rcu: Remove #ifdef CONFIG_SMP from TREE_RCU
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
64db4cff 53
9f77da9f 54#include "rcutree.h"
29c00b4a
PM
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
9f77da9f 58
64db4cff
PM
59/* Data structures. */
60
b668c9cf 61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 62
4300aa64 63#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 64 .level = { &structname##_state.node[0] }, \
64db4cff
PM
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
cf244dc0
PM
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 71 }, \
af446b70 72 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
73 .gpnum = -300, \
74 .completed = -300, \
e99033c5
PM
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
4300aa64 79 .name = #structname, \
64db4cff
PM
80}
81
e99033c5 82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
e99033c5 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280
PM
88static struct rcu_state *rcu_state;
89
b0d30417
PM
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
bbad9379
PM
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
b0d30417
PM
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
a46e0899
PM
116#ifdef CONFIG_RCU_BOOST
117
a26ac245
PM
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 126DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 127
a46e0899
PM
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
0f962a5e 130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 133
4a298656
PM
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
fc2219d4
PM
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
b1f77b05 156/*
d6714c22 157 * Note a quiescent state. Because we do not need to know
b1f77b05 158 * how many quiescent states passed, just if there was at least
d6714c22 159 * one since the start of the grace period, this just sets a flag.
e4cc1f22 160 * The caller must have disabled preemption.
b1f77b05 161 */
d6714c22 162void rcu_sched_qs(int cpu)
b1f77b05 163{
25502a6c 164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 165
e4cc1f22 166 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 167 barrier();
e4cc1f22 168 if (rdp->passed_quiesce == 0)
d4c08f2a 169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 170 rdp->passed_quiesce = 1;
b1f77b05
IM
171}
172
d6714c22 173void rcu_bh_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05 182}
64db4cff 183
25502a6c
PM
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
e4cc1f22 187 * The caller must have disabled preemption.
25502a6c
PM
188 */
189void rcu_note_context_switch(int cpu)
190{
300df91c 191 trace_rcu_utilization("Start context switch");
25502a6c
PM
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
300df91c 194 trace_rcu_utilization("End context switch");
25502a6c 195}
29ce8310 196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 197
90a4d2c0 198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
4145fa7f 199 .dynticks_nesting = DYNTICK_TASK_NESTING,
23b5c8fa 200 .dynticks = ATOMIC_INIT(1),
90a4d2c0 201};
64db4cff 202
e0f23060 203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
3d76c082
PM
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
a00e0d71 211int rcu_cpu_stall_suppress __read_mostly;
f2e0dd70 212module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee 213
64db4cff 214static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 215static int rcu_pending(int cpu);
64db4cff
PM
216
217/*
d6714c22 218 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 219 */
d6714c22 220long rcu_batches_completed_sched(void)
64db4cff 221{
d6714c22 222 return rcu_sched_state.completed;
64db4cff 223}
d6714c22 224EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
225
226/*
227 * Return the number of RCU BH batches processed thus far for debug & stats.
228 */
229long rcu_batches_completed_bh(void)
230{
231 return rcu_bh_state.completed;
232}
233EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
234
bf66f18e
PM
235/*
236 * Force a quiescent state for RCU BH.
237 */
238void rcu_bh_force_quiescent_state(void)
239{
240 force_quiescent_state(&rcu_bh_state, 0);
241}
242EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
243
4a298656
PM
244/*
245 * Record the number of times rcutorture tests have been initiated and
246 * terminated. This information allows the debugfs tracing stats to be
247 * correlated to the rcutorture messages, even when the rcutorture module
248 * is being repeatedly loaded and unloaded. In other words, we cannot
249 * store this state in rcutorture itself.
250 */
251void rcutorture_record_test_transition(void)
252{
253 rcutorture_testseq++;
254 rcutorture_vernum = 0;
255}
256EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
257
258/*
259 * Record the number of writer passes through the current rcutorture test.
260 * This is also used to correlate debugfs tracing stats with the rcutorture
261 * messages.
262 */
263void rcutorture_record_progress(unsigned long vernum)
264{
265 rcutorture_vernum++;
266}
267EXPORT_SYMBOL_GPL(rcutorture_record_progress);
268
bf66f18e
PM
269/*
270 * Force a quiescent state for RCU-sched.
271 */
272void rcu_sched_force_quiescent_state(void)
273{
274 force_quiescent_state(&rcu_sched_state, 0);
275}
276EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
277
64db4cff
PM
278/*
279 * Does the CPU have callbacks ready to be invoked?
280 */
281static int
282cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
283{
284 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
285}
286
287/*
288 * Does the current CPU require a yet-as-unscheduled grace period?
289 */
290static int
291cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
292{
fc2219d4 293 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
294}
295
296/*
297 * Return the root node of the specified rcu_state structure.
298 */
299static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
300{
301 return &rsp->node[0];
302}
303
64db4cff
PM
304/*
305 * If the specified CPU is offline, tell the caller that it is in
306 * a quiescent state. Otherwise, whack it with a reschedule IPI.
307 * Grace periods can end up waiting on an offline CPU when that
308 * CPU is in the process of coming online -- it will be added to the
309 * rcu_node bitmasks before it actually makes it online. The same thing
310 * can happen while a CPU is in the process of coming online. Because this
311 * race is quite rare, we check for it after detecting that the grace
312 * period has been delayed rather than checking each and every CPU
313 * each and every time we start a new grace period.
314 */
315static int rcu_implicit_offline_qs(struct rcu_data *rdp)
316{
317 /*
318 * If the CPU is offline, it is in a quiescent state. We can
319 * trust its state not to change because interrupts are disabled.
320 */
321 if (cpu_is_offline(rdp->cpu)) {
d4c08f2a 322 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
323 rdp->offline_fqs++;
324 return 1;
325 }
326
9b2e4f18
PM
327 /*
328 * The CPU is online, so send it a reschedule IPI. This forces
329 * it through the scheduler, and (inefficiently) also handles cases
330 * where idle loops fail to inform RCU about the CPU being idle.
331 */
64db4cff
PM
332 if (rdp->cpu != smp_processor_id())
333 smp_send_reschedule(rdp->cpu);
334 else
335 set_need_resched();
336 rdp->resched_ipi++;
337 return 0;
338}
339
9b2e4f18
PM
340/*
341 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
342 *
343 * If the new value of the ->dynticks_nesting counter now is zero,
344 * we really have entered idle, and must do the appropriate accounting.
345 * The caller must have disabled interrupts.
346 */
4145fa7f 347static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 348{
facc4e15 349 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 350 if (!is_idle_task(current)) {
0989cb46
PM
351 struct task_struct *idle = idle_task(smp_processor_id());
352
facc4e15 353 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 354 ftrace_dump(DUMP_ALL);
0989cb46
PM
355 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
356 current->pid, current->comm,
357 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 358 }
aea1b35e 359 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
360 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
361 smp_mb__before_atomic_inc(); /* See above. */
362 atomic_inc(&rdtp->dynticks);
363 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
364 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
365
366 /*
367 * The idle task is not permitted to enter the idle loop while
368 * in an RCU read-side critical section.
369 */
370 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
371 "Illegal idle entry in RCU read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
373 "Illegal idle entry in RCU-bh read-side critical section.");
374 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
375 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 376}
64db4cff
PM
377
378/**
9b2e4f18 379 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 380 *
9b2e4f18 381 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 382 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
383 * critical sections can occur in irq handlers in idle, a possibility
384 * handled by irq_enter() and irq_exit().)
385 *
386 * We crowbar the ->dynticks_nesting field to zero to allow for
387 * the possibility of usermode upcalls having messed up our count
388 * of interrupt nesting level during the prior busy period.
64db4cff 389 */
9b2e4f18 390void rcu_idle_enter(void)
64db4cff
PM
391{
392 unsigned long flags;
4145fa7f 393 long long oldval;
64db4cff
PM
394 struct rcu_dynticks *rdtp;
395
64db4cff
PM
396 local_irq_save(flags);
397 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 398 oldval = rdtp->dynticks_nesting;
9b2e4f18 399 rdtp->dynticks_nesting = 0;
4145fa7f 400 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
401 local_irq_restore(flags);
402}
403
9b2e4f18
PM
404/**
405 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
406 *
407 * Exit from an interrupt handler, which might possibly result in entering
408 * idle mode, in other words, leaving the mode in which read-side critical
409 * sections can occur.
64db4cff 410 *
9b2e4f18
PM
411 * This code assumes that the idle loop never does anything that might
412 * result in unbalanced calls to irq_enter() and irq_exit(). If your
413 * architecture violates this assumption, RCU will give you what you
414 * deserve, good and hard. But very infrequently and irreproducibly.
415 *
416 * Use things like work queues to work around this limitation.
417 *
418 * You have been warned.
64db4cff 419 */
9b2e4f18 420void rcu_irq_exit(void)
64db4cff
PM
421{
422 unsigned long flags;
4145fa7f 423 long long oldval;
64db4cff
PM
424 struct rcu_dynticks *rdtp;
425
426 local_irq_save(flags);
427 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 428 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
429 rdtp->dynticks_nesting--;
430 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
431 if (rdtp->dynticks_nesting)
432 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
433 else
434 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
435 local_irq_restore(flags);
436}
437
438/*
439 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
440 *
441 * If the new value of the ->dynticks_nesting counter was previously zero,
442 * we really have exited idle, and must do the appropriate accounting.
443 * The caller must have disabled interrupts.
444 */
445static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
446{
23b5c8fa
PM
447 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
448 atomic_inc(&rdtp->dynticks);
449 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
450 smp_mb__after_atomic_inc(); /* See above. */
451 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 452 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 453 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 454 if (!is_idle_task(current)) {
0989cb46
PM
455 struct task_struct *idle = idle_task(smp_processor_id());
456
4145fa7f
PM
457 trace_rcu_dyntick("Error on exit: not idle task",
458 oldval, rdtp->dynticks_nesting);
9b2e4f18 459 ftrace_dump(DUMP_ALL);
0989cb46
PM
460 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
461 current->pid, current->comm,
462 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
463 }
464}
465
466/**
467 * rcu_idle_exit - inform RCU that current CPU is leaving idle
468 *
469 * Exit idle mode, in other words, -enter- the mode in which RCU
470 * read-side critical sections can occur.
471 *
4145fa7f
PM
472 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
473 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
474 * of interrupt nesting level during the busy period that is just
475 * now starting.
476 */
477void rcu_idle_exit(void)
478{
479 unsigned long flags;
480 struct rcu_dynticks *rdtp;
481 long long oldval;
482
483 local_irq_save(flags);
484 rdtp = &__get_cpu_var(rcu_dynticks);
485 oldval = rdtp->dynticks_nesting;
486 WARN_ON_ONCE(oldval != 0);
4145fa7f 487 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
9b2e4f18
PM
488 rcu_idle_exit_common(rdtp, oldval);
489 local_irq_restore(flags);
490}
491
492/**
493 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
494 *
495 * Enter an interrupt handler, which might possibly result in exiting
496 * idle mode, in other words, entering the mode in which read-side critical
497 * sections can occur.
498 *
499 * Note that the Linux kernel is fully capable of entering an interrupt
500 * handler that it never exits, for example when doing upcalls to
501 * user mode! This code assumes that the idle loop never does upcalls to
502 * user mode. If your architecture does do upcalls from the idle loop (or
503 * does anything else that results in unbalanced calls to the irq_enter()
504 * and irq_exit() functions), RCU will give you what you deserve, good
505 * and hard. But very infrequently and irreproducibly.
506 *
507 * Use things like work queues to work around this limitation.
508 *
509 * You have been warned.
510 */
511void rcu_irq_enter(void)
512{
513 unsigned long flags;
514 struct rcu_dynticks *rdtp;
515 long long oldval;
516
517 local_irq_save(flags);
518 rdtp = &__get_cpu_var(rcu_dynticks);
519 oldval = rdtp->dynticks_nesting;
520 rdtp->dynticks_nesting++;
521 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
522 if (oldval)
523 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
524 else
525 rcu_idle_exit_common(rdtp, oldval);
64db4cff 526 local_irq_restore(flags);
64db4cff
PM
527}
528
529/**
530 * rcu_nmi_enter - inform RCU of entry to NMI context
531 *
532 * If the CPU was idle with dynamic ticks active, and there is no
533 * irq handler running, this updates rdtp->dynticks_nmi to let the
534 * RCU grace-period handling know that the CPU is active.
535 */
536void rcu_nmi_enter(void)
537{
538 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
539
23b5c8fa
PM
540 if (rdtp->dynticks_nmi_nesting == 0 &&
541 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 542 return;
23b5c8fa
PM
543 rdtp->dynticks_nmi_nesting++;
544 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
545 atomic_inc(&rdtp->dynticks);
546 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
547 smp_mb__after_atomic_inc(); /* See above. */
548 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
549}
550
551/**
552 * rcu_nmi_exit - inform RCU of exit from NMI context
553 *
554 * If the CPU was idle with dynamic ticks active, and there is no
555 * irq handler running, this updates rdtp->dynticks_nmi to let the
556 * RCU grace-period handling know that the CPU is no longer active.
557 */
558void rcu_nmi_exit(void)
559{
560 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
561
23b5c8fa
PM
562 if (rdtp->dynticks_nmi_nesting == 0 ||
563 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 564 return;
23b5c8fa
PM
565 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
566 smp_mb__before_atomic_inc(); /* See above. */
567 atomic_inc(&rdtp->dynticks);
568 smp_mb__after_atomic_inc(); /* Force delay to next write. */
569 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
570}
571
9b2e4f18
PM
572#ifdef CONFIG_PROVE_RCU
573
64db4cff 574/**
9b2e4f18 575 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 576 *
9b2e4f18 577 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 578 * or NMI handler, return true.
64db4cff 579 */
9b2e4f18 580int rcu_is_cpu_idle(void)
64db4cff 581{
34240697
PM
582 int ret;
583
584 preempt_disable();
585 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
586 preempt_enable();
587 return ret;
64db4cff 588}
e6b80a3b 589EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 590
9b2e4f18
PM
591#endif /* #ifdef CONFIG_PROVE_RCU */
592
64db4cff 593/**
9b2e4f18 594 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 595 *
9b2e4f18
PM
596 * If the current CPU is idle or running at a first-level (not nested)
597 * interrupt from idle, return true. The caller must have at least
598 * disabled preemption.
64db4cff 599 */
9b2e4f18 600int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 601{
9b2e4f18 602 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
603}
604
64db4cff
PM
605/*
606 * Snapshot the specified CPU's dynticks counter so that we can later
607 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 608 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
609 */
610static int dyntick_save_progress_counter(struct rcu_data *rdp)
611{
23b5c8fa 612 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 613 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
614}
615
616/*
617 * Return true if the specified CPU has passed through a quiescent
618 * state by virtue of being in or having passed through an dynticks
619 * idle state since the last call to dyntick_save_progress_counter()
620 * for this same CPU.
621 */
622static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
623{
7eb4f455
PM
624 unsigned int curr;
625 unsigned int snap;
64db4cff 626
7eb4f455
PM
627 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
628 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
629
630 /*
631 * If the CPU passed through or entered a dynticks idle phase with
632 * no active irq/NMI handlers, then we can safely pretend that the CPU
633 * already acknowledged the request to pass through a quiescent
634 * state. Either way, that CPU cannot possibly be in an RCU
635 * read-side critical section that started before the beginning
636 * of the current RCU grace period.
637 */
7eb4f455 638 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 639 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
640 rdp->dynticks_fqs++;
641 return 1;
642 }
643
644 /* Go check for the CPU being offline. */
645 return rcu_implicit_offline_qs(rdp);
646}
647
64db4cff
PM
648static void record_gp_stall_check_time(struct rcu_state *rsp)
649{
650 rsp->gp_start = jiffies;
651 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
652}
653
654static void print_other_cpu_stall(struct rcu_state *rsp)
655{
656 int cpu;
657 long delta;
658 unsigned long flags;
9bc8b558 659 int ndetected;
64db4cff 660 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
661
662 /* Only let one CPU complain about others per time interval. */
663
1304afb2 664 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 665 delta = jiffies - rsp->jiffies_stall;
fc2219d4 666 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 667 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
668 return;
669 }
670 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
671
672 /*
673 * Now rat on any tasks that got kicked up to the root rcu_node
674 * due to CPU offlining.
675 */
9bc8b558 676 ndetected = rcu_print_task_stall(rnp);
1304afb2 677 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 678
8cdd32a9
PM
679 /*
680 * OK, time to rat on our buddy...
681 * See Documentation/RCU/stallwarn.txt for info on how to debug
682 * RCU CPU stall warnings.
683 */
4300aa64
PM
684 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
685 rsp->name);
a0b6c9a7 686 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 687 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 688 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 690 if (rnp->qsmask == 0)
64db4cff 691 continue;
a0b6c9a7 692 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 693 if (rnp->qsmask & (1UL << cpu)) {
a0b6c9a7 694 printk(" %d", rnp->grplo + cpu);
9bc8b558
PM
695 ndetected++;
696 }
64db4cff 697 }
4300aa64 698 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 699 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
700 if (ndetected == 0)
701 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
702 else if (!trigger_all_cpu_backtrace())
4627e240 703 dump_stack();
c1dc0b9c 704
1ed509a2
PM
705 /* If so configured, complain about tasks blocking the grace period. */
706
707 rcu_print_detail_task_stall(rsp);
708
64db4cff
PM
709 force_quiescent_state(rsp, 0); /* Kick them all. */
710}
711
712static void print_cpu_stall(struct rcu_state *rsp)
713{
714 unsigned long flags;
715 struct rcu_node *rnp = rcu_get_root(rsp);
716
8cdd32a9
PM
717 /*
718 * OK, time to rat on ourselves...
719 * See Documentation/RCU/stallwarn.txt for info on how to debug
720 * RCU CPU stall warnings.
721 */
4300aa64
PM
722 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
723 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
4627e240
PM
724 if (!trigger_all_cpu_backtrace())
725 dump_stack();
c1dc0b9c 726
1304afb2 727 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 728 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
729 rsp->jiffies_stall =
730 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 732
64db4cff
PM
733 set_need_resched(); /* kick ourselves to get things going. */
734}
735
736static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
737{
bad6e139
PM
738 unsigned long j;
739 unsigned long js;
64db4cff
PM
740 struct rcu_node *rnp;
741
742734ee 742 if (rcu_cpu_stall_suppress)
c68de209 743 return;
bad6e139
PM
744 j = ACCESS_ONCE(jiffies);
745 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 746 rnp = rdp->mynode;
bad6e139 747 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
748
749 /* We haven't checked in, so go dump stack. */
750 print_cpu_stall(rsp);
751
bad6e139
PM
752 } else if (rcu_gp_in_progress(rsp) &&
753 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 754
bad6e139 755 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
756 print_other_cpu_stall(rsp);
757 }
758}
759
c68de209
PM
760static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
761{
742734ee 762 rcu_cpu_stall_suppress = 1;
c68de209
PM
763 return NOTIFY_DONE;
764}
765
53d84e00
PM
766/**
767 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
768 *
769 * Set the stall-warning timeout way off into the future, thus preventing
770 * any RCU CPU stall-warning messages from appearing in the current set of
771 * RCU grace periods.
772 *
773 * The caller must disable hard irqs.
774 */
775void rcu_cpu_stall_reset(void)
776{
777 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
778 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
779 rcu_preempt_stall_reset();
780}
781
c68de209
PM
782static struct notifier_block rcu_panic_block = {
783 .notifier_call = rcu_panic,
784};
785
786static void __init check_cpu_stall_init(void)
787{
788 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
789}
790
64db4cff
PM
791/*
792 * Update CPU-local rcu_data state to record the newly noticed grace period.
793 * This is used both when we started the grace period and when we notice
9160306e
PM
794 * that someone else started the grace period. The caller must hold the
795 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
796 * and must have irqs disabled.
64db4cff 797 */
9160306e
PM
798static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
799{
800 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
801 /*
802 * If the current grace period is waiting for this CPU,
803 * set up to detect a quiescent state, otherwise don't
804 * go looking for one.
805 */
9160306e 806 rdp->gpnum = rnp->gpnum;
d4c08f2a 807 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
808 if (rnp->qsmask & rdp->grpmask) {
809 rdp->qs_pending = 1;
e4cc1f22 810 rdp->passed_quiesce = 0;
121dfc4b
PM
811 } else
812 rdp->qs_pending = 0;
9160306e
PM
813 }
814}
815
64db4cff
PM
816static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
817{
9160306e
PM
818 unsigned long flags;
819 struct rcu_node *rnp;
820
821 local_irq_save(flags);
822 rnp = rdp->mynode;
823 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 824 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
825 local_irq_restore(flags);
826 return;
827 }
828 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 829 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
830}
831
832/*
833 * Did someone else start a new RCU grace period start since we last
834 * checked? Update local state appropriately if so. Must be called
835 * on the CPU corresponding to rdp.
836 */
837static int
838check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
839{
840 unsigned long flags;
841 int ret = 0;
842
843 local_irq_save(flags);
844 if (rdp->gpnum != rsp->gpnum) {
845 note_new_gpnum(rsp, rdp);
846 ret = 1;
847 }
848 local_irq_restore(flags);
849 return ret;
850}
851
d09b62df
PM
852/*
853 * Advance this CPU's callbacks, but only if the current grace period
854 * has ended. This may be called only from the CPU to whom the rdp
855 * belongs. In addition, the corresponding leaf rcu_node structure's
856 * ->lock must be held by the caller, with irqs disabled.
857 */
858static void
859__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
860{
861 /* Did another grace period end? */
862 if (rdp->completed != rnp->completed) {
863
864 /* Advance callbacks. No harm if list empty. */
865 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
866 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
867 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
868
869 /* Remember that we saw this grace-period completion. */
870 rdp->completed = rnp->completed;
d4c08f2a 871 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 872
5ff8e6f0
FW
873 /*
874 * If we were in an extended quiescent state, we may have
121dfc4b 875 * missed some grace periods that others CPUs handled on
5ff8e6f0 876 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
877 * spurious new grace periods. If another grace period
878 * has started, then rnp->gpnum will have advanced, so
879 * we will detect this later on.
5ff8e6f0 880 */
121dfc4b 881 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
882 rdp->gpnum = rdp->completed;
883
20377f32 884 /*
121dfc4b
PM
885 * If RCU does not need a quiescent state from this CPU,
886 * then make sure that this CPU doesn't go looking for one.
20377f32 887 */
121dfc4b 888 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 889 rdp->qs_pending = 0;
d09b62df
PM
890 }
891}
892
893/*
894 * Advance this CPU's callbacks, but only if the current grace period
895 * has ended. This may be called only from the CPU to whom the rdp
896 * belongs.
897 */
898static void
899rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
900{
901 unsigned long flags;
902 struct rcu_node *rnp;
903
904 local_irq_save(flags);
905 rnp = rdp->mynode;
906 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 907 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
908 local_irq_restore(flags);
909 return;
910 }
911 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 912 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
913}
914
915/*
916 * Do per-CPU grace-period initialization for running CPU. The caller
917 * must hold the lock of the leaf rcu_node structure corresponding to
918 * this CPU.
919 */
920static void
921rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
922{
923 /* Prior grace period ended, so advance callbacks for current CPU. */
924 __rcu_process_gp_end(rsp, rnp, rdp);
925
926 /*
927 * Because this CPU just now started the new grace period, we know
928 * that all of its callbacks will be covered by this upcoming grace
929 * period, even the ones that were registered arbitrarily recently.
930 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
931 *
932 * Other CPUs cannot be sure exactly when the grace period started.
933 * Therefore, their recently registered callbacks must pass through
934 * an additional RCU_NEXT_READY stage, so that they will be handled
935 * by the next RCU grace period.
936 */
937 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
938 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
939
940 /* Set state so that this CPU will detect the next quiescent state. */
941 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
942}
943
64db4cff
PM
944/*
945 * Start a new RCU grace period if warranted, re-initializing the hierarchy
946 * in preparation for detecting the next grace period. The caller must hold
947 * the root node's ->lock, which is released before return. Hard irqs must
948 * be disabled.
e5601400
PM
949 *
950 * Note that it is legal for a dying CPU (which is marked as offline) to
951 * invoke this function. This can happen when the dying CPU reports its
952 * quiescent state.
64db4cff
PM
953 */
954static void
955rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
956 __releases(rcu_get_root(rsp)->lock)
957{
394f99a9 958 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 959 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 960
037067a1 961 if (!rcu_scheduler_fully_active ||
afe24b12
PM
962 !cpu_needs_another_gp(rsp, rdp)) {
963 /*
964 * Either the scheduler hasn't yet spawned the first
965 * non-idle task or this CPU does not need another
966 * grace period. Either way, don't start a new grace
967 * period.
968 */
969 raw_spin_unlock_irqrestore(&rnp->lock, flags);
970 return;
971 }
b32e9eb6 972
afe24b12 973 if (rsp->fqs_active) {
b32e9eb6 974 /*
afe24b12
PM
975 * This CPU needs a grace period, but force_quiescent_state()
976 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 977 */
afe24b12
PM
978 rsp->fqs_need_gp = 1;
979 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
980 return;
981 }
982
983 /* Advance to a new grace period and initialize state. */
984 rsp->gpnum++;
d4c08f2a 985 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
986 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
987 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 988 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 989 record_gp_stall_check_time(rsp);
1304afb2 990 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 991
64db4cff 992 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 993 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
994
995 /*
b835db1f
PM
996 * Set the quiescent-state-needed bits in all the rcu_node
997 * structures for all currently online CPUs in breadth-first
998 * order, starting from the root rcu_node structure. This
999 * operation relies on the layout of the hierarchy within the
1000 * rsp->node[] array. Note that other CPUs will access only
1001 * the leaves of the hierarchy, which still indicate that no
1002 * grace period is in progress, at least until the corresponding
1003 * leaf node has been initialized. In addition, we have excluded
1004 * CPU-hotplug operations.
64db4cff
PM
1005 *
1006 * Note that the grace period cannot complete until we finish
1007 * the initialization process, as there will be at least one
1008 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1009 * one corresponding to this CPU, due to the fact that we have
1010 * irqs disabled.
64db4cff 1011 */
a0b6c9a7 1012 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1013 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1014 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1015 rnp->qsmask = rnp->qsmaskinit;
de078d87 1016 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1017 rnp->completed = rsp->completed;
1018 if (rnp == rdp->mynode)
1019 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1020 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1021 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1022 rnp->level, rnp->grplo,
1023 rnp->grphi, rnp->qsmask);
1304afb2 1024 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1025 }
1026
83f5b01f 1027 rnp = rcu_get_root(rsp);
1304afb2 1028 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1029 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1030 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1031 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1032}
1033
f41d911f 1034/*
d3f6bad3
PM
1035 * Report a full set of quiescent states to the specified rcu_state
1036 * data structure. This involves cleaning up after the prior grace
1037 * period and letting rcu_start_gp() start up the next grace period
1038 * if one is needed. Note that the caller must hold rnp->lock, as
1039 * required by rcu_start_gp(), which will release it.
f41d911f 1040 */
d3f6bad3 1041static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1042 __releases(rcu_get_root(rsp)->lock)
f41d911f 1043{
15ba0ba8 1044 unsigned long gp_duration;
afe24b12
PM
1045 struct rcu_node *rnp = rcu_get_root(rsp);
1046 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1047
fc2219d4 1048 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1049
1050 /*
1051 * Ensure that all grace-period and pre-grace-period activity
1052 * is seen before the assignment to rsp->completed.
1053 */
1054 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1055 gp_duration = jiffies - rsp->gp_start;
1056 if (gp_duration > rsp->gp_max)
1057 rsp->gp_max = gp_duration;
afe24b12
PM
1058
1059 /*
1060 * We know the grace period is complete, but to everyone else
1061 * it appears to still be ongoing. But it is also the case
1062 * that to everyone else it looks like there is nothing that
1063 * they can do to advance the grace period. It is therefore
1064 * safe for us to drop the lock in order to mark the grace
1065 * period as completed in all of the rcu_node structures.
1066 *
1067 * But if this CPU needs another grace period, it will take
1068 * care of this while initializing the next grace period.
1069 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1070 * because the callbacks have not yet been advanced: Those
1071 * callbacks are waiting on the grace period that just now
1072 * completed.
1073 */
1074 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1075 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1076
1077 /*
1078 * Propagate new ->completed value to rcu_node structures
1079 * so that other CPUs don't have to wait until the start
1080 * of the next grace period to process their callbacks.
1081 */
1082 rcu_for_each_node_breadth_first(rsp, rnp) {
1083 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1084 rnp->completed = rsp->gpnum;
1085 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1086 }
1087 rnp = rcu_get_root(rsp);
1088 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1089 }
1090
1091 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1092 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1093 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1094 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1095}
1096
64db4cff 1097/*
d3f6bad3
PM
1098 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1099 * Allows quiescent states for a group of CPUs to be reported at one go
1100 * to the specified rcu_node structure, though all the CPUs in the group
1101 * must be represented by the same rcu_node structure (which need not be
1102 * a leaf rcu_node structure, though it often will be). That structure's
1103 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1104 */
1105static void
d3f6bad3
PM
1106rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1107 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1108 __releases(rnp->lock)
1109{
28ecd580
PM
1110 struct rcu_node *rnp_c;
1111
64db4cff
PM
1112 /* Walk up the rcu_node hierarchy. */
1113 for (;;) {
1114 if (!(rnp->qsmask & mask)) {
1115
1116 /* Our bit has already been cleared, so done. */
1304afb2 1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1118 return;
1119 }
1120 rnp->qsmask &= ~mask;
d4c08f2a
PM
1121 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1122 mask, rnp->qsmask, rnp->level,
1123 rnp->grplo, rnp->grphi,
1124 !!rnp->gp_tasks);
27f4d280 1125 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1126
1127 /* Other bits still set at this level, so done. */
1304afb2 1128 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1129 return;
1130 }
1131 mask = rnp->grpmask;
1132 if (rnp->parent == NULL) {
1133
1134 /* No more levels. Exit loop holding root lock. */
1135
1136 break;
1137 }
1304afb2 1138 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1139 rnp_c = rnp;
64db4cff 1140 rnp = rnp->parent;
1304afb2 1141 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1142 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1143 }
1144
1145 /*
1146 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1147 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1148 * to clean up and start the next grace period if one is needed.
64db4cff 1149 */
d3f6bad3 1150 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1151}
1152
1153/*
d3f6bad3
PM
1154 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1155 * structure. This must be either called from the specified CPU, or
1156 * called when the specified CPU is known to be offline (and when it is
1157 * also known that no other CPU is concurrently trying to help the offline
1158 * CPU). The lastcomp argument is used to make sure we are still in the
1159 * grace period of interest. We don't want to end the current grace period
1160 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1161 */
1162static void
e4cc1f22 1163rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1164{
1165 unsigned long flags;
1166 unsigned long mask;
1167 struct rcu_node *rnp;
1168
1169 rnp = rdp->mynode;
1304afb2 1170 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1171 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1172
1173 /*
e4cc1f22
PM
1174 * The grace period in which this quiescent state was
1175 * recorded has ended, so don't report it upwards.
1176 * We will instead need a new quiescent state that lies
1177 * within the current grace period.
64db4cff 1178 */
e4cc1f22 1179 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1181 return;
1182 }
1183 mask = rdp->grpmask;
1184 if ((rnp->qsmask & mask) == 0) {
1304afb2 1185 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1186 } else {
1187 rdp->qs_pending = 0;
1188
1189 /*
1190 * This GP can't end until cpu checks in, so all of our
1191 * callbacks can be processed during the next GP.
1192 */
64db4cff
PM
1193 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1194
d3f6bad3 1195 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1196 }
1197}
1198
1199/*
1200 * Check to see if there is a new grace period of which this CPU
1201 * is not yet aware, and if so, set up local rcu_data state for it.
1202 * Otherwise, see if this CPU has just passed through its first
1203 * quiescent state for this grace period, and record that fact if so.
1204 */
1205static void
1206rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1207{
1208 /* If there is now a new grace period, record and return. */
1209 if (check_for_new_grace_period(rsp, rdp))
1210 return;
1211
1212 /*
1213 * Does this CPU still need to do its part for current grace period?
1214 * If no, return and let the other CPUs do their part as well.
1215 */
1216 if (!rdp->qs_pending)
1217 return;
1218
1219 /*
1220 * Was there a quiescent state since the beginning of the grace
1221 * period? If no, then exit and wait for the next call.
1222 */
e4cc1f22 1223 if (!rdp->passed_quiesce)
64db4cff
PM
1224 return;
1225
d3f6bad3
PM
1226 /*
1227 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1228 * judge of that).
1229 */
e4cc1f22 1230 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1231}
1232
1233#ifdef CONFIG_HOTPLUG_CPU
1234
e74f4c45 1235/*
29494be7 1236 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1237 * Also record a quiescent state for this CPU for the current grace period.
1238 * Synchronization and interrupt disabling are not required because
1239 * this function executes in stop_machine() context. Therefore, cleanup
1240 * operations that might block must be done later from the CPU_DEAD
1241 * notifier.
1242 *
1243 * Note that the outgoing CPU's bit has already been cleared in the
1244 * cpu_online_mask. This allows us to randomly pick a callback
1245 * destination from the bits set in that mask.
e74f4c45 1246 */
e5601400 1247static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45 1248{
e5601400 1249 unsigned long flags;
e74f4c45 1250 int i;
e5601400
PM
1251 unsigned long mask;
1252 int need_report;
29494be7 1253 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1254 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1255 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e5601400
PM
1256 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1257
a50c3af9
PM
1258 /* First, adjust the counts. */
1259 if (rdp->nxtlist != NULL) {
1260 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1261 receive_rdp->qlen += rdp->qlen;
1262 rdp->qlen_lazy = 0;
1263 rdp->qlen = 0;
1264 }
1265
1266 /*
1267 * Next, move ready-to-invoke callbacks to be invoked on some
1268 * other CPU. These will not be required to pass through another
1269 * grace period: They are done, regardless of CPU.
1270 */
1271 if (rdp->nxtlist != NULL &&
1272 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1273 struct rcu_head *oldhead;
1274 struct rcu_head **oldtail;
1275 struct rcu_head **newtail;
1276
1277 oldhead = rdp->nxtlist;
1278 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1279 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1280 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1281 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1282 newtail = rdp->nxttail[RCU_DONE_TAIL];
1283 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1284 if (receive_rdp->nxttail[i] == oldtail)
1285 receive_rdp->nxttail[i] = newtail;
1286 if (rdp->nxttail[i] == newtail)
1287 rdp->nxttail[i] = &rdp->nxtlist;
1288 }
1289 }
1290
1291 /*
1292 * Finally, put the rest of the callbacks at the end of the list.
1293 * The ones that made it partway through get to start over: We
1294 * cannot assume that grace periods are synchronized across CPUs.
1295 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1296 * this does not seem compelling. Not yet, anyway.)
1297 */
e5601400
PM
1298 if (rdp->nxtlist != NULL) {
1299 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1300 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1301 rdp->nxttail[RCU_NEXT_TAIL];
e5601400
PM
1302 receive_rdp->n_cbs_adopted += rdp->qlen;
1303 rdp->n_cbs_orphaned += rdp->qlen;
1304
1305 rdp->nxtlist = NULL;
1306 for (i = 0; i < RCU_NEXT_SIZE; i++)
1307 rdp->nxttail[i] = &rdp->nxtlist;
e5601400 1308 }
e74f4c45 1309
a50c3af9
PM
1310 /*
1311 * Record a quiescent state for the dying CPU. This is safe
1312 * only because we have already cleared out the callbacks.
1313 * (Otherwise, the RCU core might try to schedule the invocation
1314 * of callbacks on this now-offline CPU, which would be bad.)
1315 */
64db4cff 1316 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1317 trace_rcu_grace_period(rsp->name,
1318 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1319 "cpuofl");
1320 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1321 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1322
1323 /*
1324 * Remove the dying CPU from the bitmasks in the rcu_node
1325 * hierarchy. Because we are in stop_machine() context, we
1326 * automatically exclude ->onofflock critical sections.
1327 */
64db4cff 1328 do {
e5601400 1329 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1330 rnp->qsmaskinit &= ~mask;
1331 if (rnp->qsmaskinit != 0) {
e5601400 1332 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1333 break;
1334 }
d4c08f2a 1335 if (rnp == rdp->mynode) {
d9a3da06 1336 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
e5601400
PM
1337 if (need_report & RCU_OFL_TASKS_NORM_GP)
1338 rcu_report_unblock_qs_rnp(rnp, flags);
1339 else
1340 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1341 if (need_report & RCU_OFL_TASKS_EXP_GP)
1342 rcu_report_exp_rnp(rsp, rnp, true);
d4c08f2a 1343 } else
e5601400 1344 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1345 mask = rnp->grpmask;
64db4cff
PM
1346 rnp = rnp->parent;
1347 } while (rnp != NULL);
64db4cff
PM
1348}
1349
1350/*
e5601400
PM
1351 * The CPU has been completely removed, and some other CPU is reporting
1352 * this fact from process context. Do the remainder of the cleanup.
1353 * There can only be one CPU hotplug operation at a time, so no other
1354 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1355 */
e5601400 1356static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1357{
e5601400
PM
1358 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1359 struct rcu_node *rnp = rdp->mynode;
1360
1361 rcu_stop_cpu_kthread(cpu);
1362 rcu_node_kthread_setaffinity(rnp, -1);
64db4cff
PM
1363}
1364
1365#else /* #ifdef CONFIG_HOTPLUG_CPU */
1366
e5601400 1367static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1368{
1369}
1370
e5601400 1371static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1372{
1373}
1374
1375#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1376
1377/*
1378 * Invoke any RCU callbacks that have made it to the end of their grace
1379 * period. Thottle as specified by rdp->blimit.
1380 */
37c72e56 1381static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1382{
1383 unsigned long flags;
1384 struct rcu_head *next, *list, **tail;
486e2593 1385 int bl, count, count_lazy;
64db4cff
PM
1386
1387 /* If no callbacks are ready, just return.*/
29c00b4a 1388 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1389 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1390 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1391 need_resched(), is_idle_task(current),
1392 rcu_is_callbacks_kthread());
64db4cff 1393 return;
29c00b4a 1394 }
64db4cff
PM
1395
1396 /*
1397 * Extract the list of ready callbacks, disabling to prevent
1398 * races with call_rcu() from interrupt handlers.
1399 */
1400 local_irq_save(flags);
8146c4e2 1401 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1402 bl = rdp->blimit;
486e2593 1403 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1404 list = rdp->nxtlist;
1405 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1406 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1407 tail = rdp->nxttail[RCU_DONE_TAIL];
1408 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1409 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1410 rdp->nxttail[count] = &rdp->nxtlist;
1411 local_irq_restore(flags);
1412
1413 /* Invoke callbacks. */
486e2593 1414 count = count_lazy = 0;
64db4cff
PM
1415 while (list) {
1416 next = list->next;
1417 prefetch(next);
551d55a9 1418 debug_rcu_head_unqueue(list);
486e2593
PM
1419 if (__rcu_reclaim(rsp->name, list))
1420 count_lazy++;
64db4cff 1421 list = next;
dff1672d
PM
1422 /* Stop only if limit reached and CPU has something to do. */
1423 if (++count >= bl &&
1424 (need_resched() ||
1425 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1426 break;
1427 }
1428
1429 local_irq_save(flags);
4968c300
PM
1430 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1431 is_idle_task(current),
1432 rcu_is_callbacks_kthread());
64db4cff
PM
1433
1434 /* Update count, and requeue any remaining callbacks. */
486e2593 1435 rdp->qlen_lazy -= count_lazy;
64db4cff 1436 rdp->qlen -= count;
269dcc1c 1437 rdp->n_cbs_invoked += count;
64db4cff
PM
1438 if (list != NULL) {
1439 *tail = rdp->nxtlist;
1440 rdp->nxtlist = list;
1441 for (count = 0; count < RCU_NEXT_SIZE; count++)
1442 if (&rdp->nxtlist == rdp->nxttail[count])
1443 rdp->nxttail[count] = tail;
1444 else
1445 break;
1446 }
1447
1448 /* Reinstate batch limit if we have worked down the excess. */
1449 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1450 rdp->blimit = blimit;
1451
37c72e56
PM
1452 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1453 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1454 rdp->qlen_last_fqs_check = 0;
1455 rdp->n_force_qs_snap = rsp->n_force_qs;
1456 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1457 rdp->qlen_last_fqs_check = rdp->qlen;
1458
64db4cff
PM
1459 local_irq_restore(flags);
1460
e0f23060 1461 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1462 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1463 invoke_rcu_core();
64db4cff
PM
1464}
1465
1466/*
1467 * Check to see if this CPU is in a non-context-switch quiescent state
1468 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1469 * Also schedule RCU core processing.
64db4cff 1470 *
9b2e4f18 1471 * This function must be called from hardirq context. It is normally
64db4cff
PM
1472 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1473 * false, there is no point in invoking rcu_check_callbacks().
1474 */
1475void rcu_check_callbacks(int cpu, int user)
1476{
300df91c 1477 trace_rcu_utilization("Start scheduler-tick");
9b2e4f18 1478 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1479
1480 /*
1481 * Get here if this CPU took its interrupt from user
1482 * mode or from the idle loop, and if this is not a
1483 * nested interrupt. In this case, the CPU is in
d6714c22 1484 * a quiescent state, so note it.
64db4cff
PM
1485 *
1486 * No memory barrier is required here because both
d6714c22
PM
1487 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1488 * variables that other CPUs neither access nor modify,
1489 * at least not while the corresponding CPU is online.
64db4cff
PM
1490 */
1491
d6714c22
PM
1492 rcu_sched_qs(cpu);
1493 rcu_bh_qs(cpu);
64db4cff
PM
1494
1495 } else if (!in_softirq()) {
1496
1497 /*
1498 * Get here if this CPU did not take its interrupt from
1499 * softirq, in other words, if it is not interrupting
1500 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1501 * critical section, so note it.
64db4cff
PM
1502 */
1503
d6714c22 1504 rcu_bh_qs(cpu);
64db4cff 1505 }
f41d911f 1506 rcu_preempt_check_callbacks(cpu);
d21670ac 1507 if (rcu_pending(cpu))
a46e0899 1508 invoke_rcu_core();
300df91c 1509 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1510}
1511
64db4cff
PM
1512/*
1513 * Scan the leaf rcu_node structures, processing dyntick state for any that
1514 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1515 * Also initiate boosting for any threads blocked on the root rcu_node.
1516 *
ee47eb9f 1517 * The caller must have suppressed start of new grace periods.
64db4cff 1518 */
45f014c5 1519static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1520{
1521 unsigned long bit;
1522 int cpu;
1523 unsigned long flags;
1524 unsigned long mask;
a0b6c9a7 1525 struct rcu_node *rnp;
64db4cff 1526
a0b6c9a7 1527 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1528 mask = 0;
1304afb2 1529 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1530 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1531 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1532 return;
64db4cff 1533 }
a0b6c9a7 1534 if (rnp->qsmask == 0) {
1217ed1b 1535 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1536 continue;
1537 }
a0b6c9a7 1538 cpu = rnp->grplo;
64db4cff 1539 bit = 1;
a0b6c9a7 1540 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1541 if ((rnp->qsmask & bit) != 0 &&
1542 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1543 mask |= bit;
1544 }
45f014c5 1545 if (mask != 0) {
64db4cff 1546
d3f6bad3
PM
1547 /* rcu_report_qs_rnp() releases rnp->lock. */
1548 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1549 continue;
1550 }
1304afb2 1551 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1552 }
27f4d280 1553 rnp = rcu_get_root(rsp);
1217ed1b
PM
1554 if (rnp->qsmask == 0) {
1555 raw_spin_lock_irqsave(&rnp->lock, flags);
1556 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1557 }
64db4cff
PM
1558}
1559
1560/*
1561 * Force quiescent states on reluctant CPUs, and also detect which
1562 * CPUs are in dyntick-idle mode.
1563 */
1564static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1565{
1566 unsigned long flags;
64db4cff 1567 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1568
300df91c
PM
1569 trace_rcu_utilization("Start fqs");
1570 if (!rcu_gp_in_progress(rsp)) {
1571 trace_rcu_utilization("End fqs");
64db4cff 1572 return; /* No grace period in progress, nothing to force. */
300df91c 1573 }
1304afb2 1574 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1575 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1576 trace_rcu_utilization("End fqs");
64db4cff
PM
1577 return; /* Someone else is already on the job. */
1578 }
20133cfc 1579 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1580 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1581 rsp->n_force_qs++;
1304afb2 1582 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1583 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1584 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1585 rsp->n_force_qs_ngp++;
1304afb2 1586 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1587 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1588 }
07079d53 1589 rsp->fqs_active = 1;
af446b70 1590 switch (rsp->fqs_state) {
83f5b01f 1591 case RCU_GP_IDLE:
64db4cff
PM
1592 case RCU_GP_INIT:
1593
83f5b01f 1594 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1595
1596 case RCU_SAVE_DYNTICK:
64db4cff
PM
1597 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1598 break; /* So gcc recognizes the dead code. */
1599
f261414f
LJ
1600 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1601
64db4cff 1602 /* Record dyntick-idle state. */
45f014c5 1603 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1604 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1605 if (rcu_gp_in_progress(rsp))
af446b70 1606 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1607 break;
64db4cff
PM
1608
1609 case RCU_FORCE_QS:
1610
1611 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1612 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1613 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1614
1615 /* Leave state in case more forcing is required. */
1616
1304afb2 1617 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1618 break;
64db4cff 1619 }
07079d53 1620 rsp->fqs_active = 0;
46a1e34e 1621 if (rsp->fqs_need_gp) {
1304afb2 1622 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1623 rsp->fqs_need_gp = 0;
1624 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1625 trace_rcu_utilization("End fqs");
46a1e34e
PM
1626 return;
1627 }
1304afb2 1628 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1629unlock_fqs_ret:
1304afb2 1630 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1631 trace_rcu_utilization("End fqs");
64db4cff
PM
1632}
1633
64db4cff 1634/*
e0f23060
PM
1635 * This does the RCU core processing work for the specified rcu_state
1636 * and rcu_data structures. This may be called only from the CPU to
1637 * whom the rdp belongs.
64db4cff
PM
1638 */
1639static void
1640__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1641{
1642 unsigned long flags;
1643
2e597558
PM
1644 WARN_ON_ONCE(rdp->beenonline == 0);
1645
64db4cff
PM
1646 /*
1647 * If an RCU GP has gone long enough, go check for dyntick
1648 * idle CPUs and, if needed, send resched IPIs.
1649 */
20133cfc 1650 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1651 force_quiescent_state(rsp, 1);
1652
1653 /*
1654 * Advance callbacks in response to end of earlier grace
1655 * period that some other CPU ended.
1656 */
1657 rcu_process_gp_end(rsp, rdp);
1658
1659 /* Update RCU state based on any recent quiescent states. */
1660 rcu_check_quiescent_state(rsp, rdp);
1661
1662 /* Does this CPU require a not-yet-started grace period? */
1663 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1664 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1665 rcu_start_gp(rsp, flags); /* releases above lock */
1666 }
1667
1668 /* If there are callbacks ready, invoke them. */
09223371 1669 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1670 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1671}
1672
64db4cff 1673/*
e0f23060 1674 * Do RCU core processing for the current CPU.
64db4cff 1675 */
09223371 1676static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1677{
300df91c 1678 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1679 __rcu_process_callbacks(&rcu_sched_state,
1680 &__get_cpu_var(rcu_sched_data));
64db4cff 1681 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1682 rcu_preempt_process_callbacks();
300df91c 1683 trace_rcu_utilization("End RCU core");
64db4cff
PM
1684}
1685
a26ac245 1686/*
e0f23060
PM
1687 * Schedule RCU callback invocation. If the specified type of RCU
1688 * does not support RCU priority boosting, just do a direct call,
1689 * otherwise wake up the per-CPU kernel kthread. Note that because we
1690 * are running on the current CPU with interrupts disabled, the
1691 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1692 */
a46e0899 1693static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1694{
b0d30417
PM
1695 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1696 return;
a46e0899
PM
1697 if (likely(!rsp->boost)) {
1698 rcu_do_batch(rsp, rdp);
a26ac245
PM
1699 return;
1700 }
a46e0899 1701 invoke_rcu_callbacks_kthread();
a26ac245
PM
1702}
1703
a46e0899 1704static void invoke_rcu_core(void)
09223371
SL
1705{
1706 raise_softirq(RCU_SOFTIRQ);
1707}
1708
64db4cff
PM
1709static void
1710__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1711 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1712{
1713 unsigned long flags;
1714 struct rcu_data *rdp;
1715
0bb7b59d 1716 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1717 debug_rcu_head_queue(head);
64db4cff
PM
1718 head->func = func;
1719 head->next = NULL;
1720
1721 smp_mb(); /* Ensure RCU update seen before callback registry. */
1722
1723 /*
1724 * Opportunistically note grace-period endings and beginnings.
1725 * Note that we might see a beginning right after we see an
1726 * end, but never vice versa, since this CPU has to pass through
1727 * a quiescent state betweentimes.
1728 */
1729 local_irq_save(flags);
e5601400 1730 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1731 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1732
1733 /* Add the callback to our list. */
1734 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1735 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1736 rdp->qlen++;
486e2593
PM
1737 if (lazy)
1738 rdp->qlen_lazy++;
2655d57e 1739
d4c08f2a
PM
1740 if (__is_kfree_rcu_offset((unsigned long)func))
1741 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1742 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1743 else
486e2593 1744 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1745
2655d57e
PM
1746 /* If interrupts were disabled, don't dive into RCU core. */
1747 if (irqs_disabled_flags(flags)) {
1748 local_irq_restore(flags);
1749 return;
1750 }
64db4cff 1751
37c72e56
PM
1752 /*
1753 * Force the grace period if too many callbacks or too long waiting.
1754 * Enforce hysteresis, and don't invoke force_quiescent_state()
1755 * if some other CPU has recently done so. Also, don't bother
1756 * invoking force_quiescent_state() if the newly enqueued callback
1757 * is the only one waiting for a grace period to complete.
1758 */
2655d57e 1759 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1760
1761 /* Are we ignoring a completed grace period? */
1762 rcu_process_gp_end(rsp, rdp);
1763 check_for_new_grace_period(rsp, rdp);
1764
1765 /* Start a new grace period if one not already started. */
1766 if (!rcu_gp_in_progress(rsp)) {
1767 unsigned long nestflag;
1768 struct rcu_node *rnp_root = rcu_get_root(rsp);
1769
1770 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1771 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1772 } else {
1773 /* Give the grace period a kick. */
1774 rdp->blimit = LONG_MAX;
1775 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1776 *rdp->nxttail[RCU_DONE_TAIL] != head)
1777 force_quiescent_state(rsp, 0);
1778 rdp->n_force_qs_snap = rsp->n_force_qs;
1779 rdp->qlen_last_fqs_check = rdp->qlen;
1780 }
20133cfc 1781 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1782 force_quiescent_state(rsp, 1);
1783 local_irq_restore(flags);
1784}
1785
1786/*
d6714c22 1787 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1788 */
d6714c22 1789void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1790{
486e2593 1791 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1792}
d6714c22 1793EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1794
1795/*
486e2593 1796 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1797 */
1798void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1799{
486e2593 1800 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1801}
1802EXPORT_SYMBOL_GPL(call_rcu_bh);
1803
6ebb237b
PM
1804/**
1805 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1806 *
1807 * Control will return to the caller some time after a full rcu-sched
1808 * grace period has elapsed, in other words after all currently executing
1809 * rcu-sched read-side critical sections have completed. These read-side
1810 * critical sections are delimited by rcu_read_lock_sched() and
1811 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1812 * local_irq_disable(), and so on may be used in place of
1813 * rcu_read_lock_sched().
1814 *
1815 * This means that all preempt_disable code sequences, including NMI and
1816 * hardware-interrupt handlers, in progress on entry will have completed
1817 * before this primitive returns. However, this does not guarantee that
1818 * softirq handlers will have completed, since in some kernels, these
1819 * handlers can run in process context, and can block.
1820 *
1821 * This primitive provides the guarantees made by the (now removed)
1822 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1823 * guarantees that rcu_read_lock() sections will have completed.
1824 * In "classic RCU", these two guarantees happen to be one and
1825 * the same, but can differ in realtime RCU implementations.
1826 */
1827void synchronize_sched(void)
1828{
fe15d706
PM
1829 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1830 !lock_is_held(&rcu_lock_map) &&
1831 !lock_is_held(&rcu_sched_lock_map),
1832 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1833 if (rcu_blocking_is_gp())
1834 return;
2c42818e 1835 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1836}
1837EXPORT_SYMBOL_GPL(synchronize_sched);
1838
1839/**
1840 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1841 *
1842 * Control will return to the caller some time after a full rcu_bh grace
1843 * period has elapsed, in other words after all currently executing rcu_bh
1844 * read-side critical sections have completed. RCU read-side critical
1845 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1846 * and may be nested.
1847 */
1848void synchronize_rcu_bh(void)
1849{
fe15d706
PM
1850 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1851 !lock_is_held(&rcu_lock_map) &&
1852 !lock_is_held(&rcu_sched_lock_map),
1853 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1854 if (rcu_blocking_is_gp())
1855 return;
2c42818e 1856 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1857}
1858EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1859
64db4cff
PM
1860/*
1861 * Check to see if there is any immediate RCU-related work to be done
1862 * by the current CPU, for the specified type of RCU, returning 1 if so.
1863 * The checks are in order of increasing expense: checks that can be
1864 * carried out against CPU-local state are performed first. However,
1865 * we must check for CPU stalls first, else we might not get a chance.
1866 */
1867static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1868{
2f51f988
PM
1869 struct rcu_node *rnp = rdp->mynode;
1870
64db4cff
PM
1871 rdp->n_rcu_pending++;
1872
1873 /* Check for CPU stalls, if enabled. */
1874 check_cpu_stall(rsp, rdp);
1875
1876 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
1877 if (rcu_scheduler_fully_active &&
1878 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
1879
1880 /*
1881 * If force_quiescent_state() coming soon and this CPU
1882 * needs a quiescent state, and this is either RCU-sched
1883 * or RCU-bh, force a local reschedule.
1884 */
d21670ac 1885 rdp->n_rp_qs_pending++;
6cc68793 1886 if (!rdp->preemptible &&
d25eb944
PM
1887 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1888 jiffies))
1889 set_need_resched();
e4cc1f22 1890 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 1891 rdp->n_rp_report_qs++;
64db4cff 1892 return 1;
7ba5c840 1893 }
64db4cff
PM
1894
1895 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1896 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1897 rdp->n_rp_cb_ready++;
64db4cff 1898 return 1;
7ba5c840 1899 }
64db4cff
PM
1900
1901 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1902 if (cpu_needs_another_gp(rsp, rdp)) {
1903 rdp->n_rp_cpu_needs_gp++;
64db4cff 1904 return 1;
7ba5c840 1905 }
64db4cff
PM
1906
1907 /* Has another RCU grace period completed? */
2f51f988 1908 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1909 rdp->n_rp_gp_completed++;
64db4cff 1910 return 1;
7ba5c840 1911 }
64db4cff
PM
1912
1913 /* Has a new RCU grace period started? */
2f51f988 1914 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1915 rdp->n_rp_gp_started++;
64db4cff 1916 return 1;
7ba5c840 1917 }
64db4cff
PM
1918
1919 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1920 if (rcu_gp_in_progress(rsp) &&
20133cfc 1921 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1922 rdp->n_rp_need_fqs++;
64db4cff 1923 return 1;
7ba5c840 1924 }
64db4cff
PM
1925
1926 /* nothing to do */
7ba5c840 1927 rdp->n_rp_need_nothing++;
64db4cff
PM
1928 return 0;
1929}
1930
1931/*
1932 * Check to see if there is any immediate RCU-related work to be done
1933 * by the current CPU, returning 1 if so. This function is part of the
1934 * RCU implementation; it is -not- an exported member of the RCU API.
1935 */
a157229c 1936static int rcu_pending(int cpu)
64db4cff 1937{
d6714c22 1938 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1939 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1940 rcu_preempt_pending(cpu);
64db4cff
PM
1941}
1942
1943/*
1944 * Check to see if any future RCU-related work will need to be done
1945 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1946 * 1 if so.
64db4cff 1947 */
aea1b35e 1948static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
1949{
1950 /* RCU callbacks either ready or pending? */
d6714c22 1951 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 1952 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 1953 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
1954}
1955
d0ec774c
PM
1956static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1957static atomic_t rcu_barrier_cpu_count;
1958static DEFINE_MUTEX(rcu_barrier_mutex);
1959static struct completion rcu_barrier_completion;
d0ec774c
PM
1960
1961static void rcu_barrier_callback(struct rcu_head *notused)
1962{
1963 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1964 complete(&rcu_barrier_completion);
1965}
1966
1967/*
1968 * Called with preemption disabled, and from cross-cpu IRQ context.
1969 */
1970static void rcu_barrier_func(void *type)
1971{
1972 int cpu = smp_processor_id();
1973 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1974 void (*call_rcu_func)(struct rcu_head *head,
1975 void (*func)(struct rcu_head *head));
1976
1977 atomic_inc(&rcu_barrier_cpu_count);
1978 call_rcu_func = type;
1979 call_rcu_func(head, rcu_barrier_callback);
1980}
1981
d0ec774c
PM
1982/*
1983 * Orchestrate the specified type of RCU barrier, waiting for all
1984 * RCU callbacks of the specified type to complete.
1985 */
e74f4c45
PM
1986static void _rcu_barrier(struct rcu_state *rsp,
1987 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1988 void (*func)(struct rcu_head *head)))
1989{
1990 BUG_ON(in_interrupt());
e74f4c45 1991 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1992 mutex_lock(&rcu_barrier_mutex);
1993 init_completion(&rcu_barrier_completion);
1994 /*
1995 * Initialize rcu_barrier_cpu_count to 1, then invoke
1996 * rcu_barrier_func() on each CPU, so that each CPU also has
1997 * incremented rcu_barrier_cpu_count. Only then is it safe to
1998 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1999 * might complete its grace period before all of the other CPUs
2000 * did their increment, causing this function to return too
2d999e03
PM
2001 * early. Note that on_each_cpu() disables irqs, which prevents
2002 * any CPUs from coming online or going offline until each online
2003 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2004 */
2005 atomic_set(&rcu_barrier_cpu_count, 1);
2006 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2007 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2008 complete(&rcu_barrier_completion);
2009 wait_for_completion(&rcu_barrier_completion);
2010 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2011}
d0ec774c
PM
2012
2013/**
2014 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2015 */
2016void rcu_barrier_bh(void)
2017{
e74f4c45 2018 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2019}
2020EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2021
2022/**
2023 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2024 */
2025void rcu_barrier_sched(void)
2026{
e74f4c45 2027 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2028}
2029EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2030
64db4cff 2031/*
27569620 2032 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2033 */
27569620
PM
2034static void __init
2035rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2036{
2037 unsigned long flags;
2038 int i;
394f99a9 2039 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2040 struct rcu_node *rnp = rcu_get_root(rsp);
2041
2042 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2043 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2044 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2045 rdp->nxtlist = NULL;
2046 for (i = 0; i < RCU_NEXT_SIZE; i++)
2047 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2048 rdp->qlen_lazy = 0;
27569620 2049 rdp->qlen = 0;
27569620 2050 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145fa7f 2051 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
9b2e4f18 2052 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2053 rdp->cpu = cpu;
d4c08f2a 2054 rdp->rsp = rsp;
1304afb2 2055 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2056}
2057
2058/*
2059 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2060 * offline event can be happening at a given time. Note also that we
2061 * can accept some slop in the rsp->completed access due to the fact
2062 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2063 */
e4fa4c97 2064static void __cpuinit
6cc68793 2065rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2066{
2067 unsigned long flags;
64db4cff 2068 unsigned long mask;
394f99a9 2069 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2070 struct rcu_node *rnp = rcu_get_root(rsp);
2071
2072 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2073 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2074 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2075 rdp->preemptible = preemptible;
37c72e56
PM
2076 rdp->qlen_last_fqs_check = 0;
2077 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2078 rdp->blimit = blimit;
c92b131b
PM
2079 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2080 atomic_set(&rdp->dynticks->dynticks,
2081 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2082 rcu_prepare_for_idle_init(cpu);
1304afb2 2083 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2084
2085 /*
2086 * A new grace period might start here. If so, we won't be part
2087 * of it, but that is OK, as we are currently in a quiescent state.
2088 */
2089
2090 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2091 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2092
2093 /* Add CPU to rcu_node bitmasks. */
2094 rnp = rdp->mynode;
2095 mask = rdp->grpmask;
2096 do {
2097 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2098 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2099 rnp->qsmaskinit |= mask;
2100 mask = rnp->grpmask;
d09b62df 2101 if (rnp == rdp->mynode) {
06ae115a
PM
2102 /*
2103 * If there is a grace period in progress, we will
2104 * set up to wait for it next time we run the
2105 * RCU core code.
2106 */
2107 rdp->gpnum = rnp->completed;
d09b62df 2108 rdp->completed = rnp->completed;
06ae115a
PM
2109 rdp->passed_quiesce = 0;
2110 rdp->qs_pending = 0;
e4cc1f22 2111 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2112 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2113 }
1304afb2 2114 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2115 rnp = rnp->parent;
2116 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2117
1304afb2 2118 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2119}
2120
d72bce0e 2121static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2122{
f41d911f
PM
2123 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2124 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2125 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2126}
2127
2128/*
f41d911f 2129 * Handle CPU online/offline notification events.
64db4cff 2130 */
9f680ab4
PM
2131static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2132 unsigned long action, void *hcpu)
64db4cff
PM
2133{
2134 long cpu = (long)hcpu;
27f4d280 2135 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2136 struct rcu_node *rnp = rdp->mynode;
64db4cff 2137
300df91c 2138 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2139 switch (action) {
2140 case CPU_UP_PREPARE:
2141 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2142 rcu_prepare_cpu(cpu);
2143 rcu_prepare_kthreads(cpu);
a26ac245
PM
2144 break;
2145 case CPU_ONLINE:
0f962a5e
PM
2146 case CPU_DOWN_FAILED:
2147 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2148 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2149 break;
2150 case CPU_DOWN_PREPARE:
2151 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2152 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2153 break;
d0ec774c
PM
2154 case CPU_DYING:
2155 case CPU_DYING_FROZEN:
2156 /*
2d999e03
PM
2157 * The whole machine is "stopped" except this CPU, so we can
2158 * touch any data without introducing corruption. We send the
2159 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2160 */
e5601400
PM
2161 rcu_cleanup_dying_cpu(&rcu_bh_state);
2162 rcu_cleanup_dying_cpu(&rcu_sched_state);
2163 rcu_preempt_cleanup_dying_cpu();
7cb92499 2164 rcu_cleanup_after_idle(cpu);
d0ec774c 2165 break;
64db4cff
PM
2166 case CPU_DEAD:
2167 case CPU_DEAD_FROZEN:
2168 case CPU_UP_CANCELED:
2169 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2170 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2171 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2172 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2173 break;
2174 default:
2175 break;
2176 }
300df91c 2177 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2178 return NOTIFY_OK;
2179}
2180
bbad9379
PM
2181/*
2182 * This function is invoked towards the end of the scheduler's initialization
2183 * process. Before this is called, the idle task might contain
2184 * RCU read-side critical sections (during which time, this idle
2185 * task is booting the system). After this function is called, the
2186 * idle tasks are prohibited from containing RCU read-side critical
2187 * sections. This function also enables RCU lockdep checking.
2188 */
2189void rcu_scheduler_starting(void)
2190{
2191 WARN_ON(num_online_cpus() != 1);
2192 WARN_ON(nr_context_switches() > 0);
2193 rcu_scheduler_active = 1;
2194}
2195
64db4cff
PM
2196/*
2197 * Compute the per-level fanout, either using the exact fanout specified
2198 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2199 */
2200#ifdef CONFIG_RCU_FANOUT_EXACT
2201static void __init rcu_init_levelspread(struct rcu_state *rsp)
2202{
2203 int i;
2204
0209f649 2205 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2206 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2207 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2208}
2209#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2210static void __init rcu_init_levelspread(struct rcu_state *rsp)
2211{
2212 int ccur;
2213 int cprv;
2214 int i;
2215
2216 cprv = NR_CPUS;
2217 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2218 ccur = rsp->levelcnt[i];
2219 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2220 cprv = ccur;
2221 }
2222}
2223#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2224
2225/*
2226 * Helper function for rcu_init() that initializes one rcu_state structure.
2227 */
394f99a9
LJ
2228static void __init rcu_init_one(struct rcu_state *rsp,
2229 struct rcu_data __percpu *rda)
64db4cff 2230{
b6407e86
PM
2231 static char *buf[] = { "rcu_node_level_0",
2232 "rcu_node_level_1",
2233 "rcu_node_level_2",
2234 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2235 int cpustride = 1;
2236 int i;
2237 int j;
2238 struct rcu_node *rnp;
2239
b6407e86
PM
2240 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2241
64db4cff
PM
2242 /* Initialize the level-tracking arrays. */
2243
2244 for (i = 1; i < NUM_RCU_LVLS; i++)
2245 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2246 rcu_init_levelspread(rsp);
2247
2248 /* Initialize the elements themselves, starting from the leaves. */
2249
2250 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2251 cpustride *= rsp->levelspread[i];
2252 rnp = rsp->level[i];
2253 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2254 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2255 lockdep_set_class_and_name(&rnp->lock,
2256 &rcu_node_class[i], buf[i]);
f41d911f 2257 rnp->gpnum = 0;
64db4cff
PM
2258 rnp->qsmask = 0;
2259 rnp->qsmaskinit = 0;
2260 rnp->grplo = j * cpustride;
2261 rnp->grphi = (j + 1) * cpustride - 1;
2262 if (rnp->grphi >= NR_CPUS)
2263 rnp->grphi = NR_CPUS - 1;
2264 if (i == 0) {
2265 rnp->grpnum = 0;
2266 rnp->grpmask = 0;
2267 rnp->parent = NULL;
2268 } else {
2269 rnp->grpnum = j % rsp->levelspread[i - 1];
2270 rnp->grpmask = 1UL << rnp->grpnum;
2271 rnp->parent = rsp->level[i - 1] +
2272 j / rsp->levelspread[i - 1];
2273 }
2274 rnp->level = i;
12f5f524 2275 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2276 }
2277 }
0c34029a 2278
394f99a9 2279 rsp->rda = rda;
0c34029a
LJ
2280 rnp = rsp->level[NUM_RCU_LVLS - 1];
2281 for_each_possible_cpu(i) {
4a90a068 2282 while (i > rnp->grphi)
0c34029a 2283 rnp++;
394f99a9 2284 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2285 rcu_boot_init_percpu_data(i, rsp);
2286 }
64db4cff
PM
2287}
2288
9f680ab4 2289void __init rcu_init(void)
64db4cff 2290{
017c4261 2291 int cpu;
9f680ab4 2292
f41d911f 2293 rcu_bootup_announce();
394f99a9
LJ
2294 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2295 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2296 __rcu_init_preempt();
09223371 2297 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2298
2299 /*
2300 * We don't need protection against CPU-hotplug here because
2301 * this is called early in boot, before either interrupts
2302 * or the scheduler are operational.
2303 */
2304 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2305 for_each_online_cpu(cpu)
2306 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2307 check_cpu_stall_init();
64db4cff
PM
2308}
2309
1eba8f84 2310#include "rcutree_plugin.h"