0, ret2;
2612 handle_t *handle = ext4_journal_current_handle();
2613 loff_t new_i_size;
632eaeab 2614 unsigned long start, end;
79f0be8d
AK
2615 int write_mode = (int)(unsigned long)fsdata;
2616
2617 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2618 if (ext4_should_order_data(inode)) {
2619 return ext4_ordered_write_end(file, mapping, pos,
2620 len, copied, page, fsdata);
2621 } else if (ext4_should_writeback_data(inode)) {
2622 return ext4_writeback_write_end(file, mapping, pos,
2623 len, copied, page, fsdata);
2624 } else {
2625 BUG();
2626 }
2627 }
632eaeab
MC
2628
2629 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2630 end = start + copied - 1;
64769240
AT
2631
2632 /*
2633 * generic_write_end() will run mark_inode_dirty() if i_size
2634 * changes. So let's piggyback the i_disksize mark_inode_dirty
2635 * into that.
2636 */
2637
2638 new_i_size = pos + copied;
632eaeab
MC
2639 if (new_i_size > EXT4_I(inode)->i_disksize) {
2640 if (ext4_da_should_update_i_disksize(page, end)) {
2641 down_write(&EXT4_I(inode)->i_data_sem);
2642 if (new_i_size > EXT4_I(inode)->i_disksize) {
2643 /*
2644 * Updating i_disksize when extending file
2645 * without needing block allocation
2646 */
2647 if (ext4_should_order_data(inode))
2648 ret = ext4_jbd2_file_inode(handle,
2649 inode);
64769240 2650
632eaeab
MC
2651 EXT4_I(inode)->i_disksize = new_i_size;
2652 }
2653 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2654 /* We need to mark inode dirty even if
2655 * new_i_size is less that inode->i_size
2656 * bu greater than i_disksize.(hint delalloc)
2657 */
2658 ext4_mark_inode_dirty(handle, inode);
64769240 2659 }
632eaeab 2660 }
64769240
AT
2661 ret2 = generic_write_end(file, mapping, pos, len, copied,
2662 page, fsdata);
2663 copied = ret2;
2664 if (ret2 < 0)
2665 ret = ret2;
2666 ret2 = ext4_journal_stop(handle);
2667 if (!ret)
2668 ret = ret2;
2669
2670 return ret ? ret : copied;
2671}
2672
2673static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2674{
64769240
AT
2675 /*
2676 * Drop reserved blocks
2677 */
2678 BUG_ON(!PageLocked(page));
2679 if (!page_has_buffers(page))
2680 goto out;
2681
d2a17637 2682 ext4_da_page_release_reservation(page, offset);
64769240
AT
2683
2684out:
2685 ext4_invalidatepage(page, offset);
2686
2687 return;
2688}
2689
2690
ac27a0ec
DK
2691/*
2692 * bmap() is special. It gets used by applications such as lilo and by
2693 * the swapper to find the on-disk block of a specific piece of data.
2694 *
2695 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2696 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2697 * filesystem and enables swap, then they may get a nasty shock when the
2698 * data getting swapped to that swapfile suddenly gets overwritten by
2699 * the original zero's written out previously to the journal and
2700 * awaiting writeback in the kernel's buffer cache.
2701 *
2702 * So, if we see any bmap calls here on a modified, data-journaled file,
2703 * take extra steps to flush any blocks which might be in the cache.
2704 */
617ba13b 2705static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2706{
2707 struct inode *inode = mapping->host;
2708 journal_t *journal;
2709 int err;
2710
64769240
AT
2711 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2712 test_opt(inode->i_sb, DELALLOC)) {
2713 /*
2714 * With delalloc we want to sync the file
2715 * so that we can make sure we allocate
2716 * blocks for file
2717 */
2718 filemap_write_and_wait(mapping);
2719 }
2720
617ba13b 2721 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2722 /*
2723 * This is a REALLY heavyweight approach, but the use of
2724 * bmap on dirty files is expected to be extremely rare:
2725 * only if we run lilo or swapon on a freshly made file
2726 * do we expect this to happen.
2727 *
2728 * (bmap requires CAP_SYS_RAWIO so this does not
2729 * represent an unprivileged user DOS attack --- we'd be
2730 * in trouble if mortal users could trigger this path at
2731 * will.)
2732 *
617ba13b 2733 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2734 * regular files. If somebody wants to bmap a directory
2735 * or symlink and gets confused because the buffer
2736 * hasn't yet been flushed to disk, they deserve
2737 * everything they get.
2738 */
2739
617ba13b
MC
2740 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2741 journal = EXT4_JOURNAL(inode);
dab291af
MC
2742 jbd2_journal_lock_updates(journal);
2743 err = jbd2_journal_flush(journal);
2744 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2745
2746 if (err)
2747 return 0;
2748 }
2749
af5bc92d 2750 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2751}
2752
2753static int bget_one(handle_t *handle, struct buffer_head *bh)
2754{
2755 get_bh(bh);
2756 return 0;
2757}
2758
2759static int bput_one(handle_t *handle, struct buffer_head *bh)
2760{
2761 put_bh(bh);
2762 return 0;
2763}
2764
ac27a0ec 2765/*
678aaf48
JK
2766 * Note that we don't need to start a transaction unless we're journaling data
2767 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2768 * need to file the inode to the transaction's list in ordered mode because if
2769 * we are writing back data added by write(), the inode is already there and if
2770 * we are writing back data modified via mmap(), noone guarantees in which
2771 * transaction the data will hit the disk. In case we are journaling data, we
2772 * cannot start transaction directly because transaction start ranks above page
2773 * lock so we have to do some magic.
ac27a0ec 2774 *
678aaf48 2775 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2776 *
2777 * Problem:
2778 *
617ba13b
MC
2779 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2780 * ext4_writepage()
ac27a0ec
DK
2781 *
2782 * Similar for:
2783 *
617ba13b 2784 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2785 *
617ba13b 2786 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2787 * lock_journal and i_data_sem
ac27a0ec
DK
2788 *
2789 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2790 * allocations fail.
2791 *
2792 * 16May01: If we're reentered then journal_current_handle() will be
2793 * non-zero. We simply *return*.
2794 *
2795 * 1 July 2001: @@@ FIXME:
2796 * In journalled data mode, a data buffer may be metadata against the
2797 * current transaction. But the same file is part of a shared mapping
2798 * and someone does a writepage() on it.
2799 *
2800 * We will move the buffer onto the async_data list, but *after* it has
2801 * been dirtied. So there's a small window where we have dirty data on
2802 * BJ_Metadata.
2803 *
2804 * Note that this only applies to the last partial page in the file. The
2805 * bit which block_write_full_page() uses prepare/commit for. (That's
2806 * broken code anyway: it's wrong for msync()).
2807 *
2808 * It's a rare case: affects the final partial page, for journalled data
2809 * where the file is subject to bith write() and writepage() in the same
2810 * transction. To fix it we'll need a custom block_write_full_page().
2811 * We'll probably need that anyway for journalling writepage() output.
2812 *
2813 * We don't honour synchronous mounts for writepage(). That would be
2814 * disastrous. Any write() or metadata operation will sync the fs for
2815 * us.
2816 *
ac27a0ec 2817 */
678aaf48 2818static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2819 struct writeback_control *wbc)
2820{
2821 struct inode *inode = page->mapping->host;
2822
2823 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2824 return nobh_writepage(page,
2825 ext4_normal_get_block_write, wbc);
cf108bca 2826 else
f0e6c985
AK
2827 return block_write_full_page(page,
2828 ext4_normal_get_block_write,
2829 wbc);
cf108bca
JK
2830}
2831
678aaf48 2832static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2833 struct writeback_control *wbc)
2834{
2835 struct inode *inode = page->mapping->host;
cf108bca
JK
2836 loff_t size = i_size_read(inode);
2837 loff_t len;
2838
2839 J_ASSERT(PageLocked(page));
cf108bca
JK
2840 if (page->index == size >> PAGE_CACHE_SHIFT)
2841 len = size & ~PAGE_CACHE_MASK;
2842 else
2843 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2844
2845 if (page_has_buffers(page)) {
2846 /* if page has buffers it should all be mapped
2847 * and allocated. If there are not buffers attached
2848 * to the page we know the page is dirty but it lost
2849 * buffers. That means that at some moment in time
2850 * after write_begin() / write_end() has been called
2851 * all buffers have been clean and thus they must have been
2852 * written at least once. So they are all mapped and we can
2853 * happily proceed with mapping them and writing the page.
2854 */
2855 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2856 ext4_bh_unmapped_or_delay));
2857 }
cf108bca
JK
2858
2859 if (!ext4_journal_current_handle())
678aaf48 2860 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2861
2862 redirty_page_for_writepage(wbc, page);
2863 unlock_page(page);
2864 return 0;
2865}
2866
2867static int __ext4_journalled_writepage(struct page *page,
2868 struct writeback_control *wbc)
2869{
2870 struct address_space *mapping = page->mapping;
2871 struct inode *inode = mapping->host;
2872 struct buffer_head *page_bufs;
ac27a0ec
DK
2873 handle_t *handle = NULL;
2874 int ret = 0;
2875 int err;
2876
f0e6c985
AK
2877 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2878 ext4_normal_get_block_write);
cf108bca
JK
2879 if (ret != 0)
2880 goto out_unlock;
2881
2882 page_bufs = page_buffers(page);
2883 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2884 bget_one);
2885 /* As soon as we unlock the page, it can go away, but we have
2886 * references to buffers so we are safe */
2887 unlock_page(page);
ac27a0ec 2888
617ba13b 2889 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2890 if (IS_ERR(handle)) {
2891 ret = PTR_ERR(handle);
cf108bca 2892 goto out;
ac27a0ec
DK
2893 }
2894
cf108bca
JK
2895 ret = walk_page_buffers(handle, page_bufs, 0,
2896 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2897
cf108bca
JK
2898 err = walk_page_buffers(handle, page_bufs, 0,
2899 PAGE_CACHE_SIZE, NULL, write_end_fn);
2900 if (ret == 0)
2901 ret = err;
617ba13b 2902 err = ext4_journal_stop(handle);
ac27a0ec
DK
2903 if (!ret)
2904 ret = err;
ac27a0ec 2905
cf108bca
JK
2906 walk_page_buffers(handle, page_bufs, 0,
2907 PAGE_CACHE_SIZE, NULL, bput_one);
2908 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2909 goto out;
2910
2911out_unlock:
ac27a0ec 2912 unlock_page(page);
cf108bca 2913out:
ac27a0ec
DK
2914 return ret;
2915}
2916
617ba13b 2917static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2918 struct writeback_control *wbc)
2919{
2920 struct inode *inode = page->mapping->host;
cf108bca
JK
2921 loff_t size = i_size_read(inode);
2922 loff_t len;
ac27a0ec 2923
cf108bca 2924 J_ASSERT(PageLocked(page));
cf108bca
JK
2925 if (page->index == size >> PAGE_CACHE_SHIFT)
2926 len = size & ~PAGE_CACHE_MASK;
2927 else
2928 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2929
2930 if (page_has_buffers(page)) {
2931 /* if page has buffers it should all be mapped
2932 * and allocated. If there are not buffers attached
2933 * to the page we know the page is dirty but it lost
2934 * buffers. That means that at some moment in time
2935 * after write_begin() / write_end() has been called
2936 * all buffers have been clean and thus they must have been
2937 * written at least once. So they are all mapped and we can
2938 * happily proceed with mapping them and writing the page.
2939 */
2940 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2941 ext4_bh_unmapped_or_delay));
2942 }
ac27a0ec 2943
cf108bca 2944 if (ext4_journal_current_handle())
ac27a0ec 2945 goto no_write;
ac27a0ec 2946
cf108bca 2947 if (PageChecked(page)) {
ac27a0ec
DK
2948 /*
2949 * It's mmapped pagecache. Add buffers and journal it. There
2950 * doesn't seem much point in redirtying the page here.
2951 */
2952 ClearPageChecked(page);
cf108bca 2953 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2954 } else {
2955 /*
2956 * It may be a page full of checkpoint-mode buffers. We don't
2957 * really know unless we go poke around in the buffer_heads.
2958 * But block_write_full_page will do the right thing.
2959 */
f0e6c985
AK
2960 return block_write_full_page(page,
2961 ext4_normal_get_block_write,
2962 wbc);
ac27a0ec 2963 }
ac27a0ec
DK
2964no_write:
2965 redirty_page_for_writepage(wbc, page);
ac27a0ec 2966 unlock_page(page);
cf108bca 2967 return 0;
ac27a0ec
DK
2968}
2969
617ba13b 2970static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2971{
617ba13b 2972 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2973}
2974
2975static int
617ba13b 2976ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2977 struct list_head *pages, unsigned nr_pages)
2978{
617ba13b 2979 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2980}
2981
617ba13b 2982static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2983{
617ba13b 2984 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2985
2986 /*
2987 * If it's a full truncate we just forget about the pending dirtying
2988 */
2989 if (offset == 0)
2990 ClearPageChecked(page);
2991
dab291af 2992 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2993}
2994
617ba13b 2995static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2996{
617ba13b 2997 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2998
2999 WARN_ON(PageChecked(page));
3000 if (!page_has_buffers(page))
3001 return 0;
dab291af 3002 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
3003}
3004
3005/*
3006 * If the O_DIRECT write will extend the file then add this inode to the
3007 * orphan list. So recovery will truncate it back to the original size
3008 * if the machine crashes during the write.
3009 *
3010 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3011 * crashes then stale disk data _may_ be exposed inside the file. But current
3012 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3013 */
617ba13b 3014static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3015 const struct iovec *iov, loff_t offset,
3016 unsigned long nr_segs)
3017{
3018 struct file *file = iocb->ki_filp;
3019 struct inode *inode = file->f_mapping->host;
617ba13b 3020 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3021 handle_t *handle;
ac27a0ec
DK
3022 ssize_t ret;
3023 int orphan = 0;
3024 size_t count = iov_length(iov, nr_segs);
3025
3026 if (rw == WRITE) {
3027 loff_t final_size = offset + count;
3028
ac27a0ec 3029 if (final_size > inode->i_size) {
7fb5409d
JK
3030 /* Credits for sb + inode write */
3031 handle = ext4_journal_start(inode, 2);
3032 if (IS_ERR(handle)) {
3033 ret = PTR_ERR(handle);
3034 goto out;
3035 }
617ba13b 3036 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3037 if (ret) {
3038 ext4_journal_stop(handle);
3039 goto out;
3040 }
ac27a0ec
DK
3041 orphan = 1;
3042 ei->i_disksize = inode->i_size;
7fb5409d 3043 ext4_journal_stop(handle);
ac27a0ec
DK
3044 }
3045 }
3046
3047 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3048 offset, nr_segs,
617ba13b 3049 ext4_get_block, NULL);
ac27a0ec 3050
7fb5409d 3051 if (orphan) {
ac27a0ec
DK
3052 int err;
3053
7fb5409d
JK
3054 /* Credits for sb + inode write */
3055 handle = ext4_journal_start(inode, 2);
3056 if (IS_ERR(handle)) {
3057 /* This is really bad luck. We've written the data
3058 * but cannot extend i_size. Bail out and pretend
3059 * the write failed... */
3060 ret = PTR_ERR(handle);
3061 goto out;
3062 }
3063 if (inode->i_nlink)
617ba13b 3064 ext4_orphan_del(handle, inode);
7fb5409d 3065 if (ret > 0) {
ac27a0ec
DK
3066 loff_t end = offset + ret;
3067 if (end > inode->i_size) {
3068 ei->i_disksize = end;
3069 i_size_write(inode, end);
3070 /*
3071 * We're going to return a positive `ret'
3072 * here due to non-zero-length I/O, so there's
3073 * no way of reporting error returns from
617ba13b 3074 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3075 * ignore it.
3076 */
617ba13b 3077 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3078 }
3079 }
617ba13b 3080 err = ext4_journal_stop(handle);
ac27a0ec
DK
3081 if (ret == 0)
3082 ret = err;
3083 }
3084out:
3085 return ret;
3086}
3087
3088/*
617ba13b 3089 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3090 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3091 * much here because ->set_page_dirty is called under VFS locks. The page is
3092 * not necessarily locked.
3093 *
3094 * We cannot just dirty the page and leave attached buffers clean, because the
3095 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3096 * or jbddirty because all the journalling code will explode.
3097 *
3098 * So what we do is to mark the page "pending dirty" and next time writepage
3099 * is called, propagate that into the buffers appropriately.
3100 */
617ba13b 3101static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3102{
3103 SetPageChecked(page);
3104 return __set_page_dirty_nobuffers(page);
3105}
3106
617ba13b 3107static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3108 .readpage = ext4_readpage,
3109 .readpages = ext4_readpages,
3110 .writepage = ext4_normal_writepage,
3111 .sync_page = block_sync_page,
3112 .write_begin = ext4_write_begin,
3113 .write_end = ext4_ordered_write_end,
3114 .bmap = ext4_bmap,
3115 .invalidatepage = ext4_invalidatepage,
3116 .releasepage = ext4_releasepage,
3117 .direct_IO = ext4_direct_IO,
3118 .migratepage = buffer_migrate_page,
3119 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3120};
3121
617ba13b 3122static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3123 .readpage = ext4_readpage,
3124 .readpages = ext4_readpages,
3125 .writepage = ext4_normal_writepage,
3126 .sync_page = block_sync_page,
3127 .write_begin = ext4_write_begin,
3128 .write_end = ext4_writeback_write_end,
3129 .bmap = ext4_bmap,
3130 .invalidatepage = ext4_invalidatepage,
3131 .releasepage = ext4_releasepage,
3132 .direct_IO = ext4_direct_IO,
3133 .migratepage = buffer_migrate_page,
3134 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3135};
3136
617ba13b 3137static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3138 .readpage = ext4_readpage,
3139 .readpages = ext4_readpages,
3140 .writepage = ext4_journalled_writepage,
3141 .sync_page = block_sync_page,
3142 .write_begin = ext4_write_begin,
3143 .write_end = ext4_journalled_write_end,
3144 .set_page_dirty = ext4_journalled_set_page_dirty,
3145 .bmap = ext4_bmap,
3146 .invalidatepage = ext4_invalidatepage,
3147 .releasepage = ext4_releasepage,
3148 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3149};
3150
64769240 3151static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3152 .readpage = ext4_readpage,
3153 .readpages = ext4_readpages,
3154 .writepage = ext4_da_writepage,
3155 .writepages = ext4_da_writepages,
3156 .sync_page = block_sync_page,
3157 .write_begin = ext4_da_write_begin,
3158 .write_end = ext4_da_write_end,
3159 .bmap = ext4_bmap,
3160 .invalidatepage = ext4_da_invalidatepage,
3161 .releasepage = ext4_releasepage,
3162 .direct_IO = ext4_direct_IO,
3163 .migratepage = buffer_migrate_page,
3164 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3165};
3166
617ba13b 3167void ext4_set_aops(struct inode *inode)
ac27a0ec 3168{
cd1aac32
AK
3169 if (ext4_should_order_data(inode) &&
3170 test_opt(inode->i_sb, DELALLOC))
3171 inode->i_mapping->a_ops = &ext4_da_aops;
3172 else if (ext4_should_order_data(inode))
617ba13b 3173 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3174 else if (ext4_should_writeback_data(inode) &&
3175 test_opt(inode->i_sb, DELALLOC))
3176 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3177 else if (ext4_should_writeback_data(inode))
3178 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3179 else
617ba13b 3180 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3181}
3182
3183/*
617ba13b 3184 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3185 * up to the end of the block which corresponds to `from'.
3186 * This required during truncate. We need to physically zero the tail end
3187 * of that block so it doesn't yield old data if the file is later grown.
3188 */
cf108bca 3189int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3190 struct address_space *mapping, loff_t from)
3191{
617ba13b 3192 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3193 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3194 unsigned blocksize, length, pos;
3195 ext4_lblk_t iblock;
ac27a0ec
DK
3196 struct inode *inode = mapping->host;
3197 struct buffer_head *bh;
cf108bca 3198 struct page *page;
ac27a0ec 3199 int err = 0;
ac27a0ec 3200
cf108bca
JK
3201 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3202 if (!page)
3203 return -EINVAL;
3204
ac27a0ec
DK
3205 blocksize = inode->i_sb->s_blocksize;
3206 length = blocksize - (offset & (blocksize - 1));
3207 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3208
3209 /*
3210 * For "nobh" option, we can only work if we don't need to
3211 * read-in the page - otherwise we create buffers to do the IO.
3212 */
3213 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3214 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3215 zero_user(page, offset, length);
ac27a0ec
DK
3216 set_page_dirty(page);
3217 goto unlock;
3218 }
3219
3220 if (!page_has_buffers(page))
3221 create_empty_buffers(page, blocksize, 0);
3222
3223 /* Find the buffer that contains "offset" */
3224 bh = page_buffers(page);
3225 pos = blocksize;
3226 while (offset >= pos) {
3227 bh = bh->b_this_page;
3228 iblock++;
3229 pos += blocksize;
3230 }
3231
3232 err = 0;
3233 if (buffer_freed(bh)) {
3234 BUFFER_TRACE(bh, "freed: skip");
3235 goto unlock;
3236 }
3237
3238 if (!buffer_mapped(bh)) {
3239 BUFFER_TRACE(bh, "unmapped");
617ba13b 3240 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3241 /* unmapped? It's a hole - nothing to do */
3242 if (!buffer_mapped(bh)) {
3243 BUFFER_TRACE(bh, "still unmapped");
3244 goto unlock;
3245 }
3246 }
3247
3248 /* Ok, it's mapped. Make sure it's up-to-date */
3249 if (PageUptodate(page))
3250 set_buffer_uptodate(bh);
3251
3252 if (!buffer_uptodate(bh)) {
3253 err = -EIO;
3254 ll_rw_block(READ, 1, &bh);
3255 wait_on_buffer(bh);
3256 /* Uhhuh. Read error. Complain and punt. */
3257 if (!buffer_uptodate(bh))
3258 goto unlock;
3259 }
3260
617ba13b 3261 if (ext4_should_journal_data(inode)) {
ac27a0ec 3262 BUFFER_TRACE(bh, "get write access");
617ba13b 3263 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3264 if (err)
3265 goto unlock;
3266 }
3267
eebd2aa3 3268 zero_user(page, offset, length);
ac27a0ec
DK
3269
3270 BUFFER_TRACE(bh, "zeroed end of block");
3271
3272 err = 0;
617ba13b
MC
3273 if (ext4_should_journal_data(inode)) {
3274 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3275 } else {
617ba13b 3276 if (ext4_should_order_data(inode))
678aaf48 3277 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3278 mark_buffer_dirty(bh);
3279 }
3280
3281unlock:
3282 unlock_page(page);
3283 page_cache_release(page);
3284 return err;
3285}
3286
3287/*
3288 * Probably it should be a library function... search for first non-zero word
3289 * or memcmp with zero_page, whatever is better for particular architecture.
3290 * Linus?
3291 */
3292static inline int all_zeroes(__le32 *p, __le32 *q)
3293{
3294 while (p < q)
3295 if (*p++)
3296 return 0;
3297 return 1;
3298}
3299
3300/**
617ba13b 3301 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3302 * @inode: inode in question
3303 * @depth: depth of the affected branch
617ba13b 3304 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3305 * @chain: place to store the pointers to partial indirect blocks
3306 * @top: place to the (detached) top of branch
3307 *
617ba13b 3308 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3309 *
3310 * When we do truncate() we may have to clean the ends of several
3311 * indirect blocks but leave the blocks themselves alive. Block is
3312 * partially truncated if some data below the new i_size is refered
3313 * from it (and it is on the path to the first completely truncated
3314 * data block, indeed). We have to free the top of that path along
3315 * with everything to the right of the path. Since no allocation
617ba13b 3316 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3317 * finishes, we may safely do the latter, but top of branch may
3318 * require special attention - pageout below the truncation point
3319 * might try to populate it.
3320 *
3321 * We atomically detach the top of branch from the tree, store the
3322 * block number of its root in *@top, pointers to buffer_heads of
3323 * partially truncated blocks - in @chain[].bh and pointers to
3324 * their last elements that should not be removed - in
3325 * @chain[].p. Return value is the pointer to last filled element
3326 * of @chain.
3327 *
3328 * The work left to caller to do the actual freeing of subtrees:
3329 * a) free the subtree starting from *@top
3330 * b) free the subtrees whose roots are stored in
3331 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3332 * c) free the subtrees growing from the inode past the @chain[0].
3333 * (no partially truncated stuff there). */
3334
617ba13b 3335static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3336 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3337{
3338 Indirect *partial, *p;
3339 int k, err;
3340
3341 *top = 0;
3342 /* Make k index the deepest non-null offest + 1 */
3343 for (k = depth; k > 1 && !offsets[k-1]; k--)
3344 ;
617ba13b 3345 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3346 /* Writer: pointers */
3347 if (!partial)
3348 partial = chain + k-1;
3349 /*
3350 * If the branch acquired continuation since we've looked at it -
3351 * fine, it should all survive and (new) top doesn't belong to us.
3352 */
3353 if (!partial->key && *partial->p)
3354 /* Writer: end */
3355 goto no_top;
af5bc92d 3356 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3357 ;
3358 /*
3359 * OK, we've found the last block that must survive. The rest of our
3360 * branch should be detached before unlocking. However, if that rest
3361 * of branch is all ours and does not grow immediately from the inode
3362 * it's easier to cheat and just decrement partial->p.
3363 */
3364 if (p == chain + k - 1 && p > chain) {
3365 p->p--;
3366 } else {
3367 *top = *p->p;
617ba13b 3368 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3369#if 0
3370 *p->p = 0;
3371#endif
3372 }
3373 /* Writer: end */
3374
af5bc92d 3375 while (partial > p) {
ac27a0ec
DK
3376 brelse(partial->bh);
3377 partial--;
3378 }
3379no_top:
3380 return partial;
3381}
3382
3383/*
3384 * Zero a number of block pointers in either an inode or an indirect block.
3385 * If we restart the transaction we must again get write access to the
3386 * indirect block for further modification.
3387 *
3388 * We release `count' blocks on disk, but (last - first) may be greater
3389 * than `count' because there can be holes in there.
3390 */
617ba13b
MC
3391static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3392 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3393 unsigned long count, __le32 *first, __le32 *last)
3394{
3395 __le32 *p;
3396 if (try_to_extend_transaction(handle, inode)) {
3397 if (bh) {
617ba13b
MC
3398 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3399 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3400 }
617ba13b
MC
3401 ext4_mark_inode_dirty(handle, inode);
3402 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3403 if (bh) {
3404 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3405 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3406 }
3407 }
3408
3409 /*
3410 * Any buffers which are on the journal will be in memory. We find
dab291af 3411 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3412 * on them. We've already detached each block from the file, so
dab291af 3413 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3414 *
dab291af 3415 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3416 */
3417 for (p = first; p < last; p++) {
3418 u32 nr = le32_to_cpu(*p);
3419 if (nr) {
1d03ec98 3420 struct buffer_head *tbh;
ac27a0ec
DK
3421
3422 *p = 0;
1d03ec98
AK
3423 tbh = sb_find_get_block(inode->i_sb, nr);
3424 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3425 }
3426 }
3427
c9de560d 3428 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3429}
3430
3431/**
617ba13b 3432 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3433 * @handle: handle for this transaction
3434 * @inode: inode we are dealing with
3435 * @this_bh: indirect buffer_head which contains *@first and *@last
3436 * @first: array of block numbers
3437 * @last: points immediately past the end of array
3438 *
3439 * We are freeing all blocks refered from that array (numbers are stored as
3440 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3441 *
3442 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3443 * blocks are contiguous then releasing them at one time will only affect one
3444 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3445 * actually use a lot of journal space.
3446 *
3447 * @this_bh will be %NULL if @first and @last point into the inode's direct
3448 * block pointers.
3449 */
617ba13b 3450static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3451 struct buffer_head *this_bh,
3452 __le32 *first, __le32 *last)
3453{
617ba13b 3454 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3455 unsigned long count = 0; /* Number of blocks in the run */
3456 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3457 corresponding to
3458 block_to_free */
617ba13b 3459 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3460 __le32 *p; /* Pointer into inode/ind
3461 for current block */
3462 int err;
3463
3464 if (this_bh) { /* For indirect block */
3465 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3466 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3467 /* Important: if we can't update the indirect pointers
3468 * to the blocks, we can't free them. */
3469 if (err)
3470 return;
3471 }
3472
3473 for (p = first; p < last; p++) {
3474 nr = le32_to_cpu(*p);
3475 if (nr) {
3476 /* accumulate blocks to free if they're contiguous */
3477 if (count == 0) {
3478 block_to_free = nr;
3479 block_to_free_p = p;
3480 count = 1;
3481 } else if (nr == block_to_free + count) {
3482 count++;
3483 } else {
617ba13b 3484 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3485 block_to_free,
3486 count, block_to_free_p, p);
3487 block_to_free = nr;
3488 block_to_free_p = p;
3489 count = 1;
3490 }
3491 }
3492 }
3493
3494 if (count > 0)
617ba13b 3495 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3496 count, block_to_free_p, p);
3497
3498 if (this_bh) {
617ba13b 3499 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3500
3501 /*
3502 * The buffer head should have an attached journal head at this
3503 * point. However, if the data is corrupted and an indirect
3504 * block pointed to itself, it would have been detached when
3505 * the block was cleared. Check for this instead of OOPSing.
3506 */
3507 if (bh2jh(this_bh))
3508 ext4_journal_dirty_metadata(handle, this_bh);
3509 else
3510 ext4_error(inode->i_sb, __func__,
3511 "circular indirect block detected, "
3512 "inode=%lu, block=%llu",
3513 inode->i_ino,
3514 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3515 }
3516}
3517
3518/**
617ba13b 3519 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3520 * @handle: JBD handle for this transaction
3521 * @inode: inode we are dealing with
3522 * @parent_bh: the buffer_head which contains *@first and *@last
3523 * @first: array of block numbers
3524 * @last: pointer immediately past the end of array
3525 * @depth: depth of the branches to free
3526 *
3527 * We are freeing all blocks refered from these branches (numbers are
3528 * stored as little-endian 32-bit) and updating @inode->i_blocks
3529 * appropriately.
3530 */
617ba13b 3531static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3532 struct buffer_head *parent_bh,
3533 __le32 *first, __le32 *last, int depth)
3534{
617ba13b 3535 ext4_fsblk_t nr;
ac27a0ec
DK
3536 __le32 *p;
3537
3538 if (is_handle_aborted(handle))
3539 return;
3540
3541 if (depth--) {
3542 struct buffer_head *bh;
617ba13b 3543 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3544 p = last;
3545 while (--p >= first) {
3546 nr = le32_to_cpu(*p);
3547 if (!nr)
3548 continue; /* A hole */
3549
3550 /* Go read the buffer for the next level down */
3551 bh = sb_bread(inode->i_sb, nr);
3552
3553 /*
3554 * A read failure? Report error and clear slot
3555 * (should be rare).
3556 */
3557 if (!bh) {
617ba13b 3558 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3559 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3560 inode->i_ino, nr);
3561 continue;
3562 }
3563
3564 /* This zaps the entire block. Bottom up. */
3565 BUFFER_TRACE(bh, "free child branches");
617ba13b 3566 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3567 (__le32 *) bh->b_data,
3568 (__le32 *) bh->b_data + addr_per_block,
3569 depth);
ac27a0ec
DK
3570
3571 /*
3572 * We've probably journalled the indirect block several
3573 * times during the truncate. But it's no longer
3574 * needed and we now drop it from the transaction via
dab291af 3575 * jbd2_journal_revoke().
ac27a0ec
DK
3576 *
3577 * That's easy if it's exclusively part of this
3578 * transaction. But if it's part of the committing
dab291af 3579 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3580 * brelse() it. That means that if the underlying
617ba13b 3581 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3582 * unmap_underlying_metadata() will find this block
3583 * and will try to get rid of it. damn, damn.
3584 *
3585 * If this block has already been committed to the
3586 * journal, a revoke record will be written. And
3587 * revoke records must be emitted *before* clearing
3588 * this block's bit in the bitmaps.
3589 */
617ba13b 3590 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3591
3592 /*
3593 * Everything below this this pointer has been
3594 * released. Now let this top-of-subtree go.
3595 *
3596 * We want the freeing of this indirect block to be
3597 * atomic in the journal with the updating of the
3598 * bitmap block which owns it. So make some room in
3599 * the journal.
3600 *
3601 * We zero the parent pointer *after* freeing its
3602 * pointee in the bitmaps, so if extend_transaction()
3603 * for some reason fails to put the bitmap changes and
3604 * the release into the same transaction, recovery
3605 * will merely complain about releasing a free block,
3606 * rather than leaking blocks.
3607 */
3608 if (is_handle_aborted(handle))
3609 return;
3610 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3611 ext4_mark_inode_dirty(handle, inode);
3612 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3613 }
3614
c9de560d 3615 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3616
3617 if (parent_bh) {
3618 /*
3619 * The block which we have just freed is
3620 * pointed to by an indirect block: journal it
3621 */
3622 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3623 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3624 parent_bh)){
3625 *p = 0;
3626 BUFFER_TRACE(parent_bh,
617ba13b
MC
3627 "call ext4_journal_dirty_metadata");
3628 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3629 parent_bh);
3630 }
3631 }
3632 }
3633 } else {
3634 /* We have reached the bottom of the tree. */
3635 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3636 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3637 }
3638}
3639
91ef4caf
DG
3640int ext4_can_truncate(struct inode *inode)
3641{
3642 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3643 return 0;
3644 if (S_ISREG(inode->i_mode))
3645 return 1;
3646 if (S_ISDIR(inode->i_mode))
3647 return 1;
3648 if (S_ISLNK(inode->i_mode))
3649 return !ext4_inode_is_fast_symlink(inode);
3650 return 0;
3651}
3652
ac27a0ec 3653/*
617ba13b 3654 * ext4_truncate()
ac27a0ec 3655 *
617ba13b
MC
3656 * We block out ext4_get_block() block instantiations across the entire
3657 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3658 * simultaneously on behalf of the same inode.
3659 *
3660 * As we work through the truncate and commmit bits of it to the journal there
3661 * is one core, guiding principle: the file's tree must always be consistent on
3662 * disk. We must be able to restart the truncate after a crash.
3663 *
3664 * The file's tree may be transiently inconsistent in memory (although it
3665 * probably isn't), but whenever we close off and commit a journal transaction,
3666 * the contents of (the filesystem + the journal) must be consistent and
3667 * restartable. It's pretty simple, really: bottom up, right to left (although
3668 * left-to-right works OK too).
3669 *
3670 * Note that at recovery time, journal replay occurs *before* the restart of
3671 * truncate against the orphan inode list.
3672 *
3673 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3674 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3675 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3676 * ext4_truncate() to have another go. So there will be instantiated blocks
3677 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3678 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3679 * ext4_truncate() run will find them and release them.
ac27a0ec 3680 */
617ba13b 3681void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3682{
3683 handle_t *handle;
617ba13b 3684 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3685 __le32 *i_data = ei->i_data;
617ba13b 3686 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3687 struct address_space *mapping = inode->i_mapping;
725d26d3 3688 ext4_lblk_t offsets[4];
ac27a0ec
DK
3689 Indirect chain[4];
3690 Indirect *partial;
3691 __le32 nr = 0;
3692 int n;
725d26d3 3693 ext4_lblk_t last_block;
ac27a0ec 3694 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3695
91ef4caf 3696 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3697 return;
3698
1d03ec98 3699 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3700 ext4_ext_truncate(inode);
1d03ec98
AK
3701 return;
3702 }
a86c6181 3703
ac27a0ec 3704 handle = start_transaction(inode);
cf108bca 3705 if (IS_ERR(handle))
ac27a0ec 3706 return; /* AKPM: return what? */
ac27a0ec
DK
3707
3708 last_block = (inode->i_size + blocksize-1)
617ba13b 3709 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3710
cf108bca
JK
3711 if (inode->i_size & (blocksize - 1))
3712 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3713 goto out_stop;
ac27a0ec 3714
617ba13b 3715 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3716 if (n == 0)
3717 goto out_stop; /* error */
3718
3719 /*
3720 * OK. This truncate is going to happen. We add the inode to the
3721 * orphan list, so that if this truncate spans multiple transactions,
3722 * and we crash, we will resume the truncate when the filesystem
3723 * recovers. It also marks the inode dirty, to catch the new size.
3724 *
3725 * Implication: the file must always be in a sane, consistent
3726 * truncatable state while each transaction commits.
3727 */
617ba13b 3728 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3729 goto out_stop;
3730
632eaeab
MC
3731 /*
3732 * From here we block out all ext4_get_block() callers who want to
3733 * modify the block allocation tree.
3734 */
3735 down_write(&ei->i_data_sem);
b4df2030 3736
c2ea3fde 3737 ext4_discard_preallocations(inode);
b4df2030 3738
ac27a0ec
DK
3739 /*
3740 * The orphan list entry will now protect us from any crash which
3741 * occurs before the truncate completes, so it is now safe to propagate
3742 * the new, shorter inode size (held for now in i_size) into the
3743 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3744 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3745 */
3746 ei->i_disksize = inode->i_size;
3747
ac27a0ec 3748 if (n == 1) { /* direct blocks */
617ba13b
MC
3749 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3750 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3751 goto do_indirects;
3752 }
3753
617ba13b 3754 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3755 /* Kill the top of shared branch (not detached) */
3756 if (nr) {
3757 if (partial == chain) {
3758 /* Shared branch grows from the inode */
617ba13b 3759 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3760 &nr, &nr+1, (chain+n-1) - partial);
3761 *partial->p = 0;
3762 /*
3763 * We mark the inode dirty prior to restart,
3764 * and prior to stop. No need for it here.
3765 */
3766 } else {
3767 /* Shared branch grows from an indirect block */
3768 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3769 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3770 partial->p,
3771 partial->p+1, (chain+n-1) - partial);
3772 }
3773 }
3774 /* Clear the ends of indirect blocks on the shared branch */
3775 while (partial > chain) {
617ba13b 3776 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3777 (__le32*)partial->bh->b_data+addr_per_block,
3778 (chain+n-1) - partial);
3779 BUFFER_TRACE(partial->bh, "call brelse");
3780 brelse (partial->bh);
3781 partial--;
3782 }
3783do_indirects:
3784 /* Kill the remaining (whole) subtrees */
3785 switch (offsets[0]) {
3786 default:
617ba13b 3787 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3788 if (nr) {
617ba13b
MC
3789 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3790 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3791 }
617ba13b
MC
3792 case EXT4_IND_BLOCK:
3793 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3794 if (nr) {
617ba13b
MC
3795 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3796 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3797 }
617ba13b
MC
3798 case EXT4_DIND_BLOCK:
3799 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3800 if (nr) {
617ba13b
MC
3801 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3802 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3803 }
617ba13b 3804 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3805 ;
3806 }
3807
0e855ac8 3808 up_write(&ei->i_data_sem);
ef7f3835 3809 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3810 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3811
3812 /*
3813 * In a multi-transaction truncate, we only make the final transaction
3814 * synchronous
3815 */
3816 if (IS_SYNC(inode))
3817 handle->h_sync = 1;
3818out_stop:
3819 /*
3820 * If this was a simple ftruncate(), and the file will remain alive
3821 * then we need to clear up the orphan record which we created above.
3822 * However, if this was a real unlink then we were called by
617ba13b 3823 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3824 * orphan info for us.
3825 */
3826 if (inode->i_nlink)
617ba13b 3827 ext4_orphan_del(handle, inode);
ac27a0ec 3828
617ba13b 3829 ext4_journal_stop(handle);
ac27a0ec
DK
3830}
3831
ac27a0ec 3832/*
617ba13b 3833 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3834 * underlying buffer_head on success. If 'in_mem' is true, we have all
3835 * data in memory that is needed to recreate the on-disk version of this
3836 * inode.
3837 */
617ba13b
MC
3838static int __ext4_get_inode_loc(struct inode *inode,
3839 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3840{
240799cd
TT
3841 struct ext4_group_desc *gdp;
3842 struct buffer_head *bh;
3843 struct super_block *sb = inode->i_sb;
3844 ext4_fsblk_t block;
3845 int inodes_per_block, inode_offset;
3846
3847 iloc->bh = 0;
3848 if (!ext4_valid_inum(sb, inode->i_ino))
3849 return -EIO;
ac27a0ec 3850
240799cd
TT
3851 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3852 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3853 if (!gdp)
ac27a0ec
DK
3854 return -EIO;
3855
240799cd
TT
3856 /*
3857 * Figure out the offset within the block group inode table
3858 */
3859 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3860 inode_offset = ((inode->i_ino - 1) %
3861 EXT4_INODES_PER_GROUP(sb));
3862 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3863 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3864
3865 bh = sb_getblk(sb, block);
ac27a0ec 3866 if (!bh) {
240799cd
TT
3867 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3868 "inode block - inode=%lu, block=%llu",
3869 inode->i_ino, block);
ac27a0ec
DK
3870 return -EIO;
3871 }
3872 if (!buffer_uptodate(bh)) {
3873 lock_buffer(bh);
9c83a923
HK
3874
3875 /*
3876 * If the buffer has the write error flag, we have failed
3877 * to write out another inode in the same block. In this
3878 * case, we don't have to read the block because we may
3879 * read the old inode data successfully.
3880 */
3881 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3882 set_buffer_uptodate(bh);
3883
ac27a0ec
DK
3884 if (buffer_uptodate(bh)) {
3885 /* someone brought it uptodate while we waited */
3886 unlock_buffer(bh);
3887 goto has_buffer;
3888 }
3889
3890 /*
3891 * If we have all information of the inode in memory and this
3892 * is the only valid inode in the block, we need not read the
3893 * block.
3894 */
3895 if (in_mem) {
3896 struct buffer_head *bitmap_bh;
240799cd 3897 int i, start;
ac27a0ec 3898
240799cd 3899 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3900
240799cd
TT
3901 /* Is the inode bitmap in cache? */
3902 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3903 if (!bitmap_bh)
3904 goto make_io;
3905
3906 /*
3907 * If the inode bitmap isn't in cache then the
3908 * optimisation may end up performing two reads instead
3909 * of one, so skip it.
3910 */
3911 if (!buffer_uptodate(bitmap_bh)) {
3912 brelse(bitmap_bh);
3913 goto make_io;
3914 }
240799cd 3915 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3916 if (i == inode_offset)
3917 continue;
617ba13b 3918 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3919 break;
3920 }
3921 brelse(bitmap_bh);
240799cd 3922 if (i == start + inodes_per_block) {
ac27a0ec
DK
3923 /* all other inodes are free, so skip I/O */
3924 memset(bh->b_data, 0, bh->b_size);
3925 set_buffer_uptodate(bh);
3926 unlock_buffer(bh);
3927 goto has_buffer;
3928 }
3929 }
3930
3931make_io:
240799cd
TT
3932 /*
3933 * If we need to do any I/O, try to pre-readahead extra
3934 * blocks from the inode table.
3935 */
3936 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3937 ext4_fsblk_t b, end, table;
3938 unsigned num;
3939
3940 table = ext4_inode_table(sb, gdp);
3941 /* Make sure s_inode_readahead_blks is a power of 2 */
3942 while (EXT4_SB(sb)->s_inode_readahead_blks &
3943 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3944 EXT4_SB(sb)->s_inode_readahead_blks =
3945 (EXT4_SB(sb)->s_inode_readahead_blks &
3946 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3947 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3948 if (table > b)
3949 b = table;
3950 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3951 num = EXT4_INODES_PER_GROUP(sb);
3952 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3953 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3954 num -= le16_to_cpu(gdp->bg_itable_unused);
3955 table += num / inodes_per_block;
3956 if (end > table)
3957 end = table;
3958 while (b <= end)
3959 sb_breadahead(sb, b++);
3960 }
3961
ac27a0ec
DK
3962 /*
3963 * There are other valid inodes in the buffer, this inode
3964 * has in-inode xattrs, or we don't have this inode in memory.
3965 * Read the block from disk.
3966 */
3967 get_bh(bh);
3968 bh->b_end_io = end_buffer_read_sync;
3969 submit_bh(READ_META, bh);
3970 wait_on_buffer(bh);
3971 if (!buffer_uptodate(bh)) {
240799cd
TT
3972 ext4_error(sb, __func__,
3973 "unable to read inode block - inode=%lu, "
3974 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
3975 brelse(bh);
3976 return -EIO;
3977 }
3978 }
3979has_buffer:
3980 iloc->bh = bh;
3981 return 0;
3982}
3983
617ba13b 3984int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3985{
3986 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3987 return __ext4_get_inode_loc(inode, iloc,
3988 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3989}
3990
617ba13b 3991void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3992{
617ba13b 3993 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3994
3995 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3996 if (flags & EXT4_SYNC_FL)
ac27a0ec 3997 inode->i_flags |= S_SYNC;
617ba13b 3998 if (flags & EXT4_APPEND_FL)
ac27a0ec 3999 inode->i_flags |= S_APPEND;
617ba13b 4000 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4001 inode->i_flags |= S_IMMUTABLE;
617ba13b 4002 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4003 inode->i_flags |= S_NOATIME;
617ba13b 4004 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4005 inode->i_flags |= S_DIRSYNC;
4006}
4007
ff9ddf7e
JK
4008/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4009void ext4_get_inode_flags(struct ext4_inode_info *ei)
4010{
4011 unsigned int flags = ei->vfs_inode.i_flags;
4012
4013 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4014 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4015 if (flags & S_SYNC)
4016 ei->i_flags |= EXT4_SYNC_FL;
4017 if (flags & S_APPEND)
4018 ei->i_flags |= EXT4_APPEND_FL;
4019 if (flags & S_IMMUTABLE)
4020 ei->i_flags |= EXT4_IMMUTABLE_FL;
4021 if (flags & S_NOATIME)
4022 ei->i_flags |= EXT4_NOATIME_FL;
4023 if (flags & S_DIRSYNC)
4024 ei->i_flags |= EXT4_DIRSYNC_FL;
4025}
0fc1b451
AK
4026static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4027 struct ext4_inode_info *ei)
4028{
4029 blkcnt_t i_blocks ;
8180a562
AK
4030 struct inode *inode = &(ei->vfs_inode);
4031 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4032
4033 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4034 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4035 /* we are using combined 48 bit field */
4036 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4037 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4038 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4039 /* i_blocks represent file system block size */
4040 return i_blocks << (inode->i_blkbits - 9);
4041 } else {
4042 return i_blocks;
4043 }
0fc1b451
AK
4044 } else {
4045 return le32_to_cpu(raw_inode->i_blocks_lo);
4046 }
4047}
ff9ddf7e 4048
1d1fe1ee 4049struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4050{
617ba13b
MC
4051 struct ext4_iloc iloc;
4052 struct ext4_inode *raw_inode;
1d1fe1ee 4053 struct ext4_inode_info *ei;
ac27a0ec 4054 struct buffer_head *bh;
1d1fe1ee
DH
4055 struct inode *inode;
4056 long ret;
ac27a0ec
DK
4057 int block;
4058
1d1fe1ee
DH
4059 inode = iget_locked(sb, ino);
4060 if (!inode)
4061 return ERR_PTR(-ENOMEM);
4062 if (!(inode->i_state & I_NEW))
4063 return inode;
4064
4065 ei = EXT4_I(inode);
03010a33 4066#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4067 ei->i_acl = EXT4_ACL_NOT_CACHED;
4068 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4069#endif
ac27a0ec 4070
1d1fe1ee
DH
4071 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4072 if (ret < 0)
ac27a0ec
DK
4073 goto bad_inode;
4074 bh = iloc.bh;
617ba13b 4075 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4076 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4077 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4078 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4079 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4080 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4081 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4082 }
4083 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4084
4085 ei->i_state = 0;
4086 ei->i_dir_start_lookup = 0;
4087 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4088 /* We now have enough fields to check if the inode was active or not.
4089 * This is needed because nfsd might try to access dead inodes
4090 * the test is that same one that e2fsck uses
4091 * NeilBrown 1999oct15
4092 */
4093 if (inode->i_nlink == 0) {
4094 if (inode->i_mode == 0 ||
617ba13b 4095 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4096 /* this inode is deleted */
af5bc92d 4097 brelse(bh);
1d1fe1ee 4098 ret = -ESTALE;
ac27a0ec
DK
4099 goto bad_inode;
4100 }
4101 /* The only unlinked inodes we let through here have
4102 * valid i_mode and are being read by the orphan
4103 * recovery code: that's fine, we're about to complete
4104 * the process of deleting those. */
4105 }
ac27a0ec 4106 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4107 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4108 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4110 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4111 ei->i_file_acl |=
4112 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4113 }
a48380f7 4114 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4115 ei->i_disksize = inode->i_size;
4116 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117 ei->i_block_group = iloc.block_group;
4118 /*
4119 * NOTE! The in-memory inode i_data array is in little-endian order
4120 * even on big-endian machines: we do NOT byteswap the block numbers!
4121 */
617ba13b 4122 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4123 ei->i_data[block] = raw_inode->i_block[block];
4124 INIT_LIST_HEAD(&ei->i_orphan);
4125
0040d987 4126 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4127 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4128 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4129 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4130 brelse(bh);
1d1fe1ee 4131 ret = -EIO;
ac27a0ec 4132 goto bad_inode;
e5d2861f 4133 }
ac27a0ec
DK
4134 if (ei->i_extra_isize == 0) {
4135 /* The extra space is currently unused. Use it. */
617ba13b
MC
4136 ei->i_extra_isize = sizeof(struct ext4_inode) -
4137 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4138 } else {
4139 __le32 *magic = (void *)raw_inode +
617ba13b 4140 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4141 ei->i_extra_isize;
617ba13b
MC
4142 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4143 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4144 }
4145 } else
4146 ei->i_extra_isize = 0;
4147
ef7f3835
KS
4148 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4149 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4150 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4151 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4152
25ec56b5
JNC
4153 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4154 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4155 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4156 inode->i_version |=
4157 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4158 }
4159
ac27a0ec 4160 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4161 inode->i_op = &ext4_file_inode_operations;
4162 inode->i_fop = &ext4_file_operations;
4163 ext4_set_aops(inode);
ac27a0ec 4164 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4165 inode->i_op = &ext4_dir_inode_operations;
4166 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4167 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4168 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4169 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4170 nd_terminate_link(ei->i_data, inode->i_size,
4171 sizeof(ei->i_data) - 1);
4172 } else {
617ba13b
MC
4173 inode->i_op = &ext4_symlink_inode_operations;
4174 ext4_set_aops(inode);
ac27a0ec
DK
4175 }
4176 } else {
617ba13b 4177 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4178 if (raw_inode->i_block[0])
4179 init_special_inode(inode, inode->i_mode,
4180 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4181 else
4182 init_special_inode(inode, inode->i_mode,
4183 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4184 }
af5bc92d 4185 brelse(iloc.bh);
617ba13b 4186 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4187 unlock_new_inode(inode);
4188 return inode;
ac27a0ec
DK
4189
4190bad_inode:
1d1fe1ee
DH
4191 iget_failed(inode);
4192 return ERR_PTR(ret);
ac27a0ec
DK
4193}
4194
0fc1b451
AK
4195static int ext4_inode_blocks_set(handle_t *handle,
4196 struct ext4_inode *raw_inode,
4197 struct ext4_inode_info *ei)
4198{
4199 struct inode *inode = &(ei->vfs_inode);
4200 u64 i_blocks = inode->i_blocks;
4201 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4202
4203 if (i_blocks <= ~0U) {
4204 /*
4205 * i_blocks can be represnted in a 32 bit variable
4206 * as multiple of 512 bytes
4207 */
8180a562 4208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4209 raw_inode->i_blocks_high = 0;
8180a562 4210 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4211 return 0;
4212 }
4213 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4214 return -EFBIG;
4215
4216 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4217 /*
4218 * i_blocks can be represented in a 48 bit variable
4219 * as multiple of 512 bytes
4220 */
8180a562 4221 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4222 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4223 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4224 } else {
8180a562
AK
4225 ei->i_flags |= EXT4_HUGE_FILE_FL;
4226 /* i_block is stored in file system block size */
4227 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4228 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4229 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4230 }
f287a1a5 4231 return 0;
0fc1b451
AK
4232}
4233
ac27a0ec
DK
4234/*
4235 * Post the struct inode info into an on-disk inode location in the
4236 * buffer-cache. This gobbles the caller's reference to the
4237 * buffer_head in the inode location struct.
4238 *
4239 * The caller must have write access to iloc->bh.
4240 */
617ba13b 4241static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4242 struct inode *inode,
617ba13b 4243 struct ext4_iloc *iloc)
ac27a0ec 4244{
617ba13b
MC
4245 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4246 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4247 struct buffer_head *bh = iloc->bh;
4248 int err = 0, rc, block;
4249
4250 /* For fields not not tracking in the in-memory inode,
4251 * initialise them to zero for new inodes. */
617ba13b
MC
4252 if (ei->i_state & EXT4_STATE_NEW)
4253 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4254
ff9ddf7e 4255 ext4_get_inode_flags(ei);
ac27a0ec 4256 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4257 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4258 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4259 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4260/*
4261 * Fix up interoperability with old kernels. Otherwise, old inodes get
4262 * re-used with the upper 16 bits of the uid/gid intact
4263 */
af5bc92d 4264 if (!ei->i_dtime) {
ac27a0ec
DK
4265 raw_inode->i_uid_high =
4266 cpu_to_le16(high_16_bits(inode->i_uid));
4267 raw_inode->i_gid_high =
4268 cpu_to_le16(high_16_bits(inode->i_gid));
4269 } else {
4270 raw_inode->i_uid_high = 0;
4271 raw_inode->i_gid_high = 0;
4272 }
4273 } else {
4274 raw_inode->i_uid_low =
4275 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4276 raw_inode->i_gid_low =
4277 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4278 raw_inode->i_uid_high = 0;
4279 raw_inode->i_gid_high = 0;
4280 }
4281 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4282
4283 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4284 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4285 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4286 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4287
0fc1b451
AK
4288 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4289 goto out_brelse;
ac27a0ec 4290 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4291 /* clear the migrate flag in the raw_inode */
4292 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4293 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4294 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4295 raw_inode->i_file_acl_high =
4296 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4297 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4298 ext4_isize_set(raw_inode, ei->i_disksize);
4299 if (ei->i_disksize > 0x7fffffffULL) {
4300 struct super_block *sb = inode->i_sb;
4301 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4302 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4303 EXT4_SB(sb)->s_es->s_rev_level ==
4304 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4305 /* If this is the first large file
4306 * created, add a flag to the superblock.
4307 */
4308 err = ext4_journal_get_write_access(handle,
4309 EXT4_SB(sb)->s_sbh);
4310 if (err)
4311 goto out_brelse;
4312 ext4_update_dynamic_rev(sb);
4313 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4314 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4315 sb->s_dirt = 1;
4316 handle->h_sync = 1;
4317 err = ext4_journal_dirty_metadata(handle,
4318 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4319 }
4320 }
4321 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4322 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4323 if (old_valid_dev(inode->i_rdev)) {
4324 raw_inode->i_block[0] =
4325 cpu_to_le32(old_encode_dev(inode->i_rdev));
4326 raw_inode->i_block[1] = 0;
4327 } else {
4328 raw_inode->i_block[0] = 0;
4329 raw_inode->i_block[1] =
4330 cpu_to_le32(new_encode_dev(inode->i_rdev));
4331 raw_inode->i_block[2] = 0;
4332 }
617ba13b 4333 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4334 raw_inode->i_block[block] = ei->i_data[block];
4335
25ec56b5
JNC
4336 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4337 if (ei->i_extra_isize) {
4338 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4339 raw_inode->i_version_hi =
4340 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4341 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4342 }
4343
ac27a0ec 4344
617ba13b
MC
4345 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4346 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4347 if (!err)
4348 err = rc;
617ba13b 4349 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4350
4351out_brelse:
af5bc92d 4352 brelse(bh);
617ba13b 4353 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4354 return err;
4355}
4356
4357/*
617ba13b 4358 * ext4_write_inode()
ac27a0ec
DK
4359 *
4360 * We are called from a few places:
4361 *
4362 * - Within generic_file_write() for O_SYNC files.
4363 * Here, there will be no transaction running. We wait for any running
4364 * trasnaction to commit.
4365 *
4366 * - Within sys_sync(), kupdate and such.
4367 * We wait on commit, if tol to.
4368 *
4369 * - Within prune_icache() (PF_MEMALLOC == true)
4370 * Here we simply return. We can't afford to block kswapd on the
4371 * journal commit.
4372 *
4373 * In all cases it is actually safe for us to return without doing anything,
4374 * because the inode has been copied into a raw inode buffer in
617ba13b 4375 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4376 * knfsd.
4377 *
4378 * Note that we are absolutely dependent upon all inode dirtiers doing the
4379 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4380 * which we are interested.
4381 *
4382 * It would be a bug for them to not do this. The code:
4383 *
4384 * mark_inode_dirty(inode)
4385 * stuff();
4386 * inode->i_size = expr;
4387 *
4388 * is in error because a kswapd-driven write_inode() could occur while
4389 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4390 * will no longer be on the superblock's dirty inode list.
4391 */
617ba13b 4392int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4393{
4394 if (current->flags & PF_MEMALLOC)
4395 return 0;
4396
617ba13b 4397 if (ext4_journal_current_handle()) {
b38bd33a 4398 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4399 dump_stack();
4400 return -EIO;
4401 }
4402
4403 if (!wait)
4404 return 0;
4405
617ba13b 4406 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4407}
4408
4409/*
617ba13b 4410 * ext4_setattr()
ac27a0ec
DK
4411 *
4412 * Called from notify_change.
4413 *
4414 * We want to trap VFS attempts to truncate the file as soon as
4415 * possible. In particular, we want to make sure that when the VFS
4416 * shrinks i_size, we put the inode on the orphan list and modify
4417 * i_disksize immediately, so that during the subsequent flushing of
4418 * dirty pages and freeing of disk blocks, we can guarantee that any
4419 * commit will leave the blocks being flushed in an unused state on
4420 * disk. (On recovery, the inode will get truncated and the blocks will
4421 * be freed, so we have a strong guarantee that no future commit will
4422 * leave these blocks visible to the user.)
4423 *
678aaf48
JK
4424 * Another thing we have to assure is that if we are in ordered mode
4425 * and inode is still attached to the committing transaction, we must
4426 * we start writeout of all the dirty pages which are being truncated.
4427 * This way we are sure that all the data written in the previous
4428 * transaction are already on disk (truncate waits for pages under
4429 * writeback).
4430 *
4431 * Called with inode->i_mutex down.
ac27a0ec 4432 */
617ba13b 4433int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4434{
4435 struct inode *inode = dentry->d_inode;
4436 int error, rc = 0;
4437 const unsigned int ia_valid = attr->ia_valid;
4438
4439 error = inode_change_ok(inode, attr);
4440 if (error)
4441 return error;
4442
4443 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4444 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4445 handle_t *handle;
4446
4447 /* (user+group)*(old+new) structure, inode write (sb,
4448 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4449 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4450 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4451 if (IS_ERR(handle)) {
4452 error = PTR_ERR(handle);
4453 goto err_out;
4454 }
4455 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4456 if (error) {
617ba13b 4457 ext4_journal_stop(handle);
ac27a0ec
DK
4458 return error;
4459 }
4460 /* Update corresponding info in inode so that everything is in
4461 * one transaction */
4462 if (attr->ia_valid & ATTR_UID)
4463 inode->i_uid = attr->ia_uid;
4464 if (attr->ia_valid & ATTR_GID)
4465 inode->i_gid = attr->ia_gid;
617ba13b
MC
4466 error = ext4_mark_inode_dirty(handle, inode);
4467 ext4_journal_stop(handle);
ac27a0ec
DK
4468 }
4469
e2b46574
ES
4470 if (attr->ia_valid & ATTR_SIZE) {
4471 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4472 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4473
4474 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4475 error = -EFBIG;
4476 goto err_out;
4477 }
4478 }
4479 }
4480
ac27a0ec
DK
4481 if (S_ISREG(inode->i_mode) &&
4482 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4483 handle_t *handle;
4484
617ba13b 4485 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4486 if (IS_ERR(handle)) {
4487 error = PTR_ERR(handle);
4488 goto err_out;
4489 }
4490
617ba13b
MC
4491 error = ext4_orphan_add(handle, inode);
4492 EXT4_I(inode)->i_disksize = attr->ia_size;
4493 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4494 if (!error)
4495 error = rc;
617ba13b 4496 ext4_journal_stop(handle);
678aaf48
JK
4497
4498 if (ext4_should_order_data(inode)) {
4499 error = ext4_begin_ordered_truncate(inode,
4500 attr->ia_size);
4501 if (error) {
4502 /* Do as much error cleanup as possible */
4503 handle = ext4_journal_start(inode, 3);
4504 if (IS_ERR(handle)) {
4505 ext4_orphan_del(NULL, inode);
4506 goto err_out;
4507 }
4508 ext4_orphan_del(handle, inode);
4509 ext4_journal_stop(handle);
4510 goto err_out;
4511 }
4512 }
ac27a0ec
DK
4513 }
4514
4515 rc = inode_setattr(inode, attr);
4516
617ba13b 4517 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4518 * transaction handle at all, we need to clean up the in-core
4519 * orphan list manually. */
4520 if (inode->i_nlink)
617ba13b 4521 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4522
4523 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4524 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4525
4526err_out:
617ba13b 4527 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4528 if (!error)
4529 error = rc;
4530 return error;
4531}
4532
3e3398a0
MC
4533int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4534 struct kstat *stat)
4535{
4536 struct inode *inode;
4537 unsigned long delalloc_blocks;
4538
4539 inode = dentry->d_inode;
4540 generic_fillattr(inode, stat);
4541
4542 /*
4543 * We can't update i_blocks if the block allocation is delayed
4544 * otherwise in the case of system crash before the real block
4545 * allocation is done, we will have i_blocks inconsistent with
4546 * on-disk file blocks.
4547 * We always keep i_blocks updated together with real
4548 * allocation. But to not confuse with user, stat
4549 * will return the blocks that include the delayed allocation
4550 * blocks for this file.
4551 */
4552 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4553 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4555
4556 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4557 return 0;
4558}
ac27a0ec 4559
a02908f1
MC
4560static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4561 int chunk)
4562{
4563 int indirects;
4564
4565 /* if nrblocks are contiguous */
4566 if (chunk) {
4567 /*
4568 * With N contiguous data blocks, it need at most
4569 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4570 * 2 dindirect blocks
4571 * 1 tindirect block
4572 */
4573 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4574 return indirects + 3;
4575 }
4576 /*
4577 * if nrblocks are not contiguous, worse case, each block touch
4578 * a indirect block, and each indirect block touch a double indirect
4579 * block, plus a triple indirect block
4580 */
4581 indirects = nrblocks * 2 + 1;
4582 return indirects;
4583}
4584
4585static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4586{
4587 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4588 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4589 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4590}
ac51d837 4591
ac27a0ec 4592/*
a02908f1
MC
4593 * Account for index blocks, block groups bitmaps and block group
4594 * descriptor blocks if modify datablocks and index blocks
4595 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4596 *
a02908f1
MC
4597 * If datablocks are discontiguous, they are possible to spread over
4598 * different block groups too. If they are contiugous, with flexbg,
4599 * they could still across block group boundary.
ac27a0ec 4600 *
a02908f1
MC
4601 * Also account for superblock, inode, quota and xattr blocks
4602 */
4603int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4604{
4605 int groups, gdpblocks;
4606 int idxblocks;
4607 int ret = 0;
4608
4609 /*
4610 * How many index blocks need to touch to modify nrblocks?
4611 * The "Chunk" flag indicating whether the nrblocks is
4612 * physically contiguous on disk
4613 *
4614 * For Direct IO and fallocate, they calls get_block to allocate
4615 * one single extent at a time, so they could set the "Chunk" flag
4616 */
4617 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4618
4619 ret = idxblocks;
4620
4621 /*
4622 * Now let's see how many group bitmaps and group descriptors need
4623 * to account
4624 */
4625 groups = idxblocks;
4626 if (chunk)
4627 groups += 1;
4628 else
4629 groups += nrblocks;
4630
4631 gdpblocks = groups;
4632 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4633 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4634 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4635 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4636
4637 /* bitmaps and block group descriptor blocks */
4638 ret += groups + gdpblocks;
4639
4640 /* Blocks for super block, inode, quota and xattr blocks */
4641 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4642
4643 return ret;
4644}
4645
4646/*
4647 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4648 * the modification of a single pages into a single transaction,
4649 * which may include multiple chunks of block allocations.
ac27a0ec 4650 *
525f4ed8 4651 * This could be called via ext4_write_begin()
ac27a0ec 4652 *
525f4ed8 4653 * We need to consider the worse case, when
a02908f1 4654 * one new block per extent.
ac27a0ec 4655 */
a86c6181 4656int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4657{
617ba13b 4658 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4659 int ret;
4660
a02908f1 4661 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4662
a02908f1 4663 /* Account for data blocks for journalled mode */
617ba13b 4664 if (ext4_should_journal_data(inode))
a02908f1 4665 ret += bpp;
ac27a0ec
DK
4666 return ret;
4667}
f3bd1f3f
MC
4668
4669/*
4670 * Calculate the journal credits for a chunk of data modification.
4671 *
4672 * This is called from DIO, fallocate or whoever calling
4673 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4674 *
4675 * journal buffers for data blocks are not included here, as DIO
4676 * and fallocate do no need to journal data buffers.
4677 */
4678int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4679{
4680 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4681}
4682
ac27a0ec 4683/*
617ba13b 4684 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4685 * Give this, we know that the caller already has write access to iloc->bh.
4686 */
617ba13b
MC
4687int ext4_mark_iloc_dirty(handle_t *handle,
4688 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4689{
4690 int err = 0;
4691
25ec56b5
JNC
4692 if (test_opt(inode->i_sb, I_VERSION))
4693 inode_inc_iversion(inode);
4694
ac27a0ec
DK
4695 /* the do_update_inode consumes one bh->b_count */
4696 get_bh(iloc->bh);
4697
dab291af 4698 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4699 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4700 put_bh(iloc->bh);
4701 return err;
4702}
4703
4704/*
4705 * On success, We end up with an outstanding reference count against
4706 * iloc->bh. This _must_ be cleaned up later.
4707 */
4708
4709int
617ba13b
MC
4710ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4711 struct ext4_iloc *iloc)
ac27a0ec
DK
4712{
4713 int err = 0;
4714 if (handle) {
617ba13b 4715 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4716 if (!err) {
4717 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4718 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4719 if (err) {
4720 brelse(iloc->bh);
4721 iloc->bh = NULL;
4722 }
4723 }
4724 }
617ba13b 4725 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4726 return err;
4727}
4728
6dd4ee7c
KS
4729/*
4730 * Expand an inode by new_extra_isize bytes.
4731 * Returns 0 on success or negative error number on failure.
4732 */
1d03ec98
AK
4733static int ext4_expand_extra_isize(struct inode *inode,
4734 unsigned int new_extra_isize,
4735 struct ext4_iloc iloc,
4736 handle_t *handle)
6dd4ee7c
KS
4737{
4738 struct ext4_inode *raw_inode;
4739 struct ext4_xattr_ibody_header *header;
4740 struct ext4_xattr_entry *entry;
4741
4742 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743 return 0;
4744
4745 raw_inode = ext4_raw_inode(&iloc);
4746
4747 header = IHDR(inode, raw_inode);
4748 entry = IFIRST(header);
4749
4750 /* No extended attributes present */
4751 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4752 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4753 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4754 new_extra_isize);
4755 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4756 return 0;
4757 }
4758
4759 /* try to expand with EAs present */
4760 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4761 raw_inode, handle);
4762}
4763
ac27a0ec
DK
4764/*
4765 * What we do here is to mark the in-core inode as clean with respect to inode
4766 * dirtiness (it may still be data-dirty).
4767 * This means that the in-core inode may be reaped by prune_icache
4768 * without having to perform any I/O. This is a very good thing,
4769 * because *any* task may call prune_icache - even ones which
4770 * have a transaction open against a different journal.
4771 *
4772 * Is this cheating? Not really. Sure, we haven't written the
4773 * inode out, but prune_icache isn't a user-visible syncing function.
4774 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4775 * we start and wait on commits.
4776 *
4777 * Is this efficient/effective? Well, we're being nice to the system
4778 * by cleaning up our inodes proactively so they can be reaped
4779 * without I/O. But we are potentially leaving up to five seconds'
4780 * worth of inodes floating about which prune_icache wants us to
4781 * write out. One way to fix that would be to get prune_icache()
4782 * to do a write_super() to free up some memory. It has the desired
4783 * effect.
4784 */
617ba13b 4785int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4786{
617ba13b 4787 struct ext4_iloc iloc;
6dd4ee7c
KS
4788 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789 static unsigned int mnt_count;
4790 int err, ret;
ac27a0ec
DK
4791
4792 might_sleep();
617ba13b 4793 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4794 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4795 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4796 /*
4797 * We need extra buffer credits since we may write into EA block
4798 * with this same handle. If journal_extend fails, then it will
4799 * only result in a minor loss of functionality for that inode.
4800 * If this is felt to be critical, then e2fsck should be run to
4801 * force a large enough s_min_extra_isize.
4802 */
4803 if ((jbd2_journal_extend(handle,
4804 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4805 ret = ext4_expand_extra_isize(inode,
4806 sbi->s_want_extra_isize,
4807 iloc, handle);
4808 if (ret) {
4809 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4810 if (mnt_count !=
4811 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4812 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4813 "Unable to expand inode %lu. Delete"
4814 " some EAs or run e2fsck.",
4815 inode->i_ino);
c1bddad9
AK
4816 mnt_count =
4817 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4818 }
4819 }
4820 }
4821 }
ac27a0ec 4822 if (!err)
617ba13b 4823 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4824 return err;
4825}
4826
4827/*
617ba13b 4828 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4829 *
4830 * We're really interested in the case where a file is being extended.
4831 * i_size has been changed by generic_commit_write() and we thus need
4832 * to include the updated inode in the current transaction.
4833 *
4834 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4835 * are allocated to the file.
4836 *
4837 * If the inode is marked synchronous, we don't honour that here - doing
4838 * so would cause a commit on atime updates, which we don't bother doing.
4839 * We handle synchronous inodes at the highest possible level.
4840 */
617ba13b 4841void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4842{
617ba13b 4843 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4844 handle_t *handle;
4845
617ba13b 4846 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4847 if (IS_ERR(handle))
4848 goto out;
4849 if (current_handle &&
4850 current_handle->h_transaction != handle->h_transaction) {
4851 /* This task has a transaction open against a different fs */
4852 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4853 __func__);
ac27a0ec
DK
4854 } else {
4855 jbd_debug(5, "marking dirty. outer handle=%p\n",
4856 current_handle);
617ba13b 4857 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4858 }
617ba13b 4859 ext4_journal_stop(handle);
ac27a0ec
DK
4860out:
4861 return;
4862}
4863
4864#if 0
4865/*
4866 * Bind an inode's backing buffer_head into this transaction, to prevent
4867 * it from being flushed to disk early. Unlike
617ba13b 4868 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4869 * returns no iloc structure, so the caller needs to repeat the iloc
4870 * lookup to mark the inode dirty later.
4871 */
617ba13b 4872static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4873{
617ba13b 4874 struct ext4_iloc iloc;
ac27a0ec
DK
4875
4876 int err = 0;
4877 if (handle) {
617ba13b 4878 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4879 if (!err) {
4880 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4881 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4882 if (!err)
617ba13b 4883 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4884 iloc.bh);
4885 brelse(iloc.bh);
4886 }
4887 }
617ba13b 4888 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4889 return err;
4890}
4891#endif
4892
617ba13b 4893int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4894{
4895 journal_t *journal;
4896 handle_t *handle;
4897 int err;
4898
4899 /*
4900 * We have to be very careful here: changing a data block's
4901 * journaling status dynamically is dangerous. If we write a
4902 * data block to the journal, change the status and then delete
4903 * that block, we risk forgetting to revoke the old log record
4904 * from the journal and so a subsequent replay can corrupt data.
4905 * So, first we make sure that the journal is empty and that
4906 * nobody is changing anything.
4907 */
4908
617ba13b 4909 journal = EXT4_JOURNAL(inode);
d699594d 4910 if (is_journal_aborted(journal))
ac27a0ec
DK
4911 return -EROFS;
4912
dab291af
MC
4913 jbd2_journal_lock_updates(journal);
4914 jbd2_journal_flush(journal);
ac27a0ec
DK
4915
4916 /*
4917 * OK, there are no updates running now, and all cached data is
4918 * synced to disk. We are now in a completely consistent state
4919 * which doesn't have anything in the journal, and we know that
4920 * no filesystem updates are running, so it is safe to modify
4921 * the inode's in-core data-journaling state flag now.
4922 */
4923
4924 if (val)
617ba13b 4925 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4926 else
617ba13b
MC
4927 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4928 ext4_set_aops(inode);
ac27a0ec 4929
dab291af 4930 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4931
4932 /* Finally we can mark the inode as dirty. */
4933
617ba13b 4934 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4935 if (IS_ERR(handle))
4936 return PTR_ERR(handle);
4937
617ba13b 4938 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4939 handle->h_sync = 1;
617ba13b
MC
4940 ext4_journal_stop(handle);
4941 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4942
4943 return err;
4944}
2e9ee850
AK
4945
4946static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4947{
4948 return !buffer_mapped(bh);
4949}
4950
4951int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4952{
4953 loff_t size;
4954 unsigned long len;
4955 int ret = -EINVAL;
79f0be8d 4956 void *fsdata;
2e9ee850
AK
4957 struct file *file = vma->vm_file;
4958 struct inode *inode = file->f_path.dentry->d_inode;
4959 struct address_space *mapping = inode->i_mapping;
4960
4961 /*
4962 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4963 * get i_mutex because we are already holding mmap_sem.
4964 */
4965 down_read(&inode->i_alloc_sem);
4966 size = i_size_read(inode);
4967 if (page->mapping != mapping || size <= page_offset(page)
4968 || !PageUptodate(page)) {
4969 /* page got truncated from under us? */
4970 goto out_unlock;
4971 }
4972 ret = 0;
4973 if (PageMappedToDisk(page))
4974 goto out_unlock;
4975
4976 if (page->index == size >> PAGE_CACHE_SHIFT)
4977 len = size & ~PAGE_CACHE_MASK;
4978 else
4979 len = PAGE_CACHE_SIZE;
4980
4981 if (page_has_buffers(page)) {
4982 /* return if we have all the buffers mapped */
4983 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4984 ext4_bh_unmapped))
4985 goto out_unlock;
4986 }
4987 /*
4988 * OK, we need to fill the hole... Do write_begin write_end
4989 * to do block allocation/reservation.We are not holding
4990 * inode.i__mutex here. That allow * parallel write_begin,
4991 * write_end call. lock_page prevent this from happening
4992 * on the same page though
4993 */
4994 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 4995 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
4996 if (ret < 0)
4997 goto out_unlock;
4998 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 4999 len, len, page, fsdata);
2e9ee850
AK
5000 if (ret < 0)
5001 goto out_unlock;
5002 ret = 0;
5003out_unlock:
5004 up_read(&inode->i_alloc_sem);
5005 return ret;
5006}