ext4: call mpage_da_submit_io() from mpage_da_map_blocks()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240 62static void ext4_invalidatepage(struct page *page, unsigned long offset);
5a87b7a5 63static int ext4_writepage(struct page *page, struct writeback_control *wbc);
64769240 64
ac27a0ec
DK
65/*
66 * Test whether an inode is a fast symlink.
67 */
617ba13b 68static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 69{
617ba13b 70 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
71 (inode->i_sb->s_blocksize >> 9) : 0;
72
73 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74}
75
ac27a0ec
DK
76/*
77 * Work out how many blocks we need to proceed with the next chunk of a
78 * truncate transaction.
79 */
80static unsigned long blocks_for_truncate(struct inode *inode)
81{
725d26d3 82 ext4_lblk_t needed;
ac27a0ec
DK
83
84 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
85
86 /* Give ourselves just enough room to cope with inodes in which
87 * i_blocks is corrupt: we've seen disk corruptions in the past
88 * which resulted in random data in an inode which looked enough
617ba13b 89 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
90 * will go a bit crazy if that happens, but at least we should
91 * try not to panic the whole kernel. */
92 if (needed < 2)
93 needed = 2;
94
95 /* But we need to bound the transaction so we don't overflow the
96 * journal. */
617ba13b
MC
97 if (needed > EXT4_MAX_TRANS_DATA)
98 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 99
617ba13b 100 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
101}
102
103/*
104 * Truncate transactions can be complex and absolutely huge. So we need to
105 * be able to restart the transaction at a conventient checkpoint to make
106 * sure we don't overflow the journal.
107 *
108 * start_transaction gets us a new handle for a truncate transaction,
109 * and extend_transaction tries to extend the existing one a bit. If
110 * extend fails, we need to propagate the failure up and restart the
111 * transaction in the top-level truncate loop. --sct
112 */
113static handle_t *start_transaction(struct inode *inode)
114{
115 handle_t *result;
116
617ba13b 117 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
118 if (!IS_ERR(result))
119 return result;
120
617ba13b 121 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
122 return result;
123}
124
125/*
126 * Try to extend this transaction for the purposes of truncation.
127 *
128 * Returns 0 if we managed to create more room. If we can't create more
129 * room, and the transaction must be restarted we return 1.
130 */
131static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
132{
0390131b
FM
133 if (!ext4_handle_valid(handle))
134 return 0;
135 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 136 return 0;
617ba13b 137 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
138 return 0;
139 return 1;
140}
141
142/*
143 * Restart the transaction associated with *handle. This does a commit,
144 * so before we call here everything must be consistently dirtied against
145 * this transaction.
146 */
fa5d1113 147int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 148 int nblocks)
ac27a0ec 149{
487caeef
JK
150 int ret;
151
152 /*
e35fd660 153 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
154 * moment, get_block can be called only for blocks inside i_size since
155 * page cache has been already dropped and writes are blocked by
156 * i_mutex. So we can safely drop the i_data_sem here.
157 */
0390131b 158 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 159 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
160 up_write(&EXT4_I(inode)->i_data_sem);
161 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
162 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 163 ext4_discard_preallocations(inode);
487caeef
JK
164
165 return ret;
ac27a0ec
DK
166}
167
168/*
169 * Called at the last iput() if i_nlink is zero.
170 */
0930fcc1 171void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
172{
173 handle_t *handle;
bc965ab3 174 int err;
ac27a0ec 175
0930fcc1
AV
176 if (inode->i_nlink) {
177 truncate_inode_pages(&inode->i_data, 0);
178 goto no_delete;
179 }
180
907f4554 181 if (!is_bad_inode(inode))
871a2931 182 dquot_initialize(inode);
907f4554 183
678aaf48
JK
184 if (ext4_should_order_data(inode))
185 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
186 truncate_inode_pages(&inode->i_data, 0);
187
188 if (is_bad_inode(inode))
189 goto no_delete;
190
bc965ab3 191 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 192 if (IS_ERR(handle)) {
bc965ab3 193 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
194 /*
195 * If we're going to skip the normal cleanup, we still need to
196 * make sure that the in-core orphan linked list is properly
197 * cleaned up.
198 */
617ba13b 199 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
200 goto no_delete;
201 }
202
203 if (IS_SYNC(inode))
0390131b 204 ext4_handle_sync(handle);
ac27a0ec 205 inode->i_size = 0;
bc965ab3
TT
206 err = ext4_mark_inode_dirty(handle, inode);
207 if (err) {
12062ddd 208 ext4_warning(inode->i_sb,
bc965ab3
TT
209 "couldn't mark inode dirty (err %d)", err);
210 goto stop_handle;
211 }
ac27a0ec 212 if (inode->i_blocks)
617ba13b 213 ext4_truncate(inode);
bc965ab3
TT
214
215 /*
216 * ext4_ext_truncate() doesn't reserve any slop when it
217 * restarts journal transactions; therefore there may not be
218 * enough credits left in the handle to remove the inode from
219 * the orphan list and set the dtime field.
220 */
0390131b 221 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
222 err = ext4_journal_extend(handle, 3);
223 if (err > 0)
224 err = ext4_journal_restart(handle, 3);
225 if (err != 0) {
12062ddd 226 ext4_warning(inode->i_sb,
bc965ab3
TT
227 "couldn't extend journal (err %d)", err);
228 stop_handle:
229 ext4_journal_stop(handle);
45388219 230 ext4_orphan_del(NULL, inode);
bc965ab3
TT
231 goto no_delete;
232 }
233 }
234
ac27a0ec 235 /*
617ba13b 236 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 237 * AKPM: I think this can be inside the above `if'.
617ba13b 238 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 239 * deletion of a non-existent orphan - this is because we don't
617ba13b 240 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
241 * (Well, we could do this if we need to, but heck - it works)
242 */
617ba13b
MC
243 ext4_orphan_del(handle, inode);
244 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
245
246 /*
247 * One subtle ordering requirement: if anything has gone wrong
248 * (transaction abort, IO errors, whatever), then we can still
249 * do these next steps (the fs will already have been marked as
250 * having errors), but we can't free the inode if the mark_dirty
251 * fails.
252 */
617ba13b 253 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 254 /* If that failed, just do the required in-core inode clear. */
0930fcc1 255 ext4_clear_inode(inode);
ac27a0ec 256 else
617ba13b
MC
257 ext4_free_inode(handle, inode);
258 ext4_journal_stop(handle);
ac27a0ec
DK
259 return;
260no_delete:
0930fcc1 261 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
262}
263
264typedef struct {
265 __le32 *p;
266 __le32 key;
267 struct buffer_head *bh;
268} Indirect;
269
270static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
271{
272 p->key = *(p->p = v);
273 p->bh = bh;
274}
275
ac27a0ec 276/**
617ba13b 277 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
278 * @inode: inode in question (we are only interested in its superblock)
279 * @i_block: block number to be parsed
280 * @offsets: array to store the offsets in
8c55e204
DK
281 * @boundary: set this non-zero if the referred-to block is likely to be
282 * followed (on disk) by an indirect block.
ac27a0ec 283 *
617ba13b 284 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
285 * for UNIX filesystems - tree of pointers anchored in the inode, with
286 * data blocks at leaves and indirect blocks in intermediate nodes.
287 * This function translates the block number into path in that tree -
288 * return value is the path length and @offsets[n] is the offset of
289 * pointer to (n+1)th node in the nth one. If @block is out of range
290 * (negative or too large) warning is printed and zero returned.
291 *
292 * Note: function doesn't find node addresses, so no IO is needed. All
293 * we need to know is the capacity of indirect blocks (taken from the
294 * inode->i_sb).
295 */
296
297/*
298 * Portability note: the last comparison (check that we fit into triple
299 * indirect block) is spelled differently, because otherwise on an
300 * architecture with 32-bit longs and 8Kb pages we might get into trouble
301 * if our filesystem had 8Kb blocks. We might use long long, but that would
302 * kill us on x86. Oh, well, at least the sign propagation does not matter -
303 * i_block would have to be negative in the very beginning, so we would not
304 * get there at all.
305 */
306
617ba13b 307static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
308 ext4_lblk_t i_block,
309 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 310{
617ba13b
MC
311 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
312 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
313 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
314 indirect_blocks = ptrs,
315 double_blocks = (1 << (ptrs_bits * 2));
316 int n = 0;
317 int final = 0;
318
c333e073 319 if (i_block < direct_blocks) {
ac27a0ec
DK
320 offsets[n++] = i_block;
321 final = direct_blocks;
af5bc92d 322 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 323 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
324 offsets[n++] = i_block;
325 final = ptrs;
326 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 327 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
328 offsets[n++] = i_block >> ptrs_bits;
329 offsets[n++] = i_block & (ptrs - 1);
330 final = ptrs;
331 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 332 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
333 offsets[n++] = i_block >> (ptrs_bits * 2);
334 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
335 offsets[n++] = i_block & (ptrs - 1);
336 final = ptrs;
337 } else {
12062ddd 338 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
339 i_block + direct_blocks +
340 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
341 }
342 if (boundary)
343 *boundary = final - 1 - (i_block & (ptrs - 1));
344 return n;
345}
346
c398eda0
TT
347static int __ext4_check_blockref(const char *function, unsigned int line,
348 struct inode *inode,
6fd058f7
TT
349 __le32 *p, unsigned int max)
350{
1c13d5c0 351 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 352 __le32 *bref = p;
6fd058f7
TT
353 unsigned int blk;
354
fe2c8191 355 while (bref < p+max) {
6fd058f7 356 blk = le32_to_cpu(*bref++);
de9a55b8
TT
357 if (blk &&
358 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 359 blk, 1))) {
1c13d5c0 360 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
361 ext4_error_inode(inode, function, line, blk,
362 "invalid block");
de9a55b8
TT
363 return -EIO;
364 }
365 }
366 return 0;
fe2c8191
TN
367}
368
369
370#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
371 __ext4_check_blockref(__func__, __LINE__, inode, \
372 (__le32 *)(bh)->b_data, \
fe2c8191
TN
373 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
374
375#define ext4_check_inode_blockref(inode) \
c398eda0
TT
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 EXT4_I(inode)->i_data, \
fe2c8191
TN
378 EXT4_NDIR_BLOCKS)
379
ac27a0ec 380/**
617ba13b 381 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
382 * @inode: inode in question
383 * @depth: depth of the chain (1 - direct pointer, etc.)
384 * @offsets: offsets of pointers in inode/indirect blocks
385 * @chain: place to store the result
386 * @err: here we store the error value
387 *
388 * Function fills the array of triples <key, p, bh> and returns %NULL
389 * if everything went OK or the pointer to the last filled triple
390 * (incomplete one) otherwise. Upon the return chain[i].key contains
391 * the number of (i+1)-th block in the chain (as it is stored in memory,
392 * i.e. little-endian 32-bit), chain[i].p contains the address of that
393 * number (it points into struct inode for i==0 and into the bh->b_data
394 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
395 * block for i>0 and NULL for i==0. In other words, it holds the block
396 * numbers of the chain, addresses they were taken from (and where we can
397 * verify that chain did not change) and buffer_heads hosting these
398 * numbers.
399 *
400 * Function stops when it stumbles upon zero pointer (absent block)
401 * (pointer to last triple returned, *@err == 0)
402 * or when it gets an IO error reading an indirect block
403 * (ditto, *@err == -EIO)
ac27a0ec
DK
404 * or when it reads all @depth-1 indirect blocks successfully and finds
405 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
406 *
407 * Need to be called with
0e855ac8 408 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 409 */
725d26d3
AK
410static Indirect *ext4_get_branch(struct inode *inode, int depth,
411 ext4_lblk_t *offsets,
ac27a0ec
DK
412 Indirect chain[4], int *err)
413{
414 struct super_block *sb = inode->i_sb;
415 Indirect *p = chain;
416 struct buffer_head *bh;
417
418 *err = 0;
419 /* i_data is not going away, no lock needed */
af5bc92d 420 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
421 if (!p->key)
422 goto no_block;
423 while (--depth) {
fe2c8191
TN
424 bh = sb_getblk(sb, le32_to_cpu(p->key));
425 if (unlikely(!bh))
ac27a0ec 426 goto failure;
de9a55b8 427
fe2c8191
TN
428 if (!bh_uptodate_or_lock(bh)) {
429 if (bh_submit_read(bh) < 0) {
430 put_bh(bh);
431 goto failure;
432 }
433 /* validate block references */
434 if (ext4_check_indirect_blockref(inode, bh)) {
435 put_bh(bh);
436 goto failure;
437 }
438 }
de9a55b8 439
af5bc92d 440 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
441 /* Reader: end */
442 if (!p->key)
443 goto no_block;
444 }
445 return NULL;
446
ac27a0ec
DK
447failure:
448 *err = -EIO;
449no_block:
450 return p;
451}
452
453/**
617ba13b 454 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
455 * @inode: owner
456 * @ind: descriptor of indirect block.
457 *
1cc8dcf5 458 * This function returns the preferred place for block allocation.
ac27a0ec
DK
459 * It is used when heuristic for sequential allocation fails.
460 * Rules are:
461 * + if there is a block to the left of our position - allocate near it.
462 * + if pointer will live in indirect block - allocate near that block.
463 * + if pointer will live in inode - allocate in the same
464 * cylinder group.
465 *
466 * In the latter case we colour the starting block by the callers PID to
467 * prevent it from clashing with concurrent allocations for a different inode
468 * in the same block group. The PID is used here so that functionally related
469 * files will be close-by on-disk.
470 *
471 * Caller must make sure that @ind is valid and will stay that way.
472 */
617ba13b 473static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 474{
617ba13b 475 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 476 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 477 __le32 *p;
617ba13b 478 ext4_fsblk_t bg_start;
74d3487f 479 ext4_fsblk_t last_block;
617ba13b 480 ext4_grpblk_t colour;
a4912123
TT
481 ext4_group_t block_group;
482 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
483
484 /* Try to find previous block */
485 for (p = ind->p - 1; p >= start; p--) {
486 if (*p)
487 return le32_to_cpu(*p);
488 }
489
490 /* No such thing, so let's try location of indirect block */
491 if (ind->bh)
492 return ind->bh->b_blocknr;
493
494 /*
495 * It is going to be referred to from the inode itself? OK, just put it
496 * into the same cylinder group then.
497 */
a4912123
TT
498 block_group = ei->i_block_group;
499 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
500 block_group &= ~(flex_size-1);
501 if (S_ISREG(inode->i_mode))
502 block_group++;
503 }
504 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
505 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
506
a4912123
TT
507 /*
508 * If we are doing delayed allocation, we don't need take
509 * colour into account.
510 */
511 if (test_opt(inode->i_sb, DELALLOC))
512 return bg_start;
513
74d3487f
VC
514 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
515 colour = (current->pid % 16) *
617ba13b 516 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
517 else
518 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
519 return bg_start + colour;
520}
521
522/**
1cc8dcf5 523 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
524 * @inode: owner
525 * @block: block we want
ac27a0ec 526 * @partial: pointer to the last triple within a chain
ac27a0ec 527 *
1cc8dcf5 528 * Normally this function find the preferred place for block allocation,
fb01bfda 529 * returns it.
fb0a387d
ES
530 * Because this is only used for non-extent files, we limit the block nr
531 * to 32 bits.
ac27a0ec 532 */
725d26d3 533static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 534 Indirect *partial)
ac27a0ec 535{
fb0a387d
ES
536 ext4_fsblk_t goal;
537
ac27a0ec 538 /*
c2ea3fde 539 * XXX need to get goal block from mballoc's data structures
ac27a0ec 540 */
ac27a0ec 541
fb0a387d
ES
542 goal = ext4_find_near(inode, partial);
543 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
544 return goal;
ac27a0ec
DK
545}
546
547/**
617ba13b 548 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
549 * of direct blocks need to be allocated for the given branch.
550 *
551 * @branch: chain of indirect blocks
552 * @k: number of blocks need for indirect blocks
553 * @blks: number of data blocks to be mapped.
554 * @blocks_to_boundary: the offset in the indirect block
555 *
556 * return the total number of blocks to be allocate, including the
557 * direct and indirect blocks.
558 */
498e5f24 559static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 560 int blocks_to_boundary)
ac27a0ec 561{
498e5f24 562 unsigned int count = 0;
ac27a0ec
DK
563
564 /*
565 * Simple case, [t,d]Indirect block(s) has not allocated yet
566 * then it's clear blocks on that path have not allocated
567 */
568 if (k > 0) {
569 /* right now we don't handle cross boundary allocation */
570 if (blks < blocks_to_boundary + 1)
571 count += blks;
572 else
573 count += blocks_to_boundary + 1;
574 return count;
575 }
576
577 count++;
578 while (count < blks && count <= blocks_to_boundary &&
579 le32_to_cpu(*(branch[0].p + count)) == 0) {
580 count++;
581 }
582 return count;
583}
584
585/**
617ba13b 586 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
587 * @indirect_blks: the number of blocks need to allocate for indirect
588 * blocks
589 *
590 * @new_blocks: on return it will store the new block numbers for
591 * the indirect blocks(if needed) and the first direct block,
592 * @blks: on return it will store the total number of allocated
593 * direct blocks
594 */
617ba13b 595static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
596 ext4_lblk_t iblock, ext4_fsblk_t goal,
597 int indirect_blks, int blks,
598 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 599{
815a1130 600 struct ext4_allocation_request ar;
ac27a0ec 601 int target, i;
7061eba7 602 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 603 int index = 0;
617ba13b 604 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
605 int ret = 0;
606
607 /*
608 * Here we try to allocate the requested multiple blocks at once,
609 * on a best-effort basis.
610 * To build a branch, we should allocate blocks for
611 * the indirect blocks(if not allocated yet), and at least
612 * the first direct block of this branch. That's the
613 * minimum number of blocks need to allocate(required)
614 */
7061eba7
AK
615 /* first we try to allocate the indirect blocks */
616 target = indirect_blks;
617 while (target > 0) {
ac27a0ec
DK
618 count = target;
619 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
620 current_block = ext4_new_meta_blocks(handle, inode,
621 goal, &count, err);
ac27a0ec
DK
622 if (*err)
623 goto failed_out;
624
273df556
FM
625 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
626 EXT4_ERROR_INODE(inode,
627 "current_block %llu + count %lu > %d!",
628 current_block, count,
629 EXT4_MAX_BLOCK_FILE_PHYS);
630 *err = -EIO;
631 goto failed_out;
632 }
fb0a387d 633
ac27a0ec
DK
634 target -= count;
635 /* allocate blocks for indirect blocks */
636 while (index < indirect_blks && count) {
637 new_blocks[index++] = current_block++;
638 count--;
639 }
7061eba7
AK
640 if (count > 0) {
641 /*
642 * save the new block number
643 * for the first direct block
644 */
645 new_blocks[index] = current_block;
646 printk(KERN_INFO "%s returned more blocks than "
647 "requested\n", __func__);
648 WARN_ON(1);
ac27a0ec 649 break;
7061eba7 650 }
ac27a0ec
DK
651 }
652
7061eba7
AK
653 target = blks - count ;
654 blk_allocated = count;
655 if (!target)
656 goto allocated;
657 /* Now allocate data blocks */
815a1130
TT
658 memset(&ar, 0, sizeof(ar));
659 ar.inode = inode;
660 ar.goal = goal;
661 ar.len = target;
662 ar.logical = iblock;
663 if (S_ISREG(inode->i_mode))
664 /* enable in-core preallocation only for regular files */
665 ar.flags = EXT4_MB_HINT_DATA;
666
667 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
668 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
669 EXT4_ERROR_INODE(inode,
670 "current_block %llu + ar.len %d > %d!",
671 current_block, ar.len,
672 EXT4_MAX_BLOCK_FILE_PHYS);
673 *err = -EIO;
674 goto failed_out;
675 }
815a1130 676
7061eba7
AK
677 if (*err && (target == blks)) {
678 /*
679 * if the allocation failed and we didn't allocate
680 * any blocks before
681 */
682 goto failed_out;
683 }
684 if (!*err) {
685 if (target == blks) {
de9a55b8
TT
686 /*
687 * save the new block number
688 * for the first direct block
689 */
7061eba7
AK
690 new_blocks[index] = current_block;
691 }
815a1130 692 blk_allocated += ar.len;
7061eba7
AK
693 }
694allocated:
ac27a0ec 695 /* total number of blocks allocated for direct blocks */
7061eba7 696 ret = blk_allocated;
ac27a0ec
DK
697 *err = 0;
698 return ret;
699failed_out:
af5bc92d 700 for (i = 0; i < index; i++)
e6362609 701 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
702 return ret;
703}
704
705/**
617ba13b 706 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
707 * @inode: owner
708 * @indirect_blks: number of allocated indirect blocks
709 * @blks: number of allocated direct blocks
710 * @offsets: offsets (in the blocks) to store the pointers to next.
711 * @branch: place to store the chain in.
712 *
713 * This function allocates blocks, zeroes out all but the last one,
714 * links them into chain and (if we are synchronous) writes them to disk.
715 * In other words, it prepares a branch that can be spliced onto the
716 * inode. It stores the information about that chain in the branch[], in
617ba13b 717 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
718 * we had read the existing part of chain and partial points to the last
719 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 720 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
721 * place chain is disconnected - *branch->p is still zero (we did not
722 * set the last link), but branch->key contains the number that should
723 * be placed into *branch->p to fill that gap.
724 *
725 * If allocation fails we free all blocks we've allocated (and forget
726 * their buffer_heads) and return the error value the from failed
617ba13b 727 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
728 * as described above and return 0.
729 */
617ba13b 730static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
731 ext4_lblk_t iblock, int indirect_blks,
732 int *blks, ext4_fsblk_t goal,
733 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
734{
735 int blocksize = inode->i_sb->s_blocksize;
736 int i, n = 0;
737 int err = 0;
738 struct buffer_head *bh;
739 int num;
617ba13b
MC
740 ext4_fsblk_t new_blocks[4];
741 ext4_fsblk_t current_block;
ac27a0ec 742
7061eba7 743 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
744 *blks, new_blocks, &err);
745 if (err)
746 return err;
747
748 branch[0].key = cpu_to_le32(new_blocks[0]);
749 /*
750 * metadata blocks and data blocks are allocated.
751 */
752 for (n = 1; n <= indirect_blks; n++) {
753 /*
754 * Get buffer_head for parent block, zero it out
755 * and set the pointer to new one, then send
756 * parent to disk.
757 */
758 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
759 branch[n].bh = bh;
760 lock_buffer(bh);
761 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 762 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 763 if (err) {
6487a9d3
CW
764 /* Don't brelse(bh) here; it's done in
765 * ext4_journal_forget() below */
ac27a0ec 766 unlock_buffer(bh);
ac27a0ec
DK
767 goto failed;
768 }
769
770 memset(bh->b_data, 0, blocksize);
771 branch[n].p = (__le32 *) bh->b_data + offsets[n];
772 branch[n].key = cpu_to_le32(new_blocks[n]);
773 *branch[n].p = branch[n].key;
af5bc92d 774 if (n == indirect_blks) {
ac27a0ec
DK
775 current_block = new_blocks[n];
776 /*
777 * End of chain, update the last new metablock of
778 * the chain to point to the new allocated
779 * data blocks numbers
780 */
de9a55b8 781 for (i = 1; i < num; i++)
ac27a0ec
DK
782 *(branch[n].p + i) = cpu_to_le32(++current_block);
783 }
784 BUFFER_TRACE(bh, "marking uptodate");
785 set_buffer_uptodate(bh);
786 unlock_buffer(bh);
787
0390131b
FM
788 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
789 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
790 if (err)
791 goto failed;
792 }
793 *blks = num;
794 return err;
795failed:
796 /* Allocation failed, free what we already allocated */
e6362609 797 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 798 for (i = 1; i <= n ; i++) {
60e6679e 799 /*
e6362609
TT
800 * branch[i].bh is newly allocated, so there is no
801 * need to revoke the block, which is why we don't
802 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 803 */
e6362609
TT
804 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
805 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 806 }
e6362609
TT
807 for (i = n+1; i < indirect_blks; i++)
808 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 809
e6362609 810 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
811
812 return err;
813}
814
815/**
617ba13b 816 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
817 * @inode: owner
818 * @block: (logical) number of block we are adding
819 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 820 * ext4_alloc_branch)
ac27a0ec
DK
821 * @where: location of missing link
822 * @num: number of indirect blocks we are adding
823 * @blks: number of direct blocks we are adding
824 *
825 * This function fills the missing link and does all housekeeping needed in
826 * inode (->i_blocks, etc.). In case of success we end up with the full
827 * chain to new block and return 0.
828 */
617ba13b 829static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
830 ext4_lblk_t block, Indirect *where, int num,
831 int blks)
ac27a0ec
DK
832{
833 int i;
834 int err = 0;
617ba13b 835 ext4_fsblk_t current_block;
ac27a0ec 836
ac27a0ec
DK
837 /*
838 * If we're splicing into a [td]indirect block (as opposed to the
839 * inode) then we need to get write access to the [td]indirect block
840 * before the splice.
841 */
842 if (where->bh) {
843 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 844 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
845 if (err)
846 goto err_out;
847 }
848 /* That's it */
849
850 *where->p = where->key;
851
852 /*
853 * Update the host buffer_head or inode to point to more just allocated
854 * direct blocks blocks
855 */
856 if (num == 0 && blks > 1) {
857 current_block = le32_to_cpu(where->key) + 1;
858 for (i = 1; i < blks; i++)
af5bc92d 859 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
860 }
861
ac27a0ec 862 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
863 /* had we spliced it onto indirect block? */
864 if (where->bh) {
865 /*
866 * If we spliced it onto an indirect block, we haven't
867 * altered the inode. Note however that if it is being spliced
868 * onto an indirect block at the very end of the file (the
869 * file is growing) then we *will* alter the inode to reflect
870 * the new i_size. But that is not done here - it is done in
617ba13b 871 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
872 */
873 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
874 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
875 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
876 if (err)
877 goto err_out;
878 } else {
879 /*
880 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 881 */
41591750 882 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
883 jbd_debug(5, "splicing direct\n");
884 }
885 return err;
886
887err_out:
888 for (i = 1; i <= num; i++) {
60e6679e 889 /*
e6362609
TT
890 * branch[i].bh is newly allocated, so there is no
891 * need to revoke the block, which is why we don't
892 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 893 */
e6362609
TT
894 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
895 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 896 }
e6362609
TT
897 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
898 blks, 0);
ac27a0ec
DK
899
900 return err;
901}
902
903/*
e35fd660 904 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 905 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 906 * scheme) for ext4_map_blocks().
b920c755 907 *
ac27a0ec
DK
908 * Allocation strategy is simple: if we have to allocate something, we will
909 * have to go the whole way to leaf. So let's do it before attaching anything
910 * to tree, set linkage between the newborn blocks, write them if sync is
911 * required, recheck the path, free and repeat if check fails, otherwise
912 * set the last missing link (that will protect us from any truncate-generated
913 * removals - all blocks on the path are immune now) and possibly force the
914 * write on the parent block.
915 * That has a nice additional property: no special recovery from the failed
916 * allocations is needed - we simply release blocks and do not touch anything
917 * reachable from inode.
918 *
919 * `handle' can be NULL if create == 0.
920 *
ac27a0ec
DK
921 * return > 0, # of blocks mapped or allocated.
922 * return = 0, if plain lookup failed.
923 * return < 0, error case.
c278bfec 924 *
b920c755
TT
925 * The ext4_ind_get_blocks() function should be called with
926 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
927 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
928 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
929 * blocks.
ac27a0ec 930 */
e35fd660
TT
931static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
932 struct ext4_map_blocks *map,
de9a55b8 933 int flags)
ac27a0ec
DK
934{
935 int err = -EIO;
725d26d3 936 ext4_lblk_t offsets[4];
ac27a0ec
DK
937 Indirect chain[4];
938 Indirect *partial;
617ba13b 939 ext4_fsblk_t goal;
ac27a0ec
DK
940 int indirect_blks;
941 int blocks_to_boundary = 0;
942 int depth;
ac27a0ec 943 int count = 0;
617ba13b 944 ext4_fsblk_t first_block = 0;
ac27a0ec 945
12e9b892 946 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 947 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 948 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 949 &blocks_to_boundary);
ac27a0ec
DK
950
951 if (depth == 0)
952 goto out;
953
617ba13b 954 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
955
956 /* Simplest case - block found, no allocation needed */
957 if (!partial) {
958 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
959 count++;
960 /*map more blocks*/
e35fd660 961 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 962 ext4_fsblk_t blk;
ac27a0ec 963
ac27a0ec
DK
964 blk = le32_to_cpu(*(chain[depth-1].p + count));
965
966 if (blk == first_block + count)
967 count++;
968 else
969 break;
970 }
c278bfec 971 goto got_it;
ac27a0ec
DK
972 }
973
974 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 975 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
976 goto cleanup;
977
ac27a0ec 978 /*
c2ea3fde 979 * Okay, we need to do block allocation.
ac27a0ec 980 */
e35fd660 981 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
982
983 /* the number of blocks need to allocate for [d,t]indirect blocks */
984 indirect_blks = (chain + depth) - partial - 1;
985
986 /*
987 * Next look up the indirect map to count the totoal number of
988 * direct blocks to allocate for this branch.
989 */
617ba13b 990 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 991 map->m_len, blocks_to_boundary);
ac27a0ec 992 /*
617ba13b 993 * Block out ext4_truncate while we alter the tree
ac27a0ec 994 */
e35fd660 995 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
996 &count, goal,
997 offsets + (partial - chain), partial);
ac27a0ec
DK
998
999 /*
617ba13b 1000 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1001 * on the new chain if there is a failure, but that risks using
1002 * up transaction credits, especially for bitmaps where the
1003 * credits cannot be returned. Can we handle this somehow? We
1004 * may need to return -EAGAIN upwards in the worst case. --sct
1005 */
1006 if (!err)
e35fd660 1007 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1008 partial, indirect_blks, count);
2bba702d 1009 if (err)
ac27a0ec
DK
1010 goto cleanup;
1011
e35fd660 1012 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1013
1014 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1015got_it:
e35fd660
TT
1016 map->m_flags |= EXT4_MAP_MAPPED;
1017 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1018 map->m_len = count;
ac27a0ec 1019 if (count > blocks_to_boundary)
e35fd660 1020 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1021 err = count;
1022 /* Clean up and exit */
1023 partial = chain + depth - 1; /* the whole chain */
1024cleanup:
1025 while (partial > chain) {
1026 BUFFER_TRACE(partial->bh, "call brelse");
1027 brelse(partial->bh);
1028 partial--;
1029 }
ac27a0ec
DK
1030out:
1031 return err;
1032}
1033
a9e7f447
DM
1034#ifdef CONFIG_QUOTA
1035qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1036{
a9e7f447 1037 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1038}
a9e7f447 1039#endif
9d0be502 1040
12219aea
AK
1041/*
1042 * Calculate the number of metadata blocks need to reserve
9d0be502 1043 * to allocate a new block at @lblocks for non extent file based file
12219aea 1044 */
9d0be502
TT
1045static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1046 sector_t lblock)
12219aea 1047{
9d0be502 1048 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1049 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1050 int blk_bits;
12219aea 1051
9d0be502
TT
1052 if (lblock < EXT4_NDIR_BLOCKS)
1053 return 0;
12219aea 1054
9d0be502 1055 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1056
9d0be502
TT
1057 if (ei->i_da_metadata_calc_len &&
1058 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1059 ei->i_da_metadata_calc_len++;
1060 return 0;
1061 }
1062 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1063 ei->i_da_metadata_calc_len = 1;
d330a5be 1064 blk_bits = order_base_2(lblock);
9d0be502 1065 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1066}
1067
1068/*
1069 * Calculate the number of metadata blocks need to reserve
9d0be502 1070 * to allocate a block located at @lblock
12219aea 1071 */
9d0be502 1072static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1073{
12e9b892 1074 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1075 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1076
9d0be502 1077 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1078}
1079
0637c6f4
TT
1080/*
1081 * Called with i_data_sem down, which is important since we can call
1082 * ext4_discard_preallocations() from here.
1083 */
5f634d06
AK
1084void ext4_da_update_reserve_space(struct inode *inode,
1085 int used, int quota_claim)
12219aea
AK
1086{
1087 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1088 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1089
1090 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1091 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1092 if (unlikely(used > ei->i_reserved_data_blocks)) {
1093 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1094 "with only %d reserved data blocks\n",
1095 __func__, inode->i_ino, used,
1096 ei->i_reserved_data_blocks);
1097 WARN_ON(1);
1098 used = ei->i_reserved_data_blocks;
1099 }
12219aea 1100
0637c6f4
TT
1101 /* Update per-inode reservations */
1102 ei->i_reserved_data_blocks -= used;
0637c6f4 1103 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1104 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1105 used + ei->i_allocated_meta_blocks);
0637c6f4 1106 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1107
0637c6f4
TT
1108 if (ei->i_reserved_data_blocks == 0) {
1109 /*
1110 * We can release all of the reserved metadata blocks
1111 * only when we have written all of the delayed
1112 * allocation blocks.
1113 */
72b8ab9d
ES
1114 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1115 ei->i_reserved_meta_blocks);
ee5f4d9c 1116 ei->i_reserved_meta_blocks = 0;
9d0be502 1117 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1118 }
12219aea 1119 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1120
72b8ab9d
ES
1121 /* Update quota subsystem for data blocks */
1122 if (quota_claim)
5dd4056d 1123 dquot_claim_block(inode, used);
72b8ab9d 1124 else {
5f634d06
AK
1125 /*
1126 * We did fallocate with an offset that is already delayed
1127 * allocated. So on delayed allocated writeback we should
72b8ab9d 1128 * not re-claim the quota for fallocated blocks.
5f634d06 1129 */
72b8ab9d 1130 dquot_release_reservation_block(inode, used);
5f634d06 1131 }
d6014301
AK
1132
1133 /*
1134 * If we have done all the pending block allocations and if
1135 * there aren't any writers on the inode, we can discard the
1136 * inode's preallocations.
1137 */
0637c6f4
TT
1138 if ((ei->i_reserved_data_blocks == 0) &&
1139 (atomic_read(&inode->i_writecount) == 0))
d6014301 1140 ext4_discard_preallocations(inode);
12219aea
AK
1141}
1142
e29136f8 1143static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1144 unsigned int line,
1145 struct ext4_map_blocks *map)
6fd058f7 1146{
24676da4
TT
1147 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1148 map->m_len)) {
c398eda0
TT
1149 ext4_error_inode(inode, func, line, map->m_pblk,
1150 "lblock %lu mapped to illegal pblock "
1151 "(length %d)", (unsigned long) map->m_lblk,
1152 map->m_len);
6fd058f7
TT
1153 return -EIO;
1154 }
1155 return 0;
1156}
1157
e29136f8 1158#define check_block_validity(inode, map) \
c398eda0 1159 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1160
55138e0b 1161/*
1f94533d
TT
1162 * Return the number of contiguous dirty pages in a given inode
1163 * starting at page frame idx.
55138e0b
TT
1164 */
1165static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1166 unsigned int max_pages)
1167{
1168 struct address_space *mapping = inode->i_mapping;
1169 pgoff_t index;
1170 struct pagevec pvec;
1171 pgoff_t num = 0;
1172 int i, nr_pages, done = 0;
1173
1174 if (max_pages == 0)
1175 return 0;
1176 pagevec_init(&pvec, 0);
1177 while (!done) {
1178 index = idx;
1179 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1180 PAGECACHE_TAG_DIRTY,
1181 (pgoff_t)PAGEVEC_SIZE);
1182 if (nr_pages == 0)
1183 break;
1184 for (i = 0; i < nr_pages; i++) {
1185 struct page *page = pvec.pages[i];
1186 struct buffer_head *bh, *head;
1187
1188 lock_page(page);
1189 if (unlikely(page->mapping != mapping) ||
1190 !PageDirty(page) ||
1191 PageWriteback(page) ||
1192 page->index != idx) {
1193 done = 1;
1194 unlock_page(page);
1195 break;
1196 }
1f94533d
TT
1197 if (page_has_buffers(page)) {
1198 bh = head = page_buffers(page);
1199 do {
1200 if (!buffer_delay(bh) &&
1201 !buffer_unwritten(bh))
1202 done = 1;
1203 bh = bh->b_this_page;
1204 } while (!done && (bh != head));
1205 }
55138e0b
TT
1206 unlock_page(page);
1207 if (done)
1208 break;
1209 idx++;
1210 num++;
659c6009
ES
1211 if (num >= max_pages) {
1212 done = 1;
55138e0b 1213 break;
659c6009 1214 }
55138e0b
TT
1215 }
1216 pagevec_release(&pvec);
1217 }
1218 return num;
1219}
1220
f5ab0d1f 1221/*
e35fd660 1222 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1223 * and returns if the blocks are already mapped.
f5ab0d1f 1224 *
f5ab0d1f
MC
1225 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1226 * and store the allocated blocks in the result buffer head and mark it
1227 * mapped.
1228 *
e35fd660
TT
1229 * If file type is extents based, it will call ext4_ext_map_blocks(),
1230 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1231 * based files
1232 *
1233 * On success, it returns the number of blocks being mapped or allocate.
1234 * if create==0 and the blocks are pre-allocated and uninitialized block,
1235 * the result buffer head is unmapped. If the create ==1, it will make sure
1236 * the buffer head is mapped.
1237 *
1238 * It returns 0 if plain look up failed (blocks have not been allocated), in
1239 * that casem, buffer head is unmapped
1240 *
1241 * It returns the error in case of allocation failure.
1242 */
e35fd660
TT
1243int ext4_map_blocks(handle_t *handle, struct inode *inode,
1244 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1245{
1246 int retval;
f5ab0d1f 1247
e35fd660
TT
1248 map->m_flags = 0;
1249 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1250 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1251 (unsigned long) map->m_lblk);
4df3d265 1252 /*
b920c755
TT
1253 * Try to see if we can get the block without requesting a new
1254 * file system block.
4df3d265
AK
1255 */
1256 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1257 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1258 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1259 } else {
e35fd660 1260 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1261 }
4df3d265 1262 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1263
e35fd660 1264 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1265 int ret = check_block_validity(inode, map);
6fd058f7
TT
1266 if (ret != 0)
1267 return ret;
1268 }
1269
f5ab0d1f 1270 /* If it is only a block(s) look up */
c2177057 1271 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1272 return retval;
1273
1274 /*
1275 * Returns if the blocks have already allocated
1276 *
1277 * Note that if blocks have been preallocated
1278 * ext4_ext_get_block() returns th create = 0
1279 * with buffer head unmapped.
1280 */
e35fd660 1281 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1282 return retval;
1283
2a8964d6
AK
1284 /*
1285 * When we call get_blocks without the create flag, the
1286 * BH_Unwritten flag could have gotten set if the blocks
1287 * requested were part of a uninitialized extent. We need to
1288 * clear this flag now that we are committed to convert all or
1289 * part of the uninitialized extent to be an initialized
1290 * extent. This is because we need to avoid the combination
1291 * of BH_Unwritten and BH_Mapped flags being simultaneously
1292 * set on the buffer_head.
1293 */
e35fd660 1294 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1295
4df3d265 1296 /*
f5ab0d1f
MC
1297 * New blocks allocate and/or writing to uninitialized extent
1298 * will possibly result in updating i_data, so we take
1299 * the write lock of i_data_sem, and call get_blocks()
1300 * with create == 1 flag.
4df3d265
AK
1301 */
1302 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1303
1304 /*
1305 * if the caller is from delayed allocation writeout path
1306 * we have already reserved fs blocks for allocation
1307 * let the underlying get_block() function know to
1308 * avoid double accounting
1309 */
c2177057 1310 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1311 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1312 /*
1313 * We need to check for EXT4 here because migrate
1314 * could have changed the inode type in between
1315 */
12e9b892 1316 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1317 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1318 } else {
e35fd660 1319 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1320
e35fd660 1321 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1322 /*
1323 * We allocated new blocks which will result in
1324 * i_data's format changing. Force the migrate
1325 * to fail by clearing migrate flags
1326 */
19f5fb7a 1327 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1328 }
d2a17637 1329
5f634d06
AK
1330 /*
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now. We don't
1333 * support fallocate for non extent files. So we can update
1334 * reserve space here.
1335 */
1336 if ((retval > 0) &&
1296cc85 1337 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1338 ext4_da_update_reserve_space(inode, retval, 1);
1339 }
2ac3b6e0 1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1341 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1342
4df3d265 1343 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1344 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1345 int ret = check_block_validity(inode, map);
6fd058f7
TT
1346 if (ret != 0)
1347 return ret;
1348 }
0e855ac8
AK
1349 return retval;
1350}
1351
f3bd1f3f
MC
1352/* Maximum number of blocks we map for direct IO at once. */
1353#define DIO_MAX_BLOCKS 4096
1354
2ed88685
TT
1355static int _ext4_get_block(struct inode *inode, sector_t iblock,
1356 struct buffer_head *bh, int flags)
ac27a0ec 1357{
3e4fdaf8 1358 handle_t *handle = ext4_journal_current_handle();
2ed88685 1359 struct ext4_map_blocks map;
7fb5409d 1360 int ret = 0, started = 0;
f3bd1f3f 1361 int dio_credits;
ac27a0ec 1362
2ed88685
TT
1363 map.m_lblk = iblock;
1364 map.m_len = bh->b_size >> inode->i_blkbits;
1365
1366 if (flags && !handle) {
7fb5409d 1367 /* Direct IO write... */
2ed88685
TT
1368 if (map.m_len > DIO_MAX_BLOCKS)
1369 map.m_len = DIO_MAX_BLOCKS;
1370 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1371 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1372 if (IS_ERR(handle)) {
ac27a0ec 1373 ret = PTR_ERR(handle);
2ed88685 1374 return ret;
ac27a0ec 1375 }
7fb5409d 1376 started = 1;
ac27a0ec
DK
1377 }
1378
2ed88685 1379 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1380 if (ret > 0) {
2ed88685
TT
1381 map_bh(bh, inode->i_sb, map.m_pblk);
1382 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1383 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1384 ret = 0;
ac27a0ec 1385 }
7fb5409d
JK
1386 if (started)
1387 ext4_journal_stop(handle);
ac27a0ec
DK
1388 return ret;
1389}
1390
2ed88685
TT
1391int ext4_get_block(struct inode *inode, sector_t iblock,
1392 struct buffer_head *bh, int create)
1393{
1394 return _ext4_get_block(inode, iblock, bh,
1395 create ? EXT4_GET_BLOCKS_CREATE : 0);
1396}
1397
ac27a0ec
DK
1398/*
1399 * `handle' can be NULL if create is zero
1400 */
617ba13b 1401struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1402 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1403{
2ed88685
TT
1404 struct ext4_map_blocks map;
1405 struct buffer_head *bh;
ac27a0ec
DK
1406 int fatal = 0, err;
1407
1408 J_ASSERT(handle != NULL || create == 0);
1409
2ed88685
TT
1410 map.m_lblk = block;
1411 map.m_len = 1;
1412 err = ext4_map_blocks(handle, inode, &map,
1413 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1414
2ed88685
TT
1415 if (err < 0)
1416 *errp = err;
1417 if (err <= 0)
1418 return NULL;
1419 *errp = 0;
1420
1421 bh = sb_getblk(inode->i_sb, map.m_pblk);
1422 if (!bh) {
1423 *errp = -EIO;
1424 return NULL;
ac27a0ec 1425 }
2ed88685
TT
1426 if (map.m_flags & EXT4_MAP_NEW) {
1427 J_ASSERT(create != 0);
1428 J_ASSERT(handle != NULL);
ac27a0ec 1429
2ed88685
TT
1430 /*
1431 * Now that we do not always journal data, we should
1432 * keep in mind whether this should always journal the
1433 * new buffer as metadata. For now, regular file
1434 * writes use ext4_get_block instead, so it's not a
1435 * problem.
1436 */
1437 lock_buffer(bh);
1438 BUFFER_TRACE(bh, "call get_create_access");
1439 fatal = ext4_journal_get_create_access(handle, bh);
1440 if (!fatal && !buffer_uptodate(bh)) {
1441 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1442 set_buffer_uptodate(bh);
ac27a0ec 1443 }
2ed88685
TT
1444 unlock_buffer(bh);
1445 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1446 err = ext4_handle_dirty_metadata(handle, inode, bh);
1447 if (!fatal)
1448 fatal = err;
1449 } else {
1450 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1451 }
2ed88685
TT
1452 if (fatal) {
1453 *errp = fatal;
1454 brelse(bh);
1455 bh = NULL;
1456 }
1457 return bh;
ac27a0ec
DK
1458}
1459
617ba13b 1460struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1461 ext4_lblk_t block, int create, int *err)
ac27a0ec 1462{
af5bc92d 1463 struct buffer_head *bh;
ac27a0ec 1464
617ba13b 1465 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1466 if (!bh)
1467 return bh;
1468 if (buffer_uptodate(bh))
1469 return bh;
1470 ll_rw_block(READ_META, 1, &bh);
1471 wait_on_buffer(bh);
1472 if (buffer_uptodate(bh))
1473 return bh;
1474 put_bh(bh);
1475 *err = -EIO;
1476 return NULL;
1477}
1478
af5bc92d
TT
1479static int walk_page_buffers(handle_t *handle,
1480 struct buffer_head *head,
1481 unsigned from,
1482 unsigned to,
1483 int *partial,
1484 int (*fn)(handle_t *handle,
1485 struct buffer_head *bh))
ac27a0ec
DK
1486{
1487 struct buffer_head *bh;
1488 unsigned block_start, block_end;
1489 unsigned blocksize = head->b_size;
1490 int err, ret = 0;
1491 struct buffer_head *next;
1492
af5bc92d
TT
1493 for (bh = head, block_start = 0;
1494 ret == 0 && (bh != head || !block_start);
de9a55b8 1495 block_start = block_end, bh = next) {
ac27a0ec
DK
1496 next = bh->b_this_page;
1497 block_end = block_start + blocksize;
1498 if (block_end <= from || block_start >= to) {
1499 if (partial && !buffer_uptodate(bh))
1500 *partial = 1;
1501 continue;
1502 }
1503 err = (*fn)(handle, bh);
1504 if (!ret)
1505 ret = err;
1506 }
1507 return ret;
1508}
1509
1510/*
1511 * To preserve ordering, it is essential that the hole instantiation and
1512 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1513 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1514 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1515 * prepare_write() is the right place.
1516 *
617ba13b
MC
1517 * Also, this function can nest inside ext4_writepage() ->
1518 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1519 * has generated enough buffer credits to do the whole page. So we won't
1520 * block on the journal in that case, which is good, because the caller may
1521 * be PF_MEMALLOC.
1522 *
617ba13b 1523 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1524 * quota file writes. If we were to commit the transaction while thus
1525 * reentered, there can be a deadlock - we would be holding a quota
1526 * lock, and the commit would never complete if another thread had a
1527 * transaction open and was blocking on the quota lock - a ranking
1528 * violation.
1529 *
dab291af 1530 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1531 * will _not_ run commit under these circumstances because handle->h_ref
1532 * is elevated. We'll still have enough credits for the tiny quotafile
1533 * write.
1534 */
1535static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1536 struct buffer_head *bh)
ac27a0ec 1537{
56d35a4c
JK
1538 int dirty = buffer_dirty(bh);
1539 int ret;
1540
ac27a0ec
DK
1541 if (!buffer_mapped(bh) || buffer_freed(bh))
1542 return 0;
56d35a4c
JK
1543 /*
1544 * __block_prepare_write() could have dirtied some buffers. Clean
1545 * the dirty bit as jbd2_journal_get_write_access() could complain
1546 * otherwise about fs integrity issues. Setting of the dirty bit
1547 * by __block_prepare_write() isn't a real problem here as we clear
1548 * the bit before releasing a page lock and thus writeback cannot
1549 * ever write the buffer.
1550 */
1551 if (dirty)
1552 clear_buffer_dirty(bh);
1553 ret = ext4_journal_get_write_access(handle, bh);
1554 if (!ret && dirty)
1555 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1556 return ret;
ac27a0ec
DK
1557}
1558
b9a4207d
JK
1559/*
1560 * Truncate blocks that were not used by write. We have to truncate the
1561 * pagecache as well so that corresponding buffers get properly unmapped.
1562 */
1563static void ext4_truncate_failed_write(struct inode *inode)
1564{
1565 truncate_inode_pages(inode->i_mapping, inode->i_size);
1566 ext4_truncate(inode);
1567}
1568
744692dc
JZ
1569static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1570 struct buffer_head *bh_result, int create);
bfc1af65 1571static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1572 loff_t pos, unsigned len, unsigned flags,
1573 struct page **pagep, void **fsdata)
ac27a0ec 1574{
af5bc92d 1575 struct inode *inode = mapping->host;
1938a150 1576 int ret, needed_blocks;
ac27a0ec
DK
1577 handle_t *handle;
1578 int retries = 0;
af5bc92d 1579 struct page *page;
de9a55b8 1580 pgoff_t index;
af5bc92d 1581 unsigned from, to;
bfc1af65 1582
9bffad1e 1583 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1584 /*
1585 * Reserve one block more for addition to orphan list in case
1586 * we allocate blocks but write fails for some reason
1587 */
1588 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1589 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1590 from = pos & (PAGE_CACHE_SIZE - 1);
1591 to = from + len;
ac27a0ec
DK
1592
1593retry:
af5bc92d
TT
1594 handle = ext4_journal_start(inode, needed_blocks);
1595 if (IS_ERR(handle)) {
1596 ret = PTR_ERR(handle);
1597 goto out;
7479d2b9 1598 }
ac27a0ec 1599
ebd3610b
JK
1600 /* We cannot recurse into the filesystem as the transaction is already
1601 * started */
1602 flags |= AOP_FLAG_NOFS;
1603
54566b2c 1604 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1605 if (!page) {
1606 ext4_journal_stop(handle);
1607 ret = -ENOMEM;
1608 goto out;
1609 }
1610 *pagep = page;
1611
744692dc 1612 if (ext4_should_dioread_nolock(inode))
6e1db88d 1613 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1614 else
6e1db88d 1615 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1616
1617 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1618 ret = walk_page_buffers(handle, page_buffers(page),
1619 from, to, NULL, do_journal_get_write_access);
1620 }
bfc1af65
NP
1621
1622 if (ret) {
af5bc92d 1623 unlock_page(page);
af5bc92d 1624 page_cache_release(page);
ae4d5372 1625 /*
6e1db88d 1626 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1627 * outside i_size. Trim these off again. Don't need
1628 * i_size_read because we hold i_mutex.
1938a150
AK
1629 *
1630 * Add inode to orphan list in case we crash before
1631 * truncate finishes
ae4d5372 1632 */
ffacfa7a 1633 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1634 ext4_orphan_add(handle, inode);
1635
1636 ext4_journal_stop(handle);
1637 if (pos + len > inode->i_size) {
b9a4207d 1638 ext4_truncate_failed_write(inode);
de9a55b8 1639 /*
ffacfa7a 1640 * If truncate failed early the inode might
1938a150
AK
1641 * still be on the orphan list; we need to
1642 * make sure the inode is removed from the
1643 * orphan list in that case.
1644 */
1645 if (inode->i_nlink)
1646 ext4_orphan_del(NULL, inode);
1647 }
bfc1af65
NP
1648 }
1649
617ba13b 1650 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1651 goto retry;
7479d2b9 1652out:
ac27a0ec
DK
1653 return ret;
1654}
1655
bfc1af65
NP
1656/* For write_end() in data=journal mode */
1657static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1658{
1659 if (!buffer_mapped(bh) || buffer_freed(bh))
1660 return 0;
1661 set_buffer_uptodate(bh);
0390131b 1662 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1663}
1664
f8514083 1665static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1666 struct address_space *mapping,
1667 loff_t pos, unsigned len, unsigned copied,
1668 struct page *page, void *fsdata)
f8514083
AK
1669{
1670 int i_size_changed = 0;
1671 struct inode *inode = mapping->host;
1672 handle_t *handle = ext4_journal_current_handle();
1673
1674 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1675
1676 /*
1677 * No need to use i_size_read() here, the i_size
1678 * cannot change under us because we hold i_mutex.
1679 *
1680 * But it's important to update i_size while still holding page lock:
1681 * page writeout could otherwise come in and zero beyond i_size.
1682 */
1683 if (pos + copied > inode->i_size) {
1684 i_size_write(inode, pos + copied);
1685 i_size_changed = 1;
1686 }
1687
1688 if (pos + copied > EXT4_I(inode)->i_disksize) {
1689 /* We need to mark inode dirty even if
1690 * new_i_size is less that inode->i_size
1691 * bu greater than i_disksize.(hint delalloc)
1692 */
1693 ext4_update_i_disksize(inode, (pos + copied));
1694 i_size_changed = 1;
1695 }
1696 unlock_page(page);
1697 page_cache_release(page);
1698
1699 /*
1700 * Don't mark the inode dirty under page lock. First, it unnecessarily
1701 * makes the holding time of page lock longer. Second, it forces lock
1702 * ordering of page lock and transaction start for journaling
1703 * filesystems.
1704 */
1705 if (i_size_changed)
1706 ext4_mark_inode_dirty(handle, inode);
1707
1708 return copied;
1709}
1710
ac27a0ec
DK
1711/*
1712 * We need to pick up the new inode size which generic_commit_write gave us
1713 * `file' can be NULL - eg, when called from page_symlink().
1714 *
617ba13b 1715 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1716 * buffers are managed internally.
1717 */
bfc1af65 1718static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1719 struct address_space *mapping,
1720 loff_t pos, unsigned len, unsigned copied,
1721 struct page *page, void *fsdata)
ac27a0ec 1722{
617ba13b 1723 handle_t *handle = ext4_journal_current_handle();
cf108bca 1724 struct inode *inode = mapping->host;
ac27a0ec
DK
1725 int ret = 0, ret2;
1726
9bffad1e 1727 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1728 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1729
1730 if (ret == 0) {
f8514083 1731 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1732 page, fsdata);
f8a87d89 1733 copied = ret2;
ffacfa7a 1734 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1735 /* if we have allocated more blocks and copied
1736 * less. We will have blocks allocated outside
1737 * inode->i_size. So truncate them
1738 */
1739 ext4_orphan_add(handle, inode);
f8a87d89
RK
1740 if (ret2 < 0)
1741 ret = ret2;
ac27a0ec 1742 }
617ba13b 1743 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1744 if (!ret)
1745 ret = ret2;
bfc1af65 1746
f8514083 1747 if (pos + len > inode->i_size) {
b9a4207d 1748 ext4_truncate_failed_write(inode);
de9a55b8 1749 /*
ffacfa7a 1750 * If truncate failed early the inode might still be
f8514083
AK
1751 * on the orphan list; we need to make sure the inode
1752 * is removed from the orphan list in that case.
1753 */
1754 if (inode->i_nlink)
1755 ext4_orphan_del(NULL, inode);
1756 }
1757
1758
bfc1af65 1759 return ret ? ret : copied;
ac27a0ec
DK
1760}
1761
bfc1af65 1762static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1763 struct address_space *mapping,
1764 loff_t pos, unsigned len, unsigned copied,
1765 struct page *page, void *fsdata)
ac27a0ec 1766{
617ba13b 1767 handle_t *handle = ext4_journal_current_handle();
cf108bca 1768 struct inode *inode = mapping->host;
ac27a0ec 1769 int ret = 0, ret2;
ac27a0ec 1770
9bffad1e 1771 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1772 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1773 page, fsdata);
f8a87d89 1774 copied = ret2;
ffacfa7a 1775 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1776 /* if we have allocated more blocks and copied
1777 * less. We will have blocks allocated outside
1778 * inode->i_size. So truncate them
1779 */
1780 ext4_orphan_add(handle, inode);
1781
f8a87d89
RK
1782 if (ret2 < 0)
1783 ret = ret2;
ac27a0ec 1784
617ba13b 1785 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1786 if (!ret)
1787 ret = ret2;
bfc1af65 1788
f8514083 1789 if (pos + len > inode->i_size) {
b9a4207d 1790 ext4_truncate_failed_write(inode);
de9a55b8 1791 /*
ffacfa7a 1792 * If truncate failed early the inode might still be
f8514083
AK
1793 * on the orphan list; we need to make sure the inode
1794 * is removed from the orphan list in that case.
1795 */
1796 if (inode->i_nlink)
1797 ext4_orphan_del(NULL, inode);
1798 }
1799
bfc1af65 1800 return ret ? ret : copied;
ac27a0ec
DK
1801}
1802
bfc1af65 1803static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1804 struct address_space *mapping,
1805 loff_t pos, unsigned len, unsigned copied,
1806 struct page *page, void *fsdata)
ac27a0ec 1807{
617ba13b 1808 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1809 struct inode *inode = mapping->host;
ac27a0ec
DK
1810 int ret = 0, ret2;
1811 int partial = 0;
bfc1af65 1812 unsigned from, to;
cf17fea6 1813 loff_t new_i_size;
ac27a0ec 1814
9bffad1e 1815 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1816 from = pos & (PAGE_CACHE_SIZE - 1);
1817 to = from + len;
1818
1819 if (copied < len) {
1820 if (!PageUptodate(page))
1821 copied = 0;
1822 page_zero_new_buffers(page, from+copied, to);
1823 }
ac27a0ec
DK
1824
1825 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1826 to, &partial, write_end_fn);
ac27a0ec
DK
1827 if (!partial)
1828 SetPageUptodate(page);
cf17fea6
AK
1829 new_i_size = pos + copied;
1830 if (new_i_size > inode->i_size)
bfc1af65 1831 i_size_write(inode, pos+copied);
19f5fb7a 1832 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1833 if (new_i_size > EXT4_I(inode)->i_disksize) {
1834 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1835 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1836 if (!ret)
1837 ret = ret2;
1838 }
bfc1af65 1839
cf108bca 1840 unlock_page(page);
f8514083 1841 page_cache_release(page);
ffacfa7a 1842 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1843 /* if we have allocated more blocks and copied
1844 * less. We will have blocks allocated outside
1845 * inode->i_size. So truncate them
1846 */
1847 ext4_orphan_add(handle, inode);
1848
617ba13b 1849 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1850 if (!ret)
1851 ret = ret2;
f8514083 1852 if (pos + len > inode->i_size) {
b9a4207d 1853 ext4_truncate_failed_write(inode);
de9a55b8 1854 /*
ffacfa7a 1855 * If truncate failed early the inode might still be
f8514083
AK
1856 * on the orphan list; we need to make sure the inode
1857 * is removed from the orphan list in that case.
1858 */
1859 if (inode->i_nlink)
1860 ext4_orphan_del(NULL, inode);
1861 }
bfc1af65
NP
1862
1863 return ret ? ret : copied;
ac27a0ec 1864}
d2a17637 1865
9d0be502
TT
1866/*
1867 * Reserve a single block located at lblock
1868 */
1869static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1870{
030ba6bc 1871 int retries = 0;
60e58e0f 1872 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1873 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1874 unsigned long md_needed;
5dd4056d 1875 int ret;
d2a17637
MC
1876
1877 /*
1878 * recalculate the amount of metadata blocks to reserve
1879 * in order to allocate nrblocks
1880 * worse case is one extent per block
1881 */
030ba6bc 1882repeat:
0637c6f4 1883 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1884 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1885 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1886 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1887
60e58e0f 1888 /*
72b8ab9d
ES
1889 * We will charge metadata quota at writeout time; this saves
1890 * us from metadata over-estimation, though we may go over by
1891 * a small amount in the end. Here we just reserve for data.
60e58e0f 1892 */
72b8ab9d 1893 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1894 if (ret)
1895 return ret;
72b8ab9d
ES
1896 /*
1897 * We do still charge estimated metadata to the sb though;
1898 * we cannot afford to run out of free blocks.
1899 */
9d0be502 1900 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1901 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1902 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1903 yield();
1904 goto repeat;
1905 }
d2a17637
MC
1906 return -ENOSPC;
1907 }
0637c6f4 1908 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1909 ei->i_reserved_data_blocks++;
0637c6f4
TT
1910 ei->i_reserved_meta_blocks += md_needed;
1911 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1912
d2a17637
MC
1913 return 0; /* success */
1914}
1915
12219aea 1916static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1917{
1918 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1919 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1920
cd213226
MC
1921 if (!to_free)
1922 return; /* Nothing to release, exit */
1923
d2a17637 1924 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1925
5a58ec87 1926 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1927 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1928 /*
0637c6f4
TT
1929 * if there aren't enough reserved blocks, then the
1930 * counter is messed up somewhere. Since this
1931 * function is called from invalidate page, it's
1932 * harmless to return without any action.
cd213226 1933 */
0637c6f4
TT
1934 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1935 "ino %lu, to_free %d with only %d reserved "
1936 "data blocks\n", inode->i_ino, to_free,
1937 ei->i_reserved_data_blocks);
1938 WARN_ON(1);
1939 to_free = ei->i_reserved_data_blocks;
cd213226 1940 }
0637c6f4 1941 ei->i_reserved_data_blocks -= to_free;
cd213226 1942
0637c6f4
TT
1943 if (ei->i_reserved_data_blocks == 0) {
1944 /*
1945 * We can release all of the reserved metadata blocks
1946 * only when we have written all of the delayed
1947 * allocation blocks.
1948 */
72b8ab9d
ES
1949 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1950 ei->i_reserved_meta_blocks);
ee5f4d9c 1951 ei->i_reserved_meta_blocks = 0;
9d0be502 1952 ei->i_da_metadata_calc_len = 0;
0637c6f4 1953 }
d2a17637 1954
72b8ab9d 1955 /* update fs dirty data blocks counter */
0637c6f4 1956 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1957
d2a17637 1958 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1959
5dd4056d 1960 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1961}
1962
1963static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1964 unsigned long offset)
d2a17637
MC
1965{
1966 int to_release = 0;
1967 struct buffer_head *head, *bh;
1968 unsigned int curr_off = 0;
1969
1970 head = page_buffers(page);
1971 bh = head;
1972 do {
1973 unsigned int next_off = curr_off + bh->b_size;
1974
1975 if ((offset <= curr_off) && (buffer_delay(bh))) {
1976 to_release++;
1977 clear_buffer_delay(bh);
1978 }
1979 curr_off = next_off;
1980 } while ((bh = bh->b_this_page) != head);
12219aea 1981 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1982}
ac27a0ec 1983
64769240
AT
1984/*
1985 * Delayed allocation stuff
1986 */
1987
64769240
AT
1988/*
1989 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1990 * them with writepage() call back
64769240
AT
1991 *
1992 * @mpd->inode: inode
1993 * @mpd->first_page: first page of the extent
1994 * @mpd->next_page: page after the last page of the extent
64769240
AT
1995 *
1996 * By the time mpage_da_submit_io() is called we expect all blocks
1997 * to be allocated. this may be wrong if allocation failed.
1998 *
1999 * As pages are already locked by write_cache_pages(), we can't use it
2000 */
2001static int mpage_da_submit_io(struct mpage_da_data *mpd)
2002{
22208ded 2003 long pages_skipped;
791b7f08
AK
2004 struct pagevec pvec;
2005 unsigned long index, end;
2006 int ret = 0, err, nr_pages, i;
2007 struct inode *inode = mpd->inode;
2008 struct address_space *mapping = inode->i_mapping;
64769240
AT
2009
2010 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
2011 /*
2012 * We need to start from the first_page to the next_page - 1
2013 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2014 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2015 * at the currently mapped buffer_heads.
2016 */
64769240
AT
2017 index = mpd->first_page;
2018 end = mpd->next_page - 1;
2019
791b7f08 2020 pagevec_init(&pvec, 0);
64769240 2021 while (index <= end) {
791b7f08 2022 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2023 if (nr_pages == 0)
2024 break;
2025 for (i = 0; i < nr_pages; i++) {
2026 struct page *page = pvec.pages[i];
2027
791b7f08
AK
2028 index = page->index;
2029 if (index > end)
2030 break;
2031 index++;
2032
2033 BUG_ON(!PageLocked(page));
2034 BUG_ON(PageWriteback(page));
2035
22208ded 2036 pages_skipped = mpd->wbc->pages_skipped;
5a87b7a5 2037 err = ext4_writepage(page, mpd->wbc);
22208ded
AK
2038 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2039 /*
2040 * have successfully written the page
2041 * without skipping the same
2042 */
a1d6cc56 2043 mpd->pages_written++;
64769240
AT
2044 /*
2045 * In error case, we have to continue because
2046 * remaining pages are still locked
2047 * XXX: unlock and re-dirty them?
2048 */
2049 if (ret == 0)
2050 ret = err;
2051 }
2052 pagevec_release(&pvec);
2053 }
64769240
AT
2054 return ret;
2055}
2056
2057/*
2058 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2059 *
64769240 2060 * the function goes through all passed space and put actual disk
29fa89d0 2061 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2062 */
2ed88685
TT
2063static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2064 struct ext4_map_blocks *map)
64769240
AT
2065{
2066 struct inode *inode = mpd->inode;
2067 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2068 int blocks = map->m_len;
2069 sector_t pblock = map->m_pblk, cur_logical;
64769240 2070 struct buffer_head *head, *bh;
a1d6cc56 2071 pgoff_t index, end;
64769240
AT
2072 struct pagevec pvec;
2073 int nr_pages, i;
2074
2ed88685
TT
2075 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2077 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2078
2079 pagevec_init(&pvec, 0);
2080
2081 while (index <= end) {
2082 /* XXX: optimize tail */
2083 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2084 if (nr_pages == 0)
2085 break;
2086 for (i = 0; i < nr_pages; i++) {
2087 struct page *page = pvec.pages[i];
2088
2089 index = page->index;
2090 if (index > end)
2091 break;
2092 index++;
2093
2094 BUG_ON(!PageLocked(page));
2095 BUG_ON(PageWriteback(page));
2096 BUG_ON(!page_has_buffers(page));
2097
2098 bh = page_buffers(page);
2099 head = bh;
2100
2101 /* skip blocks out of the range */
2102 do {
2ed88685 2103 if (cur_logical >= map->m_lblk)
64769240
AT
2104 break;
2105 cur_logical++;
2106 } while ((bh = bh->b_this_page) != head);
2107
2108 do {
0c9169cc 2109 if (cur_logical > map->m_lblk + (blocks - 1))
64769240 2110 break;
29fa89d0 2111
2ed88685 2112 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2113
2114 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2115
2116 if (buffer_delay(bh)) {
2117 clear_buffer_delay(bh);
2118 bh->b_blocknr = pblock;
2119 } else {
2120 /*
2121 * unwritten already should have
2122 * blocknr assigned. Verify that
2123 */
2124 clear_buffer_unwritten(bh);
2125 BUG_ON(bh->b_blocknr != pblock);
2126 }
2127
61628a3f 2128 } else if (buffer_mapped(bh))
64769240 2129 BUG_ON(bh->b_blocknr != pblock);
64769240 2130
2ed88685 2131 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2132 set_buffer_uninit(bh);
64769240
AT
2133 cur_logical++;
2134 pblock++;
2135 } while ((bh = bh->b_this_page) != head);
2136 }
2137 pagevec_release(&pvec);
2138 }
2139}
2140
2141
c4a0c46e
AK
2142static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143 sector_t logical, long blk_cnt)
2144{
2145 int nr_pages, i;
2146 pgoff_t index, end;
2147 struct pagevec pvec;
2148 struct inode *inode = mpd->inode;
2149 struct address_space *mapping = inode->i_mapping;
2150
2151 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 end = (logical + blk_cnt - 1) >>
2153 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154 while (index <= end) {
2155 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156 if (nr_pages == 0)
2157 break;
2158 for (i = 0; i < nr_pages; i++) {
2159 struct page *page = pvec.pages[i];
9b1d0998 2160 if (page->index > end)
c4a0c46e 2161 break;
c4a0c46e
AK
2162 BUG_ON(!PageLocked(page));
2163 BUG_ON(PageWriteback(page));
2164 block_invalidatepage(page, 0);
2165 ClearPageUptodate(page);
2166 unlock_page(page);
2167 }
9b1d0998
JK
2168 index = pvec.pages[nr_pages - 1]->index + 1;
2169 pagevec_release(&pvec);
c4a0c46e
AK
2170 }
2171 return;
2172}
2173
df22291f
AK
2174static void ext4_print_free_blocks(struct inode *inode)
2175{
2176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2177 printk(KERN_CRIT "Total free blocks count %lld\n",
2178 ext4_count_free_blocks(inode->i_sb));
2179 printk(KERN_CRIT "Free/Dirty block details\n");
2180 printk(KERN_CRIT "free_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2182 printk(KERN_CRIT "dirty_blocks=%lld\n",
2183 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2184 printk(KERN_CRIT "Block reservation details\n");
2185 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_data_blocks);
2187 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2188 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2189 return;
2190}
2191
64769240 2192/*
5a87b7a5
TT
2193 * mpage_da_map_and_submit - go through given space, map them
2194 * if necessary, and then submit them for I/O
64769240 2195 *
8dc207c0 2196 * @mpd - bh describing space
64769240
AT
2197 *
2198 * The function skips space we know is already mapped to disk blocks.
2199 *
64769240 2200 */
5a87b7a5 2201static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2202{
2ac3b6e0 2203 int err, blks, get_blocks_flags;
2ed88685 2204 struct ext4_map_blocks map;
2fa3cdfb
TT
2205 sector_t next = mpd->b_blocknr;
2206 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2207 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2208 handle_t *handle = NULL;
64769240
AT
2209
2210 /*
5a87b7a5
TT
2211 * If the blocks are mapped already, or we couldn't accumulate
2212 * any blocks, then proceed immediately to the submission stage.
64769240 2213 */
5a87b7a5
TT
2214 if ((mpd->b_size == 0) ||
2215 ((mpd->b_state & (1 << BH_Mapped)) &&
2216 !(mpd->b_state & (1 << BH_Delay)) &&
2217 !(mpd->b_state & (1 << BH_Unwritten))))
2218 goto submit_io;
2fa3cdfb
TT
2219
2220 handle = ext4_journal_current_handle();
2221 BUG_ON(!handle);
2222
79ffab34 2223 /*
79e83036 2224 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2225 * blocks, or to convert an uninitialized extent to be
2226 * initialized (in the case where we have written into
2227 * one or more preallocated blocks).
2228 *
2229 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2230 * indicate that we are on the delayed allocation path. This
2231 * affects functions in many different parts of the allocation
2232 * call path. This flag exists primarily because we don't
79e83036 2233 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2234 * will set the magic i_delalloc_reserved_flag once the
2235 * inode's allocation semaphore is taken.
2236 *
2237 * If the blocks in questions were delalloc blocks, set
2238 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2239 * variables are updated after the blocks have been allocated.
79ffab34 2240 */
2ed88685
TT
2241 map.m_lblk = next;
2242 map.m_len = max_blocks;
1296cc85 2243 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2244 if (ext4_should_dioread_nolock(mpd->inode))
2245 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2246 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2247 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2248
2ed88685 2249 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2250 if (blks < 0) {
e3570639
ES
2251 struct super_block *sb = mpd->inode->i_sb;
2252
2fa3cdfb 2253 err = blks;
ed5bde0b 2254 /*
5a87b7a5
TT
2255 * If get block returns EAGAIN or ENOSPC and there
2256 * appears to be free blocks we will call
2257 * ext4_writepage() for all of the pages which will
2258 * just redirty the pages.
c4a0c46e
AK
2259 */
2260 if (err == -EAGAIN)
5a87b7a5 2261 goto submit_io;
df22291f
AK
2262
2263 if (err == -ENOSPC &&
e3570639 2264 ext4_count_free_blocks(sb)) {
df22291f 2265 mpd->retval = err;
5a87b7a5 2266 goto submit_io;
df22291f
AK
2267 }
2268
c4a0c46e 2269 /*
ed5bde0b
TT
2270 * get block failure will cause us to loop in
2271 * writepages, because a_ops->writepage won't be able
2272 * to make progress. The page will be redirtied by
2273 * writepage and writepages will again try to write
2274 * the same.
c4a0c46e 2275 */
e3570639
ES
2276 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2277 ext4_msg(sb, KERN_CRIT,
2278 "delayed block allocation failed for inode %lu "
2279 "at logical offset %llu with max blocks %zd "
2280 "with error %d", mpd->inode->i_ino,
2281 (unsigned long long) next,
2282 mpd->b_size >> mpd->inode->i_blkbits, err);
2283 ext4_msg(sb, KERN_CRIT,
2284 "This should not happen!! Data will be lost\n");
2285 if (err == -ENOSPC)
2286 ext4_print_free_blocks(mpd->inode);
030ba6bc 2287 }
2fa3cdfb 2288 /* invalidate all the pages */
c4a0c46e 2289 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2290 mpd->b_size >> mpd->inode->i_blkbits);
5a87b7a5 2291 return;
c4a0c46e 2292 }
2fa3cdfb
TT
2293 BUG_ON(blks == 0);
2294
2ed88685
TT
2295 if (map.m_flags & EXT4_MAP_NEW) {
2296 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2297 int i;
64769240 2298
2ed88685
TT
2299 for (i = 0; i < map.m_len; i++)
2300 unmap_underlying_metadata(bdev, map.m_pblk + i);
2301 }
64769240 2302
a1d6cc56
AK
2303 /*
2304 * If blocks are delayed marked, we need to
2305 * put actual blocknr and drop delayed bit
2306 */
8dc207c0
TT
2307 if ((mpd->b_state & (1 << BH_Delay)) ||
2308 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2309 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2310
2fa3cdfb
TT
2311 if (ext4_should_order_data(mpd->inode)) {
2312 err = ext4_jbd2_file_inode(handle, mpd->inode);
2313 if (err)
5a87b7a5
TT
2314 /* This only happens if the journal is aborted */
2315 return;
2fa3cdfb
TT
2316 }
2317
2318 /*
03f5d8bc 2319 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2320 */
2321 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2322 if (disksize > i_size_read(mpd->inode))
2323 disksize = i_size_read(mpd->inode);
2324 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2325 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2326 err = ext4_mark_inode_dirty(handle, mpd->inode);
2327 if (err)
2328 ext4_error(mpd->inode->i_sb,
2329 "Failed to mark inode %lu dirty",
2330 mpd->inode->i_ino);
2fa3cdfb
TT
2331 }
2332
5a87b7a5
TT
2333submit_io:
2334 mpage_da_submit_io(mpd);
2335 mpd->io_done = 1;
64769240
AT
2336}
2337
bf068ee2
AK
2338#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2339 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2340
2341/*
2342 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2343 *
2344 * @mpd->lbh - extent of blocks
2345 * @logical - logical number of the block in the file
2346 * @bh - bh of the block (used to access block's state)
2347 *
2348 * the function is used to collect contig. blocks in same state
2349 */
2350static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2351 sector_t logical, size_t b_size,
2352 unsigned long b_state)
64769240 2353{
64769240 2354 sector_t next;
8dc207c0 2355 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2356
c445e3e0
ES
2357 /*
2358 * XXX Don't go larger than mballoc is willing to allocate
2359 * This is a stopgap solution. We eventually need to fold
2360 * mpage_da_submit_io() into this function and then call
79e83036 2361 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2362 */
2363 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2364 goto flush_it;
2365
525f4ed8 2366 /* check if thereserved journal credits might overflow */
12e9b892 2367 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2368 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2369 /*
2370 * With non-extent format we are limited by the journal
2371 * credit available. Total credit needed to insert
2372 * nrblocks contiguous blocks is dependent on the
2373 * nrblocks. So limit nrblocks.
2374 */
2375 goto flush_it;
2376 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2377 EXT4_MAX_TRANS_DATA) {
2378 /*
2379 * Adding the new buffer_head would make it cross the
2380 * allowed limit for which we have journal credit
2381 * reserved. So limit the new bh->b_size
2382 */
2383 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2384 mpd->inode->i_blkbits;
2385 /* we will do mpage_da_submit_io in the next loop */
2386 }
2387 }
64769240
AT
2388 /*
2389 * First block in the extent
2390 */
8dc207c0
TT
2391 if (mpd->b_size == 0) {
2392 mpd->b_blocknr = logical;
2393 mpd->b_size = b_size;
2394 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2395 return;
2396 }
2397
8dc207c0 2398 next = mpd->b_blocknr + nrblocks;
64769240
AT
2399 /*
2400 * Can we merge the block to our big extent?
2401 */
8dc207c0
TT
2402 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2403 mpd->b_size += b_size;
64769240
AT
2404 return;
2405 }
2406
525f4ed8 2407flush_it:
64769240
AT
2408 /*
2409 * We couldn't merge the block to our extent, so we
2410 * need to flush current extent and start new one
2411 */
5a87b7a5 2412 mpage_da_map_and_submit(mpd);
a1d6cc56 2413 return;
64769240
AT
2414}
2415
c364b22c 2416static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2417{
c364b22c 2418 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2419}
2420
64769240
AT
2421/*
2422 * __mpage_da_writepage - finds extent of pages and blocks
2423 *
2424 * @page: page to consider
2425 * @wbc: not used, we just follow rules
2426 * @data: context
2427 *
2428 * The function finds extents of pages and scan them for all blocks.
2429 */
2430static int __mpage_da_writepage(struct page *page,
2431 struct writeback_control *wbc, void *data)
2432{
2433 struct mpage_da_data *mpd = data;
2434 struct inode *inode = mpd->inode;
8dc207c0 2435 struct buffer_head *bh, *head;
64769240
AT
2436 sector_t logical;
2437
2438 /*
2439 * Can we merge this page to current extent?
2440 */
2441 if (mpd->next_page != page->index) {
2442 /*
2443 * Nope, we can't. So, we map non-allocated blocks
5a87b7a5 2444 * and start IO on them
64769240
AT
2445 */
2446 if (mpd->next_page != mpd->first_page) {
5a87b7a5 2447 mpage_da_map_and_submit(mpd);
a1d6cc56
AK
2448 /*
2449 * skip rest of the page in the page_vec
2450 */
a1d6cc56
AK
2451 redirty_page_for_writepage(wbc, page);
2452 unlock_page(page);
2453 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2454 }
2455
2456 /*
2457 * Start next extent of pages ...
2458 */
2459 mpd->first_page = page->index;
2460
2461 /*
2462 * ... and blocks
2463 */
8dc207c0
TT
2464 mpd->b_size = 0;
2465 mpd->b_state = 0;
2466 mpd->b_blocknr = 0;
64769240
AT
2467 }
2468
2469 mpd->next_page = page->index + 1;
2470 logical = (sector_t) page->index <<
2471 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2472
2473 if (!page_has_buffers(page)) {
8dc207c0
TT
2474 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2475 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2476 if (mpd->io_done)
2477 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2478 } else {
2479 /*
2480 * Page with regular buffer heads, just add all dirty ones
2481 */
2482 head = page_buffers(page);
2483 bh = head;
2484 do {
2485 BUG_ON(buffer_locked(bh));
791b7f08
AK
2486 /*
2487 * We need to try to allocate
2488 * unmapped blocks in the same page.
2489 * Otherwise we won't make progress
43ce1d23 2490 * with the page in ext4_writepage
791b7f08 2491 */
c364b22c 2492 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2493 mpage_add_bh_to_extent(mpd, logical,
2494 bh->b_size,
2495 bh->b_state);
a1d6cc56
AK
2496 if (mpd->io_done)
2497 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2498 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2499 /*
2500 * mapped dirty buffer. We need to update
2501 * the b_state because we look at
2502 * b_state in mpage_da_map_blocks. We don't
2503 * update b_size because if we find an
2504 * unmapped buffer_head later we need to
2505 * use the b_state flag of that buffer_head.
2506 */
8dc207c0
TT
2507 if (mpd->b_size == 0)
2508 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2509 }
64769240
AT
2510 logical++;
2511 } while ((bh = bh->b_this_page) != head);
2512 }
2513
2514 return 0;
2515}
2516
64769240 2517/*
b920c755
TT
2518 * This is a special get_blocks_t callback which is used by
2519 * ext4_da_write_begin(). It will either return mapped block or
2520 * reserve space for a single block.
29fa89d0
AK
2521 *
2522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2523 * We also have b_blocknr = -1 and b_bdev initialized properly
2524 *
2525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2527 * initialized properly.
64769240
AT
2528 */
2529static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2530 struct buffer_head *bh, int create)
64769240 2531{
2ed88685 2532 struct ext4_map_blocks map;
64769240 2533 int ret = 0;
33b9817e
AK
2534 sector_t invalid_block = ~((sector_t) 0xffff);
2535
2536 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2537 invalid_block = ~0;
64769240
AT
2538
2539 BUG_ON(create == 0);
2ed88685
TT
2540 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2541
2542 map.m_lblk = iblock;
2543 map.m_len = 1;
64769240
AT
2544
2545 /*
2546 * first, we need to know whether the block is allocated already
2547 * preallocated blocks are unmapped but should treated
2548 * the same as allocated blocks.
2549 */
2ed88685
TT
2550 ret = ext4_map_blocks(NULL, inode, &map, 0);
2551 if (ret < 0)
2552 return ret;
2553 if (ret == 0) {
2554 if (buffer_delay(bh))
2555 return 0; /* Not sure this could or should happen */
64769240
AT
2556 /*
2557 * XXX: __block_prepare_write() unmaps passed block,
2558 * is it OK?
2559 */
9d0be502 2560 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2561 if (ret)
2562 /* not enough space to reserve */
2563 return ret;
2564
2ed88685
TT
2565 map_bh(bh, inode->i_sb, invalid_block);
2566 set_buffer_new(bh);
2567 set_buffer_delay(bh);
2568 return 0;
64769240
AT
2569 }
2570
2ed88685
TT
2571 map_bh(bh, inode->i_sb, map.m_pblk);
2572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2573
2574 if (buffer_unwritten(bh)) {
2575 /* A delayed write to unwritten bh should be marked
2576 * new and mapped. Mapped ensures that we don't do
2577 * get_block multiple times when we write to the same
2578 * offset and new ensures that we do proper zero out
2579 * for partial write.
2580 */
2581 set_buffer_new(bh);
2582 set_buffer_mapped(bh);
2583 }
2584 return 0;
64769240 2585}
61628a3f 2586
b920c755
TT
2587/*
2588 * This function is used as a standard get_block_t calback function
2589 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2590 * callback function for block_prepare_write() and block_write_full_page().
2591 * These functions should only try to map a single block at a time.
b920c755
TT
2592 *
2593 * Since this function doesn't do block allocations even if the caller
2594 * requests it by passing in create=1, it is critically important that
2595 * any caller checks to make sure that any buffer heads are returned
2596 * by this function are either all already mapped or marked for
206f7ab4
CH
2597 * delayed allocation before calling block_write_full_page(). Otherwise,
2598 * b_blocknr could be left unitialized, and the page write functions will
2599 * be taken by surprise.
b920c755
TT
2600 */
2601static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2602 struct buffer_head *bh_result, int create)
2603{
a2dc52b5 2604 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2605 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2606}
2607
62e086be
AK
2608static int bget_one(handle_t *handle, struct buffer_head *bh)
2609{
2610 get_bh(bh);
2611 return 0;
2612}
2613
2614static int bput_one(handle_t *handle, struct buffer_head *bh)
2615{
2616 put_bh(bh);
2617 return 0;
2618}
2619
2620static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2621 unsigned int len)
2622{
2623 struct address_space *mapping = page->mapping;
2624 struct inode *inode = mapping->host;
2625 struct buffer_head *page_bufs;
2626 handle_t *handle = NULL;
2627 int ret = 0;
2628 int err;
2629
2630 page_bufs = page_buffers(page);
2631 BUG_ON(!page_bufs);
2632 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2633 /* As soon as we unlock the page, it can go away, but we have
2634 * references to buffers so we are safe */
2635 unlock_page(page);
2636
2637 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2638 if (IS_ERR(handle)) {
2639 ret = PTR_ERR(handle);
2640 goto out;
2641 }
2642
2643 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2644 do_journal_get_write_access);
2645
2646 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2647 write_end_fn);
2648 if (ret == 0)
2649 ret = err;
2650 err = ext4_journal_stop(handle);
2651 if (!ret)
2652 ret = err;
2653
2654 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2655 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2656out:
2657 return ret;
2658}
2659
744692dc
JZ
2660static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2661static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2662
61628a3f 2663/*
43ce1d23
AK
2664 * Note that we don't need to start a transaction unless we're journaling data
2665 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2666 * need to file the inode to the transaction's list in ordered mode because if
2667 * we are writing back data added by write(), the inode is already there and if
2668 * we are writing back data modified via mmap(), noone guarantees in which
2669 * transaction the data will hit the disk. In case we are journaling data, we
2670 * cannot start transaction directly because transaction start ranks above page
2671 * lock so we have to do some magic.
2672 *
b920c755
TT
2673 * This function can get called via...
2674 * - ext4_da_writepages after taking page lock (have journal handle)
2675 * - journal_submit_inode_data_buffers (no journal handle)
2676 * - shrink_page_list via pdflush (no journal handle)
2677 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2678 *
2679 * We don't do any block allocation in this function. If we have page with
2680 * multiple blocks we need to write those buffer_heads that are mapped. This
2681 * is important for mmaped based write. So if we do with blocksize 1K
2682 * truncate(f, 1024);
2683 * a = mmap(f, 0, 4096);
2684 * a[0] = 'a';
2685 * truncate(f, 4096);
2686 * we have in the page first buffer_head mapped via page_mkwrite call back
2687 * but other bufer_heads would be unmapped but dirty(dirty done via the
2688 * do_wp_page). So writepage should write the first block. If we modify
2689 * the mmap area beyond 1024 we will again get a page_fault and the
2690 * page_mkwrite callback will do the block allocation and mark the
2691 * buffer_heads mapped.
2692 *
2693 * We redirty the page if we have any buffer_heads that is either delay or
2694 * unwritten in the page.
2695 *
2696 * We can get recursively called as show below.
2697 *
2698 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2699 * ext4_writepage()
2700 *
2701 * But since we don't do any block allocation we should not deadlock.
2702 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2703 */
43ce1d23 2704static int ext4_writepage(struct page *page,
62e086be 2705 struct writeback_control *wbc)
64769240 2706{
64769240 2707 int ret = 0;
61628a3f 2708 loff_t size;
498e5f24 2709 unsigned int len;
744692dc 2710 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2711 struct inode *inode = page->mapping->host;
2712
43ce1d23 2713 trace_ext4_writepage(inode, page);
f0e6c985
AK
2714 size = i_size_read(inode);
2715 if (page->index == size >> PAGE_CACHE_SHIFT)
2716 len = size & ~PAGE_CACHE_MASK;
2717 else
2718 len = PAGE_CACHE_SIZE;
64769240 2719
f0e6c985 2720 if (page_has_buffers(page)) {
61628a3f 2721 page_bufs = page_buffers(page);
f0e6c985 2722 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2723 ext4_bh_delay_or_unwritten)) {
61628a3f 2724 /*
f0e6c985
AK
2725 * We don't want to do block allocation
2726 * So redirty the page and return
cd1aac32
AK
2727 * We may reach here when we do a journal commit
2728 * via journal_submit_inode_data_buffers.
2729 * If we don't have mapping block we just ignore
f0e6c985
AK
2730 * them. We can also reach here via shrink_page_list
2731 */
2732 redirty_page_for_writepage(wbc, page);
2733 unlock_page(page);
2734 return 0;
2735 }
2736 } else {
2737 /*
2738 * The test for page_has_buffers() is subtle:
2739 * We know the page is dirty but it lost buffers. That means
2740 * that at some moment in time after write_begin()/write_end()
2741 * has been called all buffers have been clean and thus they
2742 * must have been written at least once. So they are all
2743 * mapped and we can happily proceed with mapping them
2744 * and writing the page.
2745 *
2746 * Try to initialize the buffer_heads and check whether
2747 * all are mapped and non delay. We don't want to
2748 * do block allocation here.
2749 */
b767e78a 2750 ret = block_prepare_write(page, 0, len,
b920c755 2751 noalloc_get_block_write);
f0e6c985
AK
2752 if (!ret) {
2753 page_bufs = page_buffers(page);
2754 /* check whether all are mapped and non delay */
2755 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2756 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2757 redirty_page_for_writepage(wbc, page);
2758 unlock_page(page);
2759 return 0;
2760 }
2761 } else {
2762 /*
2763 * We can't do block allocation here
2764 * so just redity the page and unlock
2765 * and return
61628a3f 2766 */
61628a3f
MC
2767 redirty_page_for_writepage(wbc, page);
2768 unlock_page(page);
2769 return 0;
2770 }
ed9b3e33 2771 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2772 block_commit_write(page, 0, len);
64769240
AT
2773 }
2774
43ce1d23
AK
2775 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2776 /*
2777 * It's mmapped pagecache. Add buffers and journal it. There
2778 * doesn't seem much point in redirtying the page here.
2779 */
2780 ClearPageChecked(page);
3f0ca309 2781 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2782 }
2783
206f7ab4 2784 if (page_bufs && buffer_uninit(page_bufs)) {
744692dc
JZ
2785 ext4_set_bh_endio(page_bufs, inode);
2786 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2787 wbc, ext4_end_io_buffer_write);
2788 } else
b920c755
TT
2789 ret = block_write_full_page(page, noalloc_get_block_write,
2790 wbc);
64769240 2791
64769240
AT
2792 return ret;
2793}
2794
61628a3f 2795/*
525f4ed8
MC
2796 * This is called via ext4_da_writepages() to
2797 * calulate the total number of credits to reserve to fit
2798 * a single extent allocation into a single transaction,
2799 * ext4_da_writpeages() will loop calling this before
2800 * the block allocation.
61628a3f 2801 */
525f4ed8
MC
2802
2803static int ext4_da_writepages_trans_blocks(struct inode *inode)
2804{
2805 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2806
2807 /*
2808 * With non-extent format the journal credit needed to
2809 * insert nrblocks contiguous block is dependent on
2810 * number of contiguous block. So we will limit
2811 * number of contiguous block to a sane value
2812 */
12e9b892 2813 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2814 (max_blocks > EXT4_MAX_TRANS_DATA))
2815 max_blocks = EXT4_MAX_TRANS_DATA;
2816
2817 return ext4_chunk_trans_blocks(inode, max_blocks);
2818}
61628a3f 2819
8e48dcfb
TT
2820/*
2821 * write_cache_pages_da - walk the list of dirty pages of the given
2822 * address space and call the callback function (which usually writes
2823 * the pages).
2824 *
2825 * This is a forked version of write_cache_pages(). Differences:
2826 * Range cyclic is ignored.
2827 * no_nrwrite_index_update is always presumed true
2828 */
2829static int write_cache_pages_da(struct address_space *mapping,
2830 struct writeback_control *wbc,
2831 struct mpage_da_data *mpd)
2832{
2833 int ret = 0;
2834 int done = 0;
2835 struct pagevec pvec;
2836 int nr_pages;
2837 pgoff_t index;
2838 pgoff_t end; /* Inclusive */
2839 long nr_to_write = wbc->nr_to_write;
2840
2841 pagevec_init(&pvec, 0);
2842 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2843 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2844
2845 while (!done && (index <= end)) {
2846 int i;
2847
2848 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2849 PAGECACHE_TAG_DIRTY,
2850 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2851 if (nr_pages == 0)
2852 break;
2853
2854 for (i = 0; i < nr_pages; i++) {
2855 struct page *page = pvec.pages[i];
2856
2857 /*
2858 * At this point, the page may be truncated or
2859 * invalidated (changing page->mapping to NULL), or
2860 * even swizzled back from swapper_space to tmpfs file
2861 * mapping. However, page->index will not change
2862 * because we have a reference on the page.
2863 */
2864 if (page->index > end) {
2865 done = 1;
2866 break;
2867 }
2868
2869 lock_page(page);
2870
2871 /*
2872 * Page truncated or invalidated. We can freely skip it
2873 * then, even for data integrity operations: the page
2874 * has disappeared concurrently, so there could be no
2875 * real expectation of this data interity operation
2876 * even if there is now a new, dirty page at the same
2877 * pagecache address.
2878 */
2879 if (unlikely(page->mapping != mapping)) {
2880continue_unlock:
2881 unlock_page(page);
2882 continue;
2883 }
2884
2885 if (!PageDirty(page)) {
2886 /* someone wrote it for us */
2887 goto continue_unlock;
2888 }
2889
2890 if (PageWriteback(page)) {
2891 if (wbc->sync_mode != WB_SYNC_NONE)
2892 wait_on_page_writeback(page);
2893 else
2894 goto continue_unlock;
2895 }
2896
2897 BUG_ON(PageWriteback(page));
2898 if (!clear_page_dirty_for_io(page))
2899 goto continue_unlock;
2900
2901 ret = __mpage_da_writepage(page, wbc, mpd);
2902 if (unlikely(ret)) {
2903 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2904 unlock_page(page);
2905 ret = 0;
2906 } else {
2907 done = 1;
2908 break;
2909 }
2910 }
2911
2912 if (nr_to_write > 0) {
2913 nr_to_write--;
2914 if (nr_to_write == 0 &&
2915 wbc->sync_mode == WB_SYNC_NONE) {
2916 /*
2917 * We stop writing back only if we are
2918 * not doing integrity sync. In case of
2919 * integrity sync we have to keep going
2920 * because someone may be concurrently
2921 * dirtying pages, and we might have
2922 * synced a lot of newly appeared dirty
2923 * pages, but have not synced all of the
2924 * old dirty pages.
2925 */
2926 done = 1;
2927 break;
2928 }
2929 }
2930 }
2931 pagevec_release(&pvec);
2932 cond_resched();
2933 }
2934 return ret;
2935}
2936
2937
64769240 2938static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2939 struct writeback_control *wbc)
64769240 2940{
22208ded
AK
2941 pgoff_t index;
2942 int range_whole = 0;
61628a3f 2943 handle_t *handle = NULL;
df22291f 2944 struct mpage_da_data mpd;
5e745b04 2945 struct inode *inode = mapping->host;
498e5f24
TT
2946 int pages_written = 0;
2947 long pages_skipped;
55138e0b 2948 unsigned int max_pages;
2acf2c26 2949 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2950 int needed_blocks, ret = 0;
2951 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2952 loff_t range_start = wbc->range_start;
5e745b04 2953 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2954
9bffad1e 2955 trace_ext4_da_writepages(inode, wbc);
ba80b101 2956
61628a3f
MC
2957 /*
2958 * No pages to write? This is mainly a kludge to avoid starting
2959 * a transaction for special inodes like journal inode on last iput()
2960 * because that could violate lock ordering on umount
2961 */
a1d6cc56 2962 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2963 return 0;
2a21e37e
TT
2964
2965 /*
2966 * If the filesystem has aborted, it is read-only, so return
2967 * right away instead of dumping stack traces later on that
2968 * will obscure the real source of the problem. We test
4ab2f15b 2969 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2970 * the latter could be true if the filesystem is mounted
2971 * read-only, and in that case, ext4_da_writepages should
2972 * *never* be called, so if that ever happens, we would want
2973 * the stack trace.
2974 */
4ab2f15b 2975 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2976 return -EROFS;
2977
22208ded
AK
2978 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2979 range_whole = 1;
61628a3f 2980
2acf2c26
AK
2981 range_cyclic = wbc->range_cyclic;
2982 if (wbc->range_cyclic) {
22208ded 2983 index = mapping->writeback_index;
2acf2c26
AK
2984 if (index)
2985 cycled = 0;
2986 wbc->range_start = index << PAGE_CACHE_SHIFT;
2987 wbc->range_end = LLONG_MAX;
2988 wbc->range_cyclic = 0;
2989 } else
22208ded 2990 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2991
55138e0b
TT
2992 /*
2993 * This works around two forms of stupidity. The first is in
2994 * the writeback code, which caps the maximum number of pages
2995 * written to be 1024 pages. This is wrong on multiple
2996 * levels; different architectues have a different page size,
2997 * which changes the maximum amount of data which gets
2998 * written. Secondly, 4 megabytes is way too small. XFS
2999 * forces this value to be 16 megabytes by multiplying
3000 * nr_to_write parameter by four, and then relies on its
3001 * allocator to allocate larger extents to make them
3002 * contiguous. Unfortunately this brings us to the second
3003 * stupidity, which is that ext4's mballoc code only allocates
3004 * at most 2048 blocks. So we force contiguous writes up to
3005 * the number of dirty blocks in the inode, or
3006 * sbi->max_writeback_mb_bump whichever is smaller.
3007 */
3008 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
3009 if (!range_cyclic && range_whole) {
3010 if (wbc->nr_to_write == LONG_MAX)
3011 desired_nr_to_write = wbc->nr_to_write;
3012 else
3013 desired_nr_to_write = wbc->nr_to_write * 8;
3014 } else
55138e0b
TT
3015 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3016 max_pages);
3017 if (desired_nr_to_write > max_pages)
3018 desired_nr_to_write = max_pages;
3019
3020 if (wbc->nr_to_write < desired_nr_to_write) {
3021 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3022 wbc->nr_to_write = desired_nr_to_write;
3023 }
3024
df22291f
AK
3025 mpd.wbc = wbc;
3026 mpd.inode = mapping->host;
3027
22208ded
AK
3028 pages_skipped = wbc->pages_skipped;
3029
2acf2c26 3030retry:
22208ded 3031 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3032
3033 /*
3034 * we insert one extent at a time. So we need
3035 * credit needed for single extent allocation.
3036 * journalled mode is currently not supported
3037 * by delalloc
3038 */
3039 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3040 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3041
61628a3f
MC
3042 /* start a new transaction*/
3043 handle = ext4_journal_start(inode, needed_blocks);
3044 if (IS_ERR(handle)) {
3045 ret = PTR_ERR(handle);
1693918e 3046 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3047 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3048 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3049 goto out_writepages;
3050 }
f63e6005
TT
3051
3052 /*
3053 * Now call __mpage_da_writepage to find the next
3054 * contiguous region of logical blocks that need
3055 * blocks to be allocated by ext4. We don't actually
3056 * submit the blocks for I/O here, even though
3057 * write_cache_pages thinks it will, and will set the
3058 * pages as clean for write before calling
3059 * __mpage_da_writepage().
3060 */
3061 mpd.b_size = 0;
3062 mpd.b_state = 0;
3063 mpd.b_blocknr = 0;
3064 mpd.first_page = 0;
3065 mpd.next_page = 0;
3066 mpd.io_done = 0;
3067 mpd.pages_written = 0;
3068 mpd.retval = 0;
8e48dcfb 3069 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3070 /*
af901ca1 3071 * If we have a contiguous extent of pages and we
f63e6005
TT
3072 * haven't done the I/O yet, map the blocks and submit
3073 * them for I/O.
3074 */
3075 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 3076 mpage_da_map_and_submit(&mpd);
f63e6005
TT
3077 ret = MPAGE_DA_EXTENT_TAIL;
3078 }
b3a3ca8c 3079 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3080 wbc->nr_to_write -= mpd.pages_written;
df22291f 3081
61628a3f 3082 ext4_journal_stop(handle);
df22291f 3083
8f64b32e 3084 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3085 /* commit the transaction which would
3086 * free blocks released in the transaction
3087 * and try again
3088 */
df22291f 3089 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3090 wbc->pages_skipped = pages_skipped;
3091 ret = 0;
3092 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3093 /*
3094 * got one extent now try with
3095 * rest of the pages
3096 */
22208ded
AK
3097 pages_written += mpd.pages_written;
3098 wbc->pages_skipped = pages_skipped;
a1d6cc56 3099 ret = 0;
2acf2c26 3100 io_done = 1;
22208ded 3101 } else if (wbc->nr_to_write)
61628a3f
MC
3102 /*
3103 * There is no more writeout needed
3104 * or we requested for a noblocking writeout
3105 * and we found the device congested
3106 */
61628a3f 3107 break;
a1d6cc56 3108 }
2acf2c26
AK
3109 if (!io_done && !cycled) {
3110 cycled = 1;
3111 index = 0;
3112 wbc->range_start = index << PAGE_CACHE_SHIFT;
3113 wbc->range_end = mapping->writeback_index - 1;
3114 goto retry;
3115 }
22208ded 3116 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3117 ext4_msg(inode->i_sb, KERN_CRIT,
3118 "This should not happen leaving %s "
fbe845dd 3119 "with nr_to_write = %ld ret = %d",
1693918e 3120 __func__, wbc->nr_to_write, ret);
22208ded
AK
3121
3122 /* Update index */
3123 index += pages_written;
2acf2c26 3124 wbc->range_cyclic = range_cyclic;
22208ded
AK
3125 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3126 /*
3127 * set the writeback_index so that range_cyclic
3128 * mode will write it back later
3129 */
3130 mapping->writeback_index = index;
a1d6cc56 3131
61628a3f 3132out_writepages:
2faf2e19 3133 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3134 wbc->range_start = range_start;
9bffad1e 3135 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3136 return ret;
64769240
AT
3137}
3138
79f0be8d
AK
3139#define FALL_BACK_TO_NONDELALLOC 1
3140static int ext4_nonda_switch(struct super_block *sb)
3141{
3142 s64 free_blocks, dirty_blocks;
3143 struct ext4_sb_info *sbi = EXT4_SB(sb);
3144
3145 /*
3146 * switch to non delalloc mode if we are running low
3147 * on free block. The free block accounting via percpu
179f7ebf 3148 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3149 * accumulated on each CPU without updating global counters
3150 * Delalloc need an accurate free block accounting. So switch
3151 * to non delalloc when we are near to error range.
3152 */
3153 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3154 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3155 if (2 * free_blocks < 3 * dirty_blocks ||
3156 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3157 /*
c8afb446
ES
3158 * free block count is less than 150% of dirty blocks
3159 * or free blocks is less than watermark
79f0be8d
AK
3160 */
3161 return 1;
3162 }
c8afb446
ES
3163 /*
3164 * Even if we don't switch but are nearing capacity,
3165 * start pushing delalloc when 1/2 of free blocks are dirty.
3166 */
3167 if (free_blocks < 2 * dirty_blocks)
3168 writeback_inodes_sb_if_idle(sb);
3169
79f0be8d
AK
3170 return 0;
3171}
3172
64769240 3173static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3174 loff_t pos, unsigned len, unsigned flags,
3175 struct page **pagep, void **fsdata)
64769240 3176{
72b8ab9d 3177 int ret, retries = 0;
64769240
AT
3178 struct page *page;
3179 pgoff_t index;
64769240
AT
3180 struct inode *inode = mapping->host;
3181 handle_t *handle;
3182
3183 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3184
3185 if (ext4_nonda_switch(inode->i_sb)) {
3186 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3187 return ext4_write_begin(file, mapping, pos,
3188 len, flags, pagep, fsdata);
3189 }
3190 *fsdata = (void *)0;
9bffad1e 3191 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3192retry:
64769240
AT
3193 /*
3194 * With delayed allocation, we don't log the i_disksize update
3195 * if there is delayed block allocation. But we still need
3196 * to journalling the i_disksize update if writes to the end
3197 * of file which has an already mapped buffer.
3198 */
3199 handle = ext4_journal_start(inode, 1);
3200 if (IS_ERR(handle)) {
3201 ret = PTR_ERR(handle);
3202 goto out;
3203 }
ebd3610b
JK
3204 /* We cannot recurse into the filesystem as the transaction is already
3205 * started */
3206 flags |= AOP_FLAG_NOFS;
64769240 3207
54566b2c 3208 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3209 if (!page) {
3210 ext4_journal_stop(handle);
3211 ret = -ENOMEM;
3212 goto out;
3213 }
64769240
AT
3214 *pagep = page;
3215
6e1db88d 3216 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3217 if (ret < 0) {
3218 unlock_page(page);
3219 ext4_journal_stop(handle);
3220 page_cache_release(page);
ae4d5372
AK
3221 /*
3222 * block_write_begin may have instantiated a few blocks
3223 * outside i_size. Trim these off again. Don't need
3224 * i_size_read because we hold i_mutex.
3225 */
3226 if (pos + len > inode->i_size)
b9a4207d 3227 ext4_truncate_failed_write(inode);
64769240
AT
3228 }
3229
d2a17637
MC
3230 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3231 goto retry;
64769240
AT
3232out:
3233 return ret;
3234}
3235
632eaeab
MC
3236/*
3237 * Check if we should update i_disksize
3238 * when write to the end of file but not require block allocation
3239 */
3240static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3241 unsigned long offset)
632eaeab
MC
3242{
3243 struct buffer_head *bh;
3244 struct inode *inode = page->mapping->host;
3245 unsigned int idx;
3246 int i;
3247
3248 bh = page_buffers(page);
3249 idx = offset >> inode->i_blkbits;
3250
af5bc92d 3251 for (i = 0; i < idx; i++)
632eaeab
MC
3252 bh = bh->b_this_page;
3253
29fa89d0 3254 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3255 return 0;
3256 return 1;
3257}
3258
64769240 3259static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3260 struct address_space *mapping,
3261 loff_t pos, unsigned len, unsigned copied,
3262 struct page *page, void *fsdata)
64769240
AT
3263{
3264 struct inode *inode = mapping->host;
3265 int ret = 0, ret2;
3266 handle_t *handle = ext4_journal_current_handle();
3267 loff_t new_i_size;
632eaeab 3268 unsigned long start, end;
79f0be8d
AK
3269 int write_mode = (int)(unsigned long)fsdata;
3270
3271 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3272 if (ext4_should_order_data(inode)) {
3273 return ext4_ordered_write_end(file, mapping, pos,
3274 len, copied, page, fsdata);
3275 } else if (ext4_should_writeback_data(inode)) {
3276 return ext4_writeback_write_end(file, mapping, pos,
3277 len, copied, page, fsdata);
3278 } else {
3279 BUG();
3280 }
3281 }
632eaeab 3282
9bffad1e 3283 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3284 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3285 end = start + copied - 1;
64769240
AT
3286
3287 /*
3288 * generic_write_end() will run mark_inode_dirty() if i_size
3289 * changes. So let's piggyback the i_disksize mark_inode_dirty
3290 * into that.
3291 */
3292
3293 new_i_size = pos + copied;
632eaeab
MC
3294 if (new_i_size > EXT4_I(inode)->i_disksize) {
3295 if (ext4_da_should_update_i_disksize(page, end)) {
3296 down_write(&EXT4_I(inode)->i_data_sem);
3297 if (new_i_size > EXT4_I(inode)->i_disksize) {
3298 /*
3299 * Updating i_disksize when extending file
3300 * without needing block allocation
3301 */
3302 if (ext4_should_order_data(inode))
3303 ret = ext4_jbd2_file_inode(handle,
3304 inode);
64769240 3305
632eaeab
MC
3306 EXT4_I(inode)->i_disksize = new_i_size;
3307 }
3308 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3309 /* We need to mark inode dirty even if
3310 * new_i_size is less that inode->i_size
3311 * bu greater than i_disksize.(hint delalloc)
3312 */
3313 ext4_mark_inode_dirty(handle, inode);
64769240 3314 }
632eaeab 3315 }
64769240
AT
3316 ret2 = generic_write_end(file, mapping, pos, len, copied,
3317 page, fsdata);
3318 copied = ret2;
3319 if (ret2 < 0)
3320 ret = ret2;
3321 ret2 = ext4_journal_stop(handle);
3322 if (!ret)
3323 ret = ret2;
3324
3325 return ret ? ret : copied;
3326}
3327
3328static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3329{
64769240
AT
3330 /*
3331 * Drop reserved blocks
3332 */
3333 BUG_ON(!PageLocked(page));
3334 if (!page_has_buffers(page))
3335 goto out;
3336
d2a17637 3337 ext4_da_page_release_reservation(page, offset);
64769240
AT
3338
3339out:
3340 ext4_invalidatepage(page, offset);
3341
3342 return;
3343}
3344
ccd2506b
TT
3345/*
3346 * Force all delayed allocation blocks to be allocated for a given inode.
3347 */
3348int ext4_alloc_da_blocks(struct inode *inode)
3349{
fb40ba0d
TT
3350 trace_ext4_alloc_da_blocks(inode);
3351
ccd2506b
TT
3352 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3353 !EXT4_I(inode)->i_reserved_meta_blocks)
3354 return 0;
3355
3356 /*
3357 * We do something simple for now. The filemap_flush() will
3358 * also start triggering a write of the data blocks, which is
3359 * not strictly speaking necessary (and for users of
3360 * laptop_mode, not even desirable). However, to do otherwise
3361 * would require replicating code paths in:
de9a55b8 3362 *
ccd2506b
TT
3363 * ext4_da_writepages() ->
3364 * write_cache_pages() ---> (via passed in callback function)
3365 * __mpage_da_writepage() -->
3366 * mpage_add_bh_to_extent()
3367 * mpage_da_map_blocks()
3368 *
3369 * The problem is that write_cache_pages(), located in
3370 * mm/page-writeback.c, marks pages clean in preparation for
3371 * doing I/O, which is not desirable if we're not planning on
3372 * doing I/O at all.
3373 *
3374 * We could call write_cache_pages(), and then redirty all of
3375 * the pages by calling redirty_page_for_writeback() but that
3376 * would be ugly in the extreme. So instead we would need to
3377 * replicate parts of the code in the above functions,
3378 * simplifying them becuase we wouldn't actually intend to
3379 * write out the pages, but rather only collect contiguous
3380 * logical block extents, call the multi-block allocator, and
3381 * then update the buffer heads with the block allocations.
de9a55b8 3382 *
ccd2506b
TT
3383 * For now, though, we'll cheat by calling filemap_flush(),
3384 * which will map the blocks, and start the I/O, but not
3385 * actually wait for the I/O to complete.
3386 */
3387 return filemap_flush(inode->i_mapping);
3388}
64769240 3389
ac27a0ec
DK
3390/*
3391 * bmap() is special. It gets used by applications such as lilo and by
3392 * the swapper to find the on-disk block of a specific piece of data.
3393 *
3394 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3395 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3396 * filesystem and enables swap, then they may get a nasty shock when the
3397 * data getting swapped to that swapfile suddenly gets overwritten by
3398 * the original zero's written out previously to the journal and
3399 * awaiting writeback in the kernel's buffer cache.
3400 *
3401 * So, if we see any bmap calls here on a modified, data-journaled file,
3402 * take extra steps to flush any blocks which might be in the cache.
3403 */
617ba13b 3404static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3405{
3406 struct inode *inode = mapping->host;
3407 journal_t *journal;
3408 int err;
3409
64769240
AT
3410 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3411 test_opt(inode->i_sb, DELALLOC)) {
3412 /*
3413 * With delalloc we want to sync the file
3414 * so that we can make sure we allocate
3415 * blocks for file
3416 */
3417 filemap_write_and_wait(mapping);
3418 }
3419
19f5fb7a
TT
3420 if (EXT4_JOURNAL(inode) &&
3421 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3422 /*
3423 * This is a REALLY heavyweight approach, but the use of
3424 * bmap on dirty files is expected to be extremely rare:
3425 * only if we run lilo or swapon on a freshly made file
3426 * do we expect this to happen.
3427 *
3428 * (bmap requires CAP_SYS_RAWIO so this does not
3429 * represent an unprivileged user DOS attack --- we'd be
3430 * in trouble if mortal users could trigger this path at
3431 * will.)
3432 *
617ba13b 3433 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3434 * regular files. If somebody wants to bmap a directory
3435 * or symlink and gets confused because the buffer
3436 * hasn't yet been flushed to disk, they deserve
3437 * everything they get.
3438 */
3439
19f5fb7a 3440 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3441 journal = EXT4_JOURNAL(inode);
dab291af
MC
3442 jbd2_journal_lock_updates(journal);
3443 err = jbd2_journal_flush(journal);
3444 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3445
3446 if (err)
3447 return 0;
3448 }
3449
af5bc92d 3450 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3451}
3452
617ba13b 3453static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3454{
617ba13b 3455 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3456}
3457
3458static int
617ba13b 3459ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3460 struct list_head *pages, unsigned nr_pages)
3461{
617ba13b 3462 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3463}
3464
744692dc
JZ
3465static void ext4_free_io_end(ext4_io_end_t *io)
3466{
3467 BUG_ON(!io);
3468 if (io->page)
3469 put_page(io->page);
3470 iput(io->inode);
3471 kfree(io);
3472}
3473
3474static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3475{
3476 struct buffer_head *head, *bh;
3477 unsigned int curr_off = 0;
3478
3479 if (!page_has_buffers(page))
3480 return;
3481 head = bh = page_buffers(page);
3482 do {
3483 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3484 && bh->b_private) {
3485 ext4_free_io_end(bh->b_private);
3486 bh->b_private = NULL;
3487 bh->b_end_io = NULL;
3488 }
3489 curr_off = curr_off + bh->b_size;
3490 bh = bh->b_this_page;
3491 } while (bh != head);
3492}
3493
617ba13b 3494static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3495{
617ba13b 3496 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3497
744692dc
JZ
3498 /*
3499 * free any io_end structure allocated for buffers to be discarded
3500 */
3501 if (ext4_should_dioread_nolock(page->mapping->host))
3502 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3503 /*
3504 * If it's a full truncate we just forget about the pending dirtying
3505 */
3506 if (offset == 0)
3507 ClearPageChecked(page);
3508
0390131b
FM
3509 if (journal)
3510 jbd2_journal_invalidatepage(journal, page, offset);
3511 else
3512 block_invalidatepage(page, offset);
ac27a0ec
DK
3513}
3514
617ba13b 3515static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3516{
617ba13b 3517 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3518
3519 WARN_ON(PageChecked(page));
3520 if (!page_has_buffers(page))
3521 return 0;
0390131b
FM
3522 if (journal)
3523 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3524 else
3525 return try_to_free_buffers(page);
ac27a0ec
DK
3526}
3527
3528/*
4c0425ff
MC
3529 * O_DIRECT for ext3 (or indirect map) based files
3530 *
ac27a0ec
DK
3531 * If the O_DIRECT write will extend the file then add this inode to the
3532 * orphan list. So recovery will truncate it back to the original size
3533 * if the machine crashes during the write.
3534 *
3535 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3536 * crashes then stale disk data _may_ be exposed inside the file. But current
3537 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3538 */
4c0425ff 3539static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3540 const struct iovec *iov, loff_t offset,
3541 unsigned long nr_segs)
ac27a0ec
DK
3542{
3543 struct file *file = iocb->ki_filp;
3544 struct inode *inode = file->f_mapping->host;
617ba13b 3545 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3546 handle_t *handle;
ac27a0ec
DK
3547 ssize_t ret;
3548 int orphan = 0;
3549 size_t count = iov_length(iov, nr_segs);
fbbf6945 3550 int retries = 0;
ac27a0ec
DK
3551
3552 if (rw == WRITE) {
3553 loff_t final_size = offset + count;
3554
ac27a0ec 3555 if (final_size > inode->i_size) {
7fb5409d
JK
3556 /* Credits for sb + inode write */
3557 handle = ext4_journal_start(inode, 2);
3558 if (IS_ERR(handle)) {
3559 ret = PTR_ERR(handle);
3560 goto out;
3561 }
617ba13b 3562 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3563 if (ret) {
3564 ext4_journal_stop(handle);
3565 goto out;
3566 }
ac27a0ec
DK
3567 orphan = 1;
3568 ei->i_disksize = inode->i_size;
7fb5409d 3569 ext4_journal_stop(handle);
ac27a0ec
DK
3570 }
3571 }
3572
fbbf6945 3573retry:
b7adc1f3 3574 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3575 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3576 inode->i_sb->s_bdev, iov,
3577 offset, nr_segs,
eafdc7d1
CH
3578 ext4_get_block, NULL, NULL, 0);
3579 else {
b7adc1f3
JZ
3580 ret = blockdev_direct_IO(rw, iocb, inode,
3581 inode->i_sb->s_bdev, iov,
ac27a0ec 3582 offset, nr_segs,
617ba13b 3583 ext4_get_block, NULL);
eafdc7d1
CH
3584
3585 if (unlikely((rw & WRITE) && ret < 0)) {
3586 loff_t isize = i_size_read(inode);
3587 loff_t end = offset + iov_length(iov, nr_segs);
3588
3589 if (end > isize)
3590 vmtruncate(inode, isize);
3591 }
3592 }
fbbf6945
ES
3593 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3594 goto retry;
ac27a0ec 3595
7fb5409d 3596 if (orphan) {
ac27a0ec
DK
3597 int err;
3598
7fb5409d
JK
3599 /* Credits for sb + inode write */
3600 handle = ext4_journal_start(inode, 2);
3601 if (IS_ERR(handle)) {
3602 /* This is really bad luck. We've written the data
3603 * but cannot extend i_size. Bail out and pretend
3604 * the write failed... */
3605 ret = PTR_ERR(handle);
da1dafca
DM
3606 if (inode->i_nlink)
3607 ext4_orphan_del(NULL, inode);
3608
7fb5409d
JK
3609 goto out;
3610 }
3611 if (inode->i_nlink)
617ba13b 3612 ext4_orphan_del(handle, inode);
7fb5409d 3613 if (ret > 0) {
ac27a0ec
DK
3614 loff_t end = offset + ret;
3615 if (end > inode->i_size) {
3616 ei->i_disksize = end;
3617 i_size_write(inode, end);
3618 /*
3619 * We're going to return a positive `ret'
3620 * here due to non-zero-length I/O, so there's
3621 * no way of reporting error returns from
617ba13b 3622 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3623 * ignore it.
3624 */
617ba13b 3625 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3626 }
3627 }
617ba13b 3628 err = ext4_journal_stop(handle);
ac27a0ec
DK
3629 if (ret == 0)
3630 ret = err;
3631 }
3632out:
3633 return ret;
3634}
3635
2ed88685
TT
3636/*
3637 * ext4_get_block used when preparing for a DIO write or buffer write.
3638 * We allocate an uinitialized extent if blocks haven't been allocated.
3639 * The extent will be converted to initialized after the IO is complete.
3640 */
c7064ef1 3641static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3642 struct buffer_head *bh_result, int create)
3643{
c7064ef1 3644 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3645 inode->i_ino, create);
2ed88685
TT
3646 return _ext4_get_block(inode, iblock, bh_result,
3647 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3648}
3649
c7064ef1 3650static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3651{
3652#ifdef EXT4_DEBUG
3653 struct list_head *cur, *before, *after;
3654 ext4_io_end_t *io, *io0, *io1;
744692dc 3655 unsigned long flags;
8d5d02e6 3656
c7064ef1
JZ
3657 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3658 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3659 return;
3660 }
3661
c7064ef1 3662 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3663 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3664 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3665 cur = &io->list;
3666 before = cur->prev;
3667 io0 = container_of(before, ext4_io_end_t, list);
3668 after = cur->next;
3669 io1 = container_of(after, ext4_io_end_t, list);
3670
3671 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3672 io, inode->i_ino, io0, io1);
3673 }
744692dc 3674 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3675#endif
3676}
4c0425ff
MC
3677
3678/*
4c0425ff
MC
3679 * check a range of space and convert unwritten extents to written.
3680 */
c7064ef1 3681static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3682{
4c0425ff
MC
3683 struct inode *inode = io->inode;
3684 loff_t offset = io->offset;
a1de02dc 3685 ssize_t size = io->size;
4c0425ff 3686 int ret = 0;
4c0425ff 3687
c7064ef1 3688 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3689 "list->prev 0x%p\n",
3690 io, inode->i_ino, io->list.next, io->list.prev);
3691
3692 if (list_empty(&io->list))
3693 return ret;
3694
c7064ef1 3695 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3696 return ret;
3697
744692dc 3698 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3699 if (ret < 0) {
4c0425ff 3700 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3701 "extents to written extents, error is %d"
3702 " io is still on inode %lu aio dio list\n",
3703 __func__, ret, inode->i_ino);
3704 return ret;
3705 }
4c0425ff 3706
5b3ff237
JZ
3707 if (io->iocb)
3708 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3709 /* clear the DIO AIO unwritten flag */
3710 io->flag = 0;
3711 return ret;
4c0425ff 3712}
c7064ef1 3713
8d5d02e6
MC
3714/*
3715 * work on completed aio dio IO, to convert unwritten extents to extents
3716 */
c7064ef1 3717static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3718{
744692dc
JZ
3719 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3720 struct inode *inode = io->inode;
3721 struct ext4_inode_info *ei = EXT4_I(inode);
3722 unsigned long flags;
3723 int ret;
4c0425ff 3724
8d5d02e6 3725 mutex_lock(&inode->i_mutex);
c7064ef1 3726 ret = ext4_end_io_nolock(io);
744692dc
JZ
3727 if (ret < 0) {
3728 mutex_unlock(&inode->i_mutex);
3729 return;
8d5d02e6 3730 }
744692dc
JZ
3731
3732 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3733 if (!list_empty(&io->list))
3734 list_del_init(&io->list);
3735 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3736 mutex_unlock(&inode->i_mutex);
744692dc 3737 ext4_free_io_end(io);
8d5d02e6 3738}
c7064ef1 3739
8d5d02e6
MC
3740/*
3741 * This function is called from ext4_sync_file().
3742 *
c7064ef1
JZ
3743 * When IO is completed, the work to convert unwritten extents to
3744 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3745 * scheduled. When fsync is called, we need to ensure the
3746 * conversion is complete before fsync returns.
c7064ef1
JZ
3747 * The inode keeps track of a list of pending/completed IO that
3748 * might needs to do the conversion. This function walks through
3749 * the list and convert the related unwritten extents for completed IO
3750 * to written.
3751 * The function return the number of pending IOs on success.
8d5d02e6 3752 */
c7064ef1 3753int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3754{
3755 ext4_io_end_t *io;
744692dc
JZ
3756 struct ext4_inode_info *ei = EXT4_I(inode);
3757 unsigned long flags;
8d5d02e6
MC
3758 int ret = 0;
3759 int ret2 = 0;
3760
744692dc 3761 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3762 return ret;
3763
c7064ef1 3764 dump_completed_IO(inode);
744692dc
JZ
3765 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3766 while (!list_empty(&ei->i_completed_io_list)){
3767 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3768 ext4_io_end_t, list);
3769 /*
c7064ef1 3770 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3771 * IO to written.
3772 *
3773 * When ext4_sync_file() is called, run_queue() may already
3774 * about to flush the work corresponding to this io structure.
3775 * It will be upset if it founds the io structure related
3776 * to the work-to-be schedule is freed.
3777 *
3778 * Thus we need to keep the io structure still valid here after
3779 * convertion finished. The io structure has a flag to
3780 * avoid double converting from both fsync and background work
3781 * queue work.
3782 */
744692dc 3783 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3784 ret = ext4_end_io_nolock(io);
744692dc 3785 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3786 if (ret < 0)
3787 ret2 = ret;
3788 else
3789 list_del_init(&io->list);
3790 }
744692dc 3791 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3792 return (ret2 < 0) ? ret2 : 0;
3793}
3794
744692dc 3795static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3796{
3797 ext4_io_end_t *io = NULL;
3798
744692dc 3799 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3800
3801 if (io) {
8d5d02e6 3802 igrab(inode);
4c0425ff 3803 io->inode = inode;
8d5d02e6 3804 io->flag = 0;
4c0425ff
MC
3805 io->offset = 0;
3806 io->size = 0;
744692dc 3807 io->page = NULL;
5b3ff237
JZ
3808 io->iocb = NULL;
3809 io->result = 0;
c7064ef1 3810 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3811 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3812 }
3813
3814 return io;
3815}
3816
3817static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3818 ssize_t size, void *private, int ret,
3819 bool is_async)
4c0425ff
MC
3820{
3821 ext4_io_end_t *io_end = iocb->private;
3822 struct workqueue_struct *wq;
744692dc
JZ
3823 unsigned long flags;
3824 struct ext4_inode_info *ei;
4c0425ff 3825
4b70df18
M
3826 /* if not async direct IO or dio with 0 bytes write, just return */
3827 if (!io_end || !size)
552ef802 3828 goto out;
4b70df18 3829
8d5d02e6
MC
3830 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3831 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3832 iocb->private, io_end->inode->i_ino, iocb, offset,
3833 size);
8d5d02e6
MC
3834
3835 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3836 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3837 ext4_free_io_end(io_end);
3838 iocb->private = NULL;
5b3ff237
JZ
3839out:
3840 if (is_async)
3841 aio_complete(iocb, ret, 0);
3842 return;
8d5d02e6
MC
3843 }
3844
4c0425ff
MC
3845 io_end->offset = offset;
3846 io_end->size = size;
5b3ff237
JZ
3847 if (is_async) {
3848 io_end->iocb = iocb;
3849 io_end->result = ret;
3850 }
4c0425ff
MC
3851 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3852
8d5d02e6 3853 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3854 ei = EXT4_I(io_end->inode);
3855 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3856 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3857 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3858
3859 /* queue the work to convert unwritten extents to written */
3860 queue_work(wq, &io_end->work);
4c0425ff
MC
3861 iocb->private = NULL;
3862}
c7064ef1 3863
744692dc
JZ
3864static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3865{
3866 ext4_io_end_t *io_end = bh->b_private;
3867 struct workqueue_struct *wq;
3868 struct inode *inode;
3869 unsigned long flags;
3870
3871 if (!test_clear_buffer_uninit(bh) || !io_end)
3872 goto out;
3873
3874 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3875 printk("sb umounted, discard end_io request for inode %lu\n",
3876 io_end->inode->i_ino);
3877 ext4_free_io_end(io_end);
3878 goto out;
3879 }
3880
3881 io_end->flag = EXT4_IO_UNWRITTEN;
3882 inode = io_end->inode;
3883
3884 /* Add the io_end to per-inode completed io list*/
3885 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3886 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3887 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3888
3889 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3890 /* queue the work to convert unwritten extents to written */
3891 queue_work(wq, &io_end->work);
3892out:
3893 bh->b_private = NULL;
3894 bh->b_end_io = NULL;
3895 clear_buffer_uninit(bh);
3896 end_buffer_async_write(bh, uptodate);
3897}
3898
3899static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3900{
3901 ext4_io_end_t *io_end;
3902 struct page *page = bh->b_page;
3903 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3904 size_t size = bh->b_size;
3905
3906retry:
3907 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3908 if (!io_end) {
3909 if (printk_ratelimit())
3910 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3911 schedule();
3912 goto retry;
3913 }
3914 io_end->offset = offset;
3915 io_end->size = size;
3916 /*
3917 * We need to hold a reference to the page to make sure it
3918 * doesn't get evicted before ext4_end_io_work() has a chance
3919 * to convert the extent from written to unwritten.
3920 */
3921 io_end->page = page;
3922 get_page(io_end->page);
3923
3924 bh->b_private = io_end;
3925 bh->b_end_io = ext4_end_io_buffer_write;
3926 return 0;
3927}
3928
4c0425ff
MC
3929/*
3930 * For ext4 extent files, ext4 will do direct-io write to holes,
3931 * preallocated extents, and those write extend the file, no need to
3932 * fall back to buffered IO.
3933 *
3934 * For holes, we fallocate those blocks, mark them as unintialized
3935 * If those blocks were preallocated, we mark sure they are splited, but
3936 * still keep the range to write as unintialized.
3937 *
8d5d02e6
MC
3938 * The unwrritten extents will be converted to written when DIO is completed.
3939 * For async direct IO, since the IO may still pending when return, we
3940 * set up an end_io call back function, which will do the convertion
3941 * when async direct IO completed.
4c0425ff
MC
3942 *
3943 * If the O_DIRECT write will extend the file then add this inode to the
3944 * orphan list. So recovery will truncate it back to the original size
3945 * if the machine crashes during the write.
3946 *
3947 */
3948static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3949 const struct iovec *iov, loff_t offset,
3950 unsigned long nr_segs)
3951{
3952 struct file *file = iocb->ki_filp;
3953 struct inode *inode = file->f_mapping->host;
3954 ssize_t ret;
3955 size_t count = iov_length(iov, nr_segs);
3956
3957 loff_t final_size = offset + count;
3958 if (rw == WRITE && final_size <= inode->i_size) {
3959 /*
8d5d02e6
MC
3960 * We could direct write to holes and fallocate.
3961 *
3962 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3963 * to prevent paralel buffered read to expose the stale data
3964 * before DIO complete the data IO.
8d5d02e6
MC
3965 *
3966 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3967 * will just simply mark the buffer mapped but still
3968 * keep the extents uninitialized.
3969 *
8d5d02e6
MC
3970 * for non AIO case, we will convert those unwritten extents
3971 * to written after return back from blockdev_direct_IO.
3972 *
3973 * for async DIO, the conversion needs to be defered when
3974 * the IO is completed. The ext4 end_io callback function
3975 * will be called to take care of the conversion work.
3976 * Here for async case, we allocate an io_end structure to
3977 * hook to the iocb.
4c0425ff 3978 */
8d5d02e6
MC
3979 iocb->private = NULL;
3980 EXT4_I(inode)->cur_aio_dio = NULL;
3981 if (!is_sync_kiocb(iocb)) {
744692dc 3982 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3983 if (!iocb->private)
3984 return -ENOMEM;
3985 /*
3986 * we save the io structure for current async
79e83036 3987 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3988 * could flag the io structure whether there
3989 * is a unwritten extents needs to be converted
3990 * when IO is completed.
3991 */
3992 EXT4_I(inode)->cur_aio_dio = iocb->private;
3993 }
3994
4c0425ff
MC
3995 ret = blockdev_direct_IO(rw, iocb, inode,
3996 inode->i_sb->s_bdev, iov,
3997 offset, nr_segs,
c7064ef1 3998 ext4_get_block_write,
4c0425ff 3999 ext4_end_io_dio);
8d5d02e6
MC
4000 if (iocb->private)
4001 EXT4_I(inode)->cur_aio_dio = NULL;
4002 /*
4003 * The io_end structure takes a reference to the inode,
4004 * that structure needs to be destroyed and the
4005 * reference to the inode need to be dropped, when IO is
4006 * complete, even with 0 byte write, or failed.
4007 *
4008 * In the successful AIO DIO case, the io_end structure will be
4009 * desctroyed and the reference to the inode will be dropped
4010 * after the end_io call back function is called.
4011 *
4012 * In the case there is 0 byte write, or error case, since
4013 * VFS direct IO won't invoke the end_io call back function,
4014 * we need to free the end_io structure here.
4015 */
4016 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4017 ext4_free_io_end(iocb->private);
4018 iocb->private = NULL;
19f5fb7a
TT
4019 } else if (ret > 0 && ext4_test_inode_state(inode,
4020 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 4021 int err;
8d5d02e6
MC
4022 /*
4023 * for non AIO case, since the IO is already
4024 * completed, we could do the convertion right here
4025 */
109f5565
M
4026 err = ext4_convert_unwritten_extents(inode,
4027 offset, ret);
4028 if (err < 0)
4029 ret = err;
19f5fb7a 4030 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 4031 }
4c0425ff
MC
4032 return ret;
4033 }
8d5d02e6
MC
4034
4035 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4036 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4037}
4038
4039static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4040 const struct iovec *iov, loff_t offset,
4041 unsigned long nr_segs)
4042{
4043 struct file *file = iocb->ki_filp;
4044 struct inode *inode = file->f_mapping->host;
4045
12e9b892 4046 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4047 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4048
4049 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4050}
4051
ac27a0ec 4052/*
617ba13b 4053 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4054 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4055 * much here because ->set_page_dirty is called under VFS locks. The page is
4056 * not necessarily locked.
4057 *
4058 * We cannot just dirty the page and leave attached buffers clean, because the
4059 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4060 * or jbddirty because all the journalling code will explode.
4061 *
4062 * So what we do is to mark the page "pending dirty" and next time writepage
4063 * is called, propagate that into the buffers appropriately.
4064 */
617ba13b 4065static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4066{
4067 SetPageChecked(page);
4068 return __set_page_dirty_nobuffers(page);
4069}
4070
617ba13b 4071static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4072 .readpage = ext4_readpage,
4073 .readpages = ext4_readpages,
43ce1d23 4074 .writepage = ext4_writepage,
8ab22b9a
HH
4075 .sync_page = block_sync_page,
4076 .write_begin = ext4_write_begin,
4077 .write_end = ext4_ordered_write_end,
4078 .bmap = ext4_bmap,
4079 .invalidatepage = ext4_invalidatepage,
4080 .releasepage = ext4_releasepage,
4081 .direct_IO = ext4_direct_IO,
4082 .migratepage = buffer_migrate_page,
4083 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4084 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4085};
4086
617ba13b 4087static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4088 .readpage = ext4_readpage,
4089 .readpages = ext4_readpages,
43ce1d23 4090 .writepage = ext4_writepage,
8ab22b9a
HH
4091 .sync_page = block_sync_page,
4092 .write_begin = ext4_write_begin,
4093 .write_end = ext4_writeback_write_end,
4094 .bmap = ext4_bmap,
4095 .invalidatepage = ext4_invalidatepage,
4096 .releasepage = ext4_releasepage,
4097 .direct_IO = ext4_direct_IO,
4098 .migratepage = buffer_migrate_page,
4099 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4100 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4101};
4102
617ba13b 4103static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4104 .readpage = ext4_readpage,
4105 .readpages = ext4_readpages,
43ce1d23 4106 .writepage = ext4_writepage,
8ab22b9a
HH
4107 .sync_page = block_sync_page,
4108 .write_begin = ext4_write_begin,
4109 .write_end = ext4_journalled_write_end,
4110 .set_page_dirty = ext4_journalled_set_page_dirty,
4111 .bmap = ext4_bmap,
4112 .invalidatepage = ext4_invalidatepage,
4113 .releasepage = ext4_releasepage,
4114 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4115 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4116};
4117
64769240 4118static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4119 .readpage = ext4_readpage,
4120 .readpages = ext4_readpages,
43ce1d23 4121 .writepage = ext4_writepage,
8ab22b9a
HH
4122 .writepages = ext4_da_writepages,
4123 .sync_page = block_sync_page,
4124 .write_begin = ext4_da_write_begin,
4125 .write_end = ext4_da_write_end,
4126 .bmap = ext4_bmap,
4127 .invalidatepage = ext4_da_invalidatepage,
4128 .releasepage = ext4_releasepage,
4129 .direct_IO = ext4_direct_IO,
4130 .migratepage = buffer_migrate_page,
4131 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4132 .error_remove_page = generic_error_remove_page,
64769240
AT
4133};
4134
617ba13b 4135void ext4_set_aops(struct inode *inode)
ac27a0ec 4136{
cd1aac32
AK
4137 if (ext4_should_order_data(inode) &&
4138 test_opt(inode->i_sb, DELALLOC))
4139 inode->i_mapping->a_ops = &ext4_da_aops;
4140 else if (ext4_should_order_data(inode))
617ba13b 4141 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4142 else if (ext4_should_writeback_data(inode) &&
4143 test_opt(inode->i_sb, DELALLOC))
4144 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4145 else if (ext4_should_writeback_data(inode))
4146 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4147 else
617ba13b 4148 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4149}
4150
4151/*
617ba13b 4152 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4153 * up to the end of the block which corresponds to `from'.
4154 * This required during truncate. We need to physically zero the tail end
4155 * of that block so it doesn't yield old data if the file is later grown.
4156 */
cf108bca 4157int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4158 struct address_space *mapping, loff_t from)
4159{
617ba13b 4160 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4161 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4162 unsigned blocksize, length, pos;
4163 ext4_lblk_t iblock;
ac27a0ec
DK
4164 struct inode *inode = mapping->host;
4165 struct buffer_head *bh;
cf108bca 4166 struct page *page;
ac27a0ec 4167 int err = 0;
ac27a0ec 4168
f4a01017
TT
4169 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4170 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4171 if (!page)
4172 return -EINVAL;
4173
ac27a0ec
DK
4174 blocksize = inode->i_sb->s_blocksize;
4175 length = blocksize - (offset & (blocksize - 1));
4176 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4177
ac27a0ec
DK
4178 if (!page_has_buffers(page))
4179 create_empty_buffers(page, blocksize, 0);
4180
4181 /* Find the buffer that contains "offset" */
4182 bh = page_buffers(page);
4183 pos = blocksize;
4184 while (offset >= pos) {
4185 bh = bh->b_this_page;
4186 iblock++;
4187 pos += blocksize;
4188 }
4189
4190 err = 0;
4191 if (buffer_freed(bh)) {
4192 BUFFER_TRACE(bh, "freed: skip");
4193 goto unlock;
4194 }
4195
4196 if (!buffer_mapped(bh)) {
4197 BUFFER_TRACE(bh, "unmapped");
617ba13b 4198 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4199 /* unmapped? It's a hole - nothing to do */
4200 if (!buffer_mapped(bh)) {
4201 BUFFER_TRACE(bh, "still unmapped");
4202 goto unlock;
4203 }
4204 }
4205
4206 /* Ok, it's mapped. Make sure it's up-to-date */
4207 if (PageUptodate(page))
4208 set_buffer_uptodate(bh);
4209
4210 if (!buffer_uptodate(bh)) {
4211 err = -EIO;
4212 ll_rw_block(READ, 1, &bh);
4213 wait_on_buffer(bh);
4214 /* Uhhuh. Read error. Complain and punt. */
4215 if (!buffer_uptodate(bh))
4216 goto unlock;
4217 }
4218
617ba13b 4219 if (ext4_should_journal_data(inode)) {
ac27a0ec 4220 BUFFER_TRACE(bh, "get write access");
617ba13b 4221 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4222 if (err)
4223 goto unlock;
4224 }
4225
eebd2aa3 4226 zero_user(page, offset, length);
ac27a0ec
DK
4227
4228 BUFFER_TRACE(bh, "zeroed end of block");
4229
4230 err = 0;
617ba13b 4231 if (ext4_should_journal_data(inode)) {
0390131b 4232 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4233 } else {
617ba13b 4234 if (ext4_should_order_data(inode))
678aaf48 4235 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4236 mark_buffer_dirty(bh);
4237 }
4238
4239unlock:
4240 unlock_page(page);
4241 page_cache_release(page);
4242 return err;
4243}
4244
4245/*
4246 * Probably it should be a library function... search for first non-zero word
4247 * or memcmp with zero_page, whatever is better for particular architecture.
4248 * Linus?
4249 */
4250static inline int all_zeroes(__le32 *p, __le32 *q)
4251{
4252 while (p < q)
4253 if (*p++)
4254 return 0;
4255 return 1;
4256}
4257
4258/**
617ba13b 4259 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4260 * @inode: inode in question
4261 * @depth: depth of the affected branch
617ba13b 4262 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4263 * @chain: place to store the pointers to partial indirect blocks
4264 * @top: place to the (detached) top of branch
4265 *
617ba13b 4266 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4267 *
4268 * When we do truncate() we may have to clean the ends of several
4269 * indirect blocks but leave the blocks themselves alive. Block is
4270 * partially truncated if some data below the new i_size is refered
4271 * from it (and it is on the path to the first completely truncated
4272 * data block, indeed). We have to free the top of that path along
4273 * with everything to the right of the path. Since no allocation
617ba13b 4274 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4275 * finishes, we may safely do the latter, but top of branch may
4276 * require special attention - pageout below the truncation point
4277 * might try to populate it.
4278 *
4279 * We atomically detach the top of branch from the tree, store the
4280 * block number of its root in *@top, pointers to buffer_heads of
4281 * partially truncated blocks - in @chain[].bh and pointers to
4282 * their last elements that should not be removed - in
4283 * @chain[].p. Return value is the pointer to last filled element
4284 * of @chain.
4285 *
4286 * The work left to caller to do the actual freeing of subtrees:
4287 * a) free the subtree starting from *@top
4288 * b) free the subtrees whose roots are stored in
4289 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4290 * c) free the subtrees growing from the inode past the @chain[0].
4291 * (no partially truncated stuff there). */
4292
617ba13b 4293static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4294 ext4_lblk_t offsets[4], Indirect chain[4],
4295 __le32 *top)
ac27a0ec
DK
4296{
4297 Indirect *partial, *p;
4298 int k, err;
4299
4300 *top = 0;
bf48aabb 4301 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4302 for (k = depth; k > 1 && !offsets[k-1]; k--)
4303 ;
617ba13b 4304 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4305 /* Writer: pointers */
4306 if (!partial)
4307 partial = chain + k-1;
4308 /*
4309 * If the branch acquired continuation since we've looked at it -
4310 * fine, it should all survive and (new) top doesn't belong to us.
4311 */
4312 if (!partial->key && *partial->p)
4313 /* Writer: end */
4314 goto no_top;
af5bc92d 4315 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4316 ;
4317 /*
4318 * OK, we've found the last block that must survive. The rest of our
4319 * branch should be detached before unlocking. However, if that rest
4320 * of branch is all ours and does not grow immediately from the inode
4321 * it's easier to cheat and just decrement partial->p.
4322 */
4323 if (p == chain + k - 1 && p > chain) {
4324 p->p--;
4325 } else {
4326 *top = *p->p;
617ba13b 4327 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4328#if 0
4329 *p->p = 0;
4330#endif
4331 }
4332 /* Writer: end */
4333
af5bc92d 4334 while (partial > p) {
ac27a0ec
DK
4335 brelse(partial->bh);
4336 partial--;
4337 }
4338no_top:
4339 return partial;
4340}
4341
4342/*
4343 * Zero a number of block pointers in either an inode or an indirect block.
4344 * If we restart the transaction we must again get write access to the
4345 * indirect block for further modification.
4346 *
4347 * We release `count' blocks on disk, but (last - first) may be greater
4348 * than `count' because there can be holes in there.
4349 */
1f2acb60
TT
4350static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4351 struct buffer_head *bh,
4352 ext4_fsblk_t block_to_free,
4353 unsigned long count, __le32 *first,
4354 __le32 *last)
ac27a0ec
DK
4355{
4356 __le32 *p;
1f2acb60 4357 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4358
4359 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4360 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4361
1f2acb60
TT
4362 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4363 count)) {
24676da4
TT
4364 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4365 "blocks %llu len %lu",
4366 (unsigned long long) block_to_free, count);
1f2acb60
TT
4367 return 1;
4368 }
4369
ac27a0ec
DK
4370 if (try_to_extend_transaction(handle, inode)) {
4371 if (bh) {
0390131b
FM
4372 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4373 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4374 }
617ba13b 4375 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4376 ext4_truncate_restart_trans(handle, inode,
4377 blocks_for_truncate(inode));
ac27a0ec
DK
4378 if (bh) {
4379 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4380 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4381 }
4382 }
4383
e6362609
TT
4384 for (p = first; p < last; p++)
4385 *p = 0;
ac27a0ec 4386
e6362609 4387 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4388 return 0;
ac27a0ec
DK
4389}
4390
4391/**
617ba13b 4392 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4393 * @handle: handle for this transaction
4394 * @inode: inode we are dealing with
4395 * @this_bh: indirect buffer_head which contains *@first and *@last
4396 * @first: array of block numbers
4397 * @last: points immediately past the end of array
4398 *
4399 * We are freeing all blocks refered from that array (numbers are stored as
4400 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4401 *
4402 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4403 * blocks are contiguous then releasing them at one time will only affect one
4404 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4405 * actually use a lot of journal space.
4406 *
4407 * @this_bh will be %NULL if @first and @last point into the inode's direct
4408 * block pointers.
4409 */
617ba13b 4410static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4411 struct buffer_head *this_bh,
4412 __le32 *first, __le32 *last)
4413{
617ba13b 4414 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4415 unsigned long count = 0; /* Number of blocks in the run */
4416 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4417 corresponding to
4418 block_to_free */
617ba13b 4419 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4420 __le32 *p; /* Pointer into inode/ind
4421 for current block */
4422 int err;
4423
4424 if (this_bh) { /* For indirect block */
4425 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4426 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4427 /* Important: if we can't update the indirect pointers
4428 * to the blocks, we can't free them. */
4429 if (err)
4430 return;
4431 }
4432
4433 for (p = first; p < last; p++) {
4434 nr = le32_to_cpu(*p);
4435 if (nr) {
4436 /* accumulate blocks to free if they're contiguous */
4437 if (count == 0) {
4438 block_to_free = nr;
4439 block_to_free_p = p;
4440 count = 1;
4441 } else if (nr == block_to_free + count) {
4442 count++;
4443 } else {
1f2acb60
TT
4444 if (ext4_clear_blocks(handle, inode, this_bh,
4445 block_to_free, count,
4446 block_to_free_p, p))
4447 break;
ac27a0ec
DK
4448 block_to_free = nr;
4449 block_to_free_p = p;
4450 count = 1;
4451 }
4452 }
4453 }
4454
4455 if (count > 0)
617ba13b 4456 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4457 count, block_to_free_p, p);
4458
4459 if (this_bh) {
0390131b 4460 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4461
4462 /*
4463 * The buffer head should have an attached journal head at this
4464 * point. However, if the data is corrupted and an indirect
4465 * block pointed to itself, it would have been detached when
4466 * the block was cleared. Check for this instead of OOPSing.
4467 */
e7f07968 4468 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4469 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4470 else
24676da4
TT
4471 EXT4_ERROR_INODE(inode,
4472 "circular indirect block detected at "
4473 "block %llu",
4474 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4475 }
4476}
4477
4478/**
617ba13b 4479 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4480 * @handle: JBD handle for this transaction
4481 * @inode: inode we are dealing with
4482 * @parent_bh: the buffer_head which contains *@first and *@last
4483 * @first: array of block numbers
4484 * @last: pointer immediately past the end of array
4485 * @depth: depth of the branches to free
4486 *
4487 * We are freeing all blocks refered from these branches (numbers are
4488 * stored as little-endian 32-bit) and updating @inode->i_blocks
4489 * appropriately.
4490 */
617ba13b 4491static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4492 struct buffer_head *parent_bh,
4493 __le32 *first, __le32 *last, int depth)
4494{
617ba13b 4495 ext4_fsblk_t nr;
ac27a0ec
DK
4496 __le32 *p;
4497
0390131b 4498 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4499 return;
4500
4501 if (depth--) {
4502 struct buffer_head *bh;
617ba13b 4503 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4504 p = last;
4505 while (--p >= first) {
4506 nr = le32_to_cpu(*p);
4507 if (!nr)
4508 continue; /* A hole */
4509
1f2acb60
TT
4510 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4511 nr, 1)) {
24676da4
TT
4512 EXT4_ERROR_INODE(inode,
4513 "invalid indirect mapped "
4514 "block %lu (level %d)",
4515 (unsigned long) nr, depth);
1f2acb60
TT
4516 break;
4517 }
4518
ac27a0ec
DK
4519 /* Go read the buffer for the next level down */
4520 bh = sb_bread(inode->i_sb, nr);
4521
4522 /*
4523 * A read failure? Report error and clear slot
4524 * (should be rare).
4525 */
4526 if (!bh) {
c398eda0
TT
4527 EXT4_ERROR_INODE_BLOCK(inode, nr,
4528 "Read failure");
ac27a0ec
DK
4529 continue;
4530 }
4531
4532 /* This zaps the entire block. Bottom up. */
4533 BUFFER_TRACE(bh, "free child branches");
617ba13b 4534 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4535 (__le32 *) bh->b_data,
4536 (__le32 *) bh->b_data + addr_per_block,
4537 depth);
ac27a0ec 4538
ac27a0ec
DK
4539 /*
4540 * Everything below this this pointer has been
4541 * released. Now let this top-of-subtree go.
4542 *
4543 * We want the freeing of this indirect block to be
4544 * atomic in the journal with the updating of the
4545 * bitmap block which owns it. So make some room in
4546 * the journal.
4547 *
4548 * We zero the parent pointer *after* freeing its
4549 * pointee in the bitmaps, so if extend_transaction()
4550 * for some reason fails to put the bitmap changes and
4551 * the release into the same transaction, recovery
4552 * will merely complain about releasing a free block,
4553 * rather than leaking blocks.
4554 */
0390131b 4555 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4556 return;
4557 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4558 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4559 ext4_truncate_restart_trans(handle, inode,
4560 blocks_for_truncate(inode));
ac27a0ec
DK
4561 }
4562
40389687
A
4563 /*
4564 * The forget flag here is critical because if
4565 * we are journaling (and not doing data
4566 * journaling), we have to make sure a revoke
4567 * record is written to prevent the journal
4568 * replay from overwriting the (former)
4569 * indirect block if it gets reallocated as a
4570 * data block. This must happen in the same
4571 * transaction where the data blocks are
4572 * actually freed.
4573 */
e6362609 4574 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4575 EXT4_FREE_BLOCKS_METADATA|
4576 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4577
4578 if (parent_bh) {
4579 /*
4580 * The block which we have just freed is
4581 * pointed to by an indirect block: journal it
4582 */
4583 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4584 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4585 parent_bh)){
4586 *p = 0;
4587 BUFFER_TRACE(parent_bh,
0390131b
FM
4588 "call ext4_handle_dirty_metadata");
4589 ext4_handle_dirty_metadata(handle,
4590 inode,
4591 parent_bh);
ac27a0ec
DK
4592 }
4593 }
4594 }
4595 } else {
4596 /* We have reached the bottom of the tree. */
4597 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4598 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4599 }
4600}
4601
91ef4caf
DG
4602int ext4_can_truncate(struct inode *inode)
4603{
4604 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4605 return 0;
4606 if (S_ISREG(inode->i_mode))
4607 return 1;
4608 if (S_ISDIR(inode->i_mode))
4609 return 1;
4610 if (S_ISLNK(inode->i_mode))
4611 return !ext4_inode_is_fast_symlink(inode);
4612 return 0;
4613}
4614
ac27a0ec 4615/*
617ba13b 4616 * ext4_truncate()
ac27a0ec 4617 *
617ba13b
MC
4618 * We block out ext4_get_block() block instantiations across the entire
4619 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4620 * simultaneously on behalf of the same inode.
4621 *
4622 * As we work through the truncate and commmit bits of it to the journal there
4623 * is one core, guiding principle: the file's tree must always be consistent on
4624 * disk. We must be able to restart the truncate after a crash.
4625 *
4626 * The file's tree may be transiently inconsistent in memory (although it
4627 * probably isn't), but whenever we close off and commit a journal transaction,
4628 * the contents of (the filesystem + the journal) must be consistent and
4629 * restartable. It's pretty simple, really: bottom up, right to left (although
4630 * left-to-right works OK too).
4631 *
4632 * Note that at recovery time, journal replay occurs *before* the restart of
4633 * truncate against the orphan inode list.
4634 *
4635 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4636 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4637 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4638 * ext4_truncate() to have another go. So there will be instantiated blocks
4639 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4640 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4641 * ext4_truncate() run will find them and release them.
ac27a0ec 4642 */
617ba13b 4643void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4644{
4645 handle_t *handle;
617ba13b 4646 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4647 __le32 *i_data = ei->i_data;
617ba13b 4648 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4649 struct address_space *mapping = inode->i_mapping;
725d26d3 4650 ext4_lblk_t offsets[4];
ac27a0ec
DK
4651 Indirect chain[4];
4652 Indirect *partial;
4653 __le32 nr = 0;
4654 int n;
725d26d3 4655 ext4_lblk_t last_block;
ac27a0ec 4656 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4657
91ef4caf 4658 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4659 return;
4660
12e9b892 4661 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4662
5534fb5b 4663 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4664 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4665
12e9b892 4666 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4667 ext4_ext_truncate(inode);
1d03ec98
AK
4668 return;
4669 }
a86c6181 4670
ac27a0ec 4671 handle = start_transaction(inode);
cf108bca 4672 if (IS_ERR(handle))
ac27a0ec 4673 return; /* AKPM: return what? */
ac27a0ec
DK
4674
4675 last_block = (inode->i_size + blocksize-1)
617ba13b 4676 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4677
cf108bca
JK
4678 if (inode->i_size & (blocksize - 1))
4679 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4680 goto out_stop;
ac27a0ec 4681
617ba13b 4682 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4683 if (n == 0)
4684 goto out_stop; /* error */
4685
4686 /*
4687 * OK. This truncate is going to happen. We add the inode to the
4688 * orphan list, so that if this truncate spans multiple transactions,
4689 * and we crash, we will resume the truncate when the filesystem
4690 * recovers. It also marks the inode dirty, to catch the new size.
4691 *
4692 * Implication: the file must always be in a sane, consistent
4693 * truncatable state while each transaction commits.
4694 */
617ba13b 4695 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4696 goto out_stop;
4697
632eaeab
MC
4698 /*
4699 * From here we block out all ext4_get_block() callers who want to
4700 * modify the block allocation tree.
4701 */
4702 down_write(&ei->i_data_sem);
b4df2030 4703
c2ea3fde 4704 ext4_discard_preallocations(inode);
b4df2030 4705
ac27a0ec
DK
4706 /*
4707 * The orphan list entry will now protect us from any crash which
4708 * occurs before the truncate completes, so it is now safe to propagate
4709 * the new, shorter inode size (held for now in i_size) into the
4710 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4711 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4712 */
4713 ei->i_disksize = inode->i_size;
4714
ac27a0ec 4715 if (n == 1) { /* direct blocks */
617ba13b
MC
4716 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4717 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4718 goto do_indirects;
4719 }
4720
617ba13b 4721 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4722 /* Kill the top of shared branch (not detached) */
4723 if (nr) {
4724 if (partial == chain) {
4725 /* Shared branch grows from the inode */
617ba13b 4726 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4727 &nr, &nr+1, (chain+n-1) - partial);
4728 *partial->p = 0;
4729 /*
4730 * We mark the inode dirty prior to restart,
4731 * and prior to stop. No need for it here.
4732 */
4733 } else {
4734 /* Shared branch grows from an indirect block */
4735 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4736 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4737 partial->p,
4738 partial->p+1, (chain+n-1) - partial);
4739 }
4740 }
4741 /* Clear the ends of indirect blocks on the shared branch */
4742 while (partial > chain) {
617ba13b 4743 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4744 (__le32*)partial->bh->b_data+addr_per_block,
4745 (chain+n-1) - partial);
4746 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4747 brelse(partial->bh);
ac27a0ec
DK
4748 partial--;
4749 }
4750do_indirects:
4751 /* Kill the remaining (whole) subtrees */
4752 switch (offsets[0]) {
4753 default:
617ba13b 4754 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4755 if (nr) {
617ba13b
MC
4756 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4757 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4758 }
617ba13b
MC
4759 case EXT4_IND_BLOCK:
4760 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4761 if (nr) {
617ba13b
MC
4762 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4763 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4764 }
617ba13b
MC
4765 case EXT4_DIND_BLOCK:
4766 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4767 if (nr) {
617ba13b
MC
4768 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4769 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4770 }
617ba13b 4771 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4772 ;
4773 }
4774
0e855ac8 4775 up_write(&ei->i_data_sem);
ef7f3835 4776 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4777 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4778
4779 /*
4780 * In a multi-transaction truncate, we only make the final transaction
4781 * synchronous
4782 */
4783 if (IS_SYNC(inode))
0390131b 4784 ext4_handle_sync(handle);
ac27a0ec
DK
4785out_stop:
4786 /*
4787 * If this was a simple ftruncate(), and the file will remain alive
4788 * then we need to clear up the orphan record which we created above.
4789 * However, if this was a real unlink then we were called by
617ba13b 4790 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4791 * orphan info for us.
4792 */
4793 if (inode->i_nlink)
617ba13b 4794 ext4_orphan_del(handle, inode);
ac27a0ec 4795
617ba13b 4796 ext4_journal_stop(handle);
ac27a0ec
DK
4797}
4798
ac27a0ec 4799/*
617ba13b 4800 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4801 * underlying buffer_head on success. If 'in_mem' is true, we have all
4802 * data in memory that is needed to recreate the on-disk version of this
4803 * inode.
4804 */
617ba13b
MC
4805static int __ext4_get_inode_loc(struct inode *inode,
4806 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4807{
240799cd
TT
4808 struct ext4_group_desc *gdp;
4809 struct buffer_head *bh;
4810 struct super_block *sb = inode->i_sb;
4811 ext4_fsblk_t block;
4812 int inodes_per_block, inode_offset;
4813
3a06d778 4814 iloc->bh = NULL;
240799cd
TT
4815 if (!ext4_valid_inum(sb, inode->i_ino))
4816 return -EIO;
ac27a0ec 4817
240799cd
TT
4818 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4819 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4820 if (!gdp)
ac27a0ec
DK
4821 return -EIO;
4822
240799cd
TT
4823 /*
4824 * Figure out the offset within the block group inode table
4825 */
4826 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4827 inode_offset = ((inode->i_ino - 1) %
4828 EXT4_INODES_PER_GROUP(sb));
4829 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4830 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4831
4832 bh = sb_getblk(sb, block);
ac27a0ec 4833 if (!bh) {
c398eda0
TT
4834 EXT4_ERROR_INODE_BLOCK(inode, block,
4835 "unable to read itable block");
ac27a0ec
DK
4836 return -EIO;
4837 }
4838 if (!buffer_uptodate(bh)) {
4839 lock_buffer(bh);
9c83a923
HK
4840
4841 /*
4842 * If the buffer has the write error flag, we have failed
4843 * to write out another inode in the same block. In this
4844 * case, we don't have to read the block because we may
4845 * read the old inode data successfully.
4846 */
4847 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4848 set_buffer_uptodate(bh);
4849
ac27a0ec
DK
4850 if (buffer_uptodate(bh)) {
4851 /* someone brought it uptodate while we waited */
4852 unlock_buffer(bh);
4853 goto has_buffer;
4854 }
4855
4856 /*
4857 * If we have all information of the inode in memory and this
4858 * is the only valid inode in the block, we need not read the
4859 * block.
4860 */
4861 if (in_mem) {
4862 struct buffer_head *bitmap_bh;
240799cd 4863 int i, start;
ac27a0ec 4864
240799cd 4865 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4866
240799cd
TT
4867 /* Is the inode bitmap in cache? */
4868 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4869 if (!bitmap_bh)
4870 goto make_io;
4871
4872 /*
4873 * If the inode bitmap isn't in cache then the
4874 * optimisation may end up performing two reads instead
4875 * of one, so skip it.
4876 */
4877 if (!buffer_uptodate(bitmap_bh)) {
4878 brelse(bitmap_bh);
4879 goto make_io;
4880 }
240799cd 4881 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4882 if (i == inode_offset)
4883 continue;
617ba13b 4884 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4885 break;
4886 }
4887 brelse(bitmap_bh);
240799cd 4888 if (i == start + inodes_per_block) {
ac27a0ec
DK
4889 /* all other inodes are free, so skip I/O */
4890 memset(bh->b_data, 0, bh->b_size);
4891 set_buffer_uptodate(bh);
4892 unlock_buffer(bh);
4893 goto has_buffer;
4894 }
4895 }
4896
4897make_io:
240799cd
TT
4898 /*
4899 * If we need to do any I/O, try to pre-readahead extra
4900 * blocks from the inode table.
4901 */
4902 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4903 ext4_fsblk_t b, end, table;
4904 unsigned num;
4905
4906 table = ext4_inode_table(sb, gdp);
b713a5ec 4907 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4908 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4909 if (table > b)
4910 b = table;
4911 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4912 num = EXT4_INODES_PER_GROUP(sb);
4913 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4914 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4915 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4916 table += num / inodes_per_block;
4917 if (end > table)
4918 end = table;
4919 while (b <= end)
4920 sb_breadahead(sb, b++);
4921 }
4922
ac27a0ec
DK
4923 /*
4924 * There are other valid inodes in the buffer, this inode
4925 * has in-inode xattrs, or we don't have this inode in memory.
4926 * Read the block from disk.
4927 */
4928 get_bh(bh);
4929 bh->b_end_io = end_buffer_read_sync;
4930 submit_bh(READ_META, bh);
4931 wait_on_buffer(bh);
4932 if (!buffer_uptodate(bh)) {
c398eda0
TT
4933 EXT4_ERROR_INODE_BLOCK(inode, block,
4934 "unable to read itable block");
ac27a0ec
DK
4935 brelse(bh);
4936 return -EIO;
4937 }
4938 }
4939has_buffer:
4940 iloc->bh = bh;
4941 return 0;
4942}
4943
617ba13b 4944int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4945{
4946 /* We have all inode data except xattrs in memory here. */
617ba13b 4947 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4948 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4949}
4950
617ba13b 4951void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4952{
617ba13b 4953 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4954
4955 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4956 if (flags & EXT4_SYNC_FL)
ac27a0ec 4957 inode->i_flags |= S_SYNC;
617ba13b 4958 if (flags & EXT4_APPEND_FL)
ac27a0ec 4959 inode->i_flags |= S_APPEND;
617ba13b 4960 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4961 inode->i_flags |= S_IMMUTABLE;
617ba13b 4962 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4963 inode->i_flags |= S_NOATIME;
617ba13b 4964 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4965 inode->i_flags |= S_DIRSYNC;
4966}
4967
ff9ddf7e
JK
4968/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4969void ext4_get_inode_flags(struct ext4_inode_info *ei)
4970{
84a8dce2
DM
4971 unsigned int vfs_fl;
4972 unsigned long old_fl, new_fl;
4973
4974 do {
4975 vfs_fl = ei->vfs_inode.i_flags;
4976 old_fl = ei->i_flags;
4977 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4978 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4979 EXT4_DIRSYNC_FL);
4980 if (vfs_fl & S_SYNC)
4981 new_fl |= EXT4_SYNC_FL;
4982 if (vfs_fl & S_APPEND)
4983 new_fl |= EXT4_APPEND_FL;
4984 if (vfs_fl & S_IMMUTABLE)
4985 new_fl |= EXT4_IMMUTABLE_FL;
4986 if (vfs_fl & S_NOATIME)
4987 new_fl |= EXT4_NOATIME_FL;
4988 if (vfs_fl & S_DIRSYNC)
4989 new_fl |= EXT4_DIRSYNC_FL;
4990 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4991}
de9a55b8 4992
0fc1b451 4993static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4994 struct ext4_inode_info *ei)
0fc1b451
AK
4995{
4996 blkcnt_t i_blocks ;
8180a562
AK
4997 struct inode *inode = &(ei->vfs_inode);
4998 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4999
5000 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5001 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
5002 /* we are using combined 48 bit field */
5003 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5004 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 5005 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
5006 /* i_blocks represent file system block size */
5007 return i_blocks << (inode->i_blkbits - 9);
5008 } else {
5009 return i_blocks;
5010 }
0fc1b451
AK
5011 } else {
5012 return le32_to_cpu(raw_inode->i_blocks_lo);
5013 }
5014}
ff9ddf7e 5015
1d1fe1ee 5016struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5017{
617ba13b
MC
5018 struct ext4_iloc iloc;
5019 struct ext4_inode *raw_inode;
1d1fe1ee 5020 struct ext4_inode_info *ei;
1d1fe1ee 5021 struct inode *inode;
b436b9be 5022 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5023 long ret;
ac27a0ec
DK
5024 int block;
5025
1d1fe1ee
DH
5026 inode = iget_locked(sb, ino);
5027 if (!inode)
5028 return ERR_PTR(-ENOMEM);
5029 if (!(inode->i_state & I_NEW))
5030 return inode;
5031
5032 ei = EXT4_I(inode);
567f3e9a 5033 iloc.bh = 0;
ac27a0ec 5034
1d1fe1ee
DH
5035 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5036 if (ret < 0)
ac27a0ec 5037 goto bad_inode;
617ba13b 5038 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5039 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5040 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5041 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5042 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5043 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5044 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5045 }
5046 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5047
19f5fb7a 5048 ei->i_state_flags = 0;
ac27a0ec
DK
5049 ei->i_dir_start_lookup = 0;
5050 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5051 /* We now have enough fields to check if the inode was active or not.
5052 * This is needed because nfsd might try to access dead inodes
5053 * the test is that same one that e2fsck uses
5054 * NeilBrown 1999oct15
5055 */
5056 if (inode->i_nlink == 0) {
5057 if (inode->i_mode == 0 ||
617ba13b 5058 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5059 /* this inode is deleted */
1d1fe1ee 5060 ret = -ESTALE;
ac27a0ec
DK
5061 goto bad_inode;
5062 }
5063 /* The only unlinked inodes we let through here have
5064 * valid i_mode and are being read by the orphan
5065 * recovery code: that's fine, we're about to complete
5066 * the process of deleting those. */
5067 }
ac27a0ec 5068 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5069 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5070 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5071 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5072 ei->i_file_acl |=
5073 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5074 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5075 ei->i_disksize = inode->i_size;
a9e7f447
DM
5076#ifdef CONFIG_QUOTA
5077 ei->i_reserved_quota = 0;
5078#endif
ac27a0ec
DK
5079 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5080 ei->i_block_group = iloc.block_group;
a4912123 5081 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5082 /*
5083 * NOTE! The in-memory inode i_data array is in little-endian order
5084 * even on big-endian machines: we do NOT byteswap the block numbers!
5085 */
617ba13b 5086 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5087 ei->i_data[block] = raw_inode->i_block[block];
5088 INIT_LIST_HEAD(&ei->i_orphan);
5089
b436b9be
JK
5090 /*
5091 * Set transaction id's of transactions that have to be committed
5092 * to finish f[data]sync. We set them to currently running transaction
5093 * as we cannot be sure that the inode or some of its metadata isn't
5094 * part of the transaction - the inode could have been reclaimed and
5095 * now it is reread from disk.
5096 */
5097 if (journal) {
5098 transaction_t *transaction;
5099 tid_t tid;
5100
a931da6a 5101 read_lock(&journal->j_state_lock);
b436b9be
JK
5102 if (journal->j_running_transaction)
5103 transaction = journal->j_running_transaction;
5104 else
5105 transaction = journal->j_committing_transaction;
5106 if (transaction)
5107 tid = transaction->t_tid;
5108 else
5109 tid = journal->j_commit_sequence;
a931da6a 5110 read_unlock(&journal->j_state_lock);
b436b9be
JK
5111 ei->i_sync_tid = tid;
5112 ei->i_datasync_tid = tid;
5113 }
5114
0040d987 5115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5116 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5117 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5118 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5119 ret = -EIO;
ac27a0ec 5120 goto bad_inode;
e5d2861f 5121 }
ac27a0ec
DK
5122 if (ei->i_extra_isize == 0) {
5123 /* The extra space is currently unused. Use it. */
617ba13b
MC
5124 ei->i_extra_isize = sizeof(struct ext4_inode) -
5125 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5126 } else {
5127 __le32 *magic = (void *)raw_inode +
617ba13b 5128 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5129 ei->i_extra_isize;
617ba13b 5130 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5131 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5132 }
5133 } else
5134 ei->i_extra_isize = 0;
5135
ef7f3835
KS
5136 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5137 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5138 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5139 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5140
25ec56b5
JNC
5141 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5142 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5143 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5144 inode->i_version |=
5145 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5146 }
5147
c4b5a614 5148 ret = 0;
485c26ec 5149 if (ei->i_file_acl &&
1032988c 5150 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5151 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5152 ei->i_file_acl);
485c26ec
TT
5153 ret = -EIO;
5154 goto bad_inode;
07a03824 5155 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5156 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5157 (S_ISLNK(inode->i_mode) &&
5158 !ext4_inode_is_fast_symlink(inode)))
5159 /* Validate extent which is part of inode */
5160 ret = ext4_ext_check_inode(inode);
de9a55b8 5161 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5162 (S_ISLNK(inode->i_mode) &&
5163 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5164 /* Validate block references which are part of inode */
fe2c8191
TN
5165 ret = ext4_check_inode_blockref(inode);
5166 }
567f3e9a 5167 if (ret)
de9a55b8 5168 goto bad_inode;
7a262f7c 5169
ac27a0ec 5170 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5171 inode->i_op = &ext4_file_inode_operations;
5172 inode->i_fop = &ext4_file_operations;
5173 ext4_set_aops(inode);
ac27a0ec 5174 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5175 inode->i_op = &ext4_dir_inode_operations;
5176 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5177 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5178 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5179 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5180 nd_terminate_link(ei->i_data, inode->i_size,
5181 sizeof(ei->i_data) - 1);
5182 } else {
617ba13b
MC
5183 inode->i_op = &ext4_symlink_inode_operations;
5184 ext4_set_aops(inode);
ac27a0ec 5185 }
563bdd61
TT
5186 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5187 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5188 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5189 if (raw_inode->i_block[0])
5190 init_special_inode(inode, inode->i_mode,
5191 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5192 else
5193 init_special_inode(inode, inode->i_mode,
5194 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5195 } else {
563bdd61 5196 ret = -EIO;
24676da4 5197 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5198 goto bad_inode;
ac27a0ec 5199 }
af5bc92d 5200 brelse(iloc.bh);
617ba13b 5201 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5202 unlock_new_inode(inode);
5203 return inode;
ac27a0ec
DK
5204
5205bad_inode:
567f3e9a 5206 brelse(iloc.bh);
1d1fe1ee
DH
5207 iget_failed(inode);
5208 return ERR_PTR(ret);
ac27a0ec
DK
5209}
5210
0fc1b451
AK
5211static int ext4_inode_blocks_set(handle_t *handle,
5212 struct ext4_inode *raw_inode,
5213 struct ext4_inode_info *ei)
5214{
5215 struct inode *inode = &(ei->vfs_inode);
5216 u64 i_blocks = inode->i_blocks;
5217 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5218
5219 if (i_blocks <= ~0U) {
5220 /*
5221 * i_blocks can be represnted in a 32 bit variable
5222 * as multiple of 512 bytes
5223 */
8180a562 5224 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5225 raw_inode->i_blocks_high = 0;
84a8dce2 5226 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5227 return 0;
5228 }
5229 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5230 return -EFBIG;
5231
5232 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5233 /*
5234 * i_blocks can be represented in a 48 bit variable
5235 * as multiple of 512 bytes
5236 */
8180a562 5237 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5238 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5239 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5240 } else {
84a8dce2 5241 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5242 /* i_block is stored in file system block size */
5243 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5244 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5245 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5246 }
f287a1a5 5247 return 0;
0fc1b451
AK
5248}
5249
ac27a0ec
DK
5250/*
5251 * Post the struct inode info into an on-disk inode location in the
5252 * buffer-cache. This gobbles the caller's reference to the
5253 * buffer_head in the inode location struct.
5254 *
5255 * The caller must have write access to iloc->bh.
5256 */
617ba13b 5257static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5258 struct inode *inode,
830156c7 5259 struct ext4_iloc *iloc)
ac27a0ec 5260{
617ba13b
MC
5261 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5262 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5263 struct buffer_head *bh = iloc->bh;
5264 int err = 0, rc, block;
5265
5266 /* For fields not not tracking in the in-memory inode,
5267 * initialise them to zero for new inodes. */
19f5fb7a 5268 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5269 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5270
ff9ddf7e 5271 ext4_get_inode_flags(ei);
ac27a0ec 5272 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5273 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5274 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5275 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5276/*
5277 * Fix up interoperability with old kernels. Otherwise, old inodes get
5278 * re-used with the upper 16 bits of the uid/gid intact
5279 */
af5bc92d 5280 if (!ei->i_dtime) {
ac27a0ec
DK
5281 raw_inode->i_uid_high =
5282 cpu_to_le16(high_16_bits(inode->i_uid));
5283 raw_inode->i_gid_high =
5284 cpu_to_le16(high_16_bits(inode->i_gid));
5285 } else {
5286 raw_inode->i_uid_high = 0;
5287 raw_inode->i_gid_high = 0;
5288 }
5289 } else {
5290 raw_inode->i_uid_low =
5291 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5292 raw_inode->i_gid_low =
5293 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5294 raw_inode->i_uid_high = 0;
5295 raw_inode->i_gid_high = 0;
5296 }
5297 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5298
5299 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5300 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5301 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5302 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5303
0fc1b451
AK
5304 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5305 goto out_brelse;
ac27a0ec 5306 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5307 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5308 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5309 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5310 raw_inode->i_file_acl_high =
5311 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5312 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5313 ext4_isize_set(raw_inode, ei->i_disksize);
5314 if (ei->i_disksize > 0x7fffffffULL) {
5315 struct super_block *sb = inode->i_sb;
5316 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5317 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5318 EXT4_SB(sb)->s_es->s_rev_level ==
5319 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5320 /* If this is the first large file
5321 * created, add a flag to the superblock.
5322 */
5323 err = ext4_journal_get_write_access(handle,
5324 EXT4_SB(sb)->s_sbh);
5325 if (err)
5326 goto out_brelse;
5327 ext4_update_dynamic_rev(sb);
5328 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5329 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5330 sb->s_dirt = 1;
0390131b 5331 ext4_handle_sync(handle);
73b50c1c 5332 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5333 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5334 }
5335 }
5336 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5337 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5338 if (old_valid_dev(inode->i_rdev)) {
5339 raw_inode->i_block[0] =
5340 cpu_to_le32(old_encode_dev(inode->i_rdev));
5341 raw_inode->i_block[1] = 0;
5342 } else {
5343 raw_inode->i_block[0] = 0;
5344 raw_inode->i_block[1] =
5345 cpu_to_le32(new_encode_dev(inode->i_rdev));
5346 raw_inode->i_block[2] = 0;
5347 }
de9a55b8
TT
5348 } else
5349 for (block = 0; block < EXT4_N_BLOCKS; block++)
5350 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5351
25ec56b5
JNC
5352 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5353 if (ei->i_extra_isize) {
5354 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5355 raw_inode->i_version_hi =
5356 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5357 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5358 }
5359
830156c7 5360 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5361 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5362 if (!err)
5363 err = rc;
19f5fb7a 5364 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5365
b436b9be 5366 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5367out_brelse:
af5bc92d 5368 brelse(bh);
617ba13b 5369 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5370 return err;
5371}
5372
5373/*
617ba13b 5374 * ext4_write_inode()
ac27a0ec
DK
5375 *
5376 * We are called from a few places:
5377 *
5378 * - Within generic_file_write() for O_SYNC files.
5379 * Here, there will be no transaction running. We wait for any running
5380 * trasnaction to commit.
5381 *
5382 * - Within sys_sync(), kupdate and such.
5383 * We wait on commit, if tol to.
5384 *
5385 * - Within prune_icache() (PF_MEMALLOC == true)
5386 * Here we simply return. We can't afford to block kswapd on the
5387 * journal commit.
5388 *
5389 * In all cases it is actually safe for us to return without doing anything,
5390 * because the inode has been copied into a raw inode buffer in
617ba13b 5391 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5392 * knfsd.
5393 *
5394 * Note that we are absolutely dependent upon all inode dirtiers doing the
5395 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5396 * which we are interested.
5397 *
5398 * It would be a bug for them to not do this. The code:
5399 *
5400 * mark_inode_dirty(inode)
5401 * stuff();
5402 * inode->i_size = expr;
5403 *
5404 * is in error because a kswapd-driven write_inode() could occur while
5405 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5406 * will no longer be on the superblock's dirty inode list.
5407 */
a9185b41 5408int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5409{
91ac6f43
FM
5410 int err;
5411
ac27a0ec
DK
5412 if (current->flags & PF_MEMALLOC)
5413 return 0;
5414
91ac6f43
FM
5415 if (EXT4_SB(inode->i_sb)->s_journal) {
5416 if (ext4_journal_current_handle()) {
5417 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5418 dump_stack();
5419 return -EIO;
5420 }
ac27a0ec 5421
a9185b41 5422 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5423 return 0;
5424
5425 err = ext4_force_commit(inode->i_sb);
5426 } else {
5427 struct ext4_iloc iloc;
ac27a0ec 5428
8b472d73 5429 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5430 if (err)
5431 return err;
a9185b41 5432 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5433 sync_dirty_buffer(iloc.bh);
5434 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5435 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5436 "IO error syncing inode");
830156c7
FM
5437 err = -EIO;
5438 }
fd2dd9fb 5439 brelse(iloc.bh);
91ac6f43
FM
5440 }
5441 return err;
ac27a0ec
DK
5442}
5443
5444/*
617ba13b 5445 * ext4_setattr()
ac27a0ec
DK
5446 *
5447 * Called from notify_change.
5448 *
5449 * We want to trap VFS attempts to truncate the file as soon as
5450 * possible. In particular, we want to make sure that when the VFS
5451 * shrinks i_size, we put the inode on the orphan list and modify
5452 * i_disksize immediately, so that during the subsequent flushing of
5453 * dirty pages and freeing of disk blocks, we can guarantee that any
5454 * commit will leave the blocks being flushed in an unused state on
5455 * disk. (On recovery, the inode will get truncated and the blocks will
5456 * be freed, so we have a strong guarantee that no future commit will
5457 * leave these blocks visible to the user.)
5458 *
678aaf48
JK
5459 * Another thing we have to assure is that if we are in ordered mode
5460 * and inode is still attached to the committing transaction, we must
5461 * we start writeout of all the dirty pages which are being truncated.
5462 * This way we are sure that all the data written in the previous
5463 * transaction are already on disk (truncate waits for pages under
5464 * writeback).
5465 *
5466 * Called with inode->i_mutex down.
ac27a0ec 5467 */
617ba13b 5468int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5469{
5470 struct inode *inode = dentry->d_inode;
5471 int error, rc = 0;
5472 const unsigned int ia_valid = attr->ia_valid;
5473
5474 error = inode_change_ok(inode, attr);
5475 if (error)
5476 return error;
5477
12755627 5478 if (is_quota_modification(inode, attr))
871a2931 5479 dquot_initialize(inode);
ac27a0ec
DK
5480 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5481 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5482 handle_t *handle;
5483
5484 /* (user+group)*(old+new) structure, inode write (sb,
5485 * inode block, ? - but truncate inode update has it) */
5aca07eb 5486 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5487 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5488 if (IS_ERR(handle)) {
5489 error = PTR_ERR(handle);
5490 goto err_out;
5491 }
b43fa828 5492 error = dquot_transfer(inode, attr);
ac27a0ec 5493 if (error) {
617ba13b 5494 ext4_journal_stop(handle);
ac27a0ec
DK
5495 return error;
5496 }
5497 /* Update corresponding info in inode so that everything is in
5498 * one transaction */
5499 if (attr->ia_valid & ATTR_UID)
5500 inode->i_uid = attr->ia_uid;
5501 if (attr->ia_valid & ATTR_GID)
5502 inode->i_gid = attr->ia_gid;
617ba13b
MC
5503 error = ext4_mark_inode_dirty(handle, inode);
5504 ext4_journal_stop(handle);
ac27a0ec
DK
5505 }
5506
e2b46574 5507 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5508 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5510
0c095c7f
TT
5511 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5512 return -EFBIG;
e2b46574
ES
5513 }
5514 }
5515
ac27a0ec 5516 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5517 attr->ia_valid & ATTR_SIZE &&
5518 (attr->ia_size < inode->i_size ||
12e9b892 5519 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5520 handle_t *handle;
5521
617ba13b 5522 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5523 if (IS_ERR(handle)) {
5524 error = PTR_ERR(handle);
5525 goto err_out;
5526 }
5527
617ba13b
MC
5528 error = ext4_orphan_add(handle, inode);
5529 EXT4_I(inode)->i_disksize = attr->ia_size;
5530 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5531 if (!error)
5532 error = rc;
617ba13b 5533 ext4_journal_stop(handle);
678aaf48
JK
5534
5535 if (ext4_should_order_data(inode)) {
5536 error = ext4_begin_ordered_truncate(inode,
5537 attr->ia_size);
5538 if (error) {
5539 /* Do as much error cleanup as possible */
5540 handle = ext4_journal_start(inode, 3);
5541 if (IS_ERR(handle)) {
5542 ext4_orphan_del(NULL, inode);
5543 goto err_out;
5544 }
5545 ext4_orphan_del(handle, inode);
5546 ext4_journal_stop(handle);
5547 goto err_out;
5548 }
5549 }
c8d46e41 5550 /* ext4_truncate will clear the flag */
12e9b892 5551 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5552 ext4_truncate(inode);
ac27a0ec
DK
5553 }
5554
1025774c
CH
5555 if ((attr->ia_valid & ATTR_SIZE) &&
5556 attr->ia_size != i_size_read(inode))
5557 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5558
1025774c
CH
5559 if (!rc) {
5560 setattr_copy(inode, attr);
5561 mark_inode_dirty(inode);
5562 }
5563
5564 /*
5565 * If the call to ext4_truncate failed to get a transaction handle at
5566 * all, we need to clean up the in-core orphan list manually.
5567 */
ac27a0ec 5568 if (inode->i_nlink)
617ba13b 5569 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5570
5571 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5572 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5573
5574err_out:
617ba13b 5575 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5576 if (!error)
5577 error = rc;
5578 return error;
5579}
5580
3e3398a0
MC
5581int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5582 struct kstat *stat)
5583{
5584 struct inode *inode;
5585 unsigned long delalloc_blocks;
5586
5587 inode = dentry->d_inode;
5588 generic_fillattr(inode, stat);
5589
5590 /*
5591 * We can't update i_blocks if the block allocation is delayed
5592 * otherwise in the case of system crash before the real block
5593 * allocation is done, we will have i_blocks inconsistent with
5594 * on-disk file blocks.
5595 * We always keep i_blocks updated together with real
5596 * allocation. But to not confuse with user, stat
5597 * will return the blocks that include the delayed allocation
5598 * blocks for this file.
5599 */
5600 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5601 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5602 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5603
5604 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5605 return 0;
5606}
ac27a0ec 5607
a02908f1
MC
5608static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5609 int chunk)
5610{
5611 int indirects;
5612
5613 /* if nrblocks are contiguous */
5614 if (chunk) {
5615 /*
5616 * With N contiguous data blocks, it need at most
5617 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5618 * 2 dindirect blocks
5619 * 1 tindirect block
5620 */
5621 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5622 return indirects + 3;
5623 }
5624 /*
5625 * if nrblocks are not contiguous, worse case, each block touch
5626 * a indirect block, and each indirect block touch a double indirect
5627 * block, plus a triple indirect block
5628 */
5629 indirects = nrblocks * 2 + 1;
5630 return indirects;
5631}
5632
5633static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5634{
12e9b892 5635 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5636 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5637 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5638}
ac51d837 5639
ac27a0ec 5640/*
a02908f1
MC
5641 * Account for index blocks, block groups bitmaps and block group
5642 * descriptor blocks if modify datablocks and index blocks
5643 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5644 *
a02908f1 5645 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5646 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5647 * they could still across block group boundary.
ac27a0ec 5648 *
a02908f1
MC
5649 * Also account for superblock, inode, quota and xattr blocks
5650 */
5651int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5652{
8df9675f
TT
5653 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5654 int gdpblocks;
a02908f1
MC
5655 int idxblocks;
5656 int ret = 0;
5657
5658 /*
5659 * How many index blocks need to touch to modify nrblocks?
5660 * The "Chunk" flag indicating whether the nrblocks is
5661 * physically contiguous on disk
5662 *
5663 * For Direct IO and fallocate, they calls get_block to allocate
5664 * one single extent at a time, so they could set the "Chunk" flag
5665 */
5666 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5667
5668 ret = idxblocks;
5669
5670 /*
5671 * Now let's see how many group bitmaps and group descriptors need
5672 * to account
5673 */
5674 groups = idxblocks;
5675 if (chunk)
5676 groups += 1;
5677 else
5678 groups += nrblocks;
5679
5680 gdpblocks = groups;
8df9675f
TT
5681 if (groups > ngroups)
5682 groups = ngroups;
a02908f1
MC
5683 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5684 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5685
5686 /* bitmaps and block group descriptor blocks */
5687 ret += groups + gdpblocks;
5688
5689 /* Blocks for super block, inode, quota and xattr blocks */
5690 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5691
5692 return ret;
5693}
5694
5695/*
5696 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5697 * the modification of a single pages into a single transaction,
5698 * which may include multiple chunks of block allocations.
ac27a0ec 5699 *
525f4ed8 5700 * This could be called via ext4_write_begin()
ac27a0ec 5701 *
525f4ed8 5702 * We need to consider the worse case, when
a02908f1 5703 * one new block per extent.
ac27a0ec 5704 */
a86c6181 5705int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5706{
617ba13b 5707 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5708 int ret;
5709
a02908f1 5710 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5711
a02908f1 5712 /* Account for data blocks for journalled mode */
617ba13b 5713 if (ext4_should_journal_data(inode))
a02908f1 5714 ret += bpp;
ac27a0ec
DK
5715 return ret;
5716}
f3bd1f3f
MC
5717
5718/*
5719 * Calculate the journal credits for a chunk of data modification.
5720 *
5721 * This is called from DIO, fallocate or whoever calling
79e83036 5722 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5723 *
5724 * journal buffers for data blocks are not included here, as DIO
5725 * and fallocate do no need to journal data buffers.
5726 */
5727int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5728{
5729 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5730}
5731
ac27a0ec 5732/*
617ba13b 5733 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5734 * Give this, we know that the caller already has write access to iloc->bh.
5735 */
617ba13b 5736int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5737 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5738{
5739 int err = 0;
5740
25ec56b5
JNC
5741 if (test_opt(inode->i_sb, I_VERSION))
5742 inode_inc_iversion(inode);
5743
ac27a0ec
DK
5744 /* the do_update_inode consumes one bh->b_count */
5745 get_bh(iloc->bh);
5746
dab291af 5747 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5748 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5749 put_bh(iloc->bh);
5750 return err;
5751}
5752
5753/*
5754 * On success, We end up with an outstanding reference count against
5755 * iloc->bh. This _must_ be cleaned up later.
5756 */
5757
5758int
617ba13b
MC
5759ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5760 struct ext4_iloc *iloc)
ac27a0ec 5761{
0390131b
FM
5762 int err;
5763
5764 err = ext4_get_inode_loc(inode, iloc);
5765 if (!err) {
5766 BUFFER_TRACE(iloc->bh, "get_write_access");
5767 err = ext4_journal_get_write_access(handle, iloc->bh);
5768 if (err) {
5769 brelse(iloc->bh);
5770 iloc->bh = NULL;
ac27a0ec
DK
5771 }
5772 }
617ba13b 5773 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5774 return err;
5775}
5776
6dd4ee7c
KS
5777/*
5778 * Expand an inode by new_extra_isize bytes.
5779 * Returns 0 on success or negative error number on failure.
5780 */
1d03ec98
AK
5781static int ext4_expand_extra_isize(struct inode *inode,
5782 unsigned int new_extra_isize,
5783 struct ext4_iloc iloc,
5784 handle_t *handle)
6dd4ee7c
KS
5785{
5786 struct ext4_inode *raw_inode;
5787 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5788
5789 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5790 return 0;
5791
5792 raw_inode = ext4_raw_inode(&iloc);
5793
5794 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5795
5796 /* No extended attributes present */
19f5fb7a
TT
5797 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5798 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5799 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5800 new_extra_isize);
5801 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5802 return 0;
5803 }
5804
5805 /* try to expand with EAs present */
5806 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5807 raw_inode, handle);
5808}
5809
ac27a0ec
DK
5810/*
5811 * What we do here is to mark the in-core inode as clean with respect to inode
5812 * dirtiness (it may still be data-dirty).
5813 * This means that the in-core inode may be reaped by prune_icache
5814 * without having to perform any I/O. This is a very good thing,
5815 * because *any* task may call prune_icache - even ones which
5816 * have a transaction open against a different journal.
5817 *
5818 * Is this cheating? Not really. Sure, we haven't written the
5819 * inode out, but prune_icache isn't a user-visible syncing function.
5820 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5821 * we start and wait on commits.
5822 *
5823 * Is this efficient/effective? Well, we're being nice to the system
5824 * by cleaning up our inodes proactively so they can be reaped
5825 * without I/O. But we are potentially leaving up to five seconds'
5826 * worth of inodes floating about which prune_icache wants us to
5827 * write out. One way to fix that would be to get prune_icache()
5828 * to do a write_super() to free up some memory. It has the desired
5829 * effect.
5830 */
617ba13b 5831int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5832{
617ba13b 5833 struct ext4_iloc iloc;
6dd4ee7c
KS
5834 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5835 static unsigned int mnt_count;
5836 int err, ret;
ac27a0ec
DK
5837
5838 might_sleep();
617ba13b 5839 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5840 if (ext4_handle_valid(handle) &&
5841 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5842 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5843 /*
5844 * We need extra buffer credits since we may write into EA block
5845 * with this same handle. If journal_extend fails, then it will
5846 * only result in a minor loss of functionality for that inode.
5847 * If this is felt to be critical, then e2fsck should be run to
5848 * force a large enough s_min_extra_isize.
5849 */
5850 if ((jbd2_journal_extend(handle,
5851 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5852 ret = ext4_expand_extra_isize(inode,
5853 sbi->s_want_extra_isize,
5854 iloc, handle);
5855 if (ret) {
19f5fb7a
TT
5856 ext4_set_inode_state(inode,
5857 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5858 if (mnt_count !=
5859 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5860 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5861 "Unable to expand inode %lu. Delete"
5862 " some EAs or run e2fsck.",
5863 inode->i_ino);
c1bddad9
AK
5864 mnt_count =
5865 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5866 }
5867 }
5868 }
5869 }
ac27a0ec 5870 if (!err)
617ba13b 5871 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5872 return err;
5873}
5874
5875/*
617ba13b 5876 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5877 *
5878 * We're really interested in the case where a file is being extended.
5879 * i_size has been changed by generic_commit_write() and we thus need
5880 * to include the updated inode in the current transaction.
5881 *
5dd4056d 5882 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5883 * are allocated to the file.
5884 *
5885 * If the inode is marked synchronous, we don't honour that here - doing
5886 * so would cause a commit on atime updates, which we don't bother doing.
5887 * We handle synchronous inodes at the highest possible level.
5888 */
617ba13b 5889void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5890{
ac27a0ec
DK
5891 handle_t *handle;
5892
617ba13b 5893 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5894 if (IS_ERR(handle))
5895 goto out;
f3dc272f 5896
f3dc272f
CW
5897 ext4_mark_inode_dirty(handle, inode);
5898
617ba13b 5899 ext4_journal_stop(handle);
ac27a0ec
DK
5900out:
5901 return;
5902}
5903
5904#if 0
5905/*
5906 * Bind an inode's backing buffer_head into this transaction, to prevent
5907 * it from being flushed to disk early. Unlike
617ba13b 5908 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5909 * returns no iloc structure, so the caller needs to repeat the iloc
5910 * lookup to mark the inode dirty later.
5911 */
617ba13b 5912static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5913{
617ba13b 5914 struct ext4_iloc iloc;
ac27a0ec
DK
5915
5916 int err = 0;
5917 if (handle) {
617ba13b 5918 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5919 if (!err) {
5920 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5921 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5922 if (!err)
0390131b 5923 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5924 NULL,
0390131b 5925 iloc.bh);
ac27a0ec
DK
5926 brelse(iloc.bh);
5927 }
5928 }
617ba13b 5929 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5930 return err;
5931}
5932#endif
5933
617ba13b 5934int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5935{
5936 journal_t *journal;
5937 handle_t *handle;
5938 int err;
5939
5940 /*
5941 * We have to be very careful here: changing a data block's
5942 * journaling status dynamically is dangerous. If we write a
5943 * data block to the journal, change the status and then delete
5944 * that block, we risk forgetting to revoke the old log record
5945 * from the journal and so a subsequent replay can corrupt data.
5946 * So, first we make sure that the journal is empty and that
5947 * nobody is changing anything.
5948 */
5949
617ba13b 5950 journal = EXT4_JOURNAL(inode);
0390131b
FM
5951 if (!journal)
5952 return 0;
d699594d 5953 if (is_journal_aborted(journal))
ac27a0ec
DK
5954 return -EROFS;
5955
dab291af
MC
5956 jbd2_journal_lock_updates(journal);
5957 jbd2_journal_flush(journal);
ac27a0ec
DK
5958
5959 /*
5960 * OK, there are no updates running now, and all cached data is
5961 * synced to disk. We are now in a completely consistent state
5962 * which doesn't have anything in the journal, and we know that
5963 * no filesystem updates are running, so it is safe to modify
5964 * the inode's in-core data-journaling state flag now.
5965 */
5966
5967 if (val)
12e9b892 5968 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5969 else
12e9b892 5970 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5971 ext4_set_aops(inode);
ac27a0ec 5972
dab291af 5973 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5974
5975 /* Finally we can mark the inode as dirty. */
5976
617ba13b 5977 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5978 if (IS_ERR(handle))
5979 return PTR_ERR(handle);
5980
617ba13b 5981 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5982 ext4_handle_sync(handle);
617ba13b
MC
5983 ext4_journal_stop(handle);
5984 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5985
5986 return err;
5987}
2e9ee850
AK
5988
5989static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5990{
5991 return !buffer_mapped(bh);
5992}
5993
c2ec175c 5994int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5995{
c2ec175c 5996 struct page *page = vmf->page;
2e9ee850
AK
5997 loff_t size;
5998 unsigned long len;
5999 int ret = -EINVAL;
79f0be8d 6000 void *fsdata;
2e9ee850
AK
6001 struct file *file = vma->vm_file;
6002 struct inode *inode = file->f_path.dentry->d_inode;
6003 struct address_space *mapping = inode->i_mapping;
6004
6005 /*
6006 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6007 * get i_mutex because we are already holding mmap_sem.
6008 */
6009 down_read(&inode->i_alloc_sem);
6010 size = i_size_read(inode);
6011 if (page->mapping != mapping || size <= page_offset(page)
6012 || !PageUptodate(page)) {
6013 /* page got truncated from under us? */
6014 goto out_unlock;
6015 }
6016 ret = 0;
6017 if (PageMappedToDisk(page))
6018 goto out_unlock;
6019
6020 if (page->index == size >> PAGE_CACHE_SHIFT)
6021 len = size & ~PAGE_CACHE_MASK;
6022 else
6023 len = PAGE_CACHE_SIZE;
6024
a827eaff
AK
6025 lock_page(page);
6026 /*
6027 * return if we have all the buffers mapped. This avoid
6028 * the need to call write_begin/write_end which does a
6029 * journal_start/journal_stop which can block and take
6030 * long time
6031 */
2e9ee850 6032 if (page_has_buffers(page)) {
2e9ee850 6033 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6034 ext4_bh_unmapped)) {
6035 unlock_page(page);
2e9ee850 6036 goto out_unlock;
a827eaff 6037 }
2e9ee850 6038 }
a827eaff 6039 unlock_page(page);
2e9ee850
AK
6040 /*
6041 * OK, we need to fill the hole... Do write_begin write_end
6042 * to do block allocation/reservation.We are not holding
6043 * inode.i__mutex here. That allow * parallel write_begin,
6044 * write_end call. lock_page prevent this from happening
6045 * on the same page though
6046 */
6047 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6048 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6049 if (ret < 0)
6050 goto out_unlock;
6051 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6052 len, len, page, fsdata);
2e9ee850
AK
6053 if (ret < 0)
6054 goto out_unlock;
6055 ret = 0;
6056out_unlock:
c2ec175c
NP
6057 if (ret)
6058 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6059 up_read(&inode->i_alloc_sem);
6060 return ret;
6061}