ext4: Change all super.c messages to print the device
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
7f5aa215
JK
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
678aaf48
JK
54}
55
64769240
AT
56static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
ac27a0ec
DK
58/*
59 * Test whether an inode is a fast symlink.
60 */
617ba13b 61static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 62{
617ba13b 63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67}
68
69/*
617ba13b 70 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
0390131b
FM
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 79 */
617ba13b
MC
80int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
82{
83 int err;
84
0390131b
FM
85 if (!ext4_handle_valid(handle))
86 return 0;
87
ac27a0ec
DK
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
617ba13b
MC
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 104 if (bh) {
dab291af 105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 106 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
617ba13b
MC
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 116 if (err)
46e665e9 117 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121}
122
123/*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127static unsigned long blocks_for_truncate(struct inode *inode)
128{
725d26d3 129 ext4_lblk_t needed;
ac27a0ec
DK
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
617ba13b 136 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
617ba13b
MC
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 146
617ba13b 147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
148}
149
150/*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160static handle_t *start_transaction(struct inode *inode)
161{
162 handle_t *result;
163
617ba13b 164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
165 if (!IS_ERR(result))
166 return result;
167
617ba13b 168 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
169 return result;
170}
171
172/*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179{
0390131b
FM
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 183 return 0;
617ba13b 184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
185 return 0;
186 return 1;
187}
188
189/*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
617ba13b 194static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 195{
0390131b 196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 197 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
199}
200
201/*
202 * Called at the last iput() if i_nlink is zero.
203 */
af5bc92d 204void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
205{
206 handle_t *handle;
bc965ab3 207 int err;
ac27a0ec 208
678aaf48
JK
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
bc965ab3 216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 217 if (IS_ERR(handle)) {
bc965ab3 218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
617ba13b 224 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
0390131b 229 ext4_handle_sync(handle);
ac27a0ec 230 inode->i_size = 0;
bc965ab3
TT
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
ac27a0ec 237 if (inode->i_blocks)
617ba13b 238 ext4_truncate(inode);
bc965ab3
TT
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
0390131b 246 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
ac27a0ec 259 /*
617ba13b 260 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 261 * AKPM: I think this can be inside the above `if'.
617ba13b 262 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 263 * deletion of a non-existent orphan - this is because we don't
617ba13b 264 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
265 * (Well, we could do this if we need to, but heck - it works)
266 */
617ba13b
MC
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
617ba13b 277 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
617ba13b
MC
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
ac27a0ec
DK
283 return;
284no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286}
287
288typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292} Indirect;
293
294static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295{
296 p->key = *(p->p = v);
297 p->bh = bh;
298}
299
ac27a0ec 300/**
617ba13b 301 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
8c55e204
DK
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
ac27a0ec 307 *
617ba13b 308 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321/*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
617ba13b 331static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 334{
617ba13b
MC
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
af5bc92d 344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
af5bc92d 348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 349 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 353 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 358 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
e2b46574 364 ext4_warning(inode->i_sb, "ext4_block_to_path",
06a279d6 365 "block %lu > max in inode %lu",
e2b46574 366 i_block + direct_blocks +
06a279d6 367 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372}
373
fe2c8191 374static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
375 __le32 *p, unsigned int max)
376{
f73953c0 377 __le32 *bref = p;
6fd058f7
TT
378 unsigned int blk;
379
fe2c8191 380 while (bref < p+max) {
6fd058f7
TT
381 blk = le32_to_cpu(*bref++);
382 if (blk &&
383 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
384 blk, 1))) {
fe2c8191 385 ext4_error(inode->i_sb, function,
6fd058f7
TT
386 "invalid block reference %u "
387 "in inode #%lu", blk, inode->i_ino);
fe2c8191
TN
388 return -EIO;
389 }
fe2c8191
TN
390 }
391 return 0;
392}
393
394
395#define ext4_check_indirect_blockref(inode, bh) \
396 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
397 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
398
399#define ext4_check_inode_blockref(inode) \
400 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
401 EXT4_NDIR_BLOCKS)
402
ac27a0ec 403/**
617ba13b 404 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
405 * @inode: inode in question
406 * @depth: depth of the chain (1 - direct pointer, etc.)
407 * @offsets: offsets of pointers in inode/indirect blocks
408 * @chain: place to store the result
409 * @err: here we store the error value
410 *
411 * Function fills the array of triples <key, p, bh> and returns %NULL
412 * if everything went OK or the pointer to the last filled triple
413 * (incomplete one) otherwise. Upon the return chain[i].key contains
414 * the number of (i+1)-th block in the chain (as it is stored in memory,
415 * i.e. little-endian 32-bit), chain[i].p contains the address of that
416 * number (it points into struct inode for i==0 and into the bh->b_data
417 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
418 * block for i>0 and NULL for i==0. In other words, it holds the block
419 * numbers of the chain, addresses they were taken from (and where we can
420 * verify that chain did not change) and buffer_heads hosting these
421 * numbers.
422 *
423 * Function stops when it stumbles upon zero pointer (absent block)
424 * (pointer to last triple returned, *@err == 0)
425 * or when it gets an IO error reading an indirect block
426 * (ditto, *@err == -EIO)
ac27a0ec
DK
427 * or when it reads all @depth-1 indirect blocks successfully and finds
428 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
429 *
430 * Need to be called with
0e855ac8 431 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 432 */
725d26d3
AK
433static Indirect *ext4_get_branch(struct inode *inode, int depth,
434 ext4_lblk_t *offsets,
ac27a0ec
DK
435 Indirect chain[4], int *err)
436{
437 struct super_block *sb = inode->i_sb;
438 Indirect *p = chain;
439 struct buffer_head *bh;
440
441 *err = 0;
442 /* i_data is not going away, no lock needed */
af5bc92d 443 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
444 if (!p->key)
445 goto no_block;
446 while (--depth) {
fe2c8191
TN
447 bh = sb_getblk(sb, le32_to_cpu(p->key));
448 if (unlikely(!bh))
ac27a0ec 449 goto failure;
fe2c8191
TN
450
451 if (!bh_uptodate_or_lock(bh)) {
452 if (bh_submit_read(bh) < 0) {
453 put_bh(bh);
454 goto failure;
455 }
456 /* validate block references */
457 if (ext4_check_indirect_blockref(inode, bh)) {
458 put_bh(bh);
459 goto failure;
460 }
461 }
462
af5bc92d 463 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
464 /* Reader: end */
465 if (!p->key)
466 goto no_block;
467 }
468 return NULL;
469
ac27a0ec
DK
470failure:
471 *err = -EIO;
472no_block:
473 return p;
474}
475
476/**
617ba13b 477 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
478 * @inode: owner
479 * @ind: descriptor of indirect block.
480 *
1cc8dcf5 481 * This function returns the preferred place for block allocation.
ac27a0ec
DK
482 * It is used when heuristic for sequential allocation fails.
483 * Rules are:
484 * + if there is a block to the left of our position - allocate near it.
485 * + if pointer will live in indirect block - allocate near that block.
486 * + if pointer will live in inode - allocate in the same
487 * cylinder group.
488 *
489 * In the latter case we colour the starting block by the callers PID to
490 * prevent it from clashing with concurrent allocations for a different inode
491 * in the same block group. The PID is used here so that functionally related
492 * files will be close-by on-disk.
493 *
494 * Caller must make sure that @ind is valid and will stay that way.
495 */
617ba13b 496static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 497{
617ba13b 498 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 499 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 500 __le32 *p;
617ba13b 501 ext4_fsblk_t bg_start;
74d3487f 502 ext4_fsblk_t last_block;
617ba13b 503 ext4_grpblk_t colour;
a4912123
TT
504 ext4_group_t block_group;
505 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
506
507 /* Try to find previous block */
508 for (p = ind->p - 1; p >= start; p--) {
509 if (*p)
510 return le32_to_cpu(*p);
511 }
512
513 /* No such thing, so let's try location of indirect block */
514 if (ind->bh)
515 return ind->bh->b_blocknr;
516
517 /*
518 * It is going to be referred to from the inode itself? OK, just put it
519 * into the same cylinder group then.
520 */
a4912123
TT
521 block_group = ei->i_block_group;
522 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
523 block_group &= ~(flex_size-1);
524 if (S_ISREG(inode->i_mode))
525 block_group++;
526 }
527 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
528 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
529
a4912123
TT
530 /*
531 * If we are doing delayed allocation, we don't need take
532 * colour into account.
533 */
534 if (test_opt(inode->i_sb, DELALLOC))
535 return bg_start;
536
74d3487f
VC
537 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
538 colour = (current->pid % 16) *
617ba13b 539 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
540 else
541 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
542 return bg_start + colour;
543}
544
545/**
1cc8dcf5 546 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
547 * @inode: owner
548 * @block: block we want
ac27a0ec 549 * @partial: pointer to the last triple within a chain
ac27a0ec 550 *
1cc8dcf5 551 * Normally this function find the preferred place for block allocation,
fb01bfda 552 * returns it.
ac27a0ec 553 */
725d26d3 554static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 555 Indirect *partial)
ac27a0ec 556{
ac27a0ec 557 /*
c2ea3fde 558 * XXX need to get goal block from mballoc's data structures
ac27a0ec 559 */
ac27a0ec 560
617ba13b 561 return ext4_find_near(inode, partial);
ac27a0ec
DK
562}
563
564/**
617ba13b 565 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
566 * of direct blocks need to be allocated for the given branch.
567 *
568 * @branch: chain of indirect blocks
569 * @k: number of blocks need for indirect blocks
570 * @blks: number of data blocks to be mapped.
571 * @blocks_to_boundary: the offset in the indirect block
572 *
573 * return the total number of blocks to be allocate, including the
574 * direct and indirect blocks.
575 */
498e5f24 576static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
577 int blocks_to_boundary)
578{
498e5f24 579 unsigned int count = 0;
ac27a0ec
DK
580
581 /*
582 * Simple case, [t,d]Indirect block(s) has not allocated yet
583 * then it's clear blocks on that path have not allocated
584 */
585 if (k > 0) {
586 /* right now we don't handle cross boundary allocation */
587 if (blks < blocks_to_boundary + 1)
588 count += blks;
589 else
590 count += blocks_to_boundary + 1;
591 return count;
592 }
593
594 count++;
595 while (count < blks && count <= blocks_to_boundary &&
596 le32_to_cpu(*(branch[0].p + count)) == 0) {
597 count++;
598 }
599 return count;
600}
601
602/**
617ba13b 603 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
604 * @indirect_blks: the number of blocks need to allocate for indirect
605 * blocks
606 *
607 * @new_blocks: on return it will store the new block numbers for
608 * the indirect blocks(if needed) and the first direct block,
609 * @blks: on return it will store the total number of allocated
610 * direct blocks
611 */
617ba13b 612static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
613 ext4_lblk_t iblock, ext4_fsblk_t goal,
614 int indirect_blks, int blks,
615 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 616{
815a1130 617 struct ext4_allocation_request ar;
ac27a0ec 618 int target, i;
7061eba7 619 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 620 int index = 0;
617ba13b 621 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
622 int ret = 0;
623
624 /*
625 * Here we try to allocate the requested multiple blocks at once,
626 * on a best-effort basis.
627 * To build a branch, we should allocate blocks for
628 * the indirect blocks(if not allocated yet), and at least
629 * the first direct block of this branch. That's the
630 * minimum number of blocks need to allocate(required)
631 */
7061eba7
AK
632 /* first we try to allocate the indirect blocks */
633 target = indirect_blks;
634 while (target > 0) {
ac27a0ec
DK
635 count = target;
636 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
637 current_block = ext4_new_meta_blocks(handle, inode,
638 goal, &count, err);
ac27a0ec
DK
639 if (*err)
640 goto failed_out;
641
642 target -= count;
643 /* allocate blocks for indirect blocks */
644 while (index < indirect_blks && count) {
645 new_blocks[index++] = current_block++;
646 count--;
647 }
7061eba7
AK
648 if (count > 0) {
649 /*
650 * save the new block number
651 * for the first direct block
652 */
653 new_blocks[index] = current_block;
654 printk(KERN_INFO "%s returned more blocks than "
655 "requested\n", __func__);
656 WARN_ON(1);
ac27a0ec 657 break;
7061eba7 658 }
ac27a0ec
DK
659 }
660
7061eba7
AK
661 target = blks - count ;
662 blk_allocated = count;
663 if (!target)
664 goto allocated;
665 /* Now allocate data blocks */
815a1130
TT
666 memset(&ar, 0, sizeof(ar));
667 ar.inode = inode;
668 ar.goal = goal;
669 ar.len = target;
670 ar.logical = iblock;
671 if (S_ISREG(inode->i_mode))
672 /* enable in-core preallocation only for regular files */
673 ar.flags = EXT4_MB_HINT_DATA;
674
675 current_block = ext4_mb_new_blocks(handle, &ar, err);
676
7061eba7
AK
677 if (*err && (target == blks)) {
678 /*
679 * if the allocation failed and we didn't allocate
680 * any blocks before
681 */
682 goto failed_out;
683 }
684 if (!*err) {
685 if (target == blks) {
686 /*
687 * save the new block number
688 * for the first direct block
689 */
690 new_blocks[index] = current_block;
691 }
815a1130 692 blk_allocated += ar.len;
7061eba7
AK
693 }
694allocated:
ac27a0ec 695 /* total number of blocks allocated for direct blocks */
7061eba7 696 ret = blk_allocated;
ac27a0ec
DK
697 *err = 0;
698 return ret;
699failed_out:
af5bc92d 700 for (i = 0; i < index; i++)
c9de560d 701 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
702 return ret;
703}
704
705/**
617ba13b 706 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
712 *
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
617ba13b 717 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 720 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
724 *
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
617ba13b 727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
728 * as described above and return 0.
729 */
617ba13b 730static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
734{
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
617ba13b
MC
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
ac27a0ec 742
7061eba7 743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
747
748 branch[0].key = cpu_to_le32(new_blocks[0]);
749 /*
750 * metadata blocks and data blocks are allocated.
751 */
752 for (n = 1; n <= indirect_blks; n++) {
753 /*
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
757 */
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 762 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
763 if (err) {
764 unlock_buffer(bh);
765 brelse(bh);
766 goto failed;
767 }
768
769 memset(bh->b_data, 0, blocksize);
770 branch[n].p = (__le32 *) bh->b_data + offsets[n];
771 branch[n].key = cpu_to_le32(new_blocks[n]);
772 *branch[n].p = branch[n].key;
af5bc92d 773 if (n == indirect_blks) {
ac27a0ec
DK
774 current_block = new_blocks[n];
775 /*
776 * End of chain, update the last new metablock of
777 * the chain to point to the new allocated
778 * data blocks numbers
779 */
780 for (i=1; i < num; i++)
781 *(branch[n].p + i) = cpu_to_le32(++current_block);
782 }
783 BUFFER_TRACE(bh, "marking uptodate");
784 set_buffer_uptodate(bh);
785 unlock_buffer(bh);
786
0390131b
FM
787 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
788 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
789 if (err)
790 goto failed;
791 }
792 *blks = num;
793 return err;
794failed:
795 /* Allocation failed, free what we already allocated */
796 for (i = 1; i <= n ; i++) {
dab291af 797 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 798 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 799 }
af5bc92d 800 for (i = 0; i < indirect_blks; i++)
c9de560d 801 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 802
c9de560d 803 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
804
805 return err;
806}
807
808/**
617ba13b 809 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 813 * ext4_alloc_branch)
ac27a0ec
DK
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
617ba13b 822static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 823 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
824{
825 int i;
826 int err = 0;
617ba13b 827 ext4_fsblk_t current_block;
ac27a0ec 828
ac27a0ec
DK
829 /*
830 * If we're splicing into a [td]indirect block (as opposed to the
831 * inode) then we need to get write access to the [td]indirect block
832 * before the splice.
833 */
834 if (where->bh) {
835 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 836 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
837 if (err)
838 goto err_out;
839 }
840 /* That's it */
841
842 *where->p = where->key;
843
844 /*
845 * Update the host buffer_head or inode to point to more just allocated
846 * direct blocks blocks
847 */
848 if (num == 0 && blks > 1) {
849 current_block = le32_to_cpu(where->key) + 1;
850 for (i = 1; i < blks; i++)
af5bc92d 851 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
852 }
853
ac27a0ec
DK
854 /* We are done with atomic stuff, now do the rest of housekeeping */
855
ef7f3835 856 inode->i_ctime = ext4_current_time(inode);
617ba13b 857 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
858
859 /* had we spliced it onto indirect block? */
860 if (where->bh) {
861 /*
862 * If we spliced it onto an indirect block, we haven't
863 * altered the inode. Note however that if it is being spliced
864 * onto an indirect block at the very end of the file (the
865 * file is growing) then we *will* alter the inode to reflect
866 * the new i_size. But that is not done here - it is done in
617ba13b 867 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
868 */
869 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
870 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
872 if (err)
873 goto err_out;
874 } else {
875 /*
876 * OK, we spliced it into the inode itself on a direct block.
877 * Inode was dirtied above.
878 */
879 jbd_debug(5, "splicing direct\n");
880 }
881 return err;
882
883err_out:
884 for (i = 1; i <= num; i++) {
dab291af 885 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 886 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
887 ext4_free_blocks(handle, inode,
888 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 889 }
c9de560d 890 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
891
892 return err;
893}
894
895/*
b920c755
TT
896 * The ext4_ind_get_blocks() function handles non-extents inodes
897 * (i.e., using the traditional indirect/double-indirect i_blocks
898 * scheme) for ext4_get_blocks().
899 *
ac27a0ec
DK
900 * Allocation strategy is simple: if we have to allocate something, we will
901 * have to go the whole way to leaf. So let's do it before attaching anything
902 * to tree, set linkage between the newborn blocks, write them if sync is
903 * required, recheck the path, free and repeat if check fails, otherwise
904 * set the last missing link (that will protect us from any truncate-generated
905 * removals - all blocks on the path are immune now) and possibly force the
906 * write on the parent block.
907 * That has a nice additional property: no special recovery from the failed
908 * allocations is needed - we simply release blocks and do not touch anything
909 * reachable from inode.
910 *
911 * `handle' can be NULL if create == 0.
912 *
ac27a0ec
DK
913 * return > 0, # of blocks mapped or allocated.
914 * return = 0, if plain lookup failed.
915 * return < 0, error case.
c278bfec 916 *
b920c755
TT
917 * The ext4_ind_get_blocks() function should be called with
918 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
919 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
920 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
921 * blocks.
ac27a0ec 922 */
e4d996ca 923static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
498e5f24
TT
924 ext4_lblk_t iblock, unsigned int maxblocks,
925 struct buffer_head *bh_result,
c2177057 926 int flags)
ac27a0ec
DK
927{
928 int err = -EIO;
725d26d3 929 ext4_lblk_t offsets[4];
ac27a0ec
DK
930 Indirect chain[4];
931 Indirect *partial;
617ba13b 932 ext4_fsblk_t goal;
ac27a0ec
DK
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
ac27a0ec 936 int count = 0;
617ba13b 937 ext4_fsblk_t first_block = 0;
ac27a0ec 938
a86c6181 939 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3
AK
941 depth = ext4_block_to_path(inode, iblock, offsets,
942 &blocks_to_boundary);
ac27a0ec
DK
943
944 if (depth == 0)
945 goto out;
946
617ba13b 947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 clear_buffer_new(bh_result);
953 count++;
954 /*map more blocks*/
955 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 956 ext4_fsblk_t blk;
ac27a0ec 957
ac27a0ec
DK
958 blk = le32_to_cpu(*(chain[depth-1].p + count));
959
960 if (blk == first_block + count)
961 count++;
962 else
963 break;
964 }
c278bfec 965 goto got_it;
ac27a0ec
DK
966 }
967
968 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 969 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
970 goto cleanup;
971
ac27a0ec 972 /*
c2ea3fde 973 * Okay, we need to do block allocation.
ac27a0ec 974 */
fb01bfda 975 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
976
977 /* the number of blocks need to allocate for [d,t]indirect blocks */
978 indirect_blks = (chain + depth) - partial - 1;
979
980 /*
981 * Next look up the indirect map to count the totoal number of
982 * direct blocks to allocate for this branch.
983 */
617ba13b 984 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
985 maxblocks, blocks_to_boundary);
986 /*
617ba13b 987 * Block out ext4_truncate while we alter the tree
ac27a0ec 988 */
7061eba7
AK
989 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
990 &count, goal,
991 offsets + (partial - chain), partial);
ac27a0ec
DK
992
993 /*
617ba13b 994 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
995 * on the new chain if there is a failure, but that risks using
996 * up transaction credits, especially for bitmaps where the
997 * credits cannot be returned. Can we handle this somehow? We
998 * may need to return -EAGAIN upwards in the worst case. --sct
999 */
1000 if (!err)
617ba13b 1001 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec 1002 partial, indirect_blks, count);
03f5d8bc 1003 else
ac27a0ec
DK
1004 goto cleanup;
1005
1006 set_buffer_new(bh_result);
1007got_it:
1008 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1009 if (count > blocks_to_boundary)
1010 set_buffer_boundary(bh_result);
1011 err = count;
1012 /* Clean up and exit */
1013 partial = chain + depth - 1; /* the whole chain */
1014cleanup:
1015 while (partial > chain) {
1016 BUFFER_TRACE(partial->bh, "call brelse");
1017 brelse(partial->bh);
1018 partial--;
1019 }
1020 BUFFER_TRACE(bh_result, "returned");
1021out:
1022 return err;
1023}
1024
60e58e0f
MC
1025qsize_t ext4_get_reserved_space(struct inode *inode)
1026{
1027 unsigned long long total;
1028
1029 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1030 total = EXT4_I(inode)->i_reserved_data_blocks +
1031 EXT4_I(inode)->i_reserved_meta_blocks;
1032 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1033
1034 return total;
1035}
12219aea
AK
1036/*
1037 * Calculate the number of metadata blocks need to reserve
1038 * to allocate @blocks for non extent file based file
1039 */
1040static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1041{
1042 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1043 int ind_blks, dind_blks, tind_blks;
1044
1045 /* number of new indirect blocks needed */
1046 ind_blks = (blocks + icap - 1) / icap;
1047
1048 dind_blks = (ind_blks + icap - 1) / icap;
1049
1050 tind_blks = 1;
1051
1052 return ind_blks + dind_blks + tind_blks;
1053}
1054
1055/*
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate given number of blocks
1058 */
1059static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1060{
cd213226
MC
1061 if (!blocks)
1062 return 0;
1063
12219aea
AK
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1065 return ext4_ext_calc_metadata_amount(inode, blocks);
1066
1067 return ext4_indirect_calc_metadata_amount(inode, blocks);
1068}
1069
1070static void ext4_da_update_reserve_space(struct inode *inode, int used)
1071{
1072 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1073 int total, mdb, mdb_free;
1074
1075 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1076 /* recalculate the number of metablocks still need to be reserved */
1077 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1078 mdb = ext4_calc_metadata_amount(inode, total);
1079
1080 /* figure out how many metablocks to release */
1081 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1082 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1083
6bc6e63f
AK
1084 if (mdb_free) {
1085 /* Account for allocated meta_blocks */
1086 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1087
1088 /* update fs dirty blocks counter */
1089 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1090 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1091 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092 }
12219aea
AK
1093
1094 /* update per-inode reservations */
1095 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1096 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1097 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1098
1099 /*
1100 * free those over-booking quota for metadata blocks
1101 */
60e58e0f
MC
1102 if (mdb_free)
1103 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1104
1105 /*
1106 * If we have done all the pending block allocations and if
1107 * there aren't any writers on the inode, we can discard the
1108 * inode's preallocations.
1109 */
1110 if (!total && (atomic_read(&inode->i_writecount) == 0))
1111 ext4_discard_preallocations(inode);
12219aea
AK
1112}
1113
6fd058f7
TT
1114static int check_block_validity(struct inode *inode, sector_t logical,
1115 sector_t phys, int len)
1116{
1117 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1118 ext4_error(inode->i_sb, "check_block_validity",
1119 "inode #%lu logical block %llu mapped to %llu "
1120 "(size %d)", inode->i_ino,
1121 (unsigned long long) logical,
1122 (unsigned long long) phys, len);
1123 WARN_ON(1);
1124 return -EIO;
1125 }
1126 return 0;
1127}
1128
f5ab0d1f 1129/*
12b7ac17 1130 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1131 * and returns if the blocks are already mapped.
f5ab0d1f 1132 *
f5ab0d1f
MC
1133 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1134 * and store the allocated blocks in the result buffer head and mark it
1135 * mapped.
1136 *
1137 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1138 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1139 * based files
1140 *
1141 * On success, it returns the number of blocks being mapped or allocate.
1142 * if create==0 and the blocks are pre-allocated and uninitialized block,
1143 * the result buffer head is unmapped. If the create ==1, it will make sure
1144 * the buffer head is mapped.
1145 *
1146 * It returns 0 if plain look up failed (blocks have not been allocated), in
1147 * that casem, buffer head is unmapped
1148 *
1149 * It returns the error in case of allocation failure.
1150 */
12b7ac17
TT
1151int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1152 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1153 int flags)
0e855ac8
AK
1154{
1155 int retval;
f5ab0d1f
MC
1156
1157 clear_buffer_mapped(bh);
2a8964d6 1158 clear_buffer_unwritten(bh);
f5ab0d1f 1159
4df3d265 1160 /*
b920c755
TT
1161 * Try to see if we can get the block without requesting a new
1162 * file system block.
4df3d265
AK
1163 */
1164 down_read((&EXT4_I(inode)->i_data_sem));
1165 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1166 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1167 bh, 0);
0e855ac8 1168 } else {
e4d996ca 1169 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1170 bh, 0);
0e855ac8 1171 }
4df3d265 1172 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1173
6fd058f7
TT
1174 if (retval > 0 && buffer_mapped(bh)) {
1175 int ret = check_block_validity(inode, block,
1176 bh->b_blocknr, retval);
1177 if (ret != 0)
1178 return ret;
1179 }
1180
f5ab0d1f 1181 /* If it is only a block(s) look up */
c2177057 1182 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1183 return retval;
1184
1185 /*
1186 * Returns if the blocks have already allocated
1187 *
1188 * Note that if blocks have been preallocated
1189 * ext4_ext_get_block() returns th create = 0
1190 * with buffer head unmapped.
1191 */
1192 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1193 return retval;
1194
2a8964d6
AK
1195 /*
1196 * When we call get_blocks without the create flag, the
1197 * BH_Unwritten flag could have gotten set if the blocks
1198 * requested were part of a uninitialized extent. We need to
1199 * clear this flag now that we are committed to convert all or
1200 * part of the uninitialized extent to be an initialized
1201 * extent. This is because we need to avoid the combination
1202 * of BH_Unwritten and BH_Mapped flags being simultaneously
1203 * set on the buffer_head.
1204 */
1205 clear_buffer_unwritten(bh);
1206
4df3d265 1207 /*
f5ab0d1f
MC
1208 * New blocks allocate and/or writing to uninitialized extent
1209 * will possibly result in updating i_data, so we take
1210 * the write lock of i_data_sem, and call get_blocks()
1211 * with create == 1 flag.
4df3d265
AK
1212 */
1213 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1214
1215 /*
1216 * if the caller is from delayed allocation writeout path
1217 * we have already reserved fs blocks for allocation
1218 * let the underlying get_block() function know to
1219 * avoid double accounting
1220 */
c2177057 1221 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1222 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1223 /*
1224 * We need to check for EXT4 here because migrate
1225 * could have changed the inode type in between
1226 */
0e855ac8
AK
1227 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1228 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1229 bh, flags);
0e855ac8 1230 } else {
e4d996ca 1231 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1232 max_blocks, bh, flags);
267e4db9
AK
1233
1234 if (retval > 0 && buffer_new(bh)) {
1235 /*
1236 * We allocated new blocks which will result in
1237 * i_data's format changing. Force the migrate
1238 * to fail by clearing migrate flags
1239 */
1240 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1241 ~EXT4_EXT_MIGRATE;
1242 }
0e855ac8 1243 }
d2a17637 1244
2ac3b6e0 1245 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1246 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1247
1248 /*
1249 * Update reserved blocks/metadata blocks after successful
1250 * block allocation which had been deferred till now.
1251 */
1252 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1253 ext4_da_update_reserve_space(inode, retval);
d2a17637 1254
4df3d265 1255 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7
TT
1256 if (retval > 0 && buffer_mapped(bh)) {
1257 int ret = check_block_validity(inode, block,
1258 bh->b_blocknr, retval);
1259 if (ret != 0)
1260 return ret;
1261 }
0e855ac8
AK
1262 return retval;
1263}
1264
f3bd1f3f
MC
1265/* Maximum number of blocks we map for direct IO at once. */
1266#define DIO_MAX_BLOCKS 4096
1267
6873fa0d
ES
1268int ext4_get_block(struct inode *inode, sector_t iblock,
1269 struct buffer_head *bh_result, int create)
ac27a0ec 1270{
3e4fdaf8 1271 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1272 int ret = 0, started = 0;
ac27a0ec 1273 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1274 int dio_credits;
ac27a0ec 1275
7fb5409d
JK
1276 if (create && !handle) {
1277 /* Direct IO write... */
1278 if (max_blocks > DIO_MAX_BLOCKS)
1279 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1280 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1281 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1282 if (IS_ERR(handle)) {
ac27a0ec 1283 ret = PTR_ERR(handle);
7fb5409d 1284 goto out;
ac27a0ec 1285 }
7fb5409d 1286 started = 1;
ac27a0ec
DK
1287 }
1288
12b7ac17 1289 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1290 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1291 if (ret > 0) {
1292 bh_result->b_size = (ret << inode->i_blkbits);
1293 ret = 0;
ac27a0ec 1294 }
7fb5409d
JK
1295 if (started)
1296 ext4_journal_stop(handle);
1297out:
ac27a0ec
DK
1298 return ret;
1299}
1300
1301/*
1302 * `handle' can be NULL if create is zero
1303 */
617ba13b 1304struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1305 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1306{
1307 struct buffer_head dummy;
1308 int fatal = 0, err;
03f5d8bc 1309 int flags = 0;
ac27a0ec
DK
1310
1311 J_ASSERT(handle != NULL || create == 0);
1312
1313 dummy.b_state = 0;
1314 dummy.b_blocknr = -1000;
1315 buffer_trace_init(&dummy.b_history);
c2177057
TT
1316 if (create)
1317 flags |= EXT4_GET_BLOCKS_CREATE;
1318 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1319 /*
c2177057
TT
1320 * ext4_get_blocks() returns number of blocks mapped. 0 in
1321 * case of a HOLE.
ac27a0ec
DK
1322 */
1323 if (err > 0) {
1324 if (err > 1)
1325 WARN_ON(1);
1326 err = 0;
1327 }
1328 *errp = err;
1329 if (!err && buffer_mapped(&dummy)) {
1330 struct buffer_head *bh;
1331 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1332 if (!bh) {
1333 *errp = -EIO;
1334 goto err;
1335 }
1336 if (buffer_new(&dummy)) {
1337 J_ASSERT(create != 0);
ac39849d 1338 J_ASSERT(handle != NULL);
ac27a0ec
DK
1339
1340 /*
1341 * Now that we do not always journal data, we should
1342 * keep in mind whether this should always journal the
1343 * new buffer as metadata. For now, regular file
617ba13b 1344 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1345 * problem.
1346 */
1347 lock_buffer(bh);
1348 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1349 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1350 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1351 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1352 set_buffer_uptodate(bh);
1353 }
1354 unlock_buffer(bh);
0390131b
FM
1355 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1356 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1357 if (!fatal)
1358 fatal = err;
1359 } else {
1360 BUFFER_TRACE(bh, "not a new buffer");
1361 }
1362 if (fatal) {
1363 *errp = fatal;
1364 brelse(bh);
1365 bh = NULL;
1366 }
1367 return bh;
1368 }
1369err:
1370 return NULL;
1371}
1372
617ba13b 1373struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1374 ext4_lblk_t block, int create, int *err)
ac27a0ec 1375{
af5bc92d 1376 struct buffer_head *bh;
ac27a0ec 1377
617ba13b 1378 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1379 if (!bh)
1380 return bh;
1381 if (buffer_uptodate(bh))
1382 return bh;
1383 ll_rw_block(READ_META, 1, &bh);
1384 wait_on_buffer(bh);
1385 if (buffer_uptodate(bh))
1386 return bh;
1387 put_bh(bh);
1388 *err = -EIO;
1389 return NULL;
1390}
1391
af5bc92d
TT
1392static int walk_page_buffers(handle_t *handle,
1393 struct buffer_head *head,
1394 unsigned from,
1395 unsigned to,
1396 int *partial,
1397 int (*fn)(handle_t *handle,
1398 struct buffer_head *bh))
ac27a0ec
DK
1399{
1400 struct buffer_head *bh;
1401 unsigned block_start, block_end;
1402 unsigned blocksize = head->b_size;
1403 int err, ret = 0;
1404 struct buffer_head *next;
1405
af5bc92d
TT
1406 for (bh = head, block_start = 0;
1407 ret == 0 && (bh != head || !block_start);
1408 block_start = block_end, bh = next)
ac27a0ec
DK
1409 {
1410 next = bh->b_this_page;
1411 block_end = block_start + blocksize;
1412 if (block_end <= from || block_start >= to) {
1413 if (partial && !buffer_uptodate(bh))
1414 *partial = 1;
1415 continue;
1416 }
1417 err = (*fn)(handle, bh);
1418 if (!ret)
1419 ret = err;
1420 }
1421 return ret;
1422}
1423
1424/*
1425 * To preserve ordering, it is essential that the hole instantiation and
1426 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1427 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1428 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1429 * prepare_write() is the right place.
1430 *
617ba13b
MC
1431 * Also, this function can nest inside ext4_writepage() ->
1432 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1433 * has generated enough buffer credits to do the whole page. So we won't
1434 * block on the journal in that case, which is good, because the caller may
1435 * be PF_MEMALLOC.
1436 *
617ba13b 1437 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1438 * quota file writes. If we were to commit the transaction while thus
1439 * reentered, there can be a deadlock - we would be holding a quota
1440 * lock, and the commit would never complete if another thread had a
1441 * transaction open and was blocking on the quota lock - a ranking
1442 * violation.
1443 *
dab291af 1444 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1445 * will _not_ run commit under these circumstances because handle->h_ref
1446 * is elevated. We'll still have enough credits for the tiny quotafile
1447 * write.
1448 */
1449static int do_journal_get_write_access(handle_t *handle,
1450 struct buffer_head *bh)
1451{
1452 if (!buffer_mapped(bh) || buffer_freed(bh))
1453 return 0;
617ba13b 1454 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1455}
1456
bfc1af65
NP
1457static int ext4_write_begin(struct file *file, struct address_space *mapping,
1458 loff_t pos, unsigned len, unsigned flags,
1459 struct page **pagep, void **fsdata)
ac27a0ec 1460{
af5bc92d 1461 struct inode *inode = mapping->host;
7479d2b9 1462 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1463 handle_t *handle;
1464 int retries = 0;
af5bc92d 1465 struct page *page;
bfc1af65 1466 pgoff_t index;
af5bc92d 1467 unsigned from, to;
bfc1af65 1468
ba80b101
TT
1469 trace_mark(ext4_write_begin,
1470 "dev %s ino %lu pos %llu len %u flags %u",
1471 inode->i_sb->s_id, inode->i_ino,
1472 (unsigned long long) pos, len, flags);
bfc1af65 1473 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1474 from = pos & (PAGE_CACHE_SIZE - 1);
1475 to = from + len;
ac27a0ec
DK
1476
1477retry:
af5bc92d
TT
1478 handle = ext4_journal_start(inode, needed_blocks);
1479 if (IS_ERR(handle)) {
1480 ret = PTR_ERR(handle);
1481 goto out;
7479d2b9 1482 }
ac27a0ec 1483
ebd3610b
JK
1484 /* We cannot recurse into the filesystem as the transaction is already
1485 * started */
1486 flags |= AOP_FLAG_NOFS;
1487
54566b2c 1488 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1489 if (!page) {
1490 ext4_journal_stop(handle);
1491 ret = -ENOMEM;
1492 goto out;
1493 }
1494 *pagep = page;
1495
bfc1af65 1496 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1497 ext4_get_block);
bfc1af65
NP
1498
1499 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1500 ret = walk_page_buffers(handle, page_buffers(page),
1501 from, to, NULL, do_journal_get_write_access);
1502 }
bfc1af65
NP
1503
1504 if (ret) {
af5bc92d 1505 unlock_page(page);
cf108bca 1506 ext4_journal_stop(handle);
af5bc92d 1507 page_cache_release(page);
ae4d5372
AK
1508 /*
1509 * block_write_begin may have instantiated a few blocks
1510 * outside i_size. Trim these off again. Don't need
1511 * i_size_read because we hold i_mutex.
1512 */
1513 if (pos + len > inode->i_size)
1514 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1515 }
1516
617ba13b 1517 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1518 goto retry;
7479d2b9 1519out:
ac27a0ec
DK
1520 return ret;
1521}
1522
bfc1af65
NP
1523/* For write_end() in data=journal mode */
1524static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1525{
1526 if (!buffer_mapped(bh) || buffer_freed(bh))
1527 return 0;
1528 set_buffer_uptodate(bh);
0390131b 1529 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1530}
1531
1532/*
1533 * We need to pick up the new inode size which generic_commit_write gave us
1534 * `file' can be NULL - eg, when called from page_symlink().
1535 *
617ba13b 1536 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1537 * buffers are managed internally.
1538 */
bfc1af65
NP
1539static int ext4_ordered_write_end(struct file *file,
1540 struct address_space *mapping,
1541 loff_t pos, unsigned len, unsigned copied,
1542 struct page *page, void *fsdata)
ac27a0ec 1543{
617ba13b 1544 handle_t *handle = ext4_journal_current_handle();
cf108bca 1545 struct inode *inode = mapping->host;
ac27a0ec
DK
1546 int ret = 0, ret2;
1547
ba80b101
TT
1548 trace_mark(ext4_ordered_write_end,
1549 "dev %s ino %lu pos %llu len %u copied %u",
1550 inode->i_sb->s_id, inode->i_ino,
1551 (unsigned long long) pos, len, copied);
678aaf48 1552 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1553
1554 if (ret == 0) {
ac27a0ec
DK
1555 loff_t new_i_size;
1556
bfc1af65 1557 new_i_size = pos + copied;
cf17fea6
AK
1558 if (new_i_size > EXT4_I(inode)->i_disksize) {
1559 ext4_update_i_disksize(inode, new_i_size);
1560 /* We need to mark inode dirty even if
1561 * new_i_size is less that inode->i_size
1562 * bu greater than i_disksize.(hint delalloc)
1563 */
1564 ext4_mark_inode_dirty(handle, inode);
1565 }
1566
cf108bca 1567 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1568 page, fsdata);
f8a87d89
RK
1569 copied = ret2;
1570 if (ret2 < 0)
1571 ret = ret2;
ac27a0ec 1572 }
617ba13b 1573 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1574 if (!ret)
1575 ret = ret2;
bfc1af65
NP
1576
1577 return ret ? ret : copied;
ac27a0ec
DK
1578}
1579
bfc1af65
NP
1580static int ext4_writeback_write_end(struct file *file,
1581 struct address_space *mapping,
1582 loff_t pos, unsigned len, unsigned copied,
1583 struct page *page, void *fsdata)
ac27a0ec 1584{
617ba13b 1585 handle_t *handle = ext4_journal_current_handle();
cf108bca 1586 struct inode *inode = mapping->host;
ac27a0ec
DK
1587 int ret = 0, ret2;
1588 loff_t new_i_size;
1589
ba80b101
TT
1590 trace_mark(ext4_writeback_write_end,
1591 "dev %s ino %lu pos %llu len %u copied %u",
1592 inode->i_sb->s_id, inode->i_ino,
1593 (unsigned long long) pos, len, copied);
bfc1af65 1594 new_i_size = pos + copied;
cf17fea6
AK
1595 if (new_i_size > EXT4_I(inode)->i_disksize) {
1596 ext4_update_i_disksize(inode, new_i_size);
1597 /* We need to mark inode dirty even if
1598 * new_i_size is less that inode->i_size
1599 * bu greater than i_disksize.(hint delalloc)
1600 */
1601 ext4_mark_inode_dirty(handle, inode);
1602 }
ac27a0ec 1603
cf108bca 1604 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1605 page, fsdata);
f8a87d89
RK
1606 copied = ret2;
1607 if (ret2 < 0)
1608 ret = ret2;
ac27a0ec 1609
617ba13b 1610 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1611 if (!ret)
1612 ret = ret2;
bfc1af65
NP
1613
1614 return ret ? ret : copied;
ac27a0ec
DK
1615}
1616
bfc1af65
NP
1617static int ext4_journalled_write_end(struct file *file,
1618 struct address_space *mapping,
1619 loff_t pos, unsigned len, unsigned copied,
1620 struct page *page, void *fsdata)
ac27a0ec 1621{
617ba13b 1622 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1623 struct inode *inode = mapping->host;
ac27a0ec
DK
1624 int ret = 0, ret2;
1625 int partial = 0;
bfc1af65 1626 unsigned from, to;
cf17fea6 1627 loff_t new_i_size;
ac27a0ec 1628
ba80b101
TT
1629 trace_mark(ext4_journalled_write_end,
1630 "dev %s ino %lu pos %llu len %u copied %u",
1631 inode->i_sb->s_id, inode->i_ino,
1632 (unsigned long long) pos, len, copied);
bfc1af65
NP
1633 from = pos & (PAGE_CACHE_SIZE - 1);
1634 to = from + len;
1635
1636 if (copied < len) {
1637 if (!PageUptodate(page))
1638 copied = 0;
1639 page_zero_new_buffers(page, from+copied, to);
1640 }
ac27a0ec
DK
1641
1642 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1643 to, &partial, write_end_fn);
ac27a0ec
DK
1644 if (!partial)
1645 SetPageUptodate(page);
cf17fea6
AK
1646 new_i_size = pos + copied;
1647 if (new_i_size > inode->i_size)
bfc1af65 1648 i_size_write(inode, pos+copied);
617ba13b 1649 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1650 if (new_i_size > EXT4_I(inode)->i_disksize) {
1651 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1652 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1653 if (!ret)
1654 ret = ret2;
1655 }
bfc1af65 1656
cf108bca 1657 unlock_page(page);
617ba13b 1658 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1659 if (!ret)
1660 ret = ret2;
bfc1af65
NP
1661 page_cache_release(page);
1662
1663 return ret ? ret : copied;
ac27a0ec 1664}
d2a17637
MC
1665
1666static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1667{
030ba6bc 1668 int retries = 0;
60e58e0f
MC
1669 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1670 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1671
1672 /*
1673 * recalculate the amount of metadata blocks to reserve
1674 * in order to allocate nrblocks
1675 * worse case is one extent per block
1676 */
030ba6bc 1677repeat:
d2a17637
MC
1678 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1679 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1680 mdblocks = ext4_calc_metadata_amount(inode, total);
1681 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1682
1683 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1684 total = md_needed + nrblocks;
1685
60e58e0f
MC
1686 /*
1687 * Make quota reservation here to prevent quota overflow
1688 * later. Real quota accounting is done at pages writeout
1689 * time.
1690 */
1691 if (vfs_dq_reserve_block(inode, total)) {
1692 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1693 return -EDQUOT;
1694 }
1695
a30d542a 1696 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1697 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1698 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1699 yield();
1700 goto repeat;
1701 }
60e58e0f 1702 vfs_dq_release_reservation_block(inode, total);
d2a17637
MC
1703 return -ENOSPC;
1704 }
d2a17637
MC
1705 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1706 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1707
1708 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1709 return 0; /* success */
1710}
1711
12219aea 1712static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1713{
1714 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1715 int total, mdb, mdb_free, release;
1716
cd213226
MC
1717 if (!to_free)
1718 return; /* Nothing to release, exit */
1719
d2a17637 1720 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1721
1722 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1723 /*
1724 * if there is no reserved blocks, but we try to free some
1725 * then the counter is messed up somewhere.
1726 * but since this function is called from invalidate
1727 * page, it's harmless to return without any action
1728 */
1729 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1730 "blocks for inode %lu, but there is no reserved "
1731 "data blocks\n", to_free, inode->i_ino);
1732 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1733 return;
1734 }
1735
d2a17637 1736 /* recalculate the number of metablocks still need to be reserved */
12219aea 1737 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1738 mdb = ext4_calc_metadata_amount(inode, total);
1739
1740 /* figure out how many metablocks to release */
1741 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1742 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1743
d2a17637
MC
1744 release = to_free + mdb_free;
1745
6bc6e63f
AK
1746 /* update fs dirty blocks counter for truncate case */
1747 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1748
1749 /* update per-inode reservations */
12219aea
AK
1750 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1751 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1752
1753 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1754 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1755 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1756
1757 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1758}
1759
1760static void ext4_da_page_release_reservation(struct page *page,
1761 unsigned long offset)
1762{
1763 int to_release = 0;
1764 struct buffer_head *head, *bh;
1765 unsigned int curr_off = 0;
1766
1767 head = page_buffers(page);
1768 bh = head;
1769 do {
1770 unsigned int next_off = curr_off + bh->b_size;
1771
1772 if ((offset <= curr_off) && (buffer_delay(bh))) {
1773 to_release++;
1774 clear_buffer_delay(bh);
1775 }
1776 curr_off = next_off;
1777 } while ((bh = bh->b_this_page) != head);
12219aea 1778 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1779}
ac27a0ec 1780
64769240
AT
1781/*
1782 * Delayed allocation stuff
1783 */
1784
1785struct mpage_da_data {
1786 struct inode *inode;
8dc207c0
TT
1787 sector_t b_blocknr; /* start block number of extent */
1788 size_t b_size; /* size of extent */
1789 unsigned long b_state; /* state of the extent */
64769240 1790 unsigned long first_page, next_page; /* extent of pages */
64769240 1791 struct writeback_control *wbc;
a1d6cc56 1792 int io_done;
498e5f24 1793 int pages_written;
df22291f 1794 int retval;
64769240
AT
1795};
1796
1797/*
1798 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1799 * them with writepage() call back
64769240
AT
1800 *
1801 * @mpd->inode: inode
1802 * @mpd->first_page: first page of the extent
1803 * @mpd->next_page: page after the last page of the extent
64769240
AT
1804 *
1805 * By the time mpage_da_submit_io() is called we expect all blocks
1806 * to be allocated. this may be wrong if allocation failed.
1807 *
1808 * As pages are already locked by write_cache_pages(), we can't use it
1809 */
1810static int mpage_da_submit_io(struct mpage_da_data *mpd)
1811{
22208ded 1812 long pages_skipped;
791b7f08
AK
1813 struct pagevec pvec;
1814 unsigned long index, end;
1815 int ret = 0, err, nr_pages, i;
1816 struct inode *inode = mpd->inode;
1817 struct address_space *mapping = inode->i_mapping;
64769240
AT
1818
1819 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1820 /*
1821 * We need to start from the first_page to the next_page - 1
1822 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1823 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1824 * at the currently mapped buffer_heads.
1825 */
64769240
AT
1826 index = mpd->first_page;
1827 end = mpd->next_page - 1;
1828
791b7f08 1829 pagevec_init(&pvec, 0);
64769240 1830 while (index <= end) {
791b7f08 1831 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1832 if (nr_pages == 0)
1833 break;
1834 for (i = 0; i < nr_pages; i++) {
1835 struct page *page = pvec.pages[i];
1836
791b7f08
AK
1837 index = page->index;
1838 if (index > end)
1839 break;
1840 index++;
1841
1842 BUG_ON(!PageLocked(page));
1843 BUG_ON(PageWriteback(page));
1844
22208ded 1845 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1846 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1847 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1848 /*
1849 * have successfully written the page
1850 * without skipping the same
1851 */
a1d6cc56 1852 mpd->pages_written++;
64769240
AT
1853 /*
1854 * In error case, we have to continue because
1855 * remaining pages are still locked
1856 * XXX: unlock and re-dirty them?
1857 */
1858 if (ret == 0)
1859 ret = err;
1860 }
1861 pagevec_release(&pvec);
1862 }
64769240
AT
1863 return ret;
1864}
1865
1866/*
1867 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1868 *
1869 * @mpd->inode - inode to walk through
1870 * @exbh->b_blocknr - first block on a disk
1871 * @exbh->b_size - amount of space in bytes
1872 * @logical - first logical block to start assignment with
1873 *
1874 * the function goes through all passed space and put actual disk
29fa89d0 1875 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
1876 */
1877static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1878 struct buffer_head *exbh)
1879{
1880 struct inode *inode = mpd->inode;
1881 struct address_space *mapping = inode->i_mapping;
1882 int blocks = exbh->b_size >> inode->i_blkbits;
1883 sector_t pblock = exbh->b_blocknr, cur_logical;
1884 struct buffer_head *head, *bh;
a1d6cc56 1885 pgoff_t index, end;
64769240
AT
1886 struct pagevec pvec;
1887 int nr_pages, i;
1888
1889 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1890 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1891 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1892
1893 pagevec_init(&pvec, 0);
1894
1895 while (index <= end) {
1896 /* XXX: optimize tail */
1897 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1898 if (nr_pages == 0)
1899 break;
1900 for (i = 0; i < nr_pages; i++) {
1901 struct page *page = pvec.pages[i];
1902
1903 index = page->index;
1904 if (index > end)
1905 break;
1906 index++;
1907
1908 BUG_ON(!PageLocked(page));
1909 BUG_ON(PageWriteback(page));
1910 BUG_ON(!page_has_buffers(page));
1911
1912 bh = page_buffers(page);
1913 head = bh;
1914
1915 /* skip blocks out of the range */
1916 do {
1917 if (cur_logical >= logical)
1918 break;
1919 cur_logical++;
1920 } while ((bh = bh->b_this_page) != head);
1921
1922 do {
1923 if (cur_logical >= logical + blocks)
1924 break;
29fa89d0
AK
1925
1926 if (buffer_delay(bh) ||
1927 buffer_unwritten(bh)) {
1928
1929 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1930
1931 if (buffer_delay(bh)) {
1932 clear_buffer_delay(bh);
1933 bh->b_blocknr = pblock;
1934 } else {
1935 /*
1936 * unwritten already should have
1937 * blocknr assigned. Verify that
1938 */
1939 clear_buffer_unwritten(bh);
1940 BUG_ON(bh->b_blocknr != pblock);
1941 }
1942
61628a3f 1943 } else if (buffer_mapped(bh))
64769240 1944 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1945
1946 cur_logical++;
1947 pblock++;
1948 } while ((bh = bh->b_this_page) != head);
1949 }
1950 pagevec_release(&pvec);
1951 }
1952}
1953
1954
1955/*
1956 * __unmap_underlying_blocks - just a helper function to unmap
1957 * set of blocks described by @bh
1958 */
1959static inline void __unmap_underlying_blocks(struct inode *inode,
1960 struct buffer_head *bh)
1961{
1962 struct block_device *bdev = inode->i_sb->s_bdev;
1963 int blocks, i;
1964
1965 blocks = bh->b_size >> inode->i_blkbits;
1966 for (i = 0; i < blocks; i++)
1967 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1968}
1969
c4a0c46e
AK
1970static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1971 sector_t logical, long blk_cnt)
1972{
1973 int nr_pages, i;
1974 pgoff_t index, end;
1975 struct pagevec pvec;
1976 struct inode *inode = mpd->inode;
1977 struct address_space *mapping = inode->i_mapping;
1978
1979 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980 end = (logical + blk_cnt - 1) >>
1981 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1982 while (index <= end) {
1983 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1984 if (nr_pages == 0)
1985 break;
1986 for (i = 0; i < nr_pages; i++) {
1987 struct page *page = pvec.pages[i];
1988 index = page->index;
1989 if (index > end)
1990 break;
1991 index++;
1992
1993 BUG_ON(!PageLocked(page));
1994 BUG_ON(PageWriteback(page));
1995 block_invalidatepage(page, 0);
1996 ClearPageUptodate(page);
1997 unlock_page(page);
1998 }
1999 }
2000 return;
2001}
2002
df22291f
AK
2003static void ext4_print_free_blocks(struct inode *inode)
2004{
2005 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2006 printk(KERN_EMERG "Total free blocks count %lld\n",
2007 ext4_count_free_blocks(inode->i_sb));
2008 printk(KERN_EMERG "Free/Dirty block details\n");
2009 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 2010 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 2011 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 2012 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 2013 printk(KERN_EMERG "Block reservation details\n");
498e5f24 2014 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 2015 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 2016 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
2017 EXT4_I(inode)->i_reserved_meta_blocks);
2018 return;
2019}
2020
64769240
AT
2021/*
2022 * mpage_da_map_blocks - go through given space
2023 *
8dc207c0 2024 * @mpd - bh describing space
64769240
AT
2025 *
2026 * The function skips space we know is already mapped to disk blocks.
2027 *
64769240 2028 */
ed5bde0b 2029static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2030{
2ac3b6e0 2031 int err, blks, get_blocks_flags;
030ba6bc 2032 struct buffer_head new;
2fa3cdfb
TT
2033 sector_t next = mpd->b_blocknr;
2034 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2035 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2036 handle_t *handle = NULL;
64769240
AT
2037
2038 /*
2039 * We consider only non-mapped and non-allocated blocks
2040 */
8dc207c0 2041 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2042 !(mpd->b_state & (1 << BH_Delay)) &&
2043 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2044 return 0;
2fa3cdfb
TT
2045
2046 /*
2047 * If we didn't accumulate anything to write simply return
2048 */
2049 if (!mpd->b_size)
2050 return 0;
2051
2052 handle = ext4_journal_current_handle();
2053 BUG_ON(!handle);
2054
79ffab34 2055 /*
2ac3b6e0
TT
2056 * Call ext4_get_blocks() to allocate any delayed allocation
2057 * blocks, or to convert an uninitialized extent to be
2058 * initialized (in the case where we have written into
2059 * one or more preallocated blocks).
2060 *
2061 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2062 * indicate that we are on the delayed allocation path. This
2063 * affects functions in many different parts of the allocation
2064 * call path. This flag exists primarily because we don't
2065 * want to change *many* call functions, so ext4_get_blocks()
2066 * will set the magic i_delalloc_reserved_flag once the
2067 * inode's allocation semaphore is taken.
2068 *
2069 * If the blocks in questions were delalloc blocks, set
2070 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2071 * variables are updated after the blocks have been allocated.
79ffab34 2072 */
2ac3b6e0
TT
2073 new.b_state = 0;
2074 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2075 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2076 if (mpd->b_state & (1 << BH_Delay))
2077 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2078 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2079 &new, get_blocks_flags);
2fa3cdfb
TT
2080 if (blks < 0) {
2081 err = blks;
ed5bde0b
TT
2082 /*
2083 * If get block returns with error we simply
2084 * return. Later writepage will redirty the page and
2085 * writepages will find the dirty page again
c4a0c46e
AK
2086 */
2087 if (err == -EAGAIN)
2088 return 0;
df22291f
AK
2089
2090 if (err == -ENOSPC &&
ed5bde0b 2091 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2092 mpd->retval = err;
2093 return 0;
2094 }
2095
c4a0c46e 2096 /*
ed5bde0b
TT
2097 * get block failure will cause us to loop in
2098 * writepages, because a_ops->writepage won't be able
2099 * to make progress. The page will be redirtied by
2100 * writepage and writepages will again try to write
2101 * the same.
c4a0c46e
AK
2102 */
2103 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2104 "at logical offset %llu with max blocks "
2105 "%zd with error %d\n",
2106 __func__, mpd->inode->i_ino,
2107 (unsigned long long)next,
8dc207c0 2108 mpd->b_size >> mpd->inode->i_blkbits, err);
c4a0c46e
AK
2109 printk(KERN_EMERG "This should not happen.!! "
2110 "Data will be lost\n");
030ba6bc 2111 if (err == -ENOSPC) {
df22291f 2112 ext4_print_free_blocks(mpd->inode);
030ba6bc 2113 }
2fa3cdfb 2114 /* invalidate all the pages */
c4a0c46e 2115 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2116 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2117 return err;
2118 }
2fa3cdfb
TT
2119 BUG_ON(blks == 0);
2120
2121 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2122
a1d6cc56
AK
2123 if (buffer_new(&new))
2124 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2125
a1d6cc56
AK
2126 /*
2127 * If blocks are delayed marked, we need to
2128 * put actual blocknr and drop delayed bit
2129 */
8dc207c0
TT
2130 if ((mpd->b_state & (1 << BH_Delay)) ||
2131 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2132 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2133
2fa3cdfb
TT
2134 if (ext4_should_order_data(mpd->inode)) {
2135 err = ext4_jbd2_file_inode(handle, mpd->inode);
2136 if (err)
2137 return err;
2138 }
2139
2140 /*
03f5d8bc 2141 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2142 */
2143 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2144 if (disksize > i_size_read(mpd->inode))
2145 disksize = i_size_read(mpd->inode);
2146 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2147 ext4_update_i_disksize(mpd->inode, disksize);
2148 return ext4_mark_inode_dirty(handle, mpd->inode);
2149 }
2150
c4a0c46e 2151 return 0;
64769240
AT
2152}
2153
bf068ee2
AK
2154#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2155 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2156
2157/*
2158 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2159 *
2160 * @mpd->lbh - extent of blocks
2161 * @logical - logical number of the block in the file
2162 * @bh - bh of the block (used to access block's state)
2163 *
2164 * the function is used to collect contig. blocks in same state
2165 */
2166static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2167 sector_t logical, size_t b_size,
2168 unsigned long b_state)
64769240 2169{
64769240 2170 sector_t next;
8dc207c0 2171 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2172
525f4ed8
MC
2173 /* check if thereserved journal credits might overflow */
2174 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2175 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2176 /*
2177 * With non-extent format we are limited by the journal
2178 * credit available. Total credit needed to insert
2179 * nrblocks contiguous blocks is dependent on the
2180 * nrblocks. So limit nrblocks.
2181 */
2182 goto flush_it;
2183 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2184 EXT4_MAX_TRANS_DATA) {
2185 /*
2186 * Adding the new buffer_head would make it cross the
2187 * allowed limit for which we have journal credit
2188 * reserved. So limit the new bh->b_size
2189 */
2190 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2191 mpd->inode->i_blkbits;
2192 /* we will do mpage_da_submit_io in the next loop */
2193 }
2194 }
64769240
AT
2195 /*
2196 * First block in the extent
2197 */
8dc207c0
TT
2198 if (mpd->b_size == 0) {
2199 mpd->b_blocknr = logical;
2200 mpd->b_size = b_size;
2201 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2202 return;
2203 }
2204
8dc207c0 2205 next = mpd->b_blocknr + nrblocks;
64769240
AT
2206 /*
2207 * Can we merge the block to our big extent?
2208 */
8dc207c0
TT
2209 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2210 mpd->b_size += b_size;
64769240
AT
2211 return;
2212 }
2213
525f4ed8 2214flush_it:
64769240
AT
2215 /*
2216 * We couldn't merge the block to our extent, so we
2217 * need to flush current extent and start new one
2218 */
c4a0c46e
AK
2219 if (mpage_da_map_blocks(mpd) == 0)
2220 mpage_da_submit_io(mpd);
a1d6cc56
AK
2221 mpd->io_done = 1;
2222 return;
64769240
AT
2223}
2224
29fa89d0
AK
2225static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2226{
2227 /*
2228 * unmapped buffer is possible for holes.
2229 * delay buffer is possible with delayed allocation.
2230 * We also need to consider unwritten buffer as unmapped.
2231 */
2232 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2233 buffer_unwritten(bh)) && buffer_dirty(bh);
2234}
2235
64769240
AT
2236/*
2237 * __mpage_da_writepage - finds extent of pages and blocks
2238 *
2239 * @page: page to consider
2240 * @wbc: not used, we just follow rules
2241 * @data: context
2242 *
2243 * The function finds extents of pages and scan them for all blocks.
2244 */
2245static int __mpage_da_writepage(struct page *page,
2246 struct writeback_control *wbc, void *data)
2247{
2248 struct mpage_da_data *mpd = data;
2249 struct inode *inode = mpd->inode;
8dc207c0 2250 struct buffer_head *bh, *head;
64769240
AT
2251 sector_t logical;
2252
a1d6cc56
AK
2253 if (mpd->io_done) {
2254 /*
2255 * Rest of the page in the page_vec
2256 * redirty then and skip then. We will
2257 * try to to write them again after
2258 * starting a new transaction
2259 */
2260 redirty_page_for_writepage(wbc, page);
2261 unlock_page(page);
2262 return MPAGE_DA_EXTENT_TAIL;
2263 }
64769240
AT
2264 /*
2265 * Can we merge this page to current extent?
2266 */
2267 if (mpd->next_page != page->index) {
2268 /*
2269 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2270 * and start IO on them using writepage()
64769240
AT
2271 */
2272 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2273 if (mpage_da_map_blocks(mpd) == 0)
2274 mpage_da_submit_io(mpd);
a1d6cc56
AK
2275 /*
2276 * skip rest of the page in the page_vec
2277 */
2278 mpd->io_done = 1;
2279 redirty_page_for_writepage(wbc, page);
2280 unlock_page(page);
2281 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2282 }
2283
2284 /*
2285 * Start next extent of pages ...
2286 */
2287 mpd->first_page = page->index;
2288
2289 /*
2290 * ... and blocks
2291 */
8dc207c0
TT
2292 mpd->b_size = 0;
2293 mpd->b_state = 0;
2294 mpd->b_blocknr = 0;
64769240
AT
2295 }
2296
2297 mpd->next_page = page->index + 1;
2298 logical = (sector_t) page->index <<
2299 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2300
2301 if (!page_has_buffers(page)) {
8dc207c0
TT
2302 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2303 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2304 if (mpd->io_done)
2305 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2306 } else {
2307 /*
2308 * Page with regular buffer heads, just add all dirty ones
2309 */
2310 head = page_buffers(page);
2311 bh = head;
2312 do {
2313 BUG_ON(buffer_locked(bh));
791b7f08
AK
2314 /*
2315 * We need to try to allocate
2316 * unmapped blocks in the same page.
2317 * Otherwise we won't make progress
2318 * with the page in ext4_da_writepage
2319 */
29fa89d0 2320 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
8dc207c0
TT
2321 mpage_add_bh_to_extent(mpd, logical,
2322 bh->b_size,
2323 bh->b_state);
a1d6cc56
AK
2324 if (mpd->io_done)
2325 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2326 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2327 /*
2328 * mapped dirty buffer. We need to update
2329 * the b_state because we look at
2330 * b_state in mpage_da_map_blocks. We don't
2331 * update b_size because if we find an
2332 * unmapped buffer_head later we need to
2333 * use the b_state flag of that buffer_head.
2334 */
8dc207c0
TT
2335 if (mpd->b_size == 0)
2336 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2337 }
64769240
AT
2338 logical++;
2339 } while ((bh = bh->b_this_page) != head);
2340 }
2341
2342 return 0;
2343}
2344
64769240 2345/*
b920c755
TT
2346 * This is a special get_blocks_t callback which is used by
2347 * ext4_da_write_begin(). It will either return mapped block or
2348 * reserve space for a single block.
29fa89d0
AK
2349 *
2350 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2351 * We also have b_blocknr = -1 and b_bdev initialized properly
2352 *
2353 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2354 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2355 * initialized properly.
64769240
AT
2356 */
2357static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2358 struct buffer_head *bh_result, int create)
2359{
2360 int ret = 0;
33b9817e
AK
2361 sector_t invalid_block = ~((sector_t) 0xffff);
2362
2363 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2364 invalid_block = ~0;
64769240
AT
2365
2366 BUG_ON(create == 0);
2367 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2368
2369 /*
2370 * first, we need to know whether the block is allocated already
2371 * preallocated blocks are unmapped but should treated
2372 * the same as allocated blocks.
2373 */
c2177057 2374 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2375 if ((ret == 0) && !buffer_delay(bh_result)) {
2376 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2377 /*
2378 * XXX: __block_prepare_write() unmaps passed block,
2379 * is it OK?
2380 */
d2a17637
MC
2381 ret = ext4_da_reserve_space(inode, 1);
2382 if (ret)
2383 /* not enough space to reserve */
2384 return ret;
2385
33b9817e 2386 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2387 set_buffer_new(bh_result);
2388 set_buffer_delay(bh_result);
2389 } else if (ret > 0) {
2390 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2391 if (buffer_unwritten(bh_result)) {
2392 /* A delayed write to unwritten bh should
2393 * be marked new and mapped. Mapped ensures
2394 * that we don't do get_block multiple times
2395 * when we write to the same offset and new
2396 * ensures that we do proper zero out for
2397 * partial write.
2398 */
9c1ee184 2399 set_buffer_new(bh_result);
29fa89d0
AK
2400 set_buffer_mapped(bh_result);
2401 }
64769240
AT
2402 ret = 0;
2403 }
2404
2405 return ret;
2406}
61628a3f 2407
b920c755
TT
2408/*
2409 * This function is used as a standard get_block_t calback function
2410 * when there is no desire to allocate any blocks. It is used as a
2411 * callback function for block_prepare_write(), nobh_writepage(), and
2412 * block_write_full_page(). These functions should only try to map a
2413 * single block at a time.
2414 *
2415 * Since this function doesn't do block allocations even if the caller
2416 * requests it by passing in create=1, it is critically important that
2417 * any caller checks to make sure that any buffer heads are returned
2418 * by this function are either all already mapped or marked for
2419 * delayed allocation before calling nobh_writepage() or
2420 * block_write_full_page(). Otherwise, b_blocknr could be left
2421 * unitialized, and the page write functions will be taken by
2422 * surprise.
2423 */
2424static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2425 struct buffer_head *bh_result, int create)
2426{
2427 int ret = 0;
2428 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2429
a2dc52b5
TT
2430 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2431
f0e6c985
AK
2432 /*
2433 * we don't want to do block allocation in writepage
2434 * so call get_block_wrap with create = 0
2435 */
c2177057 2436 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
a2dc52b5 2437 BUG_ON(create && ret == 0);
f0e6c985
AK
2438 if (ret > 0) {
2439 bh_result->b_size = (ret << inode->i_blkbits);
2440 ret = 0;
2441 }
2442 return ret;
61628a3f
MC
2443}
2444
61628a3f 2445/*
b920c755
TT
2446 * This function can get called via...
2447 * - ext4_da_writepages after taking page lock (have journal handle)
2448 * - journal_submit_inode_data_buffers (no journal handle)
2449 * - shrink_page_list via pdflush (no journal handle)
2450 * - grab_page_cache when doing write_begin (have journal handle)
61628a3f 2451 */
64769240
AT
2452static int ext4_da_writepage(struct page *page,
2453 struct writeback_control *wbc)
2454{
64769240 2455 int ret = 0;
61628a3f 2456 loff_t size;
498e5f24 2457 unsigned int len;
61628a3f
MC
2458 struct buffer_head *page_bufs;
2459 struct inode *inode = page->mapping->host;
2460
ba80b101
TT
2461 trace_mark(ext4_da_writepage,
2462 "dev %s ino %lu page_index %lu",
2463 inode->i_sb->s_id, inode->i_ino, page->index);
f0e6c985
AK
2464 size = i_size_read(inode);
2465 if (page->index == size >> PAGE_CACHE_SHIFT)
2466 len = size & ~PAGE_CACHE_MASK;
2467 else
2468 len = PAGE_CACHE_SIZE;
64769240 2469
f0e6c985 2470 if (page_has_buffers(page)) {
61628a3f 2471 page_bufs = page_buffers(page);
f0e6c985
AK
2472 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2473 ext4_bh_unmapped_or_delay)) {
61628a3f 2474 /*
f0e6c985
AK
2475 * We don't want to do block allocation
2476 * So redirty the page and return
cd1aac32
AK
2477 * We may reach here when we do a journal commit
2478 * via journal_submit_inode_data_buffers.
2479 * If we don't have mapping block we just ignore
f0e6c985
AK
2480 * them. We can also reach here via shrink_page_list
2481 */
2482 redirty_page_for_writepage(wbc, page);
2483 unlock_page(page);
2484 return 0;
2485 }
2486 } else {
2487 /*
2488 * The test for page_has_buffers() is subtle:
2489 * We know the page is dirty but it lost buffers. That means
2490 * that at some moment in time after write_begin()/write_end()
2491 * has been called all buffers have been clean and thus they
2492 * must have been written at least once. So they are all
2493 * mapped and we can happily proceed with mapping them
2494 * and writing the page.
2495 *
2496 * Try to initialize the buffer_heads and check whether
2497 * all are mapped and non delay. We don't want to
2498 * do block allocation here.
2499 */
2500 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 2501 noalloc_get_block_write);
f0e6c985
AK
2502 if (!ret) {
2503 page_bufs = page_buffers(page);
2504 /* check whether all are mapped and non delay */
2505 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2506 ext4_bh_unmapped_or_delay)) {
2507 redirty_page_for_writepage(wbc, page);
2508 unlock_page(page);
2509 return 0;
2510 }
2511 } else {
2512 /*
2513 * We can't do block allocation here
2514 * so just redity the page and unlock
2515 * and return
61628a3f 2516 */
61628a3f
MC
2517 redirty_page_for_writepage(wbc, page);
2518 unlock_page(page);
2519 return 0;
2520 }
ed9b3e33
AK
2521 /* now mark the buffer_heads as dirty and uptodate */
2522 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2523 }
2524
2525 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2526 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2527 else
b920c755
TT
2528 ret = block_write_full_page(page, noalloc_get_block_write,
2529 wbc);
64769240 2530
64769240
AT
2531 return ret;
2532}
2533
61628a3f 2534/*
525f4ed8
MC
2535 * This is called via ext4_da_writepages() to
2536 * calulate the total number of credits to reserve to fit
2537 * a single extent allocation into a single transaction,
2538 * ext4_da_writpeages() will loop calling this before
2539 * the block allocation.
61628a3f 2540 */
525f4ed8
MC
2541
2542static int ext4_da_writepages_trans_blocks(struct inode *inode)
2543{
2544 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2545
2546 /*
2547 * With non-extent format the journal credit needed to
2548 * insert nrblocks contiguous block is dependent on
2549 * number of contiguous block. So we will limit
2550 * number of contiguous block to a sane value
2551 */
2552 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2553 (max_blocks > EXT4_MAX_TRANS_DATA))
2554 max_blocks = EXT4_MAX_TRANS_DATA;
2555
2556 return ext4_chunk_trans_blocks(inode, max_blocks);
2557}
61628a3f 2558
64769240 2559static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2560 struct writeback_control *wbc)
64769240 2561{
22208ded
AK
2562 pgoff_t index;
2563 int range_whole = 0;
61628a3f 2564 handle_t *handle = NULL;
df22291f 2565 struct mpage_da_data mpd;
5e745b04 2566 struct inode *inode = mapping->host;
22208ded 2567 int no_nrwrite_index_update;
498e5f24
TT
2568 int pages_written = 0;
2569 long pages_skipped;
2acf2c26 2570 int range_cyclic, cycled = 1, io_done = 0;
5e745b04 2571 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2572 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2573
ba80b101
TT
2574 trace_mark(ext4_da_writepages,
2575 "dev %s ino %lu nr_t_write %ld "
2576 "pages_skipped %ld range_start %llu "
2577 "range_end %llu nonblocking %d "
2578 "for_kupdate %d for_reclaim %d "
2579 "for_writepages %d range_cyclic %d",
2580 inode->i_sb->s_id, inode->i_ino,
2581 wbc->nr_to_write, wbc->pages_skipped,
2582 (unsigned long long) wbc->range_start,
2583 (unsigned long long) wbc->range_end,
2584 wbc->nonblocking, wbc->for_kupdate,
2585 wbc->for_reclaim, wbc->for_writepages,
2586 wbc->range_cyclic);
2587
61628a3f
MC
2588 /*
2589 * No pages to write? This is mainly a kludge to avoid starting
2590 * a transaction for special inodes like journal inode on last iput()
2591 * because that could violate lock ordering on umount
2592 */
a1d6cc56 2593 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2594 return 0;
2a21e37e
TT
2595
2596 /*
2597 * If the filesystem has aborted, it is read-only, so return
2598 * right away instead of dumping stack traces later on that
2599 * will obscure the real source of the problem. We test
2600 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2601 * the latter could be true if the filesystem is mounted
2602 * read-only, and in that case, ext4_da_writepages should
2603 * *never* be called, so if that ever happens, we would want
2604 * the stack trace.
2605 */
2606 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2607 return -EROFS;
2608
5e745b04
AK
2609 /*
2610 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2611 * This make sure small files blocks are allocated in
2612 * single attempt. This ensure that small files
2613 * get less fragmented.
2614 */
2615 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2616 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2617 wbc->nr_to_write = sbi->s_mb_stream_request;
2618 }
22208ded
AK
2619 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2620 range_whole = 1;
61628a3f 2621
2acf2c26
AK
2622 range_cyclic = wbc->range_cyclic;
2623 if (wbc->range_cyclic) {
22208ded 2624 index = mapping->writeback_index;
2acf2c26
AK
2625 if (index)
2626 cycled = 0;
2627 wbc->range_start = index << PAGE_CACHE_SHIFT;
2628 wbc->range_end = LLONG_MAX;
2629 wbc->range_cyclic = 0;
2630 } else
22208ded 2631 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2632
df22291f
AK
2633 mpd.wbc = wbc;
2634 mpd.inode = mapping->host;
2635
22208ded
AK
2636 /*
2637 * we don't want write_cache_pages to update
2638 * nr_to_write and writeback_index
2639 */
2640 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2641 wbc->no_nrwrite_index_update = 1;
2642 pages_skipped = wbc->pages_skipped;
2643
2acf2c26 2644retry:
22208ded 2645 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2646
2647 /*
2648 * we insert one extent at a time. So we need
2649 * credit needed for single extent allocation.
2650 * journalled mode is currently not supported
2651 * by delalloc
2652 */
2653 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2654 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2655
61628a3f
MC
2656 /* start a new transaction*/
2657 handle = ext4_journal_start(inode, needed_blocks);
2658 if (IS_ERR(handle)) {
2659 ret = PTR_ERR(handle);
2a21e37e 2660 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2661 "%ld pages, ino %lu; err %d\n", __func__,
2662 wbc->nr_to_write, inode->i_ino, ret);
2663 dump_stack();
61628a3f
MC
2664 goto out_writepages;
2665 }
f63e6005
TT
2666
2667 /*
2668 * Now call __mpage_da_writepage to find the next
2669 * contiguous region of logical blocks that need
2670 * blocks to be allocated by ext4. We don't actually
2671 * submit the blocks for I/O here, even though
2672 * write_cache_pages thinks it will, and will set the
2673 * pages as clean for write before calling
2674 * __mpage_da_writepage().
2675 */
2676 mpd.b_size = 0;
2677 mpd.b_state = 0;
2678 mpd.b_blocknr = 0;
2679 mpd.first_page = 0;
2680 mpd.next_page = 0;
2681 mpd.io_done = 0;
2682 mpd.pages_written = 0;
2683 mpd.retval = 0;
2684 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2685 &mpd);
2686 /*
2687 * If we have a contigous extent of pages and we
2688 * haven't done the I/O yet, map the blocks and submit
2689 * them for I/O.
2690 */
2691 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2692 if (mpage_da_map_blocks(&mpd) == 0)
2693 mpage_da_submit_io(&mpd);
2694 mpd.io_done = 1;
2695 ret = MPAGE_DA_EXTENT_TAIL;
2696 }
2697 wbc->nr_to_write -= mpd.pages_written;
df22291f 2698
61628a3f 2699 ext4_journal_stop(handle);
df22291f 2700
8f64b32e 2701 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2702 /* commit the transaction which would
2703 * free blocks released in the transaction
2704 * and try again
2705 */
df22291f 2706 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2707 wbc->pages_skipped = pages_skipped;
2708 ret = 0;
2709 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2710 /*
2711 * got one extent now try with
2712 * rest of the pages
2713 */
22208ded
AK
2714 pages_written += mpd.pages_written;
2715 wbc->pages_skipped = pages_skipped;
a1d6cc56 2716 ret = 0;
2acf2c26 2717 io_done = 1;
22208ded 2718 } else if (wbc->nr_to_write)
61628a3f
MC
2719 /*
2720 * There is no more writeout needed
2721 * or we requested for a noblocking writeout
2722 * and we found the device congested
2723 */
61628a3f 2724 break;
a1d6cc56 2725 }
2acf2c26
AK
2726 if (!io_done && !cycled) {
2727 cycled = 1;
2728 index = 0;
2729 wbc->range_start = index << PAGE_CACHE_SHIFT;
2730 wbc->range_end = mapping->writeback_index - 1;
2731 goto retry;
2732 }
22208ded
AK
2733 if (pages_skipped != wbc->pages_skipped)
2734 printk(KERN_EMERG "This should not happen leaving %s "
2735 "with nr_to_write = %ld ret = %d\n",
2736 __func__, wbc->nr_to_write, ret);
2737
2738 /* Update index */
2739 index += pages_written;
2acf2c26 2740 wbc->range_cyclic = range_cyclic;
22208ded
AK
2741 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2742 /*
2743 * set the writeback_index so that range_cyclic
2744 * mode will write it back later
2745 */
2746 mapping->writeback_index = index;
a1d6cc56 2747
61628a3f 2748out_writepages:
22208ded
AK
2749 if (!no_nrwrite_index_update)
2750 wbc->no_nrwrite_index_update = 0;
2751 wbc->nr_to_write -= nr_to_writebump;
ba80b101
TT
2752 trace_mark(ext4_da_writepage_result,
2753 "dev %s ino %lu ret %d pages_written %d "
2754 "pages_skipped %ld congestion %d "
2755 "more_io %d no_nrwrite_index_update %d",
2756 inode->i_sb->s_id, inode->i_ino, ret,
2757 pages_written, wbc->pages_skipped,
2758 wbc->encountered_congestion, wbc->more_io,
2759 wbc->no_nrwrite_index_update);
61628a3f 2760 return ret;
64769240
AT
2761}
2762
79f0be8d
AK
2763#define FALL_BACK_TO_NONDELALLOC 1
2764static int ext4_nonda_switch(struct super_block *sb)
2765{
2766 s64 free_blocks, dirty_blocks;
2767 struct ext4_sb_info *sbi = EXT4_SB(sb);
2768
2769 /*
2770 * switch to non delalloc mode if we are running low
2771 * on free block. The free block accounting via percpu
179f7ebf 2772 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2773 * accumulated on each CPU without updating global counters
2774 * Delalloc need an accurate free block accounting. So switch
2775 * to non delalloc when we are near to error range.
2776 */
2777 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2778 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2779 if (2 * free_blocks < 3 * dirty_blocks ||
2780 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2781 /*
2782 * free block count is less that 150% of dirty blocks
2783 * or free blocks is less that watermark
2784 */
2785 return 1;
2786 }
2787 return 0;
2788}
2789
64769240
AT
2790static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2791 loff_t pos, unsigned len, unsigned flags,
2792 struct page **pagep, void **fsdata)
2793{
d2a17637 2794 int ret, retries = 0;
64769240
AT
2795 struct page *page;
2796 pgoff_t index;
2797 unsigned from, to;
2798 struct inode *inode = mapping->host;
2799 handle_t *handle;
2800
2801 index = pos >> PAGE_CACHE_SHIFT;
2802 from = pos & (PAGE_CACHE_SIZE - 1);
2803 to = from + len;
79f0be8d
AK
2804
2805 if (ext4_nonda_switch(inode->i_sb)) {
2806 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2807 return ext4_write_begin(file, mapping, pos,
2808 len, flags, pagep, fsdata);
2809 }
2810 *fsdata = (void *)0;
ba80b101
TT
2811
2812 trace_mark(ext4_da_write_begin,
2813 "dev %s ino %lu pos %llu len %u flags %u",
2814 inode->i_sb->s_id, inode->i_ino,
2815 (unsigned long long) pos, len, flags);
d2a17637 2816retry:
64769240
AT
2817 /*
2818 * With delayed allocation, we don't log the i_disksize update
2819 * if there is delayed block allocation. But we still need
2820 * to journalling the i_disksize update if writes to the end
2821 * of file which has an already mapped buffer.
2822 */
2823 handle = ext4_journal_start(inode, 1);
2824 if (IS_ERR(handle)) {
2825 ret = PTR_ERR(handle);
2826 goto out;
2827 }
ebd3610b
JK
2828 /* We cannot recurse into the filesystem as the transaction is already
2829 * started */
2830 flags |= AOP_FLAG_NOFS;
64769240 2831
54566b2c 2832 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2833 if (!page) {
2834 ext4_journal_stop(handle);
2835 ret = -ENOMEM;
2836 goto out;
2837 }
64769240
AT
2838 *pagep = page;
2839
2840 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 2841 ext4_da_get_block_prep);
64769240
AT
2842 if (ret < 0) {
2843 unlock_page(page);
2844 ext4_journal_stop(handle);
2845 page_cache_release(page);
ae4d5372
AK
2846 /*
2847 * block_write_begin may have instantiated a few blocks
2848 * outside i_size. Trim these off again. Don't need
2849 * i_size_read because we hold i_mutex.
2850 */
2851 if (pos + len > inode->i_size)
2852 vmtruncate(inode, inode->i_size);
64769240
AT
2853 }
2854
d2a17637
MC
2855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2856 goto retry;
64769240
AT
2857out:
2858 return ret;
2859}
2860
632eaeab
MC
2861/*
2862 * Check if we should update i_disksize
2863 * when write to the end of file but not require block allocation
2864 */
2865static int ext4_da_should_update_i_disksize(struct page *page,
2866 unsigned long offset)
2867{
2868 struct buffer_head *bh;
2869 struct inode *inode = page->mapping->host;
2870 unsigned int idx;
2871 int i;
2872
2873 bh = page_buffers(page);
2874 idx = offset >> inode->i_blkbits;
2875
af5bc92d 2876 for (i = 0; i < idx; i++)
632eaeab
MC
2877 bh = bh->b_this_page;
2878
29fa89d0 2879 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2880 return 0;
2881 return 1;
2882}
2883
64769240
AT
2884static int ext4_da_write_end(struct file *file,
2885 struct address_space *mapping,
2886 loff_t pos, unsigned len, unsigned copied,
2887 struct page *page, void *fsdata)
2888{
2889 struct inode *inode = mapping->host;
2890 int ret = 0, ret2;
2891 handle_t *handle = ext4_journal_current_handle();
2892 loff_t new_i_size;
632eaeab 2893 unsigned long start, end;
79f0be8d
AK
2894 int write_mode = (int)(unsigned long)fsdata;
2895
2896 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2897 if (ext4_should_order_data(inode)) {
2898 return ext4_ordered_write_end(file, mapping, pos,
2899 len, copied, page, fsdata);
2900 } else if (ext4_should_writeback_data(inode)) {
2901 return ext4_writeback_write_end(file, mapping, pos,
2902 len, copied, page, fsdata);
2903 } else {
2904 BUG();
2905 }
2906 }
632eaeab 2907
ba80b101
TT
2908 trace_mark(ext4_da_write_end,
2909 "dev %s ino %lu pos %llu len %u copied %u",
2910 inode->i_sb->s_id, inode->i_ino,
2911 (unsigned long long) pos, len, copied);
632eaeab 2912 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2913 end = start + copied - 1;
64769240
AT
2914
2915 /*
2916 * generic_write_end() will run mark_inode_dirty() if i_size
2917 * changes. So let's piggyback the i_disksize mark_inode_dirty
2918 * into that.
2919 */
2920
2921 new_i_size = pos + copied;
632eaeab
MC
2922 if (new_i_size > EXT4_I(inode)->i_disksize) {
2923 if (ext4_da_should_update_i_disksize(page, end)) {
2924 down_write(&EXT4_I(inode)->i_data_sem);
2925 if (new_i_size > EXT4_I(inode)->i_disksize) {
2926 /*
2927 * Updating i_disksize when extending file
2928 * without needing block allocation
2929 */
2930 if (ext4_should_order_data(inode))
2931 ret = ext4_jbd2_file_inode(handle,
2932 inode);
64769240 2933
632eaeab
MC
2934 EXT4_I(inode)->i_disksize = new_i_size;
2935 }
2936 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2937 /* We need to mark inode dirty even if
2938 * new_i_size is less that inode->i_size
2939 * bu greater than i_disksize.(hint delalloc)
2940 */
2941 ext4_mark_inode_dirty(handle, inode);
64769240 2942 }
632eaeab 2943 }
64769240
AT
2944 ret2 = generic_write_end(file, mapping, pos, len, copied,
2945 page, fsdata);
2946 copied = ret2;
2947 if (ret2 < 0)
2948 ret = ret2;
2949 ret2 = ext4_journal_stop(handle);
2950 if (!ret)
2951 ret = ret2;
2952
2953 return ret ? ret : copied;
2954}
2955
2956static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2957{
64769240
AT
2958 /*
2959 * Drop reserved blocks
2960 */
2961 BUG_ON(!PageLocked(page));
2962 if (!page_has_buffers(page))
2963 goto out;
2964
d2a17637 2965 ext4_da_page_release_reservation(page, offset);
64769240
AT
2966
2967out:
2968 ext4_invalidatepage(page, offset);
2969
2970 return;
2971}
2972
ccd2506b
TT
2973/*
2974 * Force all delayed allocation blocks to be allocated for a given inode.
2975 */
2976int ext4_alloc_da_blocks(struct inode *inode)
2977{
2978 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2979 !EXT4_I(inode)->i_reserved_meta_blocks)
2980 return 0;
2981
2982 /*
2983 * We do something simple for now. The filemap_flush() will
2984 * also start triggering a write of the data blocks, which is
2985 * not strictly speaking necessary (and for users of
2986 * laptop_mode, not even desirable). However, to do otherwise
2987 * would require replicating code paths in:
2988 *
2989 * ext4_da_writepages() ->
2990 * write_cache_pages() ---> (via passed in callback function)
2991 * __mpage_da_writepage() -->
2992 * mpage_add_bh_to_extent()
2993 * mpage_da_map_blocks()
2994 *
2995 * The problem is that write_cache_pages(), located in
2996 * mm/page-writeback.c, marks pages clean in preparation for
2997 * doing I/O, which is not desirable if we're not planning on
2998 * doing I/O at all.
2999 *
3000 * We could call write_cache_pages(), and then redirty all of
3001 * the pages by calling redirty_page_for_writeback() but that
3002 * would be ugly in the extreme. So instead we would need to
3003 * replicate parts of the code in the above functions,
3004 * simplifying them becuase we wouldn't actually intend to
3005 * write out the pages, but rather only collect contiguous
3006 * logical block extents, call the multi-block allocator, and
3007 * then update the buffer heads with the block allocations.
3008 *
3009 * For now, though, we'll cheat by calling filemap_flush(),
3010 * which will map the blocks, and start the I/O, but not
3011 * actually wait for the I/O to complete.
3012 */
3013 return filemap_flush(inode->i_mapping);
3014}
64769240 3015
ac27a0ec
DK
3016/*
3017 * bmap() is special. It gets used by applications such as lilo and by
3018 * the swapper to find the on-disk block of a specific piece of data.
3019 *
3020 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3021 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3022 * filesystem and enables swap, then they may get a nasty shock when the
3023 * data getting swapped to that swapfile suddenly gets overwritten by
3024 * the original zero's written out previously to the journal and
3025 * awaiting writeback in the kernel's buffer cache.
3026 *
3027 * So, if we see any bmap calls here on a modified, data-journaled file,
3028 * take extra steps to flush any blocks which might be in the cache.
3029 */
617ba13b 3030static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3031{
3032 struct inode *inode = mapping->host;
3033 journal_t *journal;
3034 int err;
3035
64769240
AT
3036 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3037 test_opt(inode->i_sb, DELALLOC)) {
3038 /*
3039 * With delalloc we want to sync the file
3040 * so that we can make sure we allocate
3041 * blocks for file
3042 */
3043 filemap_write_and_wait(mapping);
3044 }
3045
0390131b 3046 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3047 /*
3048 * This is a REALLY heavyweight approach, but the use of
3049 * bmap on dirty files is expected to be extremely rare:
3050 * only if we run lilo or swapon on a freshly made file
3051 * do we expect this to happen.
3052 *
3053 * (bmap requires CAP_SYS_RAWIO so this does not
3054 * represent an unprivileged user DOS attack --- we'd be
3055 * in trouble if mortal users could trigger this path at
3056 * will.)
3057 *
617ba13b 3058 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3059 * regular files. If somebody wants to bmap a directory
3060 * or symlink and gets confused because the buffer
3061 * hasn't yet been flushed to disk, they deserve
3062 * everything they get.
3063 */
3064
617ba13b
MC
3065 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3066 journal = EXT4_JOURNAL(inode);
dab291af
MC
3067 jbd2_journal_lock_updates(journal);
3068 err = jbd2_journal_flush(journal);
3069 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3070
3071 if (err)
3072 return 0;
3073 }
3074
af5bc92d 3075 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3076}
3077
3078static int bget_one(handle_t *handle, struct buffer_head *bh)
3079{
3080 get_bh(bh);
3081 return 0;
3082}
3083
3084static int bput_one(handle_t *handle, struct buffer_head *bh)
3085{
3086 put_bh(bh);
3087 return 0;
3088}
3089
ac27a0ec 3090/*
678aaf48
JK
3091 * Note that we don't need to start a transaction unless we're journaling data
3092 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3093 * need to file the inode to the transaction's list in ordered mode because if
3094 * we are writing back data added by write(), the inode is already there and if
3095 * we are writing back data modified via mmap(), noone guarantees in which
3096 * transaction the data will hit the disk. In case we are journaling data, we
3097 * cannot start transaction directly because transaction start ranks above page
3098 * lock so we have to do some magic.
ac27a0ec 3099 *
678aaf48 3100 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
3101 *
3102 * Problem:
3103 *
617ba13b
MC
3104 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3105 * ext4_writepage()
ac27a0ec
DK
3106 *
3107 * Similar for:
3108 *
617ba13b 3109 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 3110 *
617ba13b 3111 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 3112 * lock_journal and i_data_sem
ac27a0ec
DK
3113 *
3114 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3115 * allocations fail.
3116 *
3117 * 16May01: If we're reentered then journal_current_handle() will be
3118 * non-zero. We simply *return*.
3119 *
3120 * 1 July 2001: @@@ FIXME:
3121 * In journalled data mode, a data buffer may be metadata against the
3122 * current transaction. But the same file is part of a shared mapping
3123 * and someone does a writepage() on it.
3124 *
3125 * We will move the buffer onto the async_data list, but *after* it has
3126 * been dirtied. So there's a small window where we have dirty data on
3127 * BJ_Metadata.
3128 *
3129 * Note that this only applies to the last partial page in the file. The
3130 * bit which block_write_full_page() uses prepare/commit for. (That's
3131 * broken code anyway: it's wrong for msync()).
3132 *
3133 * It's a rare case: affects the final partial page, for journalled data
3134 * where the file is subject to bith write() and writepage() in the same
3135 * transction. To fix it we'll need a custom block_write_full_page().
3136 * We'll probably need that anyway for journalling writepage() output.
3137 *
3138 * We don't honour synchronous mounts for writepage(). That would be
3139 * disastrous. Any write() or metadata operation will sync the fs for
3140 * us.
3141 *
ac27a0ec 3142 */
678aaf48 3143static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
3144 struct writeback_control *wbc)
3145{
3146 struct inode *inode = page->mapping->host;
3147
3148 if (test_opt(inode->i_sb, NOBH))
b920c755 3149 return nobh_writepage(page, noalloc_get_block_write, wbc);
cf108bca 3150 else
b920c755
TT
3151 return block_write_full_page(page, noalloc_get_block_write,
3152 wbc);
cf108bca
JK
3153}
3154
678aaf48 3155static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
3156 struct writeback_control *wbc)
3157{
3158 struct inode *inode = page->mapping->host;
cf108bca
JK
3159 loff_t size = i_size_read(inode);
3160 loff_t len;
3161
ba80b101
TT
3162 trace_mark(ext4_normal_writepage,
3163 "dev %s ino %lu page_index %lu",
3164 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3165 J_ASSERT(PageLocked(page));
cf108bca
JK
3166 if (page->index == size >> PAGE_CACHE_SHIFT)
3167 len = size & ~PAGE_CACHE_MASK;
3168 else
3169 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3170
3171 if (page_has_buffers(page)) {
3172 /* if page has buffers it should all be mapped
3173 * and allocated. If there are not buffers attached
3174 * to the page we know the page is dirty but it lost
3175 * buffers. That means that at some moment in time
3176 * after write_begin() / write_end() has been called
3177 * all buffers have been clean and thus they must have been
3178 * written at least once. So they are all mapped and we can
3179 * happily proceed with mapping them and writing the page.
3180 */
3181 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3182 ext4_bh_unmapped_or_delay));
3183 }
cf108bca
JK
3184
3185 if (!ext4_journal_current_handle())
678aaf48 3186 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
3187
3188 redirty_page_for_writepage(wbc, page);
3189 unlock_page(page);
3190 return 0;
3191}
3192
3193static int __ext4_journalled_writepage(struct page *page,
3194 struct writeback_control *wbc)
3195{
3196 struct address_space *mapping = page->mapping;
3197 struct inode *inode = mapping->host;
3198 struct buffer_head *page_bufs;
ac27a0ec
DK
3199 handle_t *handle = NULL;
3200 int ret = 0;
3201 int err;
3202
f0e6c985 3203 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
b920c755 3204 noalloc_get_block_write);
cf108bca
JK
3205 if (ret != 0)
3206 goto out_unlock;
3207
3208 page_bufs = page_buffers(page);
3209 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3210 bget_one);
3211 /* As soon as we unlock the page, it can go away, but we have
3212 * references to buffers so we are safe */
3213 unlock_page(page);
ac27a0ec 3214
617ba13b 3215 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
3216 if (IS_ERR(handle)) {
3217 ret = PTR_ERR(handle);
cf108bca 3218 goto out;
ac27a0ec
DK
3219 }
3220
cf108bca
JK
3221 ret = walk_page_buffers(handle, page_bufs, 0,
3222 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 3223
cf108bca
JK
3224 err = walk_page_buffers(handle, page_bufs, 0,
3225 PAGE_CACHE_SIZE, NULL, write_end_fn);
3226 if (ret == 0)
3227 ret = err;
617ba13b 3228 err = ext4_journal_stop(handle);
ac27a0ec
DK
3229 if (!ret)
3230 ret = err;
ac27a0ec 3231
cf108bca
JK
3232 walk_page_buffers(handle, page_bufs, 0,
3233 PAGE_CACHE_SIZE, NULL, bput_one);
3234 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3235 goto out;
3236
3237out_unlock:
ac27a0ec 3238 unlock_page(page);
cf108bca 3239out:
ac27a0ec
DK
3240 return ret;
3241}
3242
617ba13b 3243static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
3244 struct writeback_control *wbc)
3245{
3246 struct inode *inode = page->mapping->host;
cf108bca
JK
3247 loff_t size = i_size_read(inode);
3248 loff_t len;
ac27a0ec 3249
ba80b101
TT
3250 trace_mark(ext4_journalled_writepage,
3251 "dev %s ino %lu page_index %lu",
3252 inode->i_sb->s_id, inode->i_ino, page->index);
cf108bca 3253 J_ASSERT(PageLocked(page));
cf108bca
JK
3254 if (page->index == size >> PAGE_CACHE_SHIFT)
3255 len = size & ~PAGE_CACHE_MASK;
3256 else
3257 len = PAGE_CACHE_SIZE;
f0e6c985
AK
3258
3259 if (page_has_buffers(page)) {
3260 /* if page has buffers it should all be mapped
3261 * and allocated. If there are not buffers attached
3262 * to the page we know the page is dirty but it lost
3263 * buffers. That means that at some moment in time
3264 * after write_begin() / write_end() has been called
3265 * all buffers have been clean and thus they must have been
3266 * written at least once. So they are all mapped and we can
3267 * happily proceed with mapping them and writing the page.
3268 */
3269 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3270 ext4_bh_unmapped_or_delay));
3271 }
ac27a0ec 3272
cf108bca 3273 if (ext4_journal_current_handle())
ac27a0ec 3274 goto no_write;
ac27a0ec 3275
cf108bca 3276 if (PageChecked(page)) {
ac27a0ec
DK
3277 /*
3278 * It's mmapped pagecache. Add buffers and journal it. There
3279 * doesn't seem much point in redirtying the page here.
3280 */
3281 ClearPageChecked(page);
cf108bca 3282 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3283 } else {
3284 /*
3285 * It may be a page full of checkpoint-mode buffers. We don't
3286 * really know unless we go poke around in the buffer_heads.
3287 * But block_write_full_page will do the right thing.
3288 */
b920c755
TT
3289 return block_write_full_page(page, noalloc_get_block_write,
3290 wbc);
ac27a0ec 3291 }
ac27a0ec
DK
3292no_write:
3293 redirty_page_for_writepage(wbc, page);
ac27a0ec 3294 unlock_page(page);
cf108bca 3295 return 0;
ac27a0ec
DK
3296}
3297
617ba13b 3298static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3299{
617ba13b 3300 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3301}
3302
3303static int
617ba13b 3304ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3305 struct list_head *pages, unsigned nr_pages)
3306{
617ba13b 3307 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3308}
3309
617ba13b 3310static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3311{
617ba13b 3312 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3313
3314 /*
3315 * If it's a full truncate we just forget about the pending dirtying
3316 */
3317 if (offset == 0)
3318 ClearPageChecked(page);
3319
0390131b
FM
3320 if (journal)
3321 jbd2_journal_invalidatepage(journal, page, offset);
3322 else
3323 block_invalidatepage(page, offset);
ac27a0ec
DK
3324}
3325
617ba13b 3326static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3327{
617ba13b 3328 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3329
3330 WARN_ON(PageChecked(page));
3331 if (!page_has_buffers(page))
3332 return 0;
0390131b
FM
3333 if (journal)
3334 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3335 else
3336 return try_to_free_buffers(page);
ac27a0ec
DK
3337}
3338
3339/*
3340 * If the O_DIRECT write will extend the file then add this inode to the
3341 * orphan list. So recovery will truncate it back to the original size
3342 * if the machine crashes during the write.
3343 *
3344 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3345 * crashes then stale disk data _may_ be exposed inside the file. But current
3346 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3347 */
617ba13b 3348static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3349 const struct iovec *iov, loff_t offset,
3350 unsigned long nr_segs)
3351{
3352 struct file *file = iocb->ki_filp;
3353 struct inode *inode = file->f_mapping->host;
617ba13b 3354 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3355 handle_t *handle;
ac27a0ec
DK
3356 ssize_t ret;
3357 int orphan = 0;
3358 size_t count = iov_length(iov, nr_segs);
3359
3360 if (rw == WRITE) {
3361 loff_t final_size = offset + count;
3362
ac27a0ec 3363 if (final_size > inode->i_size) {
7fb5409d
JK
3364 /* Credits for sb + inode write */
3365 handle = ext4_journal_start(inode, 2);
3366 if (IS_ERR(handle)) {
3367 ret = PTR_ERR(handle);
3368 goto out;
3369 }
617ba13b 3370 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3371 if (ret) {
3372 ext4_journal_stop(handle);
3373 goto out;
3374 }
ac27a0ec
DK
3375 orphan = 1;
3376 ei->i_disksize = inode->i_size;
7fb5409d 3377 ext4_journal_stop(handle);
ac27a0ec
DK
3378 }
3379 }
3380
3381 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3382 offset, nr_segs,
617ba13b 3383 ext4_get_block, NULL);
ac27a0ec 3384
7fb5409d 3385 if (orphan) {
ac27a0ec
DK
3386 int err;
3387
7fb5409d
JK
3388 /* Credits for sb + inode write */
3389 handle = ext4_journal_start(inode, 2);
3390 if (IS_ERR(handle)) {
3391 /* This is really bad luck. We've written the data
3392 * but cannot extend i_size. Bail out and pretend
3393 * the write failed... */
3394 ret = PTR_ERR(handle);
3395 goto out;
3396 }
3397 if (inode->i_nlink)
617ba13b 3398 ext4_orphan_del(handle, inode);
7fb5409d 3399 if (ret > 0) {
ac27a0ec
DK
3400 loff_t end = offset + ret;
3401 if (end > inode->i_size) {
3402 ei->i_disksize = end;
3403 i_size_write(inode, end);
3404 /*
3405 * We're going to return a positive `ret'
3406 * here due to non-zero-length I/O, so there's
3407 * no way of reporting error returns from
617ba13b 3408 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3409 * ignore it.
3410 */
617ba13b 3411 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3412 }
3413 }
617ba13b 3414 err = ext4_journal_stop(handle);
ac27a0ec
DK
3415 if (ret == 0)
3416 ret = err;
3417 }
3418out:
3419 return ret;
3420}
3421
3422/*
617ba13b 3423 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3424 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3425 * much here because ->set_page_dirty is called under VFS locks. The page is
3426 * not necessarily locked.
3427 *
3428 * We cannot just dirty the page and leave attached buffers clean, because the
3429 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3430 * or jbddirty because all the journalling code will explode.
3431 *
3432 * So what we do is to mark the page "pending dirty" and next time writepage
3433 * is called, propagate that into the buffers appropriately.
3434 */
617ba13b 3435static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3436{
3437 SetPageChecked(page);
3438 return __set_page_dirty_nobuffers(page);
3439}
3440
617ba13b 3441static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3442 .readpage = ext4_readpage,
3443 .readpages = ext4_readpages,
3444 .writepage = ext4_normal_writepage,
3445 .sync_page = block_sync_page,
3446 .write_begin = ext4_write_begin,
3447 .write_end = ext4_ordered_write_end,
3448 .bmap = ext4_bmap,
3449 .invalidatepage = ext4_invalidatepage,
3450 .releasepage = ext4_releasepage,
3451 .direct_IO = ext4_direct_IO,
3452 .migratepage = buffer_migrate_page,
3453 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3454};
3455
617ba13b 3456static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3457 .readpage = ext4_readpage,
3458 .readpages = ext4_readpages,
3459 .writepage = ext4_normal_writepage,
3460 .sync_page = block_sync_page,
3461 .write_begin = ext4_write_begin,
3462 .write_end = ext4_writeback_write_end,
3463 .bmap = ext4_bmap,
3464 .invalidatepage = ext4_invalidatepage,
3465 .releasepage = ext4_releasepage,
3466 .direct_IO = ext4_direct_IO,
3467 .migratepage = buffer_migrate_page,
3468 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3469};
3470
617ba13b 3471static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3472 .readpage = ext4_readpage,
3473 .readpages = ext4_readpages,
3474 .writepage = ext4_journalled_writepage,
3475 .sync_page = block_sync_page,
3476 .write_begin = ext4_write_begin,
3477 .write_end = ext4_journalled_write_end,
3478 .set_page_dirty = ext4_journalled_set_page_dirty,
3479 .bmap = ext4_bmap,
3480 .invalidatepage = ext4_invalidatepage,
3481 .releasepage = ext4_releasepage,
3482 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3483};
3484
64769240 3485static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3486 .readpage = ext4_readpage,
3487 .readpages = ext4_readpages,
3488 .writepage = ext4_da_writepage,
3489 .writepages = ext4_da_writepages,
3490 .sync_page = block_sync_page,
3491 .write_begin = ext4_da_write_begin,
3492 .write_end = ext4_da_write_end,
3493 .bmap = ext4_bmap,
3494 .invalidatepage = ext4_da_invalidatepage,
3495 .releasepage = ext4_releasepage,
3496 .direct_IO = ext4_direct_IO,
3497 .migratepage = buffer_migrate_page,
3498 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3499};
3500
617ba13b 3501void ext4_set_aops(struct inode *inode)
ac27a0ec 3502{
cd1aac32
AK
3503 if (ext4_should_order_data(inode) &&
3504 test_opt(inode->i_sb, DELALLOC))
3505 inode->i_mapping->a_ops = &ext4_da_aops;
3506 else if (ext4_should_order_data(inode))
617ba13b 3507 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3508 else if (ext4_should_writeback_data(inode) &&
3509 test_opt(inode->i_sb, DELALLOC))
3510 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3511 else if (ext4_should_writeback_data(inode))
3512 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3513 else
617ba13b 3514 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3515}
3516
3517/*
617ba13b 3518 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3519 * up to the end of the block which corresponds to `from'.
3520 * This required during truncate. We need to physically zero the tail end
3521 * of that block so it doesn't yield old data if the file is later grown.
3522 */
cf108bca 3523int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3524 struct address_space *mapping, loff_t from)
3525{
617ba13b 3526 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3527 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3528 unsigned blocksize, length, pos;
3529 ext4_lblk_t iblock;
ac27a0ec
DK
3530 struct inode *inode = mapping->host;
3531 struct buffer_head *bh;
cf108bca 3532 struct page *page;
ac27a0ec 3533 int err = 0;
ac27a0ec 3534
cf108bca
JK
3535 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3536 if (!page)
3537 return -EINVAL;
3538
ac27a0ec
DK
3539 blocksize = inode->i_sb->s_blocksize;
3540 length = blocksize - (offset & (blocksize - 1));
3541 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3542
3543 /*
3544 * For "nobh" option, we can only work if we don't need to
3545 * read-in the page - otherwise we create buffers to do the IO.
3546 */
3547 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3548 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3549 zero_user(page, offset, length);
ac27a0ec
DK
3550 set_page_dirty(page);
3551 goto unlock;
3552 }
3553
3554 if (!page_has_buffers(page))
3555 create_empty_buffers(page, blocksize, 0);
3556
3557 /* Find the buffer that contains "offset" */
3558 bh = page_buffers(page);
3559 pos = blocksize;
3560 while (offset >= pos) {
3561 bh = bh->b_this_page;
3562 iblock++;
3563 pos += blocksize;
3564 }
3565
3566 err = 0;
3567 if (buffer_freed(bh)) {
3568 BUFFER_TRACE(bh, "freed: skip");
3569 goto unlock;
3570 }
3571
3572 if (!buffer_mapped(bh)) {
3573 BUFFER_TRACE(bh, "unmapped");
617ba13b 3574 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3575 /* unmapped? It's a hole - nothing to do */
3576 if (!buffer_mapped(bh)) {
3577 BUFFER_TRACE(bh, "still unmapped");
3578 goto unlock;
3579 }
3580 }
3581
3582 /* Ok, it's mapped. Make sure it's up-to-date */
3583 if (PageUptodate(page))
3584 set_buffer_uptodate(bh);
3585
3586 if (!buffer_uptodate(bh)) {
3587 err = -EIO;
3588 ll_rw_block(READ, 1, &bh);
3589 wait_on_buffer(bh);
3590 /* Uhhuh. Read error. Complain and punt. */
3591 if (!buffer_uptodate(bh))
3592 goto unlock;
3593 }
3594
617ba13b 3595 if (ext4_should_journal_data(inode)) {
ac27a0ec 3596 BUFFER_TRACE(bh, "get write access");
617ba13b 3597 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3598 if (err)
3599 goto unlock;
3600 }
3601
eebd2aa3 3602 zero_user(page, offset, length);
ac27a0ec
DK
3603
3604 BUFFER_TRACE(bh, "zeroed end of block");
3605
3606 err = 0;
617ba13b 3607 if (ext4_should_journal_data(inode)) {
0390131b 3608 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3609 } else {
617ba13b 3610 if (ext4_should_order_data(inode))
678aaf48 3611 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3612 mark_buffer_dirty(bh);
3613 }
3614
3615unlock:
3616 unlock_page(page);
3617 page_cache_release(page);
3618 return err;
3619}
3620
3621/*
3622 * Probably it should be a library function... search for first non-zero word
3623 * or memcmp with zero_page, whatever is better for particular architecture.
3624 * Linus?
3625 */
3626static inline int all_zeroes(__le32 *p, __le32 *q)
3627{
3628 while (p < q)
3629 if (*p++)
3630 return 0;
3631 return 1;
3632}
3633
3634/**
617ba13b 3635 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3636 * @inode: inode in question
3637 * @depth: depth of the affected branch
617ba13b 3638 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3639 * @chain: place to store the pointers to partial indirect blocks
3640 * @top: place to the (detached) top of branch
3641 *
617ba13b 3642 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3643 *
3644 * When we do truncate() we may have to clean the ends of several
3645 * indirect blocks but leave the blocks themselves alive. Block is
3646 * partially truncated if some data below the new i_size is refered
3647 * from it (and it is on the path to the first completely truncated
3648 * data block, indeed). We have to free the top of that path along
3649 * with everything to the right of the path. Since no allocation
617ba13b 3650 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3651 * finishes, we may safely do the latter, but top of branch may
3652 * require special attention - pageout below the truncation point
3653 * might try to populate it.
3654 *
3655 * We atomically detach the top of branch from the tree, store the
3656 * block number of its root in *@top, pointers to buffer_heads of
3657 * partially truncated blocks - in @chain[].bh and pointers to
3658 * their last elements that should not be removed - in
3659 * @chain[].p. Return value is the pointer to last filled element
3660 * of @chain.
3661 *
3662 * The work left to caller to do the actual freeing of subtrees:
3663 * a) free the subtree starting from *@top
3664 * b) free the subtrees whose roots are stored in
3665 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3666 * c) free the subtrees growing from the inode past the @chain[0].
3667 * (no partially truncated stuff there). */
3668
617ba13b 3669static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3670 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3671{
3672 Indirect *partial, *p;
3673 int k, err;
3674
3675 *top = 0;
3676 /* Make k index the deepest non-null offest + 1 */
3677 for (k = depth; k > 1 && !offsets[k-1]; k--)
3678 ;
617ba13b 3679 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3680 /* Writer: pointers */
3681 if (!partial)
3682 partial = chain + k-1;
3683 /*
3684 * If the branch acquired continuation since we've looked at it -
3685 * fine, it should all survive and (new) top doesn't belong to us.
3686 */
3687 if (!partial->key && *partial->p)
3688 /* Writer: end */
3689 goto no_top;
af5bc92d 3690 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3691 ;
3692 /*
3693 * OK, we've found the last block that must survive. The rest of our
3694 * branch should be detached before unlocking. However, if that rest
3695 * of branch is all ours and does not grow immediately from the inode
3696 * it's easier to cheat and just decrement partial->p.
3697 */
3698 if (p == chain + k - 1 && p > chain) {
3699 p->p--;
3700 } else {
3701 *top = *p->p;
617ba13b 3702 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3703#if 0
3704 *p->p = 0;
3705#endif
3706 }
3707 /* Writer: end */
3708
af5bc92d 3709 while (partial > p) {
ac27a0ec
DK
3710 brelse(partial->bh);
3711 partial--;
3712 }
3713no_top:
3714 return partial;
3715}
3716
3717/*
3718 * Zero a number of block pointers in either an inode or an indirect block.
3719 * If we restart the transaction we must again get write access to the
3720 * indirect block for further modification.
3721 *
3722 * We release `count' blocks on disk, but (last - first) may be greater
3723 * than `count' because there can be holes in there.
3724 */
617ba13b
MC
3725static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3726 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3727 unsigned long count, __le32 *first, __le32 *last)
3728{
3729 __le32 *p;
3730 if (try_to_extend_transaction(handle, inode)) {
3731 if (bh) {
0390131b
FM
3732 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3733 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3734 }
617ba13b
MC
3735 ext4_mark_inode_dirty(handle, inode);
3736 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3737 if (bh) {
3738 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3739 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3740 }
3741 }
3742
3743 /*
3744 * Any buffers which are on the journal will be in memory. We find
dab291af 3745 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3746 * on them. We've already detached each block from the file, so
dab291af 3747 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3748 *
dab291af 3749 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3750 */
3751 for (p = first; p < last; p++) {
3752 u32 nr = le32_to_cpu(*p);
3753 if (nr) {
1d03ec98 3754 struct buffer_head *tbh;
ac27a0ec
DK
3755
3756 *p = 0;
1d03ec98
AK
3757 tbh = sb_find_get_block(inode->i_sb, nr);
3758 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3759 }
3760 }
3761
c9de560d 3762 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3763}
3764
3765/**
617ba13b 3766 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3767 * @handle: handle for this transaction
3768 * @inode: inode we are dealing with
3769 * @this_bh: indirect buffer_head which contains *@first and *@last
3770 * @first: array of block numbers
3771 * @last: points immediately past the end of array
3772 *
3773 * We are freeing all blocks refered from that array (numbers are stored as
3774 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3775 *
3776 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3777 * blocks are contiguous then releasing them at one time will only affect one
3778 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3779 * actually use a lot of journal space.
3780 *
3781 * @this_bh will be %NULL if @first and @last point into the inode's direct
3782 * block pointers.
3783 */
617ba13b 3784static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3785 struct buffer_head *this_bh,
3786 __le32 *first, __le32 *last)
3787{
617ba13b 3788 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3789 unsigned long count = 0; /* Number of blocks in the run */
3790 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3791 corresponding to
3792 block_to_free */
617ba13b 3793 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3794 __le32 *p; /* Pointer into inode/ind
3795 for current block */
3796 int err;
3797
3798 if (this_bh) { /* For indirect block */
3799 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3800 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3801 /* Important: if we can't update the indirect pointers
3802 * to the blocks, we can't free them. */
3803 if (err)
3804 return;
3805 }
3806
3807 for (p = first; p < last; p++) {
3808 nr = le32_to_cpu(*p);
3809 if (nr) {
3810 /* accumulate blocks to free if they're contiguous */
3811 if (count == 0) {
3812 block_to_free = nr;
3813 block_to_free_p = p;
3814 count = 1;
3815 } else if (nr == block_to_free + count) {
3816 count++;
3817 } else {
617ba13b 3818 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3819 block_to_free,
3820 count, block_to_free_p, p);
3821 block_to_free = nr;
3822 block_to_free_p = p;
3823 count = 1;
3824 }
3825 }
3826 }
3827
3828 if (count > 0)
617ba13b 3829 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3830 count, block_to_free_p, p);
3831
3832 if (this_bh) {
0390131b 3833 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3834
3835 /*
3836 * The buffer head should have an attached journal head at this
3837 * point. However, if the data is corrupted and an indirect
3838 * block pointed to itself, it would have been detached when
3839 * the block was cleared. Check for this instead of OOPSing.
3840 */
e7f07968 3841 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3842 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3843 else
3844 ext4_error(inode->i_sb, __func__,
3845 "circular indirect block detected, "
3846 "inode=%lu, block=%llu",
3847 inode->i_ino,
3848 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3849 }
3850}
3851
3852/**
617ba13b 3853 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3854 * @handle: JBD handle for this transaction
3855 * @inode: inode we are dealing with
3856 * @parent_bh: the buffer_head which contains *@first and *@last
3857 * @first: array of block numbers
3858 * @last: pointer immediately past the end of array
3859 * @depth: depth of the branches to free
3860 *
3861 * We are freeing all blocks refered from these branches (numbers are
3862 * stored as little-endian 32-bit) and updating @inode->i_blocks
3863 * appropriately.
3864 */
617ba13b 3865static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3866 struct buffer_head *parent_bh,
3867 __le32 *first, __le32 *last, int depth)
3868{
617ba13b 3869 ext4_fsblk_t nr;
ac27a0ec
DK
3870 __le32 *p;
3871
0390131b 3872 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3873 return;
3874
3875 if (depth--) {
3876 struct buffer_head *bh;
617ba13b 3877 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3878 p = last;
3879 while (--p >= first) {
3880 nr = le32_to_cpu(*p);
3881 if (!nr)
3882 continue; /* A hole */
3883
3884 /* Go read the buffer for the next level down */
3885 bh = sb_bread(inode->i_sb, nr);
3886
3887 /*
3888 * A read failure? Report error and clear slot
3889 * (should be rare).
3890 */
3891 if (!bh) {
617ba13b 3892 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3893 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3894 inode->i_ino, nr);
3895 continue;
3896 }
3897
3898 /* This zaps the entire block. Bottom up. */
3899 BUFFER_TRACE(bh, "free child branches");
617ba13b 3900 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3901 (__le32 *) bh->b_data,
3902 (__le32 *) bh->b_data + addr_per_block,
3903 depth);
ac27a0ec
DK
3904
3905 /*
3906 * We've probably journalled the indirect block several
3907 * times during the truncate. But it's no longer
3908 * needed and we now drop it from the transaction via
dab291af 3909 * jbd2_journal_revoke().
ac27a0ec
DK
3910 *
3911 * That's easy if it's exclusively part of this
3912 * transaction. But if it's part of the committing
dab291af 3913 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3914 * brelse() it. That means that if the underlying
617ba13b 3915 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3916 * unmap_underlying_metadata() will find this block
3917 * and will try to get rid of it. damn, damn.
3918 *
3919 * If this block has already been committed to the
3920 * journal, a revoke record will be written. And
3921 * revoke records must be emitted *before* clearing
3922 * this block's bit in the bitmaps.
3923 */
617ba13b 3924 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3925
3926 /*
3927 * Everything below this this pointer has been
3928 * released. Now let this top-of-subtree go.
3929 *
3930 * We want the freeing of this indirect block to be
3931 * atomic in the journal with the updating of the
3932 * bitmap block which owns it. So make some room in
3933 * the journal.
3934 *
3935 * We zero the parent pointer *after* freeing its
3936 * pointee in the bitmaps, so if extend_transaction()
3937 * for some reason fails to put the bitmap changes and
3938 * the release into the same transaction, recovery
3939 * will merely complain about releasing a free block,
3940 * rather than leaking blocks.
3941 */
0390131b 3942 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3943 return;
3944 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3945 ext4_mark_inode_dirty(handle, inode);
3946 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3947 }
3948
c9de560d 3949 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3950
3951 if (parent_bh) {
3952 /*
3953 * The block which we have just freed is
3954 * pointed to by an indirect block: journal it
3955 */
3956 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3957 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3958 parent_bh)){
3959 *p = 0;
3960 BUFFER_TRACE(parent_bh,
0390131b
FM
3961 "call ext4_handle_dirty_metadata");
3962 ext4_handle_dirty_metadata(handle,
3963 inode,
3964 parent_bh);
ac27a0ec
DK
3965 }
3966 }
3967 }
3968 } else {
3969 /* We have reached the bottom of the tree. */
3970 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3971 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3972 }
3973}
3974
91ef4caf
DG
3975int ext4_can_truncate(struct inode *inode)
3976{
3977 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3978 return 0;
3979 if (S_ISREG(inode->i_mode))
3980 return 1;
3981 if (S_ISDIR(inode->i_mode))
3982 return 1;
3983 if (S_ISLNK(inode->i_mode))
3984 return !ext4_inode_is_fast_symlink(inode);
3985 return 0;
3986}
3987
ac27a0ec 3988/*
617ba13b 3989 * ext4_truncate()
ac27a0ec 3990 *
617ba13b
MC
3991 * We block out ext4_get_block() block instantiations across the entire
3992 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3993 * simultaneously on behalf of the same inode.
3994 *
3995 * As we work through the truncate and commmit bits of it to the journal there
3996 * is one core, guiding principle: the file's tree must always be consistent on
3997 * disk. We must be able to restart the truncate after a crash.
3998 *
3999 * The file's tree may be transiently inconsistent in memory (although it
4000 * probably isn't), but whenever we close off and commit a journal transaction,
4001 * the contents of (the filesystem + the journal) must be consistent and
4002 * restartable. It's pretty simple, really: bottom up, right to left (although
4003 * left-to-right works OK too).
4004 *
4005 * Note that at recovery time, journal replay occurs *before* the restart of
4006 * truncate against the orphan inode list.
4007 *
4008 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4009 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4010 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4011 * ext4_truncate() to have another go. So there will be instantiated blocks
4012 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4013 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4014 * ext4_truncate() run will find them and release them.
ac27a0ec 4015 */
617ba13b 4016void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4017{
4018 handle_t *handle;
617ba13b 4019 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4020 __le32 *i_data = ei->i_data;
617ba13b 4021 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4022 struct address_space *mapping = inode->i_mapping;
725d26d3 4023 ext4_lblk_t offsets[4];
ac27a0ec
DK
4024 Indirect chain[4];
4025 Indirect *partial;
4026 __le32 nr = 0;
4027 int n;
725d26d3 4028 ext4_lblk_t last_block;
ac27a0ec 4029 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4030
91ef4caf 4031 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4032 return;
4033
afd4672d 4034 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4035 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4036
1d03ec98 4037 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4038 ext4_ext_truncate(inode);
1d03ec98
AK
4039 return;
4040 }
a86c6181 4041
ac27a0ec 4042 handle = start_transaction(inode);
cf108bca 4043 if (IS_ERR(handle))
ac27a0ec 4044 return; /* AKPM: return what? */
ac27a0ec
DK
4045
4046 last_block = (inode->i_size + blocksize-1)
617ba13b 4047 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4048
cf108bca
JK
4049 if (inode->i_size & (blocksize - 1))
4050 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4051 goto out_stop;
ac27a0ec 4052
617ba13b 4053 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4054 if (n == 0)
4055 goto out_stop; /* error */
4056
4057 /*
4058 * OK. This truncate is going to happen. We add the inode to the
4059 * orphan list, so that if this truncate spans multiple transactions,
4060 * and we crash, we will resume the truncate when the filesystem
4061 * recovers. It also marks the inode dirty, to catch the new size.
4062 *
4063 * Implication: the file must always be in a sane, consistent
4064 * truncatable state while each transaction commits.
4065 */
617ba13b 4066 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4067 goto out_stop;
4068
632eaeab
MC
4069 /*
4070 * From here we block out all ext4_get_block() callers who want to
4071 * modify the block allocation tree.
4072 */
4073 down_write(&ei->i_data_sem);
b4df2030 4074
c2ea3fde 4075 ext4_discard_preallocations(inode);
b4df2030 4076
ac27a0ec
DK
4077 /*
4078 * The orphan list entry will now protect us from any crash which
4079 * occurs before the truncate completes, so it is now safe to propagate
4080 * the new, shorter inode size (held for now in i_size) into the
4081 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4082 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4083 */
4084 ei->i_disksize = inode->i_size;
4085
ac27a0ec 4086 if (n == 1) { /* direct blocks */
617ba13b
MC
4087 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4088 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4089 goto do_indirects;
4090 }
4091
617ba13b 4092 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4093 /* Kill the top of shared branch (not detached) */
4094 if (nr) {
4095 if (partial == chain) {
4096 /* Shared branch grows from the inode */
617ba13b 4097 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4098 &nr, &nr+1, (chain+n-1) - partial);
4099 *partial->p = 0;
4100 /*
4101 * We mark the inode dirty prior to restart,
4102 * and prior to stop. No need for it here.
4103 */
4104 } else {
4105 /* Shared branch grows from an indirect block */
4106 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4107 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4108 partial->p,
4109 partial->p+1, (chain+n-1) - partial);
4110 }
4111 }
4112 /* Clear the ends of indirect blocks on the shared branch */
4113 while (partial > chain) {
617ba13b 4114 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4115 (__le32*)partial->bh->b_data+addr_per_block,
4116 (chain+n-1) - partial);
4117 BUFFER_TRACE(partial->bh, "call brelse");
4118 brelse (partial->bh);
4119 partial--;
4120 }
4121do_indirects:
4122 /* Kill the remaining (whole) subtrees */
4123 switch (offsets[0]) {
4124 default:
617ba13b 4125 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4126 if (nr) {
617ba13b
MC
4127 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4128 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4129 }
617ba13b
MC
4130 case EXT4_IND_BLOCK:
4131 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4132 if (nr) {
617ba13b
MC
4133 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4134 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4135 }
617ba13b
MC
4136 case EXT4_DIND_BLOCK:
4137 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4138 if (nr) {
617ba13b
MC
4139 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4140 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4141 }
617ba13b 4142 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4143 ;
4144 }
4145
0e855ac8 4146 up_write(&ei->i_data_sem);
ef7f3835 4147 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4148 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4149
4150 /*
4151 * In a multi-transaction truncate, we only make the final transaction
4152 * synchronous
4153 */
4154 if (IS_SYNC(inode))
0390131b 4155 ext4_handle_sync(handle);
ac27a0ec
DK
4156out_stop:
4157 /*
4158 * If this was a simple ftruncate(), and the file will remain alive
4159 * then we need to clear up the orphan record which we created above.
4160 * However, if this was a real unlink then we were called by
617ba13b 4161 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4162 * orphan info for us.
4163 */
4164 if (inode->i_nlink)
617ba13b 4165 ext4_orphan_del(handle, inode);
ac27a0ec 4166
617ba13b 4167 ext4_journal_stop(handle);
ac27a0ec
DK
4168}
4169
ac27a0ec 4170/*
617ba13b 4171 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4172 * underlying buffer_head on success. If 'in_mem' is true, we have all
4173 * data in memory that is needed to recreate the on-disk version of this
4174 * inode.
4175 */
617ba13b
MC
4176static int __ext4_get_inode_loc(struct inode *inode,
4177 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4178{
240799cd
TT
4179 struct ext4_group_desc *gdp;
4180 struct buffer_head *bh;
4181 struct super_block *sb = inode->i_sb;
4182 ext4_fsblk_t block;
4183 int inodes_per_block, inode_offset;
4184
3a06d778 4185 iloc->bh = NULL;
240799cd
TT
4186 if (!ext4_valid_inum(sb, inode->i_ino))
4187 return -EIO;
ac27a0ec 4188
240799cd
TT
4189 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4190 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4191 if (!gdp)
ac27a0ec
DK
4192 return -EIO;
4193
240799cd
TT
4194 /*
4195 * Figure out the offset within the block group inode table
4196 */
4197 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4198 inode_offset = ((inode->i_ino - 1) %
4199 EXT4_INODES_PER_GROUP(sb));
4200 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4201 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4202
4203 bh = sb_getblk(sb, block);
ac27a0ec 4204 if (!bh) {
240799cd
TT
4205 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4206 "inode block - inode=%lu, block=%llu",
4207 inode->i_ino, block);
ac27a0ec
DK
4208 return -EIO;
4209 }
4210 if (!buffer_uptodate(bh)) {
4211 lock_buffer(bh);
9c83a923
HK
4212
4213 /*
4214 * If the buffer has the write error flag, we have failed
4215 * to write out another inode in the same block. In this
4216 * case, we don't have to read the block because we may
4217 * read the old inode data successfully.
4218 */
4219 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4220 set_buffer_uptodate(bh);
4221
ac27a0ec
DK
4222 if (buffer_uptodate(bh)) {
4223 /* someone brought it uptodate while we waited */
4224 unlock_buffer(bh);
4225 goto has_buffer;
4226 }
4227
4228 /*
4229 * If we have all information of the inode in memory and this
4230 * is the only valid inode in the block, we need not read the
4231 * block.
4232 */
4233 if (in_mem) {
4234 struct buffer_head *bitmap_bh;
240799cd 4235 int i, start;
ac27a0ec 4236
240799cd 4237 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4238
240799cd
TT
4239 /* Is the inode bitmap in cache? */
4240 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4241 if (!bitmap_bh)
4242 goto make_io;
4243
4244 /*
4245 * If the inode bitmap isn't in cache then the
4246 * optimisation may end up performing two reads instead
4247 * of one, so skip it.
4248 */
4249 if (!buffer_uptodate(bitmap_bh)) {
4250 brelse(bitmap_bh);
4251 goto make_io;
4252 }
240799cd 4253 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4254 if (i == inode_offset)
4255 continue;
617ba13b 4256 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4257 break;
4258 }
4259 brelse(bitmap_bh);
240799cd 4260 if (i == start + inodes_per_block) {
ac27a0ec
DK
4261 /* all other inodes are free, so skip I/O */
4262 memset(bh->b_data, 0, bh->b_size);
4263 set_buffer_uptodate(bh);
4264 unlock_buffer(bh);
4265 goto has_buffer;
4266 }
4267 }
4268
4269make_io:
240799cd
TT
4270 /*
4271 * If we need to do any I/O, try to pre-readahead extra
4272 * blocks from the inode table.
4273 */
4274 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4275 ext4_fsblk_t b, end, table;
4276 unsigned num;
4277
4278 table = ext4_inode_table(sb, gdp);
b713a5ec 4279 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4280 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4281 if (table > b)
4282 b = table;
4283 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4284 num = EXT4_INODES_PER_GROUP(sb);
4285 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4286 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4287 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4288 table += num / inodes_per_block;
4289 if (end > table)
4290 end = table;
4291 while (b <= end)
4292 sb_breadahead(sb, b++);
4293 }
4294
ac27a0ec
DK
4295 /*
4296 * There are other valid inodes in the buffer, this inode
4297 * has in-inode xattrs, or we don't have this inode in memory.
4298 * Read the block from disk.
4299 */
4300 get_bh(bh);
4301 bh->b_end_io = end_buffer_read_sync;
4302 submit_bh(READ_META, bh);
4303 wait_on_buffer(bh);
4304 if (!buffer_uptodate(bh)) {
240799cd
TT
4305 ext4_error(sb, __func__,
4306 "unable to read inode block - inode=%lu, "
4307 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4308 brelse(bh);
4309 return -EIO;
4310 }
4311 }
4312has_buffer:
4313 iloc->bh = bh;
4314 return 0;
4315}
4316
617ba13b 4317int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4318{
4319 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4320 return __ext4_get_inode_loc(inode, iloc,
4321 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4322}
4323
617ba13b 4324void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4325{
617ba13b 4326 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4327
4328 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4329 if (flags & EXT4_SYNC_FL)
ac27a0ec 4330 inode->i_flags |= S_SYNC;
617ba13b 4331 if (flags & EXT4_APPEND_FL)
ac27a0ec 4332 inode->i_flags |= S_APPEND;
617ba13b 4333 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4334 inode->i_flags |= S_IMMUTABLE;
617ba13b 4335 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4336 inode->i_flags |= S_NOATIME;
617ba13b 4337 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4338 inode->i_flags |= S_DIRSYNC;
4339}
4340
ff9ddf7e
JK
4341/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4342void ext4_get_inode_flags(struct ext4_inode_info *ei)
4343{
4344 unsigned int flags = ei->vfs_inode.i_flags;
4345
4346 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4347 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4348 if (flags & S_SYNC)
4349 ei->i_flags |= EXT4_SYNC_FL;
4350 if (flags & S_APPEND)
4351 ei->i_flags |= EXT4_APPEND_FL;
4352 if (flags & S_IMMUTABLE)
4353 ei->i_flags |= EXT4_IMMUTABLE_FL;
4354 if (flags & S_NOATIME)
4355 ei->i_flags |= EXT4_NOATIME_FL;
4356 if (flags & S_DIRSYNC)
4357 ei->i_flags |= EXT4_DIRSYNC_FL;
4358}
0fc1b451
AK
4359static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4360 struct ext4_inode_info *ei)
4361{
4362 blkcnt_t i_blocks ;
8180a562
AK
4363 struct inode *inode = &(ei->vfs_inode);
4364 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4365
4366 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4367 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4368 /* we are using combined 48 bit field */
4369 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4370 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4371 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4372 /* i_blocks represent file system block size */
4373 return i_blocks << (inode->i_blkbits - 9);
4374 } else {
4375 return i_blocks;
4376 }
0fc1b451
AK
4377 } else {
4378 return le32_to_cpu(raw_inode->i_blocks_lo);
4379 }
4380}
ff9ddf7e 4381
1d1fe1ee 4382struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4383{
617ba13b
MC
4384 struct ext4_iloc iloc;
4385 struct ext4_inode *raw_inode;
1d1fe1ee 4386 struct ext4_inode_info *ei;
ac27a0ec 4387 struct buffer_head *bh;
1d1fe1ee
DH
4388 struct inode *inode;
4389 long ret;
ac27a0ec
DK
4390 int block;
4391
1d1fe1ee
DH
4392 inode = iget_locked(sb, ino);
4393 if (!inode)
4394 return ERR_PTR(-ENOMEM);
4395 if (!(inode->i_state & I_NEW))
4396 return inode;
4397
4398 ei = EXT4_I(inode);
03010a33 4399#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4400 ei->i_acl = EXT4_ACL_NOT_CACHED;
4401 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4402#endif
ac27a0ec 4403
1d1fe1ee
DH
4404 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4405 if (ret < 0)
ac27a0ec
DK
4406 goto bad_inode;
4407 bh = iloc.bh;
617ba13b 4408 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4409 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4410 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4411 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4412 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4413 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4414 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4415 }
4416 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4417
4418 ei->i_state = 0;
4419 ei->i_dir_start_lookup = 0;
4420 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4421 /* We now have enough fields to check if the inode was active or not.
4422 * This is needed because nfsd might try to access dead inodes
4423 * the test is that same one that e2fsck uses
4424 * NeilBrown 1999oct15
4425 */
4426 if (inode->i_nlink == 0) {
4427 if (inode->i_mode == 0 ||
617ba13b 4428 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4429 /* this inode is deleted */
af5bc92d 4430 brelse(bh);
1d1fe1ee 4431 ret = -ESTALE;
ac27a0ec
DK
4432 goto bad_inode;
4433 }
4434 /* The only unlinked inodes we let through here have
4435 * valid i_mode and are being read by the orphan
4436 * recovery code: that's fine, we're about to complete
4437 * the process of deleting those. */
4438 }
ac27a0ec 4439 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4440 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4441 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4442 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4443 ei->i_file_acl |=
4444 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4445 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4446 ei->i_disksize = inode->i_size;
4447 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4448 ei->i_block_group = iloc.block_group;
a4912123 4449 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4450 /*
4451 * NOTE! The in-memory inode i_data array is in little-endian order
4452 * even on big-endian machines: we do NOT byteswap the block numbers!
4453 */
617ba13b 4454 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4455 ei->i_data[block] = raw_inode->i_block[block];
4456 INIT_LIST_HEAD(&ei->i_orphan);
4457
0040d987 4458 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4459 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4460 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4461 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4462 brelse(bh);
1d1fe1ee 4463 ret = -EIO;
ac27a0ec 4464 goto bad_inode;
e5d2861f 4465 }
ac27a0ec
DK
4466 if (ei->i_extra_isize == 0) {
4467 /* The extra space is currently unused. Use it. */
617ba13b
MC
4468 ei->i_extra_isize = sizeof(struct ext4_inode) -
4469 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4470 } else {
4471 __le32 *magic = (void *)raw_inode +
617ba13b 4472 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4473 ei->i_extra_isize;
617ba13b
MC
4474 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4475 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4476 }
4477 } else
4478 ei->i_extra_isize = 0;
4479
ef7f3835
KS
4480 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4481 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4482 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4483 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4484
25ec56b5
JNC
4485 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4486 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4487 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4488 inode->i_version |=
4489 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4490 }
4491
c4b5a614 4492 ret = 0;
485c26ec
TT
4493 if (ei->i_file_acl &&
4494 ((ei->i_file_acl <
4495 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4496 EXT4_SB(sb)->s_gdb_count)) ||
4497 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4498 ext4_error(sb, __func__,
4499 "bad extended attribute block %llu in inode #%lu",
4500 ei->i_file_acl, inode->i_ino);
4501 ret = -EIO;
4502 goto bad_inode;
4503 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4504 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4505 (S_ISLNK(inode->i_mode) &&
4506 !ext4_inode_is_fast_symlink(inode)))
4507 /* Validate extent which is part of inode */
4508 ret = ext4_ext_check_inode(inode);
fe2c8191
TN
4509 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4510 (S_ISLNK(inode->i_mode) &&
4511 !ext4_inode_is_fast_symlink(inode))) {
4512 /* Validate block references which are part of inode */
4513 ret = ext4_check_inode_blockref(inode);
4514 }
4515 if (ret) {
4516 brelse(bh);
4517 goto bad_inode;
7a262f7c
AK
4518 }
4519
ac27a0ec 4520 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4521 inode->i_op = &ext4_file_inode_operations;
4522 inode->i_fop = &ext4_file_operations;
4523 ext4_set_aops(inode);
ac27a0ec 4524 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4525 inode->i_op = &ext4_dir_inode_operations;
4526 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4527 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4528 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4529 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4530 nd_terminate_link(ei->i_data, inode->i_size,
4531 sizeof(ei->i_data) - 1);
4532 } else {
617ba13b
MC
4533 inode->i_op = &ext4_symlink_inode_operations;
4534 ext4_set_aops(inode);
ac27a0ec 4535 }
563bdd61
TT
4536 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4537 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4538 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4539 if (raw_inode->i_block[0])
4540 init_special_inode(inode, inode->i_mode,
4541 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4542 else
4543 init_special_inode(inode, inode->i_mode,
4544 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4545 } else {
4546 brelse(bh);
4547 ret = -EIO;
4548 ext4_error(inode->i_sb, __func__,
4549 "bogus i_mode (%o) for inode=%lu",
4550 inode->i_mode, inode->i_ino);
4551 goto bad_inode;
ac27a0ec 4552 }
af5bc92d 4553 brelse(iloc.bh);
617ba13b 4554 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4555 unlock_new_inode(inode);
4556 return inode;
ac27a0ec
DK
4557
4558bad_inode:
1d1fe1ee
DH
4559 iget_failed(inode);
4560 return ERR_PTR(ret);
ac27a0ec
DK
4561}
4562
0fc1b451
AK
4563static int ext4_inode_blocks_set(handle_t *handle,
4564 struct ext4_inode *raw_inode,
4565 struct ext4_inode_info *ei)
4566{
4567 struct inode *inode = &(ei->vfs_inode);
4568 u64 i_blocks = inode->i_blocks;
4569 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4570
4571 if (i_blocks <= ~0U) {
4572 /*
4573 * i_blocks can be represnted in a 32 bit variable
4574 * as multiple of 512 bytes
4575 */
8180a562 4576 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4577 raw_inode->i_blocks_high = 0;
8180a562 4578 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4579 return 0;
4580 }
4581 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4582 return -EFBIG;
4583
4584 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4585 /*
4586 * i_blocks can be represented in a 48 bit variable
4587 * as multiple of 512 bytes
4588 */
8180a562 4589 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4590 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4591 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4592 } else {
8180a562
AK
4593 ei->i_flags |= EXT4_HUGE_FILE_FL;
4594 /* i_block is stored in file system block size */
4595 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4596 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4597 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4598 }
f287a1a5 4599 return 0;
0fc1b451
AK
4600}
4601
ac27a0ec
DK
4602/*
4603 * Post the struct inode info into an on-disk inode location in the
4604 * buffer-cache. This gobbles the caller's reference to the
4605 * buffer_head in the inode location struct.
4606 *
4607 * The caller must have write access to iloc->bh.
4608 */
617ba13b 4609static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4610 struct inode *inode,
617ba13b 4611 struct ext4_iloc *iloc)
ac27a0ec 4612{
617ba13b
MC
4613 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4614 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4615 struct buffer_head *bh = iloc->bh;
4616 int err = 0, rc, block;
4617
4618 /* For fields not not tracking in the in-memory inode,
4619 * initialise them to zero for new inodes. */
617ba13b
MC
4620 if (ei->i_state & EXT4_STATE_NEW)
4621 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4622
ff9ddf7e 4623 ext4_get_inode_flags(ei);
ac27a0ec 4624 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4625 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4626 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4627 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4628/*
4629 * Fix up interoperability with old kernels. Otherwise, old inodes get
4630 * re-used with the upper 16 bits of the uid/gid intact
4631 */
af5bc92d 4632 if (!ei->i_dtime) {
ac27a0ec
DK
4633 raw_inode->i_uid_high =
4634 cpu_to_le16(high_16_bits(inode->i_uid));
4635 raw_inode->i_gid_high =
4636 cpu_to_le16(high_16_bits(inode->i_gid));
4637 } else {
4638 raw_inode->i_uid_high = 0;
4639 raw_inode->i_gid_high = 0;
4640 }
4641 } else {
4642 raw_inode->i_uid_low =
4643 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4644 raw_inode->i_gid_low =
4645 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4646 raw_inode->i_uid_high = 0;
4647 raw_inode->i_gid_high = 0;
4648 }
4649 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4650
4651 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4652 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4653 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4654 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4655
0fc1b451
AK
4656 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4657 goto out_brelse;
ac27a0ec 4658 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4659 /* clear the migrate flag in the raw_inode */
4660 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4661 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4662 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4663 raw_inode->i_file_acl_high =
4664 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4665 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4666 ext4_isize_set(raw_inode, ei->i_disksize);
4667 if (ei->i_disksize > 0x7fffffffULL) {
4668 struct super_block *sb = inode->i_sb;
4669 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4670 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4671 EXT4_SB(sb)->s_es->s_rev_level ==
4672 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4673 /* If this is the first large file
4674 * created, add a flag to the superblock.
4675 */
4676 err = ext4_journal_get_write_access(handle,
4677 EXT4_SB(sb)->s_sbh);
4678 if (err)
4679 goto out_brelse;
4680 ext4_update_dynamic_rev(sb);
4681 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4682 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4683 sb->s_dirt = 1;
0390131b
FM
4684 ext4_handle_sync(handle);
4685 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4686 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4687 }
4688 }
4689 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4690 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4691 if (old_valid_dev(inode->i_rdev)) {
4692 raw_inode->i_block[0] =
4693 cpu_to_le32(old_encode_dev(inode->i_rdev));
4694 raw_inode->i_block[1] = 0;
4695 } else {
4696 raw_inode->i_block[0] = 0;
4697 raw_inode->i_block[1] =
4698 cpu_to_le32(new_encode_dev(inode->i_rdev));
4699 raw_inode->i_block[2] = 0;
4700 }
617ba13b 4701 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4702 raw_inode->i_block[block] = ei->i_data[block];
4703
25ec56b5
JNC
4704 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4705 if (ei->i_extra_isize) {
4706 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4707 raw_inode->i_version_hi =
4708 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4709 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4710 }
4711
0390131b
FM
4712 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4713 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4714 if (!err)
4715 err = rc;
617ba13b 4716 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4717
4718out_brelse:
af5bc92d 4719 brelse(bh);
617ba13b 4720 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4721 return err;
4722}
4723
4724/*
617ba13b 4725 * ext4_write_inode()
ac27a0ec
DK
4726 *
4727 * We are called from a few places:
4728 *
4729 * - Within generic_file_write() for O_SYNC files.
4730 * Here, there will be no transaction running. We wait for any running
4731 * trasnaction to commit.
4732 *
4733 * - Within sys_sync(), kupdate and such.
4734 * We wait on commit, if tol to.
4735 *
4736 * - Within prune_icache() (PF_MEMALLOC == true)
4737 * Here we simply return. We can't afford to block kswapd on the
4738 * journal commit.
4739 *
4740 * In all cases it is actually safe for us to return without doing anything,
4741 * because the inode has been copied into a raw inode buffer in
617ba13b 4742 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4743 * knfsd.
4744 *
4745 * Note that we are absolutely dependent upon all inode dirtiers doing the
4746 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4747 * which we are interested.
4748 *
4749 * It would be a bug for them to not do this. The code:
4750 *
4751 * mark_inode_dirty(inode)
4752 * stuff();
4753 * inode->i_size = expr;
4754 *
4755 * is in error because a kswapd-driven write_inode() could occur while
4756 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4757 * will no longer be on the superblock's dirty inode list.
4758 */
617ba13b 4759int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4760{
4761 if (current->flags & PF_MEMALLOC)
4762 return 0;
4763
617ba13b 4764 if (ext4_journal_current_handle()) {
b38bd33a 4765 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4766 dump_stack();
4767 return -EIO;
4768 }
4769
4770 if (!wait)
4771 return 0;
4772
617ba13b 4773 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4774}
4775
4776/*
617ba13b 4777 * ext4_setattr()
ac27a0ec
DK
4778 *
4779 * Called from notify_change.
4780 *
4781 * We want to trap VFS attempts to truncate the file as soon as
4782 * possible. In particular, we want to make sure that when the VFS
4783 * shrinks i_size, we put the inode on the orphan list and modify
4784 * i_disksize immediately, so that during the subsequent flushing of
4785 * dirty pages and freeing of disk blocks, we can guarantee that any
4786 * commit will leave the blocks being flushed in an unused state on
4787 * disk. (On recovery, the inode will get truncated and the blocks will
4788 * be freed, so we have a strong guarantee that no future commit will
4789 * leave these blocks visible to the user.)
4790 *
678aaf48
JK
4791 * Another thing we have to assure is that if we are in ordered mode
4792 * and inode is still attached to the committing transaction, we must
4793 * we start writeout of all the dirty pages which are being truncated.
4794 * This way we are sure that all the data written in the previous
4795 * transaction are already on disk (truncate waits for pages under
4796 * writeback).
4797 *
4798 * Called with inode->i_mutex down.
ac27a0ec 4799 */
617ba13b 4800int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4801{
4802 struct inode *inode = dentry->d_inode;
4803 int error, rc = 0;
4804 const unsigned int ia_valid = attr->ia_valid;
4805
4806 error = inode_change_ok(inode, attr);
4807 if (error)
4808 return error;
4809
4810 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4811 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4812 handle_t *handle;
4813
4814 /* (user+group)*(old+new) structure, inode write (sb,
4815 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4816 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4817 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4818 if (IS_ERR(handle)) {
4819 error = PTR_ERR(handle);
4820 goto err_out;
4821 }
a269eb18 4822 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4823 if (error) {
617ba13b 4824 ext4_journal_stop(handle);
ac27a0ec
DK
4825 return error;
4826 }
4827 /* Update corresponding info in inode so that everything is in
4828 * one transaction */
4829 if (attr->ia_valid & ATTR_UID)
4830 inode->i_uid = attr->ia_uid;
4831 if (attr->ia_valid & ATTR_GID)
4832 inode->i_gid = attr->ia_gid;
617ba13b
MC
4833 error = ext4_mark_inode_dirty(handle, inode);
4834 ext4_journal_stop(handle);
ac27a0ec
DK
4835 }
4836
e2b46574
ES
4837 if (attr->ia_valid & ATTR_SIZE) {
4838 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4839 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4840
4841 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4842 error = -EFBIG;
4843 goto err_out;
4844 }
4845 }
4846 }
4847
ac27a0ec
DK
4848 if (S_ISREG(inode->i_mode) &&
4849 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4850 handle_t *handle;
4851
617ba13b 4852 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4853 if (IS_ERR(handle)) {
4854 error = PTR_ERR(handle);
4855 goto err_out;
4856 }
4857
617ba13b
MC
4858 error = ext4_orphan_add(handle, inode);
4859 EXT4_I(inode)->i_disksize = attr->ia_size;
4860 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4861 if (!error)
4862 error = rc;
617ba13b 4863 ext4_journal_stop(handle);
678aaf48
JK
4864
4865 if (ext4_should_order_data(inode)) {
4866 error = ext4_begin_ordered_truncate(inode,
4867 attr->ia_size);
4868 if (error) {
4869 /* Do as much error cleanup as possible */
4870 handle = ext4_journal_start(inode, 3);
4871 if (IS_ERR(handle)) {
4872 ext4_orphan_del(NULL, inode);
4873 goto err_out;
4874 }
4875 ext4_orphan_del(handle, inode);
4876 ext4_journal_stop(handle);
4877 goto err_out;
4878 }
4879 }
ac27a0ec
DK
4880 }
4881
4882 rc = inode_setattr(inode, attr);
4883
617ba13b 4884 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4885 * transaction handle at all, we need to clean up the in-core
4886 * orphan list manually. */
4887 if (inode->i_nlink)
617ba13b 4888 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4889
4890 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4891 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4892
4893err_out:
617ba13b 4894 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4895 if (!error)
4896 error = rc;
4897 return error;
4898}
4899
3e3398a0
MC
4900int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4901 struct kstat *stat)
4902{
4903 struct inode *inode;
4904 unsigned long delalloc_blocks;
4905
4906 inode = dentry->d_inode;
4907 generic_fillattr(inode, stat);
4908
4909 /*
4910 * We can't update i_blocks if the block allocation is delayed
4911 * otherwise in the case of system crash before the real block
4912 * allocation is done, we will have i_blocks inconsistent with
4913 * on-disk file blocks.
4914 * We always keep i_blocks updated together with real
4915 * allocation. But to not confuse with user, stat
4916 * will return the blocks that include the delayed allocation
4917 * blocks for this file.
4918 */
4919 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4920 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4921 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4922
4923 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4924 return 0;
4925}
ac27a0ec 4926
a02908f1
MC
4927static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4928 int chunk)
4929{
4930 int indirects;
4931
4932 /* if nrblocks are contiguous */
4933 if (chunk) {
4934 /*
4935 * With N contiguous data blocks, it need at most
4936 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4937 * 2 dindirect blocks
4938 * 1 tindirect block
4939 */
4940 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4941 return indirects + 3;
4942 }
4943 /*
4944 * if nrblocks are not contiguous, worse case, each block touch
4945 * a indirect block, and each indirect block touch a double indirect
4946 * block, plus a triple indirect block
4947 */
4948 indirects = nrblocks * 2 + 1;
4949 return indirects;
4950}
4951
4952static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4953{
4954 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4955 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4956 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4957}
ac51d837 4958
ac27a0ec 4959/*
a02908f1
MC
4960 * Account for index blocks, block groups bitmaps and block group
4961 * descriptor blocks if modify datablocks and index blocks
4962 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4963 *
a02908f1
MC
4964 * If datablocks are discontiguous, they are possible to spread over
4965 * different block groups too. If they are contiugous, with flexbg,
4966 * they could still across block group boundary.
ac27a0ec 4967 *
a02908f1
MC
4968 * Also account for superblock, inode, quota and xattr blocks
4969 */
4970int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4971{
8df9675f
TT
4972 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4973 int gdpblocks;
a02908f1
MC
4974 int idxblocks;
4975 int ret = 0;
4976
4977 /*
4978 * How many index blocks need to touch to modify nrblocks?
4979 * The "Chunk" flag indicating whether the nrblocks is
4980 * physically contiguous on disk
4981 *
4982 * For Direct IO and fallocate, they calls get_block to allocate
4983 * one single extent at a time, so they could set the "Chunk" flag
4984 */
4985 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4986
4987 ret = idxblocks;
4988
4989 /*
4990 * Now let's see how many group bitmaps and group descriptors need
4991 * to account
4992 */
4993 groups = idxblocks;
4994 if (chunk)
4995 groups += 1;
4996 else
4997 groups += nrblocks;
4998
4999 gdpblocks = groups;
8df9675f
TT
5000 if (groups > ngroups)
5001 groups = ngroups;
a02908f1
MC
5002 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5003 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5004
5005 /* bitmaps and block group descriptor blocks */
5006 ret += groups + gdpblocks;
5007
5008 /* Blocks for super block, inode, quota and xattr blocks */
5009 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5010
5011 return ret;
5012}
5013
5014/*
5015 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5016 * the modification of a single pages into a single transaction,
5017 * which may include multiple chunks of block allocations.
ac27a0ec 5018 *
525f4ed8 5019 * This could be called via ext4_write_begin()
ac27a0ec 5020 *
525f4ed8 5021 * We need to consider the worse case, when
a02908f1 5022 * one new block per extent.
ac27a0ec 5023 */
a86c6181 5024int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5025{
617ba13b 5026 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5027 int ret;
5028
a02908f1 5029 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5030
a02908f1 5031 /* Account for data blocks for journalled mode */
617ba13b 5032 if (ext4_should_journal_data(inode))
a02908f1 5033 ret += bpp;
ac27a0ec
DK
5034 return ret;
5035}
f3bd1f3f
MC
5036
5037/*
5038 * Calculate the journal credits for a chunk of data modification.
5039 *
5040 * This is called from DIO, fallocate or whoever calling
12b7ac17 5041 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5042 *
5043 * journal buffers for data blocks are not included here, as DIO
5044 * and fallocate do no need to journal data buffers.
5045 */
5046int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5047{
5048 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5049}
5050
ac27a0ec 5051/*
617ba13b 5052 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5053 * Give this, we know that the caller already has write access to iloc->bh.
5054 */
617ba13b
MC
5055int ext4_mark_iloc_dirty(handle_t *handle,
5056 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5057{
5058 int err = 0;
5059
25ec56b5
JNC
5060 if (test_opt(inode->i_sb, I_VERSION))
5061 inode_inc_iversion(inode);
5062
ac27a0ec
DK
5063 /* the do_update_inode consumes one bh->b_count */
5064 get_bh(iloc->bh);
5065
dab291af 5066 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 5067 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5068 put_bh(iloc->bh);
5069 return err;
5070}
5071
5072/*
5073 * On success, We end up with an outstanding reference count against
5074 * iloc->bh. This _must_ be cleaned up later.
5075 */
5076
5077int
617ba13b
MC
5078ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5079 struct ext4_iloc *iloc)
ac27a0ec 5080{
0390131b
FM
5081 int err;
5082
5083 err = ext4_get_inode_loc(inode, iloc);
5084 if (!err) {
5085 BUFFER_TRACE(iloc->bh, "get_write_access");
5086 err = ext4_journal_get_write_access(handle, iloc->bh);
5087 if (err) {
5088 brelse(iloc->bh);
5089 iloc->bh = NULL;
ac27a0ec
DK
5090 }
5091 }
617ba13b 5092 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5093 return err;
5094}
5095
6dd4ee7c
KS
5096/*
5097 * Expand an inode by new_extra_isize bytes.
5098 * Returns 0 on success or negative error number on failure.
5099 */
1d03ec98
AK
5100static int ext4_expand_extra_isize(struct inode *inode,
5101 unsigned int new_extra_isize,
5102 struct ext4_iloc iloc,
5103 handle_t *handle)
6dd4ee7c
KS
5104{
5105 struct ext4_inode *raw_inode;
5106 struct ext4_xattr_ibody_header *header;
5107 struct ext4_xattr_entry *entry;
5108
5109 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5110 return 0;
5111
5112 raw_inode = ext4_raw_inode(&iloc);
5113
5114 header = IHDR(inode, raw_inode);
5115 entry = IFIRST(header);
5116
5117 /* No extended attributes present */
5118 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5119 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5120 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5121 new_extra_isize);
5122 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5123 return 0;
5124 }
5125
5126 /* try to expand with EAs present */
5127 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5128 raw_inode, handle);
5129}
5130
ac27a0ec
DK
5131/*
5132 * What we do here is to mark the in-core inode as clean with respect to inode
5133 * dirtiness (it may still be data-dirty).
5134 * This means that the in-core inode may be reaped by prune_icache
5135 * without having to perform any I/O. This is a very good thing,
5136 * because *any* task may call prune_icache - even ones which
5137 * have a transaction open against a different journal.
5138 *
5139 * Is this cheating? Not really. Sure, we haven't written the
5140 * inode out, but prune_icache isn't a user-visible syncing function.
5141 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5142 * we start and wait on commits.
5143 *
5144 * Is this efficient/effective? Well, we're being nice to the system
5145 * by cleaning up our inodes proactively so they can be reaped
5146 * without I/O. But we are potentially leaving up to five seconds'
5147 * worth of inodes floating about which prune_icache wants us to
5148 * write out. One way to fix that would be to get prune_icache()
5149 * to do a write_super() to free up some memory. It has the desired
5150 * effect.
5151 */
617ba13b 5152int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5153{
617ba13b 5154 struct ext4_iloc iloc;
6dd4ee7c
KS
5155 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5156 static unsigned int mnt_count;
5157 int err, ret;
ac27a0ec
DK
5158
5159 might_sleep();
617ba13b 5160 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5161 if (ext4_handle_valid(handle) &&
5162 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5163 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5164 /*
5165 * We need extra buffer credits since we may write into EA block
5166 * with this same handle. If journal_extend fails, then it will
5167 * only result in a minor loss of functionality for that inode.
5168 * If this is felt to be critical, then e2fsck should be run to
5169 * force a large enough s_min_extra_isize.
5170 */
5171 if ((jbd2_journal_extend(handle,
5172 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5173 ret = ext4_expand_extra_isize(inode,
5174 sbi->s_want_extra_isize,
5175 iloc, handle);
5176 if (ret) {
5177 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5178 if (mnt_count !=
5179 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5180 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5181 "Unable to expand inode %lu. Delete"
5182 " some EAs or run e2fsck.",
5183 inode->i_ino);
c1bddad9
AK
5184 mnt_count =
5185 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5186 }
5187 }
5188 }
5189 }
ac27a0ec 5190 if (!err)
617ba13b 5191 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5192 return err;
5193}
5194
5195/*
617ba13b 5196 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5197 *
5198 * We're really interested in the case where a file is being extended.
5199 * i_size has been changed by generic_commit_write() and we thus need
5200 * to include the updated inode in the current transaction.
5201 *
a269eb18 5202 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5203 * are allocated to the file.
5204 *
5205 * If the inode is marked synchronous, we don't honour that here - doing
5206 * so would cause a commit on atime updates, which we don't bother doing.
5207 * We handle synchronous inodes at the highest possible level.
5208 */
617ba13b 5209void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5210{
617ba13b 5211 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5212 handle_t *handle;
5213
0390131b
FM
5214 if (!ext4_handle_valid(current_handle)) {
5215 ext4_mark_inode_dirty(current_handle, inode);
5216 return;
5217 }
5218
617ba13b 5219 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5220 if (IS_ERR(handle))
5221 goto out;
5222 if (current_handle &&
5223 current_handle->h_transaction != handle->h_transaction) {
5224 /* This task has a transaction open against a different fs */
5225 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5226 __func__);
ac27a0ec
DK
5227 } else {
5228 jbd_debug(5, "marking dirty. outer handle=%p\n",
5229 current_handle);
617ba13b 5230 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5231 }
617ba13b 5232 ext4_journal_stop(handle);
ac27a0ec
DK
5233out:
5234 return;
5235}
5236
5237#if 0
5238/*
5239 * Bind an inode's backing buffer_head into this transaction, to prevent
5240 * it from being flushed to disk early. Unlike
617ba13b 5241 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5242 * returns no iloc structure, so the caller needs to repeat the iloc
5243 * lookup to mark the inode dirty later.
5244 */
617ba13b 5245static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5246{
617ba13b 5247 struct ext4_iloc iloc;
ac27a0ec
DK
5248
5249 int err = 0;
5250 if (handle) {
617ba13b 5251 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5252 if (!err) {
5253 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5254 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5255 if (!err)
0390131b
FM
5256 err = ext4_handle_dirty_metadata(handle,
5257 inode,
5258 iloc.bh);
ac27a0ec
DK
5259 brelse(iloc.bh);
5260 }
5261 }
617ba13b 5262 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5263 return err;
5264}
5265#endif
5266
617ba13b 5267int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5268{
5269 journal_t *journal;
5270 handle_t *handle;
5271 int err;
5272
5273 /*
5274 * We have to be very careful here: changing a data block's
5275 * journaling status dynamically is dangerous. If we write a
5276 * data block to the journal, change the status and then delete
5277 * that block, we risk forgetting to revoke the old log record
5278 * from the journal and so a subsequent replay can corrupt data.
5279 * So, first we make sure that the journal is empty and that
5280 * nobody is changing anything.
5281 */
5282
617ba13b 5283 journal = EXT4_JOURNAL(inode);
0390131b
FM
5284 if (!journal)
5285 return 0;
d699594d 5286 if (is_journal_aborted(journal))
ac27a0ec
DK
5287 return -EROFS;
5288
dab291af
MC
5289 jbd2_journal_lock_updates(journal);
5290 jbd2_journal_flush(journal);
ac27a0ec
DK
5291
5292 /*
5293 * OK, there are no updates running now, and all cached data is
5294 * synced to disk. We are now in a completely consistent state
5295 * which doesn't have anything in the journal, and we know that
5296 * no filesystem updates are running, so it is safe to modify
5297 * the inode's in-core data-journaling state flag now.
5298 */
5299
5300 if (val)
617ba13b 5301 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5302 else
617ba13b
MC
5303 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5304 ext4_set_aops(inode);
ac27a0ec 5305
dab291af 5306 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5307
5308 /* Finally we can mark the inode as dirty. */
5309
617ba13b 5310 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5311 if (IS_ERR(handle))
5312 return PTR_ERR(handle);
5313
617ba13b 5314 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5315 ext4_handle_sync(handle);
617ba13b
MC
5316 ext4_journal_stop(handle);
5317 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5318
5319 return err;
5320}
2e9ee850
AK
5321
5322static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5323{
5324 return !buffer_mapped(bh);
5325}
5326
c2ec175c 5327int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5328{
c2ec175c 5329 struct page *page = vmf->page;
2e9ee850
AK
5330 loff_t size;
5331 unsigned long len;
5332 int ret = -EINVAL;
79f0be8d 5333 void *fsdata;
2e9ee850
AK
5334 struct file *file = vma->vm_file;
5335 struct inode *inode = file->f_path.dentry->d_inode;
5336 struct address_space *mapping = inode->i_mapping;
5337
5338 /*
5339 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5340 * get i_mutex because we are already holding mmap_sem.
5341 */
5342 down_read(&inode->i_alloc_sem);
5343 size = i_size_read(inode);
5344 if (page->mapping != mapping || size <= page_offset(page)
5345 || !PageUptodate(page)) {
5346 /* page got truncated from under us? */
5347 goto out_unlock;
5348 }
5349 ret = 0;
5350 if (PageMappedToDisk(page))
5351 goto out_unlock;
5352
5353 if (page->index == size >> PAGE_CACHE_SHIFT)
5354 len = size & ~PAGE_CACHE_MASK;
5355 else
5356 len = PAGE_CACHE_SIZE;
5357
5358 if (page_has_buffers(page)) {
5359 /* return if we have all the buffers mapped */
5360 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5361 ext4_bh_unmapped))
5362 goto out_unlock;
5363 }
5364 /*
5365 * OK, we need to fill the hole... Do write_begin write_end
5366 * to do block allocation/reservation.We are not holding
5367 * inode.i__mutex here. That allow * parallel write_begin,
5368 * write_end call. lock_page prevent this from happening
5369 * on the same page though
5370 */
5371 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5372 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5373 if (ret < 0)
5374 goto out_unlock;
5375 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5376 len, len, page, fsdata);
2e9ee850
AK
5377 if (ret < 0)
5378 goto out_unlock;
5379 ret = 0;
5380out_unlock:
c2ec175c
NP
5381 if (ret)
5382 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5383 up_read(&inode->i_alloc_sem);
5384 return ret;
5385}