ext4: rename and improbe ext4_es_find_extent()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
137static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
617ba13b 146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
2581fdc8
JZ
188 ext4_ioend_wait(inode);
189
0930fcc1 190 if (inode->i_nlink) {
2d859db3
JK
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_log_start_commit(journal, commit_tid);
215 jbd2_log_wait_commit(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
0930fcc1
AV
218 truncate_inode_pages(&inode->i_data, 0);
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
227 truncate_inode_pages(&inode->i_data, 0);
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
12219aea
AK
321/*
322 * Calculate the number of metadata blocks need to reserve
9d0be502 323 * to allocate a block located at @lblock
12219aea 324 */
01f49d0b 325static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 326{
12e9b892 327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 328 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 329
8bb2b247 330 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
331}
332
0637c6f4
TT
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
5f634d06
AK
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
12219aea
AK
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 341 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
342
343 spin_lock(&ei->i_block_reservation_lock);
d8990240 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 345 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 347 "with only %d reserved data blocks",
0637c6f4
TT
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
12219aea 353
97795d2a 354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
97795d2a
BF
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 }
364
0637c6f4
TT
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
0637c6f4 367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 369 used + ei->i_allocated_meta_blocks);
0637c6f4 370 ei->i_allocated_meta_blocks = 0;
6bc6e63f 371
0637c6f4
TT
372 if (ei->i_reserved_data_blocks == 0) {
373 /*
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
377 */
57042651 378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 379 ei->i_reserved_meta_blocks);
ee5f4d9c 380 ei->i_reserved_meta_blocks = 0;
9d0be502 381 ei->i_da_metadata_calc_len = 0;
6bc6e63f 382 }
12219aea 383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 384
72b8ab9d
ES
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
7b415bf6 387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 388 else {
5f634d06
AK
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
72b8ab9d 392 * not re-claim the quota for fallocated blocks.
5f634d06 393 */
7b415bf6 394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 395 }
d6014301
AK
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
0637c6f4
TT
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
d6014301 404 ext4_discard_preallocations(inode);
12219aea
AK
405}
406
e29136f8 407static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
408 unsigned int line,
409 struct ext4_map_blocks *map)
6fd058f7 410{
24676da4
TT
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
c398eda0
TT
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
6fd058f7
TT
417 return -EIO;
418 }
419 return 0;
420}
421
e29136f8 422#define check_block_validity(inode, map) \
c398eda0 423 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 424
55138e0b 425/*
1f94533d
TT
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
55138e0b
TT
428 */
429static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
431{
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
437
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
451
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
460 }
1f94533d
TT
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
469 }
55138e0b
TT
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
659c6009
ES
475 if (num >= max_pages) {
476 done = 1;
55138e0b 477 break;
659c6009 478 }
55138e0b
TT
479 }
480 pagevec_release(&pvec);
481 }
482 return num;
483}
484
f5ab0d1f 485/*
e35fd660 486 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 487 * and returns if the blocks are already mapped.
f5ab0d1f 488 *
f5ab0d1f
MC
489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490 * and store the allocated blocks in the result buffer head and mark it
491 * mapped.
492 *
e35fd660
TT
493 * If file type is extents based, it will call ext4_ext_map_blocks(),
494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
495 * based files
496 *
497 * On success, it returns the number of blocks being mapped or allocate.
498 * if create==0 and the blocks are pre-allocated and uninitialized block,
499 * the result buffer head is unmapped. If the create ==1, it will make sure
500 * the buffer head is mapped.
501 *
502 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 503 * that case, buffer head is unmapped
f5ab0d1f
MC
504 *
505 * It returns the error in case of allocation failure.
506 */
e35fd660
TT
507int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
509{
510 int retval;
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
4df3d265 516 /*
b920c755
TT
517 * Try to see if we can get the block without requesting a new
518 * file system block.
4df3d265 519 */
729f52c6
ZL
520 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 522 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
523 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 525 } else {
a4e5d88b
DM
526 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 528 }
729f52c6
ZL
529 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
530 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 531
e35fd660 532 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
533 int ret;
534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
535 /* delayed alloc may be allocated by fallocate and
536 * coverted to initialized by directIO.
537 * we need to handle delayed extent here.
538 */
539 down_write((&EXT4_I(inode)->i_data_sem));
540 goto delayed_mapped;
541 }
542 ret = check_block_validity(inode, map);
6fd058f7
TT
543 if (ret != 0)
544 return ret;
545 }
546
f5ab0d1f 547 /* If it is only a block(s) look up */
c2177057 548 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
549 return retval;
550
551 /*
552 * Returns if the blocks have already allocated
553 *
554 * Note that if blocks have been preallocated
df3ab170 555 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
556 * with buffer head unmapped.
557 */
e35fd660 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
559 return retval;
560
2a8964d6
AK
561 /*
562 * When we call get_blocks without the create flag, the
563 * BH_Unwritten flag could have gotten set if the blocks
564 * requested were part of a uninitialized extent. We need to
565 * clear this flag now that we are committed to convert all or
566 * part of the uninitialized extent to be an initialized
567 * extent. This is because we need to avoid the combination
568 * of BH_Unwritten and BH_Mapped flags being simultaneously
569 * set on the buffer_head.
570 */
e35fd660 571 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 572
4df3d265 573 /*
f5ab0d1f
MC
574 * New blocks allocate and/or writing to uninitialized extent
575 * will possibly result in updating i_data, so we take
576 * the write lock of i_data_sem, and call get_blocks()
577 * with create == 1 flag.
4df3d265
AK
578 */
579 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
580
581 /*
582 * if the caller is from delayed allocation writeout path
583 * we have already reserved fs blocks for allocation
584 * let the underlying get_block() function know to
585 * avoid double accounting
586 */
c2177057 587 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 588 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
589 /*
590 * We need to check for EXT4 here because migrate
591 * could have changed the inode type in between
592 */
12e9b892 593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 594 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 595 } else {
e35fd660 596 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 597
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
599 /*
600 * We allocated new blocks which will result in
601 * i_data's format changing. Force the migrate
602 * to fail by clearing migrate flags
603 */
19f5fb7a 604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 605 }
d2a17637 606
5f634d06
AK
607 /*
608 * Update reserved blocks/metadata blocks after successful
609 * block allocation which had been deferred till now. We don't
610 * support fallocate for non extent files. So we can update
611 * reserve space here.
612 */
613 if ((retval > 0) &&
1296cc85 614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
615 ext4_da_update_reserve_space(inode, retval, 1);
616 }
5356f261 617 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 618 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 619
51865fda
ZL
620 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
621 int ret;
51865fda
ZL
622delayed_mapped:
623 /* delayed allocation blocks has been allocated */
624 ret = ext4_es_remove_extent(inode, map->m_lblk,
625 map->m_len);
626 if (ret < 0)
627 retval = ret;
628 }
5356f261
AK
629 }
630
4df3d265 631 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 632 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 633 int ret = check_block_validity(inode, map);
6fd058f7
TT
634 if (ret != 0)
635 return ret;
636 }
0e855ac8
AK
637 return retval;
638}
639
f3bd1f3f
MC
640/* Maximum number of blocks we map for direct IO at once. */
641#define DIO_MAX_BLOCKS 4096
642
2ed88685
TT
643static int _ext4_get_block(struct inode *inode, sector_t iblock,
644 struct buffer_head *bh, int flags)
ac27a0ec 645{
3e4fdaf8 646 handle_t *handle = ext4_journal_current_handle();
2ed88685 647 struct ext4_map_blocks map;
7fb5409d 648 int ret = 0, started = 0;
f3bd1f3f 649 int dio_credits;
ac27a0ec 650
46c7f254
TM
651 if (ext4_has_inline_data(inode))
652 return -ERANGE;
653
2ed88685
TT
654 map.m_lblk = iblock;
655 map.m_len = bh->b_size >> inode->i_blkbits;
656
8b0f165f 657 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 658 /* Direct IO write... */
2ed88685
TT
659 if (map.m_len > DIO_MAX_BLOCKS)
660 map.m_len = DIO_MAX_BLOCKS;
661 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
662 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
663 dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
0f70b406
TT
710 if (create && err == 0)
711 err = -ENOSPC; /* should never happen */
2ed88685
TT
712 if (err < 0)
713 *errp = err;
714 if (err <= 0)
715 return NULL;
2ed88685
TT
716
717 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 718 if (unlikely(!bh)) {
860d21e2 719 *errp = -ENOMEM;
2ed88685 720 return NULL;
ac27a0ec 721 }
2ed88685
TT
722 if (map.m_flags & EXT4_MAP_NEW) {
723 J_ASSERT(create != 0);
724 J_ASSERT(handle != NULL);
ac27a0ec 725
2ed88685
TT
726 /*
727 * Now that we do not always journal data, we should
728 * keep in mind whether this should always journal the
729 * new buffer as metadata. For now, regular file
730 * writes use ext4_get_block instead, so it's not a
731 * problem.
732 */
733 lock_buffer(bh);
734 BUFFER_TRACE(bh, "call get_create_access");
735 fatal = ext4_journal_get_create_access(handle, bh);
736 if (!fatal && !buffer_uptodate(bh)) {
737 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
738 set_buffer_uptodate(bh);
ac27a0ec 739 }
2ed88685
TT
740 unlock_buffer(bh);
741 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
742 err = ext4_handle_dirty_metadata(handle, inode, bh);
743 if (!fatal)
744 fatal = err;
745 } else {
746 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 747 }
2ed88685
TT
748 if (fatal) {
749 *errp = fatal;
750 brelse(bh);
751 bh = NULL;
752 }
753 return bh;
ac27a0ec
DK
754}
755
617ba13b 756struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 757 ext4_lblk_t block, int create, int *err)
ac27a0ec 758{
af5bc92d 759 struct buffer_head *bh;
ac27a0ec 760
617ba13b 761 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
762 if (!bh)
763 return bh;
764 if (buffer_uptodate(bh))
765 return bh;
65299a3b 766 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
767 wait_on_buffer(bh);
768 if (buffer_uptodate(bh))
769 return bh;
770 put_bh(bh);
771 *err = -EIO;
772 return NULL;
773}
774
f19d5870
TM
775int ext4_walk_page_buffers(handle_t *handle,
776 struct buffer_head *head,
777 unsigned from,
778 unsigned to,
779 int *partial,
780 int (*fn)(handle_t *handle,
781 struct buffer_head *bh))
ac27a0ec
DK
782{
783 struct buffer_head *bh;
784 unsigned block_start, block_end;
785 unsigned blocksize = head->b_size;
786 int err, ret = 0;
787 struct buffer_head *next;
788
af5bc92d
TT
789 for (bh = head, block_start = 0;
790 ret == 0 && (bh != head || !block_start);
de9a55b8 791 block_start = block_end, bh = next) {
ac27a0ec
DK
792 next = bh->b_this_page;
793 block_end = block_start + blocksize;
794 if (block_end <= from || block_start >= to) {
795 if (partial && !buffer_uptodate(bh))
796 *partial = 1;
797 continue;
798 }
799 err = (*fn)(handle, bh);
800 if (!ret)
801 ret = err;
802 }
803 return ret;
804}
805
806/*
807 * To preserve ordering, it is essential that the hole instantiation and
808 * the data write be encapsulated in a single transaction. We cannot
617ba13b 809 * close off a transaction and start a new one between the ext4_get_block()
dab291af 810 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
811 * prepare_write() is the right place.
812 *
36ade451
JK
813 * Also, this function can nest inside ext4_writepage(). In that case, we
814 * *know* that ext4_writepage() has generated enough buffer credits to do the
815 * whole page. So we won't block on the journal in that case, which is good,
816 * because the caller may be PF_MEMALLOC.
ac27a0ec 817 *
617ba13b 818 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
819 * quota file writes. If we were to commit the transaction while thus
820 * reentered, there can be a deadlock - we would be holding a quota
821 * lock, and the commit would never complete if another thread had a
822 * transaction open and was blocking on the quota lock - a ranking
823 * violation.
824 *
dab291af 825 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
826 * will _not_ run commit under these circumstances because handle->h_ref
827 * is elevated. We'll still have enough credits for the tiny quotafile
828 * write.
829 */
f19d5870
TM
830int do_journal_get_write_access(handle_t *handle,
831 struct buffer_head *bh)
ac27a0ec 832{
56d35a4c
JK
833 int dirty = buffer_dirty(bh);
834 int ret;
835
ac27a0ec
DK
836 if (!buffer_mapped(bh) || buffer_freed(bh))
837 return 0;
56d35a4c 838 /*
ebdec241 839 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
840 * the dirty bit as jbd2_journal_get_write_access() could complain
841 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 842 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
843 * the bit before releasing a page lock and thus writeback cannot
844 * ever write the buffer.
845 */
846 if (dirty)
847 clear_buffer_dirty(bh);
848 ret = ext4_journal_get_write_access(handle, bh);
849 if (!ret && dirty)
850 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
851 return ret;
ac27a0ec
DK
852}
853
8b0f165f
AP
854static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
855 struct buffer_head *bh_result, int create);
bfc1af65 856static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
857 loff_t pos, unsigned len, unsigned flags,
858 struct page **pagep, void **fsdata)
ac27a0ec 859{
af5bc92d 860 struct inode *inode = mapping->host;
1938a150 861 int ret, needed_blocks;
ac27a0ec
DK
862 handle_t *handle;
863 int retries = 0;
af5bc92d 864 struct page *page;
de9a55b8 865 pgoff_t index;
af5bc92d 866 unsigned from, to;
bfc1af65 867
9bffad1e 868 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
869 /*
870 * Reserve one block more for addition to orphan list in case
871 * we allocate blocks but write fails for some reason
872 */
873 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 874 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
875 from = pos & (PAGE_CACHE_SIZE - 1);
876 to = from + len;
ac27a0ec 877
f19d5870
TM
878 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
879 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
880 flags, pagep);
881 if (ret < 0)
47564bfb
TT
882 return ret;
883 if (ret == 1)
884 return 0;
f19d5870
TM
885 }
886
47564bfb
TT
887 /*
888 * grab_cache_page_write_begin() can take a long time if the
889 * system is thrashing due to memory pressure, or if the page
890 * is being written back. So grab it first before we start
891 * the transaction handle. This also allows us to allocate
892 * the page (if needed) without using GFP_NOFS.
893 */
894retry_grab:
895 page = grab_cache_page_write_begin(mapping, index, flags);
896 if (!page)
897 return -ENOMEM;
898 unlock_page(page);
899
900retry_journal:
9924a92a 901 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 902 if (IS_ERR(handle)) {
47564bfb
TT
903 page_cache_release(page);
904 return PTR_ERR(handle);
7479d2b9 905 }
ac27a0ec 906
47564bfb
TT
907 lock_page(page);
908 if (page->mapping != mapping) {
909 /* The page got truncated from under us */
910 unlock_page(page);
911 page_cache_release(page);
cf108bca 912 ext4_journal_stop(handle);
47564bfb 913 goto retry_grab;
cf108bca 914 }
47564bfb 915 wait_on_page_writeback(page);
cf108bca 916
744692dc 917 if (ext4_should_dioread_nolock(inode))
6e1db88d 918 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 919 else
6e1db88d 920 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
921
922 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
923 ret = ext4_walk_page_buffers(handle, page_buffers(page),
924 from, to, NULL,
925 do_journal_get_write_access);
ac27a0ec 926 }
bfc1af65
NP
927
928 if (ret) {
af5bc92d 929 unlock_page(page);
ae4d5372 930 /*
6e1db88d 931 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
932 * outside i_size. Trim these off again. Don't need
933 * i_size_read because we hold i_mutex.
1938a150
AK
934 *
935 * Add inode to orphan list in case we crash before
936 * truncate finishes
ae4d5372 937 */
ffacfa7a 938 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
939 ext4_orphan_add(handle, inode);
940
941 ext4_journal_stop(handle);
942 if (pos + len > inode->i_size) {
b9a4207d 943 ext4_truncate_failed_write(inode);
de9a55b8 944 /*
ffacfa7a 945 * If truncate failed early the inode might
1938a150
AK
946 * still be on the orphan list; we need to
947 * make sure the inode is removed from the
948 * orphan list in that case.
949 */
950 if (inode->i_nlink)
951 ext4_orphan_del(NULL, inode);
952 }
bfc1af65 953
47564bfb
TT
954 if (ret == -ENOSPC &&
955 ext4_should_retry_alloc(inode->i_sb, &retries))
956 goto retry_journal;
957 page_cache_release(page);
958 return ret;
959 }
960 *pagep = page;
ac27a0ec
DK
961 return ret;
962}
963
bfc1af65
NP
964/* For write_end() in data=journal mode */
965static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
966{
967 if (!buffer_mapped(bh) || buffer_freed(bh))
968 return 0;
969 set_buffer_uptodate(bh);
0390131b 970 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
971}
972
f8514083 973static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
f8514083
AK
977{
978 int i_size_changed = 0;
979 struct inode *inode = mapping->host;
980 handle_t *handle = ext4_journal_current_handle();
981
f19d5870
TM
982 if (ext4_has_inline_data(inode))
983 copied = ext4_write_inline_data_end(inode, pos, len,
984 copied, page);
985 else
986 copied = block_write_end(file, mapping, pos,
987 len, copied, page, fsdata);
f8514083
AK
988
989 /*
990 * No need to use i_size_read() here, the i_size
991 * cannot change under us because we hold i_mutex.
992 *
993 * But it's important to update i_size while still holding page lock:
994 * page writeout could otherwise come in and zero beyond i_size.
995 */
996 if (pos + copied > inode->i_size) {
997 i_size_write(inode, pos + copied);
998 i_size_changed = 1;
999 }
1000
1001 if (pos + copied > EXT4_I(inode)->i_disksize) {
1002 /* We need to mark inode dirty even if
1003 * new_i_size is less that inode->i_size
1004 * bu greater than i_disksize.(hint delalloc)
1005 */
1006 ext4_update_i_disksize(inode, (pos + copied));
1007 i_size_changed = 1;
1008 }
1009 unlock_page(page);
1010 page_cache_release(page);
1011
1012 /*
1013 * Don't mark the inode dirty under page lock. First, it unnecessarily
1014 * makes the holding time of page lock longer. Second, it forces lock
1015 * ordering of page lock and transaction start for journaling
1016 * filesystems.
1017 */
1018 if (i_size_changed)
1019 ext4_mark_inode_dirty(handle, inode);
1020
1021 return copied;
1022}
1023
ac27a0ec
DK
1024/*
1025 * We need to pick up the new inode size which generic_commit_write gave us
1026 * `file' can be NULL - eg, when called from page_symlink().
1027 *
617ba13b 1028 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1029 * buffers are managed internally.
1030 */
bfc1af65 1031static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1032 struct address_space *mapping,
1033 loff_t pos, unsigned len, unsigned copied,
1034 struct page *page, void *fsdata)
ac27a0ec 1035{
617ba13b 1036 handle_t *handle = ext4_journal_current_handle();
cf108bca 1037 struct inode *inode = mapping->host;
ac27a0ec
DK
1038 int ret = 0, ret2;
1039
9bffad1e 1040 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1041 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1042
1043 if (ret == 0) {
f8514083 1044 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1045 page, fsdata);
f8a87d89 1046 copied = ret2;
ffacfa7a 1047 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1048 /* if we have allocated more blocks and copied
1049 * less. We will have blocks allocated outside
1050 * inode->i_size. So truncate them
1051 */
1052 ext4_orphan_add(handle, inode);
f8a87d89
RK
1053 if (ret2 < 0)
1054 ret = ret2;
09e0834f
AF
1055 } else {
1056 unlock_page(page);
1057 page_cache_release(page);
ac27a0ec 1058 }
09e0834f 1059
617ba13b 1060 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1061 if (!ret)
1062 ret = ret2;
bfc1af65 1063
f8514083 1064 if (pos + len > inode->i_size) {
b9a4207d 1065 ext4_truncate_failed_write(inode);
de9a55b8 1066 /*
ffacfa7a 1067 * If truncate failed early the inode might still be
f8514083
AK
1068 * on the orphan list; we need to make sure the inode
1069 * is removed from the orphan list in that case.
1070 */
1071 if (inode->i_nlink)
1072 ext4_orphan_del(NULL, inode);
1073 }
1074
1075
bfc1af65 1076 return ret ? ret : copied;
ac27a0ec
DK
1077}
1078
bfc1af65 1079static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1080 struct address_space *mapping,
1081 loff_t pos, unsigned len, unsigned copied,
1082 struct page *page, void *fsdata)
ac27a0ec 1083{
617ba13b 1084 handle_t *handle = ext4_journal_current_handle();
cf108bca 1085 struct inode *inode = mapping->host;
ac27a0ec 1086 int ret = 0, ret2;
ac27a0ec 1087
9bffad1e 1088 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1089 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1090 page, fsdata);
f8a87d89 1091 copied = ret2;
ffacfa7a 1092 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1093 /* if we have allocated more blocks and copied
1094 * less. We will have blocks allocated outside
1095 * inode->i_size. So truncate them
1096 */
1097 ext4_orphan_add(handle, inode);
1098
f8a87d89
RK
1099 if (ret2 < 0)
1100 ret = ret2;
ac27a0ec 1101
617ba13b 1102 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1103 if (!ret)
1104 ret = ret2;
bfc1af65 1105
f8514083 1106 if (pos + len > inode->i_size) {
b9a4207d 1107 ext4_truncate_failed_write(inode);
de9a55b8 1108 /*
ffacfa7a 1109 * If truncate failed early the inode might still be
f8514083
AK
1110 * on the orphan list; we need to make sure the inode
1111 * is removed from the orphan list in that case.
1112 */
1113 if (inode->i_nlink)
1114 ext4_orphan_del(NULL, inode);
1115 }
1116
bfc1af65 1117 return ret ? ret : copied;
ac27a0ec
DK
1118}
1119
bfc1af65 1120static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1121 struct address_space *mapping,
1122 loff_t pos, unsigned len, unsigned copied,
1123 struct page *page, void *fsdata)
ac27a0ec 1124{
617ba13b 1125 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1126 struct inode *inode = mapping->host;
ac27a0ec
DK
1127 int ret = 0, ret2;
1128 int partial = 0;
bfc1af65 1129 unsigned from, to;
cf17fea6 1130 loff_t new_i_size;
ac27a0ec 1131
9bffad1e 1132 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1133 from = pos & (PAGE_CACHE_SIZE - 1);
1134 to = from + len;
1135
441c8508
CW
1136 BUG_ON(!ext4_handle_valid(handle));
1137
3fdcfb66
TM
1138 if (ext4_has_inline_data(inode))
1139 copied = ext4_write_inline_data_end(inode, pos, len,
1140 copied, page);
1141 else {
1142 if (copied < len) {
1143 if (!PageUptodate(page))
1144 copied = 0;
1145 page_zero_new_buffers(page, from+copied, to);
1146 }
ac27a0ec 1147
3fdcfb66
TM
1148 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1149 to, &partial, write_end_fn);
1150 if (!partial)
1151 SetPageUptodate(page);
1152 }
cf17fea6
AK
1153 new_i_size = pos + copied;
1154 if (new_i_size > inode->i_size)
bfc1af65 1155 i_size_write(inode, pos+copied);
19f5fb7a 1156 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1157 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1158 if (new_i_size > EXT4_I(inode)->i_disksize) {
1159 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1160 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1161 if (!ret)
1162 ret = ret2;
1163 }
bfc1af65 1164
cf108bca 1165 unlock_page(page);
f8514083 1166 page_cache_release(page);
ffacfa7a 1167 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1168 /* if we have allocated more blocks and copied
1169 * less. We will have blocks allocated outside
1170 * inode->i_size. So truncate them
1171 */
1172 ext4_orphan_add(handle, inode);
1173
617ba13b 1174 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1175 if (!ret)
1176 ret = ret2;
f8514083 1177 if (pos + len > inode->i_size) {
b9a4207d 1178 ext4_truncate_failed_write(inode);
de9a55b8 1179 /*
ffacfa7a 1180 * If truncate failed early the inode might still be
f8514083
AK
1181 * on the orphan list; we need to make sure the inode
1182 * is removed from the orphan list in that case.
1183 */
1184 if (inode->i_nlink)
1185 ext4_orphan_del(NULL, inode);
1186 }
bfc1af65
NP
1187
1188 return ret ? ret : copied;
ac27a0ec 1189}
d2a17637 1190
9d0be502 1191/*
7b415bf6 1192 * Reserve a single cluster located at lblock
9d0be502 1193 */
01f49d0b 1194static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1195{
030ba6bc 1196 int retries = 0;
60e58e0f 1197 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1198 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1199 unsigned int md_needed;
5dd4056d 1200 int ret;
03179fe9
TT
1201 ext4_lblk_t save_last_lblock;
1202 int save_len;
1203
1204 /*
1205 * We will charge metadata quota at writeout time; this saves
1206 * us from metadata over-estimation, though we may go over by
1207 * a small amount in the end. Here we just reserve for data.
1208 */
1209 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1210 if (ret)
1211 return ret;
d2a17637
MC
1212
1213 /*
1214 * recalculate the amount of metadata blocks to reserve
1215 * in order to allocate nrblocks
1216 * worse case is one extent per block
1217 */
030ba6bc 1218repeat:
0637c6f4 1219 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1220 /*
1221 * ext4_calc_metadata_amount() has side effects, which we have
1222 * to be prepared undo if we fail to claim space.
1223 */
1224 save_len = ei->i_da_metadata_calc_len;
1225 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1226 md_needed = EXT4_NUM_B2C(sbi,
1227 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1228 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1229
72b8ab9d
ES
1230 /*
1231 * We do still charge estimated metadata to the sb though;
1232 * we cannot afford to run out of free blocks.
1233 */
e7d5f315 1234 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1235 ei->i_da_metadata_calc_len = save_len;
1236 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1237 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1238 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1239 yield();
1240 goto repeat;
1241 }
03179fe9 1242 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1243 return -ENOSPC;
1244 }
9d0be502 1245 ei->i_reserved_data_blocks++;
0637c6f4
TT
1246 ei->i_reserved_meta_blocks += md_needed;
1247 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1248
d2a17637
MC
1249 return 0; /* success */
1250}
1251
12219aea 1252static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1253{
1254 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1255 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1256
cd213226
MC
1257 if (!to_free)
1258 return; /* Nothing to release, exit */
1259
d2a17637 1260 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1261
5a58ec87 1262 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1263 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1264 /*
0637c6f4
TT
1265 * if there aren't enough reserved blocks, then the
1266 * counter is messed up somewhere. Since this
1267 * function is called from invalidate page, it's
1268 * harmless to return without any action.
cd213226 1269 */
8de5c325 1270 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1271 "ino %lu, to_free %d with only %d reserved "
1084f252 1272 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1273 ei->i_reserved_data_blocks);
1274 WARN_ON(1);
1275 to_free = ei->i_reserved_data_blocks;
cd213226 1276 }
0637c6f4 1277 ei->i_reserved_data_blocks -= to_free;
cd213226 1278
0637c6f4
TT
1279 if (ei->i_reserved_data_blocks == 0) {
1280 /*
1281 * We can release all of the reserved metadata blocks
1282 * only when we have written all of the delayed
1283 * allocation blocks.
7b415bf6
AK
1284 * Note that in case of bigalloc, i_reserved_meta_blocks,
1285 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1286 */
57042651 1287 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1288 ei->i_reserved_meta_blocks);
ee5f4d9c 1289 ei->i_reserved_meta_blocks = 0;
9d0be502 1290 ei->i_da_metadata_calc_len = 0;
0637c6f4 1291 }
d2a17637 1292
72b8ab9d 1293 /* update fs dirty data blocks counter */
57042651 1294 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1295
d2a17637 1296 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1297
7b415bf6 1298 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1299}
1300
1301static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1302 unsigned long offset)
d2a17637
MC
1303{
1304 int to_release = 0;
1305 struct buffer_head *head, *bh;
1306 unsigned int curr_off = 0;
7b415bf6
AK
1307 struct inode *inode = page->mapping->host;
1308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309 int num_clusters;
51865fda 1310 ext4_fsblk_t lblk;
d2a17637
MC
1311
1312 head = page_buffers(page);
1313 bh = head;
1314 do {
1315 unsigned int next_off = curr_off + bh->b_size;
1316
1317 if ((offset <= curr_off) && (buffer_delay(bh))) {
1318 to_release++;
1319 clear_buffer_delay(bh);
1320 }
1321 curr_off = next_off;
1322 } while ((bh = bh->b_this_page) != head);
7b415bf6 1323
51865fda
ZL
1324 if (to_release) {
1325 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1326 ext4_es_remove_extent(inode, lblk, to_release);
1327 }
1328
7b415bf6
AK
1329 /* If we have released all the blocks belonging to a cluster, then we
1330 * need to release the reserved space for that cluster. */
1331 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1332 while (num_clusters > 0) {
7b415bf6
AK
1333 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1334 ((num_clusters - 1) << sbi->s_cluster_bits);
1335 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1336 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1337 ext4_da_release_space(inode, 1);
1338
1339 num_clusters--;
1340 }
d2a17637 1341}
ac27a0ec 1342
64769240
AT
1343/*
1344 * Delayed allocation stuff
1345 */
1346
64769240
AT
1347/*
1348 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1349 * them with writepage() call back
64769240
AT
1350 *
1351 * @mpd->inode: inode
1352 * @mpd->first_page: first page of the extent
1353 * @mpd->next_page: page after the last page of the extent
64769240
AT
1354 *
1355 * By the time mpage_da_submit_io() is called we expect all blocks
1356 * to be allocated. this may be wrong if allocation failed.
1357 *
1358 * As pages are already locked by write_cache_pages(), we can't use it
1359 */
1de3e3df
TT
1360static int mpage_da_submit_io(struct mpage_da_data *mpd,
1361 struct ext4_map_blocks *map)
64769240 1362{
791b7f08
AK
1363 struct pagevec pvec;
1364 unsigned long index, end;
1365 int ret = 0, err, nr_pages, i;
1366 struct inode *inode = mpd->inode;
1367 struct address_space *mapping = inode->i_mapping;
cb20d518 1368 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1369 unsigned int len, block_start;
1370 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1371 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1372 struct ext4_io_submit io_submit;
64769240
AT
1373
1374 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1375 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1376 /*
1377 * We need to start from the first_page to the next_page - 1
1378 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1379 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1380 * at the currently mapped buffer_heads.
1381 */
64769240
AT
1382 index = mpd->first_page;
1383 end = mpd->next_page - 1;
1384
791b7f08 1385 pagevec_init(&pvec, 0);
64769240 1386 while (index <= end) {
791b7f08 1387 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1388 if (nr_pages == 0)
1389 break;
1390 for (i = 0; i < nr_pages; i++) {
f8bec370 1391 int skip_page = 0;
64769240
AT
1392 struct page *page = pvec.pages[i];
1393
791b7f08
AK
1394 index = page->index;
1395 if (index > end)
1396 break;
cb20d518
TT
1397
1398 if (index == size >> PAGE_CACHE_SHIFT)
1399 len = size & ~PAGE_CACHE_MASK;
1400 else
1401 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1402 if (map) {
1403 cur_logical = index << (PAGE_CACHE_SHIFT -
1404 inode->i_blkbits);
1405 pblock = map->m_pblk + (cur_logical -
1406 map->m_lblk);
1407 }
791b7f08
AK
1408 index++;
1409
1410 BUG_ON(!PageLocked(page));
1411 BUG_ON(PageWriteback(page));
1412
3ecdb3a1
TT
1413 bh = page_bufs = page_buffers(page);
1414 block_start = 0;
64769240 1415 do {
1de3e3df
TT
1416 if (map && (cur_logical >= map->m_lblk) &&
1417 (cur_logical <= (map->m_lblk +
1418 (map->m_len - 1)))) {
29fa89d0
AK
1419 if (buffer_delay(bh)) {
1420 clear_buffer_delay(bh);
1421 bh->b_blocknr = pblock;
29fa89d0 1422 }
1de3e3df
TT
1423 if (buffer_unwritten(bh) ||
1424 buffer_mapped(bh))
1425 BUG_ON(bh->b_blocknr != pblock);
1426 if (map->m_flags & EXT4_MAP_UNINIT)
1427 set_buffer_uninit(bh);
1428 clear_buffer_unwritten(bh);
1429 }
29fa89d0 1430
13a79a47
YY
1431 /*
1432 * skip page if block allocation undone and
1433 * block is dirty
1434 */
1435 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1436 skip_page = 1;
3ecdb3a1
TT
1437 bh = bh->b_this_page;
1438 block_start += bh->b_size;
64769240
AT
1439 cur_logical++;
1440 pblock++;
1de3e3df
TT
1441 } while (bh != page_bufs);
1442
f8bec370
JK
1443 if (skip_page) {
1444 unlock_page(page);
1445 continue;
1446 }
cb20d518 1447
97498956 1448 clear_page_dirty_for_io(page);
fe089c77
JK
1449 err = ext4_bio_write_page(&io_submit, page, len,
1450 mpd->wbc);
cb20d518 1451 if (!err)
a1d6cc56 1452 mpd->pages_written++;
64769240
AT
1453 /*
1454 * In error case, we have to continue because
1455 * remaining pages are still locked
64769240
AT
1456 */
1457 if (ret == 0)
1458 ret = err;
64769240
AT
1459 }
1460 pagevec_release(&pvec);
1461 }
bd2d0210 1462 ext4_io_submit(&io_submit);
64769240 1463 return ret;
64769240
AT
1464}
1465
c7f5938a 1466static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1467{
1468 int nr_pages, i;
1469 pgoff_t index, end;
1470 struct pagevec pvec;
1471 struct inode *inode = mpd->inode;
1472 struct address_space *mapping = inode->i_mapping;
51865fda 1473 ext4_lblk_t start, last;
c4a0c46e 1474
c7f5938a
CW
1475 index = mpd->first_page;
1476 end = mpd->next_page - 1;
51865fda
ZL
1477
1478 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1479 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1480 ext4_es_remove_extent(inode, start, last - start + 1);
1481
66bea92c 1482 pagevec_init(&pvec, 0);
c4a0c46e
AK
1483 while (index <= end) {
1484 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1485 if (nr_pages == 0)
1486 break;
1487 for (i = 0; i < nr_pages; i++) {
1488 struct page *page = pvec.pages[i];
9b1d0998 1489 if (page->index > end)
c4a0c46e 1490 break;
c4a0c46e
AK
1491 BUG_ON(!PageLocked(page));
1492 BUG_ON(PageWriteback(page));
1493 block_invalidatepage(page, 0);
1494 ClearPageUptodate(page);
1495 unlock_page(page);
1496 }
9b1d0998
JK
1497 index = pvec.pages[nr_pages - 1]->index + 1;
1498 pagevec_release(&pvec);
c4a0c46e
AK
1499 }
1500 return;
1501}
1502
df22291f
AK
1503static void ext4_print_free_blocks(struct inode *inode)
1504{
1505 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1506 struct super_block *sb = inode->i_sb;
1507
1508 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1509 EXT4_C2B(EXT4_SB(inode->i_sb),
1510 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1511 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1512 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1513 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1514 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1515 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1516 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1517 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1518 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1519 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1520 EXT4_I(inode)->i_reserved_data_blocks);
1521 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1522 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1523 return;
1524}
1525
64769240 1526/*
5a87b7a5
TT
1527 * mpage_da_map_and_submit - go through given space, map them
1528 * if necessary, and then submit them for I/O
64769240 1529 *
8dc207c0 1530 * @mpd - bh describing space
64769240
AT
1531 *
1532 * The function skips space we know is already mapped to disk blocks.
1533 *
64769240 1534 */
5a87b7a5 1535static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1536{
2ac3b6e0 1537 int err, blks, get_blocks_flags;
1de3e3df 1538 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1539 sector_t next = mpd->b_blocknr;
1540 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1541 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1542 handle_t *handle = NULL;
64769240
AT
1543
1544 /*
5a87b7a5
TT
1545 * If the blocks are mapped already, or we couldn't accumulate
1546 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1547 */
5a87b7a5
TT
1548 if ((mpd->b_size == 0) ||
1549 ((mpd->b_state & (1 << BH_Mapped)) &&
1550 !(mpd->b_state & (1 << BH_Delay)) &&
1551 !(mpd->b_state & (1 << BH_Unwritten))))
1552 goto submit_io;
2fa3cdfb
TT
1553
1554 handle = ext4_journal_current_handle();
1555 BUG_ON(!handle);
1556
79ffab34 1557 /*
79e83036 1558 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1559 * blocks, or to convert an uninitialized extent to be
1560 * initialized (in the case where we have written into
1561 * one or more preallocated blocks).
1562 *
1563 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1564 * indicate that we are on the delayed allocation path. This
1565 * affects functions in many different parts of the allocation
1566 * call path. This flag exists primarily because we don't
79e83036 1567 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1568 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1569 * inode's allocation semaphore is taken.
1570 *
1571 * If the blocks in questions were delalloc blocks, set
1572 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1573 * variables are updated after the blocks have been allocated.
79ffab34 1574 */
2ed88685
TT
1575 map.m_lblk = next;
1576 map.m_len = max_blocks;
1296cc85 1577 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1578 if (ext4_should_dioread_nolock(mpd->inode))
1579 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1580 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1581 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1582
2ed88685 1583 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1584 if (blks < 0) {
e3570639
ES
1585 struct super_block *sb = mpd->inode->i_sb;
1586
2fa3cdfb 1587 err = blks;
ed5bde0b 1588 /*
5a87b7a5 1589 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1590 * appears to be free blocks we will just let
1591 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1592 */
1593 if (err == -EAGAIN)
5a87b7a5 1594 goto submit_io;
df22291f 1595
5dee5437 1596 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1597 mpd->retval = err;
5a87b7a5 1598 goto submit_io;
df22291f
AK
1599 }
1600
c4a0c46e 1601 /*
ed5bde0b
TT
1602 * get block failure will cause us to loop in
1603 * writepages, because a_ops->writepage won't be able
1604 * to make progress. The page will be redirtied by
1605 * writepage and writepages will again try to write
1606 * the same.
c4a0c46e 1607 */
e3570639
ES
1608 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1609 ext4_msg(sb, KERN_CRIT,
1610 "delayed block allocation failed for inode %lu "
1611 "at logical offset %llu with max blocks %zd "
1612 "with error %d", mpd->inode->i_ino,
1613 (unsigned long long) next,
1614 mpd->b_size >> mpd->inode->i_blkbits, err);
1615 ext4_msg(sb, KERN_CRIT,
01a523eb 1616 "This should not happen!! Data will be lost");
e3570639
ES
1617 if (err == -ENOSPC)
1618 ext4_print_free_blocks(mpd->inode);
030ba6bc 1619 }
2fa3cdfb 1620 /* invalidate all the pages */
c7f5938a 1621 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1622
1623 /* Mark this page range as having been completed */
1624 mpd->io_done = 1;
5a87b7a5 1625 return;
c4a0c46e 1626 }
2fa3cdfb
TT
1627 BUG_ON(blks == 0);
1628
1de3e3df 1629 mapp = &map;
2ed88685
TT
1630 if (map.m_flags & EXT4_MAP_NEW) {
1631 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1632 int i;
64769240 1633
2ed88685
TT
1634 for (i = 0; i < map.m_len; i++)
1635 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1636 }
1637
1638 /*
03f5d8bc 1639 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1640 */
1641 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1642 if (disksize > i_size_read(mpd->inode))
1643 disksize = i_size_read(mpd->inode);
1644 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1645 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1646 err = ext4_mark_inode_dirty(handle, mpd->inode);
1647 if (err)
1648 ext4_error(mpd->inode->i_sb,
1649 "Failed to mark inode %lu dirty",
1650 mpd->inode->i_ino);
2fa3cdfb
TT
1651 }
1652
5a87b7a5 1653submit_io:
1de3e3df 1654 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1655 mpd->io_done = 1;
64769240
AT
1656}
1657
bf068ee2
AK
1658#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1659 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1660
1661/*
1662 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1663 *
1664 * @mpd->lbh - extent of blocks
1665 * @logical - logical number of the block in the file
b6a8e62f 1666 * @b_state - b_state of the buffer head added
64769240
AT
1667 *
1668 * the function is used to collect contig. blocks in same state
1669 */
b6a8e62f 1670static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1671 unsigned long b_state)
64769240 1672{
64769240 1673 sector_t next;
b6a8e62f
JK
1674 int blkbits = mpd->inode->i_blkbits;
1675 int nrblocks = mpd->b_size >> blkbits;
64769240 1676
c445e3e0
ES
1677 /*
1678 * XXX Don't go larger than mballoc is willing to allocate
1679 * This is a stopgap solution. We eventually need to fold
1680 * mpage_da_submit_io() into this function and then call
79e83036 1681 * ext4_map_blocks() multiple times in a loop
c445e3e0 1682 */
b6a8e62f 1683 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1684 goto flush_it;
1685
b6a8e62f
JK
1686 /* check if the reserved journal credits might overflow */
1687 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1688 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1689 /*
1690 * With non-extent format we are limited by the journal
1691 * credit available. Total credit needed to insert
1692 * nrblocks contiguous blocks is dependent on the
1693 * nrblocks. So limit nrblocks.
1694 */
1695 goto flush_it;
525f4ed8
MC
1696 }
1697 }
64769240
AT
1698 /*
1699 * First block in the extent
1700 */
8dc207c0
TT
1701 if (mpd->b_size == 0) {
1702 mpd->b_blocknr = logical;
b6a8e62f 1703 mpd->b_size = 1 << blkbits;
8dc207c0 1704 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1705 return;
1706 }
1707
8dc207c0 1708 next = mpd->b_blocknr + nrblocks;
64769240
AT
1709 /*
1710 * Can we merge the block to our big extent?
1711 */
8dc207c0 1712 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1713 mpd->b_size += 1 << blkbits;
64769240
AT
1714 return;
1715 }
1716
525f4ed8 1717flush_it:
64769240
AT
1718 /*
1719 * We couldn't merge the block to our extent, so we
1720 * need to flush current extent and start new one
1721 */
5a87b7a5 1722 mpage_da_map_and_submit(mpd);
a1d6cc56 1723 return;
64769240
AT
1724}
1725
c364b22c 1726static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1727{
c364b22c 1728 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1729}
1730
5356f261
AK
1731/*
1732 * This function is grabs code from the very beginning of
1733 * ext4_map_blocks, but assumes that the caller is from delayed write
1734 * time. This function looks up the requested blocks and sets the
1735 * buffer delay bit under the protection of i_data_sem.
1736 */
1737static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1738 struct ext4_map_blocks *map,
1739 struct buffer_head *bh)
1740{
1741 int retval;
1742 sector_t invalid_block = ~((sector_t) 0xffff);
1743
1744 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1745 invalid_block = ~0;
1746
1747 map->m_flags = 0;
1748 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1749 "logical block %lu\n", inode->i_ino, map->m_len,
1750 (unsigned long) map->m_lblk);
1751 /*
1752 * Try to see if we can get the block without requesting a new
1753 * file system block.
1754 */
1755 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1756 if (ext4_has_inline_data(inode)) {
1757 /*
1758 * We will soon create blocks for this page, and let
1759 * us pretend as if the blocks aren't allocated yet.
1760 * In case of clusters, we have to handle the work
1761 * of mapping from cluster so that the reserved space
1762 * is calculated properly.
1763 */
1764 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1765 ext4_find_delalloc_cluster(inode, map->m_lblk))
1766 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1767 retval = 0;
1768 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5356f261
AK
1769 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1770 else
1771 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1772
1773 if (retval == 0) {
1774 /*
1775 * XXX: __block_prepare_write() unmaps passed block,
1776 * is it OK?
1777 */
1778 /* If the block was allocated from previously allocated cluster,
1779 * then we dont need to reserve it again. */
1780 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1781 retval = ext4_da_reserve_space(inode, iblock);
1782 if (retval)
1783 /* not enough space to reserve */
1784 goto out_unlock;
1785 }
1786
fdc0212e
ZL
1787 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788 ~0, EXTENT_STATUS_DELAYED);
51865fda
ZL
1789 if (retval)
1790 goto out_unlock;
1791
5356f261
AK
1792 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1793 * and it should not appear on the bh->b_state.
1794 */
1795 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1796
1797 map_bh(bh, inode->i_sb, invalid_block);
1798 set_buffer_new(bh);
1799 set_buffer_delay(bh);
1800 }
1801
1802out_unlock:
1803 up_read((&EXT4_I(inode)->i_data_sem));
1804
1805 return retval;
1806}
1807
64769240 1808/*
b920c755
TT
1809 * This is a special get_blocks_t callback which is used by
1810 * ext4_da_write_begin(). It will either return mapped block or
1811 * reserve space for a single block.
29fa89d0
AK
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
64769240 1819 */
9c3569b5
TM
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821 struct buffer_head *bh, int create)
64769240 1822{
2ed88685 1823 struct ext4_map_blocks map;
64769240
AT
1824 int ret = 0;
1825
1826 BUG_ON(create == 0);
2ed88685
TT
1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829 map.m_lblk = iblock;
1830 map.m_len = 1;
64769240
AT
1831
1832 /*
1833 * first, we need to know whether the block is allocated already
1834 * preallocated blocks are unmapped but should treated
1835 * the same as allocated blocks.
1836 */
5356f261
AK
1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 if (ret <= 0)
2ed88685 1839 return ret;
64769240 1840
2ed88685
TT
1841 map_bh(bh, inode->i_sb, map.m_pblk);
1842 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1843
1844 if (buffer_unwritten(bh)) {
1845 /* A delayed write to unwritten bh should be marked
1846 * new and mapped. Mapped ensures that we don't do
1847 * get_block multiple times when we write to the same
1848 * offset and new ensures that we do proper zero out
1849 * for partial write.
1850 */
1851 set_buffer_new(bh);
c8205636 1852 set_buffer_mapped(bh);
2ed88685
TT
1853 }
1854 return 0;
64769240 1855}
61628a3f 1856
62e086be
AK
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859 get_bh(bh);
1860 return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865 put_bh(bh);
1866 return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1870 unsigned int len)
1871{
1872 struct address_space *mapping = page->mapping;
1873 struct inode *inode = mapping->host;
3fdcfb66 1874 struct buffer_head *page_bufs = NULL;
62e086be 1875 handle_t *handle = NULL;
3fdcfb66
TM
1876 int ret = 0, err = 0;
1877 int inline_data = ext4_has_inline_data(inode);
1878 struct buffer_head *inode_bh = NULL;
62e086be 1879
cb20d518 1880 ClearPageChecked(page);
3fdcfb66
TM
1881
1882 if (inline_data) {
1883 BUG_ON(page->index != 0);
1884 BUG_ON(len > ext4_get_max_inline_size(inode));
1885 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886 if (inode_bh == NULL)
1887 goto out;
1888 } else {
1889 page_bufs = page_buffers(page);
1890 if (!page_bufs) {
1891 BUG();
1892 goto out;
1893 }
1894 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895 NULL, bget_one);
1896 }
62e086be
AK
1897 /* As soon as we unlock the page, it can go away, but we have
1898 * references to buffers so we are safe */
1899 unlock_page(page);
1900
9924a92a
TT
1901 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1902 ext4_writepage_trans_blocks(inode));
62e086be
AK
1903 if (IS_ERR(handle)) {
1904 ret = PTR_ERR(handle);
1905 goto out;
1906 }
1907
441c8508
CW
1908 BUG_ON(!ext4_handle_valid(handle));
1909
3fdcfb66
TM
1910 if (inline_data) {
1911 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1912
3fdcfb66
TM
1913 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1914
1915 } else {
1916 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1917 do_journal_get_write_access);
1918
1919 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1920 write_end_fn);
1921 }
62e086be
AK
1922 if (ret == 0)
1923 ret = err;
2d859db3 1924 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1925 err = ext4_journal_stop(handle);
1926 if (!ret)
1927 ret = err;
1928
3fdcfb66
TM
1929 if (!ext4_has_inline_data(inode))
1930 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1931 NULL, bput_one);
19f5fb7a 1932 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1933out:
3fdcfb66 1934 brelse(inode_bh);
62e086be
AK
1935 return ret;
1936}
1937
61628a3f 1938/*
43ce1d23
AK
1939 * Note that we don't need to start a transaction unless we're journaling data
1940 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1941 * need to file the inode to the transaction's list in ordered mode because if
1942 * we are writing back data added by write(), the inode is already there and if
25985edc 1943 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1944 * transaction the data will hit the disk. In case we are journaling data, we
1945 * cannot start transaction directly because transaction start ranks above page
1946 * lock so we have to do some magic.
1947 *
b920c755
TT
1948 * This function can get called via...
1949 * - ext4_da_writepages after taking page lock (have journal handle)
1950 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1951 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1952 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1953 *
1954 * We don't do any block allocation in this function. If we have page with
1955 * multiple blocks we need to write those buffer_heads that are mapped. This
1956 * is important for mmaped based write. So if we do with blocksize 1K
1957 * truncate(f, 1024);
1958 * a = mmap(f, 0, 4096);
1959 * a[0] = 'a';
1960 * truncate(f, 4096);
1961 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1962 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1963 * do_wp_page). So writepage should write the first block. If we modify
1964 * the mmap area beyond 1024 we will again get a page_fault and the
1965 * page_mkwrite callback will do the block allocation and mark the
1966 * buffer_heads mapped.
1967 *
1968 * We redirty the page if we have any buffer_heads that is either delay or
1969 * unwritten in the page.
1970 *
1971 * We can get recursively called as show below.
1972 *
1973 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1974 * ext4_writepage()
1975 *
1976 * But since we don't do any block allocation we should not deadlock.
1977 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1978 */
43ce1d23 1979static int ext4_writepage(struct page *page,
62e086be 1980 struct writeback_control *wbc)
64769240 1981{
f8bec370 1982 int ret = 0;
61628a3f 1983 loff_t size;
498e5f24 1984 unsigned int len;
744692dc 1985 struct buffer_head *page_bufs = NULL;
61628a3f 1986 struct inode *inode = page->mapping->host;
36ade451 1987 struct ext4_io_submit io_submit;
61628a3f 1988
a9c667f8 1989 trace_ext4_writepage(page);
f0e6c985
AK
1990 size = i_size_read(inode);
1991 if (page->index == size >> PAGE_CACHE_SHIFT)
1992 len = size & ~PAGE_CACHE_MASK;
1993 else
1994 len = PAGE_CACHE_SIZE;
64769240 1995
a42afc5f 1996 page_bufs = page_buffers(page);
fe386132
JK
1997 /*
1998 * We cannot do block allocation or other extent handling in this
1999 * function. If there are buffers needing that, we have to redirty
2000 * the page. But we may reach here when we do a journal commit via
2001 * journal_submit_inode_data_buffers() and in that case we must write
2002 * allocated buffers to achieve data=ordered mode guarantees.
2003 */
f19d5870
TM
2004 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005 ext4_bh_delay_or_unwritten)) {
f8bec370 2006 redirty_page_for_writepage(wbc, page);
fe386132
JK
2007 if (current->flags & PF_MEMALLOC) {
2008 /*
2009 * For memory cleaning there's no point in writing only
2010 * some buffers. So just bail out. Warn if we came here
2011 * from direct reclaim.
2012 */
2013 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2014 == PF_MEMALLOC);
2015 unlock_page(page);
2016 return 0;
2017 }
a42afc5f 2018 }
64769240 2019
cb20d518 2020 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2021 /*
2022 * It's mmapped pagecache. Add buffers and journal it. There
2023 * doesn't seem much point in redirtying the page here.
2024 */
3f0ca309 2025 return __ext4_journalled_writepage(page, len);
43ce1d23 2026
36ade451
JK
2027 memset(&io_submit, 0, sizeof(io_submit));
2028 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2029 ext4_io_submit(&io_submit);
64769240
AT
2030 return ret;
2031}
2032
61628a3f 2033/*
525f4ed8 2034 * This is called via ext4_da_writepages() to
25985edc 2035 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2036 * a single extent allocation into a single transaction,
2037 * ext4_da_writpeages() will loop calling this before
2038 * the block allocation.
61628a3f 2039 */
525f4ed8
MC
2040
2041static int ext4_da_writepages_trans_blocks(struct inode *inode)
2042{
2043 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2044
2045 /*
2046 * With non-extent format the journal credit needed to
2047 * insert nrblocks contiguous block is dependent on
2048 * number of contiguous block. So we will limit
2049 * number of contiguous block to a sane value
2050 */
12e9b892 2051 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2052 (max_blocks > EXT4_MAX_TRANS_DATA))
2053 max_blocks = EXT4_MAX_TRANS_DATA;
2054
2055 return ext4_chunk_trans_blocks(inode, max_blocks);
2056}
61628a3f 2057
8e48dcfb
TT
2058/*
2059 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2060 * address space and accumulate pages that need writing, and call
168fc022
TT
2061 * mpage_da_map_and_submit to map a single contiguous memory region
2062 * and then write them.
8e48dcfb 2063 */
9c3569b5
TM
2064static int write_cache_pages_da(handle_t *handle,
2065 struct address_space *mapping,
8e48dcfb 2066 struct writeback_control *wbc,
72f84e65
ES
2067 struct mpage_da_data *mpd,
2068 pgoff_t *done_index)
8e48dcfb 2069{
4f01b02c 2070 struct buffer_head *bh, *head;
168fc022 2071 struct inode *inode = mapping->host;
4f01b02c
TT
2072 struct pagevec pvec;
2073 unsigned int nr_pages;
2074 sector_t logical;
2075 pgoff_t index, end;
2076 long nr_to_write = wbc->nr_to_write;
2077 int i, tag, ret = 0;
8e48dcfb 2078
168fc022
TT
2079 memset(mpd, 0, sizeof(struct mpage_da_data));
2080 mpd->wbc = wbc;
2081 mpd->inode = inode;
8e48dcfb
TT
2082 pagevec_init(&pvec, 0);
2083 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2084 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2085
6e6938b6 2086 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2087 tag = PAGECACHE_TAG_TOWRITE;
2088 else
2089 tag = PAGECACHE_TAG_DIRTY;
2090
72f84e65 2091 *done_index = index;
4f01b02c 2092 while (index <= end) {
5b41d924 2093 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2094 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2095 if (nr_pages == 0)
4f01b02c 2096 return 0;
8e48dcfb
TT
2097
2098 for (i = 0; i < nr_pages; i++) {
2099 struct page *page = pvec.pages[i];
2100
2101 /*
2102 * At this point, the page may be truncated or
2103 * invalidated (changing page->mapping to NULL), or
2104 * even swizzled back from swapper_space to tmpfs file
2105 * mapping. However, page->index will not change
2106 * because we have a reference on the page.
2107 */
4f01b02c
TT
2108 if (page->index > end)
2109 goto out;
8e48dcfb 2110
72f84e65
ES
2111 *done_index = page->index + 1;
2112
78aaced3
TT
2113 /*
2114 * If we can't merge this page, and we have
2115 * accumulated an contiguous region, write it
2116 */
2117 if ((mpd->next_page != page->index) &&
2118 (mpd->next_page != mpd->first_page)) {
2119 mpage_da_map_and_submit(mpd);
2120 goto ret_extent_tail;
2121 }
2122
8e48dcfb
TT
2123 lock_page(page);
2124
2125 /*
4f01b02c
TT
2126 * If the page is no longer dirty, or its
2127 * mapping no longer corresponds to inode we
2128 * are writing (which means it has been
2129 * truncated or invalidated), or the page is
2130 * already under writeback and we are not
2131 * doing a data integrity writeback, skip the page
8e48dcfb 2132 */
4f01b02c
TT
2133 if (!PageDirty(page) ||
2134 (PageWriteback(page) &&
2135 (wbc->sync_mode == WB_SYNC_NONE)) ||
2136 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2137 unlock_page(page);
2138 continue;
2139 }
2140
7cb1a535 2141 wait_on_page_writeback(page);
8e48dcfb 2142 BUG_ON(PageWriteback(page));
8e48dcfb 2143
9c3569b5
TM
2144 /*
2145 * If we have inline data and arrive here, it means that
2146 * we will soon create the block for the 1st page, so
2147 * we'd better clear the inline data here.
2148 */
2149 if (ext4_has_inline_data(inode)) {
2150 BUG_ON(ext4_test_inode_state(inode,
2151 EXT4_STATE_MAY_INLINE_DATA));
2152 ext4_destroy_inline_data(handle, inode);
2153 }
2154
168fc022 2155 if (mpd->next_page != page->index)
8eb9e5ce 2156 mpd->first_page = page->index;
8eb9e5ce
TT
2157 mpd->next_page = page->index + 1;
2158 logical = (sector_t) page->index <<
2159 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2160
f8bec370
JK
2161 /* Add all dirty buffers to mpd */
2162 head = page_buffers(page);
2163 bh = head;
2164 do {
2165 BUG_ON(buffer_locked(bh));
8eb9e5ce 2166 /*
f8bec370
JK
2167 * We need to try to allocate unmapped blocks
2168 * in the same page. Otherwise we won't make
2169 * progress with the page in ext4_writepage
8eb9e5ce 2170 */
f8bec370
JK
2171 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2172 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2173 bh->b_state);
2174 if (mpd->io_done)
2175 goto ret_extent_tail;
2176 } else if (buffer_dirty(bh) &&
2177 buffer_mapped(bh)) {
8eb9e5ce 2178 /*
f8bec370
JK
2179 * mapped dirty buffer. We need to
2180 * update the b_state because we look
2181 * at b_state in mpage_da_map_blocks.
2182 * We don't update b_size because if we
2183 * find an unmapped buffer_head later
2184 * we need to use the b_state flag of
2185 * that buffer_head.
8eb9e5ce 2186 */
f8bec370
JK
2187 if (mpd->b_size == 0)
2188 mpd->b_state =
2189 bh->b_state & BH_FLAGS;
2190 }
2191 logical++;
2192 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2193
2194 if (nr_to_write > 0) {
2195 nr_to_write--;
2196 if (nr_to_write == 0 &&
4f01b02c 2197 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2198 /*
2199 * We stop writing back only if we are
2200 * not doing integrity sync. In case of
2201 * integrity sync we have to keep going
2202 * because someone may be concurrently
2203 * dirtying pages, and we might have
2204 * synced a lot of newly appeared dirty
2205 * pages, but have not synced all of the
2206 * old dirty pages.
2207 */
4f01b02c 2208 goto out;
8e48dcfb
TT
2209 }
2210 }
2211 pagevec_release(&pvec);
2212 cond_resched();
2213 }
4f01b02c
TT
2214 return 0;
2215ret_extent_tail:
2216 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2217out:
2218 pagevec_release(&pvec);
2219 cond_resched();
8e48dcfb
TT
2220 return ret;
2221}
2222
2223
64769240 2224static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2225 struct writeback_control *wbc)
64769240 2226{
22208ded
AK
2227 pgoff_t index;
2228 int range_whole = 0;
61628a3f 2229 handle_t *handle = NULL;
df22291f 2230 struct mpage_da_data mpd;
5e745b04 2231 struct inode *inode = mapping->host;
498e5f24 2232 int pages_written = 0;
55138e0b 2233 unsigned int max_pages;
2acf2c26 2234 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2235 int needed_blocks, ret = 0;
2236 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2237 loff_t range_start = wbc->range_start;
5e745b04 2238 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2239 pgoff_t done_index = 0;
5b41d924 2240 pgoff_t end;
1bce63d1 2241 struct blk_plug plug;
61628a3f 2242
9bffad1e 2243 trace_ext4_da_writepages(inode, wbc);
ba80b101 2244
61628a3f
MC
2245 /*
2246 * No pages to write? This is mainly a kludge to avoid starting
2247 * a transaction for special inodes like journal inode on last iput()
2248 * because that could violate lock ordering on umount
2249 */
a1d6cc56 2250 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2251 return 0;
2a21e37e
TT
2252
2253 /*
2254 * If the filesystem has aborted, it is read-only, so return
2255 * right away instead of dumping stack traces later on that
2256 * will obscure the real source of the problem. We test
4ab2f15b 2257 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2258 * the latter could be true if the filesystem is mounted
2259 * read-only, and in that case, ext4_da_writepages should
2260 * *never* be called, so if that ever happens, we would want
2261 * the stack trace.
2262 */
4ab2f15b 2263 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2264 return -EROFS;
2265
22208ded
AK
2266 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2267 range_whole = 1;
61628a3f 2268
2acf2c26
AK
2269 range_cyclic = wbc->range_cyclic;
2270 if (wbc->range_cyclic) {
22208ded 2271 index = mapping->writeback_index;
2acf2c26
AK
2272 if (index)
2273 cycled = 0;
2274 wbc->range_start = index << PAGE_CACHE_SHIFT;
2275 wbc->range_end = LLONG_MAX;
2276 wbc->range_cyclic = 0;
5b41d924
ES
2277 end = -1;
2278 } else {
22208ded 2279 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2280 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2281 }
a1d6cc56 2282
55138e0b
TT
2283 /*
2284 * This works around two forms of stupidity. The first is in
2285 * the writeback code, which caps the maximum number of pages
2286 * written to be 1024 pages. This is wrong on multiple
2287 * levels; different architectues have a different page size,
2288 * which changes the maximum amount of data which gets
2289 * written. Secondly, 4 megabytes is way too small. XFS
2290 * forces this value to be 16 megabytes by multiplying
2291 * nr_to_write parameter by four, and then relies on its
2292 * allocator to allocate larger extents to make them
2293 * contiguous. Unfortunately this brings us to the second
2294 * stupidity, which is that ext4's mballoc code only allocates
2295 * at most 2048 blocks. So we force contiguous writes up to
2296 * the number of dirty blocks in the inode, or
2297 * sbi->max_writeback_mb_bump whichever is smaller.
2298 */
2299 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2300 if (!range_cyclic && range_whole) {
2301 if (wbc->nr_to_write == LONG_MAX)
2302 desired_nr_to_write = wbc->nr_to_write;
2303 else
2304 desired_nr_to_write = wbc->nr_to_write * 8;
2305 } else
55138e0b
TT
2306 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2307 max_pages);
2308 if (desired_nr_to_write > max_pages)
2309 desired_nr_to_write = max_pages;
2310
2311 if (wbc->nr_to_write < desired_nr_to_write) {
2312 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2313 wbc->nr_to_write = desired_nr_to_write;
2314 }
2315
2acf2c26 2316retry:
6e6938b6 2317 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2318 tag_pages_for_writeback(mapping, index, end);
2319
1bce63d1 2320 blk_start_plug(&plug);
22208ded 2321 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2322
2323 /*
2324 * we insert one extent at a time. So we need
2325 * credit needed for single extent allocation.
2326 * journalled mode is currently not supported
2327 * by delalloc
2328 */
2329 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2330 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2331
61628a3f 2332 /* start a new transaction*/
9924a92a
TT
2333 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2334 needed_blocks);
61628a3f
MC
2335 if (IS_ERR(handle)) {
2336 ret = PTR_ERR(handle);
1693918e 2337 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2338 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2339 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2340 blk_finish_plug(&plug);
61628a3f
MC
2341 goto out_writepages;
2342 }
f63e6005
TT
2343
2344 /*
8eb9e5ce 2345 * Now call write_cache_pages_da() to find the next
f63e6005 2346 * contiguous region of logical blocks that need
8eb9e5ce 2347 * blocks to be allocated by ext4 and submit them.
f63e6005 2348 */
9c3569b5
TM
2349 ret = write_cache_pages_da(handle, mapping,
2350 wbc, &mpd, &done_index);
f63e6005 2351 /*
af901ca1 2352 * If we have a contiguous extent of pages and we
f63e6005
TT
2353 * haven't done the I/O yet, map the blocks and submit
2354 * them for I/O.
2355 */
2356 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2357 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2358 ret = MPAGE_DA_EXTENT_TAIL;
2359 }
b3a3ca8c 2360 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2361 wbc->nr_to_write -= mpd.pages_written;
df22291f 2362
61628a3f 2363 ext4_journal_stop(handle);
df22291f 2364
8f64b32e 2365 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2366 /* commit the transaction which would
2367 * free blocks released in the transaction
2368 * and try again
2369 */
df22291f 2370 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2371 ret = 0;
2372 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2373 /*
8de49e67
KM
2374 * Got one extent now try with rest of the pages.
2375 * If mpd.retval is set -EIO, journal is aborted.
2376 * So we don't need to write any more.
a1d6cc56 2377 */
22208ded 2378 pages_written += mpd.pages_written;
8de49e67 2379 ret = mpd.retval;
2acf2c26 2380 io_done = 1;
22208ded 2381 } else if (wbc->nr_to_write)
61628a3f
MC
2382 /*
2383 * There is no more writeout needed
2384 * or we requested for a noblocking writeout
2385 * and we found the device congested
2386 */
61628a3f 2387 break;
a1d6cc56 2388 }
1bce63d1 2389 blk_finish_plug(&plug);
2acf2c26
AK
2390 if (!io_done && !cycled) {
2391 cycled = 1;
2392 index = 0;
2393 wbc->range_start = index << PAGE_CACHE_SHIFT;
2394 wbc->range_end = mapping->writeback_index - 1;
2395 goto retry;
2396 }
22208ded
AK
2397
2398 /* Update index */
2acf2c26 2399 wbc->range_cyclic = range_cyclic;
22208ded
AK
2400 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2401 /*
2402 * set the writeback_index so that range_cyclic
2403 * mode will write it back later
2404 */
72f84e65 2405 mapping->writeback_index = done_index;
a1d6cc56 2406
61628a3f 2407out_writepages:
2faf2e19 2408 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2409 wbc->range_start = range_start;
9bffad1e 2410 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2411 return ret;
64769240
AT
2412}
2413
79f0be8d
AK
2414static int ext4_nonda_switch(struct super_block *sb)
2415{
2416 s64 free_blocks, dirty_blocks;
2417 struct ext4_sb_info *sbi = EXT4_SB(sb);
2418
2419 /*
2420 * switch to non delalloc mode if we are running low
2421 * on free block. The free block accounting via percpu
179f7ebf 2422 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2423 * accumulated on each CPU without updating global counters
2424 * Delalloc need an accurate free block accounting. So switch
2425 * to non delalloc when we are near to error range.
2426 */
57042651
TT
2427 free_blocks = EXT4_C2B(sbi,
2428 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2429 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2430 /*
2431 * Start pushing delalloc when 1/2 of free blocks are dirty.
2432 */
2433 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2434 !writeback_in_progress(sb->s_bdi) &&
2435 down_read_trylock(&sb->s_umount)) {
2436 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2437 up_read(&sb->s_umount);
2438 }
2439
79f0be8d 2440 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2441 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2442 /*
c8afb446
ES
2443 * free block count is less than 150% of dirty blocks
2444 * or free blocks is less than watermark
79f0be8d
AK
2445 */
2446 return 1;
2447 }
2448 return 0;
2449}
2450
64769240 2451static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2452 loff_t pos, unsigned len, unsigned flags,
2453 struct page **pagep, void **fsdata)
64769240 2454{
72b8ab9d 2455 int ret, retries = 0;
64769240
AT
2456 struct page *page;
2457 pgoff_t index;
64769240
AT
2458 struct inode *inode = mapping->host;
2459 handle_t *handle;
2460
2461 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2462
2463 if (ext4_nonda_switch(inode->i_sb)) {
2464 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2465 return ext4_write_begin(file, mapping, pos,
2466 len, flags, pagep, fsdata);
2467 }
2468 *fsdata = (void *)0;
9bffad1e 2469 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2470
2471 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2472 ret = ext4_da_write_inline_data_begin(mapping, inode,
2473 pos, len, flags,
2474 pagep, fsdata);
2475 if (ret < 0)
47564bfb
TT
2476 return ret;
2477 if (ret == 1)
2478 return 0;
9c3569b5
TM
2479 }
2480
47564bfb
TT
2481 /*
2482 * grab_cache_page_write_begin() can take a long time if the
2483 * system is thrashing due to memory pressure, or if the page
2484 * is being written back. So grab it first before we start
2485 * the transaction handle. This also allows us to allocate
2486 * the page (if needed) without using GFP_NOFS.
2487 */
2488retry_grab:
2489 page = grab_cache_page_write_begin(mapping, index, flags);
2490 if (!page)
2491 return -ENOMEM;
2492 unlock_page(page);
2493
64769240
AT
2494 /*
2495 * With delayed allocation, we don't log the i_disksize update
2496 * if there is delayed block allocation. But we still need
2497 * to journalling the i_disksize update if writes to the end
2498 * of file which has an already mapped buffer.
2499 */
47564bfb 2500retry_journal:
9924a92a 2501 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2502 if (IS_ERR(handle)) {
47564bfb
TT
2503 page_cache_release(page);
2504 return PTR_ERR(handle);
64769240
AT
2505 }
2506
47564bfb
TT
2507 lock_page(page);
2508 if (page->mapping != mapping) {
2509 /* The page got truncated from under us */
2510 unlock_page(page);
2511 page_cache_release(page);
d5a0d4f7 2512 ext4_journal_stop(handle);
47564bfb 2513 goto retry_grab;
d5a0d4f7 2514 }
47564bfb
TT
2515 /* In case writeback began while the page was unlocked */
2516 wait_on_page_writeback(page);
64769240 2517
6e1db88d 2518 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2519 if (ret < 0) {
2520 unlock_page(page);
2521 ext4_journal_stop(handle);
ae4d5372
AK
2522 /*
2523 * block_write_begin may have instantiated a few blocks
2524 * outside i_size. Trim these off again. Don't need
2525 * i_size_read because we hold i_mutex.
2526 */
2527 if (pos + len > inode->i_size)
b9a4207d 2528 ext4_truncate_failed_write(inode);
47564bfb
TT
2529
2530 if (ret == -ENOSPC &&
2531 ext4_should_retry_alloc(inode->i_sb, &retries))
2532 goto retry_journal;
2533
2534 page_cache_release(page);
2535 return ret;
64769240
AT
2536 }
2537
47564bfb 2538 *pagep = page;
64769240
AT
2539 return ret;
2540}
2541
632eaeab
MC
2542/*
2543 * Check if we should update i_disksize
2544 * when write to the end of file but not require block allocation
2545 */
2546static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2547 unsigned long offset)
632eaeab
MC
2548{
2549 struct buffer_head *bh;
2550 struct inode *inode = page->mapping->host;
2551 unsigned int idx;
2552 int i;
2553
2554 bh = page_buffers(page);
2555 idx = offset >> inode->i_blkbits;
2556
af5bc92d 2557 for (i = 0; i < idx; i++)
632eaeab
MC
2558 bh = bh->b_this_page;
2559
29fa89d0 2560 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2561 return 0;
2562 return 1;
2563}
2564
64769240 2565static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2566 struct address_space *mapping,
2567 loff_t pos, unsigned len, unsigned copied,
2568 struct page *page, void *fsdata)
64769240
AT
2569{
2570 struct inode *inode = mapping->host;
2571 int ret = 0, ret2;
2572 handle_t *handle = ext4_journal_current_handle();
2573 loff_t new_i_size;
632eaeab 2574 unsigned long start, end;
79f0be8d
AK
2575 int write_mode = (int)(unsigned long)fsdata;
2576
2577 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2578 switch (ext4_inode_journal_mode(inode)) {
2579 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2580 return ext4_ordered_write_end(file, mapping, pos,
2581 len, copied, page, fsdata);
3d2b1582 2582 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2583 return ext4_writeback_write_end(file, mapping, pos,
2584 len, copied, page, fsdata);
3d2b1582 2585 default:
79f0be8d
AK
2586 BUG();
2587 }
2588 }
632eaeab 2589
9bffad1e 2590 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2591 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2592 end = start + copied - 1;
64769240
AT
2593
2594 /*
2595 * generic_write_end() will run mark_inode_dirty() if i_size
2596 * changes. So let's piggyback the i_disksize mark_inode_dirty
2597 * into that.
2598 */
64769240 2599 new_i_size = pos + copied;
ea51d132 2600 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2601 if (ext4_has_inline_data(inode) ||
2602 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2603 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2604 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2605 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2606 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2607 /* We need to mark inode dirty even if
2608 * new_i_size is less that inode->i_size
2609 * bu greater than i_disksize.(hint delalloc)
2610 */
2611 ext4_mark_inode_dirty(handle, inode);
64769240 2612 }
632eaeab 2613 }
9c3569b5
TM
2614
2615 if (write_mode != CONVERT_INLINE_DATA &&
2616 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2617 ext4_has_inline_data(inode))
2618 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2619 page);
2620 else
2621 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2622 page, fsdata);
9c3569b5 2623
64769240
AT
2624 copied = ret2;
2625 if (ret2 < 0)
2626 ret = ret2;
2627 ret2 = ext4_journal_stop(handle);
2628 if (!ret)
2629 ret = ret2;
2630
2631 return ret ? ret : copied;
2632}
2633
2634static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2635{
64769240
AT
2636 /*
2637 * Drop reserved blocks
2638 */
2639 BUG_ON(!PageLocked(page));
2640 if (!page_has_buffers(page))
2641 goto out;
2642
d2a17637 2643 ext4_da_page_release_reservation(page, offset);
64769240
AT
2644
2645out:
2646 ext4_invalidatepage(page, offset);
2647
2648 return;
2649}
2650
ccd2506b
TT
2651/*
2652 * Force all delayed allocation blocks to be allocated for a given inode.
2653 */
2654int ext4_alloc_da_blocks(struct inode *inode)
2655{
fb40ba0d
TT
2656 trace_ext4_alloc_da_blocks(inode);
2657
ccd2506b
TT
2658 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2659 !EXT4_I(inode)->i_reserved_meta_blocks)
2660 return 0;
2661
2662 /*
2663 * We do something simple for now. The filemap_flush() will
2664 * also start triggering a write of the data blocks, which is
2665 * not strictly speaking necessary (and for users of
2666 * laptop_mode, not even desirable). However, to do otherwise
2667 * would require replicating code paths in:
de9a55b8 2668 *
ccd2506b
TT
2669 * ext4_da_writepages() ->
2670 * write_cache_pages() ---> (via passed in callback function)
2671 * __mpage_da_writepage() -->
2672 * mpage_add_bh_to_extent()
2673 * mpage_da_map_blocks()
2674 *
2675 * The problem is that write_cache_pages(), located in
2676 * mm/page-writeback.c, marks pages clean in preparation for
2677 * doing I/O, which is not desirable if we're not planning on
2678 * doing I/O at all.
2679 *
2680 * We could call write_cache_pages(), and then redirty all of
380cf090 2681 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2682 * would be ugly in the extreme. So instead we would need to
2683 * replicate parts of the code in the above functions,
25985edc 2684 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2685 * write out the pages, but rather only collect contiguous
2686 * logical block extents, call the multi-block allocator, and
2687 * then update the buffer heads with the block allocations.
de9a55b8 2688 *
ccd2506b
TT
2689 * For now, though, we'll cheat by calling filemap_flush(),
2690 * which will map the blocks, and start the I/O, but not
2691 * actually wait for the I/O to complete.
2692 */
2693 return filemap_flush(inode->i_mapping);
2694}
64769240 2695
ac27a0ec
DK
2696/*
2697 * bmap() is special. It gets used by applications such as lilo and by
2698 * the swapper to find the on-disk block of a specific piece of data.
2699 *
2700 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2701 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2702 * filesystem and enables swap, then they may get a nasty shock when the
2703 * data getting swapped to that swapfile suddenly gets overwritten by
2704 * the original zero's written out previously to the journal and
2705 * awaiting writeback in the kernel's buffer cache.
2706 *
2707 * So, if we see any bmap calls here on a modified, data-journaled file,
2708 * take extra steps to flush any blocks which might be in the cache.
2709 */
617ba13b 2710static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2711{
2712 struct inode *inode = mapping->host;
2713 journal_t *journal;
2714 int err;
2715
46c7f254
TM
2716 /*
2717 * We can get here for an inline file via the FIBMAP ioctl
2718 */
2719 if (ext4_has_inline_data(inode))
2720 return 0;
2721
64769240
AT
2722 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2723 test_opt(inode->i_sb, DELALLOC)) {
2724 /*
2725 * With delalloc we want to sync the file
2726 * so that we can make sure we allocate
2727 * blocks for file
2728 */
2729 filemap_write_and_wait(mapping);
2730 }
2731
19f5fb7a
TT
2732 if (EXT4_JOURNAL(inode) &&
2733 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2734 /*
2735 * This is a REALLY heavyweight approach, but the use of
2736 * bmap on dirty files is expected to be extremely rare:
2737 * only if we run lilo or swapon on a freshly made file
2738 * do we expect this to happen.
2739 *
2740 * (bmap requires CAP_SYS_RAWIO so this does not
2741 * represent an unprivileged user DOS attack --- we'd be
2742 * in trouble if mortal users could trigger this path at
2743 * will.)
2744 *
617ba13b 2745 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2746 * regular files. If somebody wants to bmap a directory
2747 * or symlink and gets confused because the buffer
2748 * hasn't yet been flushed to disk, they deserve
2749 * everything they get.
2750 */
2751
19f5fb7a 2752 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2753 journal = EXT4_JOURNAL(inode);
dab291af
MC
2754 jbd2_journal_lock_updates(journal);
2755 err = jbd2_journal_flush(journal);
2756 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2757
2758 if (err)
2759 return 0;
2760 }
2761
af5bc92d 2762 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2763}
2764
617ba13b 2765static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2766{
46c7f254
TM
2767 int ret = -EAGAIN;
2768 struct inode *inode = page->mapping->host;
2769
0562e0ba 2770 trace_ext4_readpage(page);
46c7f254
TM
2771
2772 if (ext4_has_inline_data(inode))
2773 ret = ext4_readpage_inline(inode, page);
2774
2775 if (ret == -EAGAIN)
2776 return mpage_readpage(page, ext4_get_block);
2777
2778 return ret;
ac27a0ec
DK
2779}
2780
2781static int
617ba13b 2782ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2783 struct list_head *pages, unsigned nr_pages)
2784{
46c7f254
TM
2785 struct inode *inode = mapping->host;
2786
2787 /* If the file has inline data, no need to do readpages. */
2788 if (ext4_has_inline_data(inode))
2789 return 0;
2790
617ba13b 2791 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2792}
2793
617ba13b 2794static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2795{
0562e0ba
JZ
2796 trace_ext4_invalidatepage(page, offset);
2797
4520fb3c
JK
2798 /* No journalling happens on data buffers when this function is used */
2799 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2800
2801 block_invalidatepage(page, offset);
2802}
2803
53e87268
JK
2804static int __ext4_journalled_invalidatepage(struct page *page,
2805 unsigned long offset)
4520fb3c
JK
2806{
2807 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2808
2809 trace_ext4_journalled_invalidatepage(page, offset);
2810
ac27a0ec
DK
2811 /*
2812 * If it's a full truncate we just forget about the pending dirtying
2813 */
2814 if (offset == 0)
2815 ClearPageChecked(page);
2816
53e87268
JK
2817 return jbd2_journal_invalidatepage(journal, page, offset);
2818}
2819
2820/* Wrapper for aops... */
2821static void ext4_journalled_invalidatepage(struct page *page,
2822 unsigned long offset)
2823{
2824 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
2825}
2826
617ba13b 2827static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2828{
617ba13b 2829 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2830
0562e0ba
JZ
2831 trace_ext4_releasepage(page);
2832
ac27a0ec
DK
2833 WARN_ON(PageChecked(page));
2834 if (!page_has_buffers(page))
2835 return 0;
0390131b
FM
2836 if (journal)
2837 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2838 else
2839 return try_to_free_buffers(page);
ac27a0ec
DK
2840}
2841
2ed88685
TT
2842/*
2843 * ext4_get_block used when preparing for a DIO write or buffer write.
2844 * We allocate an uinitialized extent if blocks haven't been allocated.
2845 * The extent will be converted to initialized after the IO is complete.
2846 */
f19d5870 2847int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2848 struct buffer_head *bh_result, int create)
2849{
c7064ef1 2850 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2851 inode->i_ino, create);
2ed88685
TT
2852 return _ext4_get_block(inode, iblock, bh_result,
2853 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2854}
2855
729f52c6 2856static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2857 struct buffer_head *bh_result, int create)
729f52c6 2858{
8b0f165f
AP
2859 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2860 inode->i_ino, create);
2861 return _ext4_get_block(inode, iblock, bh_result,
2862 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2863}
2864
4c0425ff 2865static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2866 ssize_t size, void *private, int ret,
2867 bool is_async)
4c0425ff 2868{
72c5052d 2869 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2870 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2871
4b70df18
M
2872 /* if not async direct IO or dio with 0 bytes write, just return */
2873 if (!io_end || !size)
552ef802 2874 goto out;
4b70df18 2875
88635ca2 2876 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2877 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2878 iocb->private, io_end->inode->i_ino, iocb, offset,
2879 size);
8d5d02e6 2880
b5a7e970
TT
2881 iocb->private = NULL;
2882
8d5d02e6 2883 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2884 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2885 ext4_free_io_end(io_end);
5b3ff237 2886out:
091e26df 2887 inode_dio_done(inode);
5b3ff237
JZ
2888 if (is_async)
2889 aio_complete(iocb, ret, 0);
2890 return;
8d5d02e6
MC
2891 }
2892
4c0425ff
MC
2893 io_end->offset = offset;
2894 io_end->size = size;
5b3ff237
JZ
2895 if (is_async) {
2896 io_end->iocb = iocb;
2897 io_end->result = ret;
2898 }
4c0425ff 2899
28a535f9 2900 ext4_add_complete_io(io_end);
4c0425ff 2901}
c7064ef1 2902
4c0425ff
MC
2903/*
2904 * For ext4 extent files, ext4 will do direct-io write to holes,
2905 * preallocated extents, and those write extend the file, no need to
2906 * fall back to buffered IO.
2907 *
b595076a 2908 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 2909 * If those blocks were preallocated, we mark sure they are split, but
b595076a 2910 * still keep the range to write as uninitialized.
4c0425ff 2911 *
69c499d1 2912 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2913 * For async direct IO, since the IO may still pending when return, we
25985edc 2914 * set up an end_io call back function, which will do the conversion
8d5d02e6 2915 * when async direct IO completed.
4c0425ff
MC
2916 *
2917 * If the O_DIRECT write will extend the file then add this inode to the
2918 * orphan list. So recovery will truncate it back to the original size
2919 * if the machine crashes during the write.
2920 *
2921 */
2922static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2923 const struct iovec *iov, loff_t offset,
2924 unsigned long nr_segs)
2925{
2926 struct file *file = iocb->ki_filp;
2927 struct inode *inode = file->f_mapping->host;
2928 ssize_t ret;
2929 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
2930 int overwrite = 0;
2931 get_block_t *get_block_func = NULL;
2932 int dio_flags = 0;
4c0425ff 2933 loff_t final_size = offset + count;
729f52c6 2934
69c499d1
TT
2935 /* Use the old path for reads and writes beyond i_size. */
2936 if (rw != WRITE || final_size > inode->i_size)
2937 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 2938
69c499d1 2939 BUG_ON(iocb->private == NULL);
4bd809db 2940
69c499d1
TT
2941 /* If we do a overwrite dio, i_mutex locking can be released */
2942 overwrite = *((int *)iocb->private);
4bd809db 2943
69c499d1
TT
2944 if (overwrite) {
2945 atomic_inc(&inode->i_dio_count);
2946 down_read(&EXT4_I(inode)->i_data_sem);
2947 mutex_unlock(&inode->i_mutex);
2948 }
8d5d02e6 2949
69c499d1
TT
2950 /*
2951 * We could direct write to holes and fallocate.
2952 *
2953 * Allocated blocks to fill the hole are marked as
2954 * uninitialized to prevent parallel buffered read to expose
2955 * the stale data before DIO complete the data IO.
2956 *
2957 * As to previously fallocated extents, ext4 get_block will
2958 * just simply mark the buffer mapped but still keep the
2959 * extents uninitialized.
2960 *
2961 * For non AIO case, we will convert those unwritten extents
2962 * to written after return back from blockdev_direct_IO.
2963 *
2964 * For async DIO, the conversion needs to be deferred when the
2965 * IO is completed. The ext4 end_io callback function will be
2966 * called to take care of the conversion work. Here for async
2967 * case, we allocate an io_end structure to hook to the iocb.
2968 */
2969 iocb->private = NULL;
2970 ext4_inode_aio_set(inode, NULL);
2971 if (!is_sync_kiocb(iocb)) {
2972 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
2973 if (!io_end) {
2974 ret = -ENOMEM;
2975 goto retake_lock;
8b0f165f 2976 }
69c499d1
TT
2977 io_end->flag |= EXT4_IO_END_DIRECT;
2978 iocb->private = io_end;
8d5d02e6 2979 /*
69c499d1
TT
2980 * we save the io structure for current async direct
2981 * IO, so that later ext4_map_blocks() could flag the
2982 * io structure whether there is a unwritten extents
2983 * needs to be converted when IO is completed.
8d5d02e6 2984 */
69c499d1
TT
2985 ext4_inode_aio_set(inode, io_end);
2986 }
4bd809db 2987
69c499d1
TT
2988 if (overwrite) {
2989 get_block_func = ext4_get_block_write_nolock;
2990 } else {
2991 get_block_func = ext4_get_block_write;
2992 dio_flags = DIO_LOCKING;
2993 }
2994 ret = __blockdev_direct_IO(rw, iocb, inode,
2995 inode->i_sb->s_bdev, iov,
2996 offset, nr_segs,
2997 get_block_func,
2998 ext4_end_io_dio,
2999 NULL,
3000 dio_flags);
3001
3002 if (iocb->private)
3003 ext4_inode_aio_set(inode, NULL);
3004 /*
3005 * The io_end structure takes a reference to the inode, that
3006 * structure needs to be destroyed and the reference to the
3007 * inode need to be dropped, when IO is complete, even with 0
3008 * byte write, or failed.
3009 *
3010 * In the successful AIO DIO case, the io_end structure will
3011 * be destroyed and the reference to the inode will be dropped
3012 * after the end_io call back function is called.
3013 *
3014 * In the case there is 0 byte write, or error case, since VFS
3015 * direct IO won't invoke the end_io call back function, we
3016 * need to free the end_io structure here.
3017 */
3018 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3019 ext4_free_io_end(iocb->private);
3020 iocb->private = NULL;
3021 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3022 EXT4_STATE_DIO_UNWRITTEN)) {
3023 int err;
3024 /*
3025 * for non AIO case, since the IO is already
3026 * completed, we could do the conversion right here
3027 */
3028 err = ext4_convert_unwritten_extents(inode,
3029 offset, ret);
3030 if (err < 0)
3031 ret = err;
3032 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3033 }
4bd809db 3034
69c499d1
TT
3035retake_lock:
3036 /* take i_mutex locking again if we do a ovewrite dio */
3037 if (overwrite) {
3038 inode_dio_done(inode);
3039 up_read(&EXT4_I(inode)->i_data_sem);
3040 mutex_lock(&inode->i_mutex);
4c0425ff 3041 }
8d5d02e6 3042
69c499d1 3043 return ret;
4c0425ff
MC
3044}
3045
3046static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3047 const struct iovec *iov, loff_t offset,
3048 unsigned long nr_segs)
3049{
3050 struct file *file = iocb->ki_filp;
3051 struct inode *inode = file->f_mapping->host;
0562e0ba 3052 ssize_t ret;
4c0425ff 3053
84ebd795
TT
3054 /*
3055 * If we are doing data journalling we don't support O_DIRECT
3056 */
3057 if (ext4_should_journal_data(inode))
3058 return 0;
3059
46c7f254
TM
3060 /* Let buffer I/O handle the inline data case. */
3061 if (ext4_has_inline_data(inode))
3062 return 0;
3063
0562e0ba 3064 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3065 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3066 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3067 else
3068 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3069 trace_ext4_direct_IO_exit(inode, offset,
3070 iov_length(iov, nr_segs), rw, ret);
3071 return ret;
4c0425ff
MC
3072}
3073
ac27a0ec 3074/*
617ba13b 3075 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3076 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3077 * much here because ->set_page_dirty is called under VFS locks. The page is
3078 * not necessarily locked.
3079 *
3080 * We cannot just dirty the page and leave attached buffers clean, because the
3081 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3082 * or jbddirty because all the journalling code will explode.
3083 *
3084 * So what we do is to mark the page "pending dirty" and next time writepage
3085 * is called, propagate that into the buffers appropriately.
3086 */
617ba13b 3087static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3088{
3089 SetPageChecked(page);
3090 return __set_page_dirty_nobuffers(page);
3091}
3092
617ba13b 3093static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3094 .readpage = ext4_readpage,
3095 .readpages = ext4_readpages,
43ce1d23 3096 .writepage = ext4_writepage,
8ab22b9a
HH
3097 .write_begin = ext4_write_begin,
3098 .write_end = ext4_ordered_write_end,
3099 .bmap = ext4_bmap,
3100 .invalidatepage = ext4_invalidatepage,
3101 .releasepage = ext4_releasepage,
3102 .direct_IO = ext4_direct_IO,
3103 .migratepage = buffer_migrate_page,
3104 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3105 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3106};
3107
617ba13b 3108static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3109 .readpage = ext4_readpage,
3110 .readpages = ext4_readpages,
43ce1d23 3111 .writepage = ext4_writepage,
8ab22b9a
HH
3112 .write_begin = ext4_write_begin,
3113 .write_end = ext4_writeback_write_end,
3114 .bmap = ext4_bmap,
3115 .invalidatepage = ext4_invalidatepage,
3116 .releasepage = ext4_releasepage,
3117 .direct_IO = ext4_direct_IO,
3118 .migratepage = buffer_migrate_page,
3119 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3120 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3121};
3122
617ba13b 3123static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3124 .readpage = ext4_readpage,
3125 .readpages = ext4_readpages,
43ce1d23 3126 .writepage = ext4_writepage,
8ab22b9a
HH
3127 .write_begin = ext4_write_begin,
3128 .write_end = ext4_journalled_write_end,
3129 .set_page_dirty = ext4_journalled_set_page_dirty,
3130 .bmap = ext4_bmap,
4520fb3c 3131 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3132 .releasepage = ext4_releasepage,
84ebd795 3133 .direct_IO = ext4_direct_IO,
8ab22b9a 3134 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3135 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3136};
3137
64769240 3138static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3139 .readpage = ext4_readpage,
3140 .readpages = ext4_readpages,
43ce1d23 3141 .writepage = ext4_writepage,
8ab22b9a 3142 .writepages = ext4_da_writepages,
8ab22b9a
HH
3143 .write_begin = ext4_da_write_begin,
3144 .write_end = ext4_da_write_end,
3145 .bmap = ext4_bmap,
3146 .invalidatepage = ext4_da_invalidatepage,
3147 .releasepage = ext4_releasepage,
3148 .direct_IO = ext4_direct_IO,
3149 .migratepage = buffer_migrate_page,
3150 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3151 .error_remove_page = generic_error_remove_page,
64769240
AT
3152};
3153
617ba13b 3154void ext4_set_aops(struct inode *inode)
ac27a0ec 3155{
3d2b1582
LC
3156 switch (ext4_inode_journal_mode(inode)) {
3157 case EXT4_INODE_ORDERED_DATA_MODE:
3158 if (test_opt(inode->i_sb, DELALLOC))
3159 inode->i_mapping->a_ops = &ext4_da_aops;
3160 else
3161 inode->i_mapping->a_ops = &ext4_ordered_aops;
3162 break;
3163 case EXT4_INODE_WRITEBACK_DATA_MODE:
3164 if (test_opt(inode->i_sb, DELALLOC))
3165 inode->i_mapping->a_ops = &ext4_da_aops;
3166 else
3167 inode->i_mapping->a_ops = &ext4_writeback_aops;
3168 break;
3169 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3170 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3171 break;
3172 default:
3173 BUG();
3174 }
ac27a0ec
DK
3175}
3176
4e96b2db
AH
3177
3178/*
3179 * ext4_discard_partial_page_buffers()
3180 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3181 * This function finds and locks the page containing the offset
3182 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3183 * Calling functions that already have the page locked should call
3184 * ext4_discard_partial_page_buffers_no_lock directly.
3185 */
3186int ext4_discard_partial_page_buffers(handle_t *handle,
3187 struct address_space *mapping, loff_t from,
3188 loff_t length, int flags)
3189{
3190 struct inode *inode = mapping->host;
3191 struct page *page;
3192 int err = 0;
3193
3194 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3195 mapping_gfp_mask(mapping) & ~__GFP_FS);
3196 if (!page)
5129d05f 3197 return -ENOMEM;
4e96b2db
AH
3198
3199 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3200 from, length, flags);
3201
3202 unlock_page(page);
3203 page_cache_release(page);
3204 return err;
3205}
3206
3207/*
3208 * ext4_discard_partial_page_buffers_no_lock()
3209 * Zeros a page range of length 'length' starting from offset 'from'.
3210 * Buffer heads that correspond to the block aligned regions of the
3211 * zeroed range will be unmapped. Unblock aligned regions
3212 * will have the corresponding buffer head mapped if needed so that
3213 * that region of the page can be updated with the partial zero out.
3214 *
3215 * This function assumes that the page has already been locked. The
3216 * The range to be discarded must be contained with in the given page.
3217 * If the specified range exceeds the end of the page it will be shortened
3218 * to the end of the page that corresponds to 'from'. This function is
3219 * appropriate for updating a page and it buffer heads to be unmapped and
3220 * zeroed for blocks that have been either released, or are going to be
3221 * released.
3222 *
3223 * handle: The journal handle
3224 * inode: The files inode
3225 * page: A locked page that contains the offset "from"
4907cb7b 3226 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3227 * to begin discarding
3228 * len: The length of bytes to discard
3229 * flags: Optional flags that may be used:
3230 *
3231 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3232 * Only zero the regions of the page whose buffer heads
3233 * have already been unmapped. This flag is appropriate
4907cb7b 3234 * for updating the contents of a page whose blocks may
4e96b2db
AH
3235 * have already been released, and we only want to zero
3236 * out the regions that correspond to those released blocks.
3237 *
4907cb7b 3238 * Returns zero on success or negative on failure.
4e96b2db 3239 */
5f163cc7 3240static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3241 struct inode *inode, struct page *page, loff_t from,
3242 loff_t length, int flags)
3243{
3244 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3245 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3246 unsigned int blocksize, max, pos;
4e96b2db
AH
3247 ext4_lblk_t iblock;
3248 struct buffer_head *bh;
3249 int err = 0;
3250
3251 blocksize = inode->i_sb->s_blocksize;
3252 max = PAGE_CACHE_SIZE - offset;
3253
3254 if (index != page->index)
3255 return -EINVAL;
3256
3257 /*
3258 * correct length if it does not fall between
3259 * 'from' and the end of the page
3260 */
3261 if (length > max || length < 0)
3262 length = max;
3263
3264 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3265
093e6e36
YY
3266 if (!page_has_buffers(page))
3267 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3268
3269 /* Find the buffer that contains "offset" */
3270 bh = page_buffers(page);
3271 pos = blocksize;
3272 while (offset >= pos) {
3273 bh = bh->b_this_page;
3274 iblock++;
3275 pos += blocksize;
3276 }
3277
3278 pos = offset;
3279 while (pos < offset + length) {
e260daf2
YY
3280 unsigned int end_of_block, range_to_discard;
3281
4e96b2db
AH
3282 err = 0;
3283
3284 /* The length of space left to zero and unmap */
3285 range_to_discard = offset + length - pos;
3286
3287 /* The length of space until the end of the block */
3288 end_of_block = blocksize - (pos & (blocksize-1));
3289
3290 /*
3291 * Do not unmap or zero past end of block
3292 * for this buffer head
3293 */
3294 if (range_to_discard > end_of_block)
3295 range_to_discard = end_of_block;
3296
3297
3298 /*
3299 * Skip this buffer head if we are only zeroing unampped
3300 * regions of the page
3301 */
3302 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3303 buffer_mapped(bh))
3304 goto next;
3305
3306 /* If the range is block aligned, unmap */
3307 if (range_to_discard == blocksize) {
3308 clear_buffer_dirty(bh);
3309 bh->b_bdev = NULL;
3310 clear_buffer_mapped(bh);
3311 clear_buffer_req(bh);
3312 clear_buffer_new(bh);
3313 clear_buffer_delay(bh);
3314 clear_buffer_unwritten(bh);
3315 clear_buffer_uptodate(bh);
3316 zero_user(page, pos, range_to_discard);
3317 BUFFER_TRACE(bh, "Buffer discarded");
3318 goto next;
3319 }
3320
3321 /*
3322 * If this block is not completely contained in the range
3323 * to be discarded, then it is not going to be released. Because
3324 * we need to keep this block, we need to make sure this part
3325 * of the page is uptodate before we modify it by writeing
3326 * partial zeros on it.
3327 */
3328 if (!buffer_mapped(bh)) {
3329 /*
3330 * Buffer head must be mapped before we can read
3331 * from the block
3332 */
3333 BUFFER_TRACE(bh, "unmapped");
3334 ext4_get_block(inode, iblock, bh, 0);
3335 /* unmapped? It's a hole - nothing to do */
3336 if (!buffer_mapped(bh)) {
3337 BUFFER_TRACE(bh, "still unmapped");
3338 goto next;
3339 }
3340 }
3341
3342 /* Ok, it's mapped. Make sure it's up-to-date */
3343 if (PageUptodate(page))
3344 set_buffer_uptodate(bh);
3345
3346 if (!buffer_uptodate(bh)) {
3347 err = -EIO;
3348 ll_rw_block(READ, 1, &bh);
3349 wait_on_buffer(bh);
3350 /* Uhhuh. Read error. Complain and punt.*/
3351 if (!buffer_uptodate(bh))
3352 goto next;
3353 }
3354
3355 if (ext4_should_journal_data(inode)) {
3356 BUFFER_TRACE(bh, "get write access");
3357 err = ext4_journal_get_write_access(handle, bh);
3358 if (err)
3359 goto next;
3360 }
3361
3362 zero_user(page, pos, range_to_discard);
3363
3364 err = 0;
3365 if (ext4_should_journal_data(inode)) {
3366 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3367 } else
4e96b2db 3368 mark_buffer_dirty(bh);
4e96b2db
AH
3369
3370 BUFFER_TRACE(bh, "Partial buffer zeroed");
3371next:
3372 bh = bh->b_this_page;
3373 iblock++;
3374 pos += range_to_discard;
3375 }
3376
3377 return err;
3378}
3379
91ef4caf
DG
3380int ext4_can_truncate(struct inode *inode)
3381{
91ef4caf
DG
3382 if (S_ISREG(inode->i_mode))
3383 return 1;
3384 if (S_ISDIR(inode->i_mode))
3385 return 1;
3386 if (S_ISLNK(inode->i_mode))
3387 return !ext4_inode_is_fast_symlink(inode);
3388 return 0;
3389}
3390
a4bb6b64
AH
3391/*
3392 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3393 * associated with the given offset and length
3394 *
3395 * @inode: File inode
3396 * @offset: The offset where the hole will begin
3397 * @len: The length of the hole
3398 *
4907cb7b 3399 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3400 */
3401
3402int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3403{
3404 struct inode *inode = file->f_path.dentry->d_inode;
3405 if (!S_ISREG(inode->i_mode))
73355192 3406 return -EOPNOTSUPP;
a4bb6b64 3407
8bad6fc8
ZL
3408 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3409 return ext4_ind_punch_hole(file, offset, length);
a4bb6b64 3410
bab08ab9
TT
3411 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3412 /* TODO: Add support for bigalloc file systems */
73355192 3413 return -EOPNOTSUPP;
bab08ab9
TT
3414 }
3415
aaddea81
ZL
3416 trace_ext4_punch_hole(inode, offset, length);
3417
a4bb6b64
AH
3418 return ext4_ext_punch_hole(file, offset, length);
3419}
3420
ac27a0ec 3421/*
617ba13b 3422 * ext4_truncate()
ac27a0ec 3423 *
617ba13b
MC
3424 * We block out ext4_get_block() block instantiations across the entire
3425 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3426 * simultaneously on behalf of the same inode.
3427 *
42b2aa86 3428 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3429 * is one core, guiding principle: the file's tree must always be consistent on
3430 * disk. We must be able to restart the truncate after a crash.
3431 *
3432 * The file's tree may be transiently inconsistent in memory (although it
3433 * probably isn't), but whenever we close off and commit a journal transaction,
3434 * the contents of (the filesystem + the journal) must be consistent and
3435 * restartable. It's pretty simple, really: bottom up, right to left (although
3436 * left-to-right works OK too).
3437 *
3438 * Note that at recovery time, journal replay occurs *before* the restart of
3439 * truncate against the orphan inode list.
3440 *
3441 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3442 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3443 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3444 * ext4_truncate() to have another go. So there will be instantiated blocks
3445 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3446 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3447 * ext4_truncate() run will find them and release them.
ac27a0ec 3448 */
617ba13b 3449void ext4_truncate(struct inode *inode)
ac27a0ec 3450{
0562e0ba
JZ
3451 trace_ext4_truncate_enter(inode);
3452
91ef4caf 3453 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3454 return;
3455
12e9b892 3456 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3457
5534fb5b 3458 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3459 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3460
aef1c851
TM
3461 if (ext4_has_inline_data(inode)) {
3462 int has_inline = 1;
3463
3464 ext4_inline_data_truncate(inode, &has_inline);
3465 if (has_inline)
3466 return;
3467 }
3468
ff9893dc 3469 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3470 ext4_ext_truncate(inode);
ff9893dc
AG
3471 else
3472 ext4_ind_truncate(inode);
ac27a0ec 3473
0562e0ba 3474 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3475}
3476
ac27a0ec 3477/*
617ba13b 3478 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3479 * underlying buffer_head on success. If 'in_mem' is true, we have all
3480 * data in memory that is needed to recreate the on-disk version of this
3481 * inode.
3482 */
617ba13b
MC
3483static int __ext4_get_inode_loc(struct inode *inode,
3484 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3485{
240799cd
TT
3486 struct ext4_group_desc *gdp;
3487 struct buffer_head *bh;
3488 struct super_block *sb = inode->i_sb;
3489 ext4_fsblk_t block;
3490 int inodes_per_block, inode_offset;
3491
3a06d778 3492 iloc->bh = NULL;
240799cd
TT
3493 if (!ext4_valid_inum(sb, inode->i_ino))
3494 return -EIO;
ac27a0ec 3495
240799cd
TT
3496 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3497 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3498 if (!gdp)
ac27a0ec
DK
3499 return -EIO;
3500
240799cd
TT
3501 /*
3502 * Figure out the offset within the block group inode table
3503 */
00d09882 3504 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3505 inode_offset = ((inode->i_ino - 1) %
3506 EXT4_INODES_PER_GROUP(sb));
3507 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3508 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3509
3510 bh = sb_getblk(sb, block);
aebf0243 3511 if (unlikely(!bh))
860d21e2 3512 return -ENOMEM;
ac27a0ec
DK
3513 if (!buffer_uptodate(bh)) {
3514 lock_buffer(bh);
9c83a923
HK
3515
3516 /*
3517 * If the buffer has the write error flag, we have failed
3518 * to write out another inode in the same block. In this
3519 * case, we don't have to read the block because we may
3520 * read the old inode data successfully.
3521 */
3522 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3523 set_buffer_uptodate(bh);
3524
ac27a0ec
DK
3525 if (buffer_uptodate(bh)) {
3526 /* someone brought it uptodate while we waited */
3527 unlock_buffer(bh);
3528 goto has_buffer;
3529 }
3530
3531 /*
3532 * If we have all information of the inode in memory and this
3533 * is the only valid inode in the block, we need not read the
3534 * block.
3535 */
3536 if (in_mem) {
3537 struct buffer_head *bitmap_bh;
240799cd 3538 int i, start;
ac27a0ec 3539
240799cd 3540 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3541
240799cd
TT
3542 /* Is the inode bitmap in cache? */
3543 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3544 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3545 goto make_io;
3546
3547 /*
3548 * If the inode bitmap isn't in cache then the
3549 * optimisation may end up performing two reads instead
3550 * of one, so skip it.
3551 */
3552 if (!buffer_uptodate(bitmap_bh)) {
3553 brelse(bitmap_bh);
3554 goto make_io;
3555 }
240799cd 3556 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3557 if (i == inode_offset)
3558 continue;
617ba13b 3559 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3560 break;
3561 }
3562 brelse(bitmap_bh);
240799cd 3563 if (i == start + inodes_per_block) {
ac27a0ec
DK
3564 /* all other inodes are free, so skip I/O */
3565 memset(bh->b_data, 0, bh->b_size);
3566 set_buffer_uptodate(bh);
3567 unlock_buffer(bh);
3568 goto has_buffer;
3569 }
3570 }
3571
3572make_io:
240799cd
TT
3573 /*
3574 * If we need to do any I/O, try to pre-readahead extra
3575 * blocks from the inode table.
3576 */
3577 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3578 ext4_fsblk_t b, end, table;
3579 unsigned num;
3580
3581 table = ext4_inode_table(sb, gdp);
b713a5ec 3582 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3583 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3584 if (table > b)
3585 b = table;
3586 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3587 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3588 if (ext4_has_group_desc_csum(sb))
560671a0 3589 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3590 table += num / inodes_per_block;
3591 if (end > table)
3592 end = table;
3593 while (b <= end)
3594 sb_breadahead(sb, b++);
3595 }
3596
ac27a0ec
DK
3597 /*
3598 * There are other valid inodes in the buffer, this inode
3599 * has in-inode xattrs, or we don't have this inode in memory.
3600 * Read the block from disk.
3601 */
0562e0ba 3602 trace_ext4_load_inode(inode);
ac27a0ec
DK
3603 get_bh(bh);
3604 bh->b_end_io = end_buffer_read_sync;
65299a3b 3605 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3606 wait_on_buffer(bh);
3607 if (!buffer_uptodate(bh)) {
c398eda0
TT
3608 EXT4_ERROR_INODE_BLOCK(inode, block,
3609 "unable to read itable block");
ac27a0ec
DK
3610 brelse(bh);
3611 return -EIO;
3612 }
3613 }
3614has_buffer:
3615 iloc->bh = bh;
3616 return 0;
3617}
3618
617ba13b 3619int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3620{
3621 /* We have all inode data except xattrs in memory here. */
617ba13b 3622 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3623 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3624}
3625
617ba13b 3626void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3627{
617ba13b 3628 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3629
3630 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3631 if (flags & EXT4_SYNC_FL)
ac27a0ec 3632 inode->i_flags |= S_SYNC;
617ba13b 3633 if (flags & EXT4_APPEND_FL)
ac27a0ec 3634 inode->i_flags |= S_APPEND;
617ba13b 3635 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3636 inode->i_flags |= S_IMMUTABLE;
617ba13b 3637 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3638 inode->i_flags |= S_NOATIME;
617ba13b 3639 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3640 inode->i_flags |= S_DIRSYNC;
3641}
3642
ff9ddf7e
JK
3643/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3644void ext4_get_inode_flags(struct ext4_inode_info *ei)
3645{
84a8dce2
DM
3646 unsigned int vfs_fl;
3647 unsigned long old_fl, new_fl;
3648
3649 do {
3650 vfs_fl = ei->vfs_inode.i_flags;
3651 old_fl = ei->i_flags;
3652 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3653 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3654 EXT4_DIRSYNC_FL);
3655 if (vfs_fl & S_SYNC)
3656 new_fl |= EXT4_SYNC_FL;
3657 if (vfs_fl & S_APPEND)
3658 new_fl |= EXT4_APPEND_FL;
3659 if (vfs_fl & S_IMMUTABLE)
3660 new_fl |= EXT4_IMMUTABLE_FL;
3661 if (vfs_fl & S_NOATIME)
3662 new_fl |= EXT4_NOATIME_FL;
3663 if (vfs_fl & S_DIRSYNC)
3664 new_fl |= EXT4_DIRSYNC_FL;
3665 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3666}
de9a55b8 3667
0fc1b451 3668static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3669 struct ext4_inode_info *ei)
0fc1b451
AK
3670{
3671 blkcnt_t i_blocks ;
8180a562
AK
3672 struct inode *inode = &(ei->vfs_inode);
3673 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3674
3675 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3676 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3677 /* we are using combined 48 bit field */
3678 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3679 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3680 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3681 /* i_blocks represent file system block size */
3682 return i_blocks << (inode->i_blkbits - 9);
3683 } else {
3684 return i_blocks;
3685 }
0fc1b451
AK
3686 } else {
3687 return le32_to_cpu(raw_inode->i_blocks_lo);
3688 }
3689}
ff9ddf7e 3690
152a7b0a
TM
3691static inline void ext4_iget_extra_inode(struct inode *inode,
3692 struct ext4_inode *raw_inode,
3693 struct ext4_inode_info *ei)
3694{
3695 __le32 *magic = (void *)raw_inode +
3696 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3697 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3698 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3699 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3700 } else
3701 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3702}
3703
1d1fe1ee 3704struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3705{
617ba13b
MC
3706 struct ext4_iloc iloc;
3707 struct ext4_inode *raw_inode;
1d1fe1ee 3708 struct ext4_inode_info *ei;
1d1fe1ee 3709 struct inode *inode;
b436b9be 3710 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3711 long ret;
ac27a0ec 3712 int block;
08cefc7a
EB
3713 uid_t i_uid;
3714 gid_t i_gid;
ac27a0ec 3715
1d1fe1ee
DH
3716 inode = iget_locked(sb, ino);
3717 if (!inode)
3718 return ERR_PTR(-ENOMEM);
3719 if (!(inode->i_state & I_NEW))
3720 return inode;
3721
3722 ei = EXT4_I(inode);
7dc57615 3723 iloc.bh = NULL;
ac27a0ec 3724
1d1fe1ee
DH
3725 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3726 if (ret < 0)
ac27a0ec 3727 goto bad_inode;
617ba13b 3728 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3729
3730 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3731 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3732 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3733 EXT4_INODE_SIZE(inode->i_sb)) {
3734 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3735 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3736 EXT4_INODE_SIZE(inode->i_sb));
3737 ret = -EIO;
3738 goto bad_inode;
3739 }
3740 } else
3741 ei->i_extra_isize = 0;
3742
3743 /* Precompute checksum seed for inode metadata */
3744 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3745 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3747 __u32 csum;
3748 __le32 inum = cpu_to_le32(inode->i_ino);
3749 __le32 gen = raw_inode->i_generation;
3750 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3751 sizeof(inum));
3752 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3753 sizeof(gen));
3754 }
3755
3756 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3757 EXT4_ERROR_INODE(inode, "checksum invalid");
3758 ret = -EIO;
3759 goto bad_inode;
3760 }
3761
ac27a0ec 3762 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3763 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3764 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3765 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3766 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3767 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3768 }
08cefc7a
EB
3769 i_uid_write(inode, i_uid);
3770 i_gid_write(inode, i_gid);
bfe86848 3771 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3772
353eb83c 3773 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3774 ei->i_inline_off = 0;
ac27a0ec
DK
3775 ei->i_dir_start_lookup = 0;
3776 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3777 /* We now have enough fields to check if the inode was active or not.
3778 * This is needed because nfsd might try to access dead inodes
3779 * the test is that same one that e2fsck uses
3780 * NeilBrown 1999oct15
3781 */
3782 if (inode->i_nlink == 0) {
3783 if (inode->i_mode == 0 ||
617ba13b 3784 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3785 /* this inode is deleted */
1d1fe1ee 3786 ret = -ESTALE;
ac27a0ec
DK
3787 goto bad_inode;
3788 }
3789 /* The only unlinked inodes we let through here have
3790 * valid i_mode and are being read by the orphan
3791 * recovery code: that's fine, we're about to complete
3792 * the process of deleting those. */
3793 }
ac27a0ec 3794 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3795 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3796 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3797 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3798 ei->i_file_acl |=
3799 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3800 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3801 ei->i_disksize = inode->i_size;
a9e7f447
DM
3802#ifdef CONFIG_QUOTA
3803 ei->i_reserved_quota = 0;
3804#endif
ac27a0ec
DK
3805 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3806 ei->i_block_group = iloc.block_group;
a4912123 3807 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3808 /*
3809 * NOTE! The in-memory inode i_data array is in little-endian order
3810 * even on big-endian machines: we do NOT byteswap the block numbers!
3811 */
617ba13b 3812 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3813 ei->i_data[block] = raw_inode->i_block[block];
3814 INIT_LIST_HEAD(&ei->i_orphan);
3815
b436b9be
JK
3816 /*
3817 * Set transaction id's of transactions that have to be committed
3818 * to finish f[data]sync. We set them to currently running transaction
3819 * as we cannot be sure that the inode or some of its metadata isn't
3820 * part of the transaction - the inode could have been reclaimed and
3821 * now it is reread from disk.
3822 */
3823 if (journal) {
3824 transaction_t *transaction;
3825 tid_t tid;
3826
a931da6a 3827 read_lock(&journal->j_state_lock);
b436b9be
JK
3828 if (journal->j_running_transaction)
3829 transaction = journal->j_running_transaction;
3830 else
3831 transaction = journal->j_committing_transaction;
3832 if (transaction)
3833 tid = transaction->t_tid;
3834 else
3835 tid = journal->j_commit_sequence;
a931da6a 3836 read_unlock(&journal->j_state_lock);
b436b9be
JK
3837 ei->i_sync_tid = tid;
3838 ei->i_datasync_tid = tid;
3839 }
3840
0040d987 3841 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3842 if (ei->i_extra_isize == 0) {
3843 /* The extra space is currently unused. Use it. */
617ba13b
MC
3844 ei->i_extra_isize = sizeof(struct ext4_inode) -
3845 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 3846 } else {
152a7b0a 3847 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 3848 }
814525f4 3849 }
ac27a0ec 3850
ef7f3835
KS
3851 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3852 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3853 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3854 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3855
25ec56b5
JNC
3856 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3857 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3858 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3859 inode->i_version |=
3860 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3861 }
3862
c4b5a614 3863 ret = 0;
485c26ec 3864 if (ei->i_file_acl &&
1032988c 3865 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3866 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3867 ei->i_file_acl);
485c26ec
TT
3868 ret = -EIO;
3869 goto bad_inode;
f19d5870
TM
3870 } else if (!ext4_has_inline_data(inode)) {
3871 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3872 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3873 (S_ISLNK(inode->i_mode) &&
3874 !ext4_inode_is_fast_symlink(inode))))
3875 /* Validate extent which is part of inode */
3876 ret = ext4_ext_check_inode(inode);
3877 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3878 (S_ISLNK(inode->i_mode) &&
3879 !ext4_inode_is_fast_symlink(inode))) {
3880 /* Validate block references which are part of inode */
3881 ret = ext4_ind_check_inode(inode);
3882 }
fe2c8191 3883 }
567f3e9a 3884 if (ret)
de9a55b8 3885 goto bad_inode;
7a262f7c 3886
ac27a0ec 3887 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3888 inode->i_op = &ext4_file_inode_operations;
3889 inode->i_fop = &ext4_file_operations;
3890 ext4_set_aops(inode);
ac27a0ec 3891 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3892 inode->i_op = &ext4_dir_inode_operations;
3893 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3894 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3895 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3896 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3897 nd_terminate_link(ei->i_data, inode->i_size,
3898 sizeof(ei->i_data) - 1);
3899 } else {
617ba13b
MC
3900 inode->i_op = &ext4_symlink_inode_operations;
3901 ext4_set_aops(inode);
ac27a0ec 3902 }
563bdd61
TT
3903 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3904 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3905 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3906 if (raw_inode->i_block[0])
3907 init_special_inode(inode, inode->i_mode,
3908 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3909 else
3910 init_special_inode(inode, inode->i_mode,
3911 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3912 } else {
563bdd61 3913 ret = -EIO;
24676da4 3914 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3915 goto bad_inode;
ac27a0ec 3916 }
af5bc92d 3917 brelse(iloc.bh);
617ba13b 3918 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3919 unlock_new_inode(inode);
3920 return inode;
ac27a0ec
DK
3921
3922bad_inode:
567f3e9a 3923 brelse(iloc.bh);
1d1fe1ee
DH
3924 iget_failed(inode);
3925 return ERR_PTR(ret);
ac27a0ec
DK
3926}
3927
0fc1b451
AK
3928static int ext4_inode_blocks_set(handle_t *handle,
3929 struct ext4_inode *raw_inode,
3930 struct ext4_inode_info *ei)
3931{
3932 struct inode *inode = &(ei->vfs_inode);
3933 u64 i_blocks = inode->i_blocks;
3934 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3935
3936 if (i_blocks <= ~0U) {
3937 /*
4907cb7b 3938 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
3939 * as multiple of 512 bytes
3940 */
8180a562 3941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3942 raw_inode->i_blocks_high = 0;
84a8dce2 3943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3944 return 0;
3945 }
3946 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3947 return -EFBIG;
3948
3949 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3950 /*
3951 * i_blocks can be represented in a 48 bit variable
3952 * as multiple of 512 bytes
3953 */
8180a562 3954 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3955 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3956 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3957 } else {
84a8dce2 3958 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3959 /* i_block is stored in file system block size */
3960 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3961 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3962 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3963 }
f287a1a5 3964 return 0;
0fc1b451
AK
3965}
3966
ac27a0ec
DK
3967/*
3968 * Post the struct inode info into an on-disk inode location in the
3969 * buffer-cache. This gobbles the caller's reference to the
3970 * buffer_head in the inode location struct.
3971 *
3972 * The caller must have write access to iloc->bh.
3973 */
617ba13b 3974static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3975 struct inode *inode,
830156c7 3976 struct ext4_iloc *iloc)
ac27a0ec 3977{
617ba13b
MC
3978 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3979 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3980 struct buffer_head *bh = iloc->bh;
3981 int err = 0, rc, block;
b71fc079 3982 int need_datasync = 0;
08cefc7a
EB
3983 uid_t i_uid;
3984 gid_t i_gid;
ac27a0ec
DK
3985
3986 /* For fields not not tracking in the in-memory inode,
3987 * initialise them to zero for new inodes. */
19f5fb7a 3988 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 3989 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3990
ff9ddf7e 3991 ext4_get_inode_flags(ei);
ac27a0ec 3992 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
3993 i_uid = i_uid_read(inode);
3994 i_gid = i_gid_read(inode);
af5bc92d 3995 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3996 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3997 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
3998/*
3999 * Fix up interoperability with old kernels. Otherwise, old inodes get
4000 * re-used with the upper 16 bits of the uid/gid intact
4001 */
af5bc92d 4002 if (!ei->i_dtime) {
ac27a0ec 4003 raw_inode->i_uid_high =
08cefc7a 4004 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4005 raw_inode->i_gid_high =
08cefc7a 4006 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4007 } else {
4008 raw_inode->i_uid_high = 0;
4009 raw_inode->i_gid_high = 0;
4010 }
4011 } else {
08cefc7a
EB
4012 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4013 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4014 raw_inode->i_uid_high = 0;
4015 raw_inode->i_gid_high = 0;
4016 }
4017 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4018
4019 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4020 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4021 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4022 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4023
0fc1b451
AK
4024 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4025 goto out_brelse;
ac27a0ec 4026 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4027 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4028 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4029 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4030 raw_inode->i_file_acl_high =
4031 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4032 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4033 if (ei->i_disksize != ext4_isize(raw_inode)) {
4034 ext4_isize_set(raw_inode, ei->i_disksize);
4035 need_datasync = 1;
4036 }
a48380f7
AK
4037 if (ei->i_disksize > 0x7fffffffULL) {
4038 struct super_block *sb = inode->i_sb;
4039 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4040 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4041 EXT4_SB(sb)->s_es->s_rev_level ==
4042 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4043 /* If this is the first large file
4044 * created, add a flag to the superblock.
4045 */
4046 err = ext4_journal_get_write_access(handle,
4047 EXT4_SB(sb)->s_sbh);
4048 if (err)
4049 goto out_brelse;
4050 ext4_update_dynamic_rev(sb);
4051 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4052 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4053 ext4_handle_sync(handle);
b50924c2 4054 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4055 }
4056 }
4057 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4058 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4059 if (old_valid_dev(inode->i_rdev)) {
4060 raw_inode->i_block[0] =
4061 cpu_to_le32(old_encode_dev(inode->i_rdev));
4062 raw_inode->i_block[1] = 0;
4063 } else {
4064 raw_inode->i_block[0] = 0;
4065 raw_inode->i_block[1] =
4066 cpu_to_le32(new_encode_dev(inode->i_rdev));
4067 raw_inode->i_block[2] = 0;
4068 }
f19d5870 4069 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4070 for (block = 0; block < EXT4_N_BLOCKS; block++)
4071 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4072 }
ac27a0ec 4073
25ec56b5
JNC
4074 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4075 if (ei->i_extra_isize) {
4076 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4077 raw_inode->i_version_hi =
4078 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4079 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4080 }
4081
814525f4
DW
4082 ext4_inode_csum_set(inode, raw_inode, ei);
4083
830156c7 4084 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4085 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4086 if (!err)
4087 err = rc;
19f5fb7a 4088 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4089
b71fc079 4090 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4091out_brelse:
af5bc92d 4092 brelse(bh);
617ba13b 4093 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4094 return err;
4095}
4096
4097/*
617ba13b 4098 * ext4_write_inode()
ac27a0ec
DK
4099 *
4100 * We are called from a few places:
4101 *
4102 * - Within generic_file_write() for O_SYNC files.
4103 * Here, there will be no transaction running. We wait for any running
4907cb7b 4104 * transaction to commit.
ac27a0ec
DK
4105 *
4106 * - Within sys_sync(), kupdate and such.
4107 * We wait on commit, if tol to.
4108 *
4109 * - Within prune_icache() (PF_MEMALLOC == true)
4110 * Here we simply return. We can't afford to block kswapd on the
4111 * journal commit.
4112 *
4113 * In all cases it is actually safe for us to return without doing anything,
4114 * because the inode has been copied into a raw inode buffer in
617ba13b 4115 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4116 * knfsd.
4117 *
4118 * Note that we are absolutely dependent upon all inode dirtiers doing the
4119 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4120 * which we are interested.
4121 *
4122 * It would be a bug for them to not do this. The code:
4123 *
4124 * mark_inode_dirty(inode)
4125 * stuff();
4126 * inode->i_size = expr;
4127 *
4128 * is in error because a kswapd-driven write_inode() could occur while
4129 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4130 * will no longer be on the superblock's dirty inode list.
4131 */
a9185b41 4132int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4133{
91ac6f43
FM
4134 int err;
4135
ac27a0ec
DK
4136 if (current->flags & PF_MEMALLOC)
4137 return 0;
4138
91ac6f43
FM
4139 if (EXT4_SB(inode->i_sb)->s_journal) {
4140 if (ext4_journal_current_handle()) {
4141 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4142 dump_stack();
4143 return -EIO;
4144 }
ac27a0ec 4145
a9185b41 4146 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4147 return 0;
4148
4149 err = ext4_force_commit(inode->i_sb);
4150 } else {
4151 struct ext4_iloc iloc;
ac27a0ec 4152
8b472d73 4153 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4154 if (err)
4155 return err;
a9185b41 4156 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4157 sync_dirty_buffer(iloc.bh);
4158 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4159 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4160 "IO error syncing inode");
830156c7
FM
4161 err = -EIO;
4162 }
fd2dd9fb 4163 brelse(iloc.bh);
91ac6f43
FM
4164 }
4165 return err;
ac27a0ec
DK
4166}
4167
53e87268
JK
4168/*
4169 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4170 * buffers that are attached to a page stradding i_size and are undergoing
4171 * commit. In that case we have to wait for commit to finish and try again.
4172 */
4173static void ext4_wait_for_tail_page_commit(struct inode *inode)
4174{
4175 struct page *page;
4176 unsigned offset;
4177 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4178 tid_t commit_tid = 0;
4179 int ret;
4180
4181 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4182 /*
4183 * All buffers in the last page remain valid? Then there's nothing to
4184 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4185 * blocksize case
4186 */
4187 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4188 return;
4189 while (1) {
4190 page = find_lock_page(inode->i_mapping,
4191 inode->i_size >> PAGE_CACHE_SHIFT);
4192 if (!page)
4193 return;
4194 ret = __ext4_journalled_invalidatepage(page, offset);
4195 unlock_page(page);
4196 page_cache_release(page);
4197 if (ret != -EBUSY)
4198 return;
4199 commit_tid = 0;
4200 read_lock(&journal->j_state_lock);
4201 if (journal->j_committing_transaction)
4202 commit_tid = journal->j_committing_transaction->t_tid;
4203 read_unlock(&journal->j_state_lock);
4204 if (commit_tid)
4205 jbd2_log_wait_commit(journal, commit_tid);
4206 }
4207}
4208
ac27a0ec 4209/*
617ba13b 4210 * ext4_setattr()
ac27a0ec
DK
4211 *
4212 * Called from notify_change.
4213 *
4214 * We want to trap VFS attempts to truncate the file as soon as
4215 * possible. In particular, we want to make sure that when the VFS
4216 * shrinks i_size, we put the inode on the orphan list and modify
4217 * i_disksize immediately, so that during the subsequent flushing of
4218 * dirty pages and freeing of disk blocks, we can guarantee that any
4219 * commit will leave the blocks being flushed in an unused state on
4220 * disk. (On recovery, the inode will get truncated and the blocks will
4221 * be freed, so we have a strong guarantee that no future commit will
4222 * leave these blocks visible to the user.)
4223 *
678aaf48
JK
4224 * Another thing we have to assure is that if we are in ordered mode
4225 * and inode is still attached to the committing transaction, we must
4226 * we start writeout of all the dirty pages which are being truncated.
4227 * This way we are sure that all the data written in the previous
4228 * transaction are already on disk (truncate waits for pages under
4229 * writeback).
4230 *
4231 * Called with inode->i_mutex down.
ac27a0ec 4232 */
617ba13b 4233int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4234{
4235 struct inode *inode = dentry->d_inode;
4236 int error, rc = 0;
3d287de3 4237 int orphan = 0;
ac27a0ec
DK
4238 const unsigned int ia_valid = attr->ia_valid;
4239
4240 error = inode_change_ok(inode, attr);
4241 if (error)
4242 return error;
4243
12755627 4244 if (is_quota_modification(inode, attr))
871a2931 4245 dquot_initialize(inode);
08cefc7a
EB
4246 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4247 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4248 handle_t *handle;
4249
4250 /* (user+group)*(old+new) structure, inode write (sb,
4251 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4252 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4253 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4254 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4255 if (IS_ERR(handle)) {
4256 error = PTR_ERR(handle);
4257 goto err_out;
4258 }
b43fa828 4259 error = dquot_transfer(inode, attr);
ac27a0ec 4260 if (error) {
617ba13b 4261 ext4_journal_stop(handle);
ac27a0ec
DK
4262 return error;
4263 }
4264 /* Update corresponding info in inode so that everything is in
4265 * one transaction */
4266 if (attr->ia_valid & ATTR_UID)
4267 inode->i_uid = attr->ia_uid;
4268 if (attr->ia_valid & ATTR_GID)
4269 inode->i_gid = attr->ia_gid;
617ba13b
MC
4270 error = ext4_mark_inode_dirty(handle, inode);
4271 ext4_journal_stop(handle);
ac27a0ec
DK
4272 }
4273
e2b46574 4274 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4275
12e9b892 4276 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4277 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4278
0c095c7f
TT
4279 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4280 return -EFBIG;
e2b46574
ES
4281 }
4282 }
4283
ac27a0ec 4284 if (S_ISREG(inode->i_mode) &&
c8d46e41 4285 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4286 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4287 handle_t *handle;
4288
9924a92a 4289 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4290 if (IS_ERR(handle)) {
4291 error = PTR_ERR(handle);
4292 goto err_out;
4293 }
3d287de3
DM
4294 if (ext4_handle_valid(handle)) {
4295 error = ext4_orphan_add(handle, inode);
4296 orphan = 1;
4297 }
617ba13b
MC
4298 EXT4_I(inode)->i_disksize = attr->ia_size;
4299 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4300 if (!error)
4301 error = rc;
617ba13b 4302 ext4_journal_stop(handle);
678aaf48
JK
4303
4304 if (ext4_should_order_data(inode)) {
4305 error = ext4_begin_ordered_truncate(inode,
4306 attr->ia_size);
4307 if (error) {
4308 /* Do as much error cleanup as possible */
9924a92a
TT
4309 handle = ext4_journal_start(inode,
4310 EXT4_HT_INODE, 3);
678aaf48
JK
4311 if (IS_ERR(handle)) {
4312 ext4_orphan_del(NULL, inode);
4313 goto err_out;
4314 }
4315 ext4_orphan_del(handle, inode);
3d287de3 4316 orphan = 0;
678aaf48
JK
4317 ext4_journal_stop(handle);
4318 goto err_out;
4319 }
4320 }
ac27a0ec
DK
4321 }
4322
072bd7ea 4323 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4324 if (attr->ia_size != inode->i_size) {
4325 loff_t oldsize = inode->i_size;
4326
4327 i_size_write(inode, attr->ia_size);
4328 /*
4329 * Blocks are going to be removed from the inode. Wait
4330 * for dio in flight. Temporarily disable
4331 * dioread_nolock to prevent livelock.
4332 */
1b65007e 4333 if (orphan) {
53e87268
JK
4334 if (!ext4_should_journal_data(inode)) {
4335 ext4_inode_block_unlocked_dio(inode);
4336 inode_dio_wait(inode);
4337 ext4_inode_resume_unlocked_dio(inode);
4338 } else
4339 ext4_wait_for_tail_page_commit(inode);
1b65007e 4340 }
53e87268
JK
4341 /*
4342 * Truncate pagecache after we've waited for commit
4343 * in data=journal mode to make pages freeable.
4344 */
4345 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4346 }
afcff5d8 4347 ext4_truncate(inode);
072bd7ea 4348 }
ac27a0ec 4349
1025774c
CH
4350 if (!rc) {
4351 setattr_copy(inode, attr);
4352 mark_inode_dirty(inode);
4353 }
4354
4355 /*
4356 * If the call to ext4_truncate failed to get a transaction handle at
4357 * all, we need to clean up the in-core orphan list manually.
4358 */
3d287de3 4359 if (orphan && inode->i_nlink)
617ba13b 4360 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4361
4362 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4363 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4364
4365err_out:
617ba13b 4366 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4367 if (!error)
4368 error = rc;
4369 return error;
4370}
4371
3e3398a0
MC
4372int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4373 struct kstat *stat)
4374{
4375 struct inode *inode;
4376 unsigned long delalloc_blocks;
4377
4378 inode = dentry->d_inode;
4379 generic_fillattr(inode, stat);
4380
4381 /*
4382 * We can't update i_blocks if the block allocation is delayed
4383 * otherwise in the case of system crash before the real block
4384 * allocation is done, we will have i_blocks inconsistent with
4385 * on-disk file blocks.
4386 * We always keep i_blocks updated together with real
4387 * allocation. But to not confuse with user, stat
4388 * will return the blocks that include the delayed allocation
4389 * blocks for this file.
4390 */
96607551
TM
4391 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4392 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4393
4394 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4395 return 0;
4396}
ac27a0ec 4397
a02908f1
MC
4398static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399{
12e9b892 4400 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4401 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4402 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4403}
ac51d837 4404
ac27a0ec 4405/*
a02908f1
MC
4406 * Account for index blocks, block groups bitmaps and block group
4407 * descriptor blocks if modify datablocks and index blocks
4408 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4409 *
a02908f1 4410 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4411 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4412 * they could still across block group boundary.
ac27a0ec 4413 *
a02908f1
MC
4414 * Also account for superblock, inode, quota and xattr blocks
4415 */
1f109d5a 4416static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4417{
8df9675f
TT
4418 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4419 int gdpblocks;
a02908f1
MC
4420 int idxblocks;
4421 int ret = 0;
4422
4423 /*
4424 * How many index blocks need to touch to modify nrblocks?
4425 * The "Chunk" flag indicating whether the nrblocks is
4426 * physically contiguous on disk
4427 *
4428 * For Direct IO and fallocate, they calls get_block to allocate
4429 * one single extent at a time, so they could set the "Chunk" flag
4430 */
4431 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4432
4433 ret = idxblocks;
4434
4435 /*
4436 * Now let's see how many group bitmaps and group descriptors need
4437 * to account
4438 */
4439 groups = idxblocks;
4440 if (chunk)
4441 groups += 1;
4442 else
4443 groups += nrblocks;
4444
4445 gdpblocks = groups;
8df9675f
TT
4446 if (groups > ngroups)
4447 groups = ngroups;
a02908f1
MC
4448 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4449 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4450
4451 /* bitmaps and block group descriptor blocks */
4452 ret += groups + gdpblocks;
4453
4454 /* Blocks for super block, inode, quota and xattr blocks */
4455 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4456
4457 return ret;
4458}
4459
4460/*
25985edc 4461 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4462 * the modification of a single pages into a single transaction,
4463 * which may include multiple chunks of block allocations.
ac27a0ec 4464 *
525f4ed8 4465 * This could be called via ext4_write_begin()
ac27a0ec 4466 *
525f4ed8 4467 * We need to consider the worse case, when
a02908f1 4468 * one new block per extent.
ac27a0ec 4469 */
a86c6181 4470int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4471{
617ba13b 4472 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4473 int ret;
4474
a02908f1 4475 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4476
a02908f1 4477 /* Account for data blocks for journalled mode */
617ba13b 4478 if (ext4_should_journal_data(inode))
a02908f1 4479 ret += bpp;
ac27a0ec
DK
4480 return ret;
4481}
f3bd1f3f
MC
4482
4483/*
4484 * Calculate the journal credits for a chunk of data modification.
4485 *
4486 * This is called from DIO, fallocate or whoever calling
79e83036 4487 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4488 *
4489 * journal buffers for data blocks are not included here, as DIO
4490 * and fallocate do no need to journal data buffers.
4491 */
4492int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4493{
4494 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4495}
4496
ac27a0ec 4497/*
617ba13b 4498 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4499 * Give this, we know that the caller already has write access to iloc->bh.
4500 */
617ba13b 4501int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4502 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4503{
4504 int err = 0;
4505
c64db50e 4506 if (IS_I_VERSION(inode))
25ec56b5
JNC
4507 inode_inc_iversion(inode);
4508
ac27a0ec
DK
4509 /* the do_update_inode consumes one bh->b_count */
4510 get_bh(iloc->bh);
4511
dab291af 4512 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4513 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4514 put_bh(iloc->bh);
4515 return err;
4516}
4517
4518/*
4519 * On success, We end up with an outstanding reference count against
4520 * iloc->bh. This _must_ be cleaned up later.
4521 */
4522
4523int
617ba13b
MC
4524ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4525 struct ext4_iloc *iloc)
ac27a0ec 4526{
0390131b
FM
4527 int err;
4528
4529 err = ext4_get_inode_loc(inode, iloc);
4530 if (!err) {
4531 BUFFER_TRACE(iloc->bh, "get_write_access");
4532 err = ext4_journal_get_write_access(handle, iloc->bh);
4533 if (err) {
4534 brelse(iloc->bh);
4535 iloc->bh = NULL;
ac27a0ec
DK
4536 }
4537 }
617ba13b 4538 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4539 return err;
4540}
4541
6dd4ee7c
KS
4542/*
4543 * Expand an inode by new_extra_isize bytes.
4544 * Returns 0 on success or negative error number on failure.
4545 */
1d03ec98
AK
4546static int ext4_expand_extra_isize(struct inode *inode,
4547 unsigned int new_extra_isize,
4548 struct ext4_iloc iloc,
4549 handle_t *handle)
6dd4ee7c
KS
4550{
4551 struct ext4_inode *raw_inode;
4552 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4553
4554 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4555 return 0;
4556
4557 raw_inode = ext4_raw_inode(&iloc);
4558
4559 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4560
4561 /* No extended attributes present */
19f5fb7a
TT
4562 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4563 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4564 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4565 new_extra_isize);
4566 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4567 return 0;
4568 }
4569
4570 /* try to expand with EAs present */
4571 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4572 raw_inode, handle);
4573}
4574
ac27a0ec
DK
4575/*
4576 * What we do here is to mark the in-core inode as clean with respect to inode
4577 * dirtiness (it may still be data-dirty).
4578 * This means that the in-core inode may be reaped by prune_icache
4579 * without having to perform any I/O. This is a very good thing,
4580 * because *any* task may call prune_icache - even ones which
4581 * have a transaction open against a different journal.
4582 *
4583 * Is this cheating? Not really. Sure, we haven't written the
4584 * inode out, but prune_icache isn't a user-visible syncing function.
4585 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4586 * we start and wait on commits.
ac27a0ec 4587 */
617ba13b 4588int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4589{
617ba13b 4590 struct ext4_iloc iloc;
6dd4ee7c
KS
4591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592 static unsigned int mnt_count;
4593 int err, ret;
ac27a0ec
DK
4594
4595 might_sleep();
7ff9c073 4596 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4597 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4598 if (ext4_handle_valid(handle) &&
4599 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4600 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4601 /*
4602 * We need extra buffer credits since we may write into EA block
4603 * with this same handle. If journal_extend fails, then it will
4604 * only result in a minor loss of functionality for that inode.
4605 * If this is felt to be critical, then e2fsck should be run to
4606 * force a large enough s_min_extra_isize.
4607 */
4608 if ((jbd2_journal_extend(handle,
4609 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4610 ret = ext4_expand_extra_isize(inode,
4611 sbi->s_want_extra_isize,
4612 iloc, handle);
4613 if (ret) {
19f5fb7a
TT
4614 ext4_set_inode_state(inode,
4615 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4616 if (mnt_count !=
4617 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4618 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4619 "Unable to expand inode %lu. Delete"
4620 " some EAs or run e2fsck.",
4621 inode->i_ino);
c1bddad9
AK
4622 mnt_count =
4623 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4624 }
4625 }
4626 }
4627 }
ac27a0ec 4628 if (!err)
617ba13b 4629 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4630 return err;
4631}
4632
4633/*
617ba13b 4634 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4635 *
4636 * We're really interested in the case where a file is being extended.
4637 * i_size has been changed by generic_commit_write() and we thus need
4638 * to include the updated inode in the current transaction.
4639 *
5dd4056d 4640 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4641 * are allocated to the file.
4642 *
4643 * If the inode is marked synchronous, we don't honour that here - doing
4644 * so would cause a commit on atime updates, which we don't bother doing.
4645 * We handle synchronous inodes at the highest possible level.
4646 */
aa385729 4647void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4648{
ac27a0ec
DK
4649 handle_t *handle;
4650
9924a92a 4651 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4652 if (IS_ERR(handle))
4653 goto out;
f3dc272f 4654
f3dc272f
CW
4655 ext4_mark_inode_dirty(handle, inode);
4656
617ba13b 4657 ext4_journal_stop(handle);
ac27a0ec
DK
4658out:
4659 return;
4660}
4661
4662#if 0
4663/*
4664 * Bind an inode's backing buffer_head into this transaction, to prevent
4665 * it from being flushed to disk early. Unlike
617ba13b 4666 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4667 * returns no iloc structure, so the caller needs to repeat the iloc
4668 * lookup to mark the inode dirty later.
4669 */
617ba13b 4670static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4671{
617ba13b 4672 struct ext4_iloc iloc;
ac27a0ec
DK
4673
4674 int err = 0;
4675 if (handle) {
617ba13b 4676 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4677 if (!err) {
4678 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4679 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4680 if (!err)
0390131b 4681 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4682 NULL,
0390131b 4683 iloc.bh);
ac27a0ec
DK
4684 brelse(iloc.bh);
4685 }
4686 }
617ba13b 4687 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4688 return err;
4689}
4690#endif
4691
617ba13b 4692int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4693{
4694 journal_t *journal;
4695 handle_t *handle;
4696 int err;
4697
4698 /*
4699 * We have to be very careful here: changing a data block's
4700 * journaling status dynamically is dangerous. If we write a
4701 * data block to the journal, change the status and then delete
4702 * that block, we risk forgetting to revoke the old log record
4703 * from the journal and so a subsequent replay can corrupt data.
4704 * So, first we make sure that the journal is empty and that
4705 * nobody is changing anything.
4706 */
4707
617ba13b 4708 journal = EXT4_JOURNAL(inode);
0390131b
FM
4709 if (!journal)
4710 return 0;
d699594d 4711 if (is_journal_aborted(journal))
ac27a0ec 4712 return -EROFS;
2aff57b0
YY
4713 /* We have to allocate physical blocks for delalloc blocks
4714 * before flushing journal. otherwise delalloc blocks can not
4715 * be allocated any more. even more truncate on delalloc blocks
4716 * could trigger BUG by flushing delalloc blocks in journal.
4717 * There is no delalloc block in non-journal data mode.
4718 */
4719 if (val && test_opt(inode->i_sb, DELALLOC)) {
4720 err = ext4_alloc_da_blocks(inode);
4721 if (err < 0)
4722 return err;
4723 }
ac27a0ec 4724
17335dcc
DM
4725 /* Wait for all existing dio workers */
4726 ext4_inode_block_unlocked_dio(inode);
4727 inode_dio_wait(inode);
4728
dab291af 4729 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4730
4731 /*
4732 * OK, there are no updates running now, and all cached data is
4733 * synced to disk. We are now in a completely consistent state
4734 * which doesn't have anything in the journal, and we know that
4735 * no filesystem updates are running, so it is safe to modify
4736 * the inode's in-core data-journaling state flag now.
4737 */
4738
4739 if (val)
12e9b892 4740 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4741 else {
4742 jbd2_journal_flush(journal);
12e9b892 4743 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4744 }
617ba13b 4745 ext4_set_aops(inode);
ac27a0ec 4746
dab291af 4747 jbd2_journal_unlock_updates(journal);
17335dcc 4748 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4749
4750 /* Finally we can mark the inode as dirty. */
4751
9924a92a 4752 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4753 if (IS_ERR(handle))
4754 return PTR_ERR(handle);
4755
617ba13b 4756 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4757 ext4_handle_sync(handle);
617ba13b
MC
4758 ext4_journal_stop(handle);
4759 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4760
4761 return err;
4762}
2e9ee850
AK
4763
4764static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765{
4766 return !buffer_mapped(bh);
4767}
4768
c2ec175c 4769int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4770{
c2ec175c 4771 struct page *page = vmf->page;
2e9ee850
AK
4772 loff_t size;
4773 unsigned long len;
9ea7df53 4774 int ret;
2e9ee850
AK
4775 struct file *file = vma->vm_file;
4776 struct inode *inode = file->f_path.dentry->d_inode;
4777 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4778 handle_t *handle;
4779 get_block_t *get_block;
4780 int retries = 0;
2e9ee850 4781
8e8ad8a5 4782 sb_start_pagefault(inode->i_sb);
041bbb6d 4783 file_update_time(vma->vm_file);
9ea7df53
JK
4784 /* Delalloc case is easy... */
4785 if (test_opt(inode->i_sb, DELALLOC) &&
4786 !ext4_should_journal_data(inode) &&
4787 !ext4_nonda_switch(inode->i_sb)) {
4788 do {
4789 ret = __block_page_mkwrite(vma, vmf,
4790 ext4_da_get_block_prep);
4791 } while (ret == -ENOSPC &&
4792 ext4_should_retry_alloc(inode->i_sb, &retries));
4793 goto out_ret;
2e9ee850 4794 }
0e499890
DW
4795
4796 lock_page(page);
9ea7df53
JK
4797 size = i_size_read(inode);
4798 /* Page got truncated from under us? */
4799 if (page->mapping != mapping || page_offset(page) > size) {
4800 unlock_page(page);
4801 ret = VM_FAULT_NOPAGE;
4802 goto out;
0e499890 4803 }
2e9ee850
AK
4804
4805 if (page->index == size >> PAGE_CACHE_SHIFT)
4806 len = size & ~PAGE_CACHE_MASK;
4807 else
4808 len = PAGE_CACHE_SIZE;
a827eaff 4809 /*
9ea7df53
JK
4810 * Return if we have all the buffers mapped. This avoids the need to do
4811 * journal_start/journal_stop which can block and take a long time
a827eaff 4812 */
2e9ee850 4813 if (page_has_buffers(page)) {
f19d5870
TM
4814 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4815 0, len, NULL,
4816 ext4_bh_unmapped)) {
9ea7df53
JK
4817 /* Wait so that we don't change page under IO */
4818 wait_on_page_writeback(page);
4819 ret = VM_FAULT_LOCKED;
4820 goto out;
a827eaff 4821 }
2e9ee850 4822 }
a827eaff 4823 unlock_page(page);
9ea7df53
JK
4824 /* OK, we need to fill the hole... */
4825 if (ext4_should_dioread_nolock(inode))
4826 get_block = ext4_get_block_write;
4827 else
4828 get_block = ext4_get_block;
4829retry_alloc:
9924a92a
TT
4830 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4831 ext4_writepage_trans_blocks(inode));
9ea7df53 4832 if (IS_ERR(handle)) {
c2ec175c 4833 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4834 goto out;
4835 }
4836 ret = __block_page_mkwrite(vma, vmf, get_block);
4837 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 4838 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
4839 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4840 unlock_page(page);
4841 ret = VM_FAULT_SIGBUS;
fcbb5515 4842 ext4_journal_stop(handle);
9ea7df53
JK
4843 goto out;
4844 }
4845 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4846 }
4847 ext4_journal_stop(handle);
4848 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4849 goto retry_alloc;
4850out_ret:
4851 ret = block_page_mkwrite_return(ret);
4852out:
8e8ad8a5 4853 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4854 return ret;
4855}