rcu: Add new rcutorture module parameters to start/end test messages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
64db4cff 56
9f77da9f 57#include "rcutree.h"
29c00b4a
PM
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
9f77da9f 61
64db4cff
PM
62/* Data structures. */
63
f885b7f2 64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 66
037b64ed 67#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 68 .level = { &sname##_state.node[0] }, \
037b64ed 69 .call = cr, \
af446b70 70 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
71 .gpnum = -300, \
72 .completed = -300, \
6c90cc7b
PM
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
6c90cc7b 78 .name = #sname, \
64db4cff
PM
79}
80
037b64ed
PM
81struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
037b64ed 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280 88static struct rcu_state *rcu_state;
6ce75a23 89LIST_HEAD(rcu_struct_flavors);
27f4d280 90
f885b7f2
PM
91/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 93module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
94int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101};
102int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
b0d30417
PM
104/*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
bbad9379
PM
113int rcu_scheduler_active __read_mostly;
114EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
b0d30417
PM
116/*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128static int rcu_scheduler_fully_active __read_mostly;
129
a46e0899
PM
130#ifdef CONFIG_RCU_BOOST
131
a26ac245
PM
132/*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 138DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 139DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 140
a46e0899
PM
141#endif /* #ifdef CONFIG_RCU_BOOST */
142
5d01bbd1 143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
144static void invoke_rcu_core(void);
145static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 146
4a298656
PM
147/*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156unsigned long rcutorture_testseq;
157unsigned long rcutorture_vernum;
158
fc2219d4
PM
159/*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164static int rcu_gp_in_progress(struct rcu_state *rsp)
165{
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167}
168
b1f77b05 169/*
d6714c22 170 * Note a quiescent state. Because we do not need to know
b1f77b05 171 * how many quiescent states passed, just if there was at least
d6714c22 172 * one since the start of the grace period, this just sets a flag.
e4cc1f22 173 * The caller must have disabled preemption.
b1f77b05 174 */
d6714c22 175void rcu_sched_qs(int cpu)
b1f77b05 176{
25502a6c 177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 178
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 if (rdp->passed_quiesce == 0)
d4c08f2a 189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 190 rdp->passed_quiesce = 1;
b1f77b05 191}
64db4cff 192
25502a6c
PM
193/*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
e4cc1f22 196 * The caller must have disabled preemption.
25502a6c
PM
197 */
198void rcu_note_context_switch(int cpu)
199{
300df91c 200 trace_rcu_utilization("Start context switch");
25502a6c 201 rcu_sched_qs(cpu);
cba6d0d6 202 rcu_preempt_note_context_switch(cpu);
300df91c 203 trace_rcu_utilization("End context switch");
25502a6c 204}
29ce8310 205EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 206
90a4d2c0 207DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 209 .dynticks = ATOMIC_INIT(1),
1fd2b442 210#if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
1e1a689f
FW
211 .ignore_user_qs = true,
212#endif
90a4d2c0 213};
64db4cff 214
878d7439
ED
215static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
216static long qhimark = 10000; /* If this many pending, ignore blimit. */
217static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 218
878d7439
ED
219module_param(blimit, long, 0444);
220module_param(qhimark, long, 0444);
221module_param(qlowmark, long, 0444);
3d76c082 222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
d40011f6
PM
229static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232module_param(jiffies_till_first_fqs, ulong, 0644);
233module_param(jiffies_till_next_fqs, ulong, 0644);
234
4cdfc175
PM
235static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236static void force_quiescent_state(struct rcu_state *rsp);
a157229c 237static int rcu_pending(int cpu);
64db4cff
PM
238
239/*
d6714c22 240 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 241 */
d6714c22 242long rcu_batches_completed_sched(void)
64db4cff 243{
d6714c22 244 return rcu_sched_state.completed;
64db4cff 245}
d6714c22 246EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
247
248/*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251long rcu_batches_completed_bh(void)
252{
253 return rcu_bh_state.completed;
254}
255EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
bf66f18e
PM
257/*
258 * Force a quiescent state for RCU BH.
259 */
260void rcu_bh_force_quiescent_state(void)
261{
4cdfc175 262 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
263}
264EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
4a298656
PM
266/*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273void rcutorture_record_test_transition(void)
274{
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277}
278EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280/*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285void rcutorture_record_progress(unsigned long vernum)
286{
287 rcutorture_vernum++;
288}
289EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
bf66f18e
PM
291/*
292 * Force a quiescent state for RCU-sched.
293 */
294void rcu_sched_force_quiescent_state(void)
295{
4cdfc175 296 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
297}
298EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
64db4cff
PM
300/*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303static int
304cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305{
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307}
308
309/*
310 * Does the current CPU require a yet-as-unscheduled grace period?
311 */
312static int
313cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314{
a10d206e
PM
315 return *rdp->nxttail[RCU_DONE_TAIL +
316 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317 !rcu_gp_in_progress(rsp);
64db4cff
PM
318}
319
320/*
321 * Return the root node of the specified rcu_state structure.
322 */
323static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324{
325 return &rsp->node[0];
326}
327
9b2e4f18 328/*
adf5091e 329 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
330 *
331 * If the new value of the ->dynticks_nesting counter now is zero,
332 * we really have entered idle, and must do the appropriate accounting.
333 * The caller must have disabled interrupts.
334 */
adf5091e
FW
335static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
336 bool user)
9b2e4f18 337{
facc4e15 338 trace_rcu_dyntick("Start", oldval, 0);
cb349ca9 339 if (!user && !is_idle_task(current)) {
0989cb46
PM
340 struct task_struct *idle = idle_task(smp_processor_id());
341
facc4e15 342 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 343 ftrace_dump(DUMP_ORIG);
0989cb46
PM
344 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
345 current->pid, current->comm,
346 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 347 }
aea1b35e 348 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
349 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
350 smp_mb__before_atomic_inc(); /* See above. */
351 atomic_inc(&rdtp->dynticks);
352 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
353 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
354
355 /*
adf5091e 356 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
357 * in an RCU read-side critical section.
358 */
359 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
360 "Illegal idle entry in RCU read-side critical section.");
361 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
362 "Illegal idle entry in RCU-bh read-side critical section.");
363 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
364 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 365}
64db4cff 366
adf5091e
FW
367/*
368 * Enter an RCU extended quiescent state, which can be either the
369 * idle loop or adaptive-tickless usermode execution.
64db4cff 370 */
adf5091e 371static void rcu_eqs_enter(bool user)
64db4cff 372{
4145fa7f 373 long long oldval;
64db4cff
PM
374 struct rcu_dynticks *rdtp;
375
64db4cff 376 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 377 oldval = rdtp->dynticks_nesting;
29e37d81
PM
378 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
379 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
380 rdtp->dynticks_nesting = 0;
381 else
382 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 383 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 384}
adf5091e
FW
385
386/**
387 * rcu_idle_enter - inform RCU that current CPU is entering idle
388 *
389 * Enter idle mode, in other words, -leave- the mode in which RCU
390 * read-side critical sections can occur. (Though RCU read-side
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
397 */
398void rcu_idle_enter(void)
399{
c5d900bf
FW
400 unsigned long flags;
401
402 local_irq_save(flags);
cb349ca9 403 rcu_eqs_enter(false);
c5d900bf 404 local_irq_restore(flags);
adf5091e 405}
8a2ecf47 406EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 407
2b1d5024 408#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
409/**
410 * rcu_user_enter - inform RCU that we are resuming userspace.
411 *
412 * Enter RCU idle mode right before resuming userspace. No use of RCU
413 * is permitted between this call and rcu_user_exit(). This way the
414 * CPU doesn't need to maintain the tick for RCU maintenance purposes
415 * when the CPU runs in userspace.
416 */
417void rcu_user_enter(void)
418{
c5d900bf
FW
419 unsigned long flags;
420 struct rcu_dynticks *rdtp;
421
adf5091e
FW
422 /*
423 * Some contexts may involve an exception occuring in an irq,
424 * leading to that nesting:
425 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
426 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
427 * helpers are enough to protect RCU uses inside the exception. So
428 * just return immediately if we detect we are in an IRQ.
429 */
430 if (in_interrupt())
431 return;
432
c5d900bf
FW
433 WARN_ON_ONCE(!current->mm);
434
435 local_irq_save(flags);
436 rdtp = &__get_cpu_var(rcu_dynticks);
1e1a689f 437 if (!rdtp->ignore_user_qs && !rdtp->in_user) {
c5d900bf 438 rdtp->in_user = true;
cb349ca9 439 rcu_eqs_enter(true);
c5d900bf
FW
440 }
441 local_irq_restore(flags);
adf5091e
FW
442}
443
19dd1591
FW
444/**
445 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
446 * after the current irq returns.
447 *
448 * This is similar to rcu_user_enter() but in the context of a non-nesting
449 * irq. After this call, RCU enters into idle mode when the interrupt
450 * returns.
451 */
452void rcu_user_enter_after_irq(void)
453{
454 unsigned long flags;
455 struct rcu_dynticks *rdtp;
456
457 local_irq_save(flags);
458 rdtp = &__get_cpu_var(rcu_dynticks);
459 /* Ensure this irq is interrupting a non-idle RCU state. */
460 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
461 rdtp->dynticks_nesting = 1;
462 local_irq_restore(flags);
463}
2b1d5024 464#endif /* CONFIG_RCU_USER_QS */
19dd1591 465
9b2e4f18
PM
466/**
467 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
468 *
469 * Exit from an interrupt handler, which might possibly result in entering
470 * idle mode, in other words, leaving the mode in which read-side critical
471 * sections can occur.
64db4cff 472 *
9b2e4f18
PM
473 * This code assumes that the idle loop never does anything that might
474 * result in unbalanced calls to irq_enter() and irq_exit(). If your
475 * architecture violates this assumption, RCU will give you what you
476 * deserve, good and hard. But very infrequently and irreproducibly.
477 *
478 * Use things like work queues to work around this limitation.
479 *
480 * You have been warned.
64db4cff 481 */
9b2e4f18 482void rcu_irq_exit(void)
64db4cff
PM
483{
484 unsigned long flags;
4145fa7f 485 long long oldval;
64db4cff
PM
486 struct rcu_dynticks *rdtp;
487
488 local_irq_save(flags);
489 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 490 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
491 rdtp->dynticks_nesting--;
492 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
493 if (rdtp->dynticks_nesting)
494 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
495 else
cb349ca9 496 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
497 local_irq_restore(flags);
498}
499
500/*
adf5091e 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
adf5091e
FW
507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
9b2e4f18 509{
23b5c8fa
PM
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 515 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 516 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
cb349ca9 517 if (!user && !is_idle_task(current)) {
0989cb46
PM
518 struct task_struct *idle = idle_task(smp_processor_id());
519
4145fa7f
PM
520 trace_rcu_dyntick("Error on exit: not idle task",
521 oldval, rdtp->dynticks_nesting);
bf1304e9 522 ftrace_dump(DUMP_ORIG);
0989cb46
PM
523 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
524 current->pid, current->comm,
525 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
526 }
527}
528
adf5091e
FW
529/*
530 * Exit an RCU extended quiescent state, which can be either the
531 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 532 */
adf5091e 533static void rcu_eqs_exit(bool user)
9b2e4f18 534{
9b2e4f18
PM
535 struct rcu_dynticks *rdtp;
536 long long oldval;
537
9b2e4f18
PM
538 rdtp = &__get_cpu_var(rcu_dynticks);
539 oldval = rdtp->dynticks_nesting;
29e37d81
PM
540 WARN_ON_ONCE(oldval < 0);
541 if (oldval & DYNTICK_TASK_NEST_MASK)
542 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
543 else
544 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 545 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 546}
adf5091e
FW
547
548/**
549 * rcu_idle_exit - inform RCU that current CPU is leaving idle
550 *
551 * Exit idle mode, in other words, -enter- the mode in which RCU
552 * read-side critical sections can occur.
553 *
554 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
555 * allow for the possibility of usermode upcalls messing up our count
556 * of interrupt nesting level during the busy period that is just
557 * now starting.
558 */
559void rcu_idle_exit(void)
560{
c5d900bf
FW
561 unsigned long flags;
562
563 local_irq_save(flags);
cb349ca9 564 rcu_eqs_exit(false);
c5d900bf 565 local_irq_restore(flags);
adf5091e 566}
8a2ecf47 567EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 568
2b1d5024 569#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
570/**
571 * rcu_user_exit - inform RCU that we are exiting userspace.
572 *
573 * Exit RCU idle mode while entering the kernel because it can
574 * run a RCU read side critical section anytime.
575 */
576void rcu_user_exit(void)
577{
c5d900bf
FW
578 unsigned long flags;
579 struct rcu_dynticks *rdtp;
580
adf5091e
FW
581 /*
582 * Some contexts may involve an exception occuring in an irq,
583 * leading to that nesting:
584 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
585 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
586 * helpers are enough to protect RCU uses inside the exception. So
587 * just return immediately if we detect we are in an IRQ.
588 */
589 if (in_interrupt())
590 return;
591
c5d900bf
FW
592 local_irq_save(flags);
593 rdtp = &__get_cpu_var(rcu_dynticks);
594 if (rdtp->in_user) {
595 rdtp->in_user = false;
cb349ca9 596 rcu_eqs_exit(true);
c5d900bf
FW
597 }
598 local_irq_restore(flags);
adf5091e
FW
599}
600
19dd1591
FW
601/**
602 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
603 * idle mode after the current non-nesting irq returns.
604 *
605 * This is similar to rcu_user_exit() but in the context of an irq.
606 * This is called when the irq has interrupted a userspace RCU idle mode
607 * context. When the current non-nesting interrupt returns after this call,
608 * the CPU won't restore the RCU idle mode.
609 */
610void rcu_user_exit_after_irq(void)
611{
612 unsigned long flags;
613 struct rcu_dynticks *rdtp;
614
615 local_irq_save(flags);
616 rdtp = &__get_cpu_var(rcu_dynticks);
617 /* Ensure we are interrupting an RCU idle mode. */
618 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
619 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
620 local_irq_restore(flags);
621}
2b1d5024 622#endif /* CONFIG_RCU_USER_QS */
19dd1591 623
9b2e4f18
PM
624/**
625 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
626 *
627 * Enter an interrupt handler, which might possibly result in exiting
628 * idle mode, in other words, entering the mode in which read-side critical
629 * sections can occur.
630 *
631 * Note that the Linux kernel is fully capable of entering an interrupt
632 * handler that it never exits, for example when doing upcalls to
633 * user mode! This code assumes that the idle loop never does upcalls to
634 * user mode. If your architecture does do upcalls from the idle loop (or
635 * does anything else that results in unbalanced calls to the irq_enter()
636 * and irq_exit() functions), RCU will give you what you deserve, good
637 * and hard. But very infrequently and irreproducibly.
638 *
639 * Use things like work queues to work around this limitation.
640 *
641 * You have been warned.
642 */
643void rcu_irq_enter(void)
644{
645 unsigned long flags;
646 struct rcu_dynticks *rdtp;
647 long long oldval;
648
649 local_irq_save(flags);
650 rdtp = &__get_cpu_var(rcu_dynticks);
651 oldval = rdtp->dynticks_nesting;
652 rdtp->dynticks_nesting++;
653 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
654 if (oldval)
655 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
656 else
cb349ca9 657 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 658 local_irq_restore(flags);
64db4cff
PM
659}
660
661/**
662 * rcu_nmi_enter - inform RCU of entry to NMI context
663 *
664 * If the CPU was idle with dynamic ticks active, and there is no
665 * irq handler running, this updates rdtp->dynticks_nmi to let the
666 * RCU grace-period handling know that the CPU is active.
667 */
668void rcu_nmi_enter(void)
669{
670 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
671
23b5c8fa
PM
672 if (rdtp->dynticks_nmi_nesting == 0 &&
673 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 674 return;
23b5c8fa
PM
675 rdtp->dynticks_nmi_nesting++;
676 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
677 atomic_inc(&rdtp->dynticks);
678 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
679 smp_mb__after_atomic_inc(); /* See above. */
680 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
681}
682
683/**
684 * rcu_nmi_exit - inform RCU of exit from NMI context
685 *
686 * If the CPU was idle with dynamic ticks active, and there is no
687 * irq handler running, this updates rdtp->dynticks_nmi to let the
688 * RCU grace-period handling know that the CPU is no longer active.
689 */
690void rcu_nmi_exit(void)
691{
692 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
693
23b5c8fa
PM
694 if (rdtp->dynticks_nmi_nesting == 0 ||
695 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 696 return;
23b5c8fa
PM
697 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
698 smp_mb__before_atomic_inc(); /* See above. */
699 atomic_inc(&rdtp->dynticks);
700 smp_mb__after_atomic_inc(); /* Force delay to next write. */
701 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
702}
703
704/**
9b2e4f18 705 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 706 *
9b2e4f18 707 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 708 * or NMI handler, return true.
64db4cff 709 */
9b2e4f18 710int rcu_is_cpu_idle(void)
64db4cff 711{
34240697
PM
712 int ret;
713
714 preempt_disable();
715 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
716 preempt_enable();
717 return ret;
64db4cff 718}
e6b80a3b 719EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 720
04e7e951
FW
721#ifdef CONFIG_RCU_USER_QS
722void rcu_user_hooks_switch(struct task_struct *prev,
723 struct task_struct *next)
724{
725 struct rcu_dynticks *rdtp;
726
727 /* Interrupts are disabled in context switch */
728 rdtp = &__get_cpu_var(rcu_dynticks);
729 if (!rdtp->ignore_user_qs) {
730 clear_tsk_thread_flag(prev, TIF_NOHZ);
731 set_tsk_thread_flag(next, TIF_NOHZ);
732 }
733}
734#endif /* #ifdef CONFIG_RCU_USER_QS */
735
62fde6ed 736#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
737
738/*
739 * Is the current CPU online? Disable preemption to avoid false positives
740 * that could otherwise happen due to the current CPU number being sampled,
741 * this task being preempted, its old CPU being taken offline, resuming
742 * on some other CPU, then determining that its old CPU is now offline.
743 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
744 * the check for rcu_scheduler_fully_active. Note also that it is OK
745 * for a CPU coming online to use RCU for one jiffy prior to marking itself
746 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
747 * offline to continue to use RCU for one jiffy after marking itself
748 * offline in the cpu_online_mask. This leniency is necessary given the
749 * non-atomic nature of the online and offline processing, for example,
750 * the fact that a CPU enters the scheduler after completing the CPU_DYING
751 * notifiers.
752 *
753 * This is also why RCU internally marks CPUs online during the
754 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
755 *
756 * Disable checking if in an NMI handler because we cannot safely report
757 * errors from NMI handlers anyway.
758 */
759bool rcu_lockdep_current_cpu_online(void)
760{
2036d94a
PM
761 struct rcu_data *rdp;
762 struct rcu_node *rnp;
c0d6d01b
PM
763 bool ret;
764
765 if (in_nmi())
766 return 1;
767 preempt_disable();
2036d94a
PM
768 rdp = &__get_cpu_var(rcu_sched_data);
769 rnp = rdp->mynode;
770 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
771 !rcu_scheduler_fully_active;
772 preempt_enable();
773 return ret;
774}
775EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
776
62fde6ed 777#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 778
64db4cff 779/**
9b2e4f18 780 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 781 *
9b2e4f18
PM
782 * If the current CPU is idle or running at a first-level (not nested)
783 * interrupt from idle, return true. The caller must have at least
784 * disabled preemption.
64db4cff 785 */
9b2e4f18 786int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 787{
9b2e4f18 788 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
789}
790
64db4cff
PM
791/*
792 * Snapshot the specified CPU's dynticks counter so that we can later
793 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 794 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
795 */
796static int dyntick_save_progress_counter(struct rcu_data *rdp)
797{
23b5c8fa 798 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 799 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
800}
801
802/*
803 * Return true if the specified CPU has passed through a quiescent
804 * state by virtue of being in or having passed through an dynticks
805 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 806 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
807 */
808static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
809{
7eb4f455
PM
810 unsigned int curr;
811 unsigned int snap;
64db4cff 812
7eb4f455
PM
813 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
814 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
815
816 /*
817 * If the CPU passed through or entered a dynticks idle phase with
818 * no active irq/NMI handlers, then we can safely pretend that the CPU
819 * already acknowledged the request to pass through a quiescent
820 * state. Either way, that CPU cannot possibly be in an RCU
821 * read-side critical section that started before the beginning
822 * of the current RCU grace period.
823 */
7eb4f455 824 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 825 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
826 rdp->dynticks_fqs++;
827 return 1;
828 }
829
a82dcc76
PM
830 /*
831 * Check for the CPU being offline, but only if the grace period
832 * is old enough. We don't need to worry about the CPU changing
833 * state: If we see it offline even once, it has been through a
834 * quiescent state.
835 *
836 * The reason for insisting that the grace period be at least
837 * one jiffy old is that CPUs that are not quite online and that
838 * have just gone offline can still execute RCU read-side critical
839 * sections.
840 */
841 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
842 return 0; /* Grace period is not old enough. */
843 barrier();
844 if (cpu_is_offline(rdp->cpu)) {
845 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
846 rdp->offline_fqs++;
847 return 1;
848 }
849 return 0;
64db4cff
PM
850}
851
13cfcca0
PM
852static int jiffies_till_stall_check(void)
853{
854 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
855
856 /*
857 * Limit check must be consistent with the Kconfig limits
858 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
859 */
860 if (till_stall_check < 3) {
861 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
862 till_stall_check = 3;
863 } else if (till_stall_check > 300) {
864 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
865 till_stall_check = 300;
866 }
867 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
868}
869
64db4cff
PM
870static void record_gp_stall_check_time(struct rcu_state *rsp)
871{
872 rsp->gp_start = jiffies;
13cfcca0 873 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
874}
875
876static void print_other_cpu_stall(struct rcu_state *rsp)
877{
878 int cpu;
879 long delta;
880 unsigned long flags;
285fe294 881 int ndetected = 0;
64db4cff 882 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
883
884 /* Only let one CPU complain about others per time interval. */
885
1304afb2 886 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 887 delta = jiffies - rsp->jiffies_stall;
fc2219d4 888 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 889 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
890 return;
891 }
13cfcca0 892 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 894
8cdd32a9
PM
895 /*
896 * OK, time to rat on our buddy...
897 * See Documentation/RCU/stallwarn.txt for info on how to debug
898 * RCU CPU stall warnings.
899 */
a858af28 900 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 901 rsp->name);
a858af28 902 print_cpu_stall_info_begin();
a0b6c9a7 903 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 904 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 905 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
906 if (rnp->qsmask != 0) {
907 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
908 if (rnp->qsmask & (1UL << cpu)) {
909 print_cpu_stall_info(rsp,
910 rnp->grplo + cpu);
911 ndetected++;
912 }
913 }
3acd9eb3 914 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 915 }
a858af28
PM
916
917 /*
918 * Now rat on any tasks that got kicked up to the root rcu_node
919 * due to CPU offlining.
920 */
921 rnp = rcu_get_root(rsp);
922 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 923 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
924 raw_spin_unlock_irqrestore(&rnp->lock, flags);
925
926 print_cpu_stall_info_end();
927 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 928 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
929 if (ndetected == 0)
930 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
931 else if (!trigger_all_cpu_backtrace())
4627e240 932 dump_stack();
c1dc0b9c 933
4cdfc175 934 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
935
936 rcu_print_detail_task_stall(rsp);
937
4cdfc175 938 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
939}
940
941static void print_cpu_stall(struct rcu_state *rsp)
942{
943 unsigned long flags;
944 struct rcu_node *rnp = rcu_get_root(rsp);
945
8cdd32a9
PM
946 /*
947 * OK, time to rat on ourselves...
948 * See Documentation/RCU/stallwarn.txt for info on how to debug
949 * RCU CPU stall warnings.
950 */
a858af28
PM
951 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
952 print_cpu_stall_info_begin();
953 print_cpu_stall_info(rsp, smp_processor_id());
954 print_cpu_stall_info_end();
955 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
956 if (!trigger_all_cpu_backtrace())
957 dump_stack();
c1dc0b9c 958
1304afb2 959 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 960 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
961 rsp->jiffies_stall = jiffies +
962 3 * jiffies_till_stall_check() + 3;
1304afb2 963 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 964
64db4cff
PM
965 set_need_resched(); /* kick ourselves to get things going. */
966}
967
968static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
969{
bad6e139
PM
970 unsigned long j;
971 unsigned long js;
64db4cff
PM
972 struct rcu_node *rnp;
973
742734ee 974 if (rcu_cpu_stall_suppress)
c68de209 975 return;
bad6e139
PM
976 j = ACCESS_ONCE(jiffies);
977 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 978 rnp = rdp->mynode;
c96ea7cf
PM
979 if (rcu_gp_in_progress(rsp) &&
980 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
981
982 /* We haven't checked in, so go dump stack. */
983 print_cpu_stall(rsp);
984
bad6e139
PM
985 } else if (rcu_gp_in_progress(rsp) &&
986 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 987
bad6e139 988 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
989 print_other_cpu_stall(rsp);
990 }
991}
992
c68de209
PM
993static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
994{
742734ee 995 rcu_cpu_stall_suppress = 1;
c68de209
PM
996 return NOTIFY_DONE;
997}
998
53d84e00
PM
999/**
1000 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1001 *
1002 * Set the stall-warning timeout way off into the future, thus preventing
1003 * any RCU CPU stall-warning messages from appearing in the current set of
1004 * RCU grace periods.
1005 *
1006 * The caller must disable hard irqs.
1007 */
1008void rcu_cpu_stall_reset(void)
1009{
6ce75a23
PM
1010 struct rcu_state *rsp;
1011
1012 for_each_rcu_flavor(rsp)
1013 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1014}
1015
c68de209
PM
1016static struct notifier_block rcu_panic_block = {
1017 .notifier_call = rcu_panic,
1018};
1019
1020static void __init check_cpu_stall_init(void)
1021{
1022 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1023}
1024
64db4cff
PM
1025/*
1026 * Update CPU-local rcu_data state to record the newly noticed grace period.
1027 * This is used both when we started the grace period and when we notice
9160306e
PM
1028 * that someone else started the grace period. The caller must hold the
1029 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1030 * and must have irqs disabled.
64db4cff 1031 */
9160306e
PM
1032static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1033{
1034 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
1035 /*
1036 * If the current grace period is waiting for this CPU,
1037 * set up to detect a quiescent state, otherwise don't
1038 * go looking for one.
1039 */
9160306e 1040 rdp->gpnum = rnp->gpnum;
d4c08f2a 1041 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
d7d6a11e
PM
1042 rdp->passed_quiesce = 0;
1043 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
a858af28 1044 zero_cpu_stall_ticks(rdp);
9160306e
PM
1045 }
1046}
1047
64db4cff
PM
1048static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1049{
9160306e
PM
1050 unsigned long flags;
1051 struct rcu_node *rnp;
1052
1053 local_irq_save(flags);
1054 rnp = rdp->mynode;
1055 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 1056 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
1057 local_irq_restore(flags);
1058 return;
1059 }
1060 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 1061 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1062}
1063
1064/*
1065 * Did someone else start a new RCU grace period start since we last
1066 * checked? Update local state appropriately if so. Must be called
1067 * on the CPU corresponding to rdp.
1068 */
1069static int
1070check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1071{
1072 unsigned long flags;
1073 int ret = 0;
1074
1075 local_irq_save(flags);
1076 if (rdp->gpnum != rsp->gpnum) {
1077 note_new_gpnum(rsp, rdp);
1078 ret = 1;
1079 }
1080 local_irq_restore(flags);
1081 return ret;
1082}
1083
3f5d3ea6
PM
1084/*
1085 * Initialize the specified rcu_data structure's callback list to empty.
1086 */
1087static void init_callback_list(struct rcu_data *rdp)
1088{
1089 int i;
1090
1091 rdp->nxtlist = NULL;
1092 for (i = 0; i < RCU_NEXT_SIZE; i++)
1093 rdp->nxttail[i] = &rdp->nxtlist;
1094}
1095
d09b62df
PM
1096/*
1097 * Advance this CPU's callbacks, but only if the current grace period
1098 * has ended. This may be called only from the CPU to whom the rdp
1099 * belongs. In addition, the corresponding leaf rcu_node structure's
1100 * ->lock must be held by the caller, with irqs disabled.
1101 */
1102static void
1103__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1104{
1105 /* Did another grace period end? */
1106 if (rdp->completed != rnp->completed) {
1107
1108 /* Advance callbacks. No harm if list empty. */
1109 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1110 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1111 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1112
1113 /* Remember that we saw this grace-period completion. */
1114 rdp->completed = rnp->completed;
d4c08f2a 1115 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 1116
5ff8e6f0
FW
1117 /*
1118 * If we were in an extended quiescent state, we may have
121dfc4b 1119 * missed some grace periods that others CPUs handled on
5ff8e6f0 1120 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
1121 * spurious new grace periods. If another grace period
1122 * has started, then rnp->gpnum will have advanced, so
d7d6a11e
PM
1123 * we will detect this later on. Of course, any quiescent
1124 * states we found for the old GP are now invalid.
5ff8e6f0 1125 */
d7d6a11e 1126 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
5ff8e6f0 1127 rdp->gpnum = rdp->completed;
d7d6a11e
PM
1128 rdp->passed_quiesce = 0;
1129 }
5ff8e6f0 1130
20377f32 1131 /*
121dfc4b
PM
1132 * If RCU does not need a quiescent state from this CPU,
1133 * then make sure that this CPU doesn't go looking for one.
20377f32 1134 */
121dfc4b 1135 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 1136 rdp->qs_pending = 0;
d09b62df
PM
1137 }
1138}
1139
1140/*
1141 * Advance this CPU's callbacks, but only if the current grace period
1142 * has ended. This may be called only from the CPU to whom the rdp
1143 * belongs.
1144 */
1145static void
1146rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1147{
1148 unsigned long flags;
1149 struct rcu_node *rnp;
1150
1151 local_irq_save(flags);
1152 rnp = rdp->mynode;
1153 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1154 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1155 local_irq_restore(flags);
1156 return;
1157 }
1158 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1159 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1160}
1161
1162/*
1163 * Do per-CPU grace-period initialization for running CPU. The caller
1164 * must hold the lock of the leaf rcu_node structure corresponding to
1165 * this CPU.
1166 */
1167static void
1168rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1169{
1170 /* Prior grace period ended, so advance callbacks for current CPU. */
1171 __rcu_process_gp_end(rsp, rnp, rdp);
1172
9160306e
PM
1173 /* Set state so that this CPU will detect the next quiescent state. */
1174 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1175}
1176
b3dbec76 1177/*
7fdefc10 1178 * Initialize a new grace period.
b3dbec76 1179 */
7fdefc10 1180static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1181{
1182 struct rcu_data *rdp;
7fdefc10 1183 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1184
7fdefc10 1185 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1186 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1187
7fdefc10
PM
1188 if (rcu_gp_in_progress(rsp)) {
1189 /* Grace period already in progress, don't start another. */
1190 raw_spin_unlock_irq(&rnp->lock);
1191 return 0;
1192 }
1193
7fdefc10
PM
1194 /* Advance to a new grace period and initialize state. */
1195 rsp->gpnum++;
1196 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
7fdefc10
PM
1197 record_gp_stall_check_time(rsp);
1198 raw_spin_unlock_irq(&rnp->lock);
1199
1200 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1201 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1202
1203 /*
1204 * Set the quiescent-state-needed bits in all the rcu_node
1205 * structures for all currently online CPUs in breadth-first order,
1206 * starting from the root rcu_node structure, relying on the layout
1207 * of the tree within the rsp->node[] array. Note that other CPUs
1208 * will access only the leaves of the hierarchy, thus seeing that no
1209 * grace period is in progress, at least until the corresponding
1210 * leaf node has been initialized. In addition, we have excluded
1211 * CPU-hotplug operations.
1212 *
1213 * The grace period cannot complete until the initialization
1214 * process finishes, because this kthread handles both.
1215 */
1216 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1217 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1218 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1219 rcu_preempt_check_blocked_tasks(rnp);
1220 rnp->qsmask = rnp->qsmaskinit;
1221 rnp->gpnum = rsp->gpnum;
25d30cf4 1222 WARN_ON_ONCE(rnp->completed != rsp->completed);
7fdefc10
PM
1223 rnp->completed = rsp->completed;
1224 if (rnp == rdp->mynode)
1225 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1226 rcu_preempt_boost_start_gp(rnp);
1227 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1228 rnp->level, rnp->grplo,
1229 rnp->grphi, rnp->qsmask);
1230 raw_spin_unlock_irq(&rnp->lock);
661a85dc
PM
1231#ifdef CONFIG_PROVE_RCU_DELAY
1232 if ((random32() % (rcu_num_nodes * 8)) == 0)
1233 schedule_timeout_uninterruptible(2);
1234#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1235 cond_resched();
1236 }
b3dbec76 1237
a4fbe35a 1238 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1239 return 1;
1240}
b3dbec76 1241
4cdfc175
PM
1242/*
1243 * Do one round of quiescent-state forcing.
1244 */
1245int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1246{
1247 int fqs_state = fqs_state_in;
1248 struct rcu_node *rnp = rcu_get_root(rsp);
1249
1250 rsp->n_force_qs++;
1251 if (fqs_state == RCU_SAVE_DYNTICK) {
1252 /* Collect dyntick-idle snapshots. */
1253 force_qs_rnp(rsp, dyntick_save_progress_counter);
1254 fqs_state = RCU_FORCE_QS;
1255 } else {
1256 /* Handle dyntick-idle and offline CPUs. */
1257 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1258 }
1259 /* Clear flag to prevent immediate re-entry. */
1260 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1261 raw_spin_lock_irq(&rnp->lock);
1262 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1263 raw_spin_unlock_irq(&rnp->lock);
1264 }
1265 return fqs_state;
1266}
1267
7fdefc10
PM
1268/*
1269 * Clean up after the old grace period.
1270 */
4cdfc175 1271static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1272{
1273 unsigned long gp_duration;
1274 struct rcu_data *rdp;
1275 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1276
7fdefc10
PM
1277 raw_spin_lock_irq(&rnp->lock);
1278 gp_duration = jiffies - rsp->gp_start;
1279 if (gp_duration > rsp->gp_max)
1280 rsp->gp_max = gp_duration;
b3dbec76 1281
7fdefc10
PM
1282 /*
1283 * We know the grace period is complete, but to everyone else
1284 * it appears to still be ongoing. But it is also the case
1285 * that to everyone else it looks like there is nothing that
1286 * they can do to advance the grace period. It is therefore
1287 * safe for us to drop the lock in order to mark the grace
1288 * period as completed in all of the rcu_node structures.
7fdefc10 1289 */
5d4b8659 1290 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1291
5d4b8659
PM
1292 /*
1293 * Propagate new ->completed value to rcu_node structures so
1294 * that other CPUs don't have to wait until the start of the next
1295 * grace period to process their callbacks. This also avoids
1296 * some nasty RCU grace-period initialization races by forcing
1297 * the end of the current grace period to be completely recorded in
1298 * all of the rcu_node structures before the beginning of the next
1299 * grace period is recorded in any of the rcu_node structures.
1300 */
1301 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1302 raw_spin_lock_irq(&rnp->lock);
5d4b8659
PM
1303 rnp->completed = rsp->gpnum;
1304 raw_spin_unlock_irq(&rnp->lock);
1305 cond_resched();
7fdefc10 1306 }
5d4b8659
PM
1307 rnp = rcu_get_root(rsp);
1308 raw_spin_lock_irq(&rnp->lock);
7fdefc10
PM
1309
1310 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1311 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1312 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1313 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1314 if (cpu_needs_another_gp(rsp, rdp))
1315 rsp->gp_flags = 1;
1316 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1317}
1318
1319/*
1320 * Body of kthread that handles grace periods.
1321 */
1322static int __noreturn rcu_gp_kthread(void *arg)
1323{
4cdfc175 1324 int fqs_state;
d40011f6 1325 unsigned long j;
4cdfc175 1326 int ret;
7fdefc10
PM
1327 struct rcu_state *rsp = arg;
1328 struct rcu_node *rnp = rcu_get_root(rsp);
1329
1330 for (;;) {
1331
1332 /* Handle grace-period start. */
1333 for (;;) {
4cdfc175
PM
1334 wait_event_interruptible(rsp->gp_wq,
1335 rsp->gp_flags &
1336 RCU_GP_FLAG_INIT);
1337 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1338 rcu_gp_init(rsp))
7fdefc10
PM
1339 break;
1340 cond_resched();
1341 flush_signals(current);
1342 }
cabc49c1 1343
4cdfc175
PM
1344 /* Handle quiescent-state forcing. */
1345 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1346 j = jiffies_till_first_fqs;
1347 if (j > HZ) {
1348 j = HZ;
1349 jiffies_till_first_fqs = HZ;
1350 }
cabc49c1 1351 for (;;) {
d40011f6 1352 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1353 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1354 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1355 (!ACCESS_ONCE(rnp->qsmask) &&
1356 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1357 j);
4cdfc175 1358 /* If grace period done, leave loop. */
cabc49c1 1359 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1360 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1361 break;
4cdfc175
PM
1362 /* If time for quiescent-state forcing, do it. */
1363 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1364 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1365 cond_resched();
1366 } else {
1367 /* Deal with stray signal. */
1368 cond_resched();
1369 flush_signals(current);
1370 }
d40011f6
PM
1371 j = jiffies_till_next_fqs;
1372 if (j > HZ) {
1373 j = HZ;
1374 jiffies_till_next_fqs = HZ;
1375 } else if (j < 1) {
1376 j = 1;
1377 jiffies_till_next_fqs = 1;
1378 }
cabc49c1 1379 }
4cdfc175
PM
1380
1381 /* Handle grace-period end. */
1382 rcu_gp_cleanup(rsp);
b3dbec76 1383 }
b3dbec76
PM
1384}
1385
64db4cff
PM
1386/*
1387 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1388 * in preparation for detecting the next grace period. The caller must hold
1389 * the root node's ->lock, which is released before return. Hard irqs must
1390 * be disabled.
e5601400
PM
1391 *
1392 * Note that it is legal for a dying CPU (which is marked as offline) to
1393 * invoke this function. This can happen when the dying CPU reports its
1394 * quiescent state.
64db4cff
PM
1395 */
1396static void
1397rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1398 __releases(rcu_get_root(rsp)->lock)
1399{
394f99a9 1400 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1401 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1402
b3dbec76 1403 if (!rsp->gp_kthread ||
afe24b12
PM
1404 !cpu_needs_another_gp(rsp, rdp)) {
1405 /*
b3dbec76 1406 * Either we have not yet spawned the grace-period
62da1921
PM
1407 * task, this CPU does not need another grace period,
1408 * or a grace period is already in progress.
b3dbec76 1409 * Either way, don't start a new grace period.
afe24b12
PM
1410 */
1411 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1412 return;
1413 }
b32e9eb6 1414
62da1921
PM
1415 /*
1416 * Because there is no grace period in progress right now,
1417 * any callbacks we have up to this point will be satisfied
1418 * by the next grace period. So promote all callbacks to be
1419 * handled after the end of the next grace period. If the
1420 * CPU is not yet aware of the end of the previous grace period,
1421 * we need to allow for the callback advancement that will
1422 * occur when it does become aware. Deadlock prevents us from
1423 * making it aware at this point: We cannot acquire a leaf
1424 * rcu_node ->lock while holding the root rcu_node ->lock.
1425 */
1426 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1427 if (rdp->completed == rsp->completed)
1428 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1429
4cdfc175 1430 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921
PM
1431 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
1432
1433 /* Ensure that CPU is aware of completion of last grace period. */
1434 rcu_process_gp_end(rsp, rdp);
1435 local_irq_restore(flags);
1436
1437 /* Wake up rcu_gp_kthread() to start the grace period. */
b3dbec76 1438 wake_up(&rsp->gp_wq);
64db4cff
PM
1439}
1440
f41d911f 1441/*
d3f6bad3
PM
1442 * Report a full set of quiescent states to the specified rcu_state
1443 * data structure. This involves cleaning up after the prior grace
1444 * period and letting rcu_start_gp() start up the next grace period
1445 * if one is needed. Note that the caller must hold rnp->lock, as
1446 * required by rcu_start_gp(), which will release it.
f41d911f 1447 */
d3f6bad3 1448static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1449 __releases(rcu_get_root(rsp)->lock)
f41d911f 1450{
fc2219d4 1451 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1452 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1453 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1454}
1455
64db4cff 1456/*
d3f6bad3
PM
1457 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1458 * Allows quiescent states for a group of CPUs to be reported at one go
1459 * to the specified rcu_node structure, though all the CPUs in the group
1460 * must be represented by the same rcu_node structure (which need not be
1461 * a leaf rcu_node structure, though it often will be). That structure's
1462 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1463 */
1464static void
d3f6bad3
PM
1465rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1466 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1467 __releases(rnp->lock)
1468{
28ecd580
PM
1469 struct rcu_node *rnp_c;
1470
64db4cff
PM
1471 /* Walk up the rcu_node hierarchy. */
1472 for (;;) {
1473 if (!(rnp->qsmask & mask)) {
1474
1475 /* Our bit has already been cleared, so done. */
1304afb2 1476 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1477 return;
1478 }
1479 rnp->qsmask &= ~mask;
d4c08f2a
PM
1480 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1481 mask, rnp->qsmask, rnp->level,
1482 rnp->grplo, rnp->grphi,
1483 !!rnp->gp_tasks);
27f4d280 1484 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1485
1486 /* Other bits still set at this level, so done. */
1304afb2 1487 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1488 return;
1489 }
1490 mask = rnp->grpmask;
1491 if (rnp->parent == NULL) {
1492
1493 /* No more levels. Exit loop holding root lock. */
1494
1495 break;
1496 }
1304afb2 1497 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1498 rnp_c = rnp;
64db4cff 1499 rnp = rnp->parent;
1304afb2 1500 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1501 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1502 }
1503
1504 /*
1505 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1506 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1507 * to clean up and start the next grace period if one is needed.
64db4cff 1508 */
d3f6bad3 1509 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1510}
1511
1512/*
d3f6bad3
PM
1513 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1514 * structure. This must be either called from the specified CPU, or
1515 * called when the specified CPU is known to be offline (and when it is
1516 * also known that no other CPU is concurrently trying to help the offline
1517 * CPU). The lastcomp argument is used to make sure we are still in the
1518 * grace period of interest. We don't want to end the current grace period
1519 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1520 */
1521static void
d7d6a11e 1522rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1523{
1524 unsigned long flags;
1525 unsigned long mask;
1526 struct rcu_node *rnp;
1527
1528 rnp = rdp->mynode;
1304afb2 1529 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1530 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1531 rnp->completed == rnp->gpnum) {
64db4cff
PM
1532
1533 /*
e4cc1f22
PM
1534 * The grace period in which this quiescent state was
1535 * recorded has ended, so don't report it upwards.
1536 * We will instead need a new quiescent state that lies
1537 * within the current grace period.
64db4cff 1538 */
e4cc1f22 1539 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1540 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1541 return;
1542 }
1543 mask = rdp->grpmask;
1544 if ((rnp->qsmask & mask) == 0) {
1304afb2 1545 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1546 } else {
1547 rdp->qs_pending = 0;
1548
1549 /*
1550 * This GP can't end until cpu checks in, so all of our
1551 * callbacks can be processed during the next GP.
1552 */
64db4cff
PM
1553 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1554
d3f6bad3 1555 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1556 }
1557}
1558
1559/*
1560 * Check to see if there is a new grace period of which this CPU
1561 * is not yet aware, and if so, set up local rcu_data state for it.
1562 * Otherwise, see if this CPU has just passed through its first
1563 * quiescent state for this grace period, and record that fact if so.
1564 */
1565static void
1566rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1567{
1568 /* If there is now a new grace period, record and return. */
1569 if (check_for_new_grace_period(rsp, rdp))
1570 return;
1571
1572 /*
1573 * Does this CPU still need to do its part for current grace period?
1574 * If no, return and let the other CPUs do their part as well.
1575 */
1576 if (!rdp->qs_pending)
1577 return;
1578
1579 /*
1580 * Was there a quiescent state since the beginning of the grace
1581 * period? If no, then exit and wait for the next call.
1582 */
e4cc1f22 1583 if (!rdp->passed_quiesce)
64db4cff
PM
1584 return;
1585
d3f6bad3
PM
1586 /*
1587 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1588 * judge of that).
1589 */
d7d6a11e 1590 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1591}
1592
1593#ifdef CONFIG_HOTPLUG_CPU
1594
e74f4c45 1595/*
b1420f1c
PM
1596 * Send the specified CPU's RCU callbacks to the orphanage. The
1597 * specified CPU must be offline, and the caller must hold the
1598 * ->onofflock.
e74f4c45 1599 */
b1420f1c
PM
1600static void
1601rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1602 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1603{
b1420f1c
PM
1604 /*
1605 * Orphan the callbacks. First adjust the counts. This is safe
1606 * because ->onofflock excludes _rcu_barrier()'s adoption of
1607 * the callbacks, thus no memory barrier is required.
1608 */
a50c3af9 1609 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1610 rsp->qlen_lazy += rdp->qlen_lazy;
1611 rsp->qlen += rdp->qlen;
1612 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1613 rdp->qlen_lazy = 0;
1d1fb395 1614 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1615 }
1616
1617 /*
b1420f1c
PM
1618 * Next, move those callbacks still needing a grace period to
1619 * the orphanage, where some other CPU will pick them up.
1620 * Some of the callbacks might have gone partway through a grace
1621 * period, but that is too bad. They get to start over because we
1622 * cannot assume that grace periods are synchronized across CPUs.
1623 * We don't bother updating the ->nxttail[] array yet, instead
1624 * we just reset the whole thing later on.
a50c3af9 1625 */
b1420f1c
PM
1626 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1627 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1628 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1629 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1630 }
1631
1632 /*
b1420f1c
PM
1633 * Then move the ready-to-invoke callbacks to the orphanage,
1634 * where some other CPU will pick them up. These will not be
1635 * required to pass though another grace period: They are done.
a50c3af9 1636 */
e5601400 1637 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1638 *rsp->orphan_donetail = rdp->nxtlist;
1639 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1640 }
e74f4c45 1641
b1420f1c 1642 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1643 init_callback_list(rdp);
b1420f1c
PM
1644}
1645
1646/*
1647 * Adopt the RCU callbacks from the specified rcu_state structure's
1648 * orphanage. The caller must hold the ->onofflock.
1649 */
1650static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1651{
1652 int i;
1653 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1654
b1420f1c
PM
1655 /* Do the accounting first. */
1656 rdp->qlen_lazy += rsp->qlen_lazy;
1657 rdp->qlen += rsp->qlen;
1658 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1659 if (rsp->qlen_lazy != rsp->qlen)
1660 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1661 rsp->qlen_lazy = 0;
1662 rsp->qlen = 0;
1663
1664 /*
1665 * We do not need a memory barrier here because the only way we
1666 * can get here if there is an rcu_barrier() in flight is if
1667 * we are the task doing the rcu_barrier().
1668 */
1669
1670 /* First adopt the ready-to-invoke callbacks. */
1671 if (rsp->orphan_donelist != NULL) {
1672 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1673 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1674 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1675 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1676 rdp->nxttail[i] = rsp->orphan_donetail;
1677 rsp->orphan_donelist = NULL;
1678 rsp->orphan_donetail = &rsp->orphan_donelist;
1679 }
1680
1681 /* And then adopt the callbacks that still need a grace period. */
1682 if (rsp->orphan_nxtlist != NULL) {
1683 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1684 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1685 rsp->orphan_nxtlist = NULL;
1686 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1687 }
1688}
1689
1690/*
1691 * Trace the fact that this CPU is going offline.
1692 */
1693static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1694{
1695 RCU_TRACE(unsigned long mask);
1696 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1697 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1698
1699 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1700 trace_rcu_grace_period(rsp->name,
1701 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1702 "cpuofl");
64db4cff
PM
1703}
1704
1705/*
e5601400 1706 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1707 * this fact from process context. Do the remainder of the cleanup,
1708 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1709 * adopting them. There can only be one CPU hotplug operation at a time,
1710 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1711 */
e5601400 1712static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1713{
2036d94a
PM
1714 unsigned long flags;
1715 unsigned long mask;
1716 int need_report = 0;
e5601400 1717 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1718 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1719
2036d94a 1720 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1721 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1722
b1420f1c 1723 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1724
1725 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1726 mutex_lock(&rsp->onoff_mutex);
2036d94a
PM
1727 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1728
b1420f1c
PM
1729 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1730 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1731 rcu_adopt_orphan_cbs(rsp);
1732
2036d94a
PM
1733 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1734 mask = rdp->grpmask; /* rnp->grplo is constant. */
1735 do {
1736 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1737 rnp->qsmaskinit &= ~mask;
1738 if (rnp->qsmaskinit != 0) {
1739 if (rnp != rdp->mynode)
1740 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1741 break;
1742 }
1743 if (rnp == rdp->mynode)
1744 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1745 else
1746 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1747 mask = rnp->grpmask;
1748 rnp = rnp->parent;
1749 } while (rnp != NULL);
1750
1751 /*
1752 * We still hold the leaf rcu_node structure lock here, and
1753 * irqs are still disabled. The reason for this subterfuge is
1754 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1755 * held leads to deadlock.
1756 */
1757 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1758 rnp = rdp->mynode;
1759 if (need_report & RCU_OFL_TASKS_NORM_GP)
1760 rcu_report_unblock_qs_rnp(rnp, flags);
1761 else
1762 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1763 if (need_report & RCU_OFL_TASKS_EXP_GP)
1764 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1765 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1766 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1767 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1768 init_callback_list(rdp);
1769 /* Disallow further callbacks on this CPU. */
1770 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1771 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1772}
1773
1774#else /* #ifdef CONFIG_HOTPLUG_CPU */
1775
e5601400 1776static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1777{
1778}
1779
e5601400 1780static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1781{
1782}
1783
1784#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1785
1786/*
1787 * Invoke any RCU callbacks that have made it to the end of their grace
1788 * period. Thottle as specified by rdp->blimit.
1789 */
37c72e56 1790static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1791{
1792 unsigned long flags;
1793 struct rcu_head *next, *list, **tail;
878d7439
ED
1794 long bl, count, count_lazy;
1795 int i;
64db4cff
PM
1796
1797 /* If no callbacks are ready, just return.*/
29c00b4a 1798 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1799 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1800 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1801 need_resched(), is_idle_task(current),
1802 rcu_is_callbacks_kthread());
64db4cff 1803 return;
29c00b4a 1804 }
64db4cff
PM
1805
1806 /*
1807 * Extract the list of ready callbacks, disabling to prevent
1808 * races with call_rcu() from interrupt handlers.
1809 */
1810 local_irq_save(flags);
8146c4e2 1811 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1812 bl = rdp->blimit;
486e2593 1813 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1814 list = rdp->nxtlist;
1815 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1816 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1817 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1818 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1819 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1820 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1821 local_irq_restore(flags);
1822
1823 /* Invoke callbacks. */
486e2593 1824 count = count_lazy = 0;
64db4cff
PM
1825 while (list) {
1826 next = list->next;
1827 prefetch(next);
551d55a9 1828 debug_rcu_head_unqueue(list);
486e2593
PM
1829 if (__rcu_reclaim(rsp->name, list))
1830 count_lazy++;
64db4cff 1831 list = next;
dff1672d
PM
1832 /* Stop only if limit reached and CPU has something to do. */
1833 if (++count >= bl &&
1834 (need_resched() ||
1835 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1836 break;
1837 }
1838
1839 local_irq_save(flags);
4968c300
PM
1840 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1841 is_idle_task(current),
1842 rcu_is_callbacks_kthread());
64db4cff
PM
1843
1844 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1845 if (list != NULL) {
1846 *tail = rdp->nxtlist;
1847 rdp->nxtlist = list;
b41772ab
PM
1848 for (i = 0; i < RCU_NEXT_SIZE; i++)
1849 if (&rdp->nxtlist == rdp->nxttail[i])
1850 rdp->nxttail[i] = tail;
64db4cff
PM
1851 else
1852 break;
1853 }
b1420f1c
PM
1854 smp_mb(); /* List handling before counting for rcu_barrier(). */
1855 rdp->qlen_lazy -= count_lazy;
1d1fb395 1856 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1857 rdp->n_cbs_invoked += count;
64db4cff
PM
1858
1859 /* Reinstate batch limit if we have worked down the excess. */
1860 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1861 rdp->blimit = blimit;
1862
37c72e56
PM
1863 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1864 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1865 rdp->qlen_last_fqs_check = 0;
1866 rdp->n_force_qs_snap = rsp->n_force_qs;
1867 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1868 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1869 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1870
64db4cff
PM
1871 local_irq_restore(flags);
1872
e0f23060 1873 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1874 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1875 invoke_rcu_core();
64db4cff
PM
1876}
1877
1878/*
1879 * Check to see if this CPU is in a non-context-switch quiescent state
1880 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1881 * Also schedule RCU core processing.
64db4cff 1882 *
9b2e4f18 1883 * This function must be called from hardirq context. It is normally
64db4cff
PM
1884 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1885 * false, there is no point in invoking rcu_check_callbacks().
1886 */
1887void rcu_check_callbacks(int cpu, int user)
1888{
300df91c 1889 trace_rcu_utilization("Start scheduler-tick");
a858af28 1890 increment_cpu_stall_ticks();
9b2e4f18 1891 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1892
1893 /*
1894 * Get here if this CPU took its interrupt from user
1895 * mode or from the idle loop, and if this is not a
1896 * nested interrupt. In this case, the CPU is in
d6714c22 1897 * a quiescent state, so note it.
64db4cff
PM
1898 *
1899 * No memory barrier is required here because both
d6714c22
PM
1900 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1901 * variables that other CPUs neither access nor modify,
1902 * at least not while the corresponding CPU is online.
64db4cff
PM
1903 */
1904
d6714c22
PM
1905 rcu_sched_qs(cpu);
1906 rcu_bh_qs(cpu);
64db4cff
PM
1907
1908 } else if (!in_softirq()) {
1909
1910 /*
1911 * Get here if this CPU did not take its interrupt from
1912 * softirq, in other words, if it is not interrupting
1913 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1914 * critical section, so note it.
64db4cff
PM
1915 */
1916
d6714c22 1917 rcu_bh_qs(cpu);
64db4cff 1918 }
f41d911f 1919 rcu_preempt_check_callbacks(cpu);
d21670ac 1920 if (rcu_pending(cpu))
a46e0899 1921 invoke_rcu_core();
300df91c 1922 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1923}
1924
64db4cff
PM
1925/*
1926 * Scan the leaf rcu_node structures, processing dyntick state for any that
1927 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1928 * Also initiate boosting for any threads blocked on the root rcu_node.
1929 *
ee47eb9f 1930 * The caller must have suppressed start of new grace periods.
64db4cff 1931 */
45f014c5 1932static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1933{
1934 unsigned long bit;
1935 int cpu;
1936 unsigned long flags;
1937 unsigned long mask;
a0b6c9a7 1938 struct rcu_node *rnp;
64db4cff 1939
a0b6c9a7 1940 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 1941 cond_resched();
64db4cff 1942 mask = 0;
1304afb2 1943 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1944 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1945 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1946 return;
64db4cff 1947 }
a0b6c9a7 1948 if (rnp->qsmask == 0) {
1217ed1b 1949 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1950 continue;
1951 }
a0b6c9a7 1952 cpu = rnp->grplo;
64db4cff 1953 bit = 1;
a0b6c9a7 1954 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1955 if ((rnp->qsmask & bit) != 0 &&
1956 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1957 mask |= bit;
1958 }
45f014c5 1959 if (mask != 0) {
64db4cff 1960
d3f6bad3
PM
1961 /* rcu_report_qs_rnp() releases rnp->lock. */
1962 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1963 continue;
1964 }
1304afb2 1965 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1966 }
27f4d280 1967 rnp = rcu_get_root(rsp);
1217ed1b
PM
1968 if (rnp->qsmask == 0) {
1969 raw_spin_lock_irqsave(&rnp->lock, flags);
1970 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1971 }
64db4cff
PM
1972}
1973
1974/*
1975 * Force quiescent states on reluctant CPUs, and also detect which
1976 * CPUs are in dyntick-idle mode.
1977 */
4cdfc175 1978static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
1979{
1980 unsigned long flags;
394f2769
PM
1981 bool ret;
1982 struct rcu_node *rnp;
1983 struct rcu_node *rnp_old = NULL;
1984
1985 /* Funnel through hierarchy to reduce memory contention. */
1986 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1987 for (; rnp != NULL; rnp = rnp->parent) {
1988 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1989 !raw_spin_trylock(&rnp->fqslock);
1990 if (rnp_old != NULL)
1991 raw_spin_unlock(&rnp_old->fqslock);
1992 if (ret) {
1993 rsp->n_force_qs_lh++;
1994 return;
1995 }
1996 rnp_old = rnp;
1997 }
1998 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 1999
394f2769
PM
2000 /* Reached the root of the rcu_node tree, acquire lock. */
2001 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2002 raw_spin_unlock(&rnp_old->fqslock);
2003 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2004 rsp->n_force_qs_lh++;
2005 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2006 return; /* Someone beat us to it. */
46a1e34e 2007 }
4cdfc175 2008 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2009 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2010 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2011}
2012
64db4cff 2013/*
e0f23060
PM
2014 * This does the RCU core processing work for the specified rcu_state
2015 * and rcu_data structures. This may be called only from the CPU to
2016 * whom the rdp belongs.
64db4cff
PM
2017 */
2018static void
1bca8cf1 2019__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2020{
2021 unsigned long flags;
1bca8cf1 2022 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2023
2e597558
PM
2024 WARN_ON_ONCE(rdp->beenonline == 0);
2025
64db4cff
PM
2026 /*
2027 * Advance callbacks in response to end of earlier grace
2028 * period that some other CPU ended.
2029 */
2030 rcu_process_gp_end(rsp, rdp);
2031
2032 /* Update RCU state based on any recent quiescent states. */
2033 rcu_check_quiescent_state(rsp, rdp);
2034
2035 /* Does this CPU require a not-yet-started grace period? */
2036 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 2037 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
2038 rcu_start_gp(rsp, flags); /* releases above lock */
2039 }
2040
2041 /* If there are callbacks ready, invoke them. */
09223371 2042 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2043 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2044}
2045
64db4cff 2046/*
e0f23060 2047 * Do RCU core processing for the current CPU.
64db4cff 2048 */
09223371 2049static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2050{
6ce75a23
PM
2051 struct rcu_state *rsp;
2052
bfa00b4c
PM
2053 if (cpu_is_offline(smp_processor_id()))
2054 return;
300df91c 2055 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
2056 for_each_rcu_flavor(rsp)
2057 __rcu_process_callbacks(rsp);
300df91c 2058 trace_rcu_utilization("End RCU core");
64db4cff
PM
2059}
2060
a26ac245 2061/*
e0f23060
PM
2062 * Schedule RCU callback invocation. If the specified type of RCU
2063 * does not support RCU priority boosting, just do a direct call,
2064 * otherwise wake up the per-CPU kernel kthread. Note that because we
2065 * are running on the current CPU with interrupts disabled, the
2066 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2067 */
a46e0899 2068static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2069{
b0d30417
PM
2070 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2071 return;
a46e0899
PM
2072 if (likely(!rsp->boost)) {
2073 rcu_do_batch(rsp, rdp);
a26ac245
PM
2074 return;
2075 }
a46e0899 2076 invoke_rcu_callbacks_kthread();
a26ac245
PM
2077}
2078
a46e0899 2079static void invoke_rcu_core(void)
09223371
SL
2080{
2081 raise_softirq(RCU_SOFTIRQ);
2082}
2083
29154c57
PM
2084/*
2085 * Handle any core-RCU processing required by a call_rcu() invocation.
2086 */
2087static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2088 struct rcu_head *head, unsigned long flags)
64db4cff 2089{
62fde6ed
PM
2090 /*
2091 * If called from an extended quiescent state, invoke the RCU
2092 * core in order to force a re-evaluation of RCU's idleness.
2093 */
a16b7a69 2094 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2095 invoke_rcu_core();
2096
a16b7a69 2097 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2098 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2099 return;
64db4cff 2100
37c72e56
PM
2101 /*
2102 * Force the grace period if too many callbacks or too long waiting.
2103 * Enforce hysteresis, and don't invoke force_quiescent_state()
2104 * if some other CPU has recently done so. Also, don't bother
2105 * invoking force_quiescent_state() if the newly enqueued callback
2106 * is the only one waiting for a grace period to complete.
2107 */
2655d57e 2108 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2109
2110 /* Are we ignoring a completed grace period? */
2111 rcu_process_gp_end(rsp, rdp);
2112 check_for_new_grace_period(rsp, rdp);
2113
2114 /* Start a new grace period if one not already started. */
2115 if (!rcu_gp_in_progress(rsp)) {
2116 unsigned long nestflag;
2117 struct rcu_node *rnp_root = rcu_get_root(rsp);
2118
2119 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2120 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2121 } else {
2122 /* Give the grace period a kick. */
2123 rdp->blimit = LONG_MAX;
2124 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2125 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2126 force_quiescent_state(rsp);
b52573d2
PM
2127 rdp->n_force_qs_snap = rsp->n_force_qs;
2128 rdp->qlen_last_fqs_check = rdp->qlen;
2129 }
4cdfc175 2130 }
29154c57
PM
2131}
2132
64db4cff
PM
2133static void
2134__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 2135 struct rcu_state *rsp, bool lazy)
64db4cff
PM
2136{
2137 unsigned long flags;
2138 struct rcu_data *rdp;
2139
0bb7b59d 2140 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2141 debug_rcu_head_queue(head);
64db4cff
PM
2142 head->func = func;
2143 head->next = NULL;
2144
64db4cff
PM
2145 /*
2146 * Opportunistically note grace-period endings and beginnings.
2147 * Note that we might see a beginning right after we see an
2148 * end, but never vice versa, since this CPU has to pass through
2149 * a quiescent state betweentimes.
2150 */
2151 local_irq_save(flags);
394f99a9 2152 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2153
2154 /* Add the callback to our list. */
0d8ee37e
PM
2155 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2156 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2157 WARN_ON_ONCE(1);
2158 local_irq_restore(flags);
2159 return;
2160 }
29154c57 2161 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2162 if (lazy)
2163 rdp->qlen_lazy++;
c57afe80
PM
2164 else
2165 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2166 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2167 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2168 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2169
d4c08f2a
PM
2170 if (__is_kfree_rcu_offset((unsigned long)func))
2171 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2172 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2173 else
486e2593 2174 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2175
29154c57
PM
2176 /* Go handle any RCU core processing required. */
2177 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2178 local_irq_restore(flags);
2179}
2180
2181/*
d6714c22 2182 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2183 */
d6714c22 2184void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2185{
486e2593 2186 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 2187}
d6714c22 2188EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2189
2190/*
486e2593 2191 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2192 */
2193void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2194{
486e2593 2195 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
2196}
2197EXPORT_SYMBOL_GPL(call_rcu_bh);
2198
6d813391
PM
2199/*
2200 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2201 * any blocking grace-period wait automatically implies a grace period
2202 * if there is only one CPU online at any point time during execution
2203 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2204 * occasionally incorrectly indicate that there are multiple CPUs online
2205 * when there was in fact only one the whole time, as this just adds
2206 * some overhead: RCU still operates correctly.
6d813391
PM
2207 */
2208static inline int rcu_blocking_is_gp(void)
2209{
95f0c1de
PM
2210 int ret;
2211
6d813391 2212 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2213 preempt_disable();
2214 ret = num_online_cpus() <= 1;
2215 preempt_enable();
2216 return ret;
6d813391
PM
2217}
2218
6ebb237b
PM
2219/**
2220 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2221 *
2222 * Control will return to the caller some time after a full rcu-sched
2223 * grace period has elapsed, in other words after all currently executing
2224 * rcu-sched read-side critical sections have completed. These read-side
2225 * critical sections are delimited by rcu_read_lock_sched() and
2226 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2227 * local_irq_disable(), and so on may be used in place of
2228 * rcu_read_lock_sched().
2229 *
2230 * This means that all preempt_disable code sequences, including NMI and
2231 * hardware-interrupt handlers, in progress on entry will have completed
2232 * before this primitive returns. However, this does not guarantee that
2233 * softirq handlers will have completed, since in some kernels, these
2234 * handlers can run in process context, and can block.
2235 *
2236 * This primitive provides the guarantees made by the (now removed)
2237 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2238 * guarantees that rcu_read_lock() sections will have completed.
2239 * In "classic RCU", these two guarantees happen to be one and
2240 * the same, but can differ in realtime RCU implementations.
2241 */
2242void synchronize_sched(void)
2243{
fe15d706
PM
2244 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2245 !lock_is_held(&rcu_lock_map) &&
2246 !lock_is_held(&rcu_sched_lock_map),
2247 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2248 if (rcu_blocking_is_gp())
2249 return;
2c42818e 2250 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2251}
2252EXPORT_SYMBOL_GPL(synchronize_sched);
2253
2254/**
2255 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2256 *
2257 * Control will return to the caller some time after a full rcu_bh grace
2258 * period has elapsed, in other words after all currently executing rcu_bh
2259 * read-side critical sections have completed. RCU read-side critical
2260 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2261 * and may be nested.
2262 */
2263void synchronize_rcu_bh(void)
2264{
fe15d706
PM
2265 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2266 !lock_is_held(&rcu_lock_map) &&
2267 !lock_is_held(&rcu_sched_lock_map),
2268 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2269 if (rcu_blocking_is_gp())
2270 return;
2c42818e 2271 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2272}
2273EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2274
3d3b7db0
PM
2275static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2276static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2277
2278static int synchronize_sched_expedited_cpu_stop(void *data)
2279{
2280 /*
2281 * There must be a full memory barrier on each affected CPU
2282 * between the time that try_stop_cpus() is called and the
2283 * time that it returns.
2284 *
2285 * In the current initial implementation of cpu_stop, the
2286 * above condition is already met when the control reaches
2287 * this point and the following smp_mb() is not strictly
2288 * necessary. Do smp_mb() anyway for documentation and
2289 * robustness against future implementation changes.
2290 */
2291 smp_mb(); /* See above comment block. */
2292 return 0;
2293}
2294
236fefaf
PM
2295/**
2296 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2297 *
2298 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2299 * approach to force the grace period to end quickly. This consumes
2300 * significant time on all CPUs and is unfriendly to real-time workloads,
2301 * so is thus not recommended for any sort of common-case code. In fact,
2302 * if you are using synchronize_sched_expedited() in a loop, please
2303 * restructure your code to batch your updates, and then use a single
2304 * synchronize_sched() instead.
3d3b7db0 2305 *
236fefaf
PM
2306 * Note that it is illegal to call this function while holding any lock
2307 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2308 * to call this function from a CPU-hotplug notifier. Failing to observe
2309 * these restriction will result in deadlock.
3d3b7db0
PM
2310 *
2311 * This implementation can be thought of as an application of ticket
2312 * locking to RCU, with sync_sched_expedited_started and
2313 * sync_sched_expedited_done taking on the roles of the halves
2314 * of the ticket-lock word. Each task atomically increments
2315 * sync_sched_expedited_started upon entry, snapshotting the old value,
2316 * then attempts to stop all the CPUs. If this succeeds, then each
2317 * CPU will have executed a context switch, resulting in an RCU-sched
2318 * grace period. We are then done, so we use atomic_cmpxchg() to
2319 * update sync_sched_expedited_done to match our snapshot -- but
2320 * only if someone else has not already advanced past our snapshot.
2321 *
2322 * On the other hand, if try_stop_cpus() fails, we check the value
2323 * of sync_sched_expedited_done. If it has advanced past our
2324 * initial snapshot, then someone else must have forced a grace period
2325 * some time after we took our snapshot. In this case, our work is
2326 * done for us, and we can simply return. Otherwise, we try again,
2327 * but keep our initial snapshot for purposes of checking for someone
2328 * doing our work for us.
2329 *
2330 * If we fail too many times in a row, we fall back to synchronize_sched().
2331 */
2332void synchronize_sched_expedited(void)
2333{
2334 int firstsnap, s, snap, trycount = 0;
2335
2336 /* Note that atomic_inc_return() implies full memory barrier. */
2337 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2338 get_online_cpus();
1cc85961 2339 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2340
2341 /*
2342 * Each pass through the following loop attempts to force a
2343 * context switch on each CPU.
2344 */
2345 while (try_stop_cpus(cpu_online_mask,
2346 synchronize_sched_expedited_cpu_stop,
2347 NULL) == -EAGAIN) {
2348 put_online_cpus();
2349
2350 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2351 if (trycount++ < 10) {
3d3b7db0 2352 udelay(trycount * num_online_cpus());
c701d5d9 2353 } else {
3d3b7db0
PM
2354 synchronize_sched();
2355 return;
2356 }
2357
2358 /* Check to see if someone else did our work for us. */
2359 s = atomic_read(&sync_sched_expedited_done);
2360 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2361 smp_mb(); /* ensure test happens before caller kfree */
2362 return;
2363 }
2364
2365 /*
2366 * Refetching sync_sched_expedited_started allows later
2367 * callers to piggyback on our grace period. We subtract
2368 * 1 to get the same token that the last incrementer got.
2369 * We retry after they started, so our grace period works
2370 * for them, and they started after our first try, so their
2371 * grace period works for us.
2372 */
2373 get_online_cpus();
2374 snap = atomic_read(&sync_sched_expedited_started);
2375 smp_mb(); /* ensure read is before try_stop_cpus(). */
2376 }
2377
2378 /*
2379 * Everyone up to our most recent fetch is covered by our grace
2380 * period. Update the counter, but only if our work is still
2381 * relevant -- which it won't be if someone who started later
2382 * than we did beat us to the punch.
2383 */
2384 do {
2385 s = atomic_read(&sync_sched_expedited_done);
2386 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2387 smp_mb(); /* ensure test happens before caller kfree */
2388 break;
2389 }
2390 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2391
2392 put_online_cpus();
2393}
2394EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2395
64db4cff
PM
2396/*
2397 * Check to see if there is any immediate RCU-related work to be done
2398 * by the current CPU, for the specified type of RCU, returning 1 if so.
2399 * The checks are in order of increasing expense: checks that can be
2400 * carried out against CPU-local state are performed first. However,
2401 * we must check for CPU stalls first, else we might not get a chance.
2402 */
2403static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2404{
2f51f988
PM
2405 struct rcu_node *rnp = rdp->mynode;
2406
64db4cff
PM
2407 rdp->n_rcu_pending++;
2408
2409 /* Check for CPU stalls, if enabled. */
2410 check_cpu_stall(rsp, rdp);
2411
2412 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2413 if (rcu_scheduler_fully_active &&
2414 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2415 rdp->n_rp_qs_pending++;
e4cc1f22 2416 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2417 rdp->n_rp_report_qs++;
64db4cff 2418 return 1;
7ba5c840 2419 }
64db4cff
PM
2420
2421 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2422 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2423 rdp->n_rp_cb_ready++;
64db4cff 2424 return 1;
7ba5c840 2425 }
64db4cff
PM
2426
2427 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2428 if (cpu_needs_another_gp(rsp, rdp)) {
2429 rdp->n_rp_cpu_needs_gp++;
64db4cff 2430 return 1;
7ba5c840 2431 }
64db4cff
PM
2432
2433 /* Has another RCU grace period completed? */
2f51f988 2434 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2435 rdp->n_rp_gp_completed++;
64db4cff 2436 return 1;
7ba5c840 2437 }
64db4cff
PM
2438
2439 /* Has a new RCU grace period started? */
2f51f988 2440 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2441 rdp->n_rp_gp_started++;
64db4cff 2442 return 1;
7ba5c840 2443 }
64db4cff 2444
64db4cff 2445 /* nothing to do */
7ba5c840 2446 rdp->n_rp_need_nothing++;
64db4cff
PM
2447 return 0;
2448}
2449
2450/*
2451 * Check to see if there is any immediate RCU-related work to be done
2452 * by the current CPU, returning 1 if so. This function is part of the
2453 * RCU implementation; it is -not- an exported member of the RCU API.
2454 */
a157229c 2455static int rcu_pending(int cpu)
64db4cff 2456{
6ce75a23
PM
2457 struct rcu_state *rsp;
2458
2459 for_each_rcu_flavor(rsp)
2460 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2461 return 1;
2462 return 0;
64db4cff
PM
2463}
2464
2465/*
2466 * Check to see if any future RCU-related work will need to be done
2467 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2468 * 1 if so.
64db4cff 2469 */
aea1b35e 2470static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2471{
6ce75a23
PM
2472 struct rcu_state *rsp;
2473
64db4cff 2474 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2475 for_each_rcu_flavor(rsp)
2476 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2477 return 1;
2478 return 0;
64db4cff
PM
2479}
2480
a83eff0a
PM
2481/*
2482 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2483 * the compiler is expected to optimize this away.
2484 */
2485static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2486 int cpu, unsigned long done)
2487{
2488 trace_rcu_barrier(rsp->name, s, cpu,
2489 atomic_read(&rsp->barrier_cpu_count), done);
2490}
2491
b1420f1c
PM
2492/*
2493 * RCU callback function for _rcu_barrier(). If we are last, wake
2494 * up the task executing _rcu_barrier().
2495 */
24ebbca8 2496static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2497{
24ebbca8
PM
2498 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2499 struct rcu_state *rsp = rdp->rsp;
2500
a83eff0a
PM
2501 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2502 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2503 complete(&rsp->barrier_completion);
a83eff0a
PM
2504 } else {
2505 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2506 }
d0ec774c
PM
2507}
2508
2509/*
2510 * Called with preemption disabled, and from cross-cpu IRQ context.
2511 */
2512static void rcu_barrier_func(void *type)
2513{
037b64ed 2514 struct rcu_state *rsp = type;
06668efa 2515 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2516
a83eff0a 2517 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2518 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2519 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2520}
2521
d0ec774c
PM
2522/*
2523 * Orchestrate the specified type of RCU barrier, waiting for all
2524 * RCU callbacks of the specified type to complete.
2525 */
037b64ed 2526static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2527{
b1420f1c 2528 int cpu;
b1420f1c 2529 struct rcu_data *rdp;
cf3a9c48
PM
2530 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2531 unsigned long snap_done;
b1420f1c 2532
a83eff0a 2533 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2534
e74f4c45 2535 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2536 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2537
cf3a9c48
PM
2538 /*
2539 * Ensure that all prior references, including to ->n_barrier_done,
2540 * are ordered before the _rcu_barrier() machinery.
2541 */
2542 smp_mb(); /* See above block comment. */
2543
2544 /*
2545 * Recheck ->n_barrier_done to see if others did our work for us.
2546 * This means checking ->n_barrier_done for an even-to-odd-to-even
2547 * transition. The "if" expression below therefore rounds the old
2548 * value up to the next even number and adds two before comparing.
2549 */
2550 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2551 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2552 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2553 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2554 smp_mb(); /* caller's subsequent code after above check. */
2555 mutex_unlock(&rsp->barrier_mutex);
2556 return;
2557 }
2558
2559 /*
2560 * Increment ->n_barrier_done to avoid duplicate work. Use
2561 * ACCESS_ONCE() to prevent the compiler from speculating
2562 * the increment to precede the early-exit check.
2563 */
2564 ACCESS_ONCE(rsp->n_barrier_done)++;
2565 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2566 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2567 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2568
d0ec774c 2569 /*
b1420f1c
PM
2570 * Initialize the count to one rather than to zero in order to
2571 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2572 * (or preemption of this task). Exclude CPU-hotplug operations
2573 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2574 */
7db74df8 2575 init_completion(&rsp->barrier_completion);
24ebbca8 2576 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2577 get_online_cpus();
b1420f1c
PM
2578
2579 /*
1331e7a1
PM
2580 * Force each CPU with callbacks to register a new callback.
2581 * When that callback is invoked, we will know that all of the
2582 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2583 */
1331e7a1 2584 for_each_online_cpu(cpu) {
b1420f1c 2585 rdp = per_cpu_ptr(rsp->rda, cpu);
1331e7a1 2586 if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2587 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2588 rsp->n_barrier_done);
037b64ed 2589 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2590 } else {
a83eff0a
PM
2591 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2592 rsp->n_barrier_done);
b1420f1c
PM
2593 }
2594 }
1331e7a1 2595 put_online_cpus();
b1420f1c
PM
2596
2597 /*
2598 * Now that we have an rcu_barrier_callback() callback on each
2599 * CPU, and thus each counted, remove the initial count.
2600 */
24ebbca8 2601 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2602 complete(&rsp->barrier_completion);
b1420f1c 2603
cf3a9c48
PM
2604 /* Increment ->n_barrier_done to prevent duplicate work. */
2605 smp_mb(); /* Keep increment after above mechanism. */
2606 ACCESS_ONCE(rsp->n_barrier_done)++;
2607 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2608 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2609 smp_mb(); /* Keep increment before caller's subsequent code. */
2610
b1420f1c 2611 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2612 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2613
2614 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2615 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2616}
d0ec774c
PM
2617
2618/**
2619 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2620 */
2621void rcu_barrier_bh(void)
2622{
037b64ed 2623 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2624}
2625EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2626
2627/**
2628 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2629 */
2630void rcu_barrier_sched(void)
2631{
037b64ed 2632 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2633}
2634EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2635
64db4cff 2636/*
27569620 2637 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2638 */
27569620
PM
2639static void __init
2640rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2641{
2642 unsigned long flags;
394f99a9 2643 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2644 struct rcu_node *rnp = rcu_get_root(rsp);
2645
2646 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2647 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2648 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2649 init_callback_list(rdp);
486e2593 2650 rdp->qlen_lazy = 0;
1d1fb395 2651 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2652 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2653 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2654 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
c5d900bf
FW
2655#ifdef CONFIG_RCU_USER_QS
2656 WARN_ON_ONCE(rdp->dynticks->in_user);
2657#endif
27569620 2658 rdp->cpu = cpu;
d4c08f2a 2659 rdp->rsp = rsp;
1304afb2 2660 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2661}
2662
2663/*
2664 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2665 * offline event can be happening at a given time. Note also that we
2666 * can accept some slop in the rsp->completed access due to the fact
2667 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2668 */
e4fa4c97 2669static void __cpuinit
6cc68793 2670rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2671{
2672 unsigned long flags;
64db4cff 2673 unsigned long mask;
394f99a9 2674 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2675 struct rcu_node *rnp = rcu_get_root(rsp);
2676
a4fbe35a
PM
2677 /* Exclude new grace periods. */
2678 mutex_lock(&rsp->onoff_mutex);
2679
64db4cff 2680 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2681 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2682 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2683 rdp->preemptible = preemptible;
37c72e56
PM
2684 rdp->qlen_last_fqs_check = 0;
2685 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2686 rdp->blimit = blimit;
0d8ee37e 2687 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2688 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2689 atomic_set(&rdp->dynticks->dynticks,
2690 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2691 rcu_prepare_for_idle_init(cpu);
1304afb2 2692 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2693
64db4cff
PM
2694 /* Add CPU to rcu_node bitmasks. */
2695 rnp = rdp->mynode;
2696 mask = rdp->grpmask;
2697 do {
2698 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2699 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2700 rnp->qsmaskinit |= mask;
2701 mask = rnp->grpmask;
d09b62df 2702 if (rnp == rdp->mynode) {
06ae115a
PM
2703 /*
2704 * If there is a grace period in progress, we will
2705 * set up to wait for it next time we run the
2706 * RCU core code.
2707 */
2708 rdp->gpnum = rnp->completed;
d09b62df 2709 rdp->completed = rnp->completed;
06ae115a
PM
2710 rdp->passed_quiesce = 0;
2711 rdp->qs_pending = 0;
d4c08f2a 2712 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2713 }
1304afb2 2714 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2715 rnp = rnp->parent;
2716 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2717 local_irq_restore(flags);
64db4cff 2718
a4fbe35a 2719 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2720}
2721
d72bce0e 2722static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2723{
6ce75a23
PM
2724 struct rcu_state *rsp;
2725
2726 for_each_rcu_flavor(rsp)
2727 rcu_init_percpu_data(cpu, rsp,
2728 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2729}
2730
2731/*
f41d911f 2732 * Handle CPU online/offline notification events.
64db4cff 2733 */
9f680ab4
PM
2734static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2735 unsigned long action, void *hcpu)
64db4cff
PM
2736{
2737 long cpu = (long)hcpu;
27f4d280 2738 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2739 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2740 struct rcu_state *rsp;
64db4cff 2741
300df91c 2742 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2743 switch (action) {
2744 case CPU_UP_PREPARE:
2745 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2746 rcu_prepare_cpu(cpu);
2747 rcu_prepare_kthreads(cpu);
a26ac245
PM
2748 break;
2749 case CPU_ONLINE:
0f962a5e 2750 case CPU_DOWN_FAILED:
5d01bbd1 2751 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2752 break;
2753 case CPU_DOWN_PREPARE:
5d01bbd1 2754 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2755 break;
d0ec774c
PM
2756 case CPU_DYING:
2757 case CPU_DYING_FROZEN:
2758 /*
2d999e03
PM
2759 * The whole machine is "stopped" except this CPU, so we can
2760 * touch any data without introducing corruption. We send the
2761 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2762 */
6ce75a23
PM
2763 for_each_rcu_flavor(rsp)
2764 rcu_cleanup_dying_cpu(rsp);
7cb92499 2765 rcu_cleanup_after_idle(cpu);
d0ec774c 2766 break;
64db4cff
PM
2767 case CPU_DEAD:
2768 case CPU_DEAD_FROZEN:
2769 case CPU_UP_CANCELED:
2770 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2771 for_each_rcu_flavor(rsp)
2772 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2773 break;
2774 default:
2775 break;
2776 }
300df91c 2777 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2778 return NOTIFY_OK;
2779}
2780
b3dbec76
PM
2781/*
2782 * Spawn the kthread that handles this RCU flavor's grace periods.
2783 */
2784static int __init rcu_spawn_gp_kthread(void)
2785{
2786 unsigned long flags;
2787 struct rcu_node *rnp;
2788 struct rcu_state *rsp;
2789 struct task_struct *t;
2790
2791 for_each_rcu_flavor(rsp) {
2792 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2793 BUG_ON(IS_ERR(t));
2794 rnp = rcu_get_root(rsp);
2795 raw_spin_lock_irqsave(&rnp->lock, flags);
2796 rsp->gp_kthread = t;
2797 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2798 }
2799 return 0;
2800}
2801early_initcall(rcu_spawn_gp_kthread);
2802
bbad9379
PM
2803/*
2804 * This function is invoked towards the end of the scheduler's initialization
2805 * process. Before this is called, the idle task might contain
2806 * RCU read-side critical sections (during which time, this idle
2807 * task is booting the system). After this function is called, the
2808 * idle tasks are prohibited from containing RCU read-side critical
2809 * sections. This function also enables RCU lockdep checking.
2810 */
2811void rcu_scheduler_starting(void)
2812{
2813 WARN_ON(num_online_cpus() != 1);
2814 WARN_ON(nr_context_switches() > 0);
2815 rcu_scheduler_active = 1;
2816}
2817
64db4cff
PM
2818/*
2819 * Compute the per-level fanout, either using the exact fanout specified
2820 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2821 */
2822#ifdef CONFIG_RCU_FANOUT_EXACT
2823static void __init rcu_init_levelspread(struct rcu_state *rsp)
2824{
2825 int i;
2826
f885b7f2 2827 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2828 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2829 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2830}
2831#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2832static void __init rcu_init_levelspread(struct rcu_state *rsp)
2833{
2834 int ccur;
2835 int cprv;
2836 int i;
2837
4dbd6bb3 2838 cprv = nr_cpu_ids;
f885b7f2 2839 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2840 ccur = rsp->levelcnt[i];
2841 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2842 cprv = ccur;
2843 }
2844}
2845#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2846
2847/*
2848 * Helper function for rcu_init() that initializes one rcu_state structure.
2849 */
394f99a9
LJ
2850static void __init rcu_init_one(struct rcu_state *rsp,
2851 struct rcu_data __percpu *rda)
64db4cff 2852{
394f2769
PM
2853 static char *buf[] = { "rcu_node_0",
2854 "rcu_node_1",
2855 "rcu_node_2",
2856 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2857 static char *fqs[] = { "rcu_node_fqs_0",
2858 "rcu_node_fqs_1",
2859 "rcu_node_fqs_2",
2860 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2861 int cpustride = 1;
2862 int i;
2863 int j;
2864 struct rcu_node *rnp;
2865
b6407e86
PM
2866 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2867
64db4cff
PM
2868 /* Initialize the level-tracking arrays. */
2869
f885b7f2
PM
2870 for (i = 0; i < rcu_num_lvls; i++)
2871 rsp->levelcnt[i] = num_rcu_lvl[i];
2872 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2873 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2874 rcu_init_levelspread(rsp);
2875
2876 /* Initialize the elements themselves, starting from the leaves. */
2877
f885b7f2 2878 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2879 cpustride *= rsp->levelspread[i];
2880 rnp = rsp->level[i];
2881 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2882 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2883 lockdep_set_class_and_name(&rnp->lock,
2884 &rcu_node_class[i], buf[i]);
394f2769
PM
2885 raw_spin_lock_init(&rnp->fqslock);
2886 lockdep_set_class_and_name(&rnp->fqslock,
2887 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
2888 rnp->gpnum = rsp->gpnum;
2889 rnp->completed = rsp->completed;
64db4cff
PM
2890 rnp->qsmask = 0;
2891 rnp->qsmaskinit = 0;
2892 rnp->grplo = j * cpustride;
2893 rnp->grphi = (j + 1) * cpustride - 1;
2894 if (rnp->grphi >= NR_CPUS)
2895 rnp->grphi = NR_CPUS - 1;
2896 if (i == 0) {
2897 rnp->grpnum = 0;
2898 rnp->grpmask = 0;
2899 rnp->parent = NULL;
2900 } else {
2901 rnp->grpnum = j % rsp->levelspread[i - 1];
2902 rnp->grpmask = 1UL << rnp->grpnum;
2903 rnp->parent = rsp->level[i - 1] +
2904 j / rsp->levelspread[i - 1];
2905 }
2906 rnp->level = i;
12f5f524 2907 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2908 }
2909 }
0c34029a 2910
394f99a9 2911 rsp->rda = rda;
b3dbec76 2912 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 2913 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2914 for_each_possible_cpu(i) {
4a90a068 2915 while (i > rnp->grphi)
0c34029a 2916 rnp++;
394f99a9 2917 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2918 rcu_boot_init_percpu_data(i, rsp);
2919 }
6ce75a23 2920 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2921}
2922
f885b7f2
PM
2923/*
2924 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2925 * replace the definitions in rcutree.h because those are needed to size
2926 * the ->node array in the rcu_state structure.
2927 */
2928static void __init rcu_init_geometry(void)
2929{
2930 int i;
2931 int j;
cca6f393 2932 int n = nr_cpu_ids;
f885b7f2
PM
2933 int rcu_capacity[MAX_RCU_LVLS + 1];
2934
2935 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
2936 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2937 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
2938 return;
2939
2940 /*
2941 * Compute number of nodes that can be handled an rcu_node tree
2942 * with the given number of levels. Setting rcu_capacity[0] makes
2943 * some of the arithmetic easier.
2944 */
2945 rcu_capacity[0] = 1;
2946 rcu_capacity[1] = rcu_fanout_leaf;
2947 for (i = 2; i <= MAX_RCU_LVLS; i++)
2948 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2949
2950 /*
2951 * The boot-time rcu_fanout_leaf parameter is only permitted
2952 * to increase the leaf-level fanout, not decrease it. Of course,
2953 * the leaf-level fanout cannot exceed the number of bits in
2954 * the rcu_node masks. Finally, the tree must be able to accommodate
2955 * the configured number of CPUs. Complain and fall back to the
2956 * compile-time values if these limits are exceeded.
2957 */
2958 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2959 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2960 n > rcu_capacity[MAX_RCU_LVLS]) {
2961 WARN_ON(1);
2962 return;
2963 }
2964
2965 /* Calculate the number of rcu_nodes at each level of the tree. */
2966 for (i = 1; i <= MAX_RCU_LVLS; i++)
2967 if (n <= rcu_capacity[i]) {
2968 for (j = 0; j <= i; j++)
2969 num_rcu_lvl[j] =
2970 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2971 rcu_num_lvls = i;
2972 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2973 num_rcu_lvl[j] = 0;
2974 break;
2975 }
2976
2977 /* Calculate the total number of rcu_node structures. */
2978 rcu_num_nodes = 0;
2979 for (i = 0; i <= MAX_RCU_LVLS; i++)
2980 rcu_num_nodes += num_rcu_lvl[i];
2981 rcu_num_nodes -= n;
2982}
2983
9f680ab4 2984void __init rcu_init(void)
64db4cff 2985{
017c4261 2986 int cpu;
9f680ab4 2987
f41d911f 2988 rcu_bootup_announce();
f885b7f2 2989 rcu_init_geometry();
394f99a9
LJ
2990 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2991 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2992 __rcu_init_preempt();
09223371 2993 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2994
2995 /*
2996 * We don't need protection against CPU-hotplug here because
2997 * this is called early in boot, before either interrupts
2998 * or the scheduler are operational.
2999 */
3000 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3001 for_each_online_cpu(cpu)
3002 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 3003 check_cpu_stall_init();
64db4cff
PM
3004}
3005
1eba8f84 3006#include "rcutree_plugin.h"