Merge tag 'boards-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
64db4cff 56
9f77da9f 57#include "rcutree.h"
29c00b4a
PM
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
9f77da9f 61
64db4cff
PM
62/* Data structures. */
63
f885b7f2 64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 66
a4889858 67#define RCU_STATE_INITIALIZER(sname, sabbr, cr) { \
6c90cc7b 68 .level = { &sname##_state.node[0] }, \
037b64ed 69 .call = cr, \
af446b70 70 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
71 .gpnum = 0UL - 300UL, \
72 .completed = 0UL - 300UL, \
7b2e6011 73 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
6c90cc7b 78 .name = #sname, \
a4889858 79 .abbr = sabbr, \
64db4cff
PM
80}
81
037b64ed 82struct rcu_state rcu_sched_state =
a4889858 83 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
d6714c22 84DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 85
a4889858 86struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
6258c4fb 87DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 88
27f4d280 89static struct rcu_state *rcu_state;
6ce75a23 90LIST_HEAD(rcu_struct_flavors);
27f4d280 91
f885b7f2
PM
92/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
93static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 94module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
95int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
96static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
97 NUM_RCU_LVL_0,
98 NUM_RCU_LVL_1,
99 NUM_RCU_LVL_2,
100 NUM_RCU_LVL_3,
101 NUM_RCU_LVL_4,
102};
103int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
104
b0d30417
PM
105/*
106 * The rcu_scheduler_active variable transitions from zero to one just
107 * before the first task is spawned. So when this variable is zero, RCU
108 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 109 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
110 * is one, RCU must actually do all the hard work required to detect real
111 * grace periods. This variable is also used to suppress boot-time false
112 * positives from lockdep-RCU error checking.
113 */
bbad9379
PM
114int rcu_scheduler_active __read_mostly;
115EXPORT_SYMBOL_GPL(rcu_scheduler_active);
116
b0d30417
PM
117/*
118 * The rcu_scheduler_fully_active variable transitions from zero to one
119 * during the early_initcall() processing, which is after the scheduler
120 * is capable of creating new tasks. So RCU processing (for example,
121 * creating tasks for RCU priority boosting) must be delayed until after
122 * rcu_scheduler_fully_active transitions from zero to one. We also
123 * currently delay invocation of any RCU callbacks until after this point.
124 *
125 * It might later prove better for people registering RCU callbacks during
126 * early boot to take responsibility for these callbacks, but one step at
127 * a time.
128 */
129static int rcu_scheduler_fully_active __read_mostly;
130
a46e0899
PM
131#ifdef CONFIG_RCU_BOOST
132
a26ac245
PM
133/*
134 * Control variables for per-CPU and per-rcu_node kthreads. These
135 * handle all flavors of RCU.
136 */
137static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 138DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 139DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 140DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 141
a46e0899
PM
142#endif /* #ifdef CONFIG_RCU_BOOST */
143
5d01bbd1 144static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
145static void invoke_rcu_core(void);
146static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 147
4a298656
PM
148/*
149 * Track the rcutorture test sequence number and the update version
150 * number within a given test. The rcutorture_testseq is incremented
151 * on every rcutorture module load and unload, so has an odd value
152 * when a test is running. The rcutorture_vernum is set to zero
153 * when rcutorture starts and is incremented on each rcutorture update.
154 * These variables enable correlating rcutorture output with the
155 * RCU tracing information.
156 */
157unsigned long rcutorture_testseq;
158unsigned long rcutorture_vernum;
159
fc2219d4
PM
160/*
161 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
162 * permit this function to be invoked without holding the root rcu_node
163 * structure's ->lock, but of course results can be subject to change.
164 */
165static int rcu_gp_in_progress(struct rcu_state *rsp)
166{
167 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
168}
169
b1f77b05 170/*
d6714c22 171 * Note a quiescent state. Because we do not need to know
b1f77b05 172 * how many quiescent states passed, just if there was at least
d6714c22 173 * one since the start of the grace period, this just sets a flag.
e4cc1f22 174 * The caller must have disabled preemption.
b1f77b05 175 */
d6714c22 176void rcu_sched_qs(int cpu)
b1f77b05 177{
25502a6c 178 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 179
e4cc1f22 180 if (rdp->passed_quiesce == 0)
d4c08f2a 181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 182 rdp->passed_quiesce = 1;
b1f77b05
IM
183}
184
d6714c22 185void rcu_bh_qs(int cpu)
b1f77b05 186{
25502a6c 187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 188
e4cc1f22 189 if (rdp->passed_quiesce == 0)
d4c08f2a 190 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 191 rdp->passed_quiesce = 1;
b1f77b05 192}
64db4cff 193
25502a6c
PM
194/*
195 * Note a context switch. This is a quiescent state for RCU-sched,
196 * and requires special handling for preemptible RCU.
e4cc1f22 197 * The caller must have disabled preemption.
25502a6c
PM
198 */
199void rcu_note_context_switch(int cpu)
200{
300df91c 201 trace_rcu_utilization("Start context switch");
25502a6c 202 rcu_sched_qs(cpu);
cba6d0d6 203 rcu_preempt_note_context_switch(cpu);
300df91c 204 trace_rcu_utilization("End context switch");
25502a6c 205}
29ce8310 206EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 207
90a4d2c0 208DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 209 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 210 .dynticks = ATOMIC_INIT(1),
90a4d2c0 211};
64db4cff 212
878d7439
ED
213static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
214static long qhimark = 10000; /* If this many pending, ignore blimit. */
215static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 216
878d7439
ED
217module_param(blimit, long, 0444);
218module_param(qhimark, long, 0444);
219module_param(qlowmark, long, 0444);
3d76c082 220
d40011f6
PM
221static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
222static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
223
224module_param(jiffies_till_first_fqs, ulong, 0644);
225module_param(jiffies_till_next_fqs, ulong, 0644);
226
910ee45d
PM
227static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
228 struct rcu_data *rdp);
4cdfc175
PM
229static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
230static void force_quiescent_state(struct rcu_state *rsp);
a157229c 231static int rcu_pending(int cpu);
64db4cff
PM
232
233/*
d6714c22 234 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 235 */
d6714c22 236long rcu_batches_completed_sched(void)
64db4cff 237{
d6714c22 238 return rcu_sched_state.completed;
64db4cff 239}
d6714c22 240EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
241
242/*
243 * Return the number of RCU BH batches processed thus far for debug & stats.
244 */
245long rcu_batches_completed_bh(void)
246{
247 return rcu_bh_state.completed;
248}
249EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
250
bf66f18e
PM
251/*
252 * Force a quiescent state for RCU BH.
253 */
254void rcu_bh_force_quiescent_state(void)
255{
4cdfc175 256 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
257}
258EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
259
4a298656
PM
260/*
261 * Record the number of times rcutorture tests have been initiated and
262 * terminated. This information allows the debugfs tracing stats to be
263 * correlated to the rcutorture messages, even when the rcutorture module
264 * is being repeatedly loaded and unloaded. In other words, we cannot
265 * store this state in rcutorture itself.
266 */
267void rcutorture_record_test_transition(void)
268{
269 rcutorture_testseq++;
270 rcutorture_vernum = 0;
271}
272EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
273
274/*
275 * Record the number of writer passes through the current rcutorture test.
276 * This is also used to correlate debugfs tracing stats with the rcutorture
277 * messages.
278 */
279void rcutorture_record_progress(unsigned long vernum)
280{
281 rcutorture_vernum++;
282}
283EXPORT_SYMBOL_GPL(rcutorture_record_progress);
284
bf66f18e
PM
285/*
286 * Force a quiescent state for RCU-sched.
287 */
288void rcu_sched_force_quiescent_state(void)
289{
4cdfc175 290 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
291}
292EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
293
64db4cff
PM
294/*
295 * Does the CPU have callbacks ready to be invoked?
296 */
297static int
298cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
299{
3fbfbf7a
PM
300 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
301 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
302}
303
304/*
dc35c893
PM
305 * Does the current CPU require a not-yet-started grace period?
306 * The caller must have disabled interrupts to prevent races with
307 * normal callback registry.
64db4cff
PM
308 */
309static int
310cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311{
dc35c893 312 int i;
3fbfbf7a 313
dc35c893
PM
314 if (rcu_gp_in_progress(rsp))
315 return 0; /* No, a grace period is already in progress. */
dae6e64d 316 if (rcu_nocb_needs_gp(rsp))
34ed6246 317 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
318 if (!rdp->nxttail[RCU_NEXT_TAIL])
319 return 0; /* No, this is a no-CBs (or offline) CPU. */
320 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
321 return 1; /* Yes, this CPU has newly registered callbacks. */
322 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
323 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
324 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
325 rdp->nxtcompleted[i]))
326 return 1; /* Yes, CBs for future grace period. */
327 return 0; /* No grace period needed. */
64db4cff
PM
328}
329
330/*
331 * Return the root node of the specified rcu_state structure.
332 */
333static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
334{
335 return &rsp->node[0];
336}
337
9b2e4f18 338/*
adf5091e 339 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
340 *
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
344 */
adf5091e
FW
345static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
346 bool user)
9b2e4f18 347{
1bdc2b7d 348 trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
cb349ca9 349 if (!user && !is_idle_task(current)) {
0989cb46
PM
350 struct task_struct *idle = idle_task(smp_processor_id());
351
facc4e15 352 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 353 ftrace_dump(DUMP_ORIG);
0989cb46
PM
354 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
355 current->pid, current->comm,
356 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 357 }
aea1b35e 358 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
359 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
360 smp_mb__before_atomic_inc(); /* See above. */
361 atomic_inc(&rdtp->dynticks);
362 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
363 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
364
365 /*
adf5091e 366 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
367 * in an RCU read-side critical section.
368 */
369 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
370 "Illegal idle entry in RCU read-side critical section.");
371 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
372 "Illegal idle entry in RCU-bh read-side critical section.");
373 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
374 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 375}
64db4cff 376
adf5091e
FW
377/*
378 * Enter an RCU extended quiescent state, which can be either the
379 * idle loop or adaptive-tickless usermode execution.
64db4cff 380 */
adf5091e 381static void rcu_eqs_enter(bool user)
64db4cff 382{
4145fa7f 383 long long oldval;
64db4cff
PM
384 struct rcu_dynticks *rdtp;
385
64db4cff 386 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 387 oldval = rdtp->dynticks_nesting;
29e37d81
PM
388 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
389 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
390 rdtp->dynticks_nesting = 0;
391 else
392 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 393 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 394}
adf5091e
FW
395
396/**
397 * rcu_idle_enter - inform RCU that current CPU is entering idle
398 *
399 * Enter idle mode, in other words, -leave- the mode in which RCU
400 * read-side critical sections can occur. (Though RCU read-side
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
403 *
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
407 */
408void rcu_idle_enter(void)
409{
c5d900bf
FW
410 unsigned long flags;
411
412 local_irq_save(flags);
cb349ca9 413 rcu_eqs_enter(false);
c5d900bf 414 local_irq_restore(flags);
adf5091e 415}
8a2ecf47 416EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 417
2b1d5024 418#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
419/**
420 * rcu_user_enter - inform RCU that we are resuming userspace.
421 *
422 * Enter RCU idle mode right before resuming userspace. No use of RCU
423 * is permitted between this call and rcu_user_exit(). This way the
424 * CPU doesn't need to maintain the tick for RCU maintenance purposes
425 * when the CPU runs in userspace.
426 */
427void rcu_user_enter(void)
428{
91d1aa43 429 rcu_eqs_enter(1);
adf5091e
FW
430}
431
19dd1591
FW
432/**
433 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
434 * after the current irq returns.
435 *
436 * This is similar to rcu_user_enter() but in the context of a non-nesting
437 * irq. After this call, RCU enters into idle mode when the interrupt
438 * returns.
439 */
440void rcu_user_enter_after_irq(void)
441{
442 unsigned long flags;
443 struct rcu_dynticks *rdtp;
444
445 local_irq_save(flags);
446 rdtp = &__get_cpu_var(rcu_dynticks);
447 /* Ensure this irq is interrupting a non-idle RCU state. */
448 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
449 rdtp->dynticks_nesting = 1;
450 local_irq_restore(flags);
451}
2b1d5024 452#endif /* CONFIG_RCU_USER_QS */
19dd1591 453
9b2e4f18
PM
454/**
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
456 *
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
64db4cff 460 *
9b2e4f18
PM
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
465 *
466 * Use things like work queues to work around this limitation.
467 *
468 * You have been warned.
64db4cff 469 */
9b2e4f18 470void rcu_irq_exit(void)
64db4cff
PM
471{
472 unsigned long flags;
4145fa7f 473 long long oldval;
64db4cff
PM
474 struct rcu_dynticks *rdtp;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 478 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
479 rdtp->dynticks_nesting--;
480 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
481 if (rdtp->dynticks_nesting)
482 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
483 else
cb349ca9 484 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
485 local_irq_restore(flags);
486}
487
488/*
adf5091e 489 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
490 *
491 * If the new value of the ->dynticks_nesting counter was previously zero,
492 * we really have exited idle, and must do the appropriate accounting.
493 * The caller must have disabled interrupts.
494 */
adf5091e
FW
495static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
496 int user)
9b2e4f18 497{
23b5c8fa
PM
498 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
499 atomic_inc(&rdtp->dynticks);
500 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
501 smp_mb__after_atomic_inc(); /* See above. */
502 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 503 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 504 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
cb349ca9 505 if (!user && !is_idle_task(current)) {
0989cb46
PM
506 struct task_struct *idle = idle_task(smp_processor_id());
507
4145fa7f
PM
508 trace_rcu_dyntick("Error on exit: not idle task",
509 oldval, rdtp->dynticks_nesting);
bf1304e9 510 ftrace_dump(DUMP_ORIG);
0989cb46
PM
511 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
512 current->pid, current->comm,
513 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
514 }
515}
516
adf5091e
FW
517/*
518 * Exit an RCU extended quiescent state, which can be either the
519 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 520 */
adf5091e 521static void rcu_eqs_exit(bool user)
9b2e4f18 522{
9b2e4f18
PM
523 struct rcu_dynticks *rdtp;
524 long long oldval;
525
9b2e4f18
PM
526 rdtp = &__get_cpu_var(rcu_dynticks);
527 oldval = rdtp->dynticks_nesting;
29e37d81
PM
528 WARN_ON_ONCE(oldval < 0);
529 if (oldval & DYNTICK_TASK_NEST_MASK)
530 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
531 else
532 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 533 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 534}
adf5091e
FW
535
536/**
537 * rcu_idle_exit - inform RCU that current CPU is leaving idle
538 *
539 * Exit idle mode, in other words, -enter- the mode in which RCU
540 * read-side critical sections can occur.
541 *
542 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
543 * allow for the possibility of usermode upcalls messing up our count
544 * of interrupt nesting level during the busy period that is just
545 * now starting.
546 */
547void rcu_idle_exit(void)
548{
c5d900bf
FW
549 unsigned long flags;
550
551 local_irq_save(flags);
cb349ca9 552 rcu_eqs_exit(false);
c5d900bf 553 local_irq_restore(flags);
adf5091e 554}
8a2ecf47 555EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 556
2b1d5024 557#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
558/**
559 * rcu_user_exit - inform RCU that we are exiting userspace.
560 *
561 * Exit RCU idle mode while entering the kernel because it can
562 * run a RCU read side critical section anytime.
563 */
564void rcu_user_exit(void)
565{
91d1aa43 566 rcu_eqs_exit(1);
adf5091e
FW
567}
568
19dd1591
FW
569/**
570 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
571 * idle mode after the current non-nesting irq returns.
572 *
573 * This is similar to rcu_user_exit() but in the context of an irq.
574 * This is called when the irq has interrupted a userspace RCU idle mode
575 * context. When the current non-nesting interrupt returns after this call,
576 * the CPU won't restore the RCU idle mode.
577 */
578void rcu_user_exit_after_irq(void)
579{
580 unsigned long flags;
581 struct rcu_dynticks *rdtp;
582
583 local_irq_save(flags);
584 rdtp = &__get_cpu_var(rcu_dynticks);
585 /* Ensure we are interrupting an RCU idle mode. */
586 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
587 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
588 local_irq_restore(flags);
589}
2b1d5024 590#endif /* CONFIG_RCU_USER_QS */
19dd1591 591
9b2e4f18
PM
592/**
593 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
594 *
595 * Enter an interrupt handler, which might possibly result in exiting
596 * idle mode, in other words, entering the mode in which read-side critical
597 * sections can occur.
598 *
599 * Note that the Linux kernel is fully capable of entering an interrupt
600 * handler that it never exits, for example when doing upcalls to
601 * user mode! This code assumes that the idle loop never does upcalls to
602 * user mode. If your architecture does do upcalls from the idle loop (or
603 * does anything else that results in unbalanced calls to the irq_enter()
604 * and irq_exit() functions), RCU will give you what you deserve, good
605 * and hard. But very infrequently and irreproducibly.
606 *
607 * Use things like work queues to work around this limitation.
608 *
609 * You have been warned.
610 */
611void rcu_irq_enter(void)
612{
613 unsigned long flags;
614 struct rcu_dynticks *rdtp;
615 long long oldval;
616
617 local_irq_save(flags);
618 rdtp = &__get_cpu_var(rcu_dynticks);
619 oldval = rdtp->dynticks_nesting;
620 rdtp->dynticks_nesting++;
621 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
622 if (oldval)
623 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
624 else
cb349ca9 625 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 626 local_irq_restore(flags);
64db4cff
PM
627}
628
629/**
630 * rcu_nmi_enter - inform RCU of entry to NMI context
631 *
632 * If the CPU was idle with dynamic ticks active, and there is no
633 * irq handler running, this updates rdtp->dynticks_nmi to let the
634 * RCU grace-period handling know that the CPU is active.
635 */
636void rcu_nmi_enter(void)
637{
638 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
639
23b5c8fa
PM
640 if (rdtp->dynticks_nmi_nesting == 0 &&
641 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 642 return;
23b5c8fa
PM
643 rdtp->dynticks_nmi_nesting++;
644 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
645 atomic_inc(&rdtp->dynticks);
646 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
647 smp_mb__after_atomic_inc(); /* See above. */
648 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
649}
650
651/**
652 * rcu_nmi_exit - inform RCU of exit from NMI context
653 *
654 * If the CPU was idle with dynamic ticks active, and there is no
655 * irq handler running, this updates rdtp->dynticks_nmi to let the
656 * RCU grace-period handling know that the CPU is no longer active.
657 */
658void rcu_nmi_exit(void)
659{
660 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
661
23b5c8fa
PM
662 if (rdtp->dynticks_nmi_nesting == 0 ||
663 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 664 return;
23b5c8fa
PM
665 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
666 smp_mb__before_atomic_inc(); /* See above. */
667 atomic_inc(&rdtp->dynticks);
668 smp_mb__after_atomic_inc(); /* Force delay to next write. */
669 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
670}
671
672/**
9b2e4f18 673 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 674 *
9b2e4f18 675 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 676 * or NMI handler, return true.
64db4cff 677 */
9b2e4f18 678int rcu_is_cpu_idle(void)
64db4cff 679{
34240697
PM
680 int ret;
681
682 preempt_disable();
683 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
684 preempt_enable();
685 return ret;
64db4cff 686}
e6b80a3b 687EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 688
62fde6ed 689#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
690
691/*
692 * Is the current CPU online? Disable preemption to avoid false positives
693 * that could otherwise happen due to the current CPU number being sampled,
694 * this task being preempted, its old CPU being taken offline, resuming
695 * on some other CPU, then determining that its old CPU is now offline.
696 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
697 * the check for rcu_scheduler_fully_active. Note also that it is OK
698 * for a CPU coming online to use RCU for one jiffy prior to marking itself
699 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
700 * offline to continue to use RCU for one jiffy after marking itself
701 * offline in the cpu_online_mask. This leniency is necessary given the
702 * non-atomic nature of the online and offline processing, for example,
703 * the fact that a CPU enters the scheduler after completing the CPU_DYING
704 * notifiers.
705 *
706 * This is also why RCU internally marks CPUs online during the
707 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
708 *
709 * Disable checking if in an NMI handler because we cannot safely report
710 * errors from NMI handlers anyway.
711 */
712bool rcu_lockdep_current_cpu_online(void)
713{
2036d94a
PM
714 struct rcu_data *rdp;
715 struct rcu_node *rnp;
c0d6d01b
PM
716 bool ret;
717
718 if (in_nmi())
719 return 1;
720 preempt_disable();
2036d94a
PM
721 rdp = &__get_cpu_var(rcu_sched_data);
722 rnp = rdp->mynode;
723 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
724 !rcu_scheduler_fully_active;
725 preempt_enable();
726 return ret;
727}
728EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
729
62fde6ed 730#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 731
64db4cff 732/**
9b2e4f18 733 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 734 *
9b2e4f18
PM
735 * If the current CPU is idle or running at a first-level (not nested)
736 * interrupt from idle, return true. The caller must have at least
737 * disabled preemption.
64db4cff 738 */
62e3cb14 739static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 740{
9b2e4f18 741 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
742}
743
64db4cff
PM
744/*
745 * Snapshot the specified CPU's dynticks counter so that we can later
746 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 747 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
748 */
749static int dyntick_save_progress_counter(struct rcu_data *rdp)
750{
23b5c8fa 751 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 752 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
753}
754
755/*
756 * Return true if the specified CPU has passed through a quiescent
757 * state by virtue of being in or having passed through an dynticks
758 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 759 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
760 */
761static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
762{
7eb4f455
PM
763 unsigned int curr;
764 unsigned int snap;
64db4cff 765
7eb4f455
PM
766 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
767 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
768
769 /*
770 * If the CPU passed through or entered a dynticks idle phase with
771 * no active irq/NMI handlers, then we can safely pretend that the CPU
772 * already acknowledged the request to pass through a quiescent
773 * state. Either way, that CPU cannot possibly be in an RCU
774 * read-side critical section that started before the beginning
775 * of the current RCU grace period.
776 */
7eb4f455 777 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 778 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
779 rdp->dynticks_fqs++;
780 return 1;
781 }
782
a82dcc76
PM
783 /*
784 * Check for the CPU being offline, but only if the grace period
785 * is old enough. We don't need to worry about the CPU changing
786 * state: If we see it offline even once, it has been through a
787 * quiescent state.
788 *
789 * The reason for insisting that the grace period be at least
790 * one jiffy old is that CPUs that are not quite online and that
791 * have just gone offline can still execute RCU read-side critical
792 * sections.
793 */
794 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
795 return 0; /* Grace period is not old enough. */
796 barrier();
797 if (cpu_is_offline(rdp->cpu)) {
798 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
799 rdp->offline_fqs++;
800 return 1;
801 }
802 return 0;
64db4cff
PM
803}
804
64db4cff
PM
805static void record_gp_stall_check_time(struct rcu_state *rsp)
806{
807 rsp->gp_start = jiffies;
6bfc09e2 808 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
809}
810
b637a328
PM
811/*
812 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
813 * for architectures that do not implement trigger_all_cpu_backtrace().
814 * The NMI-triggered stack traces are more accurate because they are
815 * printed by the target CPU.
816 */
817static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
818{
819 int cpu;
820 unsigned long flags;
821 struct rcu_node *rnp;
822
823 rcu_for_each_leaf_node(rsp, rnp) {
824 raw_spin_lock_irqsave(&rnp->lock, flags);
825 if (rnp->qsmask != 0) {
826 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
827 if (rnp->qsmask & (1UL << cpu))
828 dump_cpu_task(rnp->grplo + cpu);
829 }
830 raw_spin_unlock_irqrestore(&rnp->lock, flags);
831 }
832}
833
64db4cff
PM
834static void print_other_cpu_stall(struct rcu_state *rsp)
835{
836 int cpu;
837 long delta;
838 unsigned long flags;
285fe294 839 int ndetected = 0;
64db4cff 840 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 841 long totqlen = 0;
64db4cff
PM
842
843 /* Only let one CPU complain about others per time interval. */
844
1304afb2 845 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 846 delta = jiffies - rsp->jiffies_stall;
fc2219d4 847 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 848 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
849 return;
850 }
6bfc09e2 851 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 852 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 853
8cdd32a9
PM
854 /*
855 * OK, time to rat on our buddy...
856 * See Documentation/RCU/stallwarn.txt for info on how to debug
857 * RCU CPU stall warnings.
858 */
a858af28 859 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 860 rsp->name);
a858af28 861 print_cpu_stall_info_begin();
a0b6c9a7 862 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 863 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 864 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
865 if (rnp->qsmask != 0) {
866 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
867 if (rnp->qsmask & (1UL << cpu)) {
868 print_cpu_stall_info(rsp,
869 rnp->grplo + cpu);
870 ndetected++;
871 }
872 }
3acd9eb3 873 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 874 }
a858af28
PM
875
876 /*
877 * Now rat on any tasks that got kicked up to the root rcu_node
878 * due to CPU offlining.
879 */
880 rnp = rcu_get_root(rsp);
881 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 882 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
883 raw_spin_unlock_irqrestore(&rnp->lock, flags);
884
885 print_cpu_stall_info_end();
53bb857c
PM
886 for_each_possible_cpu(cpu)
887 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
888 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 889 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 890 rsp->gpnum, rsp->completed, totqlen);
9bc8b558
PM
891 if (ndetected == 0)
892 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
893 else if (!trigger_all_cpu_backtrace())
b637a328 894 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 895
4cdfc175 896 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
897
898 rcu_print_detail_task_stall(rsp);
899
4cdfc175 900 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
901}
902
903static void print_cpu_stall(struct rcu_state *rsp)
904{
53bb857c 905 int cpu;
64db4cff
PM
906 unsigned long flags;
907 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 908 long totqlen = 0;
64db4cff 909
8cdd32a9
PM
910 /*
911 * OK, time to rat on ourselves...
912 * See Documentation/RCU/stallwarn.txt for info on how to debug
913 * RCU CPU stall warnings.
914 */
a858af28
PM
915 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
916 print_cpu_stall_info_begin();
917 print_cpu_stall_info(rsp, smp_processor_id());
918 print_cpu_stall_info_end();
53bb857c
PM
919 for_each_possible_cpu(cpu)
920 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
921 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
922 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
923 if (!trigger_all_cpu_backtrace())
924 dump_stack();
c1dc0b9c 925
1304afb2 926 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 927 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 928 rsp->jiffies_stall = jiffies +
6bfc09e2 929 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 931
64db4cff
PM
932 set_need_resched(); /* kick ourselves to get things going. */
933}
934
935static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
936{
bad6e139
PM
937 unsigned long j;
938 unsigned long js;
64db4cff
PM
939 struct rcu_node *rnp;
940
742734ee 941 if (rcu_cpu_stall_suppress)
c68de209 942 return;
bad6e139
PM
943 j = ACCESS_ONCE(jiffies);
944 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 945 rnp = rdp->mynode;
c96ea7cf
PM
946 if (rcu_gp_in_progress(rsp) &&
947 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
948
949 /* We haven't checked in, so go dump stack. */
950 print_cpu_stall(rsp);
951
bad6e139
PM
952 } else if (rcu_gp_in_progress(rsp) &&
953 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 954
bad6e139 955 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
956 print_other_cpu_stall(rsp);
957 }
958}
959
53d84e00
PM
960/**
961 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
962 *
963 * Set the stall-warning timeout way off into the future, thus preventing
964 * any RCU CPU stall-warning messages from appearing in the current set of
965 * RCU grace periods.
966 *
967 * The caller must disable hard irqs.
968 */
969void rcu_cpu_stall_reset(void)
970{
6ce75a23
PM
971 struct rcu_state *rsp;
972
973 for_each_rcu_flavor(rsp)
974 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
975}
976
64db4cff
PM
977/*
978 * Update CPU-local rcu_data state to record the newly noticed grace period.
979 * This is used both when we started the grace period and when we notice
9160306e
PM
980 * that someone else started the grace period. The caller must hold the
981 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
982 * and must have irqs disabled.
64db4cff 983 */
9160306e
PM
984static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
985{
986 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
987 /*
988 * If the current grace period is waiting for this CPU,
989 * set up to detect a quiescent state, otherwise don't
990 * go looking for one.
991 */
9160306e 992 rdp->gpnum = rnp->gpnum;
d4c08f2a 993 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
d7d6a11e
PM
994 rdp->passed_quiesce = 0;
995 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
a858af28 996 zero_cpu_stall_ticks(rdp);
9160306e
PM
997 }
998}
999
64db4cff
PM
1000static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1001{
9160306e
PM
1002 unsigned long flags;
1003 struct rcu_node *rnp;
1004
1005 local_irq_save(flags);
1006 rnp = rdp->mynode;
1007 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 1008 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
1009 local_irq_restore(flags);
1010 return;
1011 }
1012 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 1013 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1014}
1015
1016/*
1017 * Did someone else start a new RCU grace period start since we last
1018 * checked? Update local state appropriately if so. Must be called
1019 * on the CPU corresponding to rdp.
1020 */
1021static int
1022check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1023{
1024 unsigned long flags;
1025 int ret = 0;
1026
1027 local_irq_save(flags);
1028 if (rdp->gpnum != rsp->gpnum) {
1029 note_new_gpnum(rsp, rdp);
1030 ret = 1;
1031 }
1032 local_irq_restore(flags);
1033 return ret;
1034}
1035
3f5d3ea6
PM
1036/*
1037 * Initialize the specified rcu_data structure's callback list to empty.
1038 */
1039static void init_callback_list(struct rcu_data *rdp)
1040{
1041 int i;
1042
34ed6246
PM
1043 if (init_nocb_callback_list(rdp))
1044 return;
3f5d3ea6
PM
1045 rdp->nxtlist = NULL;
1046 for (i = 0; i < RCU_NEXT_SIZE; i++)
1047 rdp->nxttail[i] = &rdp->nxtlist;
1048}
1049
dc35c893
PM
1050/*
1051 * Determine the value that ->completed will have at the end of the
1052 * next subsequent grace period. This is used to tag callbacks so that
1053 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1054 * been dyntick-idle for an extended period with callbacks under the
1055 * influence of RCU_FAST_NO_HZ.
1056 *
1057 * The caller must hold rnp->lock with interrupts disabled.
1058 */
1059static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1060 struct rcu_node *rnp)
1061{
1062 /*
1063 * If RCU is idle, we just wait for the next grace period.
1064 * But we can only be sure that RCU is idle if we are looking
1065 * at the root rcu_node structure -- otherwise, a new grace
1066 * period might have started, but just not yet gotten around
1067 * to initializing the current non-root rcu_node structure.
1068 */
1069 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1070 return rnp->completed + 1;
1071
1072 /*
1073 * Otherwise, wait for a possible partial grace period and
1074 * then the subsequent full grace period.
1075 */
1076 return rnp->completed + 2;
1077}
1078
0446be48
PM
1079/*
1080 * Trace-event helper function for rcu_start_future_gp() and
1081 * rcu_nocb_wait_gp().
1082 */
1083static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1084 unsigned long c, char *s)
1085{
1086 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1087 rnp->completed, c, rnp->level,
1088 rnp->grplo, rnp->grphi, s);
1089}
1090
1091/*
1092 * Start some future grace period, as needed to handle newly arrived
1093 * callbacks. The required future grace periods are recorded in each
1094 * rcu_node structure's ->need_future_gp field.
1095 *
1096 * The caller must hold the specified rcu_node structure's ->lock.
1097 */
1098static unsigned long __maybe_unused
1099rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1100{
1101 unsigned long c;
1102 int i;
1103 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1104
1105 /*
1106 * Pick up grace-period number for new callbacks. If this
1107 * grace period is already marked as needed, return to the caller.
1108 */
1109 c = rcu_cbs_completed(rdp->rsp, rnp);
1110 trace_rcu_future_gp(rnp, rdp, c, "Startleaf");
1111 if (rnp->need_future_gp[c & 0x1]) {
1112 trace_rcu_future_gp(rnp, rdp, c, "Prestartleaf");
1113 return c;
1114 }
1115
1116 /*
1117 * If either this rcu_node structure or the root rcu_node structure
1118 * believe that a grace period is in progress, then we must wait
1119 * for the one following, which is in "c". Because our request
1120 * will be noticed at the end of the current grace period, we don't
1121 * need to explicitly start one.
1122 */
1123 if (rnp->gpnum != rnp->completed ||
1124 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1125 rnp->need_future_gp[c & 0x1]++;
1126 trace_rcu_future_gp(rnp, rdp, c, "Startedleaf");
1127 return c;
1128 }
1129
1130 /*
1131 * There might be no grace period in progress. If we don't already
1132 * hold it, acquire the root rcu_node structure's lock in order to
1133 * start one (if needed).
1134 */
1135 if (rnp != rnp_root)
1136 raw_spin_lock(&rnp_root->lock);
1137
1138 /*
1139 * Get a new grace-period number. If there really is no grace
1140 * period in progress, it will be smaller than the one we obtained
1141 * earlier. Adjust callbacks as needed. Note that even no-CBs
1142 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1143 */
1144 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1145 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1146 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1147 rdp->nxtcompleted[i] = c;
1148
1149 /*
1150 * If the needed for the required grace period is already
1151 * recorded, trace and leave.
1152 */
1153 if (rnp_root->need_future_gp[c & 0x1]) {
1154 trace_rcu_future_gp(rnp, rdp, c, "Prestartedroot");
1155 goto unlock_out;
1156 }
1157
1158 /* Record the need for the future grace period. */
1159 rnp_root->need_future_gp[c & 0x1]++;
1160
1161 /* If a grace period is not already in progress, start one. */
1162 if (rnp_root->gpnum != rnp_root->completed) {
1163 trace_rcu_future_gp(rnp, rdp, c, "Startedleafroot");
1164 } else {
1165 trace_rcu_future_gp(rnp, rdp, c, "Startedroot");
910ee45d 1166 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1167 }
1168unlock_out:
1169 if (rnp != rnp_root)
1170 raw_spin_unlock(&rnp_root->lock);
1171 return c;
1172}
1173
1174/*
1175 * Clean up any old requests for the just-ended grace period. Also return
1176 * whether any additional grace periods have been requested. Also invoke
1177 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1178 * waiting for this grace period to complete.
1179 */
1180static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1181{
1182 int c = rnp->completed;
1183 int needmore;
1184 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1185
1186 rcu_nocb_gp_cleanup(rsp, rnp);
1187 rnp->need_future_gp[c & 0x1] = 0;
1188 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1189 trace_rcu_future_gp(rnp, rdp, c, needmore ? "CleanupMore" : "Cleanup");
1190 return needmore;
1191}
1192
dc35c893
PM
1193/*
1194 * If there is room, assign a ->completed number to any callbacks on
1195 * this CPU that have not already been assigned. Also accelerate any
1196 * callbacks that were previously assigned a ->completed number that has
1197 * since proven to be too conservative, which can happen if callbacks get
1198 * assigned a ->completed number while RCU is idle, but with reference to
1199 * a non-root rcu_node structure. This function is idempotent, so it does
1200 * not hurt to call it repeatedly.
1201 *
1202 * The caller must hold rnp->lock with interrupts disabled.
1203 */
1204static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1205 struct rcu_data *rdp)
1206{
1207 unsigned long c;
1208 int i;
1209
1210 /* If the CPU has no callbacks, nothing to do. */
1211 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1212 return;
1213
1214 /*
1215 * Starting from the sublist containing the callbacks most
1216 * recently assigned a ->completed number and working down, find the
1217 * first sublist that is not assignable to an upcoming grace period.
1218 * Such a sublist has something in it (first two tests) and has
1219 * a ->completed number assigned that will complete sooner than
1220 * the ->completed number for newly arrived callbacks (last test).
1221 *
1222 * The key point is that any later sublist can be assigned the
1223 * same ->completed number as the newly arrived callbacks, which
1224 * means that the callbacks in any of these later sublist can be
1225 * grouped into a single sublist, whether or not they have already
1226 * been assigned a ->completed number.
1227 */
1228 c = rcu_cbs_completed(rsp, rnp);
1229 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1230 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1231 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1232 break;
1233
1234 /*
1235 * If there are no sublist for unassigned callbacks, leave.
1236 * At the same time, advance "i" one sublist, so that "i" will
1237 * index into the sublist where all the remaining callbacks should
1238 * be grouped into.
1239 */
1240 if (++i >= RCU_NEXT_TAIL)
1241 return;
1242
1243 /*
1244 * Assign all subsequent callbacks' ->completed number to the next
1245 * full grace period and group them all in the sublist initially
1246 * indexed by "i".
1247 */
1248 for (; i <= RCU_NEXT_TAIL; i++) {
1249 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1250 rdp->nxtcompleted[i] = c;
1251 }
910ee45d
PM
1252 /* Record any needed additional grace periods. */
1253 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1254
1255 /* Trace depending on how much we were able to accelerate. */
1256 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1257 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
1258 else
1259 trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
dc35c893
PM
1260}
1261
1262/*
1263 * Move any callbacks whose grace period has completed to the
1264 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1265 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1266 * sublist. This function is idempotent, so it does not hurt to
1267 * invoke it repeatedly. As long as it is not invoked -too- often...
1268 *
1269 * The caller must hold rnp->lock with interrupts disabled.
1270 */
1271static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1272 struct rcu_data *rdp)
1273{
1274 int i, j;
1275
1276 /* If the CPU has no callbacks, nothing to do. */
1277 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1278 return;
1279
1280 /*
1281 * Find all callbacks whose ->completed numbers indicate that they
1282 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1283 */
1284 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1285 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1286 break;
1287 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1288 }
1289 /* Clean up any sublist tail pointers that were misordered above. */
1290 for (j = RCU_WAIT_TAIL; j < i; j++)
1291 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1292
1293 /* Copy down callbacks to fill in empty sublists. */
1294 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1295 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1296 break;
1297 rdp->nxttail[j] = rdp->nxttail[i];
1298 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1299 }
1300
1301 /* Classify any remaining callbacks. */
1302 rcu_accelerate_cbs(rsp, rnp, rdp);
1303}
1304
d09b62df
PM
1305/*
1306 * Advance this CPU's callbacks, but only if the current grace period
1307 * has ended. This may be called only from the CPU to whom the rdp
1308 * belongs. In addition, the corresponding leaf rcu_node structure's
1309 * ->lock must be held by the caller, with irqs disabled.
1310 */
1311static void
1312__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1313{
1314 /* Did another grace period end? */
dc35c893 1315 if (rdp->completed == rnp->completed) {
d09b62df 1316
dc35c893
PM
1317 /* No, so just accelerate recent callbacks. */
1318 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1319
dc35c893
PM
1320 } else {
1321
1322 /* Advance callbacks. */
1323 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1324
1325 /* Remember that we saw this grace-period completion. */
1326 rdp->completed = rnp->completed;
d4c08f2a 1327 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 1328
5ff8e6f0
FW
1329 /*
1330 * If we were in an extended quiescent state, we may have
121dfc4b 1331 * missed some grace periods that others CPUs handled on
5ff8e6f0 1332 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
1333 * spurious new grace periods. If another grace period
1334 * has started, then rnp->gpnum will have advanced, so
d7d6a11e
PM
1335 * we will detect this later on. Of course, any quiescent
1336 * states we found for the old GP are now invalid.
5ff8e6f0 1337 */
d7d6a11e 1338 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
5ff8e6f0 1339 rdp->gpnum = rdp->completed;
d7d6a11e
PM
1340 rdp->passed_quiesce = 0;
1341 }
5ff8e6f0 1342
20377f32 1343 /*
121dfc4b
PM
1344 * If RCU does not need a quiescent state from this CPU,
1345 * then make sure that this CPU doesn't go looking for one.
20377f32 1346 */
121dfc4b 1347 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 1348 rdp->qs_pending = 0;
d09b62df
PM
1349 }
1350}
1351
1352/*
1353 * Advance this CPU's callbacks, but only if the current grace period
1354 * has ended. This may be called only from the CPU to whom the rdp
1355 * belongs.
1356 */
1357static void
1358rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1359{
1360 unsigned long flags;
1361 struct rcu_node *rnp;
1362
1363 local_irq_save(flags);
1364 rnp = rdp->mynode;
1365 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1366 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1367 local_irq_restore(flags);
1368 return;
1369 }
1370 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1371 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1372}
1373
1374/*
1375 * Do per-CPU grace-period initialization for running CPU. The caller
1376 * must hold the lock of the leaf rcu_node structure corresponding to
1377 * this CPU.
1378 */
1379static void
1380rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1381{
1382 /* Prior grace period ended, so advance callbacks for current CPU. */
1383 __rcu_process_gp_end(rsp, rnp, rdp);
1384
9160306e
PM
1385 /* Set state so that this CPU will detect the next quiescent state. */
1386 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1387}
1388
b3dbec76 1389/*
7fdefc10 1390 * Initialize a new grace period.
b3dbec76 1391 */
7fdefc10 1392static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1393{
1394 struct rcu_data *rdp;
7fdefc10 1395 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1396
7fdefc10 1397 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1398 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1399
7fdefc10
PM
1400 if (rcu_gp_in_progress(rsp)) {
1401 /* Grace period already in progress, don't start another. */
1402 raw_spin_unlock_irq(&rnp->lock);
1403 return 0;
1404 }
1405
7fdefc10
PM
1406 /* Advance to a new grace period and initialize state. */
1407 rsp->gpnum++;
1408 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
7fdefc10
PM
1409 record_gp_stall_check_time(rsp);
1410 raw_spin_unlock_irq(&rnp->lock);
1411
1412 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1413 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1414
1415 /*
1416 * Set the quiescent-state-needed bits in all the rcu_node
1417 * structures for all currently online CPUs in breadth-first order,
1418 * starting from the root rcu_node structure, relying on the layout
1419 * of the tree within the rsp->node[] array. Note that other CPUs
1420 * will access only the leaves of the hierarchy, thus seeing that no
1421 * grace period is in progress, at least until the corresponding
1422 * leaf node has been initialized. In addition, we have excluded
1423 * CPU-hotplug operations.
1424 *
1425 * The grace period cannot complete until the initialization
1426 * process finishes, because this kthread handles both.
1427 */
1428 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1429 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1430 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1431 rcu_preempt_check_blocked_tasks(rnp);
1432 rnp->qsmask = rnp->qsmaskinit;
0446be48 1433 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1434 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1435 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10
PM
1436 if (rnp == rdp->mynode)
1437 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1438 rcu_preempt_boost_start_gp(rnp);
1439 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1440 rnp->level, rnp->grplo,
1441 rnp->grphi, rnp->qsmask);
1442 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1443#ifdef CONFIG_PROVE_RCU_DELAY
1f889ec6 1444 if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 &&
81e59494 1445 system_state == SYSTEM_RUNNING)
661a85dc
PM
1446 schedule_timeout_uninterruptible(2);
1447#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1448 cond_resched();
1449 }
b3dbec76 1450
a4fbe35a 1451 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1452 return 1;
1453}
b3dbec76 1454
4cdfc175
PM
1455/*
1456 * Do one round of quiescent-state forcing.
1457 */
1458int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1459{
1460 int fqs_state = fqs_state_in;
1461 struct rcu_node *rnp = rcu_get_root(rsp);
1462
1463 rsp->n_force_qs++;
1464 if (fqs_state == RCU_SAVE_DYNTICK) {
1465 /* Collect dyntick-idle snapshots. */
1466 force_qs_rnp(rsp, dyntick_save_progress_counter);
1467 fqs_state = RCU_FORCE_QS;
1468 } else {
1469 /* Handle dyntick-idle and offline CPUs. */
1470 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1471 }
1472 /* Clear flag to prevent immediate re-entry. */
1473 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1474 raw_spin_lock_irq(&rnp->lock);
1475 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1476 raw_spin_unlock_irq(&rnp->lock);
1477 }
1478 return fqs_state;
1479}
1480
7fdefc10
PM
1481/*
1482 * Clean up after the old grace period.
1483 */
4cdfc175 1484static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1485{
1486 unsigned long gp_duration;
dae6e64d 1487 int nocb = 0;
7fdefc10
PM
1488 struct rcu_data *rdp;
1489 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1490
7fdefc10
PM
1491 raw_spin_lock_irq(&rnp->lock);
1492 gp_duration = jiffies - rsp->gp_start;
1493 if (gp_duration > rsp->gp_max)
1494 rsp->gp_max = gp_duration;
b3dbec76 1495
7fdefc10
PM
1496 /*
1497 * We know the grace period is complete, but to everyone else
1498 * it appears to still be ongoing. But it is also the case
1499 * that to everyone else it looks like there is nothing that
1500 * they can do to advance the grace period. It is therefore
1501 * safe for us to drop the lock in order to mark the grace
1502 * period as completed in all of the rcu_node structures.
7fdefc10 1503 */
5d4b8659 1504 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1505
5d4b8659
PM
1506 /*
1507 * Propagate new ->completed value to rcu_node structures so
1508 * that other CPUs don't have to wait until the start of the next
1509 * grace period to process their callbacks. This also avoids
1510 * some nasty RCU grace-period initialization races by forcing
1511 * the end of the current grace period to be completely recorded in
1512 * all of the rcu_node structures before the beginning of the next
1513 * grace period is recorded in any of the rcu_node structures.
1514 */
1515 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1516 raw_spin_lock_irq(&rnp->lock);
0446be48 1517 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1518 rdp = this_cpu_ptr(rsp->rda);
1519 if (rnp == rdp->mynode)
1520 __rcu_process_gp_end(rsp, rnp, rdp);
0446be48 1521 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1522 raw_spin_unlock_irq(&rnp->lock);
1523 cond_resched();
7fdefc10 1524 }
5d4b8659
PM
1525 rnp = rcu_get_root(rsp);
1526 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1527 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1528
1529 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1530 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1531 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1532 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1533 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1534 if (cpu_needs_another_gp(rsp, rdp))
1535 rsp->gp_flags = 1;
1536 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1537}
1538
1539/*
1540 * Body of kthread that handles grace periods.
1541 */
1542static int __noreturn rcu_gp_kthread(void *arg)
1543{
4cdfc175 1544 int fqs_state;
d40011f6 1545 unsigned long j;
4cdfc175 1546 int ret;
7fdefc10
PM
1547 struct rcu_state *rsp = arg;
1548 struct rcu_node *rnp = rcu_get_root(rsp);
1549
1550 for (;;) {
1551
1552 /* Handle grace-period start. */
1553 for (;;) {
4cdfc175
PM
1554 wait_event_interruptible(rsp->gp_wq,
1555 rsp->gp_flags &
1556 RCU_GP_FLAG_INIT);
1557 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1558 rcu_gp_init(rsp))
7fdefc10
PM
1559 break;
1560 cond_resched();
1561 flush_signals(current);
1562 }
cabc49c1 1563
4cdfc175
PM
1564 /* Handle quiescent-state forcing. */
1565 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1566 j = jiffies_till_first_fqs;
1567 if (j > HZ) {
1568 j = HZ;
1569 jiffies_till_first_fqs = HZ;
1570 }
cabc49c1 1571 for (;;) {
d40011f6 1572 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1573 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1574 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1575 (!ACCESS_ONCE(rnp->qsmask) &&
1576 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1577 j);
4cdfc175 1578 /* If grace period done, leave loop. */
cabc49c1 1579 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1580 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1581 break;
4cdfc175
PM
1582 /* If time for quiescent-state forcing, do it. */
1583 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1584 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1585 cond_resched();
1586 } else {
1587 /* Deal with stray signal. */
1588 cond_resched();
1589 flush_signals(current);
1590 }
d40011f6
PM
1591 j = jiffies_till_next_fqs;
1592 if (j > HZ) {
1593 j = HZ;
1594 jiffies_till_next_fqs = HZ;
1595 } else if (j < 1) {
1596 j = 1;
1597 jiffies_till_next_fqs = 1;
1598 }
cabc49c1 1599 }
4cdfc175
PM
1600
1601 /* Handle grace-period end. */
1602 rcu_gp_cleanup(rsp);
b3dbec76 1603 }
b3dbec76
PM
1604}
1605
64db4cff
PM
1606/*
1607 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1608 * in preparation for detecting the next grace period. The caller must hold
b8462084 1609 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1610 *
1611 * Note that it is legal for a dying CPU (which is marked as offline) to
1612 * invoke this function. This can happen when the dying CPU reports its
1613 * quiescent state.
64db4cff
PM
1614 */
1615static void
910ee45d
PM
1616rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1617 struct rcu_data *rdp)
64db4cff 1618{
b8462084 1619 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1620 /*
b3dbec76 1621 * Either we have not yet spawned the grace-period
62da1921
PM
1622 * task, this CPU does not need another grace period,
1623 * or a grace period is already in progress.
b3dbec76 1624 * Either way, don't start a new grace period.
afe24b12 1625 */
afe24b12
PM
1626 return;
1627 }
4cdfc175 1628 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921
PM
1629
1630 /* Wake up rcu_gp_kthread() to start the grace period. */
b3dbec76 1631 wake_up(&rsp->gp_wq);
64db4cff
PM
1632}
1633
910ee45d
PM
1634/*
1635 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1636 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1637 * is invoked indirectly from rcu_advance_cbs(), which would result in
1638 * endless recursion -- or would do so if it wasn't for the self-deadlock
1639 * that is encountered beforehand.
1640 */
1641static void
1642rcu_start_gp(struct rcu_state *rsp)
1643{
1644 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1645 struct rcu_node *rnp = rcu_get_root(rsp);
1646
1647 /*
1648 * If there is no grace period in progress right now, any
1649 * callbacks we have up to this point will be satisfied by the
1650 * next grace period. Also, advancing the callbacks reduces the
1651 * probability of false positives from cpu_needs_another_gp()
1652 * resulting in pointless grace periods. So, advance callbacks
1653 * then start the grace period!
1654 */
1655 rcu_advance_cbs(rsp, rnp, rdp);
1656 rcu_start_gp_advanced(rsp, rnp, rdp);
1657}
1658
f41d911f 1659/*
d3f6bad3
PM
1660 * Report a full set of quiescent states to the specified rcu_state
1661 * data structure. This involves cleaning up after the prior grace
1662 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1663 * if one is needed. Note that the caller must hold rnp->lock, which
1664 * is released before return.
f41d911f 1665 */
d3f6bad3 1666static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1667 __releases(rcu_get_root(rsp)->lock)
f41d911f 1668{
fc2219d4 1669 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1670 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1671 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1672}
1673
64db4cff 1674/*
d3f6bad3
PM
1675 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1676 * Allows quiescent states for a group of CPUs to be reported at one go
1677 * to the specified rcu_node structure, though all the CPUs in the group
1678 * must be represented by the same rcu_node structure (which need not be
1679 * a leaf rcu_node structure, though it often will be). That structure's
1680 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1681 */
1682static void
d3f6bad3
PM
1683rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1684 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1685 __releases(rnp->lock)
1686{
28ecd580
PM
1687 struct rcu_node *rnp_c;
1688
64db4cff
PM
1689 /* Walk up the rcu_node hierarchy. */
1690 for (;;) {
1691 if (!(rnp->qsmask & mask)) {
1692
1693 /* Our bit has already been cleared, so done. */
1304afb2 1694 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1695 return;
1696 }
1697 rnp->qsmask &= ~mask;
d4c08f2a
PM
1698 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1699 mask, rnp->qsmask, rnp->level,
1700 rnp->grplo, rnp->grphi,
1701 !!rnp->gp_tasks);
27f4d280 1702 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1703
1704 /* Other bits still set at this level, so done. */
1304afb2 1705 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1706 return;
1707 }
1708 mask = rnp->grpmask;
1709 if (rnp->parent == NULL) {
1710
1711 /* No more levels. Exit loop holding root lock. */
1712
1713 break;
1714 }
1304afb2 1715 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1716 rnp_c = rnp;
64db4cff 1717 rnp = rnp->parent;
1304afb2 1718 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1719 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1720 }
1721
1722 /*
1723 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1724 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1725 * to clean up and start the next grace period if one is needed.
64db4cff 1726 */
d3f6bad3 1727 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1728}
1729
1730/*
d3f6bad3
PM
1731 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1732 * structure. This must be either called from the specified CPU, or
1733 * called when the specified CPU is known to be offline (and when it is
1734 * also known that no other CPU is concurrently trying to help the offline
1735 * CPU). The lastcomp argument is used to make sure we are still in the
1736 * grace period of interest. We don't want to end the current grace period
1737 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1738 */
1739static void
d7d6a11e 1740rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1741{
1742 unsigned long flags;
1743 unsigned long mask;
1744 struct rcu_node *rnp;
1745
1746 rnp = rdp->mynode;
1304afb2 1747 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1748 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1749 rnp->completed == rnp->gpnum) {
64db4cff
PM
1750
1751 /*
e4cc1f22
PM
1752 * The grace period in which this quiescent state was
1753 * recorded has ended, so don't report it upwards.
1754 * We will instead need a new quiescent state that lies
1755 * within the current grace period.
64db4cff 1756 */
e4cc1f22 1757 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1758 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1759 return;
1760 }
1761 mask = rdp->grpmask;
1762 if ((rnp->qsmask & mask) == 0) {
1304afb2 1763 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1764 } else {
1765 rdp->qs_pending = 0;
1766
1767 /*
1768 * This GP can't end until cpu checks in, so all of our
1769 * callbacks can be processed during the next GP.
1770 */
dc35c893 1771 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1772
d3f6bad3 1773 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1774 }
1775}
1776
1777/*
1778 * Check to see if there is a new grace period of which this CPU
1779 * is not yet aware, and if so, set up local rcu_data state for it.
1780 * Otherwise, see if this CPU has just passed through its first
1781 * quiescent state for this grace period, and record that fact if so.
1782 */
1783static void
1784rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1785{
1786 /* If there is now a new grace period, record and return. */
1787 if (check_for_new_grace_period(rsp, rdp))
1788 return;
1789
1790 /*
1791 * Does this CPU still need to do its part for current grace period?
1792 * If no, return and let the other CPUs do their part as well.
1793 */
1794 if (!rdp->qs_pending)
1795 return;
1796
1797 /*
1798 * Was there a quiescent state since the beginning of the grace
1799 * period? If no, then exit and wait for the next call.
1800 */
e4cc1f22 1801 if (!rdp->passed_quiesce)
64db4cff
PM
1802 return;
1803
d3f6bad3
PM
1804 /*
1805 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1806 * judge of that).
1807 */
d7d6a11e 1808 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1809}
1810
1811#ifdef CONFIG_HOTPLUG_CPU
1812
e74f4c45 1813/*
b1420f1c
PM
1814 * Send the specified CPU's RCU callbacks to the orphanage. The
1815 * specified CPU must be offline, and the caller must hold the
7b2e6011 1816 * ->orphan_lock.
e74f4c45 1817 */
b1420f1c
PM
1818static void
1819rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1820 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1821{
3fbfbf7a
PM
1822 /* No-CBs CPUs do not have orphanable callbacks. */
1823 if (is_nocb_cpu(rdp->cpu))
1824 return;
1825
b1420f1c
PM
1826 /*
1827 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1828 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1829 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1830 */
a50c3af9 1831 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1832 rsp->qlen_lazy += rdp->qlen_lazy;
1833 rsp->qlen += rdp->qlen;
1834 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1835 rdp->qlen_lazy = 0;
1d1fb395 1836 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1837 }
1838
1839 /*
b1420f1c
PM
1840 * Next, move those callbacks still needing a grace period to
1841 * the orphanage, where some other CPU will pick them up.
1842 * Some of the callbacks might have gone partway through a grace
1843 * period, but that is too bad. They get to start over because we
1844 * cannot assume that grace periods are synchronized across CPUs.
1845 * We don't bother updating the ->nxttail[] array yet, instead
1846 * we just reset the whole thing later on.
a50c3af9 1847 */
b1420f1c
PM
1848 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1849 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1850 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1851 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1852 }
1853
1854 /*
b1420f1c
PM
1855 * Then move the ready-to-invoke callbacks to the orphanage,
1856 * where some other CPU will pick them up. These will not be
1857 * required to pass though another grace period: They are done.
a50c3af9 1858 */
e5601400 1859 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1860 *rsp->orphan_donetail = rdp->nxtlist;
1861 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1862 }
e74f4c45 1863
b1420f1c 1864 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1865 init_callback_list(rdp);
b1420f1c
PM
1866}
1867
1868/*
1869 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1870 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1871 */
1872static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1873{
1874 int i;
1875 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1876
3fbfbf7a
PM
1877 /* No-CBs CPUs are handled specially. */
1878 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1879 return;
1880
b1420f1c
PM
1881 /* Do the accounting first. */
1882 rdp->qlen_lazy += rsp->qlen_lazy;
1883 rdp->qlen += rsp->qlen;
1884 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1885 if (rsp->qlen_lazy != rsp->qlen)
1886 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1887 rsp->qlen_lazy = 0;
1888 rsp->qlen = 0;
1889
1890 /*
1891 * We do not need a memory barrier here because the only way we
1892 * can get here if there is an rcu_barrier() in flight is if
1893 * we are the task doing the rcu_barrier().
1894 */
1895
1896 /* First adopt the ready-to-invoke callbacks. */
1897 if (rsp->orphan_donelist != NULL) {
1898 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1899 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1900 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1901 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1902 rdp->nxttail[i] = rsp->orphan_donetail;
1903 rsp->orphan_donelist = NULL;
1904 rsp->orphan_donetail = &rsp->orphan_donelist;
1905 }
1906
1907 /* And then adopt the callbacks that still need a grace period. */
1908 if (rsp->orphan_nxtlist != NULL) {
1909 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1910 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1911 rsp->orphan_nxtlist = NULL;
1912 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1913 }
1914}
1915
1916/*
1917 * Trace the fact that this CPU is going offline.
1918 */
1919static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1920{
1921 RCU_TRACE(unsigned long mask);
1922 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1923 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1924
1925 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1926 trace_rcu_grace_period(rsp->name,
1927 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1928 "cpuofl");
64db4cff
PM
1929}
1930
1931/*
e5601400 1932 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1933 * this fact from process context. Do the remainder of the cleanup,
1934 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1935 * adopting them. There can only be one CPU hotplug operation at a time,
1936 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1937 */
e5601400 1938static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1939{
2036d94a
PM
1940 unsigned long flags;
1941 unsigned long mask;
1942 int need_report = 0;
e5601400 1943 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1944 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1945
2036d94a 1946 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1947 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1948
b1420f1c 1949 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1950
1951 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1952 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1953 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1954
b1420f1c
PM
1955 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1956 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1957 rcu_adopt_orphan_cbs(rsp);
1958
2036d94a
PM
1959 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1960 mask = rdp->grpmask; /* rnp->grplo is constant. */
1961 do {
1962 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1963 rnp->qsmaskinit &= ~mask;
1964 if (rnp->qsmaskinit != 0) {
1965 if (rnp != rdp->mynode)
1966 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1967 break;
1968 }
1969 if (rnp == rdp->mynode)
1970 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1971 else
1972 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1973 mask = rnp->grpmask;
1974 rnp = rnp->parent;
1975 } while (rnp != NULL);
1976
1977 /*
1978 * We still hold the leaf rcu_node structure lock here, and
1979 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1980 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1981 * held leads to deadlock.
1982 */
7b2e6011 1983 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1984 rnp = rdp->mynode;
1985 if (need_report & RCU_OFL_TASKS_NORM_GP)
1986 rcu_report_unblock_qs_rnp(rnp, flags);
1987 else
1988 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1989 if (need_report & RCU_OFL_TASKS_EXP_GP)
1990 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1991 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1992 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1993 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1994 init_callback_list(rdp);
1995 /* Disallow further callbacks on this CPU. */
1996 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1997 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1998}
1999
2000#else /* #ifdef CONFIG_HOTPLUG_CPU */
2001
e5601400 2002static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2003{
2004}
2005
e5601400 2006static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2007{
2008}
2009
2010#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2011
2012/*
2013 * Invoke any RCU callbacks that have made it to the end of their grace
2014 * period. Thottle as specified by rdp->blimit.
2015 */
37c72e56 2016static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2017{
2018 unsigned long flags;
2019 struct rcu_head *next, *list, **tail;
878d7439
ED
2020 long bl, count, count_lazy;
2021 int i;
64db4cff 2022
dc35c893 2023 /* If no callbacks are ready, just return. */
29c00b4a 2024 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2025 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2026 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2027 need_resched(), is_idle_task(current),
2028 rcu_is_callbacks_kthread());
64db4cff 2029 return;
29c00b4a 2030 }
64db4cff
PM
2031
2032 /*
2033 * Extract the list of ready callbacks, disabling to prevent
2034 * races with call_rcu() from interrupt handlers.
2035 */
2036 local_irq_save(flags);
8146c4e2 2037 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2038 bl = rdp->blimit;
486e2593 2039 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2040 list = rdp->nxtlist;
2041 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2042 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2043 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2044 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2045 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2046 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2047 local_irq_restore(flags);
2048
2049 /* Invoke callbacks. */
486e2593 2050 count = count_lazy = 0;
64db4cff
PM
2051 while (list) {
2052 next = list->next;
2053 prefetch(next);
551d55a9 2054 debug_rcu_head_unqueue(list);
486e2593
PM
2055 if (__rcu_reclaim(rsp->name, list))
2056 count_lazy++;
64db4cff 2057 list = next;
dff1672d
PM
2058 /* Stop only if limit reached and CPU has something to do. */
2059 if (++count >= bl &&
2060 (need_resched() ||
2061 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2062 break;
2063 }
2064
2065 local_irq_save(flags);
4968c300
PM
2066 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2067 is_idle_task(current),
2068 rcu_is_callbacks_kthread());
64db4cff
PM
2069
2070 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2071 if (list != NULL) {
2072 *tail = rdp->nxtlist;
2073 rdp->nxtlist = list;
b41772ab
PM
2074 for (i = 0; i < RCU_NEXT_SIZE; i++)
2075 if (&rdp->nxtlist == rdp->nxttail[i])
2076 rdp->nxttail[i] = tail;
64db4cff
PM
2077 else
2078 break;
2079 }
b1420f1c
PM
2080 smp_mb(); /* List handling before counting for rcu_barrier(). */
2081 rdp->qlen_lazy -= count_lazy;
1d1fb395 2082 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2083 rdp->n_cbs_invoked += count;
64db4cff
PM
2084
2085 /* Reinstate batch limit if we have worked down the excess. */
2086 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2087 rdp->blimit = blimit;
2088
37c72e56
PM
2089 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2090 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2091 rdp->qlen_last_fqs_check = 0;
2092 rdp->n_force_qs_snap = rsp->n_force_qs;
2093 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2094 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2095 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2096
64db4cff
PM
2097 local_irq_restore(flags);
2098
e0f23060 2099 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2100 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2101 invoke_rcu_core();
64db4cff
PM
2102}
2103
2104/*
2105 * Check to see if this CPU is in a non-context-switch quiescent state
2106 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2107 * Also schedule RCU core processing.
64db4cff 2108 *
9b2e4f18 2109 * This function must be called from hardirq context. It is normally
64db4cff
PM
2110 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2111 * false, there is no point in invoking rcu_check_callbacks().
2112 */
2113void rcu_check_callbacks(int cpu, int user)
2114{
300df91c 2115 trace_rcu_utilization("Start scheduler-tick");
a858af28 2116 increment_cpu_stall_ticks();
9b2e4f18 2117 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2118
2119 /*
2120 * Get here if this CPU took its interrupt from user
2121 * mode or from the idle loop, and if this is not a
2122 * nested interrupt. In this case, the CPU is in
d6714c22 2123 * a quiescent state, so note it.
64db4cff
PM
2124 *
2125 * No memory barrier is required here because both
d6714c22
PM
2126 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2127 * variables that other CPUs neither access nor modify,
2128 * at least not while the corresponding CPU is online.
64db4cff
PM
2129 */
2130
d6714c22
PM
2131 rcu_sched_qs(cpu);
2132 rcu_bh_qs(cpu);
64db4cff
PM
2133
2134 } else if (!in_softirq()) {
2135
2136 /*
2137 * Get here if this CPU did not take its interrupt from
2138 * softirq, in other words, if it is not interrupting
2139 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2140 * critical section, so note it.
64db4cff
PM
2141 */
2142
d6714c22 2143 rcu_bh_qs(cpu);
64db4cff 2144 }
f41d911f 2145 rcu_preempt_check_callbacks(cpu);
d21670ac 2146 if (rcu_pending(cpu))
a46e0899 2147 invoke_rcu_core();
300df91c 2148 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
2149}
2150
64db4cff
PM
2151/*
2152 * Scan the leaf rcu_node structures, processing dyntick state for any that
2153 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2154 * Also initiate boosting for any threads blocked on the root rcu_node.
2155 *
ee47eb9f 2156 * The caller must have suppressed start of new grace periods.
64db4cff 2157 */
45f014c5 2158static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2159{
2160 unsigned long bit;
2161 int cpu;
2162 unsigned long flags;
2163 unsigned long mask;
a0b6c9a7 2164 struct rcu_node *rnp;
64db4cff 2165
a0b6c9a7 2166 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2167 cond_resched();
64db4cff 2168 mask = 0;
1304afb2 2169 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2170 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2171 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2172 return;
64db4cff 2173 }
a0b6c9a7 2174 if (rnp->qsmask == 0) {
1217ed1b 2175 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2176 continue;
2177 }
a0b6c9a7 2178 cpu = rnp->grplo;
64db4cff 2179 bit = 1;
a0b6c9a7 2180 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2181 if ((rnp->qsmask & bit) != 0 &&
2182 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2183 mask |= bit;
2184 }
45f014c5 2185 if (mask != 0) {
64db4cff 2186
d3f6bad3
PM
2187 /* rcu_report_qs_rnp() releases rnp->lock. */
2188 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2189 continue;
2190 }
1304afb2 2191 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2192 }
27f4d280 2193 rnp = rcu_get_root(rsp);
1217ed1b
PM
2194 if (rnp->qsmask == 0) {
2195 raw_spin_lock_irqsave(&rnp->lock, flags);
2196 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2197 }
64db4cff
PM
2198}
2199
2200/*
2201 * Force quiescent states on reluctant CPUs, and also detect which
2202 * CPUs are in dyntick-idle mode.
2203 */
4cdfc175 2204static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2205{
2206 unsigned long flags;
394f2769
PM
2207 bool ret;
2208 struct rcu_node *rnp;
2209 struct rcu_node *rnp_old = NULL;
2210
2211 /* Funnel through hierarchy to reduce memory contention. */
2212 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2213 for (; rnp != NULL; rnp = rnp->parent) {
2214 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2215 !raw_spin_trylock(&rnp->fqslock);
2216 if (rnp_old != NULL)
2217 raw_spin_unlock(&rnp_old->fqslock);
2218 if (ret) {
2219 rsp->n_force_qs_lh++;
2220 return;
2221 }
2222 rnp_old = rnp;
2223 }
2224 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2225
394f2769
PM
2226 /* Reached the root of the rcu_node tree, acquire lock. */
2227 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2228 raw_spin_unlock(&rnp_old->fqslock);
2229 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2230 rsp->n_force_qs_lh++;
2231 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2232 return; /* Someone beat us to it. */
46a1e34e 2233 }
4cdfc175 2234 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2235 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2236 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2237}
2238
64db4cff 2239/*
e0f23060
PM
2240 * This does the RCU core processing work for the specified rcu_state
2241 * and rcu_data structures. This may be called only from the CPU to
2242 * whom the rdp belongs.
64db4cff
PM
2243 */
2244static void
1bca8cf1 2245__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2246{
2247 unsigned long flags;
1bca8cf1 2248 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2249
2e597558
PM
2250 WARN_ON_ONCE(rdp->beenonline == 0);
2251
dc35c893 2252 /* Handle the end of a grace period that some other CPU ended. */
64db4cff
PM
2253 rcu_process_gp_end(rsp, rdp);
2254
2255 /* Update RCU state based on any recent quiescent states. */
2256 rcu_check_quiescent_state(rsp, rdp);
2257
2258 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2259 local_irq_save(flags);
64db4cff 2260 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2261 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2262 rcu_start_gp(rsp);
2263 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2264 } else {
2265 local_irq_restore(flags);
64db4cff
PM
2266 }
2267
2268 /* If there are callbacks ready, invoke them. */
09223371 2269 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2270 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2271}
2272
64db4cff 2273/*
e0f23060 2274 * Do RCU core processing for the current CPU.
64db4cff 2275 */
09223371 2276static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2277{
6ce75a23
PM
2278 struct rcu_state *rsp;
2279
bfa00b4c
PM
2280 if (cpu_is_offline(smp_processor_id()))
2281 return;
300df91c 2282 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
2283 for_each_rcu_flavor(rsp)
2284 __rcu_process_callbacks(rsp);
300df91c 2285 trace_rcu_utilization("End RCU core");
64db4cff
PM
2286}
2287
a26ac245 2288/*
e0f23060
PM
2289 * Schedule RCU callback invocation. If the specified type of RCU
2290 * does not support RCU priority boosting, just do a direct call,
2291 * otherwise wake up the per-CPU kernel kthread. Note that because we
2292 * are running on the current CPU with interrupts disabled, the
2293 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2294 */
a46e0899 2295static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2296{
b0d30417
PM
2297 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2298 return;
a46e0899
PM
2299 if (likely(!rsp->boost)) {
2300 rcu_do_batch(rsp, rdp);
a26ac245
PM
2301 return;
2302 }
a46e0899 2303 invoke_rcu_callbacks_kthread();
a26ac245
PM
2304}
2305
a46e0899 2306static void invoke_rcu_core(void)
09223371 2307{
b0f74036
PM
2308 if (cpu_online(smp_processor_id()))
2309 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2310}
2311
29154c57
PM
2312/*
2313 * Handle any core-RCU processing required by a call_rcu() invocation.
2314 */
2315static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2316 struct rcu_head *head, unsigned long flags)
64db4cff 2317{
62fde6ed
PM
2318 /*
2319 * If called from an extended quiescent state, invoke the RCU
2320 * core in order to force a re-evaluation of RCU's idleness.
2321 */
a16b7a69 2322 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2323 invoke_rcu_core();
2324
a16b7a69 2325 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2326 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2327 return;
64db4cff 2328
37c72e56
PM
2329 /*
2330 * Force the grace period if too many callbacks or too long waiting.
2331 * Enforce hysteresis, and don't invoke force_quiescent_state()
2332 * if some other CPU has recently done so. Also, don't bother
2333 * invoking force_quiescent_state() if the newly enqueued callback
2334 * is the only one waiting for a grace period to complete.
2335 */
2655d57e 2336 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2337
2338 /* Are we ignoring a completed grace period? */
2339 rcu_process_gp_end(rsp, rdp);
2340 check_for_new_grace_period(rsp, rdp);
2341
2342 /* Start a new grace period if one not already started. */
2343 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2344 struct rcu_node *rnp_root = rcu_get_root(rsp);
2345
b8462084
PM
2346 raw_spin_lock(&rnp_root->lock);
2347 rcu_start_gp(rsp);
2348 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2349 } else {
2350 /* Give the grace period a kick. */
2351 rdp->blimit = LONG_MAX;
2352 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2353 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2354 force_quiescent_state(rsp);
b52573d2
PM
2355 rdp->n_force_qs_snap = rsp->n_force_qs;
2356 rdp->qlen_last_fqs_check = rdp->qlen;
2357 }
4cdfc175 2358 }
29154c57
PM
2359}
2360
3fbfbf7a
PM
2361/*
2362 * Helper function for call_rcu() and friends. The cpu argument will
2363 * normally be -1, indicating "currently running CPU". It may specify
2364 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2365 * is expected to specify a CPU.
2366 */
64db4cff
PM
2367static void
2368__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2369 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2370{
2371 unsigned long flags;
2372 struct rcu_data *rdp;
2373
0bb7b59d 2374 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2375 debug_rcu_head_queue(head);
64db4cff
PM
2376 head->func = func;
2377 head->next = NULL;
2378
64db4cff
PM
2379 /*
2380 * Opportunistically note grace-period endings and beginnings.
2381 * Note that we might see a beginning right after we see an
2382 * end, but never vice versa, since this CPU has to pass through
2383 * a quiescent state betweentimes.
2384 */
2385 local_irq_save(flags);
394f99a9 2386 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2387
2388 /* Add the callback to our list. */
3fbfbf7a
PM
2389 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2390 int offline;
2391
2392 if (cpu != -1)
2393 rdp = per_cpu_ptr(rsp->rda, cpu);
2394 offline = !__call_rcu_nocb(rdp, head, lazy);
2395 WARN_ON_ONCE(offline);
0d8ee37e 2396 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2397 local_irq_restore(flags);
2398 return;
2399 }
29154c57 2400 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2401 if (lazy)
2402 rdp->qlen_lazy++;
c57afe80
PM
2403 else
2404 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2405 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2406 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2407 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2408
d4c08f2a
PM
2409 if (__is_kfree_rcu_offset((unsigned long)func))
2410 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2411 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2412 else
486e2593 2413 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2414
29154c57
PM
2415 /* Go handle any RCU core processing required. */
2416 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2417 local_irq_restore(flags);
2418}
2419
2420/*
d6714c22 2421 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2422 */
d6714c22 2423void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2424{
3fbfbf7a 2425 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2426}
d6714c22 2427EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2428
2429/*
486e2593 2430 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2431 */
2432void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2433{
3fbfbf7a 2434 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2435}
2436EXPORT_SYMBOL_GPL(call_rcu_bh);
2437
6d813391
PM
2438/*
2439 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2440 * any blocking grace-period wait automatically implies a grace period
2441 * if there is only one CPU online at any point time during execution
2442 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2443 * occasionally incorrectly indicate that there are multiple CPUs online
2444 * when there was in fact only one the whole time, as this just adds
2445 * some overhead: RCU still operates correctly.
6d813391
PM
2446 */
2447static inline int rcu_blocking_is_gp(void)
2448{
95f0c1de
PM
2449 int ret;
2450
6d813391 2451 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2452 preempt_disable();
2453 ret = num_online_cpus() <= 1;
2454 preempt_enable();
2455 return ret;
6d813391
PM
2456}
2457
6ebb237b
PM
2458/**
2459 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2460 *
2461 * Control will return to the caller some time after a full rcu-sched
2462 * grace period has elapsed, in other words after all currently executing
2463 * rcu-sched read-side critical sections have completed. These read-side
2464 * critical sections are delimited by rcu_read_lock_sched() and
2465 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2466 * local_irq_disable(), and so on may be used in place of
2467 * rcu_read_lock_sched().
2468 *
2469 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2470 * non-threaded hardware-interrupt handlers, in progress on entry will
2471 * have completed before this primitive returns. However, this does not
2472 * guarantee that softirq handlers will have completed, since in some
2473 * kernels, these handlers can run in process context, and can block.
2474 *
2475 * Note that this guarantee implies further memory-ordering guarantees.
2476 * On systems with more than one CPU, when synchronize_sched() returns,
2477 * each CPU is guaranteed to have executed a full memory barrier since the
2478 * end of its last RCU-sched read-side critical section whose beginning
2479 * preceded the call to synchronize_sched(). In addition, each CPU having
2480 * an RCU read-side critical section that extends beyond the return from
2481 * synchronize_sched() is guaranteed to have executed a full memory barrier
2482 * after the beginning of synchronize_sched() and before the beginning of
2483 * that RCU read-side critical section. Note that these guarantees include
2484 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2485 * that are executing in the kernel.
2486 *
2487 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2488 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2489 * to have executed a full memory barrier during the execution of
2490 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2491 * again only if the system has more than one CPU).
6ebb237b
PM
2492 *
2493 * This primitive provides the guarantees made by the (now removed)
2494 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2495 * guarantees that rcu_read_lock() sections will have completed.
2496 * In "classic RCU", these two guarantees happen to be one and
2497 * the same, but can differ in realtime RCU implementations.
2498 */
2499void synchronize_sched(void)
2500{
fe15d706
PM
2501 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2502 !lock_is_held(&rcu_lock_map) &&
2503 !lock_is_held(&rcu_sched_lock_map),
2504 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2505 if (rcu_blocking_is_gp())
2506 return;
3705b88d
AM
2507 if (rcu_expedited)
2508 synchronize_sched_expedited();
2509 else
2510 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2511}
2512EXPORT_SYMBOL_GPL(synchronize_sched);
2513
2514/**
2515 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2516 *
2517 * Control will return to the caller some time after a full rcu_bh grace
2518 * period has elapsed, in other words after all currently executing rcu_bh
2519 * read-side critical sections have completed. RCU read-side critical
2520 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2521 * and may be nested.
f0a0e6f2
PM
2522 *
2523 * See the description of synchronize_sched() for more detailed information
2524 * on memory ordering guarantees.
6ebb237b
PM
2525 */
2526void synchronize_rcu_bh(void)
2527{
fe15d706
PM
2528 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2529 !lock_is_held(&rcu_lock_map) &&
2530 !lock_is_held(&rcu_sched_lock_map),
2531 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2532 if (rcu_blocking_is_gp())
2533 return;
3705b88d
AM
2534 if (rcu_expedited)
2535 synchronize_rcu_bh_expedited();
2536 else
2537 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2538}
2539EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2540
3d3b7db0
PM
2541static int synchronize_sched_expedited_cpu_stop(void *data)
2542{
2543 /*
2544 * There must be a full memory barrier on each affected CPU
2545 * between the time that try_stop_cpus() is called and the
2546 * time that it returns.
2547 *
2548 * In the current initial implementation of cpu_stop, the
2549 * above condition is already met when the control reaches
2550 * this point and the following smp_mb() is not strictly
2551 * necessary. Do smp_mb() anyway for documentation and
2552 * robustness against future implementation changes.
2553 */
2554 smp_mb(); /* See above comment block. */
2555 return 0;
2556}
2557
236fefaf
PM
2558/**
2559 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2560 *
2561 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2562 * approach to force the grace period to end quickly. This consumes
2563 * significant time on all CPUs and is unfriendly to real-time workloads,
2564 * so is thus not recommended for any sort of common-case code. In fact,
2565 * if you are using synchronize_sched_expedited() in a loop, please
2566 * restructure your code to batch your updates, and then use a single
2567 * synchronize_sched() instead.
3d3b7db0 2568 *
236fefaf
PM
2569 * Note that it is illegal to call this function while holding any lock
2570 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2571 * to call this function from a CPU-hotplug notifier. Failing to observe
2572 * these restriction will result in deadlock.
3d3b7db0
PM
2573 *
2574 * This implementation can be thought of as an application of ticket
2575 * locking to RCU, with sync_sched_expedited_started and
2576 * sync_sched_expedited_done taking on the roles of the halves
2577 * of the ticket-lock word. Each task atomically increments
2578 * sync_sched_expedited_started upon entry, snapshotting the old value,
2579 * then attempts to stop all the CPUs. If this succeeds, then each
2580 * CPU will have executed a context switch, resulting in an RCU-sched
2581 * grace period. We are then done, so we use atomic_cmpxchg() to
2582 * update sync_sched_expedited_done to match our snapshot -- but
2583 * only if someone else has not already advanced past our snapshot.
2584 *
2585 * On the other hand, if try_stop_cpus() fails, we check the value
2586 * of sync_sched_expedited_done. If it has advanced past our
2587 * initial snapshot, then someone else must have forced a grace period
2588 * some time after we took our snapshot. In this case, our work is
2589 * done for us, and we can simply return. Otherwise, we try again,
2590 * but keep our initial snapshot for purposes of checking for someone
2591 * doing our work for us.
2592 *
2593 * If we fail too many times in a row, we fall back to synchronize_sched().
2594 */
2595void synchronize_sched_expedited(void)
2596{
1924bcb0
PM
2597 long firstsnap, s, snap;
2598 int trycount = 0;
40694d66 2599 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2600
1924bcb0
PM
2601 /*
2602 * If we are in danger of counter wrap, just do synchronize_sched().
2603 * By allowing sync_sched_expedited_started to advance no more than
2604 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2605 * that more than 3.5 billion CPUs would be required to force a
2606 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2607 * course be required on a 64-bit system.
2608 */
40694d66
PM
2609 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2610 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2611 ULONG_MAX / 8)) {
2612 synchronize_sched();
a30489c5 2613 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2614 return;
2615 }
3d3b7db0 2616
1924bcb0
PM
2617 /*
2618 * Take a ticket. Note that atomic_inc_return() implies a
2619 * full memory barrier.
2620 */
40694d66 2621 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2622 firstsnap = snap;
3d3b7db0 2623 get_online_cpus();
1cc85961 2624 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2625
2626 /*
2627 * Each pass through the following loop attempts to force a
2628 * context switch on each CPU.
2629 */
2630 while (try_stop_cpus(cpu_online_mask,
2631 synchronize_sched_expedited_cpu_stop,
2632 NULL) == -EAGAIN) {
2633 put_online_cpus();
a30489c5 2634 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2635
1924bcb0 2636 /* Check to see if someone else did our work for us. */
40694d66 2637 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2638 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2639 /* ensure test happens before caller kfree */
2640 smp_mb__before_atomic_inc(); /* ^^^ */
2641 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2642 return;
2643 }
3d3b7db0
PM
2644
2645 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2646 if (trycount++ < 10) {
3d3b7db0 2647 udelay(trycount * num_online_cpus());
c701d5d9 2648 } else {
3705b88d 2649 wait_rcu_gp(call_rcu_sched);
a30489c5 2650 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2651 return;
2652 }
2653
1924bcb0 2654 /* Recheck to see if someone else did our work for us. */
40694d66 2655 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2656 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2657 /* ensure test happens before caller kfree */
2658 smp_mb__before_atomic_inc(); /* ^^^ */
2659 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2660 return;
2661 }
2662
2663 /*
2664 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2665 * callers to piggyback on our grace period. We retry
2666 * after they started, so our grace period works for them,
2667 * and they started after our first try, so their grace
2668 * period works for us.
3d3b7db0
PM
2669 */
2670 get_online_cpus();
40694d66 2671 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2672 smp_mb(); /* ensure read is before try_stop_cpus(). */
2673 }
a30489c5 2674 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2675
2676 /*
2677 * Everyone up to our most recent fetch is covered by our grace
2678 * period. Update the counter, but only if our work is still
2679 * relevant -- which it won't be if someone who started later
1924bcb0 2680 * than we did already did their update.
3d3b7db0
PM
2681 */
2682 do {
a30489c5 2683 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2684 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2685 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2686 /* ensure test happens before caller kfree */
2687 smp_mb__before_atomic_inc(); /* ^^^ */
2688 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2689 break;
2690 }
40694d66 2691 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2692 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2693
2694 put_online_cpus();
2695}
2696EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2697
64db4cff
PM
2698/*
2699 * Check to see if there is any immediate RCU-related work to be done
2700 * by the current CPU, for the specified type of RCU, returning 1 if so.
2701 * The checks are in order of increasing expense: checks that can be
2702 * carried out against CPU-local state are performed first. However,
2703 * we must check for CPU stalls first, else we might not get a chance.
2704 */
2705static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2706{
2f51f988
PM
2707 struct rcu_node *rnp = rdp->mynode;
2708
64db4cff
PM
2709 rdp->n_rcu_pending++;
2710
2711 /* Check for CPU stalls, if enabled. */
2712 check_cpu_stall(rsp, rdp);
2713
2714 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2715 if (rcu_scheduler_fully_active &&
2716 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2717 rdp->n_rp_qs_pending++;
e4cc1f22 2718 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2719 rdp->n_rp_report_qs++;
64db4cff 2720 return 1;
7ba5c840 2721 }
64db4cff
PM
2722
2723 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2724 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2725 rdp->n_rp_cb_ready++;
64db4cff 2726 return 1;
7ba5c840 2727 }
64db4cff
PM
2728
2729 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2730 if (cpu_needs_another_gp(rsp, rdp)) {
2731 rdp->n_rp_cpu_needs_gp++;
64db4cff 2732 return 1;
7ba5c840 2733 }
64db4cff
PM
2734
2735 /* Has another RCU grace period completed? */
2f51f988 2736 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2737 rdp->n_rp_gp_completed++;
64db4cff 2738 return 1;
7ba5c840 2739 }
64db4cff
PM
2740
2741 /* Has a new RCU grace period started? */
2f51f988 2742 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2743 rdp->n_rp_gp_started++;
64db4cff 2744 return 1;
7ba5c840 2745 }
64db4cff 2746
64db4cff 2747 /* nothing to do */
7ba5c840 2748 rdp->n_rp_need_nothing++;
64db4cff
PM
2749 return 0;
2750}
2751
2752/*
2753 * Check to see if there is any immediate RCU-related work to be done
2754 * by the current CPU, returning 1 if so. This function is part of the
2755 * RCU implementation; it is -not- an exported member of the RCU API.
2756 */
a157229c 2757static int rcu_pending(int cpu)
64db4cff 2758{
6ce75a23
PM
2759 struct rcu_state *rsp;
2760
2761 for_each_rcu_flavor(rsp)
2762 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2763 return 1;
2764 return 0;
64db4cff
PM
2765}
2766
2767/*
c0f4dfd4
PM
2768 * Return true if the specified CPU has any callback. If all_lazy is
2769 * non-NULL, store an indication of whether all callbacks are lazy.
2770 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2771 */
c0f4dfd4 2772static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2773{
c0f4dfd4
PM
2774 bool al = true;
2775 bool hc = false;
2776 struct rcu_data *rdp;
6ce75a23
PM
2777 struct rcu_state *rsp;
2778
c0f4dfd4
PM
2779 for_each_rcu_flavor(rsp) {
2780 rdp = per_cpu_ptr(rsp->rda, cpu);
2781 if (rdp->qlen != rdp->qlen_lazy)
2782 al = false;
2783 if (rdp->nxtlist)
2784 hc = true;
2785 }
2786 if (all_lazy)
2787 *all_lazy = al;
2788 return hc;
64db4cff
PM
2789}
2790
a83eff0a
PM
2791/*
2792 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2793 * the compiler is expected to optimize this away.
2794 */
2795static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2796 int cpu, unsigned long done)
2797{
2798 trace_rcu_barrier(rsp->name, s, cpu,
2799 atomic_read(&rsp->barrier_cpu_count), done);
2800}
2801
b1420f1c
PM
2802/*
2803 * RCU callback function for _rcu_barrier(). If we are last, wake
2804 * up the task executing _rcu_barrier().
2805 */
24ebbca8 2806static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2807{
24ebbca8
PM
2808 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2809 struct rcu_state *rsp = rdp->rsp;
2810
a83eff0a
PM
2811 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2812 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2813 complete(&rsp->barrier_completion);
a83eff0a
PM
2814 } else {
2815 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2816 }
d0ec774c
PM
2817}
2818
2819/*
2820 * Called with preemption disabled, and from cross-cpu IRQ context.
2821 */
2822static void rcu_barrier_func(void *type)
2823{
037b64ed 2824 struct rcu_state *rsp = type;
06668efa 2825 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2826
a83eff0a 2827 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2828 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2829 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2830}
2831
d0ec774c
PM
2832/*
2833 * Orchestrate the specified type of RCU barrier, waiting for all
2834 * RCU callbacks of the specified type to complete.
2835 */
037b64ed 2836static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2837{
b1420f1c 2838 int cpu;
b1420f1c 2839 struct rcu_data *rdp;
cf3a9c48
PM
2840 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2841 unsigned long snap_done;
b1420f1c 2842
a83eff0a 2843 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2844
e74f4c45 2845 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2846 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2847
cf3a9c48
PM
2848 /*
2849 * Ensure that all prior references, including to ->n_barrier_done,
2850 * are ordered before the _rcu_barrier() machinery.
2851 */
2852 smp_mb(); /* See above block comment. */
2853
2854 /*
2855 * Recheck ->n_barrier_done to see if others did our work for us.
2856 * This means checking ->n_barrier_done for an even-to-odd-to-even
2857 * transition. The "if" expression below therefore rounds the old
2858 * value up to the next even number and adds two before comparing.
2859 */
2860 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2861 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2862 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2863 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2864 smp_mb(); /* caller's subsequent code after above check. */
2865 mutex_unlock(&rsp->barrier_mutex);
2866 return;
2867 }
2868
2869 /*
2870 * Increment ->n_barrier_done to avoid duplicate work. Use
2871 * ACCESS_ONCE() to prevent the compiler from speculating
2872 * the increment to precede the early-exit check.
2873 */
2874 ACCESS_ONCE(rsp->n_barrier_done)++;
2875 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2876 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2877 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2878
d0ec774c 2879 /*
b1420f1c
PM
2880 * Initialize the count to one rather than to zero in order to
2881 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2882 * (or preemption of this task). Exclude CPU-hotplug operations
2883 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2884 */
7db74df8 2885 init_completion(&rsp->barrier_completion);
24ebbca8 2886 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2887 get_online_cpus();
b1420f1c
PM
2888
2889 /*
1331e7a1
PM
2890 * Force each CPU with callbacks to register a new callback.
2891 * When that callback is invoked, we will know that all of the
2892 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2893 */
3fbfbf7a
PM
2894 for_each_possible_cpu(cpu) {
2895 if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
2896 continue;
b1420f1c 2897 rdp = per_cpu_ptr(rsp->rda, cpu);
3fbfbf7a
PM
2898 if (is_nocb_cpu(cpu)) {
2899 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2900 rsp->n_barrier_done);
2901 atomic_inc(&rsp->barrier_cpu_count);
2902 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2903 rsp, cpu, 0);
2904 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2905 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2906 rsp->n_barrier_done);
037b64ed 2907 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2908 } else {
a83eff0a
PM
2909 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2910 rsp->n_barrier_done);
b1420f1c
PM
2911 }
2912 }
1331e7a1 2913 put_online_cpus();
b1420f1c
PM
2914
2915 /*
2916 * Now that we have an rcu_barrier_callback() callback on each
2917 * CPU, and thus each counted, remove the initial count.
2918 */
24ebbca8 2919 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2920 complete(&rsp->barrier_completion);
b1420f1c 2921
cf3a9c48
PM
2922 /* Increment ->n_barrier_done to prevent duplicate work. */
2923 smp_mb(); /* Keep increment after above mechanism. */
2924 ACCESS_ONCE(rsp->n_barrier_done)++;
2925 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2926 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2927 smp_mb(); /* Keep increment before caller's subsequent code. */
2928
b1420f1c 2929 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2930 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2931
2932 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2933 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2934}
d0ec774c
PM
2935
2936/**
2937 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2938 */
2939void rcu_barrier_bh(void)
2940{
037b64ed 2941 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2942}
2943EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2944
2945/**
2946 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2947 */
2948void rcu_barrier_sched(void)
2949{
037b64ed 2950 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2951}
2952EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2953
64db4cff 2954/*
27569620 2955 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2956 */
27569620
PM
2957static void __init
2958rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2959{
2960 unsigned long flags;
394f99a9 2961 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2962 struct rcu_node *rnp = rcu_get_root(rsp);
2963
2964 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2965 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2966 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2967 init_callback_list(rdp);
486e2593 2968 rdp->qlen_lazy = 0;
1d1fb395 2969 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2970 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2971 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2972 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2973 rdp->cpu = cpu;
d4c08f2a 2974 rdp->rsp = rsp;
3fbfbf7a 2975 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2976 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2977}
2978
2979/*
2980 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2981 * offline event can be happening at a given time. Note also that we
2982 * can accept some slop in the rsp->completed access due to the fact
2983 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2984 */
e4fa4c97 2985static void __cpuinit
6cc68793 2986rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2987{
2988 unsigned long flags;
64db4cff 2989 unsigned long mask;
394f99a9 2990 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2991 struct rcu_node *rnp = rcu_get_root(rsp);
2992
a4fbe35a
PM
2993 /* Exclude new grace periods. */
2994 mutex_lock(&rsp->onoff_mutex);
2995
64db4cff 2996 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2997 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2998 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2999 rdp->preemptible = preemptible;
37c72e56
PM
3000 rdp->qlen_last_fqs_check = 0;
3001 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3002 rdp->blimit = blimit;
0d8ee37e 3003 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3004 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
3005 atomic_set(&rdp->dynticks->dynticks,
3006 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3007 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3008
64db4cff
PM
3009 /* Add CPU to rcu_node bitmasks. */
3010 rnp = rdp->mynode;
3011 mask = rdp->grpmask;
3012 do {
3013 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3014 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3015 rnp->qsmaskinit |= mask;
3016 mask = rnp->grpmask;
d09b62df 3017 if (rnp == rdp->mynode) {
06ae115a
PM
3018 /*
3019 * If there is a grace period in progress, we will
3020 * set up to wait for it next time we run the
3021 * RCU core code.
3022 */
3023 rdp->gpnum = rnp->completed;
d09b62df 3024 rdp->completed = rnp->completed;
06ae115a
PM
3025 rdp->passed_quiesce = 0;
3026 rdp->qs_pending = 0;
d4c08f2a 3027 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 3028 }
1304afb2 3029 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3030 rnp = rnp->parent;
3031 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3032 local_irq_restore(flags);
64db4cff 3033
a4fbe35a 3034 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3035}
3036
d72bce0e 3037static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 3038{
6ce75a23
PM
3039 struct rcu_state *rsp;
3040
3041 for_each_rcu_flavor(rsp)
3042 rcu_init_percpu_data(cpu, rsp,
3043 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3044}
3045
3046/*
f41d911f 3047 * Handle CPU online/offline notification events.
64db4cff 3048 */
9f680ab4
PM
3049static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
3050 unsigned long action, void *hcpu)
64db4cff
PM
3051{
3052 long cpu = (long)hcpu;
27f4d280 3053 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3054 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3055 struct rcu_state *rsp;
64db4cff 3056
300df91c 3057 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
3058 switch (action) {
3059 case CPU_UP_PREPARE:
3060 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3061 rcu_prepare_cpu(cpu);
3062 rcu_prepare_kthreads(cpu);
a26ac245
PM
3063 break;
3064 case CPU_ONLINE:
0f962a5e 3065 case CPU_DOWN_FAILED:
5d01bbd1 3066 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3067 break;
3068 case CPU_DOWN_PREPARE:
34ed6246 3069 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3070 break;
d0ec774c
PM
3071 case CPU_DYING:
3072 case CPU_DYING_FROZEN:
6ce75a23
PM
3073 for_each_rcu_flavor(rsp)
3074 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3075 break;
64db4cff
PM
3076 case CPU_DEAD:
3077 case CPU_DEAD_FROZEN:
3078 case CPU_UP_CANCELED:
3079 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3080 for_each_rcu_flavor(rsp)
3081 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3082 break;
3083 default:
3084 break;
3085 }
300df91c 3086 trace_rcu_utilization("End CPU hotplug");
34ed6246 3087 return NOTIFY_OK;
64db4cff
PM
3088}
3089
b3dbec76
PM
3090/*
3091 * Spawn the kthread that handles this RCU flavor's grace periods.
3092 */
3093static int __init rcu_spawn_gp_kthread(void)
3094{
3095 unsigned long flags;
3096 struct rcu_node *rnp;
3097 struct rcu_state *rsp;
3098 struct task_struct *t;
3099
3100 for_each_rcu_flavor(rsp) {
3101 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
3102 BUG_ON(IS_ERR(t));
3103 rnp = rcu_get_root(rsp);
3104 raw_spin_lock_irqsave(&rnp->lock, flags);
3105 rsp->gp_kthread = t;
3106 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3107 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3108 }
3109 return 0;
3110}
3111early_initcall(rcu_spawn_gp_kthread);
3112
bbad9379
PM
3113/*
3114 * This function is invoked towards the end of the scheduler's initialization
3115 * process. Before this is called, the idle task might contain
3116 * RCU read-side critical sections (during which time, this idle
3117 * task is booting the system). After this function is called, the
3118 * idle tasks are prohibited from containing RCU read-side critical
3119 * sections. This function also enables RCU lockdep checking.
3120 */
3121void rcu_scheduler_starting(void)
3122{
3123 WARN_ON(num_online_cpus() != 1);
3124 WARN_ON(nr_context_switches() > 0);
3125 rcu_scheduler_active = 1;
3126}
3127
64db4cff
PM
3128/*
3129 * Compute the per-level fanout, either using the exact fanout specified
3130 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3131 */
3132#ifdef CONFIG_RCU_FANOUT_EXACT
3133static void __init rcu_init_levelspread(struct rcu_state *rsp)
3134{
3135 int i;
3136
f885b7f2 3137 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3138 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3139 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3140}
3141#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3142static void __init rcu_init_levelspread(struct rcu_state *rsp)
3143{
3144 int ccur;
3145 int cprv;
3146 int i;
3147
4dbd6bb3 3148 cprv = nr_cpu_ids;
f885b7f2 3149 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3150 ccur = rsp->levelcnt[i];
3151 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3152 cprv = ccur;
3153 }
3154}
3155#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3156
3157/*
3158 * Helper function for rcu_init() that initializes one rcu_state structure.
3159 */
394f99a9
LJ
3160static void __init rcu_init_one(struct rcu_state *rsp,
3161 struct rcu_data __percpu *rda)
64db4cff 3162{
394f2769
PM
3163 static char *buf[] = { "rcu_node_0",
3164 "rcu_node_1",
3165 "rcu_node_2",
3166 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3167 static char *fqs[] = { "rcu_node_fqs_0",
3168 "rcu_node_fqs_1",
3169 "rcu_node_fqs_2",
3170 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3171 int cpustride = 1;
3172 int i;
3173 int j;
3174 struct rcu_node *rnp;
3175
b6407e86
PM
3176 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3177
4930521a
PM
3178 /* Silence gcc 4.8 warning about array index out of range. */
3179 if (rcu_num_lvls > RCU_NUM_LVLS)
3180 panic("rcu_init_one: rcu_num_lvls overflow");
3181
64db4cff
PM
3182 /* Initialize the level-tracking arrays. */
3183
f885b7f2
PM
3184 for (i = 0; i < rcu_num_lvls; i++)
3185 rsp->levelcnt[i] = num_rcu_lvl[i];
3186 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3187 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3188 rcu_init_levelspread(rsp);
3189
3190 /* Initialize the elements themselves, starting from the leaves. */
3191
f885b7f2 3192 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3193 cpustride *= rsp->levelspread[i];
3194 rnp = rsp->level[i];
3195 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3196 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3197 lockdep_set_class_and_name(&rnp->lock,
3198 &rcu_node_class[i], buf[i]);
394f2769
PM
3199 raw_spin_lock_init(&rnp->fqslock);
3200 lockdep_set_class_and_name(&rnp->fqslock,
3201 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3202 rnp->gpnum = rsp->gpnum;
3203 rnp->completed = rsp->completed;
64db4cff
PM
3204 rnp->qsmask = 0;
3205 rnp->qsmaskinit = 0;
3206 rnp->grplo = j * cpustride;
3207 rnp->grphi = (j + 1) * cpustride - 1;
3208 if (rnp->grphi >= NR_CPUS)
3209 rnp->grphi = NR_CPUS - 1;
3210 if (i == 0) {
3211 rnp->grpnum = 0;
3212 rnp->grpmask = 0;
3213 rnp->parent = NULL;
3214 } else {
3215 rnp->grpnum = j % rsp->levelspread[i - 1];
3216 rnp->grpmask = 1UL << rnp->grpnum;
3217 rnp->parent = rsp->level[i - 1] +
3218 j / rsp->levelspread[i - 1];
3219 }
3220 rnp->level = i;
12f5f524 3221 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3222 rcu_init_one_nocb(rnp);
64db4cff
PM
3223 }
3224 }
0c34029a 3225
394f99a9 3226 rsp->rda = rda;
b3dbec76 3227 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3228 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3229 for_each_possible_cpu(i) {
4a90a068 3230 while (i > rnp->grphi)
0c34029a 3231 rnp++;
394f99a9 3232 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3233 rcu_boot_init_percpu_data(i, rsp);
3234 }
6ce75a23 3235 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3236}
3237
f885b7f2
PM
3238/*
3239 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3240 * replace the definitions in rcutree.h because those are needed to size
3241 * the ->node array in the rcu_state structure.
3242 */
3243static void __init rcu_init_geometry(void)
3244{
3245 int i;
3246 int j;
cca6f393 3247 int n = nr_cpu_ids;
f885b7f2
PM
3248 int rcu_capacity[MAX_RCU_LVLS + 1];
3249
3250 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3251 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3252 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3253 return;
3254
3255 /*
3256 * Compute number of nodes that can be handled an rcu_node tree
3257 * with the given number of levels. Setting rcu_capacity[0] makes
3258 * some of the arithmetic easier.
3259 */
3260 rcu_capacity[0] = 1;
3261 rcu_capacity[1] = rcu_fanout_leaf;
3262 for (i = 2; i <= MAX_RCU_LVLS; i++)
3263 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3264
3265 /*
3266 * The boot-time rcu_fanout_leaf parameter is only permitted
3267 * to increase the leaf-level fanout, not decrease it. Of course,
3268 * the leaf-level fanout cannot exceed the number of bits in
3269 * the rcu_node masks. Finally, the tree must be able to accommodate
3270 * the configured number of CPUs. Complain and fall back to the
3271 * compile-time values if these limits are exceeded.
3272 */
3273 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3274 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3275 n > rcu_capacity[MAX_RCU_LVLS]) {
3276 WARN_ON(1);
3277 return;
3278 }
3279
3280 /* Calculate the number of rcu_nodes at each level of the tree. */
3281 for (i = 1; i <= MAX_RCU_LVLS; i++)
3282 if (n <= rcu_capacity[i]) {
3283 for (j = 0; j <= i; j++)
3284 num_rcu_lvl[j] =
3285 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3286 rcu_num_lvls = i;
3287 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3288 num_rcu_lvl[j] = 0;
3289 break;
3290 }
3291
3292 /* Calculate the total number of rcu_node structures. */
3293 rcu_num_nodes = 0;
3294 for (i = 0; i <= MAX_RCU_LVLS; i++)
3295 rcu_num_nodes += num_rcu_lvl[i];
3296 rcu_num_nodes -= n;
3297}
3298
9f680ab4 3299void __init rcu_init(void)
64db4cff 3300{
017c4261 3301 int cpu;
9f680ab4 3302
f41d911f 3303 rcu_bootup_announce();
f885b7f2 3304 rcu_init_geometry();
394f99a9
LJ
3305 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3306 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3307 __rcu_init_preempt();
b5b39360 3308 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3309
3310 /*
3311 * We don't need protection against CPU-hotplug here because
3312 * this is called early in boot, before either interrupts
3313 * or the scheduler are operational.
3314 */
3315 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3316 for_each_online_cpu(cpu)
3317 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3318}
3319
1eba8f84 3320#include "rcutree_plugin.h"