rcu: Update stall-warning documentation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
64db4cff 53
9f77da9f 54#include "rcutree.h"
29c00b4a
PM
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
9f77da9f 58
64db4cff
PM
59/* Data structures. */
60
b668c9cf 61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 62
4300aa64 63#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 64 .level = { &structname##_state.node[0] }, \
64db4cff
PM
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
cf244dc0
PM
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 71 }, \
af446b70 72 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
73 .gpnum = -300, \
74 .completed = -300, \
e99033c5
PM
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
4300aa64 79 .name = #structname, \
64db4cff
PM
80}
81
e99033c5 82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
e99033c5 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280
PM
88static struct rcu_state *rcu_state;
89
b0d30417
PM
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
bbad9379
PM
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
b0d30417
PM
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
a46e0899
PM
116#ifdef CONFIG_RCU_BOOST
117
a26ac245
PM
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 126DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 127
a46e0899
PM
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
0f962a5e 130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 133
4a298656
PM
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
fc2219d4
PM
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
b1f77b05 156/*
d6714c22 157 * Note a quiescent state. Because we do not need to know
b1f77b05 158 * how many quiescent states passed, just if there was at least
d6714c22 159 * one since the start of the grace period, this just sets a flag.
e4cc1f22 160 * The caller must have disabled preemption.
b1f77b05 161 */
d6714c22 162void rcu_sched_qs(int cpu)
b1f77b05 163{
25502a6c 164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 165
e4cc1f22 166 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 167 barrier();
e4cc1f22 168 if (rdp->passed_quiesce == 0)
d4c08f2a 169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 170 rdp->passed_quiesce = 1;
b1f77b05
IM
171}
172
d6714c22 173void rcu_bh_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05 182}
64db4cff 183
25502a6c
PM
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
e4cc1f22 187 * The caller must have disabled preemption.
25502a6c
PM
188 */
189void rcu_note_context_switch(int cpu)
190{
300df91c 191 trace_rcu_utilization("Start context switch");
25502a6c
PM
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
300df91c 194 trace_rcu_utilization("End context switch");
25502a6c 195}
29ce8310 196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 197
90a4d2c0 198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
4145fa7f 199 .dynticks_nesting = DYNTICK_TASK_NESTING,
23b5c8fa 200 .dynticks = ATOMIC_INIT(1),
90a4d2c0 201};
64db4cff 202
e0f23060 203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
3d76c082
PM
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
13cfcca0
PM
211int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
212int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
213
f2e0dd70 214module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 215module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 216
64db4cff 217static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 218static int rcu_pending(int cpu);
64db4cff
PM
219
220/*
d6714c22 221 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 222 */
d6714c22 223long rcu_batches_completed_sched(void)
64db4cff 224{
d6714c22 225 return rcu_sched_state.completed;
64db4cff 226}
d6714c22 227EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
228
229/*
230 * Return the number of RCU BH batches processed thus far for debug & stats.
231 */
232long rcu_batches_completed_bh(void)
233{
234 return rcu_bh_state.completed;
235}
236EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
237
bf66f18e
PM
238/*
239 * Force a quiescent state for RCU BH.
240 */
241void rcu_bh_force_quiescent_state(void)
242{
243 force_quiescent_state(&rcu_bh_state, 0);
244}
245EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
246
4a298656
PM
247/*
248 * Record the number of times rcutorture tests have been initiated and
249 * terminated. This information allows the debugfs tracing stats to be
250 * correlated to the rcutorture messages, even when the rcutorture module
251 * is being repeatedly loaded and unloaded. In other words, we cannot
252 * store this state in rcutorture itself.
253 */
254void rcutorture_record_test_transition(void)
255{
256 rcutorture_testseq++;
257 rcutorture_vernum = 0;
258}
259EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
260
261/*
262 * Record the number of writer passes through the current rcutorture test.
263 * This is also used to correlate debugfs tracing stats with the rcutorture
264 * messages.
265 */
266void rcutorture_record_progress(unsigned long vernum)
267{
268 rcutorture_vernum++;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_progress);
271
bf66f18e
PM
272/*
273 * Force a quiescent state for RCU-sched.
274 */
275void rcu_sched_force_quiescent_state(void)
276{
277 force_quiescent_state(&rcu_sched_state, 0);
278}
279EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
280
64db4cff
PM
281/*
282 * Does the CPU have callbacks ready to be invoked?
283 */
284static int
285cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
286{
287 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
288}
289
290/*
291 * Does the current CPU require a yet-as-unscheduled grace period?
292 */
293static int
294cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
295{
fc2219d4 296 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
297}
298
299/*
300 * Return the root node of the specified rcu_state structure.
301 */
302static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
303{
304 return &rsp->node[0];
305}
306
64db4cff
PM
307/*
308 * If the specified CPU is offline, tell the caller that it is in
309 * a quiescent state. Otherwise, whack it with a reschedule IPI.
310 * Grace periods can end up waiting on an offline CPU when that
311 * CPU is in the process of coming online -- it will be added to the
312 * rcu_node bitmasks before it actually makes it online. The same thing
313 * can happen while a CPU is in the process of coming online. Because this
314 * race is quite rare, we check for it after detecting that the grace
315 * period has been delayed rather than checking each and every CPU
316 * each and every time we start a new grace period.
317 */
318static int rcu_implicit_offline_qs(struct rcu_data *rdp)
319{
320 /*
321 * If the CPU is offline, it is in a quiescent state. We can
322 * trust its state not to change because interrupts are disabled.
323 */
324 if (cpu_is_offline(rdp->cpu)) {
d4c08f2a 325 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
326 rdp->offline_fqs++;
327 return 1;
328 }
329
9b2e4f18
PM
330 /*
331 * The CPU is online, so send it a reschedule IPI. This forces
332 * it through the scheduler, and (inefficiently) also handles cases
333 * where idle loops fail to inform RCU about the CPU being idle.
334 */
64db4cff
PM
335 if (rdp->cpu != smp_processor_id())
336 smp_send_reschedule(rdp->cpu);
337 else
338 set_need_resched();
339 rdp->resched_ipi++;
340 return 0;
341}
342
9b2e4f18
PM
343/*
344 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
345 *
346 * If the new value of the ->dynticks_nesting counter now is zero,
347 * we really have entered idle, and must do the appropriate accounting.
348 * The caller must have disabled interrupts.
349 */
4145fa7f 350static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 351{
facc4e15 352 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 353 if (!is_idle_task(current)) {
0989cb46
PM
354 struct task_struct *idle = idle_task(smp_processor_id());
355
facc4e15 356 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 357 ftrace_dump(DUMP_ALL);
0989cb46
PM
358 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
359 current->pid, current->comm,
360 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 361 }
aea1b35e 362 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
363 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
364 smp_mb__before_atomic_inc(); /* See above. */
365 atomic_inc(&rdtp->dynticks);
366 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
367 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
368
369 /*
370 * The idle task is not permitted to enter the idle loop while
371 * in an RCU read-side critical section.
372 */
373 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
374 "Illegal idle entry in RCU read-side critical section.");
375 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
376 "Illegal idle entry in RCU-bh read-side critical section.");
377 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
378 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 379}
64db4cff
PM
380
381/**
9b2e4f18 382 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 383 *
9b2e4f18 384 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 385 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
386 * critical sections can occur in irq handlers in idle, a possibility
387 * handled by irq_enter() and irq_exit().)
388 *
389 * We crowbar the ->dynticks_nesting field to zero to allow for
390 * the possibility of usermode upcalls having messed up our count
391 * of interrupt nesting level during the prior busy period.
64db4cff 392 */
9b2e4f18 393void rcu_idle_enter(void)
64db4cff
PM
394{
395 unsigned long flags;
4145fa7f 396 long long oldval;
64db4cff
PM
397 struct rcu_dynticks *rdtp;
398
64db4cff
PM
399 local_irq_save(flags);
400 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 401 oldval = rdtp->dynticks_nesting;
9b2e4f18 402 rdtp->dynticks_nesting = 0;
4145fa7f 403 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
404 local_irq_restore(flags);
405}
406
9b2e4f18
PM
407/**
408 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
409 *
410 * Exit from an interrupt handler, which might possibly result in entering
411 * idle mode, in other words, leaving the mode in which read-side critical
412 * sections can occur.
64db4cff 413 *
9b2e4f18
PM
414 * This code assumes that the idle loop never does anything that might
415 * result in unbalanced calls to irq_enter() and irq_exit(). If your
416 * architecture violates this assumption, RCU will give you what you
417 * deserve, good and hard. But very infrequently and irreproducibly.
418 *
419 * Use things like work queues to work around this limitation.
420 *
421 * You have been warned.
64db4cff 422 */
9b2e4f18 423void rcu_irq_exit(void)
64db4cff
PM
424{
425 unsigned long flags;
4145fa7f 426 long long oldval;
64db4cff
PM
427 struct rcu_dynticks *rdtp;
428
429 local_irq_save(flags);
430 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 431 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
432 rdtp->dynticks_nesting--;
433 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
434 if (rdtp->dynticks_nesting)
435 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
436 else
437 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
438 local_irq_restore(flags);
439}
440
441/*
442 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
443 *
444 * If the new value of the ->dynticks_nesting counter was previously zero,
445 * we really have exited idle, and must do the appropriate accounting.
446 * The caller must have disabled interrupts.
447 */
448static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
449{
23b5c8fa
PM
450 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
451 atomic_inc(&rdtp->dynticks);
452 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
453 smp_mb__after_atomic_inc(); /* See above. */
454 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 455 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 456 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 457 if (!is_idle_task(current)) {
0989cb46
PM
458 struct task_struct *idle = idle_task(smp_processor_id());
459
4145fa7f
PM
460 trace_rcu_dyntick("Error on exit: not idle task",
461 oldval, rdtp->dynticks_nesting);
9b2e4f18 462 ftrace_dump(DUMP_ALL);
0989cb46
PM
463 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
464 current->pid, current->comm,
465 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
466 }
467}
468
469/**
470 * rcu_idle_exit - inform RCU that current CPU is leaving idle
471 *
472 * Exit idle mode, in other words, -enter- the mode in which RCU
473 * read-side critical sections can occur.
474 *
4145fa7f
PM
475 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
476 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
477 * of interrupt nesting level during the busy period that is just
478 * now starting.
479 */
480void rcu_idle_exit(void)
481{
482 unsigned long flags;
483 struct rcu_dynticks *rdtp;
484 long long oldval;
485
486 local_irq_save(flags);
487 rdtp = &__get_cpu_var(rcu_dynticks);
488 oldval = rdtp->dynticks_nesting;
489 WARN_ON_ONCE(oldval != 0);
4145fa7f 490 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
9b2e4f18
PM
491 rcu_idle_exit_common(rdtp, oldval);
492 local_irq_restore(flags);
493}
494
495/**
496 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
497 *
498 * Enter an interrupt handler, which might possibly result in exiting
499 * idle mode, in other words, entering the mode in which read-side critical
500 * sections can occur.
501 *
502 * Note that the Linux kernel is fully capable of entering an interrupt
503 * handler that it never exits, for example when doing upcalls to
504 * user mode! This code assumes that the idle loop never does upcalls to
505 * user mode. If your architecture does do upcalls from the idle loop (or
506 * does anything else that results in unbalanced calls to the irq_enter()
507 * and irq_exit() functions), RCU will give you what you deserve, good
508 * and hard. But very infrequently and irreproducibly.
509 *
510 * Use things like work queues to work around this limitation.
511 *
512 * You have been warned.
513 */
514void rcu_irq_enter(void)
515{
516 unsigned long flags;
517 struct rcu_dynticks *rdtp;
518 long long oldval;
519
520 local_irq_save(flags);
521 rdtp = &__get_cpu_var(rcu_dynticks);
522 oldval = rdtp->dynticks_nesting;
523 rdtp->dynticks_nesting++;
524 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
525 if (oldval)
526 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
527 else
528 rcu_idle_exit_common(rdtp, oldval);
64db4cff 529 local_irq_restore(flags);
64db4cff
PM
530}
531
532/**
533 * rcu_nmi_enter - inform RCU of entry to NMI context
534 *
535 * If the CPU was idle with dynamic ticks active, and there is no
536 * irq handler running, this updates rdtp->dynticks_nmi to let the
537 * RCU grace-period handling know that the CPU is active.
538 */
539void rcu_nmi_enter(void)
540{
541 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
542
23b5c8fa
PM
543 if (rdtp->dynticks_nmi_nesting == 0 &&
544 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 545 return;
23b5c8fa
PM
546 rdtp->dynticks_nmi_nesting++;
547 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
548 atomic_inc(&rdtp->dynticks);
549 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
550 smp_mb__after_atomic_inc(); /* See above. */
551 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
552}
553
554/**
555 * rcu_nmi_exit - inform RCU of exit from NMI context
556 *
557 * If the CPU was idle with dynamic ticks active, and there is no
558 * irq handler running, this updates rdtp->dynticks_nmi to let the
559 * RCU grace-period handling know that the CPU is no longer active.
560 */
561void rcu_nmi_exit(void)
562{
563 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
564
23b5c8fa
PM
565 if (rdtp->dynticks_nmi_nesting == 0 ||
566 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 567 return;
23b5c8fa
PM
568 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
569 smp_mb__before_atomic_inc(); /* See above. */
570 atomic_inc(&rdtp->dynticks);
571 smp_mb__after_atomic_inc(); /* Force delay to next write. */
572 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
573}
574
9b2e4f18
PM
575#ifdef CONFIG_PROVE_RCU
576
64db4cff 577/**
9b2e4f18 578 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 579 *
9b2e4f18 580 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 581 * or NMI handler, return true.
64db4cff 582 */
9b2e4f18 583int rcu_is_cpu_idle(void)
64db4cff 584{
34240697
PM
585 int ret;
586
587 preempt_disable();
588 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
589 preempt_enable();
590 return ret;
64db4cff 591}
e6b80a3b 592EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 593
9b2e4f18
PM
594#endif /* #ifdef CONFIG_PROVE_RCU */
595
64db4cff 596/**
9b2e4f18 597 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 598 *
9b2e4f18
PM
599 * If the current CPU is idle or running at a first-level (not nested)
600 * interrupt from idle, return true. The caller must have at least
601 * disabled preemption.
64db4cff 602 */
9b2e4f18 603int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 604{
9b2e4f18 605 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
606}
607
64db4cff
PM
608/*
609 * Snapshot the specified CPU's dynticks counter so that we can later
610 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 611 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
612 */
613static int dyntick_save_progress_counter(struct rcu_data *rdp)
614{
23b5c8fa 615 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 616 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
617}
618
619/*
620 * Return true if the specified CPU has passed through a quiescent
621 * state by virtue of being in or having passed through an dynticks
622 * idle state since the last call to dyntick_save_progress_counter()
623 * for this same CPU.
624 */
625static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
626{
7eb4f455
PM
627 unsigned int curr;
628 unsigned int snap;
64db4cff 629
7eb4f455
PM
630 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
631 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
632
633 /*
634 * If the CPU passed through or entered a dynticks idle phase with
635 * no active irq/NMI handlers, then we can safely pretend that the CPU
636 * already acknowledged the request to pass through a quiescent
637 * state. Either way, that CPU cannot possibly be in an RCU
638 * read-side critical section that started before the beginning
639 * of the current RCU grace period.
640 */
7eb4f455 641 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 642 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
643 rdp->dynticks_fqs++;
644 return 1;
645 }
646
647 /* Go check for the CPU being offline. */
648 return rcu_implicit_offline_qs(rdp);
649}
650
13cfcca0
PM
651static int jiffies_till_stall_check(void)
652{
653 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
654
655 /*
656 * Limit check must be consistent with the Kconfig limits
657 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
658 */
659 if (till_stall_check < 3) {
660 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
661 till_stall_check = 3;
662 } else if (till_stall_check > 300) {
663 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
664 till_stall_check = 300;
665 }
666 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
667}
668
64db4cff
PM
669static void record_gp_stall_check_time(struct rcu_state *rsp)
670{
671 rsp->gp_start = jiffies;
13cfcca0 672 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
673}
674
675static void print_other_cpu_stall(struct rcu_state *rsp)
676{
677 int cpu;
678 long delta;
679 unsigned long flags;
9bc8b558 680 int ndetected;
64db4cff 681 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
682
683 /* Only let one CPU complain about others per time interval. */
684
1304afb2 685 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 686 delta = jiffies - rsp->jiffies_stall;
fc2219d4 687 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 688 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
689 return;
690 }
13cfcca0 691 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 692 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 693
8cdd32a9
PM
694 /*
695 * OK, time to rat on our buddy...
696 * See Documentation/RCU/stallwarn.txt for info on how to debug
697 * RCU CPU stall warnings.
698 */
a858af28 699 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 700 rsp->name);
a858af28 701 print_cpu_stall_info_begin();
a0b6c9a7 702 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 703 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 704 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 705 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 706 if (rnp->qsmask == 0)
64db4cff 707 continue;
a0b6c9a7 708 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 709 if (rnp->qsmask & (1UL << cpu)) {
a858af28 710 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
711 ndetected++;
712 }
64db4cff 713 }
a858af28
PM
714
715 /*
716 * Now rat on any tasks that got kicked up to the root rcu_node
717 * due to CPU offlining.
718 */
719 rnp = rcu_get_root(rsp);
720 raw_spin_lock_irqsave(&rnp->lock, flags);
721 ndetected = rcu_print_task_stall(rnp);
722 raw_spin_unlock_irqrestore(&rnp->lock, flags);
723
724 print_cpu_stall_info_end();
725 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 726 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
727 if (ndetected == 0)
728 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
729 else if (!trigger_all_cpu_backtrace())
4627e240 730 dump_stack();
c1dc0b9c 731
1ed509a2
PM
732 /* If so configured, complain about tasks blocking the grace period. */
733
734 rcu_print_detail_task_stall(rsp);
735
64db4cff
PM
736 force_quiescent_state(rsp, 0); /* Kick them all. */
737}
738
739static void print_cpu_stall(struct rcu_state *rsp)
740{
741 unsigned long flags;
742 struct rcu_node *rnp = rcu_get_root(rsp);
743
8cdd32a9
PM
744 /*
745 * OK, time to rat on ourselves...
746 * See Documentation/RCU/stallwarn.txt for info on how to debug
747 * RCU CPU stall warnings.
748 */
a858af28
PM
749 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
750 print_cpu_stall_info_begin();
751 print_cpu_stall_info(rsp, smp_processor_id());
752 print_cpu_stall_info_end();
753 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
754 if (!trigger_all_cpu_backtrace())
755 dump_stack();
c1dc0b9c 756
1304afb2 757 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 758 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
759 rsp->jiffies_stall = jiffies +
760 3 * jiffies_till_stall_check() + 3;
1304afb2 761 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 762
64db4cff
PM
763 set_need_resched(); /* kick ourselves to get things going. */
764}
765
766static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
767{
bad6e139
PM
768 unsigned long j;
769 unsigned long js;
64db4cff
PM
770 struct rcu_node *rnp;
771
742734ee 772 if (rcu_cpu_stall_suppress)
c68de209 773 return;
bad6e139
PM
774 j = ACCESS_ONCE(jiffies);
775 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 776 rnp = rdp->mynode;
bad6e139 777 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
778
779 /* We haven't checked in, so go dump stack. */
780 print_cpu_stall(rsp);
781
bad6e139
PM
782 } else if (rcu_gp_in_progress(rsp) &&
783 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 784
bad6e139 785 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
786 print_other_cpu_stall(rsp);
787 }
788}
789
c68de209
PM
790static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
791{
742734ee 792 rcu_cpu_stall_suppress = 1;
c68de209
PM
793 return NOTIFY_DONE;
794}
795
53d84e00
PM
796/**
797 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
798 *
799 * Set the stall-warning timeout way off into the future, thus preventing
800 * any RCU CPU stall-warning messages from appearing in the current set of
801 * RCU grace periods.
802 *
803 * The caller must disable hard irqs.
804 */
805void rcu_cpu_stall_reset(void)
806{
807 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
808 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
809 rcu_preempt_stall_reset();
810}
811
c68de209
PM
812static struct notifier_block rcu_panic_block = {
813 .notifier_call = rcu_panic,
814};
815
816static void __init check_cpu_stall_init(void)
817{
818 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
819}
820
64db4cff
PM
821/*
822 * Update CPU-local rcu_data state to record the newly noticed grace period.
823 * This is used both when we started the grace period and when we notice
9160306e
PM
824 * that someone else started the grace period. The caller must hold the
825 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
826 * and must have irqs disabled.
64db4cff 827 */
9160306e
PM
828static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
829{
830 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
831 /*
832 * If the current grace period is waiting for this CPU,
833 * set up to detect a quiescent state, otherwise don't
834 * go looking for one.
835 */
9160306e 836 rdp->gpnum = rnp->gpnum;
d4c08f2a 837 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
838 if (rnp->qsmask & rdp->grpmask) {
839 rdp->qs_pending = 1;
e4cc1f22 840 rdp->passed_quiesce = 0;
121dfc4b
PM
841 } else
842 rdp->qs_pending = 0;
a858af28 843 zero_cpu_stall_ticks(rdp);
9160306e
PM
844 }
845}
846
64db4cff
PM
847static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
848{
9160306e
PM
849 unsigned long flags;
850 struct rcu_node *rnp;
851
852 local_irq_save(flags);
853 rnp = rdp->mynode;
854 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 855 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
856 local_irq_restore(flags);
857 return;
858 }
859 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 860 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
861}
862
863/*
864 * Did someone else start a new RCU grace period start since we last
865 * checked? Update local state appropriately if so. Must be called
866 * on the CPU corresponding to rdp.
867 */
868static int
869check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
870{
871 unsigned long flags;
872 int ret = 0;
873
874 local_irq_save(flags);
875 if (rdp->gpnum != rsp->gpnum) {
876 note_new_gpnum(rsp, rdp);
877 ret = 1;
878 }
879 local_irq_restore(flags);
880 return ret;
881}
882
d09b62df
PM
883/*
884 * Advance this CPU's callbacks, but only if the current grace period
885 * has ended. This may be called only from the CPU to whom the rdp
886 * belongs. In addition, the corresponding leaf rcu_node structure's
887 * ->lock must be held by the caller, with irqs disabled.
888 */
889static void
890__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
891{
892 /* Did another grace period end? */
893 if (rdp->completed != rnp->completed) {
894
895 /* Advance callbacks. No harm if list empty. */
896 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
897 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
898 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
899
900 /* Remember that we saw this grace-period completion. */
901 rdp->completed = rnp->completed;
d4c08f2a 902 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 903
5ff8e6f0
FW
904 /*
905 * If we were in an extended quiescent state, we may have
121dfc4b 906 * missed some grace periods that others CPUs handled on
5ff8e6f0 907 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
908 * spurious new grace periods. If another grace period
909 * has started, then rnp->gpnum will have advanced, so
910 * we will detect this later on.
5ff8e6f0 911 */
121dfc4b 912 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
913 rdp->gpnum = rdp->completed;
914
20377f32 915 /*
121dfc4b
PM
916 * If RCU does not need a quiescent state from this CPU,
917 * then make sure that this CPU doesn't go looking for one.
20377f32 918 */
121dfc4b 919 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 920 rdp->qs_pending = 0;
d09b62df
PM
921 }
922}
923
924/*
925 * Advance this CPU's callbacks, but only if the current grace period
926 * has ended. This may be called only from the CPU to whom the rdp
927 * belongs.
928 */
929static void
930rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
931{
932 unsigned long flags;
933 struct rcu_node *rnp;
934
935 local_irq_save(flags);
936 rnp = rdp->mynode;
937 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 938 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
939 local_irq_restore(flags);
940 return;
941 }
942 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 943 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
944}
945
946/*
947 * Do per-CPU grace-period initialization for running CPU. The caller
948 * must hold the lock of the leaf rcu_node structure corresponding to
949 * this CPU.
950 */
951static void
952rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
953{
954 /* Prior grace period ended, so advance callbacks for current CPU. */
955 __rcu_process_gp_end(rsp, rnp, rdp);
956
957 /*
958 * Because this CPU just now started the new grace period, we know
959 * that all of its callbacks will be covered by this upcoming grace
960 * period, even the ones that were registered arbitrarily recently.
961 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
962 *
963 * Other CPUs cannot be sure exactly when the grace period started.
964 * Therefore, their recently registered callbacks must pass through
965 * an additional RCU_NEXT_READY stage, so that they will be handled
966 * by the next RCU grace period.
967 */
968 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
969 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
970
971 /* Set state so that this CPU will detect the next quiescent state. */
972 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
973}
974
64db4cff
PM
975/*
976 * Start a new RCU grace period if warranted, re-initializing the hierarchy
977 * in preparation for detecting the next grace period. The caller must hold
978 * the root node's ->lock, which is released before return. Hard irqs must
979 * be disabled.
e5601400
PM
980 *
981 * Note that it is legal for a dying CPU (which is marked as offline) to
982 * invoke this function. This can happen when the dying CPU reports its
983 * quiescent state.
64db4cff
PM
984 */
985static void
986rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
987 __releases(rcu_get_root(rsp)->lock)
988{
394f99a9 989 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 990 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 991
037067a1 992 if (!rcu_scheduler_fully_active ||
afe24b12
PM
993 !cpu_needs_another_gp(rsp, rdp)) {
994 /*
995 * Either the scheduler hasn't yet spawned the first
996 * non-idle task or this CPU does not need another
997 * grace period. Either way, don't start a new grace
998 * period.
999 */
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 return;
1002 }
b32e9eb6 1003
afe24b12 1004 if (rsp->fqs_active) {
b32e9eb6 1005 /*
afe24b12
PM
1006 * This CPU needs a grace period, but force_quiescent_state()
1007 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1008 */
afe24b12
PM
1009 rsp->fqs_need_gp = 1;
1010 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1011 return;
1012 }
1013
1014 /* Advance to a new grace period and initialize state. */
1015 rsp->gpnum++;
d4c08f2a 1016 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1017 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1018 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1019 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1020 record_gp_stall_check_time(rsp);
1304afb2 1021 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1022
64db4cff 1023 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1024 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1025
1026 /*
b835db1f
PM
1027 * Set the quiescent-state-needed bits in all the rcu_node
1028 * structures for all currently online CPUs in breadth-first
1029 * order, starting from the root rcu_node structure. This
1030 * operation relies on the layout of the hierarchy within the
1031 * rsp->node[] array. Note that other CPUs will access only
1032 * the leaves of the hierarchy, which still indicate that no
1033 * grace period is in progress, at least until the corresponding
1034 * leaf node has been initialized. In addition, we have excluded
1035 * CPU-hotplug operations.
64db4cff
PM
1036 *
1037 * Note that the grace period cannot complete until we finish
1038 * the initialization process, as there will be at least one
1039 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1040 * one corresponding to this CPU, due to the fact that we have
1041 * irqs disabled.
64db4cff 1042 */
a0b6c9a7 1043 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1044 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1045 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1046 rnp->qsmask = rnp->qsmaskinit;
de078d87 1047 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1048 rnp->completed = rsp->completed;
1049 if (rnp == rdp->mynode)
1050 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1051 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1052 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1053 rnp->level, rnp->grplo,
1054 rnp->grphi, rnp->qsmask);
1304afb2 1055 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1056 }
1057
83f5b01f 1058 rnp = rcu_get_root(rsp);
1304afb2 1059 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1060 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1061 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1062 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1063}
1064
f41d911f 1065/*
d3f6bad3
PM
1066 * Report a full set of quiescent states to the specified rcu_state
1067 * data structure. This involves cleaning up after the prior grace
1068 * period and letting rcu_start_gp() start up the next grace period
1069 * if one is needed. Note that the caller must hold rnp->lock, as
1070 * required by rcu_start_gp(), which will release it.
f41d911f 1071 */
d3f6bad3 1072static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1073 __releases(rcu_get_root(rsp)->lock)
f41d911f 1074{
15ba0ba8 1075 unsigned long gp_duration;
afe24b12
PM
1076 struct rcu_node *rnp = rcu_get_root(rsp);
1077 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1078
fc2219d4 1079 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1080
1081 /*
1082 * Ensure that all grace-period and pre-grace-period activity
1083 * is seen before the assignment to rsp->completed.
1084 */
1085 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1086 gp_duration = jiffies - rsp->gp_start;
1087 if (gp_duration > rsp->gp_max)
1088 rsp->gp_max = gp_duration;
afe24b12
PM
1089
1090 /*
1091 * We know the grace period is complete, but to everyone else
1092 * it appears to still be ongoing. But it is also the case
1093 * that to everyone else it looks like there is nothing that
1094 * they can do to advance the grace period. It is therefore
1095 * safe for us to drop the lock in order to mark the grace
1096 * period as completed in all of the rcu_node structures.
1097 *
1098 * But if this CPU needs another grace period, it will take
1099 * care of this while initializing the next grace period.
1100 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1101 * because the callbacks have not yet been advanced: Those
1102 * callbacks are waiting on the grace period that just now
1103 * completed.
1104 */
1105 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1106 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1107
1108 /*
1109 * Propagate new ->completed value to rcu_node structures
1110 * so that other CPUs don't have to wait until the start
1111 * of the next grace period to process their callbacks.
1112 */
1113 rcu_for_each_node_breadth_first(rsp, rnp) {
1114 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1115 rnp->completed = rsp->gpnum;
1116 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1117 }
1118 rnp = rcu_get_root(rsp);
1119 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1120 }
1121
1122 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1123 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1124 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1125 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1126}
1127
64db4cff 1128/*
d3f6bad3
PM
1129 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1130 * Allows quiescent states for a group of CPUs to be reported at one go
1131 * to the specified rcu_node structure, though all the CPUs in the group
1132 * must be represented by the same rcu_node structure (which need not be
1133 * a leaf rcu_node structure, though it often will be). That structure's
1134 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1135 */
1136static void
d3f6bad3
PM
1137rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1138 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1139 __releases(rnp->lock)
1140{
28ecd580
PM
1141 struct rcu_node *rnp_c;
1142
64db4cff
PM
1143 /* Walk up the rcu_node hierarchy. */
1144 for (;;) {
1145 if (!(rnp->qsmask & mask)) {
1146
1147 /* Our bit has already been cleared, so done. */
1304afb2 1148 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1149 return;
1150 }
1151 rnp->qsmask &= ~mask;
d4c08f2a
PM
1152 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1153 mask, rnp->qsmask, rnp->level,
1154 rnp->grplo, rnp->grphi,
1155 !!rnp->gp_tasks);
27f4d280 1156 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1157
1158 /* Other bits still set at this level, so done. */
1304afb2 1159 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1160 return;
1161 }
1162 mask = rnp->grpmask;
1163 if (rnp->parent == NULL) {
1164
1165 /* No more levels. Exit loop holding root lock. */
1166
1167 break;
1168 }
1304afb2 1169 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1170 rnp_c = rnp;
64db4cff 1171 rnp = rnp->parent;
1304afb2 1172 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1173 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1174 }
1175
1176 /*
1177 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1178 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1179 * to clean up and start the next grace period if one is needed.
64db4cff 1180 */
d3f6bad3 1181 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1182}
1183
1184/*
d3f6bad3
PM
1185 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1186 * structure. This must be either called from the specified CPU, or
1187 * called when the specified CPU is known to be offline (and when it is
1188 * also known that no other CPU is concurrently trying to help the offline
1189 * CPU). The lastcomp argument is used to make sure we are still in the
1190 * grace period of interest. We don't want to end the current grace period
1191 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1192 */
1193static void
e4cc1f22 1194rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1195{
1196 unsigned long flags;
1197 unsigned long mask;
1198 struct rcu_node *rnp;
1199
1200 rnp = rdp->mynode;
1304afb2 1201 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1202 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1203
1204 /*
e4cc1f22
PM
1205 * The grace period in which this quiescent state was
1206 * recorded has ended, so don't report it upwards.
1207 * We will instead need a new quiescent state that lies
1208 * within the current grace period.
64db4cff 1209 */
e4cc1f22 1210 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1211 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1212 return;
1213 }
1214 mask = rdp->grpmask;
1215 if ((rnp->qsmask & mask) == 0) {
1304afb2 1216 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1217 } else {
1218 rdp->qs_pending = 0;
1219
1220 /*
1221 * This GP can't end until cpu checks in, so all of our
1222 * callbacks can be processed during the next GP.
1223 */
64db4cff
PM
1224 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1225
d3f6bad3 1226 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1227 }
1228}
1229
1230/*
1231 * Check to see if there is a new grace period of which this CPU
1232 * is not yet aware, and if so, set up local rcu_data state for it.
1233 * Otherwise, see if this CPU has just passed through its first
1234 * quiescent state for this grace period, and record that fact if so.
1235 */
1236static void
1237rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1238{
1239 /* If there is now a new grace period, record and return. */
1240 if (check_for_new_grace_period(rsp, rdp))
1241 return;
1242
1243 /*
1244 * Does this CPU still need to do its part for current grace period?
1245 * If no, return and let the other CPUs do their part as well.
1246 */
1247 if (!rdp->qs_pending)
1248 return;
1249
1250 /*
1251 * Was there a quiescent state since the beginning of the grace
1252 * period? If no, then exit and wait for the next call.
1253 */
e4cc1f22 1254 if (!rdp->passed_quiesce)
64db4cff
PM
1255 return;
1256
d3f6bad3
PM
1257 /*
1258 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1259 * judge of that).
1260 */
e4cc1f22 1261 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1262}
1263
1264#ifdef CONFIG_HOTPLUG_CPU
1265
e74f4c45 1266/*
29494be7 1267 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1268 * Also record a quiescent state for this CPU for the current grace period.
1269 * Synchronization and interrupt disabling are not required because
1270 * this function executes in stop_machine() context. Therefore, cleanup
1271 * operations that might block must be done later from the CPU_DEAD
1272 * notifier.
1273 *
1274 * Note that the outgoing CPU's bit has already been cleared in the
1275 * cpu_online_mask. This allows us to randomly pick a callback
1276 * destination from the bits set in that mask.
e74f4c45 1277 */
e5601400 1278static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45 1279{
e5601400 1280 unsigned long flags;
e74f4c45 1281 int i;
e5601400
PM
1282 unsigned long mask;
1283 int need_report;
29494be7 1284 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1285 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1286 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e5601400
PM
1287 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1288
a50c3af9
PM
1289 /* First, adjust the counts. */
1290 if (rdp->nxtlist != NULL) {
1291 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1292 receive_rdp->qlen += rdp->qlen;
1293 rdp->qlen_lazy = 0;
1294 rdp->qlen = 0;
1295 }
1296
1297 /*
1298 * Next, move ready-to-invoke callbacks to be invoked on some
1299 * other CPU. These will not be required to pass through another
1300 * grace period: They are done, regardless of CPU.
1301 */
1302 if (rdp->nxtlist != NULL &&
1303 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1304 struct rcu_head *oldhead;
1305 struct rcu_head **oldtail;
1306 struct rcu_head **newtail;
1307
1308 oldhead = rdp->nxtlist;
1309 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1310 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1311 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1312 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1313 newtail = rdp->nxttail[RCU_DONE_TAIL];
1314 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1315 if (receive_rdp->nxttail[i] == oldtail)
1316 receive_rdp->nxttail[i] = newtail;
1317 if (rdp->nxttail[i] == newtail)
1318 rdp->nxttail[i] = &rdp->nxtlist;
1319 }
1320 }
1321
1322 /*
1323 * Finally, put the rest of the callbacks at the end of the list.
1324 * The ones that made it partway through get to start over: We
1325 * cannot assume that grace periods are synchronized across CPUs.
1326 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1327 * this does not seem compelling. Not yet, anyway.)
1328 */
e5601400
PM
1329 if (rdp->nxtlist != NULL) {
1330 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1331 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1332 rdp->nxttail[RCU_NEXT_TAIL];
e5601400
PM
1333 receive_rdp->n_cbs_adopted += rdp->qlen;
1334 rdp->n_cbs_orphaned += rdp->qlen;
1335
1336 rdp->nxtlist = NULL;
1337 for (i = 0; i < RCU_NEXT_SIZE; i++)
1338 rdp->nxttail[i] = &rdp->nxtlist;
e5601400 1339 }
e74f4c45 1340
a50c3af9
PM
1341 /*
1342 * Record a quiescent state for the dying CPU. This is safe
1343 * only because we have already cleared out the callbacks.
1344 * (Otherwise, the RCU core might try to schedule the invocation
1345 * of callbacks on this now-offline CPU, which would be bad.)
1346 */
64db4cff 1347 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1348 trace_rcu_grace_period(rsp->name,
1349 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1350 "cpuofl");
1351 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1352 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1353
1354 /*
1355 * Remove the dying CPU from the bitmasks in the rcu_node
1356 * hierarchy. Because we are in stop_machine() context, we
1357 * automatically exclude ->onofflock critical sections.
1358 */
64db4cff 1359 do {
e5601400 1360 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1361 rnp->qsmaskinit &= ~mask;
1362 if (rnp->qsmaskinit != 0) {
e5601400 1363 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1364 break;
1365 }
d4c08f2a 1366 if (rnp == rdp->mynode) {
d9a3da06 1367 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
e5601400
PM
1368 if (need_report & RCU_OFL_TASKS_NORM_GP)
1369 rcu_report_unblock_qs_rnp(rnp, flags);
1370 else
1371 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1372 if (need_report & RCU_OFL_TASKS_EXP_GP)
1373 rcu_report_exp_rnp(rsp, rnp, true);
d4c08f2a 1374 } else
e5601400 1375 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1376 mask = rnp->grpmask;
64db4cff
PM
1377 rnp = rnp->parent;
1378 } while (rnp != NULL);
64db4cff
PM
1379}
1380
1381/*
e5601400
PM
1382 * The CPU has been completely removed, and some other CPU is reporting
1383 * this fact from process context. Do the remainder of the cleanup.
1384 * There can only be one CPU hotplug operation at a time, so no other
1385 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1386 */
e5601400 1387static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1388{
e5601400
PM
1389 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1390 struct rcu_node *rnp = rdp->mynode;
1391
1392 rcu_stop_cpu_kthread(cpu);
1393 rcu_node_kthread_setaffinity(rnp, -1);
64db4cff
PM
1394}
1395
1396#else /* #ifdef CONFIG_HOTPLUG_CPU */
1397
e5601400 1398static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1399{
1400}
1401
e5601400 1402static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1403{
1404}
1405
1406#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1407
1408/*
1409 * Invoke any RCU callbacks that have made it to the end of their grace
1410 * period. Thottle as specified by rdp->blimit.
1411 */
37c72e56 1412static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1413{
1414 unsigned long flags;
1415 struct rcu_head *next, *list, **tail;
486e2593 1416 int bl, count, count_lazy;
64db4cff
PM
1417
1418 /* If no callbacks are ready, just return.*/
29c00b4a 1419 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1420 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1421 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1422 need_resched(), is_idle_task(current),
1423 rcu_is_callbacks_kthread());
64db4cff 1424 return;
29c00b4a 1425 }
64db4cff
PM
1426
1427 /*
1428 * Extract the list of ready callbacks, disabling to prevent
1429 * races with call_rcu() from interrupt handlers.
1430 */
1431 local_irq_save(flags);
8146c4e2 1432 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1433 bl = rdp->blimit;
486e2593 1434 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1435 list = rdp->nxtlist;
1436 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1437 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1438 tail = rdp->nxttail[RCU_DONE_TAIL];
1439 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1440 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1441 rdp->nxttail[count] = &rdp->nxtlist;
1442 local_irq_restore(flags);
1443
1444 /* Invoke callbacks. */
486e2593 1445 count = count_lazy = 0;
64db4cff
PM
1446 while (list) {
1447 next = list->next;
1448 prefetch(next);
551d55a9 1449 debug_rcu_head_unqueue(list);
486e2593
PM
1450 if (__rcu_reclaim(rsp->name, list))
1451 count_lazy++;
64db4cff 1452 list = next;
dff1672d
PM
1453 /* Stop only if limit reached and CPU has something to do. */
1454 if (++count >= bl &&
1455 (need_resched() ||
1456 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1457 break;
1458 }
1459
1460 local_irq_save(flags);
4968c300
PM
1461 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1462 is_idle_task(current),
1463 rcu_is_callbacks_kthread());
64db4cff
PM
1464
1465 /* Update count, and requeue any remaining callbacks. */
486e2593 1466 rdp->qlen_lazy -= count_lazy;
64db4cff 1467 rdp->qlen -= count;
269dcc1c 1468 rdp->n_cbs_invoked += count;
64db4cff
PM
1469 if (list != NULL) {
1470 *tail = rdp->nxtlist;
1471 rdp->nxtlist = list;
1472 for (count = 0; count < RCU_NEXT_SIZE; count++)
1473 if (&rdp->nxtlist == rdp->nxttail[count])
1474 rdp->nxttail[count] = tail;
1475 else
1476 break;
1477 }
1478
1479 /* Reinstate batch limit if we have worked down the excess. */
1480 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1481 rdp->blimit = blimit;
1482
37c72e56
PM
1483 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1484 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1485 rdp->qlen_last_fqs_check = 0;
1486 rdp->n_force_qs_snap = rsp->n_force_qs;
1487 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1488 rdp->qlen_last_fqs_check = rdp->qlen;
1489
64db4cff
PM
1490 local_irq_restore(flags);
1491
e0f23060 1492 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1493 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1494 invoke_rcu_core();
64db4cff
PM
1495}
1496
1497/*
1498 * Check to see if this CPU is in a non-context-switch quiescent state
1499 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1500 * Also schedule RCU core processing.
64db4cff 1501 *
9b2e4f18 1502 * This function must be called from hardirq context. It is normally
64db4cff
PM
1503 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1504 * false, there is no point in invoking rcu_check_callbacks().
1505 */
1506void rcu_check_callbacks(int cpu, int user)
1507{
300df91c 1508 trace_rcu_utilization("Start scheduler-tick");
a858af28 1509 increment_cpu_stall_ticks();
9b2e4f18 1510 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1511
1512 /*
1513 * Get here if this CPU took its interrupt from user
1514 * mode or from the idle loop, and if this is not a
1515 * nested interrupt. In this case, the CPU is in
d6714c22 1516 * a quiescent state, so note it.
64db4cff
PM
1517 *
1518 * No memory barrier is required here because both
d6714c22
PM
1519 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1520 * variables that other CPUs neither access nor modify,
1521 * at least not while the corresponding CPU is online.
64db4cff
PM
1522 */
1523
d6714c22
PM
1524 rcu_sched_qs(cpu);
1525 rcu_bh_qs(cpu);
64db4cff
PM
1526
1527 } else if (!in_softirq()) {
1528
1529 /*
1530 * Get here if this CPU did not take its interrupt from
1531 * softirq, in other words, if it is not interrupting
1532 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1533 * critical section, so note it.
64db4cff
PM
1534 */
1535
d6714c22 1536 rcu_bh_qs(cpu);
64db4cff 1537 }
f41d911f 1538 rcu_preempt_check_callbacks(cpu);
d21670ac 1539 if (rcu_pending(cpu))
a46e0899 1540 invoke_rcu_core();
300df91c 1541 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1542}
1543
64db4cff
PM
1544/*
1545 * Scan the leaf rcu_node structures, processing dyntick state for any that
1546 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1547 * Also initiate boosting for any threads blocked on the root rcu_node.
1548 *
ee47eb9f 1549 * The caller must have suppressed start of new grace periods.
64db4cff 1550 */
45f014c5 1551static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1552{
1553 unsigned long bit;
1554 int cpu;
1555 unsigned long flags;
1556 unsigned long mask;
a0b6c9a7 1557 struct rcu_node *rnp;
64db4cff 1558
a0b6c9a7 1559 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1560 mask = 0;
1304afb2 1561 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1562 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1563 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1564 return;
64db4cff 1565 }
a0b6c9a7 1566 if (rnp->qsmask == 0) {
1217ed1b 1567 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1568 continue;
1569 }
a0b6c9a7 1570 cpu = rnp->grplo;
64db4cff 1571 bit = 1;
a0b6c9a7 1572 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1573 if ((rnp->qsmask & bit) != 0 &&
1574 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1575 mask |= bit;
1576 }
45f014c5 1577 if (mask != 0) {
64db4cff 1578
d3f6bad3
PM
1579 /* rcu_report_qs_rnp() releases rnp->lock. */
1580 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1581 continue;
1582 }
1304afb2 1583 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1584 }
27f4d280 1585 rnp = rcu_get_root(rsp);
1217ed1b
PM
1586 if (rnp->qsmask == 0) {
1587 raw_spin_lock_irqsave(&rnp->lock, flags);
1588 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1589 }
64db4cff
PM
1590}
1591
1592/*
1593 * Force quiescent states on reluctant CPUs, and also detect which
1594 * CPUs are in dyntick-idle mode.
1595 */
1596static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1597{
1598 unsigned long flags;
64db4cff 1599 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1600
300df91c
PM
1601 trace_rcu_utilization("Start fqs");
1602 if (!rcu_gp_in_progress(rsp)) {
1603 trace_rcu_utilization("End fqs");
64db4cff 1604 return; /* No grace period in progress, nothing to force. */
300df91c 1605 }
1304afb2 1606 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1607 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1608 trace_rcu_utilization("End fqs");
64db4cff
PM
1609 return; /* Someone else is already on the job. */
1610 }
20133cfc 1611 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1612 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1613 rsp->n_force_qs++;
1304afb2 1614 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1615 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1616 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1617 rsp->n_force_qs_ngp++;
1304afb2 1618 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1619 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1620 }
07079d53 1621 rsp->fqs_active = 1;
af446b70 1622 switch (rsp->fqs_state) {
83f5b01f 1623 case RCU_GP_IDLE:
64db4cff
PM
1624 case RCU_GP_INIT:
1625
83f5b01f 1626 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1627
1628 case RCU_SAVE_DYNTICK:
64db4cff
PM
1629 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1630 break; /* So gcc recognizes the dead code. */
1631
f261414f
LJ
1632 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1633
64db4cff 1634 /* Record dyntick-idle state. */
45f014c5 1635 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1636 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1637 if (rcu_gp_in_progress(rsp))
af446b70 1638 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1639 break;
64db4cff
PM
1640
1641 case RCU_FORCE_QS:
1642
1643 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1644 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1645 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1646
1647 /* Leave state in case more forcing is required. */
1648
1304afb2 1649 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1650 break;
64db4cff 1651 }
07079d53 1652 rsp->fqs_active = 0;
46a1e34e 1653 if (rsp->fqs_need_gp) {
1304afb2 1654 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1655 rsp->fqs_need_gp = 0;
1656 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1657 trace_rcu_utilization("End fqs");
46a1e34e
PM
1658 return;
1659 }
1304afb2 1660 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1661unlock_fqs_ret:
1304afb2 1662 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1663 trace_rcu_utilization("End fqs");
64db4cff
PM
1664}
1665
64db4cff 1666/*
e0f23060
PM
1667 * This does the RCU core processing work for the specified rcu_state
1668 * and rcu_data structures. This may be called only from the CPU to
1669 * whom the rdp belongs.
64db4cff
PM
1670 */
1671static void
1672__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1673{
1674 unsigned long flags;
1675
2e597558
PM
1676 WARN_ON_ONCE(rdp->beenonline == 0);
1677
64db4cff
PM
1678 /*
1679 * If an RCU GP has gone long enough, go check for dyntick
1680 * idle CPUs and, if needed, send resched IPIs.
1681 */
20133cfc 1682 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1683 force_quiescent_state(rsp, 1);
1684
1685 /*
1686 * Advance callbacks in response to end of earlier grace
1687 * period that some other CPU ended.
1688 */
1689 rcu_process_gp_end(rsp, rdp);
1690
1691 /* Update RCU state based on any recent quiescent states. */
1692 rcu_check_quiescent_state(rsp, rdp);
1693
1694 /* Does this CPU require a not-yet-started grace period? */
1695 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1696 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1697 rcu_start_gp(rsp, flags); /* releases above lock */
1698 }
1699
1700 /* If there are callbacks ready, invoke them. */
09223371 1701 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1702 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1703}
1704
64db4cff 1705/*
e0f23060 1706 * Do RCU core processing for the current CPU.
64db4cff 1707 */
09223371 1708static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1709{
300df91c 1710 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1711 __rcu_process_callbacks(&rcu_sched_state,
1712 &__get_cpu_var(rcu_sched_data));
64db4cff 1713 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1714 rcu_preempt_process_callbacks();
300df91c 1715 trace_rcu_utilization("End RCU core");
64db4cff
PM
1716}
1717
a26ac245 1718/*
e0f23060
PM
1719 * Schedule RCU callback invocation. If the specified type of RCU
1720 * does not support RCU priority boosting, just do a direct call,
1721 * otherwise wake up the per-CPU kernel kthread. Note that because we
1722 * are running on the current CPU with interrupts disabled, the
1723 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1724 */
a46e0899 1725static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1726{
b0d30417
PM
1727 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1728 return;
a46e0899
PM
1729 if (likely(!rsp->boost)) {
1730 rcu_do_batch(rsp, rdp);
a26ac245
PM
1731 return;
1732 }
a46e0899 1733 invoke_rcu_callbacks_kthread();
a26ac245
PM
1734}
1735
a46e0899 1736static void invoke_rcu_core(void)
09223371
SL
1737{
1738 raise_softirq(RCU_SOFTIRQ);
1739}
1740
64db4cff
PM
1741static void
1742__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1743 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1744{
1745 unsigned long flags;
1746 struct rcu_data *rdp;
1747
0bb7b59d 1748 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1749 debug_rcu_head_queue(head);
64db4cff
PM
1750 head->func = func;
1751 head->next = NULL;
1752
1753 smp_mb(); /* Ensure RCU update seen before callback registry. */
1754
1755 /*
1756 * Opportunistically note grace-period endings and beginnings.
1757 * Note that we might see a beginning right after we see an
1758 * end, but never vice versa, since this CPU has to pass through
1759 * a quiescent state betweentimes.
1760 */
1761 local_irq_save(flags);
e5601400 1762 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1763 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1764
1765 /* Add the callback to our list. */
1766 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1767 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1768 rdp->qlen++;
486e2593
PM
1769 if (lazy)
1770 rdp->qlen_lazy++;
2655d57e 1771
d4c08f2a
PM
1772 if (__is_kfree_rcu_offset((unsigned long)func))
1773 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1774 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1775 else
486e2593 1776 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1777
2655d57e
PM
1778 /* If interrupts were disabled, don't dive into RCU core. */
1779 if (irqs_disabled_flags(flags)) {
1780 local_irq_restore(flags);
1781 return;
1782 }
64db4cff 1783
37c72e56
PM
1784 /*
1785 * Force the grace period if too many callbacks or too long waiting.
1786 * Enforce hysteresis, and don't invoke force_quiescent_state()
1787 * if some other CPU has recently done so. Also, don't bother
1788 * invoking force_quiescent_state() if the newly enqueued callback
1789 * is the only one waiting for a grace period to complete.
1790 */
2655d57e 1791 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1792
1793 /* Are we ignoring a completed grace period? */
1794 rcu_process_gp_end(rsp, rdp);
1795 check_for_new_grace_period(rsp, rdp);
1796
1797 /* Start a new grace period if one not already started. */
1798 if (!rcu_gp_in_progress(rsp)) {
1799 unsigned long nestflag;
1800 struct rcu_node *rnp_root = rcu_get_root(rsp);
1801
1802 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1803 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1804 } else {
1805 /* Give the grace period a kick. */
1806 rdp->blimit = LONG_MAX;
1807 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1808 *rdp->nxttail[RCU_DONE_TAIL] != head)
1809 force_quiescent_state(rsp, 0);
1810 rdp->n_force_qs_snap = rsp->n_force_qs;
1811 rdp->qlen_last_fqs_check = rdp->qlen;
1812 }
20133cfc 1813 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1814 force_quiescent_state(rsp, 1);
1815 local_irq_restore(flags);
1816}
1817
1818/*
d6714c22 1819 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1820 */
d6714c22 1821void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1822{
486e2593 1823 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1824}
d6714c22 1825EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1826
1827/*
486e2593 1828 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1829 */
1830void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1831{
486e2593 1832 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1833}
1834EXPORT_SYMBOL_GPL(call_rcu_bh);
1835
6ebb237b
PM
1836/**
1837 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1838 *
1839 * Control will return to the caller some time after a full rcu-sched
1840 * grace period has elapsed, in other words after all currently executing
1841 * rcu-sched read-side critical sections have completed. These read-side
1842 * critical sections are delimited by rcu_read_lock_sched() and
1843 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1844 * local_irq_disable(), and so on may be used in place of
1845 * rcu_read_lock_sched().
1846 *
1847 * This means that all preempt_disable code sequences, including NMI and
1848 * hardware-interrupt handlers, in progress on entry will have completed
1849 * before this primitive returns. However, this does not guarantee that
1850 * softirq handlers will have completed, since in some kernels, these
1851 * handlers can run in process context, and can block.
1852 *
1853 * This primitive provides the guarantees made by the (now removed)
1854 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1855 * guarantees that rcu_read_lock() sections will have completed.
1856 * In "classic RCU", these two guarantees happen to be one and
1857 * the same, but can differ in realtime RCU implementations.
1858 */
1859void synchronize_sched(void)
1860{
fe15d706
PM
1861 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1862 !lock_is_held(&rcu_lock_map) &&
1863 !lock_is_held(&rcu_sched_lock_map),
1864 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1865 if (rcu_blocking_is_gp())
1866 return;
2c42818e 1867 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1868}
1869EXPORT_SYMBOL_GPL(synchronize_sched);
1870
1871/**
1872 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1873 *
1874 * Control will return to the caller some time after a full rcu_bh grace
1875 * period has elapsed, in other words after all currently executing rcu_bh
1876 * read-side critical sections have completed. RCU read-side critical
1877 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1878 * and may be nested.
1879 */
1880void synchronize_rcu_bh(void)
1881{
fe15d706
PM
1882 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1883 !lock_is_held(&rcu_lock_map) &&
1884 !lock_is_held(&rcu_sched_lock_map),
1885 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1886 if (rcu_blocking_is_gp())
1887 return;
2c42818e 1888 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1889}
1890EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1891
64db4cff
PM
1892/*
1893 * Check to see if there is any immediate RCU-related work to be done
1894 * by the current CPU, for the specified type of RCU, returning 1 if so.
1895 * The checks are in order of increasing expense: checks that can be
1896 * carried out against CPU-local state are performed first. However,
1897 * we must check for CPU stalls first, else we might not get a chance.
1898 */
1899static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1900{
2f51f988
PM
1901 struct rcu_node *rnp = rdp->mynode;
1902
64db4cff
PM
1903 rdp->n_rcu_pending++;
1904
1905 /* Check for CPU stalls, if enabled. */
1906 check_cpu_stall(rsp, rdp);
1907
1908 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
1909 if (rcu_scheduler_fully_active &&
1910 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
1911
1912 /*
1913 * If force_quiescent_state() coming soon and this CPU
1914 * needs a quiescent state, and this is either RCU-sched
1915 * or RCU-bh, force a local reschedule.
1916 */
d21670ac 1917 rdp->n_rp_qs_pending++;
6cc68793 1918 if (!rdp->preemptible &&
d25eb944
PM
1919 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1920 jiffies))
1921 set_need_resched();
e4cc1f22 1922 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 1923 rdp->n_rp_report_qs++;
64db4cff 1924 return 1;
7ba5c840 1925 }
64db4cff
PM
1926
1927 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1928 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1929 rdp->n_rp_cb_ready++;
64db4cff 1930 return 1;
7ba5c840 1931 }
64db4cff
PM
1932
1933 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1934 if (cpu_needs_another_gp(rsp, rdp)) {
1935 rdp->n_rp_cpu_needs_gp++;
64db4cff 1936 return 1;
7ba5c840 1937 }
64db4cff
PM
1938
1939 /* Has another RCU grace period completed? */
2f51f988 1940 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1941 rdp->n_rp_gp_completed++;
64db4cff 1942 return 1;
7ba5c840 1943 }
64db4cff
PM
1944
1945 /* Has a new RCU grace period started? */
2f51f988 1946 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1947 rdp->n_rp_gp_started++;
64db4cff 1948 return 1;
7ba5c840 1949 }
64db4cff
PM
1950
1951 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1952 if (rcu_gp_in_progress(rsp) &&
20133cfc 1953 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1954 rdp->n_rp_need_fqs++;
64db4cff 1955 return 1;
7ba5c840 1956 }
64db4cff
PM
1957
1958 /* nothing to do */
7ba5c840 1959 rdp->n_rp_need_nothing++;
64db4cff
PM
1960 return 0;
1961}
1962
1963/*
1964 * Check to see if there is any immediate RCU-related work to be done
1965 * by the current CPU, returning 1 if so. This function is part of the
1966 * RCU implementation; it is -not- an exported member of the RCU API.
1967 */
a157229c 1968static int rcu_pending(int cpu)
64db4cff 1969{
d6714c22 1970 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1971 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1972 rcu_preempt_pending(cpu);
64db4cff
PM
1973}
1974
1975/*
1976 * Check to see if any future RCU-related work will need to be done
1977 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1978 * 1 if so.
64db4cff 1979 */
aea1b35e 1980static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
1981{
1982 /* RCU callbacks either ready or pending? */
d6714c22 1983 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 1984 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 1985 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
1986}
1987
d0ec774c
PM
1988static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1989static atomic_t rcu_barrier_cpu_count;
1990static DEFINE_MUTEX(rcu_barrier_mutex);
1991static struct completion rcu_barrier_completion;
d0ec774c
PM
1992
1993static void rcu_barrier_callback(struct rcu_head *notused)
1994{
1995 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1996 complete(&rcu_barrier_completion);
1997}
1998
1999/*
2000 * Called with preemption disabled, and from cross-cpu IRQ context.
2001 */
2002static void rcu_barrier_func(void *type)
2003{
2004 int cpu = smp_processor_id();
2005 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2006 void (*call_rcu_func)(struct rcu_head *head,
2007 void (*func)(struct rcu_head *head));
2008
2009 atomic_inc(&rcu_barrier_cpu_count);
2010 call_rcu_func = type;
2011 call_rcu_func(head, rcu_barrier_callback);
2012}
2013
d0ec774c
PM
2014/*
2015 * Orchestrate the specified type of RCU barrier, waiting for all
2016 * RCU callbacks of the specified type to complete.
2017 */
e74f4c45
PM
2018static void _rcu_barrier(struct rcu_state *rsp,
2019 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2020 void (*func)(struct rcu_head *head)))
2021{
2022 BUG_ON(in_interrupt());
e74f4c45 2023 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
2024 mutex_lock(&rcu_barrier_mutex);
2025 init_completion(&rcu_barrier_completion);
2026 /*
2027 * Initialize rcu_barrier_cpu_count to 1, then invoke
2028 * rcu_barrier_func() on each CPU, so that each CPU also has
2029 * incremented rcu_barrier_cpu_count. Only then is it safe to
2030 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2031 * might complete its grace period before all of the other CPUs
2032 * did their increment, causing this function to return too
2d999e03
PM
2033 * early. Note that on_each_cpu() disables irqs, which prevents
2034 * any CPUs from coming online or going offline until each online
2035 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2036 */
2037 atomic_set(&rcu_barrier_cpu_count, 1);
2038 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2039 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2040 complete(&rcu_barrier_completion);
2041 wait_for_completion(&rcu_barrier_completion);
2042 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2043}
d0ec774c
PM
2044
2045/**
2046 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2047 */
2048void rcu_barrier_bh(void)
2049{
e74f4c45 2050 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2051}
2052EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2053
2054/**
2055 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2056 */
2057void rcu_barrier_sched(void)
2058{
e74f4c45 2059 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2060}
2061EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2062
64db4cff 2063/*
27569620 2064 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2065 */
27569620
PM
2066static void __init
2067rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2068{
2069 unsigned long flags;
2070 int i;
394f99a9 2071 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2072 struct rcu_node *rnp = rcu_get_root(rsp);
2073
2074 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2075 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2076 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2077 rdp->nxtlist = NULL;
2078 for (i = 0; i < RCU_NEXT_SIZE; i++)
2079 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2080 rdp->qlen_lazy = 0;
27569620 2081 rdp->qlen = 0;
27569620 2082 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145fa7f 2083 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
9b2e4f18 2084 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2085 rdp->cpu = cpu;
d4c08f2a 2086 rdp->rsp = rsp;
1304afb2 2087 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2088}
2089
2090/*
2091 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2092 * offline event can be happening at a given time. Note also that we
2093 * can accept some slop in the rsp->completed access due to the fact
2094 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2095 */
e4fa4c97 2096static void __cpuinit
6cc68793 2097rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2098{
2099 unsigned long flags;
64db4cff 2100 unsigned long mask;
394f99a9 2101 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2102 struct rcu_node *rnp = rcu_get_root(rsp);
2103
2104 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2105 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2106 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2107 rdp->preemptible = preemptible;
37c72e56
PM
2108 rdp->qlen_last_fqs_check = 0;
2109 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2110 rdp->blimit = blimit;
c92b131b
PM
2111 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2112 atomic_set(&rdp->dynticks->dynticks,
2113 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2114 rcu_prepare_for_idle_init(cpu);
1304afb2 2115 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2116
2117 /*
2118 * A new grace period might start here. If so, we won't be part
2119 * of it, but that is OK, as we are currently in a quiescent state.
2120 */
2121
2122 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2123 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2124
2125 /* Add CPU to rcu_node bitmasks. */
2126 rnp = rdp->mynode;
2127 mask = rdp->grpmask;
2128 do {
2129 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2130 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2131 rnp->qsmaskinit |= mask;
2132 mask = rnp->grpmask;
d09b62df 2133 if (rnp == rdp->mynode) {
06ae115a
PM
2134 /*
2135 * If there is a grace period in progress, we will
2136 * set up to wait for it next time we run the
2137 * RCU core code.
2138 */
2139 rdp->gpnum = rnp->completed;
d09b62df 2140 rdp->completed = rnp->completed;
06ae115a
PM
2141 rdp->passed_quiesce = 0;
2142 rdp->qs_pending = 0;
e4cc1f22 2143 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2144 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2145 }
1304afb2 2146 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2147 rnp = rnp->parent;
2148 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2149
1304afb2 2150 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2151}
2152
d72bce0e 2153static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2154{
f41d911f
PM
2155 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2156 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2157 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2158}
2159
2160/*
f41d911f 2161 * Handle CPU online/offline notification events.
64db4cff 2162 */
9f680ab4
PM
2163static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2164 unsigned long action, void *hcpu)
64db4cff
PM
2165{
2166 long cpu = (long)hcpu;
27f4d280 2167 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2168 struct rcu_node *rnp = rdp->mynode;
64db4cff 2169
300df91c 2170 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2171 switch (action) {
2172 case CPU_UP_PREPARE:
2173 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2174 rcu_prepare_cpu(cpu);
2175 rcu_prepare_kthreads(cpu);
a26ac245
PM
2176 break;
2177 case CPU_ONLINE:
0f962a5e
PM
2178 case CPU_DOWN_FAILED:
2179 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2180 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2181 break;
2182 case CPU_DOWN_PREPARE:
2183 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2184 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2185 break;
d0ec774c
PM
2186 case CPU_DYING:
2187 case CPU_DYING_FROZEN:
2188 /*
2d999e03
PM
2189 * The whole machine is "stopped" except this CPU, so we can
2190 * touch any data without introducing corruption. We send the
2191 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2192 */
e5601400
PM
2193 rcu_cleanup_dying_cpu(&rcu_bh_state);
2194 rcu_cleanup_dying_cpu(&rcu_sched_state);
2195 rcu_preempt_cleanup_dying_cpu();
7cb92499 2196 rcu_cleanup_after_idle(cpu);
d0ec774c 2197 break;
64db4cff
PM
2198 case CPU_DEAD:
2199 case CPU_DEAD_FROZEN:
2200 case CPU_UP_CANCELED:
2201 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2202 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2203 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2204 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2205 break;
2206 default:
2207 break;
2208 }
300df91c 2209 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2210 return NOTIFY_OK;
2211}
2212
bbad9379
PM
2213/*
2214 * This function is invoked towards the end of the scheduler's initialization
2215 * process. Before this is called, the idle task might contain
2216 * RCU read-side critical sections (during which time, this idle
2217 * task is booting the system). After this function is called, the
2218 * idle tasks are prohibited from containing RCU read-side critical
2219 * sections. This function also enables RCU lockdep checking.
2220 */
2221void rcu_scheduler_starting(void)
2222{
2223 WARN_ON(num_online_cpus() != 1);
2224 WARN_ON(nr_context_switches() > 0);
2225 rcu_scheduler_active = 1;
2226}
2227
64db4cff
PM
2228/*
2229 * Compute the per-level fanout, either using the exact fanout specified
2230 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2231 */
2232#ifdef CONFIG_RCU_FANOUT_EXACT
2233static void __init rcu_init_levelspread(struct rcu_state *rsp)
2234{
2235 int i;
2236
0209f649 2237 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2238 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2239 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2240}
2241#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2242static void __init rcu_init_levelspread(struct rcu_state *rsp)
2243{
2244 int ccur;
2245 int cprv;
2246 int i;
2247
2248 cprv = NR_CPUS;
2249 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2250 ccur = rsp->levelcnt[i];
2251 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2252 cprv = ccur;
2253 }
2254}
2255#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2256
2257/*
2258 * Helper function for rcu_init() that initializes one rcu_state structure.
2259 */
394f99a9
LJ
2260static void __init rcu_init_one(struct rcu_state *rsp,
2261 struct rcu_data __percpu *rda)
64db4cff 2262{
b6407e86
PM
2263 static char *buf[] = { "rcu_node_level_0",
2264 "rcu_node_level_1",
2265 "rcu_node_level_2",
2266 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2267 int cpustride = 1;
2268 int i;
2269 int j;
2270 struct rcu_node *rnp;
2271
b6407e86
PM
2272 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2273
64db4cff
PM
2274 /* Initialize the level-tracking arrays. */
2275
2276 for (i = 1; i < NUM_RCU_LVLS; i++)
2277 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2278 rcu_init_levelspread(rsp);
2279
2280 /* Initialize the elements themselves, starting from the leaves. */
2281
2282 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2283 cpustride *= rsp->levelspread[i];
2284 rnp = rsp->level[i];
2285 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2286 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2287 lockdep_set_class_and_name(&rnp->lock,
2288 &rcu_node_class[i], buf[i]);
f41d911f 2289 rnp->gpnum = 0;
64db4cff
PM
2290 rnp->qsmask = 0;
2291 rnp->qsmaskinit = 0;
2292 rnp->grplo = j * cpustride;
2293 rnp->grphi = (j + 1) * cpustride - 1;
2294 if (rnp->grphi >= NR_CPUS)
2295 rnp->grphi = NR_CPUS - 1;
2296 if (i == 0) {
2297 rnp->grpnum = 0;
2298 rnp->grpmask = 0;
2299 rnp->parent = NULL;
2300 } else {
2301 rnp->grpnum = j % rsp->levelspread[i - 1];
2302 rnp->grpmask = 1UL << rnp->grpnum;
2303 rnp->parent = rsp->level[i - 1] +
2304 j / rsp->levelspread[i - 1];
2305 }
2306 rnp->level = i;
12f5f524 2307 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2308 }
2309 }
0c34029a 2310
394f99a9 2311 rsp->rda = rda;
0c34029a
LJ
2312 rnp = rsp->level[NUM_RCU_LVLS - 1];
2313 for_each_possible_cpu(i) {
4a90a068 2314 while (i > rnp->grphi)
0c34029a 2315 rnp++;
394f99a9 2316 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2317 rcu_boot_init_percpu_data(i, rsp);
2318 }
64db4cff
PM
2319}
2320
9f680ab4 2321void __init rcu_init(void)
64db4cff 2322{
017c4261 2323 int cpu;
9f680ab4 2324
f41d911f 2325 rcu_bootup_announce();
394f99a9
LJ
2326 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2327 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2328 __rcu_init_preempt();
09223371 2329 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2330
2331 /*
2332 * We don't need protection against CPU-hotplug here because
2333 * this is called early in boot, before either interrupts
2334 * or the scheduler are operational.
2335 */
2336 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2337 for_each_online_cpu(cpu)
2338 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2339 check_cpu_stall_init();
64db4cff
PM
2340}
2341
1eba8f84 2342#include "rcutree_plugin.h"