ext4: Avoid leaking blocks after a block allocation failure
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
375 __le32 *p, unsigned int max)
376{
f73953c0 377 __le32 *bref = p;
6fd058f7
TT
378 unsigned int blk;
379
fe2c8191 380 while (bref < p+max) {
6fd058f7
TT
381 blk = le32_to_cpu(*bref++);
382 if (blk &&
383 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
384 blk, 1))) {
fe2c8191 385 ext4_error(inode->i_sb, function,
6fd058f7
TT
386 "invalid block reference %u "
387 "in inode #%lu", blk, inode->i_ino);
fe2c8191
TN
388 return -EIO;
389 }
fe2c8191
TN
390 }
391 return 0;
392}
393
394
395#define ext4_check_indirect_blockref(inode, bh) \
396 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
397 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
398
399#define ext4_check_inode_blockref(inode) \
400 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
401 EXT4_NDIR_BLOCKS)
402
ac27a0ec 403/**
617ba13b 404 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
405 * @inode: inode in question
406 * @depth: depth of the chain (1 - direct pointer, etc.)
407 * @offsets: offsets of pointers in inode/indirect blocks
408 * @chain: place to store the result
409 * @err: here we store the error value
410 *
411 * Function fills the array of triples <key, p, bh> and returns %NULL
412 * if everything went OK or the pointer to the last filled triple
413 * (incomplete one) otherwise. Upon the return chain[i].key contains
414 * the number of (i+1)-th block in the chain (as it is stored in memory,
415 * i.e. little-endian 32-bit), chain[i].p contains the address of that
416 * number (it points into struct inode for i==0 and into the bh->b_data
417 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418 * block for i>0 and NULL for i==0. In other words, it holds the block
419 * numbers of the chain, addresses they were taken from (and where we can
420 * verify that chain did not change) and buffer_heads hosting these
421 * numbers.
422 *
423 * Function stops when it stumbles upon zero pointer (absent block)
424 * (pointer to last triple returned, *@err == 0)
425 * or when it gets an IO error reading an indirect block
426 * (ditto, *@err == -EIO)
ac27a0ec
DK
427 * or when it reads all @depth-1 indirect blocks successfully and finds
428 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
429 *
430 * Need to be called with
0e855ac8 431 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 432 */
725d26d3
AK
433static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 ext4_lblk_t *offsets,
ac27a0ec
DK
435 Indirect chain[4], int *err)
436{
437 struct super_block *sb = inode->i_sb;
438 Indirect *p = chain;
439 struct buffer_head *bh;
440
441 *err = 0;
442 /* i_data is not going away, no lock needed */
af5bc92d 443 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
444 if (!p->key)
445 goto no_block;
446 while (--depth) {
fe2c8191
TN
447 bh = sb_getblk(sb, le32_to_cpu(p->key));
448 if (unlikely(!bh))
ac27a0ec 449 goto failure;
fe2c8191
TN
450
451 if (!bh_uptodate_or_lock(bh)) {
452 if (bh_submit_read(bh) < 0) {
453 put_bh(bh);
454 goto failure;
455 }
456 /* validate block references */
457 if (ext4_check_indirect_blockref(inode, bh)) {
458 put_bh(bh);
459 goto failure;
460 }
461 }
462
af5bc92d 463 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
464 /* Reader: end */
465 if (!p->key)
466 goto no_block;
467 }
468 return NULL;
469
ac27a0ec
DK
470failure:
471 *err = -EIO;
472no_block:
473 return p;
474}
475
476/**
617ba13b 477 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
478 * @inode: owner
479 * @ind: descriptor of indirect block.
480 *
1cc8dcf5 481 * This function returns the preferred place for block allocation.
ac27a0ec
DK
482 * It is used when heuristic for sequential allocation fails.
483 * Rules are:
484 * + if there is a block to the left of our position - allocate near it.
485 * + if pointer will live in indirect block - allocate near that block.
486 * + if pointer will live in inode - allocate in the same
487 * cylinder group.
488 *
489 * In the latter case we colour the starting block by the callers PID to
490 * prevent it from clashing with concurrent allocations for a different inode
491 * in the same block group. The PID is used here so that functionally related
492 * files will be close-by on-disk.
493 *
494 * Caller must make sure that @ind is valid and will stay that way.
495 */
617ba13b 496static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 497{
617ba13b 498 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 499 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 500 __le32 *p;
617ba13b 501 ext4_fsblk_t bg_start;
74d3487f 502 ext4_fsblk_t last_block;
617ba13b 503 ext4_grpblk_t colour;
a4912123
TT
504 ext4_group_t block_group;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
506
507 /* Try to find previous block */
508 for (p = ind->p - 1; p >= start; p--) {
509 if (*p)
510 return le32_to_cpu(*p);
511 }
512
513 /* No such thing, so let's try location of indirect block */
514 if (ind->bh)
515 return ind->bh->b_blocknr;
516
517 /*
518 * It is going to be referred to from the inode itself? OK, just put it
519 * into the same cylinder group then.
520 */
a4912123
TT
521 block_group = ei->i_block_group;
522 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 block_group &= ~(flex_size-1);
524 if (S_ISREG(inode->i_mode))
525 block_group++;
526 }
527 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
528 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
529
a4912123
TT
530 /*
531 * If we are doing delayed allocation, we don't need take
532 * colour into account.
533 */
534 if (test_opt(inode->i_sb, DELALLOC))
535 return bg_start;
536
74d3487f
VC
537 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 colour = (current->pid % 16) *
617ba13b 539 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
540 else
541 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
542 return bg_start + colour;
543}
544
545/**
1cc8dcf5 546 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
547 * @inode: owner
548 * @block: block we want
ac27a0ec 549 * @partial: pointer to the last triple within a chain
ac27a0ec 550 *
1cc8dcf5 551 * Normally this function find the preferred place for block allocation,
fb01bfda 552 * returns it.
ac27a0ec 553 */
725d26d3 554static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 555 Indirect *partial)
ac27a0ec 556{
ac27a0ec 557 /*
c2ea3fde 558 * XXX need to get goal block from mballoc's data structures
ac27a0ec 559 */
ac27a0ec 560
617ba13b 561 return ext4_find_near(inode, partial);
ac27a0ec
DK
562}
563
564/**
617ba13b 565 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
566 * of direct blocks need to be allocated for the given branch.
567 *
568 * @branch: chain of indirect blocks
569 * @k: number of blocks need for indirect blocks
570 * @blks: number of data blocks to be mapped.
571 * @blocks_to_boundary: the offset in the indirect block
572 *
573 * return the total number of blocks to be allocate, including the
574 * direct and indirect blocks.
575 */
498e5f24 576static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
577 int blocks_to_boundary)
578{
498e5f24 579 unsigned int count = 0;
ac27a0ec
DK
580
581 /*
582 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 * then it's clear blocks on that path have not allocated
584 */
585 if (k > 0) {
586 /* right now we don't handle cross boundary allocation */
587 if (blks < blocks_to_boundary + 1)
588 count += blks;
589 else
590 count += blocks_to_boundary + 1;
591 return count;
592 }
593
594 count++;
595 while (count < blks && count <= blocks_to_boundary &&
596 le32_to_cpu(*(branch[0].p + count)) == 0) {
597 count++;
598 }
599 return count;
600}
601
602/**
617ba13b 603 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
604 * @indirect_blks: the number of blocks need to allocate for indirect
605 * blocks
606 *
607 * @new_blocks: on return it will store the new block numbers for
608 * the indirect blocks(if needed) and the first direct block,
609 * @blks: on return it will store the total number of allocated
610 * direct blocks
611 */
617ba13b 612static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
613 ext4_lblk_t iblock, ext4_fsblk_t goal,
614 int indirect_blks, int blks,
615 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 616{
815a1130 617 struct ext4_allocation_request ar;
ac27a0ec 618 int target, i;
7061eba7 619 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 620 int index = 0;
617ba13b 621 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
622 int ret = 0;
623
624 /*
625 * Here we try to allocate the requested multiple blocks at once,
626 * on a best-effort basis.
627 * To build a branch, we should allocate blocks for
628 * the indirect blocks(if not allocated yet), and at least
629 * the first direct block of this branch. That's the
630 * minimum number of blocks need to allocate(required)
631 */
7061eba7
AK
632 /* first we try to allocate the indirect blocks */
633 target = indirect_blks;
634 while (target > 0) {
ac27a0ec
DK
635 count = target;
636 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
637 current_block = ext4_new_meta_blocks(handle, inode,
638 goal, &count, err);
ac27a0ec
DK
639 if (*err)
640 goto failed_out;
641
642 target -= count;
643 /* allocate blocks for indirect blocks */
644 while (index < indirect_blks && count) {
645 new_blocks[index++] = current_block++;
646 count--;
647 }
7061eba7
AK
648 if (count > 0) {
649 /*
650 * save the new block number
651 * for the first direct block
652 */
653 new_blocks[index] = current_block;
654 printk(KERN_INFO "%s returned more blocks than "
655 "requested\n", __func__);
656 WARN_ON(1);
ac27a0ec 657 break;
7061eba7 658 }
ac27a0ec
DK
659 }
660
7061eba7
AK
661 target = blks - count ;
662 blk_allocated = count;
663 if (!target)
664 goto allocated;
665 /* Now allocate data blocks */
815a1130
TT
666 memset(&ar, 0, sizeof(ar));
667 ar.inode = inode;
668 ar.goal = goal;
669 ar.len = target;
670 ar.logical = iblock;
671 if (S_ISREG(inode->i_mode))
672 /* enable in-core preallocation only for regular files */
673 ar.flags = EXT4_MB_HINT_DATA;
674
675 current_block = ext4_mb_new_blocks(handle, &ar, err);
676
7061eba7
AK
677 if (*err && (target == blks)) {
678 /*
679 * if the allocation failed and we didn't allocate
680 * any blocks before
681 */
682 goto failed_out;
683 }
684 if (!*err) {
685 if (target == blks) {
686 /*
687 * save the new block number
688 * for the first direct block
689 */
690 new_blocks[index] = current_block;
691 }
815a1130 692 blk_allocated += ar.len;
7061eba7
AK
693 }
694allocated:
ac27a0ec 695 /* total number of blocks allocated for direct blocks */
7061eba7 696 ret = blk_allocated;
ac27a0ec
DK
697 *err = 0;
698 return ret;
699failed_out:
af5bc92d 700 for (i = 0; i < index; i++)
c9de560d 701 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
702 return ret;
703}
704
705/**
617ba13b 706 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
712 *
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
617ba13b 717 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 720 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
724 *
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
617ba13b 727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
728 * as described above and return 0.
729 */
617ba13b 730static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
734{
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
617ba13b
MC
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
ac27a0ec 742
7061eba7 743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
747
748 branch[0].key = cpu_to_le32(new_blocks[0]);
749 /*
750 * metadata blocks and data blocks are allocated.
751 */
752 for (n = 1; n <= indirect_blks; n++) {
753 /*
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
757 */
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 762 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
763 if (err) {
764 unlock_buffer(bh);
765 brelse(bh);
766 goto failed;
767 }
768
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
af5bc92d 773 if (n == indirect_blks) {
ac27a0ec
DK
774 current_block = new_blocks[n];
775 /*
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
779 */
780 for (i=1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
782 }
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
786
0390131b
FM
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
789 if (err)
790 goto failed;
791 }
792 *blks = num;
793 return err;
794failed:
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
dab291af 797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 798 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 799 }
af5bc92d 800 for (i = 0; i < indirect_blks; i++)
c9de560d 801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 802
c9de560d 803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
804
805 return err;
806}
807
808/**
617ba13b 809 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 813 * ext4_alloc_branch)
ac27a0ec
DK
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
617ba13b 822static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 823 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
824{
825 int i;
826 int err = 0;
617ba13b 827 ext4_fsblk_t current_block;
ac27a0ec 828
ac27a0ec
DK
829 /*
830 * If we're splicing into a [td]indirect block (as opposed to the
831 * inode) then we need to get write access to the [td]indirect block
832 * before the splice.
833 */
834 if (where->bh) {
835 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 836 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
837 if (err)
838 goto err_out;
839 }
840 /* That's it */
841
842 *where->p = where->key;
843
844 /*
845 * Update the host buffer_head or inode to point to more just allocated
846 * direct blocks blocks
847 */
848 if (num == 0 && blks > 1) {
849 current_block = le32_to_cpu(where->key) + 1;
850 for (i = 1; i < blks; i++)
af5bc92d 851 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
852 }
853
ac27a0ec
DK
854 /* We are done with atomic stuff, now do the rest of housekeeping */
855
ef7f3835 856 inode->i_ctime = ext4_current_time(inode);
617ba13b 857 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
858
859 /* had we spliced it onto indirect block? */
860 if (where->bh) {
861 /*
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
617ba13b 867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
868 */
869 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
872 if (err)
873 goto err_out;
874 } else {
875 /*
876 * OK, we spliced it into the inode itself on a direct block.
877 * Inode was dirtied above.
878 */
879 jbd_debug(5, "splicing direct\n");
880 }
881 return err;
882
883err_out:
884 for (i = 1; i <= num; i++) {
dab291af 885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 886 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 889 }
c9de560d 890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
891
892 return err;
893}
894
895/*
b920c755
TT
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
899 *
ac27a0ec
DK
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
910 *
911 * `handle' can be NULL if create == 0.
912 *
ac27a0ec
DK
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
c278bfec 916 *
b920c755
TT
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 * blocks.
ac27a0ec 922 */
e4d996ca 923static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
498e5f24
TT
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
c2177057 926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
ac27a0ec 938
a86c6181 939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3
AK
941 depth = ext4_block_to_path(inode, iblock, offsets,
942 &blocks_to_boundary);
ac27a0ec
DK
943
944 if (depth == 0)
945 goto out;
946
617ba13b 947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
953 count++;
954 /*map more blocks*/
955 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 956 ext4_fsblk_t blk;
ac27a0ec 957
ac27a0ec
DK
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
964 }
c278bfec 965 goto got_it;
ac27a0ec
DK
966 }
967
968 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
970 goto cleanup;
971
ac27a0ec 972 /*
c2ea3fde 973 * Okay, we need to do block allocation.
ac27a0ec 974 */
fb01bfda 975 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
976
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
979
980 /*
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
983 */
617ba13b 984 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
985 maxblocks, blocks_to_boundary);
986 /*
617ba13b 987 * Block out ext4_truncate while we alter the tree
ac27a0ec 988 */
7061eba7
AK
989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990 &count, goal,
991 offsets + (partial - chain), partial);
ac27a0ec
DK
992
993 /*
617ba13b 994 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
999 */
1000 if (!err)
617ba13b 1001 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec 1002 partial, indirect_blks, count);
03f5d8bc 1003 else
ac27a0ec
DK
1004 goto cleanup;
1005
1006 set_buffer_new(bh_result);
1007got_it:
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1011 err = count;
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1014cleanup:
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1018 partial--;
1019 }
1020 BUFFER_TRACE(bh_result, "returned");
1021out:
1022 return err;
1023}
1024
60e58e0f
MC
1025qsize_t ext4_get_reserved_space(struct inode *inode)
1026{
1027 unsigned long long total;
1028
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033
1034 return total;
1035}
12219aea
AK
1036/*
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1039 */
1040static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041{
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1044
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1047
1048 dind_blks = (ind_blks + icap - 1) / icap;
1049
1050 tind_blks = 1;
1051
1052 return ind_blks + dind_blks + tind_blks;
1053}
1054
1055/*
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1058 */
1059static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060{
cd213226
MC
1061 if (!blocks)
1062 return 0;
1063
12219aea
AK
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1066
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1068}
1069
1070static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071{
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1074
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1079
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083
6bc6e63f
AK
1084 if (mdb_free) {
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092 }
12219aea
AK
1093
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1098
1099 /*
1100 * free those over-booking quota for metadata blocks
1101 */
60e58e0f
MC
1102 if (mdb_free)
1103 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1104
1105 /*
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1109 */
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
12219aea
AK
1112}
1113
6fd058f7
TT
1114static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1116{
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1123 WARN_ON(1);
1124 return -EIO;
1125 }
1126 return 0;
1127}
1128
f5ab0d1f 1129/*
12b7ac17 1130 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1131 * and returns if the blocks are already mapped.
f5ab0d1f 1132 *
f5ab0d1f
MC
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1135 * mapped.
1136 *
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1139 * based files
1140 *
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1145 *
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1148 *
1149 * It returns the error in case of allocation failure.
1150 */
12b7ac17
TT
1151int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1153 int flags)
0e855ac8
AK
1154{
1155 int retval;
f5ab0d1f
MC
1156
1157 clear_buffer_mapped(bh);
2a8964d6 1158 clear_buffer_unwritten(bh);
f5ab0d1f 1159
4df3d265 1160 /*
b920c755
TT
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
4df3d265
AK
1163 */
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1167 bh, 0);
0e855ac8 1168 } else {
e4d996ca 1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1170 bh, 0);
0e855ac8 1171 }
4df3d265 1172 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1173
6fd058f7
TT
1174 if (retval > 0 && buffer_mapped(bh)) {
1175 int ret = check_block_validity(inode, block,
1176 bh->b_blocknr, retval);
1177 if (ret != 0)
1178 return ret;
1179 }
1180
f5ab0d1f 1181 /* If it is only a block(s) look up */
c2177057 1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1183 return retval;
1184
1185 /*
1186 * Returns if the blocks have already allocated
1187 *
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1191 */
1192 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1193 return retval;
1194
2a8964d6
AK
1195 /*
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1204 */
1205 clear_buffer_unwritten(bh);
1206
4df3d265 1207 /*
f5ab0d1f
MC
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
4df3d265
AK
1212 */
1213 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1214
1215 /*
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1220 */
c2177057 1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1223 /*
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1226 */
0e855ac8
AK
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1229 bh, flags);
0e855ac8 1230 } else {
e4d996ca 1231 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1232 max_blocks, bh, flags);
267e4db9
AK
1233
1234 if (retval > 0 && buffer_new(bh)) {
1235 /*
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1239 */
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241 ~EXT4_EXT_MIGRATE;
1242 }
0e855ac8 1243 }
d2a17637 1244
2ac3b6e0 1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1247
1248 /*
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1251 */
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
d2a17637 1254
4df3d265 1255 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7
TT
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, block,
1258 bh->b_blocknr, retval);
1259 if (ret != 0)
1260 return ret;
1261 }
0e855ac8
AK
1262 return retval;
1263}
1264
f3bd1f3f
MC
1265/* Maximum number of blocks we map for direct IO at once. */
1266#define DIO_MAX_BLOCKS 4096
1267
6873fa0d
ES
1268int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
ac27a0ec 1270{
3e4fdaf8 1271 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1272 int ret = 0, started = 0;
ac27a0ec 1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1274 int dio_credits;
ac27a0ec 1275
7fb5409d
JK
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1282 if (IS_ERR(handle)) {
ac27a0ec 1283 ret = PTR_ERR(handle);
7fb5409d 1284 goto out;
ac27a0ec 1285 }
7fb5409d 1286 started = 1;
ac27a0ec
DK
1287 }
1288
12b7ac17 1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1291 if (ret > 0) {
1292 bh_result->b_size = (ret << inode->i_blkbits);
1293 ret = 0;
ac27a0ec 1294 }
7fb5409d
JK
1295 if (started)
1296 ext4_journal_stop(handle);
1297out:
ac27a0ec
DK
1298 return ret;
1299}
1300
1301/*
1302 * `handle' can be NULL if create is zero
1303 */
617ba13b 1304struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1305 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1306{
1307 struct buffer_head dummy;
1308 int fatal = 0, err;
03f5d8bc 1309 int flags = 0;
ac27a0ec
DK
1310
1311 J_ASSERT(handle != NULL || create == 0);
1312
1313 dummy.b_state = 0;
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
c2177057
TT
1316 if (create)
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1319 /*
c2177057
TT
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1321 * case of a HOLE.
ac27a0ec
DK
1322 */
1323 if (err > 0) {
1324 if (err > 1)
1325 WARN_ON(1);
1326 err = 0;
1327 }
1328 *errp = err;
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332 if (!bh) {
1333 *errp = -EIO;
1334 goto err;
1335 }
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
ac39849d 1338 J_ASSERT(handle != NULL);
ac27a0ec
DK
1339
1340 /*
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
617ba13b 1344 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1345 * problem.
1346 */
1347 lock_buffer(bh);
1348 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1349 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1350 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1352 set_buffer_uptodate(bh);
1353 }
1354 unlock_buffer(bh);
0390131b
FM
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1357 if (!fatal)
1358 fatal = err;
1359 } else {
1360 BUFFER_TRACE(bh, "not a new buffer");
1361 }
1362 if (fatal) {
1363 *errp = fatal;
1364 brelse(bh);
1365 bh = NULL;
1366 }
1367 return bh;
1368 }
1369err:
1370 return NULL;
1371}
1372
617ba13b 1373struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1374 ext4_lblk_t block, int create, int *err)
ac27a0ec 1375{
af5bc92d 1376 struct buffer_head *bh;
ac27a0ec 1377
617ba13b 1378 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1379 if (!bh)
1380 return bh;
1381 if (buffer_uptodate(bh))
1382 return bh;
1383 ll_rw_block(READ_META, 1, &bh);
1384 wait_on_buffer(bh);
1385 if (buffer_uptodate(bh))
1386 return bh;
1387 put_bh(bh);
1388 *err = -EIO;
1389 return NULL;
1390}
1391
af5bc92d
TT
1392static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1394 unsigned from,
1395 unsigned to,
1396 int *partial,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
ac27a0ec
DK
1399{
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1403 int err, ret = 0;
1404 struct buffer_head *next;
1405
af5bc92d
TT
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
1408 block_start = block_end, bh = next)
ac27a0ec
DK
1409 {
1410 next = bh->b_this_page;
1411 block_end = block_start + blocksize;
1412 if (block_end <= from || block_start >= to) {
1413 if (partial && !buffer_uptodate(bh))
1414 *partial = 1;
1415 continue;
1416 }
1417 err = (*fn)(handle, bh);
1418 if (!ret)
1419 ret = err;
1420 }
1421 return ret;
1422}
1423
1424/*
1425 * To preserve ordering, it is essential that the hole instantiation and
1426 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1427 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1428 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1429 * prepare_write() is the right place.
1430 *
617ba13b
MC
1431 * Also, this function can nest inside ext4_writepage() ->
1432 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1433 * has generated enough buffer credits to do the whole page. So we won't
1434 * block on the journal in that case, which is good, because the caller may
1435 * be PF_MEMALLOC.
1436 *
617ba13b 1437 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1438 * quota file writes. If we were to commit the transaction while thus
1439 * reentered, there can be a deadlock - we would be holding a quota
1440 * lock, and the commit would never complete if another thread had a
1441 * transaction open and was blocking on the quota lock - a ranking
1442 * violation.
1443 *
dab291af 1444 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1445 * will _not_ run commit under these circumstances because handle->h_ref
1446 * is elevated. We'll still have enough credits for the tiny quotafile
1447 * write.
1448 */
1449static int do_journal_get_write_access(handle_t *handle,
1450 struct buffer_head *bh)
1451{
1452 if (!buffer_mapped(bh) || buffer_freed(bh))
1453 return 0;
617ba13b 1454 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1455}
1456
bfc1af65
NP
1457static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458 loff_t pos, unsigned len, unsigned flags,
1459 struct page **pagep, void **fsdata)
ac27a0ec 1460{
af5bc92d 1461 struct inode *inode = mapping->host;
1938a150 1462 int ret, needed_blocks;
ac27a0ec
DK
1463 handle_t *handle;
1464 int retries = 0;
af5bc92d 1465 struct page *page;
bfc1af65 1466 pgoff_t index;
af5bc92d 1467 unsigned from, to;
bfc1af65 1468
ba80b101
TT
1469 trace_mark(ext4_write_begin,
1470 "dev %s ino %lu pos %llu len %u flags %u",
1471 inode->i_sb->s_id, inode->i_ino,
1472 (unsigned long long) pos, len, flags);
1938a150
AK
1473 /*
1474 * Reserve one block more for addition to orphan list in case
1475 * we allocate blocks but write fails for some reason
1476 */
1477 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
bfc1af65 1478 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1479 from = pos & (PAGE_CACHE_SIZE - 1);
1480 to = from + len;
ac27a0ec
DK
1481
1482retry:
af5bc92d
TT
1483 handle = ext4_journal_start(inode, needed_blocks);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1486 goto out;
7479d2b9 1487 }
ac27a0ec 1488
ebd3610b
JK
1489 /* We cannot recurse into the filesystem as the transaction is already
1490 * started */
1491 flags |= AOP_FLAG_NOFS;
1492
54566b2c 1493 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1494 if (!page) {
1495 ext4_journal_stop(handle);
1496 ret = -ENOMEM;
1497 goto out;
1498 }
1499 *pagep = page;
1500
bfc1af65 1501 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1502 ext4_get_block);
bfc1af65
NP
1503
1504 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1505 ret = walk_page_buffers(handle, page_buffers(page),
1506 from, to, NULL, do_journal_get_write_access);
1507 }
bfc1af65
NP
1508
1509 if (ret) {
af5bc92d 1510 unlock_page(page);
af5bc92d 1511 page_cache_release(page);
ae4d5372
AK
1512 /*
1513 * block_write_begin may have instantiated a few blocks
1514 * outside i_size. Trim these off again. Don't need
1515 * i_size_read because we hold i_mutex.
1938a150
AK
1516 *
1517 * Add inode to orphan list in case we crash before
1518 * truncate finishes
ae4d5372
AK
1519 */
1520 if (pos + len > inode->i_size)
1938a150
AK
1521 ext4_orphan_add(handle, inode);
1522
1523 ext4_journal_stop(handle);
1524 if (pos + len > inode->i_size) {
ae4d5372 1525 vmtruncate(inode, inode->i_size);
1938a150
AK
1526 /*
1527 * If vmtruncate failed early the inode might
1528 * still be on the orphan list; we need to
1529 * make sure the inode is removed from the
1530 * orphan list in that case.
1531 */
1532 if (inode->i_nlink)
1533 ext4_orphan_del(NULL, inode);
1534 }
bfc1af65
NP
1535 }
1536
617ba13b 1537 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1538 goto retry;
7479d2b9 1539out:
ac27a0ec
DK
1540 return ret;
1541}
1542
bfc1af65
NP
1543/* For write_end() in data=journal mode */
1544static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1545{
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1547 return 0;
1548 set_buffer_uptodate(bh);
0390131b 1549 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1550}
1551
1552/*
1553 * We need to pick up the new inode size which generic_commit_write gave us
1554 * `file' can be NULL - eg, when called from page_symlink().
1555 *
617ba13b 1556 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1557 * buffers are managed internally.
1558 */
bfc1af65
NP
1559static int ext4_ordered_write_end(struct file *file,
1560 struct address_space *mapping,
1561 loff_t pos, unsigned len, unsigned copied,
1562 struct page *page, void *fsdata)
ac27a0ec 1563{
617ba13b 1564 handle_t *handle = ext4_journal_current_handle();
cf108bca 1565 struct inode *inode = mapping->host;
ac27a0ec
DK
1566 int ret = 0, ret2;
1567
ba80b101
TT
1568 trace_mark(ext4_ordered_write_end,
1569 "dev %s ino %lu pos %llu len %u copied %u",
1570 inode->i_sb->s_id, inode->i_ino,
1571 (unsigned long long) pos, len, copied);
678aaf48 1572 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1573
1574 if (ret == 0) {
ac27a0ec
DK
1575 loff_t new_i_size;
1576
bfc1af65 1577 new_i_size = pos + copied;
cf17fea6
AK
1578 if (new_i_size > EXT4_I(inode)->i_disksize) {
1579 ext4_update_i_disksize(inode, new_i_size);
1580 /* We need to mark inode dirty even if
1581 * new_i_size is less that inode->i_size
1582 * bu greater than i_disksize.(hint delalloc)
1583 */
1584 ext4_mark_inode_dirty(handle, inode);
1585 }
1586
cf108bca 1587 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1588 page, fsdata);
f8a87d89
RK
1589 copied = ret2;
1590 if (ret2 < 0)
1591 ret = ret2;
ac27a0ec 1592 }
617ba13b 1593 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1594 if (!ret)
1595 ret = ret2;
bfc1af65
NP
1596
1597 return ret ? ret : copied;
ac27a0ec
DK
1598}
1599
bfc1af65
NP
1600static int ext4_writeback_write_end(struct file *file,
1601 struct address_space *mapping,
1602 loff_t pos, unsigned len, unsigned copied,
1603 struct page *page, void *fsdata)
ac27a0ec 1604{
617ba13b 1605 handle_t *handle = ext4_journal_current_handle();
cf108bca 1606 struct inode *inode = mapping->host;
ac27a0ec
DK
1607 int ret = 0, ret2;
1608 loff_t new_i_size;
1609
ba80b101
TT
1610 trace_mark(ext4_writeback_write_end,
1611 "dev %s ino %lu pos %llu len %u copied %u",
1612 inode->i_sb->s_id, inode->i_ino,
1613 (unsigned long long) pos, len, copied);
bfc1af65 1614 new_i_size = pos + copied;
cf17fea6
AK
1615 if (new_i_size > EXT4_I(inode)->i_disksize) {
1616 ext4_update_i_disksize(inode, new_i_size);
1617 /* We need to mark inode dirty even if
1618 * new_i_size is less that inode->i_size
1619 * bu greater than i_disksize.(hint delalloc)
1620 */
1621 ext4_mark_inode_dirty(handle, inode);
1622 }
ac27a0ec 1623
cf108bca 1624 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1625 page, fsdata);
f8a87d89
RK
1626 copied = ret2;
1627 if (ret2 < 0)
1628 ret = ret2;
ac27a0ec 1629
617ba13b 1630 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1631 if (!ret)
1632 ret = ret2;
bfc1af65
NP
1633
1634 return ret ? ret : copied;
ac27a0ec
DK
1635}
1636
bfc1af65
NP
1637static int ext4_journalled_write_end(struct file *file,
1638 struct address_space *mapping,
1639 loff_t pos, unsigned len, unsigned copied,
1640 struct page *page, void *fsdata)
ac27a0ec 1641{
617ba13b 1642 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1643 struct inode *inode = mapping->host;
ac27a0ec
DK
1644 int ret = 0, ret2;
1645 int partial = 0;
bfc1af65 1646 unsigned from, to;
cf17fea6 1647 loff_t new_i_size;
ac27a0ec 1648
ba80b101
TT
1649 trace_mark(ext4_journalled_write_end,
1650 "dev %s ino %lu pos %llu len %u copied %u",
1651 inode->i_sb->s_id, inode->i_ino,
1652 (unsigned long long) pos, len, copied);
bfc1af65
NP
1653 from = pos & (PAGE_CACHE_SIZE - 1);
1654 to = from + len;
1655
1656 if (copied < len) {
1657 if (!PageUptodate(page))
1658 copied = 0;
1659 page_zero_new_buffers(page, from+copied, to);
1660 }
ac27a0ec
DK
1661
1662 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1663 to, &partial, write_end_fn);
ac27a0ec
DK
1664 if (!partial)
1665 SetPageUptodate(page);
cf17fea6
AK
1666 new_i_size = pos + copied;
1667 if (new_i_size > inode->i_size)
bfc1af65 1668 i_size_write(inode, pos+copied);
617ba13b 1669 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1670 if (new_i_size > EXT4_I(inode)->i_disksize) {
1671 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1672 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1673 if (!ret)
1674 ret = ret2;
1675 }
bfc1af65 1676
cf108bca 1677 unlock_page(page);
617ba13b 1678 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1679 if (!ret)
1680 ret = ret2;
bfc1af65
NP
1681 page_cache_release(page);
1682
1683 return ret ? ret : copied;
ac27a0ec 1684}
d2a17637
MC
1685
1686static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1687{
030ba6bc 1688 int retries = 0;
60e58e0f
MC
1689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1690 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1691
1692 /*
1693 * recalculate the amount of metadata blocks to reserve
1694 * in order to allocate nrblocks
1695 * worse case is one extent per block
1696 */
030ba6bc 1697repeat:
d2a17637
MC
1698 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1699 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1700 mdblocks = ext4_calc_metadata_amount(inode, total);
1701 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1702
1703 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1704 total = md_needed + nrblocks;
1705
60e58e0f
MC
1706 /*
1707 * Make quota reservation here to prevent quota overflow
1708 * later. Real quota accounting is done at pages writeout
1709 * time.
1710 */
1711 if (vfs_dq_reserve_block(inode, total)) {
1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713 return -EDQUOT;
1714 }
1715
a30d542a 1716 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1717 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1718 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1719 yield();
1720 goto repeat;
1721 }
60e58e0f 1722 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1723 return -ENOSPC;
1724 }
d2a17637
MC
1725 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1726 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1727
1728 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1729 return 0; /* success */
1730}
1731
12219aea 1732static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1733{
1734 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1735 int total, mdb, mdb_free, release;
1736
cd213226
MC
1737 if (!to_free)
1738 return; /* Nothing to release, exit */
1739
d2a17637 1740 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1741
1742 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1743 /*
1744 * if there is no reserved blocks, but we try to free some
1745 * then the counter is messed up somewhere.
1746 * but since this function is called from invalidate
1747 * page, it's harmless to return without any action
1748 */
1749 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1750 "blocks for inode %lu, but there is no reserved "
1751 "data blocks\n", to_free, inode->i_ino);
1752 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1753 return;
1754 }
1755
d2a17637 1756 /* recalculate the number of metablocks still need to be reserved */
12219aea 1757 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1758 mdb = ext4_calc_metadata_amount(inode, total);
1759
1760 /* figure out how many metablocks to release */
1761 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1762 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1763
d2a17637
MC
1764 release = to_free + mdb_free;
1765
6bc6e63f
AK
1766 /* update fs dirty blocks counter for truncate case */
1767 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1768
1769 /* update per-inode reservations */
12219aea
AK
1770 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1771 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1772
1773 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1774 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1775 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1776
1777 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1778}
1779
1780static void ext4_da_page_release_reservation(struct page *page,
1781 unsigned long offset)
1782{
1783 int to_release = 0;
1784 struct buffer_head *head, *bh;
1785 unsigned int curr_off = 0;
1786
1787 head = page_buffers(page);
1788 bh = head;
1789 do {
1790 unsigned int next_off = curr_off + bh->b_size;
1791
1792 if ((offset <= curr_off) && (buffer_delay(bh))) {
1793 to_release++;
1794 clear_buffer_delay(bh);
1795 }
1796 curr_off = next_off;
1797 } while ((bh = bh->b_this_page) != head);
12219aea 1798 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1799}
ac27a0ec 1800
64769240
AT
1801/*
1802 * Delayed allocation stuff
1803 */
1804
1805struct mpage_da_data {
1806 struct inode *inode;
8dc207c0
TT
1807 sector_t b_blocknr; /* start block number of extent */
1808 size_t b_size; /* size of extent */
1809 unsigned long b_state; /* state of the extent */
64769240 1810 unsigned long first_page, next_page; /* extent of pages */
64769240 1811 struct writeback_control *wbc;
a1d6cc56 1812 int io_done;
498e5f24 1813 int pages_written;
df22291f 1814 int retval;
64769240
AT
1815};
1816
1817/*
1818 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1819 * them with writepage() call back
64769240
AT
1820 *
1821 * @mpd->inode: inode
1822 * @mpd->first_page: first page of the extent
1823 * @mpd->next_page: page after the last page of the extent
64769240
AT
1824 *
1825 * By the time mpage_da_submit_io() is called we expect all blocks
1826 * to be allocated. this may be wrong if allocation failed.
1827 *
1828 * As pages are already locked by write_cache_pages(), we can't use it
1829 */
1830static int mpage_da_submit_io(struct mpage_da_data *mpd)
1831{
22208ded 1832 long pages_skipped;
791b7f08
AK
1833 struct pagevec pvec;
1834 unsigned long index, end;
1835 int ret = 0, err, nr_pages, i;
1836 struct inode *inode = mpd->inode;
1837 struct address_space *mapping = inode->i_mapping;
64769240
AT
1838
1839 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1840 /*
1841 * We need to start from the first_page to the next_page - 1
1842 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1843 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1844 * at the currently mapped buffer_heads.
1845 */
64769240
AT
1846 index = mpd->first_page;
1847 end = mpd->next_page - 1;
1848
791b7f08 1849 pagevec_init(&pvec, 0);
64769240 1850 while (index <= end) {
791b7f08 1851 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1852 if (nr_pages == 0)
1853 break;
1854 for (i = 0; i < nr_pages; i++) {
1855 struct page *page = pvec.pages[i];
1856
791b7f08
AK
1857 index = page->index;
1858 if (index > end)
1859 break;
1860 index++;
1861
1862 BUG_ON(!PageLocked(page));
1863 BUG_ON(PageWriteback(page));
1864
22208ded 1865 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1866 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1867 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1868 /*
1869 * have successfully written the page
1870 * without skipping the same
1871 */
a1d6cc56 1872 mpd->pages_written++;
64769240
AT
1873 /*
1874 * In error case, we have to continue because
1875 * remaining pages are still locked
1876 * XXX: unlock and re-dirty them?
1877 */
1878 if (ret == 0)
1879 ret = err;
1880 }
1881 pagevec_release(&pvec);
1882 }
64769240
AT
1883 return ret;
1884}
1885
1886/*
1887 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1888 *
1889 * @mpd->inode - inode to walk through
1890 * @exbh->b_blocknr - first block on a disk
1891 * @exbh->b_size - amount of space in bytes
1892 * @logical - first logical block to start assignment with
1893 *
1894 * the function goes through all passed space and put actual disk
29fa89d0 1895 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1896 */
1897static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1898 struct buffer_head *exbh)
1899{
1900 struct inode *inode = mpd->inode;
1901 struct address_space *mapping = inode->i_mapping;
1902 int blocks = exbh->b_size >> inode->i_blkbits;
1903 sector_t pblock = exbh->b_blocknr, cur_logical;
1904 struct buffer_head *head, *bh;
a1d6cc56 1905 pgoff_t index, end;
64769240
AT
1906 struct pagevec pvec;
1907 int nr_pages, i;
1908
1909 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1910 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1911 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1912
1913 pagevec_init(&pvec, 0);
1914
1915 while (index <= end) {
1916 /* XXX: optimize tail */
1917 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1918 if (nr_pages == 0)
1919 break;
1920 for (i = 0; i < nr_pages; i++) {
1921 struct page *page = pvec.pages[i];
1922
1923 index = page->index;
1924 if (index > end)
1925 break;
1926 index++;
1927
1928 BUG_ON(!PageLocked(page));
1929 BUG_ON(PageWriteback(page));
1930 BUG_ON(!page_has_buffers(page));
1931
1932 bh = page_buffers(page);
1933 head = bh;
1934
1935 /* skip blocks out of the range */
1936 do {
1937 if (cur_logical >= logical)
1938 break;
1939 cur_logical++;
1940 } while ((bh = bh->b_this_page) != head);
1941
1942 do {
1943 if (cur_logical >= logical + blocks)
1944 break;
29fa89d0
AK
1945
1946 if (buffer_delay(bh) ||
1947 buffer_unwritten(bh)) {
1948
1949 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1950
1951 if (buffer_delay(bh)) {
1952 clear_buffer_delay(bh);
1953 bh->b_blocknr = pblock;
1954 } else {
1955 /*
1956 * unwritten already should have
1957 * blocknr assigned. Verify that
1958 */
1959 clear_buffer_unwritten(bh);
1960 BUG_ON(bh->b_blocknr != pblock);
1961 }
1962
61628a3f 1963 } else if (buffer_mapped(bh))
64769240 1964 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1965
1966 cur_logical++;
1967 pblock++;
1968 } while ((bh = bh->b_this_page) != head);
1969 }
1970 pagevec_release(&pvec);
1971 }
1972}
1973
1974
1975/*
1976 * __unmap_underlying_blocks - just a helper function to unmap
1977 * set of blocks described by @bh
1978 */
1979static inline void __unmap_underlying_blocks(struct inode *inode,
1980 struct buffer_head *bh)
1981{
1982 struct block_device *bdev = inode->i_sb->s_bdev;
1983 int blocks, i;
1984
1985 blocks = bh->b_size >> inode->i_blkbits;
1986 for (i = 0; i < blocks; i++)
1987 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1988}
1989
c4a0c46e
AK
1990static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1991 sector_t logical, long blk_cnt)
1992{
1993 int nr_pages, i;
1994 pgoff_t index, end;
1995 struct pagevec pvec;
1996 struct inode *inode = mpd->inode;
1997 struct address_space *mapping = inode->i_mapping;
1998
1999 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2000 end = (logical + blk_cnt - 1) >>
2001 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2002 while (index <= end) {
2003 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2004 if (nr_pages == 0)
2005 break;
2006 for (i = 0; i < nr_pages; i++) {
2007 struct page *page = pvec.pages[i];
2008 index = page->index;
2009 if (index > end)
2010 break;
2011 index++;
2012
2013 BUG_ON(!PageLocked(page));
2014 BUG_ON(PageWriteback(page));
2015 block_invalidatepage(page, 0);
2016 ClearPageUptodate(page);
2017 unlock_page(page);
2018 }
2019 }
2020 return;
2021}
2022
df22291f
AK
2023static void ext4_print_free_blocks(struct inode *inode)
2024{
2025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2026 printk(KERN_EMERG "Total free blocks count %lld\n",
2027 ext4_count_free_blocks(inode->i_sb));
2028 printk(KERN_EMERG "Free/Dirty block details\n");
2029 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2030 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2031 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2032 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2033 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2034 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2035 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2036 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2037 EXT4_I(inode)->i_reserved_meta_blocks);
2038 return;
2039}
2040
64769240
AT
2041/*
2042 * mpage_da_map_blocks - go through given space
2043 *
8dc207c0 2044 * @mpd - bh describing space
64769240
AT
2045 *
2046 * The function skips space we know is already mapped to disk blocks.
2047 *
64769240 2048 */
ed5bde0b 2049static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2050{
2ac3b6e0 2051 int err, blks, get_blocks_flags;
030ba6bc 2052 struct buffer_head new;
2fa3cdfb
TT
2053 sector_t next = mpd->b_blocknr;
2054 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2055 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2056 handle_t *handle = NULL;
64769240
AT
2057
2058 /*
2059 * We consider only non-mapped and non-allocated blocks
2060 */
8dc207c0 2061 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2062 !(mpd->b_state & (1 << BH_Delay)) &&
2063 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2064 return 0;
2fa3cdfb
TT
2065
2066 /*
2067 * If we didn't accumulate anything to write simply return
2068 */
2069 if (!mpd->b_size)
2070 return 0;
2071
2072 handle = ext4_journal_current_handle();
2073 BUG_ON(!handle);
2074
79ffab34 2075 /*
2ac3b6e0
TT
2076 * Call ext4_get_blocks() to allocate any delayed allocation
2077 * blocks, or to convert an uninitialized extent to be
2078 * initialized (in the case where we have written into
2079 * one or more preallocated blocks).
2080 *
2081 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2082 * indicate that we are on the delayed allocation path. This
2083 * affects functions in many different parts of the allocation
2084 * call path. This flag exists primarily because we don't
2085 * want to change *many* call functions, so ext4_get_blocks()
2086 * will set the magic i_delalloc_reserved_flag once the
2087 * inode's allocation semaphore is taken.
2088 *
2089 * If the blocks in questions were delalloc blocks, set
2090 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2091 * variables are updated after the blocks have been allocated.
79ffab34 2092 */
2ac3b6e0
TT
2093 new.b_state = 0;
2094 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2095 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2096 if (mpd->b_state & (1 << BH_Delay))
2097 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2098 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2099 &new, get_blocks_flags);
2fa3cdfb
TT
2100 if (blks < 0) {
2101 err = blks;
ed5bde0b
TT
2102 /*
2103 * If get block returns with error we simply
2104 * return. Later writepage will redirty the page and
2105 * writepages will find the dirty page again
c4a0c46e
AK
2106 */
2107 if (err == -EAGAIN)
2108 return 0;
df22291f
AK
2109
2110 if (err == -ENOSPC &&
ed5bde0b 2111 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2112 mpd->retval = err;
2113 return 0;
2114 }
2115
c4a0c46e 2116 /*
ed5bde0b
TT
2117 * get block failure will cause us to loop in
2118 * writepages, because a_ops->writepage won't be able
2119 * to make progress. The page will be redirtied by
2120 * writepage and writepages will again try to write
2121 * the same.
c4a0c46e
AK
2122 */
2123 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2124 "at logical offset %llu with max blocks "
2125 "%zd with error %d\n",
2126 __func__, mpd->inode->i_ino,
2127 (unsigned long long)next,
8dc207c0 2128 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2129 printk(KERN_EMERG "This should not happen.!! "
2130 "Data will be lost\n");
030ba6bc 2131 if (err == -ENOSPC) {
df22291f 2132 ext4_print_free_blocks(mpd->inode);
030ba6bc 2133 }
2fa3cdfb 2134 /* invalidate all the pages */
c4a0c46e 2135 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2136 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2137 return err;
2138 }
2fa3cdfb
TT
2139 BUG_ON(blks == 0);
2140
2141 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2142
a1d6cc56
AK
2143 if (buffer_new(&new))
2144 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2145
a1d6cc56
AK
2146 /*
2147 * If blocks are delayed marked, we need to
2148 * put actual blocknr and drop delayed bit
2149 */
8dc207c0
TT
2150 if ((mpd->b_state & (1 << BH_Delay)) ||
2151 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2152 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2153
2fa3cdfb
TT
2154 if (ext4_should_order_data(mpd->inode)) {
2155 err = ext4_jbd2_file_inode(handle, mpd->inode);
2156 if (err)
2157 return err;
2158 }
2159
2160 /*
03f5d8bc 2161 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2162 */
2163 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2164 if (disksize > i_size_read(mpd->inode))
2165 disksize = i_size_read(mpd->inode);
2166 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2167 ext4_update_i_disksize(mpd->inode, disksize);
2168 return ext4_mark_inode_dirty(handle, mpd->inode);
2169 }
2170
c4a0c46e 2171 return 0;
64769240
AT
2172}
2173
bf068ee2
AK
2174#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2175 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2176
2177/*
2178 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2179 *
2180 * @mpd->lbh - extent of blocks
2181 * @logical - logical number of the block in the file
2182 * @bh - bh of the block (used to access block's state)
2183 *
2184 * the function is used to collect contig. blocks in same state
2185 */
2186static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2187 sector_t logical, size_t b_size,
2188 unsigned long b_state)
64769240 2189{
64769240 2190 sector_t next;
8dc207c0 2191 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2192
525f4ed8
MC
2193 /* check if thereserved journal credits might overflow */
2194 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2195 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2196 /*
2197 * With non-extent format we are limited by the journal
2198 * credit available. Total credit needed to insert
2199 * nrblocks contiguous blocks is dependent on the
2200 * nrblocks. So limit nrblocks.
2201 */
2202 goto flush_it;
2203 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2204 EXT4_MAX_TRANS_DATA) {
2205 /*
2206 * Adding the new buffer_head would make it cross the
2207 * allowed limit for which we have journal credit
2208 * reserved. So limit the new bh->b_size
2209 */
2210 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2211 mpd->inode->i_blkbits;
2212 /* we will do mpage_da_submit_io in the next loop */
2213 }
2214 }
64769240
AT
2215 /*
2216 * First block in the extent
2217 */
8dc207c0
TT
2218 if (mpd->b_size == 0) {
2219 mpd->b_blocknr = logical;
2220 mpd->b_size = b_size;
2221 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2222 return;
2223 }
2224
8dc207c0 2225 next = mpd->b_blocknr + nrblocks;
64769240
AT
2226 /*
2227 * Can we merge the block to our big extent?
2228 */
8dc207c0
TT
2229 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2230 mpd->b_size += b_size;
64769240
AT
2231 return;
2232 }
2233
525f4ed8 2234flush_it:
64769240
AT
2235 /*
2236 * We couldn't merge the block to our extent, so we
2237 * need to flush current extent and start new one
2238 */
c4a0c46e
AK
2239 if (mpage_da_map_blocks(mpd) == 0)
2240 mpage_da_submit_io(mpd);
a1d6cc56
AK
2241 mpd->io_done = 1;
2242 return;
64769240
AT
2243}
2244
29fa89d0
AK
2245static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2246{
2247 /*
2248 * unmapped buffer is possible for holes.
2249 * delay buffer is possible with delayed allocation.
2250 * We also need to consider unwritten buffer as unmapped.
2251 */
2252 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2253 buffer_unwritten(bh)) && buffer_dirty(bh);
2254}
2255
64769240
AT
2256/*
2257 * __mpage_da_writepage - finds extent of pages and blocks
2258 *
2259 * @page: page to consider
2260 * @wbc: not used, we just follow rules
2261 * @data: context
2262 *
2263 * The function finds extents of pages and scan them for all blocks.
2264 */
2265static int __mpage_da_writepage(struct page *page,
2266 struct writeback_control *wbc, void *data)
2267{
2268 struct mpage_da_data *mpd = data;
2269 struct inode *inode = mpd->inode;
8dc207c0 2270 struct buffer_head *bh, *head;
64769240
AT
2271 sector_t logical;
2272
a1d6cc56
AK
2273 if (mpd->io_done) {
2274 /*
2275 * Rest of the page in the page_vec
2276 * redirty then and skip then. We will
2277 * try to to write them again after
2278 * starting a new transaction
2279 */
2280 redirty_page_for_writepage(wbc, page);
2281 unlock_page(page);
2282 return MPAGE_DA_EXTENT_TAIL;
2283 }
64769240
AT
2284 /*
2285 * Can we merge this page to current extent?
2286 */
2287 if (mpd->next_page != page->index) {
2288 /*
2289 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2290 * and start IO on them using writepage()
64769240
AT
2291 */
2292 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2293 if (mpage_da_map_blocks(mpd) == 0)
2294 mpage_da_submit_io(mpd);
a1d6cc56
AK
2295 /*
2296 * skip rest of the page in the page_vec
2297 */
2298 mpd->io_done = 1;
2299 redirty_page_for_writepage(wbc, page);
2300 unlock_page(page);
2301 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2302 }
2303
2304 /*
2305 * Start next extent of pages ...
2306 */
2307 mpd->first_page = page->index;
2308
2309 /*
2310 * ... and blocks
2311 */
8dc207c0
TT
2312 mpd->b_size = 0;
2313 mpd->b_state = 0;
2314 mpd->b_blocknr = 0;
64769240
AT
2315 }
2316
2317 mpd->next_page = page->index + 1;
2318 logical = (sector_t) page->index <<
2319 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2320
2321 if (!page_has_buffers(page)) {
8dc207c0
TT
2322 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2323 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2324 if (mpd->io_done)
2325 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2326 } else {
2327 /*
2328 * Page with regular buffer heads, just add all dirty ones
2329 */
2330 head = page_buffers(page);
2331 bh = head;
2332 do {
2333 BUG_ON(buffer_locked(bh));
791b7f08
AK
2334 /*
2335 * We need to try to allocate
2336 * unmapped blocks in the same page.
2337 * Otherwise we won't make progress
2338 * with the page in ext4_da_writepage
2339 */
29fa89d0 2340 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2341 mpage_add_bh_to_extent(mpd, logical,
2342 bh->b_size,
2343 bh->b_state);
a1d6cc56
AK
2344 if (mpd->io_done)
2345 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2346 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2347 /*
2348 * mapped dirty buffer. We need to update
2349 * the b_state because we look at
2350 * b_state in mpage_da_map_blocks. We don't
2351 * update b_size because if we find an
2352 * unmapped buffer_head later we need to
2353 * use the b_state flag of that buffer_head.
2354 */
8dc207c0
TT
2355 if (mpd->b_size == 0)
2356 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2357 }
64769240
AT
2358 logical++;
2359 } while ((bh = bh->b_this_page) != head);
2360 }
2361
2362 return 0;
2363}
2364
64769240 2365/*
b920c755
TT
2366 * This is a special get_blocks_t callback which is used by
2367 * ext4_da_write_begin(). It will either return mapped block or
2368 * reserve space for a single block.
29fa89d0
AK
2369 *
2370 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2371 * We also have b_blocknr = -1 and b_bdev initialized properly
2372 *
2373 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2374 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2375 * initialized properly.
64769240
AT
2376 */
2377static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2378 struct buffer_head *bh_result, int create)
2379{
2380 int ret = 0;
33b9817e
AK
2381 sector_t invalid_block = ~((sector_t) 0xffff);
2382
2383 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2384 invalid_block = ~0;
64769240
AT
2385
2386 BUG_ON(create == 0);
2387 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2388
2389 /*
2390 * first, we need to know whether the block is allocated already
2391 * preallocated blocks are unmapped but should treated
2392 * the same as allocated blocks.
2393 */
c2177057 2394 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2395 if ((ret == 0) && !buffer_delay(bh_result)) {
2396 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2397 /*
2398 * XXX: __block_prepare_write() unmaps passed block,
2399 * is it OK?
2400 */
d2a17637
MC
2401 ret = ext4_da_reserve_space(inode, 1);
2402 if (ret)
2403 /* not enough space to reserve */
2404 return ret;
2405
33b9817e 2406 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2407 set_buffer_new(bh_result);
2408 set_buffer_delay(bh_result);
2409 } else if (ret > 0) {
2410 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2411 if (buffer_unwritten(bh_result)) {
2412 /* A delayed write to unwritten bh should
2413 * be marked new and mapped. Mapped ensures
2414 * that we don't do get_block multiple times
2415 * when we write to the same offset and new
2416 * ensures that we do proper zero out for
2417 * partial write.
2418 */
9c1ee184 2419 set_buffer_new(bh_result);
29fa89d0
AK
2420 set_buffer_mapped(bh_result);
2421 }
64769240
AT
2422 ret = 0;
2423 }
2424
2425 return ret;
2426}
61628a3f 2427
b920c755
TT
2428/*
2429 * This function is used as a standard get_block_t calback function
2430 * when there is no desire to allocate any blocks. It is used as a
2431 * callback function for block_prepare_write(), nobh_writepage(), and
2432 * block_write_full_page(). These functions should only try to map a
2433 * single block at a time.
2434 *
2435 * Since this function doesn't do block allocations even if the caller
2436 * requests it by passing in create=1, it is critically important that
2437 * any caller checks to make sure that any buffer heads are returned
2438 * by this function are either all already mapped or marked for
2439 * delayed allocation before calling nobh_writepage() or
2440 * block_write_full_page(). Otherwise, b_blocknr could be left
2441 * unitialized, and the page write functions will be taken by
2442 * surprise.
2443 */
2444static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2445 struct buffer_head *bh_result, int create)
2446{
2447 int ret = 0;
2448 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2449
a2dc52b5
TT
2450 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2451
f0e6c985
AK
2452 /*
2453 * we don't want to do block allocation in writepage
2454 * so call get_block_wrap with create = 0
2455 */
c2177057 2456 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
a2dc52b5 2457 BUG_ON(create && ret == 0);
f0e6c985
AK
2458 if (ret > 0) {
2459 bh_result->b_size = (ret << inode->i_blkbits);
2460 ret = 0;
2461 }
2462 return ret;
61628a3f
MC
2463}
2464
61628a3f 2465/*
b920c755
TT
2466 * This function can get called via...
2467 * - ext4_da_writepages after taking page lock (have journal handle)
2468 * - journal_submit_inode_data_buffers (no journal handle)
2469 * - shrink_page_list via pdflush (no journal handle)
2470 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2471 */
64769240
AT
2472static int ext4_da_writepage(struct page *page,
2473 struct writeback_control *wbc)
2474{
64769240 2475 int ret = 0;
61628a3f 2476 loff_t size;
498e5f24 2477 unsigned int len;
61628a3f
MC
2478 struct buffer_head *page_bufs;
2479 struct inode *inode = page->mapping->host;
2480
ba80b101
TT
2481 trace_mark(ext4_da_writepage,
2482 "dev %s ino %lu page_index %lu",
2483 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2484 size = i_size_read(inode);
2485 if (page->index == size >> PAGE_CACHE_SHIFT)
2486 len = size & ~PAGE_CACHE_MASK;
2487 else
2488 len = PAGE_CACHE_SIZE;
64769240 2489
f0e6c985 2490 if (page_has_buffers(page)) {
61628a3f 2491 page_bufs = page_buffers(page);
f0e6c985
AK
2492 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2493 ext4_bh_unmapped_or_delay)) {
61628a3f 2494 /*
f0e6c985
AK
2495 * We don't want to do block allocation
2496 * So redirty the page and return
cd1aac32
AK
2497 * We may reach here when we do a journal commit
2498 * via journal_submit_inode_data_buffers.
2499 * If we don't have mapping block we just ignore
f0e6c985
AK
2500 * them. We can also reach here via shrink_page_list
2501 */
2502 redirty_page_for_writepage(wbc, page);
2503 unlock_page(page);
2504 return 0;
2505 }
2506 } else {
2507 /*
2508 * The test for page_has_buffers() is subtle:
2509 * We know the page is dirty but it lost buffers. That means
2510 * that at some moment in time after write_begin()/write_end()
2511 * has been called all buffers have been clean and thus they
2512 * must have been written at least once. So they are all
2513 * mapped and we can happily proceed with mapping them
2514 * and writing the page.
2515 *
2516 * Try to initialize the buffer_heads and check whether
2517 * all are mapped and non delay. We don't want to
2518 * do block allocation here.
2519 */
2520 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 2521 noalloc_get_block_write);
f0e6c985
AK
2522 if (!ret) {
2523 page_bufs = page_buffers(page);
2524 /* check whether all are mapped and non delay */
2525 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2526 ext4_bh_unmapped_or_delay)) {
2527 redirty_page_for_writepage(wbc, page);
2528 unlock_page(page);
2529 return 0;
2530 }
2531 } else {
2532 /*
2533 * We can't do block allocation here
2534 * so just redity the page and unlock
2535 * and return
61628a3f 2536 */
61628a3f
MC
2537 redirty_page_for_writepage(wbc, page);
2538 unlock_page(page);
2539 return 0;
2540 }
ed9b3e33
AK
2541 /* now mark the buffer_heads as dirty and uptodate */
2542 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2543 }
2544
2545 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2546 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2547 else
b920c755
TT
2548 ret = block_write_full_page(page, noalloc_get_block_write,
2549 wbc);
64769240 2550
64769240
AT
2551 return ret;
2552}
2553
61628a3f 2554/*
525f4ed8
MC
2555 * This is called via ext4_da_writepages() to
2556 * calulate the total number of credits to reserve to fit
2557 * a single extent allocation into a single transaction,
2558 * ext4_da_writpeages() will loop calling this before
2559 * the block allocation.
61628a3f 2560 */
525f4ed8
MC
2561
2562static int ext4_da_writepages_trans_blocks(struct inode *inode)
2563{
2564 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2565
2566 /*
2567 * With non-extent format the journal credit needed to
2568 * insert nrblocks contiguous block is dependent on
2569 * number of contiguous block. So we will limit
2570 * number of contiguous block to a sane value
2571 */
2572 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2573 (max_blocks > EXT4_MAX_TRANS_DATA))
2574 max_blocks = EXT4_MAX_TRANS_DATA;
2575
2576 return ext4_chunk_trans_blocks(inode, max_blocks);
2577}
61628a3f 2578
64769240 2579static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2580 struct writeback_control *wbc)
64769240 2581{
22208ded
AK
2582 pgoff_t index;
2583 int range_whole = 0;
61628a3f 2584 handle_t *handle = NULL;
df22291f 2585 struct mpage_da_data mpd;
5e745b04 2586 struct inode *inode = mapping->host;
22208ded 2587 int no_nrwrite_index_update;
498e5f24
TT
2588 int pages_written = 0;
2589 long pages_skipped;
2acf2c26 2590 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2591 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2592 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2593
ba80b101
TT
2594 trace_mark(ext4_da_writepages,
2595 "dev %s ino %lu nr_t_write %ld "
2596 "pages_skipped %ld range_start %llu "
2597 "range_end %llu nonblocking %d "
2598 "for_kupdate %d for_reclaim %d "
2599 "for_writepages %d range_cyclic %d",
2600 inode->i_sb->s_id, inode->i_ino,
2601 wbc->nr_to_write, wbc->pages_skipped,
2602 (unsigned long long) wbc->range_start,
2603 (unsigned long long) wbc->range_end,
2604 wbc->nonblocking, wbc->for_kupdate,
2605 wbc->for_reclaim, wbc->for_writepages,
2606 wbc->range_cyclic);
2607
61628a3f
MC
2608 /*
2609 * No pages to write? This is mainly a kludge to avoid starting
2610 * a transaction for special inodes like journal inode on last iput()
2611 * because that could violate lock ordering on umount
2612 */
a1d6cc56 2613 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2614 return 0;
2a21e37e
TT
2615
2616 /*
2617 * If the filesystem has aborted, it is read-only, so return
2618 * right away instead of dumping stack traces later on that
2619 * will obscure the real source of the problem. We test
2620 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2621 * the latter could be true if the filesystem is mounted
2622 * read-only, and in that case, ext4_da_writepages should
2623 * *never* be called, so if that ever happens, we would want
2624 * the stack trace.
2625 */
2626 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2627 return -EROFS;
2628
5e745b04
AK
2629 /*
2630 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2631 * This make sure small files blocks are allocated in
2632 * single attempt. This ensure that small files
2633 * get less fragmented.
2634 */
2635 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2636 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2637 wbc->nr_to_write = sbi->s_mb_stream_request;
2638 }
22208ded
AK
2639 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2640 range_whole = 1;
61628a3f 2641
2acf2c26
AK
2642 range_cyclic = wbc->range_cyclic;
2643 if (wbc->range_cyclic) {
22208ded 2644 index = mapping->writeback_index;
2acf2c26
AK
2645 if (index)
2646 cycled = 0;
2647 wbc->range_start = index << PAGE_CACHE_SHIFT;
2648 wbc->range_end = LLONG_MAX;
2649 wbc->range_cyclic = 0;
2650 } else
22208ded 2651 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2652
df22291f
AK
2653 mpd.wbc = wbc;
2654 mpd.inode = mapping->host;
2655
22208ded
AK
2656 /*
2657 * we don't want write_cache_pages to update
2658 * nr_to_write and writeback_index
2659 */
2660 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2661 wbc->no_nrwrite_index_update = 1;
2662 pages_skipped = wbc->pages_skipped;
2663
2acf2c26 2664retry:
22208ded 2665 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2666
2667 /*
2668 * we insert one extent at a time. So we need
2669 * credit needed for single extent allocation.
2670 * journalled mode is currently not supported
2671 * by delalloc
2672 */
2673 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2674 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2675
61628a3f
MC
2676 /* start a new transaction*/
2677 handle = ext4_journal_start(inode, needed_blocks);
2678 if (IS_ERR(handle)) {
2679 ret = PTR_ERR(handle);
2a21e37e 2680 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2681 "%ld pages, ino %lu; err %d\n", __func__,
2682 wbc->nr_to_write, inode->i_ino, ret);
2683 dump_stack();
61628a3f
MC
2684 goto out_writepages;
2685 }
f63e6005
TT
2686
2687 /*
2688 * Now call __mpage_da_writepage to find the next
2689 * contiguous region of logical blocks that need
2690 * blocks to be allocated by ext4. We don't actually
2691 * submit the blocks for I/O here, even though
2692 * write_cache_pages thinks it will, and will set the
2693 * pages as clean for write before calling
2694 * __mpage_da_writepage().
2695 */
2696 mpd.b_size = 0;
2697 mpd.b_state = 0;
2698 mpd.b_blocknr = 0;
2699 mpd.first_page = 0;
2700 mpd.next_page = 0;
2701 mpd.io_done = 0;
2702 mpd.pages_written = 0;
2703 mpd.retval = 0;
2704 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2705 &mpd);
2706 /*
2707 * If we have a contigous extent of pages and we
2708 * haven't done the I/O yet, map the blocks and submit
2709 * them for I/O.
2710 */
2711 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2712 if (mpage_da_map_blocks(&mpd) == 0)
2713 mpage_da_submit_io(&mpd);
2714 mpd.io_done = 1;
2715 ret = MPAGE_DA_EXTENT_TAIL;
2716 }
2717 wbc->nr_to_write -= mpd.pages_written;
df22291f 2718
61628a3f 2719 ext4_journal_stop(handle);
df22291f 2720
8f64b32e 2721 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2722 /* commit the transaction which would
2723 * free blocks released in the transaction
2724 * and try again
2725 */
df22291f 2726 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2727 wbc->pages_skipped = pages_skipped;
2728 ret = 0;
2729 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2730 /*
2731 * got one extent now try with
2732 * rest of the pages
2733 */
22208ded
AK
2734 pages_written += mpd.pages_written;
2735 wbc->pages_skipped = pages_skipped;
a1d6cc56 2736 ret = 0;
2acf2c26 2737 io_done = 1;
22208ded 2738 } else if (wbc->nr_to_write)
61628a3f
MC
2739 /*
2740 * There is no more writeout needed
2741 * or we requested for a noblocking writeout
2742 * and we found the device congested
2743 */
61628a3f 2744 break;
a1d6cc56 2745 }
2acf2c26
AK
2746 if (!io_done && !cycled) {
2747 cycled = 1;
2748 index = 0;
2749 wbc->range_start = index << PAGE_CACHE_SHIFT;
2750 wbc->range_end = mapping->writeback_index - 1;
2751 goto retry;
2752 }
22208ded
AK
2753 if (pages_skipped != wbc->pages_skipped)
2754 printk(KERN_EMERG "This should not happen leaving %s "
2755 "with nr_to_write = %ld ret = %d\n",
2756 __func__, wbc->nr_to_write, ret);
2757
2758 /* Update index */
2759 index += pages_written;
2acf2c26 2760 wbc->range_cyclic = range_cyclic;
22208ded
AK
2761 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2762 /*
2763 * set the writeback_index so that range_cyclic
2764 * mode will write it back later
2765 */
2766 mapping->writeback_index = index;
a1d6cc56 2767
61628a3f 2768out_writepages:
22208ded
AK
2769 if (!no_nrwrite_index_update)
2770 wbc->no_nrwrite_index_update = 0;
2771 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2772 trace_mark(ext4_da_writepage_result,
2773 "dev %s ino %lu ret %d pages_written %d "
2774 "pages_skipped %ld congestion %d "
2775 "more_io %d no_nrwrite_index_update %d",
2776 inode->i_sb->s_id, inode->i_ino, ret,
2777 pages_written, wbc->pages_skipped,
2778 wbc->encountered_congestion, wbc->more_io,
2779 wbc->no_nrwrite_index_update);
61628a3f 2780 return ret;
64769240
AT
2781}
2782
79f0be8d
AK
2783#define FALL_BACK_TO_NONDELALLOC 1
2784static int ext4_nonda_switch(struct super_block *sb)
2785{
2786 s64 free_blocks, dirty_blocks;
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788
2789 /*
2790 * switch to non delalloc mode if we are running low
2791 * on free block. The free block accounting via percpu
179f7ebf 2792 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2793 * accumulated on each CPU without updating global counters
2794 * Delalloc need an accurate free block accounting. So switch
2795 * to non delalloc when we are near to error range.
2796 */
2797 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2798 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2799 if (2 * free_blocks < 3 * dirty_blocks ||
2800 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2801 /*
2802 * free block count is less that 150% of dirty blocks
2803 * or free blocks is less that watermark
2804 */
2805 return 1;
2806 }
2807 return 0;
2808}
2809
64769240
AT
2810static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2811 loff_t pos, unsigned len, unsigned flags,
2812 struct page **pagep, void **fsdata)
2813{
d2a17637 2814 int ret, retries = 0;
64769240
AT
2815 struct page *page;
2816 pgoff_t index;
2817 unsigned from, to;
2818 struct inode *inode = mapping->host;
2819 handle_t *handle;
2820
2821 index = pos >> PAGE_CACHE_SHIFT;
2822 from = pos & (PAGE_CACHE_SIZE - 1);
2823 to = from + len;
79f0be8d
AK
2824
2825 if (ext4_nonda_switch(inode->i_sb)) {
2826 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2827 return ext4_write_begin(file, mapping, pos,
2828 len, flags, pagep, fsdata);
2829 }
2830 *fsdata = (void *)0;
ba80b101
TT
2831
2832 trace_mark(ext4_da_write_begin,
2833 "dev %s ino %lu pos %llu len %u flags %u",
2834 inode->i_sb->s_id, inode->i_ino,
2835 (unsigned long long) pos, len, flags);
d2a17637 2836retry:
64769240
AT
2837 /*
2838 * With delayed allocation, we don't log the i_disksize update
2839 * if there is delayed block allocation. But we still need
2840 * to journalling the i_disksize update if writes to the end
2841 * of file which has an already mapped buffer.
2842 */
2843 handle = ext4_journal_start(inode, 1);
2844 if (IS_ERR(handle)) {
2845 ret = PTR_ERR(handle);
2846 goto out;
2847 }
ebd3610b
JK
2848 /* We cannot recurse into the filesystem as the transaction is already
2849 * started */
2850 flags |= AOP_FLAG_NOFS;
64769240 2851
54566b2c 2852 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2853 if (!page) {
2854 ext4_journal_stop(handle);
2855 ret = -ENOMEM;
2856 goto out;
2857 }
64769240
AT
2858 *pagep = page;
2859
2860 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2861 ext4_da_get_block_prep);
64769240
AT
2862 if (ret < 0) {
2863 unlock_page(page);
2864 ext4_journal_stop(handle);
2865 page_cache_release(page);
ae4d5372
AK
2866 /*
2867 * block_write_begin may have instantiated a few blocks
2868 * outside i_size. Trim these off again. Don't need
2869 * i_size_read because we hold i_mutex.
2870 */
2871 if (pos + len > inode->i_size)
2872 vmtruncate(inode, inode->i_size);
64769240
AT
2873 }
2874
d2a17637
MC
2875 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2876 goto retry;
64769240
AT
2877out:
2878 return ret;
2879}
2880
632eaeab
MC
2881/*
2882 * Check if we should update i_disksize
2883 * when write to the end of file but not require block allocation
2884 */
2885static int ext4_da_should_update_i_disksize(struct page *page,
2886 unsigned long offset)
2887{
2888 struct buffer_head *bh;
2889 struct inode *inode = page->mapping->host;
2890 unsigned int idx;
2891 int i;
2892
2893 bh = page_buffers(page);
2894 idx = offset >> inode->i_blkbits;
2895
af5bc92d 2896 for (i = 0; i < idx; i++)
632eaeab
MC
2897 bh = bh->b_this_page;
2898
29fa89d0 2899 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2900 return 0;
2901 return 1;
2902}
2903
64769240
AT
2904static int ext4_da_write_end(struct file *file,
2905 struct address_space *mapping,
2906 loff_t pos, unsigned len, unsigned copied,
2907 struct page *page, void *fsdata)
2908{
2909 struct inode *inode = mapping->host;
2910 int ret = 0, ret2;
2911 handle_t *handle = ext4_journal_current_handle();
2912 loff_t new_i_size;
632eaeab 2913 unsigned long start, end;
79f0be8d
AK
2914 int write_mode = (int)(unsigned long)fsdata;
2915
2916 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2917 if (ext4_should_order_data(inode)) {
2918 return ext4_ordered_write_end(file, mapping, pos,
2919 len, copied, page, fsdata);
2920 } else if (ext4_should_writeback_data(inode)) {
2921 return ext4_writeback_write_end(file, mapping, pos,
2922 len, copied, page, fsdata);
2923 } else {
2924 BUG();
2925 }
2926 }
632eaeab 2927
ba80b101
TT
2928 trace_mark(ext4_da_write_end,
2929 "dev %s ino %lu pos %llu len %u copied %u",
2930 inode->i_sb->s_id, inode->i_ino,
2931 (unsigned long long) pos, len, copied);
632eaeab 2932 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2933 end = start + copied - 1;
64769240
AT
2934
2935 /*
2936 * generic_write_end() will run mark_inode_dirty() if i_size
2937 * changes. So let's piggyback the i_disksize mark_inode_dirty
2938 * into that.
2939 */
2940
2941 new_i_size = pos + copied;
632eaeab
MC
2942 if (new_i_size > EXT4_I(inode)->i_disksize) {
2943 if (ext4_da_should_update_i_disksize(page, end)) {
2944 down_write(&EXT4_I(inode)->i_data_sem);
2945 if (new_i_size > EXT4_I(inode)->i_disksize) {
2946 /*
2947 * Updating i_disksize when extending file
2948 * without needing block allocation
2949 */
2950 if (ext4_should_order_data(inode))
2951 ret = ext4_jbd2_file_inode(handle,
2952 inode);
64769240 2953
632eaeab
MC
2954 EXT4_I(inode)->i_disksize = new_i_size;
2955 }
2956 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2957 /* We need to mark inode dirty even if
2958 * new_i_size is less that inode->i_size
2959 * bu greater than i_disksize.(hint delalloc)
2960 */
2961 ext4_mark_inode_dirty(handle, inode);
64769240 2962 }
632eaeab 2963 }
64769240
AT
2964 ret2 = generic_write_end(file, mapping, pos, len, copied,
2965 page, fsdata);
2966 copied = ret2;
2967 if (ret2 < 0)
2968 ret = ret2;
2969 ret2 = ext4_journal_stop(handle);
2970 if (!ret)
2971 ret = ret2;
2972
2973 return ret ? ret : copied;
2974}
2975
2976static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2977{
64769240
AT
2978 /*
2979 * Drop reserved blocks
2980 */
2981 BUG_ON(!PageLocked(page));
2982 if (!page_has_buffers(page))
2983 goto out;
2984
d2a17637 2985 ext4_da_page_release_reservation(page, offset);
64769240
AT
2986
2987out:
2988 ext4_invalidatepage(page, offset);
2989
2990 return;
2991}
2992
ccd2506b
TT
2993/*
2994 * Force all delayed allocation blocks to be allocated for a given inode.
2995 */
2996int ext4_alloc_da_blocks(struct inode *inode)
2997{
2998 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2999 !EXT4_I(inode)->i_reserved_meta_blocks)
3000 return 0;
3001
3002 /*
3003 * We do something simple for now. The filemap_flush() will
3004 * also start triggering a write of the data blocks, which is
3005 * not strictly speaking necessary (and for users of
3006 * laptop_mode, not even desirable). However, to do otherwise
3007 * would require replicating code paths in:
3008 *
3009 * ext4_da_writepages() ->
3010 * write_cache_pages() ---> (via passed in callback function)
3011 * __mpage_da_writepage() -->
3012 * mpage_add_bh_to_extent()
3013 * mpage_da_map_blocks()
3014 *
3015 * The problem is that write_cache_pages(), located in
3016 * mm/page-writeback.c, marks pages clean in preparation for
3017 * doing I/O, which is not desirable if we're not planning on
3018 * doing I/O at all.
3019 *
3020 * We could call write_cache_pages(), and then redirty all of
3021 * the pages by calling redirty_page_for_writeback() but that
3022 * would be ugly in the extreme. So instead we would need to
3023 * replicate parts of the code in the above functions,
3024 * simplifying them becuase we wouldn't actually intend to
3025 * write out the pages, but rather only collect contiguous
3026 * logical block extents, call the multi-block allocator, and
3027 * then update the buffer heads with the block allocations.
3028 *
3029 * For now, though, we'll cheat by calling filemap_flush(),
3030 * which will map the blocks, and start the I/O, but not
3031 * actually wait for the I/O to complete.
3032 */
3033 return filemap_flush(inode->i_mapping);
3034}
64769240 3035
ac27a0ec
DK
3036/*
3037 * bmap() is special. It gets used by applications such as lilo and by
3038 * the swapper to find the on-disk block of a specific piece of data.
3039 *
3040 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3041 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3042 * filesystem and enables swap, then they may get a nasty shock when the
3043 * data getting swapped to that swapfile suddenly gets overwritten by
3044 * the original zero's written out previously to the journal and
3045 * awaiting writeback in the kernel's buffer cache.
3046 *
3047 * So, if we see any bmap calls here on a modified, data-journaled file,
3048 * take extra steps to flush any blocks which might be in the cache.
3049 */
617ba13b 3050static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3051{
3052 struct inode *inode = mapping->host;
3053 journal_t *journal;
3054 int err;
3055
64769240
AT
3056 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3057 test_opt(inode->i_sb, DELALLOC)) {
3058 /*
3059 * With delalloc we want to sync the file
3060 * so that we can make sure we allocate
3061 * blocks for file
3062 */
3063 filemap_write_and_wait(mapping);
3064 }
3065
0390131b 3066 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3067 /*
3068 * This is a REALLY heavyweight approach, but the use of
3069 * bmap on dirty files is expected to be extremely rare:
3070 * only if we run lilo or swapon on a freshly made file
3071 * do we expect this to happen.
3072 *
3073 * (bmap requires CAP_SYS_RAWIO so this does not
3074 * represent an unprivileged user DOS attack --- we'd be
3075 * in trouble if mortal users could trigger this path at
3076 * will.)
3077 *
617ba13b 3078 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3079 * regular files. If somebody wants to bmap a directory
3080 * or symlink and gets confused because the buffer
3081 * hasn't yet been flushed to disk, they deserve
3082 * everything they get.
3083 */
3084
617ba13b
MC
3085 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3086 journal = EXT4_JOURNAL(inode);
dab291af
MC
3087 jbd2_journal_lock_updates(journal);
3088 err = jbd2_journal_flush(journal);
3089 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3090
3091 if (err)
3092 return 0;
3093 }
3094
af5bc92d 3095 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3096}
3097
3098static int bget_one(handle_t *handle, struct buffer_head *bh)
3099{
3100 get_bh(bh);
3101 return 0;
3102}
3103
3104static int bput_one(handle_t *handle, struct buffer_head *bh)
3105{
3106 put_bh(bh);
3107 return 0;
3108}
3109
ac27a0ec 3110/*
678aaf48
JK
3111 * Note that we don't need to start a transaction unless we're journaling data
3112 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3113 * need to file the inode to the transaction's list in ordered mode because if
3114 * we are writing back data added by write(), the inode is already there and if
3115 * we are writing back data modified via mmap(), noone guarantees in which
3116 * transaction the data will hit the disk. In case we are journaling data, we
3117 * cannot start transaction directly because transaction start ranks above page
3118 * lock so we have to do some magic.
ac27a0ec 3119 *
678aaf48 3120 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3121 *
3122 * Problem:
3123 *
617ba13b
MC
3124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3125 * ext4_writepage()
ac27a0ec
DK
3126 *
3127 * Similar for:
3128 *
617ba13b 3129 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3130 *
617ba13b 3131 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3132 * lock_journal and i_data_sem
ac27a0ec
DK
3133 *
3134 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3135 * allocations fail.
3136 *
3137 * 16May01: If we're reentered then journal_current_handle() will be
3138 * non-zero. We simply *return*.
3139 *
3140 * 1 July 2001: @@@ FIXME:
3141 * In journalled data mode, a data buffer may be metadata against the
3142 * current transaction. But the same file is part of a shared mapping
3143 * and someone does a writepage() on it.
3144 *
3145 * We will move the buffer onto the async_data list, but *after* it has
3146 * been dirtied. So there's a small window where we have dirty data on
3147 * BJ_Metadata.
3148 *
3149 * Note that this only applies to the last partial page in the file. The
3150 * bit which block_write_full_page() uses prepare/commit for. (That's
3151 * broken code anyway: it's wrong for msync()).
3152 *
3153 * It's a rare case: affects the final partial page, for journalled data
3154 * where the file is subject to bith write() and writepage() in the same
3155 * transction. To fix it we'll need a custom block_write_full_page().
3156 * We'll probably need that anyway for journalling writepage() output.
3157 *
3158 * We don't honour synchronous mounts for writepage(). That would be
3159 * disastrous. Any write() or metadata operation will sync the fs for
3160 * us.
3161 *
ac27a0ec 3162 */
678aaf48 3163static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3164 struct writeback_control *wbc)
3165{
3166 struct inode *inode = page->mapping->host;
3167
3168 if (test_opt(inode->i_sb, NOBH))
b920c755 3169 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3170 else
b920c755
TT
3171 return block_write_full_page(page, noalloc_get_block_write,
3172 wbc);
cf108bca
JK
3173}
3174
678aaf48 3175static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3176 struct writeback_control *wbc)
3177{
3178 struct inode *inode = page->mapping->host;
cf108bca
JK
3179 loff_t size = i_size_read(inode);
3180 loff_t len;
3181
ba80b101
TT
3182 trace_mark(ext4_normal_writepage,
3183 "dev %s ino %lu page_index %lu",
3184 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3185 J_ASSERT(PageLocked(page));
cf108bca
JK
3186 if (page->index == size >> PAGE_CACHE_SHIFT)
3187 len = size & ~PAGE_CACHE_MASK;
3188 else
3189 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3190
3191 if (page_has_buffers(page)) {
3192 /* if page has buffers it should all be mapped
3193 * and allocated. If there are not buffers attached
3194 * to the page we know the page is dirty but it lost
3195 * buffers. That means that at some moment in time
3196 * after write_begin() / write_end() has been called
3197 * all buffers have been clean and thus they must have been
3198 * written at least once. So they are all mapped and we can
3199 * happily proceed with mapping them and writing the page.
3200 */
3201 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3202 ext4_bh_unmapped_or_delay));
3203 }
cf108bca
JK
3204
3205 if (!ext4_journal_current_handle())
678aaf48 3206 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3207
3208 redirty_page_for_writepage(wbc, page);
3209 unlock_page(page);
3210 return 0;
3211}
3212
3213static int __ext4_journalled_writepage(struct page *page,
3214 struct writeback_control *wbc)
3215{
3216 struct address_space *mapping = page->mapping;
3217 struct inode *inode = mapping->host;
3218 struct buffer_head *page_bufs;
ac27a0ec
DK
3219 handle_t *handle = NULL;
3220 int ret = 0;
3221 int err;
3222
f0e6c985 3223 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 3224 noalloc_get_block_write);
cf108bca
JK
3225 if (ret != 0)
3226 goto out_unlock;
3227
3228 page_bufs = page_buffers(page);
3229 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3230 bget_one);
3231 /* As soon as we unlock the page, it can go away, but we have
3232 * references to buffers so we are safe */
3233 unlock_page(page);
ac27a0ec 3234
617ba13b 3235 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3236 if (IS_ERR(handle)) {
3237 ret = PTR_ERR(handle);
cf108bca 3238 goto out;
ac27a0ec
DK
3239 }
3240
cf108bca
JK
3241 ret = walk_page_buffers(handle, page_bufs, 0,
3242 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3243
cf108bca
JK
3244 err = walk_page_buffers(handle, page_bufs, 0,
3245 PAGE_CACHE_SIZE, NULL, write_end_fn);
3246 if (ret == 0)
3247 ret = err;
617ba13b 3248 err = ext4_journal_stop(handle);
ac27a0ec
DK
3249 if (!ret)
3250 ret = err;
ac27a0ec 3251
cf108bca
JK
3252 walk_page_buffers(handle, page_bufs, 0,
3253 PAGE_CACHE_SIZE, NULL, bput_one);
3254 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3255 goto out;
3256
3257out_unlock:
ac27a0ec 3258 unlock_page(page);
cf108bca 3259out:
ac27a0ec
DK
3260 return ret;
3261}
3262
617ba13b 3263static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3264 struct writeback_control *wbc)
3265{
3266 struct inode *inode = page->mapping->host;
cf108bca
JK
3267 loff_t size = i_size_read(inode);
3268 loff_t len;
ac27a0ec 3269
ba80b101
TT
3270 trace_mark(ext4_journalled_writepage,
3271 "dev %s ino %lu page_index %lu",
3272 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3273 J_ASSERT(PageLocked(page));
cf108bca
JK
3274 if (page->index == size >> PAGE_CACHE_SHIFT)
3275 len = size & ~PAGE_CACHE_MASK;
3276 else
3277 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3278
3279 if (page_has_buffers(page)) {
3280 /* if page has buffers it should all be mapped
3281 * and allocated. If there are not buffers attached
3282 * to the page we know the page is dirty but it lost
3283 * buffers. That means that at some moment in time
3284 * after write_begin() / write_end() has been called
3285 * all buffers have been clean and thus they must have been
3286 * written at least once. So they are all mapped and we can
3287 * happily proceed with mapping them and writing the page.
3288 */
3289 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3290 ext4_bh_unmapped_or_delay));
3291 }
ac27a0ec 3292
cf108bca 3293 if (ext4_journal_current_handle())
ac27a0ec 3294 goto no_write;
ac27a0ec 3295
cf108bca 3296 if (PageChecked(page)) {
ac27a0ec
DK
3297 /*
3298 * It's mmapped pagecache. Add buffers and journal it. There
3299 * doesn't seem much point in redirtying the page here.
3300 */
3301 ClearPageChecked(page);
cf108bca 3302 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3303 } else {
3304 /*
3305 * It may be a page full of checkpoint-mode buffers. We don't
3306 * really know unless we go poke around in the buffer_heads.
3307 * But block_write_full_page will do the right thing.
3308 */
b920c755
TT
3309 return block_write_full_page(page, noalloc_get_block_write,
3310 wbc);
ac27a0ec 3311 }
ac27a0ec
DK
3312no_write:
3313 redirty_page_for_writepage(wbc, page);
ac27a0ec 3314 unlock_page(page);
cf108bca 3315 return 0;
ac27a0ec
DK
3316}
3317
617ba13b 3318static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3319{
617ba13b 3320 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3321}
3322
3323static int
617ba13b 3324ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3325 struct list_head *pages, unsigned nr_pages)
3326{
617ba13b 3327 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3328}
3329
617ba13b 3330static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3331{
617ba13b 3332 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3333
3334 /*
3335 * If it's a full truncate we just forget about the pending dirtying
3336 */
3337 if (offset == 0)
3338 ClearPageChecked(page);
3339
0390131b
FM
3340 if (journal)
3341 jbd2_journal_invalidatepage(journal, page, offset);
3342 else
3343 block_invalidatepage(page, offset);
ac27a0ec
DK
3344}
3345
617ba13b 3346static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3347{
617ba13b 3348 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3349
3350 WARN_ON(PageChecked(page));
3351 if (!page_has_buffers(page))
3352 return 0;
0390131b
FM
3353 if (journal)
3354 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 else
3356 return try_to_free_buffers(page);
ac27a0ec
DK
3357}
3358
3359/*
3360 * If the O_DIRECT write will extend the file then add this inode to the
3361 * orphan list. So recovery will truncate it back to the original size
3362 * if the machine crashes during the write.
3363 *
3364 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3365 * crashes then stale disk data _may_ be exposed inside the file. But current
3366 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3367 */
617ba13b 3368static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3369 const struct iovec *iov, loff_t offset,
3370 unsigned long nr_segs)
3371{
3372 struct file *file = iocb->ki_filp;
3373 struct inode *inode = file->f_mapping->host;
617ba13b 3374 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3375 handle_t *handle;
ac27a0ec
DK
3376 ssize_t ret;
3377 int orphan = 0;
3378 size_t count = iov_length(iov, nr_segs);
3379
3380 if (rw == WRITE) {
3381 loff_t final_size = offset + count;
3382
ac27a0ec 3383 if (final_size > inode->i_size) {
7fb5409d
JK
3384 /* Credits for sb + inode write */
3385 handle = ext4_journal_start(inode, 2);
3386 if (IS_ERR(handle)) {
3387 ret = PTR_ERR(handle);
3388 goto out;
3389 }
617ba13b 3390 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3391 if (ret) {
3392 ext4_journal_stop(handle);
3393 goto out;
3394 }
ac27a0ec
DK
3395 orphan = 1;
3396 ei->i_disksize = inode->i_size;
7fb5409d 3397 ext4_journal_stop(handle);
ac27a0ec
DK
3398 }
3399 }
3400
3401 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3402 offset, nr_segs,
617ba13b 3403 ext4_get_block, NULL);
ac27a0ec 3404
7fb5409d 3405 if (orphan) {
ac27a0ec
DK
3406 int err;
3407
7fb5409d
JK
3408 /* Credits for sb + inode write */
3409 handle = ext4_journal_start(inode, 2);
3410 if (IS_ERR(handle)) {
3411 /* This is really bad luck. We've written the data
3412 * but cannot extend i_size. Bail out and pretend
3413 * the write failed... */
3414 ret = PTR_ERR(handle);
3415 goto out;
3416 }
3417 if (inode->i_nlink)
617ba13b 3418 ext4_orphan_del(handle, inode);
7fb5409d 3419 if (ret > 0) {
ac27a0ec
DK
3420 loff_t end = offset + ret;
3421 if (end > inode->i_size) {
3422 ei->i_disksize = end;
3423 i_size_write(inode, end);
3424 /*
3425 * We're going to return a positive `ret'
3426 * here due to non-zero-length I/O, so there's
3427 * no way of reporting error returns from
617ba13b 3428 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3429 * ignore it.
3430 */
617ba13b 3431 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3432 }
3433 }
617ba13b 3434 err = ext4_journal_stop(handle);
ac27a0ec
DK
3435 if (ret == 0)
3436 ret = err;
3437 }
3438out:
3439 return ret;
3440}
3441
3442/*
617ba13b 3443 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3444 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3445 * much here because ->set_page_dirty is called under VFS locks. The page is
3446 * not necessarily locked.
3447 *
3448 * We cannot just dirty the page and leave attached buffers clean, because the
3449 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3450 * or jbddirty because all the journalling code will explode.
3451 *
3452 * So what we do is to mark the page "pending dirty" and next time writepage
3453 * is called, propagate that into the buffers appropriately.
3454 */
617ba13b 3455static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3456{
3457 SetPageChecked(page);
3458 return __set_page_dirty_nobuffers(page);
3459}
3460
617ba13b 3461static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3462 .readpage = ext4_readpage,
3463 .readpages = ext4_readpages,
3464 .writepage = ext4_normal_writepage,
3465 .sync_page = block_sync_page,
3466 .write_begin = ext4_write_begin,
3467 .write_end = ext4_ordered_write_end,
3468 .bmap = ext4_bmap,
3469 .invalidatepage = ext4_invalidatepage,
3470 .releasepage = ext4_releasepage,
3471 .direct_IO = ext4_direct_IO,
3472 .migratepage = buffer_migrate_page,
3473 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3474};
3475
617ba13b 3476static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3477 .readpage = ext4_readpage,
3478 .readpages = ext4_readpages,
3479 .writepage = ext4_normal_writepage,
3480 .sync_page = block_sync_page,
3481 .write_begin = ext4_write_begin,
3482 .write_end = ext4_writeback_write_end,
3483 .bmap = ext4_bmap,
3484 .invalidatepage = ext4_invalidatepage,
3485 .releasepage = ext4_releasepage,
3486 .direct_IO = ext4_direct_IO,
3487 .migratepage = buffer_migrate_page,
3488 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3489};
3490
617ba13b 3491static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3492 .readpage = ext4_readpage,
3493 .readpages = ext4_readpages,
3494 .writepage = ext4_journalled_writepage,
3495 .sync_page = block_sync_page,
3496 .write_begin = ext4_write_begin,
3497 .write_end = ext4_journalled_write_end,
3498 .set_page_dirty = ext4_journalled_set_page_dirty,
3499 .bmap = ext4_bmap,
3500 .invalidatepage = ext4_invalidatepage,
3501 .releasepage = ext4_releasepage,
3502 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3503};
3504
64769240 3505static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3506 .readpage = ext4_readpage,
3507 .readpages = ext4_readpages,
3508 .writepage = ext4_da_writepage,
3509 .writepages = ext4_da_writepages,
3510 .sync_page = block_sync_page,
3511 .write_begin = ext4_da_write_begin,
3512 .write_end = ext4_da_write_end,
3513 .bmap = ext4_bmap,
3514 .invalidatepage = ext4_da_invalidatepage,
3515 .releasepage = ext4_releasepage,
3516 .direct_IO = ext4_direct_IO,
3517 .migratepage = buffer_migrate_page,
3518 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3519};
3520
617ba13b 3521void ext4_set_aops(struct inode *inode)
ac27a0ec 3522{
cd1aac32
AK
3523 if (ext4_should_order_data(inode) &&
3524 test_opt(inode->i_sb, DELALLOC))
3525 inode->i_mapping->a_ops = &ext4_da_aops;
3526 else if (ext4_should_order_data(inode))
617ba13b 3527 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3528 else if (ext4_should_writeback_data(inode) &&
3529 test_opt(inode->i_sb, DELALLOC))
3530 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3531 else if (ext4_should_writeback_data(inode))
3532 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3533 else
617ba13b 3534 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3535}
3536
3537/*
617ba13b 3538 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3539 * up to the end of the block which corresponds to `from'.
3540 * This required during truncate. We need to physically zero the tail end
3541 * of that block so it doesn't yield old data if the file is later grown.
3542 */
cf108bca 3543int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3544 struct address_space *mapping, loff_t from)
3545{
617ba13b 3546 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3547 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3548 unsigned blocksize, length, pos;
3549 ext4_lblk_t iblock;
ac27a0ec
DK
3550 struct inode *inode = mapping->host;
3551 struct buffer_head *bh;
cf108bca 3552 struct page *page;
ac27a0ec 3553 int err = 0;
ac27a0ec 3554
cf108bca
JK
3555 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3556 if (!page)
3557 return -EINVAL;
3558
ac27a0ec
DK
3559 blocksize = inode->i_sb->s_blocksize;
3560 length = blocksize - (offset & (blocksize - 1));
3561 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3562
3563 /*
3564 * For "nobh" option, we can only work if we don't need to
3565 * read-in the page - otherwise we create buffers to do the IO.
3566 */
3567 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3568 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3569 zero_user(page, offset, length);
ac27a0ec
DK
3570 set_page_dirty(page);
3571 goto unlock;
3572 }
3573
3574 if (!page_has_buffers(page))
3575 create_empty_buffers(page, blocksize, 0);
3576
3577 /* Find the buffer that contains "offset" */
3578 bh = page_buffers(page);
3579 pos = blocksize;
3580 while (offset >= pos) {
3581 bh = bh->b_this_page;
3582 iblock++;
3583 pos += blocksize;
3584 }
3585
3586 err = 0;
3587 if (buffer_freed(bh)) {
3588 BUFFER_TRACE(bh, "freed: skip");
3589 goto unlock;
3590 }
3591
3592 if (!buffer_mapped(bh)) {
3593 BUFFER_TRACE(bh, "unmapped");
617ba13b 3594 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3595 /* unmapped? It's a hole - nothing to do */
3596 if (!buffer_mapped(bh)) {
3597 BUFFER_TRACE(bh, "still unmapped");
3598 goto unlock;
3599 }
3600 }
3601
3602 /* Ok, it's mapped. Make sure it's up-to-date */
3603 if (PageUptodate(page))
3604 set_buffer_uptodate(bh);
3605
3606 if (!buffer_uptodate(bh)) {
3607 err = -EIO;
3608 ll_rw_block(READ, 1, &bh);
3609 wait_on_buffer(bh);
3610 /* Uhhuh. Read error. Complain and punt. */
3611 if (!buffer_uptodate(bh))
3612 goto unlock;
3613 }
3614
617ba13b 3615 if (ext4_should_journal_data(inode)) {
ac27a0ec 3616 BUFFER_TRACE(bh, "get write access");
617ba13b 3617 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3618 if (err)
3619 goto unlock;
3620 }
3621
eebd2aa3 3622 zero_user(page, offset, length);
ac27a0ec
DK
3623
3624 BUFFER_TRACE(bh, "zeroed end of block");
3625
3626 err = 0;
617ba13b 3627 if (ext4_should_journal_data(inode)) {
0390131b 3628 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3629 } else {
617ba13b 3630 if (ext4_should_order_data(inode))
678aaf48 3631 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3632 mark_buffer_dirty(bh);
3633 }
3634
3635unlock:
3636 unlock_page(page);
3637 page_cache_release(page);
3638 return err;
3639}
3640
3641/*
3642 * Probably it should be a library function... search for first non-zero word
3643 * or memcmp with zero_page, whatever is better for particular architecture.
3644 * Linus?
3645 */
3646static inline int all_zeroes(__le32 *p, __le32 *q)
3647{
3648 while (p < q)
3649 if (*p++)
3650 return 0;
3651 return 1;
3652}
3653
3654/**
617ba13b 3655 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3656 * @inode: inode in question
3657 * @depth: depth of the affected branch
617ba13b 3658 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3659 * @chain: place to store the pointers to partial indirect blocks
3660 * @top: place to the (detached) top of branch
3661 *
617ba13b 3662 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3663 *
3664 * When we do truncate() we may have to clean the ends of several
3665 * indirect blocks but leave the blocks themselves alive. Block is
3666 * partially truncated if some data below the new i_size is refered
3667 * from it (and it is on the path to the first completely truncated
3668 * data block, indeed). We have to free the top of that path along
3669 * with everything to the right of the path. Since no allocation
617ba13b 3670 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3671 * finishes, we may safely do the latter, but top of branch may
3672 * require special attention - pageout below the truncation point
3673 * might try to populate it.
3674 *
3675 * We atomically detach the top of branch from the tree, store the
3676 * block number of its root in *@top, pointers to buffer_heads of
3677 * partially truncated blocks - in @chain[].bh and pointers to
3678 * their last elements that should not be removed - in
3679 * @chain[].p. Return value is the pointer to last filled element
3680 * of @chain.
3681 *
3682 * The work left to caller to do the actual freeing of subtrees:
3683 * a) free the subtree starting from *@top
3684 * b) free the subtrees whose roots are stored in
3685 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3686 * c) free the subtrees growing from the inode past the @chain[0].
3687 * (no partially truncated stuff there). */
3688
617ba13b 3689static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3690 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3691{
3692 Indirect *partial, *p;
3693 int k, err;
3694
3695 *top = 0;
3696 /* Make k index the deepest non-null offest + 1 */
3697 for (k = depth; k > 1 && !offsets[k-1]; k--)
3698 ;
617ba13b 3699 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3700 /* Writer: pointers */
3701 if (!partial)
3702 partial = chain + k-1;
3703 /*
3704 * If the branch acquired continuation since we've looked at it -
3705 * fine, it should all survive and (new) top doesn't belong to us.
3706 */
3707 if (!partial->key && *partial->p)
3708 /* Writer: end */
3709 goto no_top;
af5bc92d 3710 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3711 ;
3712 /*
3713 * OK, we've found the last block that must survive. The rest of our
3714 * branch should be detached before unlocking. However, if that rest
3715 * of branch is all ours and does not grow immediately from the inode
3716 * it's easier to cheat and just decrement partial->p.
3717 */
3718 if (p == chain + k - 1 && p > chain) {
3719 p->p--;
3720 } else {
3721 *top = *p->p;
617ba13b 3722 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3723#if 0
3724 *p->p = 0;
3725#endif
3726 }
3727 /* Writer: end */
3728
af5bc92d 3729 while (partial > p) {
ac27a0ec
DK
3730 brelse(partial->bh);
3731 partial--;
3732 }
3733no_top:
3734 return partial;
3735}
3736
3737/*
3738 * Zero a number of block pointers in either an inode or an indirect block.
3739 * If we restart the transaction we must again get write access to the
3740 * indirect block for further modification.
3741 *
3742 * We release `count' blocks on disk, but (last - first) may be greater
3743 * than `count' because there can be holes in there.
3744 */
617ba13b
MC
3745static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3746 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3747 unsigned long count, __le32 *first, __le32 *last)
3748{
3749 __le32 *p;
3750 if (try_to_extend_transaction(handle, inode)) {
3751 if (bh) {
0390131b
FM
3752 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3753 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3754 }
617ba13b
MC
3755 ext4_mark_inode_dirty(handle, inode);
3756 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3757 if (bh) {
3758 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3759 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3760 }
3761 }
3762
3763 /*
3764 * Any buffers which are on the journal will be in memory. We find
dab291af 3765 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3766 * on them. We've already detached each block from the file, so
dab291af 3767 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3768 *
dab291af 3769 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3770 */
3771 for (p = first; p < last; p++) {
3772 u32 nr = le32_to_cpu(*p);
3773 if (nr) {
1d03ec98 3774 struct buffer_head *tbh;
ac27a0ec
DK
3775
3776 *p = 0;
1d03ec98
AK
3777 tbh = sb_find_get_block(inode->i_sb, nr);
3778 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3779 }
3780 }
3781
c9de560d 3782 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3783}
3784
3785/**
617ba13b 3786 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3787 * @handle: handle for this transaction
3788 * @inode: inode we are dealing with
3789 * @this_bh: indirect buffer_head which contains *@first and *@last
3790 * @first: array of block numbers
3791 * @last: points immediately past the end of array
3792 *
3793 * We are freeing all blocks refered from that array (numbers are stored as
3794 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3795 *
3796 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3797 * blocks are contiguous then releasing them at one time will only affect one
3798 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3799 * actually use a lot of journal space.
3800 *
3801 * @this_bh will be %NULL if @first and @last point into the inode's direct
3802 * block pointers.
3803 */
617ba13b 3804static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3805 struct buffer_head *this_bh,
3806 __le32 *first, __le32 *last)
3807{
617ba13b 3808 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3809 unsigned long count = 0; /* Number of blocks in the run */
3810 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3811 corresponding to
3812 block_to_free */
617ba13b 3813 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3814 __le32 *p; /* Pointer into inode/ind
3815 for current block */
3816 int err;
3817
3818 if (this_bh) { /* For indirect block */
3819 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3820 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3821 /* Important: if we can't update the indirect pointers
3822 * to the blocks, we can't free them. */
3823 if (err)
3824 return;
3825 }
3826
3827 for (p = first; p < last; p++) {
3828 nr = le32_to_cpu(*p);
3829 if (nr) {
3830 /* accumulate blocks to free if they're contiguous */
3831 if (count == 0) {
3832 block_to_free = nr;
3833 block_to_free_p = p;
3834 count = 1;
3835 } else if (nr == block_to_free + count) {
3836 count++;
3837 } else {
617ba13b 3838 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3839 block_to_free,
3840 count, block_to_free_p, p);
3841 block_to_free = nr;
3842 block_to_free_p = p;
3843 count = 1;
3844 }
3845 }
3846 }
3847
3848 if (count > 0)
617ba13b 3849 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3850 count, block_to_free_p, p);
3851
3852 if (this_bh) {
0390131b 3853 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3854
3855 /*
3856 * The buffer head should have an attached journal head at this
3857 * point. However, if the data is corrupted and an indirect
3858 * block pointed to itself, it would have been detached when
3859 * the block was cleared. Check for this instead of OOPSing.
3860 */
e7f07968 3861 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3862 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3863 else
3864 ext4_error(inode->i_sb, __func__,
3865 "circular indirect block detected, "
3866 "inode=%lu, block=%llu",
3867 inode->i_ino,
3868 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3869 }
3870}
3871
3872/**
617ba13b 3873 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3874 * @handle: JBD handle for this transaction
3875 * @inode: inode we are dealing with
3876 * @parent_bh: the buffer_head which contains *@first and *@last
3877 * @first: array of block numbers
3878 * @last: pointer immediately past the end of array
3879 * @depth: depth of the branches to free
3880 *
3881 * We are freeing all blocks refered from these branches (numbers are
3882 * stored as little-endian 32-bit) and updating @inode->i_blocks
3883 * appropriately.
3884 */
617ba13b 3885static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3886 struct buffer_head *parent_bh,
3887 __le32 *first, __le32 *last, int depth)
3888{
617ba13b 3889 ext4_fsblk_t nr;
ac27a0ec
DK
3890 __le32 *p;
3891
0390131b 3892 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3893 return;
3894
3895 if (depth--) {
3896 struct buffer_head *bh;
617ba13b 3897 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3898 p = last;
3899 while (--p >= first) {
3900 nr = le32_to_cpu(*p);
3901 if (!nr)
3902 continue; /* A hole */
3903
3904 /* Go read the buffer for the next level down */
3905 bh = sb_bread(inode->i_sb, nr);
3906
3907 /*
3908 * A read failure? Report error and clear slot
3909 * (should be rare).
3910 */
3911 if (!bh) {
617ba13b 3912 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3913 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3914 inode->i_ino, nr);
3915 continue;
3916 }
3917
3918 /* This zaps the entire block. Bottom up. */
3919 BUFFER_TRACE(bh, "free child branches");
617ba13b 3920 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3921 (__le32 *) bh->b_data,
3922 (__le32 *) bh->b_data + addr_per_block,
3923 depth);
ac27a0ec
DK
3924
3925 /*
3926 * We've probably journalled the indirect block several
3927 * times during the truncate. But it's no longer
3928 * needed and we now drop it from the transaction via
dab291af 3929 * jbd2_journal_revoke().
ac27a0ec
DK
3930 *
3931 * That's easy if it's exclusively part of this
3932 * transaction. But if it's part of the committing
dab291af 3933 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3934 * brelse() it. That means that if the underlying
617ba13b 3935 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3936 * unmap_underlying_metadata() will find this block
3937 * and will try to get rid of it. damn, damn.
3938 *
3939 * If this block has already been committed to the
3940 * journal, a revoke record will be written. And
3941 * revoke records must be emitted *before* clearing
3942 * this block's bit in the bitmaps.
3943 */
617ba13b 3944 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3945
3946 /*
3947 * Everything below this this pointer has been
3948 * released. Now let this top-of-subtree go.
3949 *
3950 * We want the freeing of this indirect block to be
3951 * atomic in the journal with the updating of the
3952 * bitmap block which owns it. So make some room in
3953 * the journal.
3954 *
3955 * We zero the parent pointer *after* freeing its
3956 * pointee in the bitmaps, so if extend_transaction()
3957 * for some reason fails to put the bitmap changes and
3958 * the release into the same transaction, recovery
3959 * will merely complain about releasing a free block,
3960 * rather than leaking blocks.
3961 */
0390131b 3962 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3963 return;
3964 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3965 ext4_mark_inode_dirty(handle, inode);
3966 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3967 }
3968
c9de560d 3969 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3970
3971 if (parent_bh) {
3972 /*
3973 * The block which we have just freed is
3974 * pointed to by an indirect block: journal it
3975 */
3976 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3977 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3978 parent_bh)){
3979 *p = 0;
3980 BUFFER_TRACE(parent_bh,
0390131b
FM
3981 "call ext4_handle_dirty_metadata");
3982 ext4_handle_dirty_metadata(handle,
3983 inode,
3984 parent_bh);
ac27a0ec
DK
3985 }
3986 }
3987 }
3988 } else {
3989 /* We have reached the bottom of the tree. */
3990 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3991 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3992 }
3993}
3994
91ef4caf
DG
3995int ext4_can_truncate(struct inode *inode)
3996{
3997 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3998 return 0;
3999 if (S_ISREG(inode->i_mode))
4000 return 1;
4001 if (S_ISDIR(inode->i_mode))
4002 return 1;
4003 if (S_ISLNK(inode->i_mode))
4004 return !ext4_inode_is_fast_symlink(inode);
4005 return 0;
4006}
4007
ac27a0ec 4008/*
617ba13b 4009 * ext4_truncate()
ac27a0ec 4010 *
617ba13b
MC
4011 * We block out ext4_get_block() block instantiations across the entire
4012 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4013 * simultaneously on behalf of the same inode.
4014 *
4015 * As we work through the truncate and commmit bits of it to the journal there
4016 * is one core, guiding principle: the file's tree must always be consistent on
4017 * disk. We must be able to restart the truncate after a crash.
4018 *
4019 * The file's tree may be transiently inconsistent in memory (although it
4020 * probably isn't), but whenever we close off and commit a journal transaction,
4021 * the contents of (the filesystem + the journal) must be consistent and
4022 * restartable. It's pretty simple, really: bottom up, right to left (although
4023 * left-to-right works OK too).
4024 *
4025 * Note that at recovery time, journal replay occurs *before* the restart of
4026 * truncate against the orphan inode list.
4027 *
4028 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4029 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4030 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4031 * ext4_truncate() to have another go. So there will be instantiated blocks
4032 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4033 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4034 * ext4_truncate() run will find them and release them.
ac27a0ec 4035 */
617ba13b 4036void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4037{
4038 handle_t *handle;
617ba13b 4039 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4040 __le32 *i_data = ei->i_data;
617ba13b 4041 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4042 struct address_space *mapping = inode->i_mapping;
725d26d3 4043 ext4_lblk_t offsets[4];
ac27a0ec
DK
4044 Indirect chain[4];
4045 Indirect *partial;
4046 __le32 nr = 0;
4047 int n;
725d26d3 4048 ext4_lblk_t last_block;
ac27a0ec 4049 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4050
91ef4caf 4051 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4052 return;
4053
afd4672d 4054 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4055 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4056
1d03ec98 4057 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4058 ext4_ext_truncate(inode);
1d03ec98
AK
4059 return;
4060 }
a86c6181 4061
ac27a0ec 4062 handle = start_transaction(inode);
cf108bca 4063 if (IS_ERR(handle))
ac27a0ec 4064 return; /* AKPM: return what? */
ac27a0ec
DK
4065
4066 last_block = (inode->i_size + blocksize-1)
617ba13b 4067 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4068
cf108bca
JK
4069 if (inode->i_size & (blocksize - 1))
4070 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4071 goto out_stop;
ac27a0ec 4072
617ba13b 4073 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4074 if (n == 0)
4075 goto out_stop; /* error */
4076
4077 /*
4078 * OK. This truncate is going to happen. We add the inode to the
4079 * orphan list, so that if this truncate spans multiple transactions,
4080 * and we crash, we will resume the truncate when the filesystem
4081 * recovers. It also marks the inode dirty, to catch the new size.
4082 *
4083 * Implication: the file must always be in a sane, consistent
4084 * truncatable state while each transaction commits.
4085 */
617ba13b 4086 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4087 goto out_stop;
4088
632eaeab
MC
4089 /*
4090 * From here we block out all ext4_get_block() callers who want to
4091 * modify the block allocation tree.
4092 */
4093 down_write(&ei->i_data_sem);
b4df2030 4094
c2ea3fde 4095 ext4_discard_preallocations(inode);
b4df2030 4096
ac27a0ec
DK
4097 /*
4098 * The orphan list entry will now protect us from any crash which
4099 * occurs before the truncate completes, so it is now safe to propagate
4100 * the new, shorter inode size (held for now in i_size) into the
4101 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4102 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4103 */
4104 ei->i_disksize = inode->i_size;
4105
ac27a0ec 4106 if (n == 1) { /* direct blocks */
617ba13b
MC
4107 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4108 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4109 goto do_indirects;
4110 }
4111
617ba13b 4112 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4113 /* Kill the top of shared branch (not detached) */
4114 if (nr) {
4115 if (partial == chain) {
4116 /* Shared branch grows from the inode */
617ba13b 4117 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4118 &nr, &nr+1, (chain+n-1) - partial);
4119 *partial->p = 0;
4120 /*
4121 * We mark the inode dirty prior to restart,
4122 * and prior to stop. No need for it here.
4123 */
4124 } else {
4125 /* Shared branch grows from an indirect block */
4126 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4127 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4128 partial->p,
4129 partial->p+1, (chain+n-1) - partial);
4130 }
4131 }
4132 /* Clear the ends of indirect blocks on the shared branch */
4133 while (partial > chain) {
617ba13b 4134 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4135 (__le32*)partial->bh->b_data+addr_per_block,
4136 (chain+n-1) - partial);
4137 BUFFER_TRACE(partial->bh, "call brelse");
4138 brelse (partial->bh);
4139 partial--;
4140 }
4141do_indirects:
4142 /* Kill the remaining (whole) subtrees */
4143 switch (offsets[0]) {
4144 default:
617ba13b 4145 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4146 if (nr) {
617ba13b
MC
4147 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4148 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4149 }
617ba13b
MC
4150 case EXT4_IND_BLOCK:
4151 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4152 if (nr) {
617ba13b
MC
4153 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4154 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4155 }
617ba13b
MC
4156 case EXT4_DIND_BLOCK:
4157 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4158 if (nr) {
617ba13b
MC
4159 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4160 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4161 }
617ba13b 4162 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4163 ;
4164 }
4165
0e855ac8 4166 up_write(&ei->i_data_sem);
ef7f3835 4167 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4168 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4169
4170 /*
4171 * In a multi-transaction truncate, we only make the final transaction
4172 * synchronous
4173 */
4174 if (IS_SYNC(inode))
0390131b 4175 ext4_handle_sync(handle);
ac27a0ec
DK
4176out_stop:
4177 /*
4178 * If this was a simple ftruncate(), and the file will remain alive
4179 * then we need to clear up the orphan record which we created above.
4180 * However, if this was a real unlink then we were called by
617ba13b 4181 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4182 * orphan info for us.
4183 */
4184 if (inode->i_nlink)
617ba13b 4185 ext4_orphan_del(handle, inode);
ac27a0ec 4186
617ba13b 4187 ext4_journal_stop(handle);
ac27a0ec
DK
4188}
4189
ac27a0ec 4190/*
617ba13b 4191 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4192 * underlying buffer_head on success. If 'in_mem' is true, we have all
4193 * data in memory that is needed to recreate the on-disk version of this
4194 * inode.
4195 */
617ba13b
MC
4196static int __ext4_get_inode_loc(struct inode *inode,
4197 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4198{
240799cd
TT
4199 struct ext4_group_desc *gdp;
4200 struct buffer_head *bh;
4201 struct super_block *sb = inode->i_sb;
4202 ext4_fsblk_t block;
4203 int inodes_per_block, inode_offset;
4204
3a06d778 4205 iloc->bh = NULL;
240799cd
TT
4206 if (!ext4_valid_inum(sb, inode->i_ino))
4207 return -EIO;
ac27a0ec 4208
240799cd
TT
4209 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4210 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4211 if (!gdp)
ac27a0ec
DK
4212 return -EIO;
4213
240799cd
TT
4214 /*
4215 * Figure out the offset within the block group inode table
4216 */
4217 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4218 inode_offset = ((inode->i_ino - 1) %
4219 EXT4_INODES_PER_GROUP(sb));
4220 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4221 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4222
4223 bh = sb_getblk(sb, block);
ac27a0ec 4224 if (!bh) {
240799cd
TT
4225 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4226 "inode block - inode=%lu, block=%llu",
4227 inode->i_ino, block);
ac27a0ec
DK
4228 return -EIO;
4229 }
4230 if (!buffer_uptodate(bh)) {
4231 lock_buffer(bh);
9c83a923
HK
4232
4233 /*
4234 * If the buffer has the write error flag, we have failed
4235 * to write out another inode in the same block. In this
4236 * case, we don't have to read the block because we may
4237 * read the old inode data successfully.
4238 */
4239 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4240 set_buffer_uptodate(bh);
4241
ac27a0ec
DK
4242 if (buffer_uptodate(bh)) {
4243 /* someone brought it uptodate while we waited */
4244 unlock_buffer(bh);
4245 goto has_buffer;
4246 }
4247
4248 /*
4249 * If we have all information of the inode in memory and this
4250 * is the only valid inode in the block, we need not read the
4251 * block.
4252 */
4253 if (in_mem) {
4254 struct buffer_head *bitmap_bh;
240799cd 4255 int i, start;
ac27a0ec 4256
240799cd 4257 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4258
240799cd
TT
4259 /* Is the inode bitmap in cache? */
4260 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4261 if (!bitmap_bh)
4262 goto make_io;
4263
4264 /*
4265 * If the inode bitmap isn't in cache then the
4266 * optimisation may end up performing two reads instead
4267 * of one, so skip it.
4268 */
4269 if (!buffer_uptodate(bitmap_bh)) {
4270 brelse(bitmap_bh);
4271 goto make_io;
4272 }
240799cd 4273 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4274 if (i == inode_offset)
4275 continue;
617ba13b 4276 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4277 break;
4278 }
4279 brelse(bitmap_bh);
240799cd 4280 if (i == start + inodes_per_block) {
ac27a0ec
DK
4281 /* all other inodes are free, so skip I/O */
4282 memset(bh->b_data, 0, bh->b_size);
4283 set_buffer_uptodate(bh);
4284 unlock_buffer(bh);
4285 goto has_buffer;
4286 }
4287 }
4288
4289make_io:
240799cd
TT
4290 /*
4291 * If we need to do any I/O, try to pre-readahead extra
4292 * blocks from the inode table.
4293 */
4294 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4295 ext4_fsblk_t b, end, table;
4296 unsigned num;
4297
4298 table = ext4_inode_table(sb, gdp);
b713a5ec 4299 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4300 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4301 if (table > b)
4302 b = table;
4303 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4304 num = EXT4_INODES_PER_GROUP(sb);
4305 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4306 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4307 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4308 table += num / inodes_per_block;
4309 if (end > table)
4310 end = table;
4311 while (b <= end)
4312 sb_breadahead(sb, b++);
4313 }
4314
ac27a0ec
DK
4315 /*
4316 * There are other valid inodes in the buffer, this inode
4317 * has in-inode xattrs, or we don't have this inode in memory.
4318 * Read the block from disk.
4319 */
4320 get_bh(bh);
4321 bh->b_end_io = end_buffer_read_sync;
4322 submit_bh(READ_META, bh);
4323 wait_on_buffer(bh);
4324 if (!buffer_uptodate(bh)) {
240799cd
TT
4325 ext4_error(sb, __func__,
4326 "unable to read inode block - inode=%lu, "
4327 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4328 brelse(bh);
4329 return -EIO;
4330 }
4331 }
4332has_buffer:
4333 iloc->bh = bh;
4334 return 0;
4335}
4336
617ba13b 4337int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4338{
4339 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4340 return __ext4_get_inode_loc(inode, iloc,
4341 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4342}
4343
617ba13b 4344void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4345{
617ba13b 4346 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4347
4348 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4349 if (flags & EXT4_SYNC_FL)
ac27a0ec 4350 inode->i_flags |= S_SYNC;
617ba13b 4351 if (flags & EXT4_APPEND_FL)
ac27a0ec 4352 inode->i_flags |= S_APPEND;
617ba13b 4353 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4354 inode->i_flags |= S_IMMUTABLE;
617ba13b 4355 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4356 inode->i_flags |= S_NOATIME;
617ba13b 4357 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4358 inode->i_flags |= S_DIRSYNC;
4359}
4360
ff9ddf7e
JK
4361/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4362void ext4_get_inode_flags(struct ext4_inode_info *ei)
4363{
4364 unsigned int flags = ei->vfs_inode.i_flags;
4365
4366 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4367 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4368 if (flags & S_SYNC)
4369 ei->i_flags |= EXT4_SYNC_FL;
4370 if (flags & S_APPEND)
4371 ei->i_flags |= EXT4_APPEND_FL;
4372 if (flags & S_IMMUTABLE)
4373 ei->i_flags |= EXT4_IMMUTABLE_FL;
4374 if (flags & S_NOATIME)
4375 ei->i_flags |= EXT4_NOATIME_FL;
4376 if (flags & S_DIRSYNC)
4377 ei->i_flags |= EXT4_DIRSYNC_FL;
4378}
0fc1b451
AK
4379static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4380 struct ext4_inode_info *ei)
4381{
4382 blkcnt_t i_blocks ;
8180a562
AK
4383 struct inode *inode = &(ei->vfs_inode);
4384 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4385
4386 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4387 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4388 /* we are using combined 48 bit field */
4389 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4390 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4391 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4392 /* i_blocks represent file system block size */
4393 return i_blocks << (inode->i_blkbits - 9);
4394 } else {
4395 return i_blocks;
4396 }
0fc1b451
AK
4397 } else {
4398 return le32_to_cpu(raw_inode->i_blocks_lo);
4399 }
4400}
ff9ddf7e 4401
1d1fe1ee 4402struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4403{
617ba13b
MC
4404 struct ext4_iloc iloc;
4405 struct ext4_inode *raw_inode;
1d1fe1ee 4406 struct ext4_inode_info *ei;
ac27a0ec 4407 struct buffer_head *bh;
1d1fe1ee
DH
4408 struct inode *inode;
4409 long ret;
ac27a0ec
DK
4410 int block;
4411
1d1fe1ee
DH
4412 inode = iget_locked(sb, ino);
4413 if (!inode)
4414 return ERR_PTR(-ENOMEM);
4415 if (!(inode->i_state & I_NEW))
4416 return inode;
4417
4418 ei = EXT4_I(inode);
03010a33 4419#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4420 ei->i_acl = EXT4_ACL_NOT_CACHED;
4421 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4422#endif
ac27a0ec 4423
1d1fe1ee
DH
4424 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4425 if (ret < 0)
ac27a0ec
DK
4426 goto bad_inode;
4427 bh = iloc.bh;
617ba13b 4428 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4429 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4430 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4431 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4432 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4433 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4434 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4435 }
4436 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4437
4438 ei->i_state = 0;
4439 ei->i_dir_start_lookup = 0;
4440 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4441 /* We now have enough fields to check if the inode was active or not.
4442 * This is needed because nfsd might try to access dead inodes
4443 * the test is that same one that e2fsck uses
4444 * NeilBrown 1999oct15
4445 */
4446 if (inode->i_nlink == 0) {
4447 if (inode->i_mode == 0 ||
617ba13b 4448 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4449 /* this inode is deleted */
af5bc92d 4450 brelse(bh);
1d1fe1ee 4451 ret = -ESTALE;
ac27a0ec
DK
4452 goto bad_inode;
4453 }
4454 /* The only unlinked inodes we let through here have
4455 * valid i_mode and are being read by the orphan
4456 * recovery code: that's fine, we're about to complete
4457 * the process of deleting those. */
4458 }
ac27a0ec 4459 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4460 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4461 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4462 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4463 ei->i_file_acl |=
4464 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4465 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4466 ei->i_disksize = inode->i_size;
4467 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4468 ei->i_block_group = iloc.block_group;
a4912123 4469 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4470 /*
4471 * NOTE! The in-memory inode i_data array is in little-endian order
4472 * even on big-endian machines: we do NOT byteswap the block numbers!
4473 */
617ba13b 4474 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4475 ei->i_data[block] = raw_inode->i_block[block];
4476 INIT_LIST_HEAD(&ei->i_orphan);
4477
0040d987 4478 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4479 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4480 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4481 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4482 brelse(bh);
1d1fe1ee 4483 ret = -EIO;
ac27a0ec 4484 goto bad_inode;
e5d2861f 4485 }
ac27a0ec
DK
4486 if (ei->i_extra_isize == 0) {
4487 /* The extra space is currently unused. Use it. */
617ba13b
MC
4488 ei->i_extra_isize = sizeof(struct ext4_inode) -
4489 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4490 } else {
4491 __le32 *magic = (void *)raw_inode +
617ba13b 4492 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4493 ei->i_extra_isize;
617ba13b
MC
4494 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4495 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4496 }
4497 } else
4498 ei->i_extra_isize = 0;
4499
ef7f3835
KS
4500 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4501 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4502 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4503 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4504
25ec56b5
JNC
4505 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4506 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4507 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4508 inode->i_version |=
4509 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4510 }
4511
c4b5a614 4512 ret = 0;
485c26ec
TT
4513 if (ei->i_file_acl &&
4514 ((ei->i_file_acl <
4515 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4516 EXT4_SB(sb)->s_gdb_count)) ||
4517 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4518 ext4_error(sb, __func__,
4519 "bad extended attribute block %llu in inode #%lu",
4520 ei->i_file_acl, inode->i_ino);
4521 ret = -EIO;
4522 goto bad_inode;
4523 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4524 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4525 (S_ISLNK(inode->i_mode) &&
4526 !ext4_inode_is_fast_symlink(inode)))
4527 /* Validate extent which is part of inode */
4528 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4529 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4530 (S_ISLNK(inode->i_mode) &&
4531 !ext4_inode_is_fast_symlink(inode))) {
4532 /* Validate block references which are part of inode */
4533 ret = ext4_check_inode_blockref(inode);
4534 }
4535 if (ret) {
4536 brelse(bh);
4537 goto bad_inode;
7a262f7c
AK
4538 }
4539
ac27a0ec 4540 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4541 inode->i_op = &ext4_file_inode_operations;
4542 inode->i_fop = &ext4_file_operations;
4543 ext4_set_aops(inode);
ac27a0ec 4544 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4545 inode->i_op = &ext4_dir_inode_operations;
4546 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4547 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4548 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4549 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4550 nd_terminate_link(ei->i_data, inode->i_size,
4551 sizeof(ei->i_data) - 1);
4552 } else {
617ba13b
MC
4553 inode->i_op = &ext4_symlink_inode_operations;
4554 ext4_set_aops(inode);
ac27a0ec 4555 }
563bdd61
TT
4556 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4557 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4558 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4559 if (raw_inode->i_block[0])
4560 init_special_inode(inode, inode->i_mode,
4561 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4562 else
4563 init_special_inode(inode, inode->i_mode,
4564 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4565 } else {
4566 brelse(bh);
4567 ret = -EIO;
4568 ext4_error(inode->i_sb, __func__,
4569 "bogus i_mode (%o) for inode=%lu",
4570 inode->i_mode, inode->i_ino);
4571 goto bad_inode;
ac27a0ec 4572 }
af5bc92d 4573 brelse(iloc.bh);
617ba13b 4574 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4575 unlock_new_inode(inode);
4576 return inode;
ac27a0ec
DK
4577
4578bad_inode:
1d1fe1ee
DH
4579 iget_failed(inode);
4580 return ERR_PTR(ret);
ac27a0ec
DK
4581}
4582
0fc1b451
AK
4583static int ext4_inode_blocks_set(handle_t *handle,
4584 struct ext4_inode *raw_inode,
4585 struct ext4_inode_info *ei)
4586{
4587 struct inode *inode = &(ei->vfs_inode);
4588 u64 i_blocks = inode->i_blocks;
4589 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4590
4591 if (i_blocks <= ~0U) {
4592 /*
4593 * i_blocks can be represnted in a 32 bit variable
4594 * as multiple of 512 bytes
4595 */
8180a562 4596 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4597 raw_inode->i_blocks_high = 0;
8180a562 4598 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4599 return 0;
4600 }
4601 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4602 return -EFBIG;
4603
4604 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4605 /*
4606 * i_blocks can be represented in a 48 bit variable
4607 * as multiple of 512 bytes
4608 */
8180a562 4609 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4610 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4611 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4612 } else {
8180a562
AK
4613 ei->i_flags |= EXT4_HUGE_FILE_FL;
4614 /* i_block is stored in file system block size */
4615 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4616 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4617 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4618 }
f287a1a5 4619 return 0;
0fc1b451
AK
4620}
4621
ac27a0ec
DK
4622/*
4623 * Post the struct inode info into an on-disk inode location in the
4624 * buffer-cache. This gobbles the caller's reference to the
4625 * buffer_head in the inode location struct.
4626 *
4627 * The caller must have write access to iloc->bh.
4628 */
617ba13b 4629static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4630 struct inode *inode,
617ba13b 4631 struct ext4_iloc *iloc)
ac27a0ec 4632{
617ba13b
MC
4633 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4634 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4635 struct buffer_head *bh = iloc->bh;
4636 int err = 0, rc, block;
4637
4638 /* For fields not not tracking in the in-memory inode,
4639 * initialise them to zero for new inodes. */
617ba13b
MC
4640 if (ei->i_state & EXT4_STATE_NEW)
4641 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4642
ff9ddf7e 4643 ext4_get_inode_flags(ei);
ac27a0ec 4644 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4645 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4646 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4647 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4648/*
4649 * Fix up interoperability with old kernels. Otherwise, old inodes get
4650 * re-used with the upper 16 bits of the uid/gid intact
4651 */
af5bc92d 4652 if (!ei->i_dtime) {
ac27a0ec
DK
4653 raw_inode->i_uid_high =
4654 cpu_to_le16(high_16_bits(inode->i_uid));
4655 raw_inode->i_gid_high =
4656 cpu_to_le16(high_16_bits(inode->i_gid));
4657 } else {
4658 raw_inode->i_uid_high = 0;
4659 raw_inode->i_gid_high = 0;
4660 }
4661 } else {
4662 raw_inode->i_uid_low =
4663 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4664 raw_inode->i_gid_low =
4665 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4666 raw_inode->i_uid_high = 0;
4667 raw_inode->i_gid_high = 0;
4668 }
4669 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4670
4671 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4672 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4673 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4674 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4675
0fc1b451
AK
4676 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4677 goto out_brelse;
ac27a0ec 4678 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4679 /* clear the migrate flag in the raw_inode */
4680 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4681 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4682 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4683 raw_inode->i_file_acl_high =
4684 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4685 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4686 ext4_isize_set(raw_inode, ei->i_disksize);
4687 if (ei->i_disksize > 0x7fffffffULL) {
4688 struct super_block *sb = inode->i_sb;
4689 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4690 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4691 EXT4_SB(sb)->s_es->s_rev_level ==
4692 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4693 /* If this is the first large file
4694 * created, add a flag to the superblock.
4695 */
4696 err = ext4_journal_get_write_access(handle,
4697 EXT4_SB(sb)->s_sbh);
4698 if (err)
4699 goto out_brelse;
4700 ext4_update_dynamic_rev(sb);
4701 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4702 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4703 sb->s_dirt = 1;
0390131b
FM
4704 ext4_handle_sync(handle);
4705 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4706 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4707 }
4708 }
4709 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4710 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4711 if (old_valid_dev(inode->i_rdev)) {
4712 raw_inode->i_block[0] =
4713 cpu_to_le32(old_encode_dev(inode->i_rdev));
4714 raw_inode->i_block[1] = 0;
4715 } else {
4716 raw_inode->i_block[0] = 0;
4717 raw_inode->i_block[1] =
4718 cpu_to_le32(new_encode_dev(inode->i_rdev));
4719 raw_inode->i_block[2] = 0;
4720 }
617ba13b 4721 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4722 raw_inode->i_block[block] = ei->i_data[block];
4723
25ec56b5
JNC
4724 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4725 if (ei->i_extra_isize) {
4726 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4727 raw_inode->i_version_hi =
4728 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4729 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4730 }
4731
0390131b
FM
4732 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4733 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4734 if (!err)
4735 err = rc;
617ba13b 4736 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4737
4738out_brelse:
af5bc92d 4739 brelse(bh);
617ba13b 4740 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4741 return err;
4742}
4743
4744/*
617ba13b 4745 * ext4_write_inode()
ac27a0ec
DK
4746 *
4747 * We are called from a few places:
4748 *
4749 * - Within generic_file_write() for O_SYNC files.
4750 * Here, there will be no transaction running. We wait for any running
4751 * trasnaction to commit.
4752 *
4753 * - Within sys_sync(), kupdate and such.
4754 * We wait on commit, if tol to.
4755 *
4756 * - Within prune_icache() (PF_MEMALLOC == true)
4757 * Here we simply return. We can't afford to block kswapd on the
4758 * journal commit.
4759 *
4760 * In all cases it is actually safe for us to return without doing anything,
4761 * because the inode has been copied into a raw inode buffer in
617ba13b 4762 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4763 * knfsd.
4764 *
4765 * Note that we are absolutely dependent upon all inode dirtiers doing the
4766 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4767 * which we are interested.
4768 *
4769 * It would be a bug for them to not do this. The code:
4770 *
4771 * mark_inode_dirty(inode)
4772 * stuff();
4773 * inode->i_size = expr;
4774 *
4775 * is in error because a kswapd-driven write_inode() could occur while
4776 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4777 * will no longer be on the superblock's dirty inode list.
4778 */
617ba13b 4779int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4780{
4781 if (current->flags & PF_MEMALLOC)
4782 return 0;
4783
617ba13b 4784 if (ext4_journal_current_handle()) {
b38bd33a 4785 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4786 dump_stack();
4787 return -EIO;
4788 }
4789
4790 if (!wait)
4791 return 0;
4792
617ba13b 4793 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4794}
4795
4796/*
617ba13b 4797 * ext4_setattr()
ac27a0ec
DK
4798 *
4799 * Called from notify_change.
4800 *
4801 * We want to trap VFS attempts to truncate the file as soon as
4802 * possible. In particular, we want to make sure that when the VFS
4803 * shrinks i_size, we put the inode on the orphan list and modify
4804 * i_disksize immediately, so that during the subsequent flushing of
4805 * dirty pages and freeing of disk blocks, we can guarantee that any
4806 * commit will leave the blocks being flushed in an unused state on
4807 * disk. (On recovery, the inode will get truncated and the blocks will
4808 * be freed, so we have a strong guarantee that no future commit will
4809 * leave these blocks visible to the user.)
4810 *
678aaf48
JK
4811 * Another thing we have to assure is that if we are in ordered mode
4812 * and inode is still attached to the committing transaction, we must
4813 * we start writeout of all the dirty pages which are being truncated.
4814 * This way we are sure that all the data written in the previous
4815 * transaction are already on disk (truncate waits for pages under
4816 * writeback).
4817 *
4818 * Called with inode->i_mutex down.
ac27a0ec 4819 */
617ba13b 4820int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4821{
4822 struct inode *inode = dentry->d_inode;
4823 int error, rc = 0;
4824 const unsigned int ia_valid = attr->ia_valid;
4825
4826 error = inode_change_ok(inode, attr);
4827 if (error)
4828 return error;
4829
4830 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4831 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4832 handle_t *handle;
4833
4834 /* (user+group)*(old+new) structure, inode write (sb,
4835 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4836 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4837 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4838 if (IS_ERR(handle)) {
4839 error = PTR_ERR(handle);
4840 goto err_out;
4841 }
a269eb18 4842 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4843 if (error) {
617ba13b 4844 ext4_journal_stop(handle);
ac27a0ec
DK
4845 return error;
4846 }
4847 /* Update corresponding info in inode so that everything is in
4848 * one transaction */
4849 if (attr->ia_valid & ATTR_UID)
4850 inode->i_uid = attr->ia_uid;
4851 if (attr->ia_valid & ATTR_GID)
4852 inode->i_gid = attr->ia_gid;
617ba13b
MC
4853 error = ext4_mark_inode_dirty(handle, inode);
4854 ext4_journal_stop(handle);
ac27a0ec
DK
4855 }
4856
e2b46574
ES
4857 if (attr->ia_valid & ATTR_SIZE) {
4858 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4859 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4860
4861 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4862 error = -EFBIG;
4863 goto err_out;
4864 }
4865 }
4866 }
4867
ac27a0ec
DK
4868 if (S_ISREG(inode->i_mode) &&
4869 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4870 handle_t *handle;
4871
617ba13b 4872 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4873 if (IS_ERR(handle)) {
4874 error = PTR_ERR(handle);
4875 goto err_out;
4876 }
4877
617ba13b
MC
4878 error = ext4_orphan_add(handle, inode);
4879 EXT4_I(inode)->i_disksize = attr->ia_size;
4880 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4881 if (!error)
4882 error = rc;
617ba13b 4883 ext4_journal_stop(handle);
678aaf48
JK
4884
4885 if (ext4_should_order_data(inode)) {
4886 error = ext4_begin_ordered_truncate(inode,
4887 attr->ia_size);
4888 if (error) {
4889 /* Do as much error cleanup as possible */
4890 handle = ext4_journal_start(inode, 3);
4891 if (IS_ERR(handle)) {
4892 ext4_orphan_del(NULL, inode);
4893 goto err_out;
4894 }
4895 ext4_orphan_del(handle, inode);
4896 ext4_journal_stop(handle);
4897 goto err_out;
4898 }
4899 }
ac27a0ec
DK
4900 }
4901
4902 rc = inode_setattr(inode, attr);
4903
617ba13b 4904 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4905 * transaction handle at all, we need to clean up the in-core
4906 * orphan list manually. */
4907 if (inode->i_nlink)
617ba13b 4908 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4909
4910 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4911 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4912
4913err_out:
617ba13b 4914 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4915 if (!error)
4916 error = rc;
4917 return error;
4918}
4919
3e3398a0
MC
4920int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4921 struct kstat *stat)
4922{
4923 struct inode *inode;
4924 unsigned long delalloc_blocks;
4925
4926 inode = dentry->d_inode;
4927 generic_fillattr(inode, stat);
4928
4929 /*
4930 * We can't update i_blocks if the block allocation is delayed
4931 * otherwise in the case of system crash before the real block
4932 * allocation is done, we will have i_blocks inconsistent with
4933 * on-disk file blocks.
4934 * We always keep i_blocks updated together with real
4935 * allocation. But to not confuse with user, stat
4936 * will return the blocks that include the delayed allocation
4937 * blocks for this file.
4938 */
4939 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4940 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4941 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4942
4943 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4944 return 0;
4945}
ac27a0ec 4946
a02908f1
MC
4947static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4948 int chunk)
4949{
4950 int indirects;
4951
4952 /* if nrblocks are contiguous */
4953 if (chunk) {
4954 /*
4955 * With N contiguous data blocks, it need at most
4956 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4957 * 2 dindirect blocks
4958 * 1 tindirect block
4959 */
4960 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4961 return indirects + 3;
4962 }
4963 /*
4964 * if nrblocks are not contiguous, worse case, each block touch
4965 * a indirect block, and each indirect block touch a double indirect
4966 * block, plus a triple indirect block
4967 */
4968 indirects = nrblocks * 2 + 1;
4969 return indirects;
4970}
4971
4972static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4973{
4974 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4975 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4976 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4977}
ac51d837 4978
ac27a0ec 4979/*
a02908f1
MC
4980 * Account for index blocks, block groups bitmaps and block group
4981 * descriptor blocks if modify datablocks and index blocks
4982 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4983 *
a02908f1
MC
4984 * If datablocks are discontiguous, they are possible to spread over
4985 * different block groups too. If they are contiugous, with flexbg,
4986 * they could still across block group boundary.
ac27a0ec 4987 *
a02908f1
MC
4988 * Also account for superblock, inode, quota and xattr blocks
4989 */
4990int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4991{
8df9675f
TT
4992 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4993 int gdpblocks;
a02908f1
MC
4994 int idxblocks;
4995 int ret = 0;
4996
4997 /*
4998 * How many index blocks need to touch to modify nrblocks?
4999 * The "Chunk" flag indicating whether the nrblocks is
5000 * physically contiguous on disk
5001 *
5002 * For Direct IO and fallocate, they calls get_block to allocate
5003 * one single extent at a time, so they could set the "Chunk" flag
5004 */
5005 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5006
5007 ret = idxblocks;
5008
5009 /*
5010 * Now let's see how many group bitmaps and group descriptors need
5011 * to account
5012 */
5013 groups = idxblocks;
5014 if (chunk)
5015 groups += 1;
5016 else
5017 groups += nrblocks;
5018
5019 gdpblocks = groups;
8df9675f
TT
5020 if (groups > ngroups)
5021 groups = ngroups;
a02908f1
MC
5022 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5023 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5024
5025 /* bitmaps and block group descriptor blocks */
5026 ret += groups + gdpblocks;
5027
5028 /* Blocks for super block, inode, quota and xattr blocks */
5029 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5030
5031 return ret;
5032}
5033
5034/*
5035 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5036 * the modification of a single pages into a single transaction,
5037 * which may include multiple chunks of block allocations.
ac27a0ec 5038 *
525f4ed8 5039 * This could be called via ext4_write_begin()
ac27a0ec 5040 *
525f4ed8 5041 * We need to consider the worse case, when
a02908f1 5042 * one new block per extent.
ac27a0ec 5043 */
a86c6181 5044int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5045{
617ba13b 5046 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5047 int ret;
5048
a02908f1 5049 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5050
a02908f1 5051 /* Account for data blocks for journalled mode */
617ba13b 5052 if (ext4_should_journal_data(inode))
a02908f1 5053 ret += bpp;
ac27a0ec
DK
5054 return ret;
5055}
f3bd1f3f
MC
5056
5057/*
5058 * Calculate the journal credits for a chunk of data modification.
5059 *
5060 * This is called from DIO, fallocate or whoever calling
12b7ac17 5061 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5062 *
5063 * journal buffers for data blocks are not included here, as DIO
5064 * and fallocate do no need to journal data buffers.
5065 */
5066int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5067{
5068 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5069}
5070
ac27a0ec 5071/*
617ba13b 5072 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5073 * Give this, we know that the caller already has write access to iloc->bh.
5074 */
617ba13b
MC
5075int ext4_mark_iloc_dirty(handle_t *handle,
5076 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5077{
5078 int err = 0;
5079
25ec56b5
JNC
5080 if (test_opt(inode->i_sb, I_VERSION))
5081 inode_inc_iversion(inode);
5082
ac27a0ec
DK
5083 /* the do_update_inode consumes one bh->b_count */
5084 get_bh(iloc->bh);
5085
dab291af 5086 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5087 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5088 put_bh(iloc->bh);
5089 return err;
5090}
5091
5092/*
5093 * On success, We end up with an outstanding reference count against
5094 * iloc->bh. This _must_ be cleaned up later.
5095 */
5096
5097int
617ba13b
MC
5098ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5099 struct ext4_iloc *iloc)
ac27a0ec 5100{
0390131b
FM
5101 int err;
5102
5103 err = ext4_get_inode_loc(inode, iloc);
5104 if (!err) {
5105 BUFFER_TRACE(iloc->bh, "get_write_access");
5106 err = ext4_journal_get_write_access(handle, iloc->bh);
5107 if (err) {
5108 brelse(iloc->bh);
5109 iloc->bh = NULL;
ac27a0ec
DK
5110 }
5111 }
617ba13b 5112 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5113 return err;
5114}
5115
6dd4ee7c
KS
5116/*
5117 * Expand an inode by new_extra_isize bytes.
5118 * Returns 0 on success or negative error number on failure.
5119 */
1d03ec98
AK
5120static int ext4_expand_extra_isize(struct inode *inode,
5121 unsigned int new_extra_isize,
5122 struct ext4_iloc iloc,
5123 handle_t *handle)
6dd4ee7c
KS
5124{
5125 struct ext4_inode *raw_inode;
5126 struct ext4_xattr_ibody_header *header;
5127 struct ext4_xattr_entry *entry;
5128
5129 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5130 return 0;
5131
5132 raw_inode = ext4_raw_inode(&iloc);
5133
5134 header = IHDR(inode, raw_inode);
5135 entry = IFIRST(header);
5136
5137 /* No extended attributes present */
5138 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5139 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5140 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5141 new_extra_isize);
5142 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5143 return 0;
5144 }
5145
5146 /* try to expand with EAs present */
5147 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5148 raw_inode, handle);
5149}
5150
ac27a0ec
DK
5151/*
5152 * What we do here is to mark the in-core inode as clean with respect to inode
5153 * dirtiness (it may still be data-dirty).
5154 * This means that the in-core inode may be reaped by prune_icache
5155 * without having to perform any I/O. This is a very good thing,
5156 * because *any* task may call prune_icache - even ones which
5157 * have a transaction open against a different journal.
5158 *
5159 * Is this cheating? Not really. Sure, we haven't written the
5160 * inode out, but prune_icache isn't a user-visible syncing function.
5161 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5162 * we start and wait on commits.
5163 *
5164 * Is this efficient/effective? Well, we're being nice to the system
5165 * by cleaning up our inodes proactively so they can be reaped
5166 * without I/O. But we are potentially leaving up to five seconds'
5167 * worth of inodes floating about which prune_icache wants us to
5168 * write out. One way to fix that would be to get prune_icache()
5169 * to do a write_super() to free up some memory. It has the desired
5170 * effect.
5171 */
617ba13b 5172int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5173{
617ba13b 5174 struct ext4_iloc iloc;
6dd4ee7c
KS
5175 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5176 static unsigned int mnt_count;
5177 int err, ret;
ac27a0ec
DK
5178
5179 might_sleep();
617ba13b 5180 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5181 if (ext4_handle_valid(handle) &&
5182 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5183 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5184 /*
5185 * We need extra buffer credits since we may write into EA block
5186 * with this same handle. If journal_extend fails, then it will
5187 * only result in a minor loss of functionality for that inode.
5188 * If this is felt to be critical, then e2fsck should be run to
5189 * force a large enough s_min_extra_isize.
5190 */
5191 if ((jbd2_journal_extend(handle,
5192 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5193 ret = ext4_expand_extra_isize(inode,
5194 sbi->s_want_extra_isize,
5195 iloc, handle);
5196 if (ret) {
5197 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5198 if (mnt_count !=
5199 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5200 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5201 "Unable to expand inode %lu. Delete"
5202 " some EAs or run e2fsck.",
5203 inode->i_ino);
c1bddad9
AK
5204 mnt_count =
5205 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5206 }
5207 }
5208 }
5209 }
ac27a0ec 5210 if (!err)
617ba13b 5211 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5212 return err;
5213}
5214
5215/*
617ba13b 5216 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5217 *
5218 * We're really interested in the case where a file is being extended.
5219 * i_size has been changed by generic_commit_write() and we thus need
5220 * to include the updated inode in the current transaction.
5221 *
a269eb18 5222 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5223 * are allocated to the file.
5224 *
5225 * If the inode is marked synchronous, we don't honour that here - doing
5226 * so would cause a commit on atime updates, which we don't bother doing.
5227 * We handle synchronous inodes at the highest possible level.
5228 */
617ba13b 5229void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5230{
617ba13b 5231 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5232 handle_t *handle;
5233
0390131b
FM
5234 if (!ext4_handle_valid(current_handle)) {
5235 ext4_mark_inode_dirty(current_handle, inode);
5236 return;
5237 }
5238
617ba13b 5239 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5240 if (IS_ERR(handle))
5241 goto out;
5242 if (current_handle &&
5243 current_handle->h_transaction != handle->h_transaction) {
5244 /* This task has a transaction open against a different fs */
5245 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5246 __func__);
ac27a0ec
DK
5247 } else {
5248 jbd_debug(5, "marking dirty. outer handle=%p\n",
5249 current_handle);
617ba13b 5250 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5251 }
617ba13b 5252 ext4_journal_stop(handle);
ac27a0ec
DK
5253out:
5254 return;
5255}
5256
5257#if 0
5258/*
5259 * Bind an inode's backing buffer_head into this transaction, to prevent
5260 * it from being flushed to disk early. Unlike
617ba13b 5261 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5262 * returns no iloc structure, so the caller needs to repeat the iloc
5263 * lookup to mark the inode dirty later.
5264 */
617ba13b 5265static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5266{
617ba13b 5267 struct ext4_iloc iloc;
ac27a0ec
DK
5268
5269 int err = 0;
5270 if (handle) {
617ba13b 5271 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5272 if (!err) {
5273 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5274 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5275 if (!err)
0390131b
FM
5276 err = ext4_handle_dirty_metadata(handle,
5277 inode,
5278 iloc.bh);
ac27a0ec
DK
5279 brelse(iloc.bh);
5280 }
5281 }
617ba13b 5282 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5283 return err;
5284}
5285#endif
5286
617ba13b 5287int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5288{
5289 journal_t *journal;
5290 handle_t *handle;
5291 int err;
5292
5293 /*
5294 * We have to be very careful here: changing a data block's
5295 * journaling status dynamically is dangerous. If we write a
5296 * data block to the journal, change the status and then delete
5297 * that block, we risk forgetting to revoke the old log record
5298 * from the journal and so a subsequent replay can corrupt data.
5299 * So, first we make sure that the journal is empty and that
5300 * nobody is changing anything.
5301 */
5302
617ba13b 5303 journal = EXT4_JOURNAL(inode);
0390131b
FM
5304 if (!journal)
5305 return 0;
d699594d 5306 if (is_journal_aborted(journal))
ac27a0ec
DK
5307 return -EROFS;
5308
dab291af
MC
5309 jbd2_journal_lock_updates(journal);
5310 jbd2_journal_flush(journal);
ac27a0ec
DK
5311
5312 /*
5313 * OK, there are no updates running now, and all cached data is
5314 * synced to disk. We are now in a completely consistent state
5315 * which doesn't have anything in the journal, and we know that
5316 * no filesystem updates are running, so it is safe to modify
5317 * the inode's in-core data-journaling state flag now.
5318 */
5319
5320 if (val)
617ba13b 5321 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5322 else
617ba13b
MC
5323 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5324 ext4_set_aops(inode);
ac27a0ec 5325
dab291af 5326 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5327
5328 /* Finally we can mark the inode as dirty. */
5329
617ba13b 5330 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5331 if (IS_ERR(handle))
5332 return PTR_ERR(handle);
5333
617ba13b 5334 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5335 ext4_handle_sync(handle);
617ba13b
MC
5336 ext4_journal_stop(handle);
5337 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5338
5339 return err;
5340}
2e9ee850
AK
5341
5342static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5343{
5344 return !buffer_mapped(bh);
5345}
5346
c2ec175c 5347int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5348{
c2ec175c 5349 struct page *page = vmf->page;
2e9ee850
AK
5350 loff_t size;
5351 unsigned long len;
5352 int ret = -EINVAL;
79f0be8d 5353 void *fsdata;
2e9ee850
AK
5354 struct file *file = vma->vm_file;
5355 struct inode *inode = file->f_path.dentry->d_inode;
5356 struct address_space *mapping = inode->i_mapping;
5357
5358 /*
5359 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5360 * get i_mutex because we are already holding mmap_sem.
5361 */
5362 down_read(&inode->i_alloc_sem);
5363 size = i_size_read(inode);
5364 if (page->mapping != mapping || size <= page_offset(page)
5365 || !PageUptodate(page)) {
5366 /* page got truncated from under us? */
5367 goto out_unlock;
5368 }
5369 ret = 0;
5370 if (PageMappedToDisk(page))
5371 goto out_unlock;
5372
5373 if (page->index == size >> PAGE_CACHE_SHIFT)
5374 len = size & ~PAGE_CACHE_MASK;
5375 else
5376 len = PAGE_CACHE_SIZE;
5377
5378 if (page_has_buffers(page)) {
5379 /* return if we have all the buffers mapped */
5380 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5381 ext4_bh_unmapped))
5382 goto out_unlock;
5383 }
5384 /*
5385 * OK, we need to fill the hole... Do write_begin write_end
5386 * to do block allocation/reservation.We are not holding
5387 * inode.i__mutex here. That allow * parallel write_begin,
5388 * write_end call. lock_page prevent this from happening
5389 * on the same page though
5390 */
5391 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5392 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5393 if (ret < 0)
5394 goto out_unlock;
5395 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5396 len, len, page, fsdata);
2e9ee850
AK
5397 if (ret < 0)
5398 goto out_unlock;
5399 ret = 0;
5400out_unlock:
c2ec175c
NP
5401 if (ret)
5402 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5403 up_read(&inode->i_alloc_sem);
5404 return ret;
5405}