rcu: Remove redundant check for rcu_head misalignment
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
b668c9cf 63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 64
4300aa64 65#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 66 .level = { &structname##_state.node[0] }, \
64db4cff
PM
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
cf244dc0
PM
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 73 }, \
af446b70 74 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
75 .gpnum = -300, \
76 .completed = -300, \
e99033c5
PM
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \
4300aa64 81 .name = #structname, \
64db4cff
PM
82}
83
e99033c5 84struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 85DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 86
e99033c5 87struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 88DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 89
27f4d280
PM
90static struct rcu_state *rcu_state;
91
b0d30417
PM
92/*
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
100 */
bbad9379
PM
101int rcu_scheduler_active __read_mostly;
102EXPORT_SYMBOL_GPL(rcu_scheduler_active);
103
b0d30417
PM
104/*
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
111 *
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
114 * a time.
115 */
116static int rcu_scheduler_fully_active __read_mostly;
117
a46e0899
PM
118#ifdef CONFIG_RCU_BOOST
119
a26ac245
PM
120/*
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
123 */
124static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 126DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 128DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 129
a46e0899
PM
130#endif /* #ifdef CONFIG_RCU_BOOST */
131
0f962a5e 132static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
133static void invoke_rcu_core(void);
134static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 135
4a298656
PM
136/*
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
144 */
145unsigned long rcutorture_testseq;
146unsigned long rcutorture_vernum;
147
fc2219d4
PM
148/*
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
152 */
153static int rcu_gp_in_progress(struct rcu_state *rsp)
154{
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
156}
157
b1f77b05 158/*
d6714c22 159 * Note a quiescent state. Because we do not need to know
b1f77b05 160 * how many quiescent states passed, just if there was at least
d6714c22 161 * one since the start of the grace period, this just sets a flag.
e4cc1f22 162 * The caller must have disabled preemption.
b1f77b05 163 */
d6714c22 164void rcu_sched_qs(int cpu)
b1f77b05 165{
25502a6c 166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 167
e4cc1f22 168 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 169 barrier();
e4cc1f22 170 if (rdp->passed_quiesce == 0)
d4c08f2a 171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 172 rdp->passed_quiesce = 1;
b1f77b05
IM
173}
174
d6714c22 175void rcu_bh_qs(int cpu)
b1f77b05 176{
25502a6c 177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 178
e4cc1f22 179 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 180 barrier();
e4cc1f22 181 if (rdp->passed_quiesce == 0)
d4c08f2a 182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 183 rdp->passed_quiesce = 1;
b1f77b05 184}
64db4cff 185
25502a6c
PM
186/*
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
e4cc1f22 189 * The caller must have disabled preemption.
25502a6c
PM
190 */
191void rcu_note_context_switch(int cpu)
192{
300df91c 193 trace_rcu_utilization("Start context switch");
25502a6c
PM
194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu);
300df91c 196 trace_rcu_utilization("End context switch");
25502a6c 197}
29ce8310 198EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 199
90a4d2c0 200DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
4145fa7f 201 .dynticks_nesting = DYNTICK_TASK_NESTING,
23b5c8fa 202 .dynticks = ATOMIC_INIT(1),
90a4d2c0 203};
64db4cff 204
e0f23060 205static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
206static int qhimark = 10000; /* If this many pending, ignore blimit. */
207static int qlowmark = 100; /* Once only this many pending, use blimit. */
208
3d76c082
PM
209module_param(blimit, int, 0);
210module_param(qhimark, int, 0);
211module_param(qlowmark, int, 0);
212
13cfcca0
PM
213int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
215
f2e0dd70 216module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 217module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 218
64db4cff 219static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 220static int rcu_pending(int cpu);
64db4cff
PM
221
222/*
d6714c22 223 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 224 */
d6714c22 225long rcu_batches_completed_sched(void)
64db4cff 226{
d6714c22 227 return rcu_sched_state.completed;
64db4cff 228}
d6714c22 229EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
230
231/*
232 * Return the number of RCU BH batches processed thus far for debug & stats.
233 */
234long rcu_batches_completed_bh(void)
235{
236 return rcu_bh_state.completed;
237}
238EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
239
bf66f18e
PM
240/*
241 * Force a quiescent state for RCU BH.
242 */
243void rcu_bh_force_quiescent_state(void)
244{
245 force_quiescent_state(&rcu_bh_state, 0);
246}
247EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
248
4a298656
PM
249/*
250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself.
255 */
256void rcutorture_record_test_transition(void)
257{
258 rcutorture_testseq++;
259 rcutorture_vernum = 0;
260}
261EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
262
263/*
264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture
266 * messages.
267 */
268void rcutorture_record_progress(unsigned long vernum)
269{
270 rcutorture_vernum++;
271}
272EXPORT_SYMBOL_GPL(rcutorture_record_progress);
273
bf66f18e
PM
274/*
275 * Force a quiescent state for RCU-sched.
276 */
277void rcu_sched_force_quiescent_state(void)
278{
279 force_quiescent_state(&rcu_sched_state, 0);
280}
281EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
282
64db4cff
PM
283/*
284 * Does the CPU have callbacks ready to be invoked?
285 */
286static int
287cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
288{
289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
290}
291
292/*
293 * Does the current CPU require a yet-as-unscheduled grace period?
294 */
295static int
296cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
297{
fc2219d4 298 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
299}
300
301/*
302 * Return the root node of the specified rcu_state structure.
303 */
304static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
305{
306 return &rsp->node[0];
307}
308
64db4cff
PM
309/*
310 * If the specified CPU is offline, tell the caller that it is in
311 * a quiescent state. Otherwise, whack it with a reschedule IPI.
312 * Grace periods can end up waiting on an offline CPU when that
313 * CPU is in the process of coming online -- it will be added to the
314 * rcu_node bitmasks before it actually makes it online. The same thing
315 * can happen while a CPU is in the process of coming online. Because this
316 * race is quite rare, we check for it after detecting that the grace
317 * period has been delayed rather than checking each and every CPU
318 * each and every time we start a new grace period.
319 */
320static int rcu_implicit_offline_qs(struct rcu_data *rdp)
321{
322 /*
2036d94a
PM
323 * If the CPU is offline for more than a jiffy, it is in a quiescent
324 * state. We can trust its state not to change because interrupts
325 * are disabled. The reason for the jiffy's worth of slack is to
326 * handle CPUs initializing on the way up and finding their way
327 * to the idle loop on the way down.
64db4cff 328 */
2036d94a
PM
329 if (cpu_is_offline(rdp->cpu) &&
330 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
332 rdp->offline_fqs++;
333 return 1;
334 }
64db4cff
PM
335 return 0;
336}
337
9b2e4f18
PM
338/*
339 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
340 *
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
344 */
4145fa7f 345static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 346{
facc4e15 347 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 348 if (!is_idle_task(current)) {
0989cb46
PM
349 struct task_struct *idle = idle_task(smp_processor_id());
350
facc4e15 351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 352 ftrace_dump(DUMP_ALL);
0989cb46
PM
353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
354 current->pid, current->comm,
355 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 356 }
aea1b35e 357 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
359 smp_mb__before_atomic_inc(); /* See above. */
360 atomic_inc(&rdtp->dynticks);
361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
363
364 /*
365 * The idle task is not permitted to enter the idle loop while
366 * in an RCU read-side critical section.
367 */
368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
369 "Illegal idle entry in RCU read-side critical section.");
370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
371 "Illegal idle entry in RCU-bh read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
373 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 374}
64db4cff
PM
375
376/**
9b2e4f18 377 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 378 *
9b2e4f18 379 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 380 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
381 * critical sections can occur in irq handlers in idle, a possibility
382 * handled by irq_enter() and irq_exit().)
383 *
384 * We crowbar the ->dynticks_nesting field to zero to allow for
385 * the possibility of usermode upcalls having messed up our count
386 * of interrupt nesting level during the prior busy period.
64db4cff 387 */
9b2e4f18 388void rcu_idle_enter(void)
64db4cff
PM
389{
390 unsigned long flags;
4145fa7f 391 long long oldval;
64db4cff
PM
392 struct rcu_dynticks *rdtp;
393
64db4cff
PM
394 local_irq_save(flags);
395 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 396 oldval = rdtp->dynticks_nesting;
9b2e4f18 397 rdtp->dynticks_nesting = 0;
4145fa7f 398 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
399 local_irq_restore(flags);
400}
401
9b2e4f18
PM
402/**
403 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
404 *
405 * Exit from an interrupt handler, which might possibly result in entering
406 * idle mode, in other words, leaving the mode in which read-side critical
407 * sections can occur.
64db4cff 408 *
9b2e4f18
PM
409 * This code assumes that the idle loop never does anything that might
410 * result in unbalanced calls to irq_enter() and irq_exit(). If your
411 * architecture violates this assumption, RCU will give you what you
412 * deserve, good and hard. But very infrequently and irreproducibly.
413 *
414 * Use things like work queues to work around this limitation.
415 *
416 * You have been warned.
64db4cff 417 */
9b2e4f18 418void rcu_irq_exit(void)
64db4cff
PM
419{
420 unsigned long flags;
4145fa7f 421 long long oldval;
64db4cff
PM
422 struct rcu_dynticks *rdtp;
423
424 local_irq_save(flags);
425 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 426 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
427 rdtp->dynticks_nesting--;
428 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
429 if (rdtp->dynticks_nesting)
430 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
431 else
432 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
433 local_irq_restore(flags);
434}
435
436/*
437 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
438 *
439 * If the new value of the ->dynticks_nesting counter was previously zero,
440 * we really have exited idle, and must do the appropriate accounting.
441 * The caller must have disabled interrupts.
442 */
443static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
444{
23b5c8fa
PM
445 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
446 atomic_inc(&rdtp->dynticks);
447 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
448 smp_mb__after_atomic_inc(); /* See above. */
449 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 450 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 451 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 452 if (!is_idle_task(current)) {
0989cb46
PM
453 struct task_struct *idle = idle_task(smp_processor_id());
454
4145fa7f
PM
455 trace_rcu_dyntick("Error on exit: not idle task",
456 oldval, rdtp->dynticks_nesting);
9b2e4f18 457 ftrace_dump(DUMP_ALL);
0989cb46
PM
458 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
459 current->pid, current->comm,
460 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
461 }
462}
463
464/**
465 * rcu_idle_exit - inform RCU that current CPU is leaving idle
466 *
467 * Exit idle mode, in other words, -enter- the mode in which RCU
468 * read-side critical sections can occur.
469 *
4145fa7f
PM
470 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
471 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
472 * of interrupt nesting level during the busy period that is just
473 * now starting.
474 */
475void rcu_idle_exit(void)
476{
477 unsigned long flags;
478 struct rcu_dynticks *rdtp;
479 long long oldval;
480
481 local_irq_save(flags);
482 rdtp = &__get_cpu_var(rcu_dynticks);
483 oldval = rdtp->dynticks_nesting;
484 WARN_ON_ONCE(oldval != 0);
4145fa7f 485 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
9b2e4f18
PM
486 rcu_idle_exit_common(rdtp, oldval);
487 local_irq_restore(flags);
488}
489
490/**
491 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
492 *
493 * Enter an interrupt handler, which might possibly result in exiting
494 * idle mode, in other words, entering the mode in which read-side critical
495 * sections can occur.
496 *
497 * Note that the Linux kernel is fully capable of entering an interrupt
498 * handler that it never exits, for example when doing upcalls to
499 * user mode! This code assumes that the idle loop never does upcalls to
500 * user mode. If your architecture does do upcalls from the idle loop (or
501 * does anything else that results in unbalanced calls to the irq_enter()
502 * and irq_exit() functions), RCU will give you what you deserve, good
503 * and hard. But very infrequently and irreproducibly.
504 *
505 * Use things like work queues to work around this limitation.
506 *
507 * You have been warned.
508 */
509void rcu_irq_enter(void)
510{
511 unsigned long flags;
512 struct rcu_dynticks *rdtp;
513 long long oldval;
514
515 local_irq_save(flags);
516 rdtp = &__get_cpu_var(rcu_dynticks);
517 oldval = rdtp->dynticks_nesting;
518 rdtp->dynticks_nesting++;
519 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
520 if (oldval)
521 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
522 else
523 rcu_idle_exit_common(rdtp, oldval);
64db4cff 524 local_irq_restore(flags);
64db4cff
PM
525}
526
527/**
528 * rcu_nmi_enter - inform RCU of entry to NMI context
529 *
530 * If the CPU was idle with dynamic ticks active, and there is no
531 * irq handler running, this updates rdtp->dynticks_nmi to let the
532 * RCU grace-period handling know that the CPU is active.
533 */
534void rcu_nmi_enter(void)
535{
536 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
537
23b5c8fa
PM
538 if (rdtp->dynticks_nmi_nesting == 0 &&
539 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 540 return;
23b5c8fa
PM
541 rdtp->dynticks_nmi_nesting++;
542 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
543 atomic_inc(&rdtp->dynticks);
544 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
545 smp_mb__after_atomic_inc(); /* See above. */
546 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
547}
548
549/**
550 * rcu_nmi_exit - inform RCU of exit from NMI context
551 *
552 * If the CPU was idle with dynamic ticks active, and there is no
553 * irq handler running, this updates rdtp->dynticks_nmi to let the
554 * RCU grace-period handling know that the CPU is no longer active.
555 */
556void rcu_nmi_exit(void)
557{
558 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
559
23b5c8fa
PM
560 if (rdtp->dynticks_nmi_nesting == 0 ||
561 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 562 return;
23b5c8fa
PM
563 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
564 smp_mb__before_atomic_inc(); /* See above. */
565 atomic_inc(&rdtp->dynticks);
566 smp_mb__after_atomic_inc(); /* Force delay to next write. */
567 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
568}
569
9b2e4f18
PM
570#ifdef CONFIG_PROVE_RCU
571
64db4cff 572/**
9b2e4f18 573 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 574 *
9b2e4f18 575 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 576 * or NMI handler, return true.
64db4cff 577 */
9b2e4f18 578int rcu_is_cpu_idle(void)
64db4cff 579{
34240697
PM
580 int ret;
581
582 preempt_disable();
583 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
584 preempt_enable();
585 return ret;
64db4cff 586}
e6b80a3b 587EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 588
c0d6d01b
PM
589#ifdef CONFIG_HOTPLUG_CPU
590
591/*
592 * Is the current CPU online? Disable preemption to avoid false positives
593 * that could otherwise happen due to the current CPU number being sampled,
594 * this task being preempted, its old CPU being taken offline, resuming
595 * on some other CPU, then determining that its old CPU is now offline.
596 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
597 * the check for rcu_scheduler_fully_active. Note also that it is OK
598 * for a CPU coming online to use RCU for one jiffy prior to marking itself
599 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
600 * offline to continue to use RCU for one jiffy after marking itself
601 * offline in the cpu_online_mask. This leniency is necessary given the
602 * non-atomic nature of the online and offline processing, for example,
603 * the fact that a CPU enters the scheduler after completing the CPU_DYING
604 * notifiers.
605 *
606 * This is also why RCU internally marks CPUs online during the
607 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
608 *
609 * Disable checking if in an NMI handler because we cannot safely report
610 * errors from NMI handlers anyway.
611 */
612bool rcu_lockdep_current_cpu_online(void)
613{
2036d94a
PM
614 struct rcu_data *rdp;
615 struct rcu_node *rnp;
c0d6d01b
PM
616 bool ret;
617
618 if (in_nmi())
619 return 1;
620 preempt_disable();
2036d94a
PM
621 rdp = &__get_cpu_var(rcu_sched_data);
622 rnp = rdp->mynode;
623 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
624 !rcu_scheduler_fully_active;
625 preempt_enable();
626 return ret;
627}
628EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
629
630#endif /* #ifdef CONFIG_HOTPLUG_CPU */
631
9b2e4f18
PM
632#endif /* #ifdef CONFIG_PROVE_RCU */
633
64db4cff 634/**
9b2e4f18 635 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 636 *
9b2e4f18
PM
637 * If the current CPU is idle or running at a first-level (not nested)
638 * interrupt from idle, return true. The caller must have at least
639 * disabled preemption.
64db4cff 640 */
9b2e4f18 641int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 642{
9b2e4f18 643 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
644}
645
64db4cff
PM
646/*
647 * Snapshot the specified CPU's dynticks counter so that we can later
648 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 649 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
650 */
651static int dyntick_save_progress_counter(struct rcu_data *rdp)
652{
23b5c8fa 653 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 654 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
655}
656
657/*
658 * Return true if the specified CPU has passed through a quiescent
659 * state by virtue of being in or having passed through an dynticks
660 * idle state since the last call to dyntick_save_progress_counter()
661 * for this same CPU.
662 */
663static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
664{
7eb4f455
PM
665 unsigned int curr;
666 unsigned int snap;
64db4cff 667
7eb4f455
PM
668 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
669 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
670
671 /*
672 * If the CPU passed through or entered a dynticks idle phase with
673 * no active irq/NMI handlers, then we can safely pretend that the CPU
674 * already acknowledged the request to pass through a quiescent
675 * state. Either way, that CPU cannot possibly be in an RCU
676 * read-side critical section that started before the beginning
677 * of the current RCU grace period.
678 */
7eb4f455 679 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 680 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
681 rdp->dynticks_fqs++;
682 return 1;
683 }
684
685 /* Go check for the CPU being offline. */
686 return rcu_implicit_offline_qs(rdp);
687}
688
13cfcca0
PM
689static int jiffies_till_stall_check(void)
690{
691 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
692
693 /*
694 * Limit check must be consistent with the Kconfig limits
695 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
696 */
697 if (till_stall_check < 3) {
698 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
699 till_stall_check = 3;
700 } else if (till_stall_check > 300) {
701 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
702 till_stall_check = 300;
703 }
704 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
705}
706
64db4cff
PM
707static void record_gp_stall_check_time(struct rcu_state *rsp)
708{
709 rsp->gp_start = jiffies;
13cfcca0 710 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
711}
712
713static void print_other_cpu_stall(struct rcu_state *rsp)
714{
715 int cpu;
716 long delta;
717 unsigned long flags;
9bc8b558 718 int ndetected;
64db4cff 719 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
720
721 /* Only let one CPU complain about others per time interval. */
722
1304afb2 723 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 724 delta = jiffies - rsp->jiffies_stall;
fc2219d4 725 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 726 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
727 return;
728 }
13cfcca0 729 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 730 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 731
8cdd32a9
PM
732 /*
733 * OK, time to rat on our buddy...
734 * See Documentation/RCU/stallwarn.txt for info on how to debug
735 * RCU CPU stall warnings.
736 */
a858af28 737 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 738 rsp->name);
a858af28 739 print_cpu_stall_info_begin();
a0b6c9a7 740 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 741 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 742 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 743 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 744 if (rnp->qsmask == 0)
64db4cff 745 continue;
a0b6c9a7 746 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 747 if (rnp->qsmask & (1UL << cpu)) {
a858af28 748 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
749 ndetected++;
750 }
64db4cff 751 }
a858af28
PM
752
753 /*
754 * Now rat on any tasks that got kicked up to the root rcu_node
755 * due to CPU offlining.
756 */
757 rnp = rcu_get_root(rsp);
758 raw_spin_lock_irqsave(&rnp->lock, flags);
759 ndetected = rcu_print_task_stall(rnp);
760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761
762 print_cpu_stall_info_end();
763 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 764 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
765 if (ndetected == 0)
766 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
767 else if (!trigger_all_cpu_backtrace())
4627e240 768 dump_stack();
c1dc0b9c 769
1ed509a2
PM
770 /* If so configured, complain about tasks blocking the grace period. */
771
772 rcu_print_detail_task_stall(rsp);
773
64db4cff
PM
774 force_quiescent_state(rsp, 0); /* Kick them all. */
775}
776
777static void print_cpu_stall(struct rcu_state *rsp)
778{
779 unsigned long flags;
780 struct rcu_node *rnp = rcu_get_root(rsp);
781
8cdd32a9
PM
782 /*
783 * OK, time to rat on ourselves...
784 * See Documentation/RCU/stallwarn.txt for info on how to debug
785 * RCU CPU stall warnings.
786 */
a858af28
PM
787 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
788 print_cpu_stall_info_begin();
789 print_cpu_stall_info(rsp, smp_processor_id());
790 print_cpu_stall_info_end();
791 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
792 if (!trigger_all_cpu_backtrace())
793 dump_stack();
c1dc0b9c 794
1304afb2 795 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 796 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
797 rsp->jiffies_stall = jiffies +
798 3 * jiffies_till_stall_check() + 3;
1304afb2 799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 800
64db4cff
PM
801 set_need_resched(); /* kick ourselves to get things going. */
802}
803
804static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
805{
bad6e139
PM
806 unsigned long j;
807 unsigned long js;
64db4cff
PM
808 struct rcu_node *rnp;
809
742734ee 810 if (rcu_cpu_stall_suppress)
c68de209 811 return;
bad6e139
PM
812 j = ACCESS_ONCE(jiffies);
813 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 814 rnp = rdp->mynode;
bad6e139 815 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
816
817 /* We haven't checked in, so go dump stack. */
818 print_cpu_stall(rsp);
819
bad6e139
PM
820 } else if (rcu_gp_in_progress(rsp) &&
821 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 822
bad6e139 823 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
824 print_other_cpu_stall(rsp);
825 }
826}
827
c68de209
PM
828static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
829{
742734ee 830 rcu_cpu_stall_suppress = 1;
c68de209
PM
831 return NOTIFY_DONE;
832}
833
53d84e00
PM
834/**
835 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
836 *
837 * Set the stall-warning timeout way off into the future, thus preventing
838 * any RCU CPU stall-warning messages from appearing in the current set of
839 * RCU grace periods.
840 *
841 * The caller must disable hard irqs.
842 */
843void rcu_cpu_stall_reset(void)
844{
845 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
846 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
847 rcu_preempt_stall_reset();
848}
849
c68de209
PM
850static struct notifier_block rcu_panic_block = {
851 .notifier_call = rcu_panic,
852};
853
854static void __init check_cpu_stall_init(void)
855{
856 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
857}
858
64db4cff
PM
859/*
860 * Update CPU-local rcu_data state to record the newly noticed grace period.
861 * This is used both when we started the grace period and when we notice
9160306e
PM
862 * that someone else started the grace period. The caller must hold the
863 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
864 * and must have irqs disabled.
64db4cff 865 */
9160306e
PM
866static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
867{
868 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
869 /*
870 * If the current grace period is waiting for this CPU,
871 * set up to detect a quiescent state, otherwise don't
872 * go looking for one.
873 */
9160306e 874 rdp->gpnum = rnp->gpnum;
d4c08f2a 875 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
876 if (rnp->qsmask & rdp->grpmask) {
877 rdp->qs_pending = 1;
e4cc1f22 878 rdp->passed_quiesce = 0;
121dfc4b
PM
879 } else
880 rdp->qs_pending = 0;
a858af28 881 zero_cpu_stall_ticks(rdp);
9160306e
PM
882 }
883}
884
64db4cff
PM
885static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
886{
9160306e
PM
887 unsigned long flags;
888 struct rcu_node *rnp;
889
890 local_irq_save(flags);
891 rnp = rdp->mynode;
892 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 893 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
894 local_irq_restore(flags);
895 return;
896 }
897 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
899}
900
901/*
902 * Did someone else start a new RCU grace period start since we last
903 * checked? Update local state appropriately if so. Must be called
904 * on the CPU corresponding to rdp.
905 */
906static int
907check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
908{
909 unsigned long flags;
910 int ret = 0;
911
912 local_irq_save(flags);
913 if (rdp->gpnum != rsp->gpnum) {
914 note_new_gpnum(rsp, rdp);
915 ret = 1;
916 }
917 local_irq_restore(flags);
918 return ret;
919}
920
d09b62df
PM
921/*
922 * Advance this CPU's callbacks, but only if the current grace period
923 * has ended. This may be called only from the CPU to whom the rdp
924 * belongs. In addition, the corresponding leaf rcu_node structure's
925 * ->lock must be held by the caller, with irqs disabled.
926 */
927static void
928__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
929{
930 /* Did another grace period end? */
931 if (rdp->completed != rnp->completed) {
932
933 /* Advance callbacks. No harm if list empty. */
934 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
935 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
936 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
937
938 /* Remember that we saw this grace-period completion. */
939 rdp->completed = rnp->completed;
d4c08f2a 940 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 941
5ff8e6f0
FW
942 /*
943 * If we were in an extended quiescent state, we may have
121dfc4b 944 * missed some grace periods that others CPUs handled on
5ff8e6f0 945 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
946 * spurious new grace periods. If another grace period
947 * has started, then rnp->gpnum will have advanced, so
948 * we will detect this later on.
5ff8e6f0 949 */
121dfc4b 950 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
951 rdp->gpnum = rdp->completed;
952
20377f32 953 /*
121dfc4b
PM
954 * If RCU does not need a quiescent state from this CPU,
955 * then make sure that this CPU doesn't go looking for one.
20377f32 956 */
121dfc4b 957 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 958 rdp->qs_pending = 0;
d09b62df
PM
959 }
960}
961
962/*
963 * Advance this CPU's callbacks, but only if the current grace period
964 * has ended. This may be called only from the CPU to whom the rdp
965 * belongs.
966 */
967static void
968rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
969{
970 unsigned long flags;
971 struct rcu_node *rnp;
972
973 local_irq_save(flags);
974 rnp = rdp->mynode;
975 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 976 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
977 local_irq_restore(flags);
978 return;
979 }
980 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 981 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
982}
983
984/*
985 * Do per-CPU grace-period initialization for running CPU. The caller
986 * must hold the lock of the leaf rcu_node structure corresponding to
987 * this CPU.
988 */
989static void
990rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
991{
992 /* Prior grace period ended, so advance callbacks for current CPU. */
993 __rcu_process_gp_end(rsp, rnp, rdp);
994
995 /*
996 * Because this CPU just now started the new grace period, we know
997 * that all of its callbacks will be covered by this upcoming grace
998 * period, even the ones that were registered arbitrarily recently.
999 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1000 *
1001 * Other CPUs cannot be sure exactly when the grace period started.
1002 * Therefore, their recently registered callbacks must pass through
1003 * an additional RCU_NEXT_READY stage, so that they will be handled
1004 * by the next RCU grace period.
1005 */
1006 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1007 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1008
1009 /* Set state so that this CPU will detect the next quiescent state. */
1010 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1011}
1012
64db4cff
PM
1013/*
1014 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1015 * in preparation for detecting the next grace period. The caller must hold
1016 * the root node's ->lock, which is released before return. Hard irqs must
1017 * be disabled.
e5601400
PM
1018 *
1019 * Note that it is legal for a dying CPU (which is marked as offline) to
1020 * invoke this function. This can happen when the dying CPU reports its
1021 * quiescent state.
64db4cff
PM
1022 */
1023static void
1024rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1025 __releases(rcu_get_root(rsp)->lock)
1026{
394f99a9 1027 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1028 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1029
037067a1 1030 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1031 !cpu_needs_another_gp(rsp, rdp)) {
1032 /*
1033 * Either the scheduler hasn't yet spawned the first
1034 * non-idle task or this CPU does not need another
1035 * grace period. Either way, don't start a new grace
1036 * period.
1037 */
1038 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1039 return;
1040 }
b32e9eb6 1041
afe24b12 1042 if (rsp->fqs_active) {
b32e9eb6 1043 /*
afe24b12
PM
1044 * This CPU needs a grace period, but force_quiescent_state()
1045 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1046 */
afe24b12
PM
1047 rsp->fqs_need_gp = 1;
1048 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1049 return;
1050 }
1051
1052 /* Advance to a new grace period and initialize state. */
1053 rsp->gpnum++;
d4c08f2a 1054 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1055 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1056 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1057 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1058 record_gp_stall_check_time(rsp);
1304afb2 1059 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1060
64db4cff 1061 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1062 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1063
1064 /*
b835db1f
PM
1065 * Set the quiescent-state-needed bits in all the rcu_node
1066 * structures for all currently online CPUs in breadth-first
1067 * order, starting from the root rcu_node structure. This
1068 * operation relies on the layout of the hierarchy within the
1069 * rsp->node[] array. Note that other CPUs will access only
1070 * the leaves of the hierarchy, which still indicate that no
1071 * grace period is in progress, at least until the corresponding
1072 * leaf node has been initialized. In addition, we have excluded
1073 * CPU-hotplug operations.
64db4cff
PM
1074 *
1075 * Note that the grace period cannot complete until we finish
1076 * the initialization process, as there will be at least one
1077 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1078 * one corresponding to this CPU, due to the fact that we have
1079 * irqs disabled.
64db4cff 1080 */
a0b6c9a7 1081 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1082 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1083 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1084 rnp->qsmask = rnp->qsmaskinit;
de078d87 1085 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1086 rnp->completed = rsp->completed;
1087 if (rnp == rdp->mynode)
1088 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1089 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1090 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1091 rnp->level, rnp->grplo,
1092 rnp->grphi, rnp->qsmask);
1304afb2 1093 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1094 }
1095
83f5b01f 1096 rnp = rcu_get_root(rsp);
1304afb2 1097 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1098 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1099 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1100 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1101}
1102
f41d911f 1103/*
d3f6bad3
PM
1104 * Report a full set of quiescent states to the specified rcu_state
1105 * data structure. This involves cleaning up after the prior grace
1106 * period and letting rcu_start_gp() start up the next grace period
1107 * if one is needed. Note that the caller must hold rnp->lock, as
1108 * required by rcu_start_gp(), which will release it.
f41d911f 1109 */
d3f6bad3 1110static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1111 __releases(rcu_get_root(rsp)->lock)
f41d911f 1112{
15ba0ba8 1113 unsigned long gp_duration;
afe24b12
PM
1114 struct rcu_node *rnp = rcu_get_root(rsp);
1115 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1116
fc2219d4 1117 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1118
1119 /*
1120 * Ensure that all grace-period and pre-grace-period activity
1121 * is seen before the assignment to rsp->completed.
1122 */
1123 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1124 gp_duration = jiffies - rsp->gp_start;
1125 if (gp_duration > rsp->gp_max)
1126 rsp->gp_max = gp_duration;
afe24b12
PM
1127
1128 /*
1129 * We know the grace period is complete, but to everyone else
1130 * it appears to still be ongoing. But it is also the case
1131 * that to everyone else it looks like there is nothing that
1132 * they can do to advance the grace period. It is therefore
1133 * safe for us to drop the lock in order to mark the grace
1134 * period as completed in all of the rcu_node structures.
1135 *
1136 * But if this CPU needs another grace period, it will take
1137 * care of this while initializing the next grace period.
1138 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1139 * because the callbacks have not yet been advanced: Those
1140 * callbacks are waiting on the grace period that just now
1141 * completed.
1142 */
1143 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1144 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1145
1146 /*
1147 * Propagate new ->completed value to rcu_node structures
1148 * so that other CPUs don't have to wait until the start
1149 * of the next grace period to process their callbacks.
1150 */
1151 rcu_for_each_node_breadth_first(rsp, rnp) {
1152 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1153 rnp->completed = rsp->gpnum;
1154 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1155 }
1156 rnp = rcu_get_root(rsp);
1157 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1158 }
1159
1160 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1161 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1162 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1163 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1164}
1165
64db4cff 1166/*
d3f6bad3
PM
1167 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1168 * Allows quiescent states for a group of CPUs to be reported at one go
1169 * to the specified rcu_node structure, though all the CPUs in the group
1170 * must be represented by the same rcu_node structure (which need not be
1171 * a leaf rcu_node structure, though it often will be). That structure's
1172 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1173 */
1174static void
d3f6bad3
PM
1175rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1176 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1177 __releases(rnp->lock)
1178{
28ecd580
PM
1179 struct rcu_node *rnp_c;
1180
64db4cff
PM
1181 /* Walk up the rcu_node hierarchy. */
1182 for (;;) {
1183 if (!(rnp->qsmask & mask)) {
1184
1185 /* Our bit has already been cleared, so done. */
1304afb2 1186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1187 return;
1188 }
1189 rnp->qsmask &= ~mask;
d4c08f2a
PM
1190 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1191 mask, rnp->qsmask, rnp->level,
1192 rnp->grplo, rnp->grphi,
1193 !!rnp->gp_tasks);
27f4d280 1194 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1195
1196 /* Other bits still set at this level, so done. */
1304afb2 1197 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1198 return;
1199 }
1200 mask = rnp->grpmask;
1201 if (rnp->parent == NULL) {
1202
1203 /* No more levels. Exit loop holding root lock. */
1204
1205 break;
1206 }
1304afb2 1207 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1208 rnp_c = rnp;
64db4cff 1209 rnp = rnp->parent;
1304afb2 1210 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1211 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1212 }
1213
1214 /*
1215 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1216 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1217 * to clean up and start the next grace period if one is needed.
64db4cff 1218 */
d3f6bad3 1219 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1220}
1221
1222/*
d3f6bad3
PM
1223 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1224 * structure. This must be either called from the specified CPU, or
1225 * called when the specified CPU is known to be offline (and when it is
1226 * also known that no other CPU is concurrently trying to help the offline
1227 * CPU). The lastcomp argument is used to make sure we are still in the
1228 * grace period of interest. We don't want to end the current grace period
1229 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1230 */
1231static void
e4cc1f22 1232rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1233{
1234 unsigned long flags;
1235 unsigned long mask;
1236 struct rcu_node *rnp;
1237
1238 rnp = rdp->mynode;
1304afb2 1239 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1240 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1241
1242 /*
e4cc1f22
PM
1243 * The grace period in which this quiescent state was
1244 * recorded has ended, so don't report it upwards.
1245 * We will instead need a new quiescent state that lies
1246 * within the current grace period.
64db4cff 1247 */
e4cc1f22 1248 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1250 return;
1251 }
1252 mask = rdp->grpmask;
1253 if ((rnp->qsmask & mask) == 0) {
1304afb2 1254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1255 } else {
1256 rdp->qs_pending = 0;
1257
1258 /*
1259 * This GP can't end until cpu checks in, so all of our
1260 * callbacks can be processed during the next GP.
1261 */
64db4cff
PM
1262 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1263
d3f6bad3 1264 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1265 }
1266}
1267
1268/*
1269 * Check to see if there is a new grace period of which this CPU
1270 * is not yet aware, and if so, set up local rcu_data state for it.
1271 * Otherwise, see if this CPU has just passed through its first
1272 * quiescent state for this grace period, and record that fact if so.
1273 */
1274static void
1275rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1276{
1277 /* If there is now a new grace period, record and return. */
1278 if (check_for_new_grace_period(rsp, rdp))
1279 return;
1280
1281 /*
1282 * Does this CPU still need to do its part for current grace period?
1283 * If no, return and let the other CPUs do their part as well.
1284 */
1285 if (!rdp->qs_pending)
1286 return;
1287
1288 /*
1289 * Was there a quiescent state since the beginning of the grace
1290 * period? If no, then exit and wait for the next call.
1291 */
e4cc1f22 1292 if (!rdp->passed_quiesce)
64db4cff
PM
1293 return;
1294
d3f6bad3
PM
1295 /*
1296 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1297 * judge of that).
1298 */
e4cc1f22 1299 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1300}
1301
1302#ifdef CONFIG_HOTPLUG_CPU
1303
e74f4c45 1304/*
29494be7 1305 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1306 * Also record a quiescent state for this CPU for the current grace period.
1307 * Synchronization and interrupt disabling are not required because
1308 * this function executes in stop_machine() context. Therefore, cleanup
1309 * operations that might block must be done later from the CPU_DEAD
1310 * notifier.
1311 *
1312 * Note that the outgoing CPU's bit has already been cleared in the
1313 * cpu_online_mask. This allows us to randomly pick a callback
1314 * destination from the bits set in that mask.
e74f4c45 1315 */
e5601400 1316static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1317{
1318 int i;
e5601400 1319 unsigned long mask;
29494be7 1320 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1321 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1322 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
2036d94a 1323 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
e5601400 1324
a50c3af9
PM
1325 /* First, adjust the counts. */
1326 if (rdp->nxtlist != NULL) {
1327 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1328 receive_rdp->qlen += rdp->qlen;
1329 rdp->qlen_lazy = 0;
1330 rdp->qlen = 0;
1331 }
1332
1333 /*
1334 * Next, move ready-to-invoke callbacks to be invoked on some
1335 * other CPU. These will not be required to pass through another
1336 * grace period: They are done, regardless of CPU.
1337 */
1338 if (rdp->nxtlist != NULL &&
1339 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1340 struct rcu_head *oldhead;
1341 struct rcu_head **oldtail;
1342 struct rcu_head **newtail;
1343
1344 oldhead = rdp->nxtlist;
1345 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1346 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1347 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1348 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1349 newtail = rdp->nxttail[RCU_DONE_TAIL];
1350 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1351 if (receive_rdp->nxttail[i] == oldtail)
1352 receive_rdp->nxttail[i] = newtail;
1353 if (rdp->nxttail[i] == newtail)
1354 rdp->nxttail[i] = &rdp->nxtlist;
1355 }
1356 }
1357
1358 /*
1359 * Finally, put the rest of the callbacks at the end of the list.
1360 * The ones that made it partway through get to start over: We
1361 * cannot assume that grace periods are synchronized across CPUs.
1362 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1363 * this does not seem compelling. Not yet, anyway.)
1364 */
e5601400
PM
1365 if (rdp->nxtlist != NULL) {
1366 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1367 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1368 rdp->nxttail[RCU_NEXT_TAIL];
e5601400
PM
1369 receive_rdp->n_cbs_adopted += rdp->qlen;
1370 rdp->n_cbs_orphaned += rdp->qlen;
1371
1372 rdp->nxtlist = NULL;
1373 for (i = 0; i < RCU_NEXT_SIZE; i++)
1374 rdp->nxttail[i] = &rdp->nxtlist;
e5601400 1375 }
e74f4c45 1376
a50c3af9
PM
1377 /*
1378 * Record a quiescent state for the dying CPU. This is safe
1379 * only because we have already cleared out the callbacks.
1380 * (Otherwise, the RCU core might try to schedule the invocation
1381 * of callbacks on this now-offline CPU, which would be bad.)
1382 */
64db4cff 1383 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1384 trace_rcu_grace_period(rsp->name,
1385 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1386 "cpuofl");
1387 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1388 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
64db4cff
PM
1389}
1390
1391/*
e5601400
PM
1392 * The CPU has been completely removed, and some other CPU is reporting
1393 * this fact from process context. Do the remainder of the cleanup.
1394 * There can only be one CPU hotplug operation at a time, so no other
1395 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1396 */
e5601400 1397static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1398{
2036d94a
PM
1399 unsigned long flags;
1400 unsigned long mask;
1401 int need_report = 0;
e5601400 1402 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2036d94a 1403 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
e5601400 1404
2036d94a 1405 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1406 rcu_stop_cpu_kthread(cpu);
1407 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a
PM
1408
1409 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1410
1411 /* Exclude any attempts to start a new grace period. */
1412 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1413
1414 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1415 mask = rdp->grpmask; /* rnp->grplo is constant. */
1416 do {
1417 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1418 rnp->qsmaskinit &= ~mask;
1419 if (rnp->qsmaskinit != 0) {
1420 if (rnp != rdp->mynode)
1421 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1422 break;
1423 }
1424 if (rnp == rdp->mynode)
1425 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1426 else
1427 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1428 mask = rnp->grpmask;
1429 rnp = rnp->parent;
1430 } while (rnp != NULL);
1431
1432 /*
1433 * We still hold the leaf rcu_node structure lock here, and
1434 * irqs are still disabled. The reason for this subterfuge is
1435 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1436 * held leads to deadlock.
1437 */
1438 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1439 rnp = rdp->mynode;
1440 if (need_report & RCU_OFL_TASKS_NORM_GP)
1441 rcu_report_unblock_qs_rnp(rnp, flags);
1442 else
1443 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1444 if (need_report & RCU_OFL_TASKS_EXP_GP)
1445 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1446}
1447
1448#else /* #ifdef CONFIG_HOTPLUG_CPU */
1449
e5601400 1450static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1451{
1452}
1453
e5601400 1454static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1455{
1456}
1457
1458#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1459
1460/*
1461 * Invoke any RCU callbacks that have made it to the end of their grace
1462 * period. Thottle as specified by rdp->blimit.
1463 */
37c72e56 1464static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1465{
1466 unsigned long flags;
1467 struct rcu_head *next, *list, **tail;
486e2593 1468 int bl, count, count_lazy;
64db4cff
PM
1469
1470 /* If no callbacks are ready, just return.*/
29c00b4a 1471 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1472 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1473 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1474 need_resched(), is_idle_task(current),
1475 rcu_is_callbacks_kthread());
64db4cff 1476 return;
29c00b4a 1477 }
64db4cff
PM
1478
1479 /*
1480 * Extract the list of ready callbacks, disabling to prevent
1481 * races with call_rcu() from interrupt handlers.
1482 */
1483 local_irq_save(flags);
8146c4e2 1484 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1485 bl = rdp->blimit;
486e2593 1486 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1487 list = rdp->nxtlist;
1488 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1489 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1490 tail = rdp->nxttail[RCU_DONE_TAIL];
1491 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1492 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1493 rdp->nxttail[count] = &rdp->nxtlist;
1494 local_irq_restore(flags);
1495
1496 /* Invoke callbacks. */
486e2593 1497 count = count_lazy = 0;
64db4cff
PM
1498 while (list) {
1499 next = list->next;
1500 prefetch(next);
551d55a9 1501 debug_rcu_head_unqueue(list);
486e2593
PM
1502 if (__rcu_reclaim(rsp->name, list))
1503 count_lazy++;
64db4cff 1504 list = next;
dff1672d
PM
1505 /* Stop only if limit reached and CPU has something to do. */
1506 if (++count >= bl &&
1507 (need_resched() ||
1508 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1509 break;
1510 }
1511
1512 local_irq_save(flags);
4968c300
PM
1513 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1514 is_idle_task(current),
1515 rcu_is_callbacks_kthread());
64db4cff
PM
1516
1517 /* Update count, and requeue any remaining callbacks. */
486e2593 1518 rdp->qlen_lazy -= count_lazy;
64db4cff 1519 rdp->qlen -= count;
269dcc1c 1520 rdp->n_cbs_invoked += count;
64db4cff
PM
1521 if (list != NULL) {
1522 *tail = rdp->nxtlist;
1523 rdp->nxtlist = list;
1524 for (count = 0; count < RCU_NEXT_SIZE; count++)
1525 if (&rdp->nxtlist == rdp->nxttail[count])
1526 rdp->nxttail[count] = tail;
1527 else
1528 break;
1529 }
1530
1531 /* Reinstate batch limit if we have worked down the excess. */
1532 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1533 rdp->blimit = blimit;
1534
37c72e56
PM
1535 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1536 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1537 rdp->qlen_last_fqs_check = 0;
1538 rdp->n_force_qs_snap = rsp->n_force_qs;
1539 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1540 rdp->qlen_last_fqs_check = rdp->qlen;
1541
64db4cff
PM
1542 local_irq_restore(flags);
1543
e0f23060 1544 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1545 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1546 invoke_rcu_core();
64db4cff
PM
1547}
1548
1549/*
1550 * Check to see if this CPU is in a non-context-switch quiescent state
1551 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1552 * Also schedule RCU core processing.
64db4cff 1553 *
9b2e4f18 1554 * This function must be called from hardirq context. It is normally
64db4cff
PM
1555 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1556 * false, there is no point in invoking rcu_check_callbacks().
1557 */
1558void rcu_check_callbacks(int cpu, int user)
1559{
300df91c 1560 trace_rcu_utilization("Start scheduler-tick");
a858af28 1561 increment_cpu_stall_ticks();
9b2e4f18 1562 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1563
1564 /*
1565 * Get here if this CPU took its interrupt from user
1566 * mode or from the idle loop, and if this is not a
1567 * nested interrupt. In this case, the CPU is in
d6714c22 1568 * a quiescent state, so note it.
64db4cff
PM
1569 *
1570 * No memory barrier is required here because both
d6714c22
PM
1571 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1572 * variables that other CPUs neither access nor modify,
1573 * at least not while the corresponding CPU is online.
64db4cff
PM
1574 */
1575
d6714c22
PM
1576 rcu_sched_qs(cpu);
1577 rcu_bh_qs(cpu);
64db4cff
PM
1578
1579 } else if (!in_softirq()) {
1580
1581 /*
1582 * Get here if this CPU did not take its interrupt from
1583 * softirq, in other words, if it is not interrupting
1584 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1585 * critical section, so note it.
64db4cff
PM
1586 */
1587
d6714c22 1588 rcu_bh_qs(cpu);
64db4cff 1589 }
f41d911f 1590 rcu_preempt_check_callbacks(cpu);
d21670ac 1591 if (rcu_pending(cpu))
a46e0899 1592 invoke_rcu_core();
300df91c 1593 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1594}
1595
64db4cff
PM
1596/*
1597 * Scan the leaf rcu_node structures, processing dyntick state for any that
1598 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1599 * Also initiate boosting for any threads blocked on the root rcu_node.
1600 *
ee47eb9f 1601 * The caller must have suppressed start of new grace periods.
64db4cff 1602 */
45f014c5 1603static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1604{
1605 unsigned long bit;
1606 int cpu;
1607 unsigned long flags;
1608 unsigned long mask;
a0b6c9a7 1609 struct rcu_node *rnp;
64db4cff 1610
a0b6c9a7 1611 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1612 mask = 0;
1304afb2 1613 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1614 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1615 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1616 return;
64db4cff 1617 }
a0b6c9a7 1618 if (rnp->qsmask == 0) {
1217ed1b 1619 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1620 continue;
1621 }
a0b6c9a7 1622 cpu = rnp->grplo;
64db4cff 1623 bit = 1;
a0b6c9a7 1624 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1625 if ((rnp->qsmask & bit) != 0 &&
1626 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1627 mask |= bit;
1628 }
45f014c5 1629 if (mask != 0) {
64db4cff 1630
d3f6bad3
PM
1631 /* rcu_report_qs_rnp() releases rnp->lock. */
1632 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1633 continue;
1634 }
1304afb2 1635 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1636 }
27f4d280 1637 rnp = rcu_get_root(rsp);
1217ed1b
PM
1638 if (rnp->qsmask == 0) {
1639 raw_spin_lock_irqsave(&rnp->lock, flags);
1640 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1641 }
64db4cff
PM
1642}
1643
1644/*
1645 * Force quiescent states on reluctant CPUs, and also detect which
1646 * CPUs are in dyntick-idle mode.
1647 */
1648static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1649{
1650 unsigned long flags;
64db4cff 1651 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1652
300df91c
PM
1653 trace_rcu_utilization("Start fqs");
1654 if (!rcu_gp_in_progress(rsp)) {
1655 trace_rcu_utilization("End fqs");
64db4cff 1656 return; /* No grace period in progress, nothing to force. */
300df91c 1657 }
1304afb2 1658 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1659 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1660 trace_rcu_utilization("End fqs");
64db4cff
PM
1661 return; /* Someone else is already on the job. */
1662 }
20133cfc 1663 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1664 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1665 rsp->n_force_qs++;
1304afb2 1666 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1667 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1668 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1669 rsp->n_force_qs_ngp++;
1304afb2 1670 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1671 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1672 }
07079d53 1673 rsp->fqs_active = 1;
af446b70 1674 switch (rsp->fqs_state) {
83f5b01f 1675 case RCU_GP_IDLE:
64db4cff
PM
1676 case RCU_GP_INIT:
1677
83f5b01f 1678 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1679
1680 case RCU_SAVE_DYNTICK:
64db4cff
PM
1681 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1682 break; /* So gcc recognizes the dead code. */
1683
f261414f
LJ
1684 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1685
64db4cff 1686 /* Record dyntick-idle state. */
45f014c5 1687 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1688 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1689 if (rcu_gp_in_progress(rsp))
af446b70 1690 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1691 break;
64db4cff
PM
1692
1693 case RCU_FORCE_QS:
1694
1695 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1696 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1697 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1698
1699 /* Leave state in case more forcing is required. */
1700
1304afb2 1701 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1702 break;
64db4cff 1703 }
07079d53 1704 rsp->fqs_active = 0;
46a1e34e 1705 if (rsp->fqs_need_gp) {
1304afb2 1706 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1707 rsp->fqs_need_gp = 0;
1708 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1709 trace_rcu_utilization("End fqs");
46a1e34e
PM
1710 return;
1711 }
1304afb2 1712 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1713unlock_fqs_ret:
1304afb2 1714 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1715 trace_rcu_utilization("End fqs");
64db4cff
PM
1716}
1717
64db4cff 1718/*
e0f23060
PM
1719 * This does the RCU core processing work for the specified rcu_state
1720 * and rcu_data structures. This may be called only from the CPU to
1721 * whom the rdp belongs.
64db4cff
PM
1722 */
1723static void
1724__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1725{
1726 unsigned long flags;
1727
2e597558
PM
1728 WARN_ON_ONCE(rdp->beenonline == 0);
1729
64db4cff
PM
1730 /*
1731 * If an RCU GP has gone long enough, go check for dyntick
1732 * idle CPUs and, if needed, send resched IPIs.
1733 */
20133cfc 1734 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1735 force_quiescent_state(rsp, 1);
1736
1737 /*
1738 * Advance callbacks in response to end of earlier grace
1739 * period that some other CPU ended.
1740 */
1741 rcu_process_gp_end(rsp, rdp);
1742
1743 /* Update RCU state based on any recent quiescent states. */
1744 rcu_check_quiescent_state(rsp, rdp);
1745
1746 /* Does this CPU require a not-yet-started grace period? */
1747 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1748 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1749 rcu_start_gp(rsp, flags); /* releases above lock */
1750 }
1751
1752 /* If there are callbacks ready, invoke them. */
09223371 1753 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1754 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1755}
1756
64db4cff 1757/*
e0f23060 1758 * Do RCU core processing for the current CPU.
64db4cff 1759 */
09223371 1760static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1761{
300df91c 1762 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1763 __rcu_process_callbacks(&rcu_sched_state,
1764 &__get_cpu_var(rcu_sched_data));
64db4cff 1765 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1766 rcu_preempt_process_callbacks();
300df91c 1767 trace_rcu_utilization("End RCU core");
64db4cff
PM
1768}
1769
a26ac245 1770/*
e0f23060
PM
1771 * Schedule RCU callback invocation. If the specified type of RCU
1772 * does not support RCU priority boosting, just do a direct call,
1773 * otherwise wake up the per-CPU kernel kthread. Note that because we
1774 * are running on the current CPU with interrupts disabled, the
1775 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1776 */
a46e0899 1777static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1778{
b0d30417
PM
1779 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1780 return;
a46e0899
PM
1781 if (likely(!rsp->boost)) {
1782 rcu_do_batch(rsp, rdp);
a26ac245
PM
1783 return;
1784 }
a46e0899 1785 invoke_rcu_callbacks_kthread();
a26ac245
PM
1786}
1787
a46e0899 1788static void invoke_rcu_core(void)
09223371
SL
1789{
1790 raise_softirq(RCU_SOFTIRQ);
1791}
1792
64db4cff
PM
1793static void
1794__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1795 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1796{
1797 unsigned long flags;
1798 struct rcu_data *rdp;
1799
0bb7b59d 1800 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1801 debug_rcu_head_queue(head);
64db4cff
PM
1802 head->func = func;
1803 head->next = NULL;
1804
1805 smp_mb(); /* Ensure RCU update seen before callback registry. */
1806
1807 /*
1808 * Opportunistically note grace-period endings and beginnings.
1809 * Note that we might see a beginning right after we see an
1810 * end, but never vice versa, since this CPU has to pass through
1811 * a quiescent state betweentimes.
1812 */
1813 local_irq_save(flags);
e5601400 1814 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1815 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1816
1817 /* Add the callback to our list. */
1818 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1819 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1820 rdp->qlen++;
486e2593
PM
1821 if (lazy)
1822 rdp->qlen_lazy++;
2655d57e 1823
d4c08f2a
PM
1824 if (__is_kfree_rcu_offset((unsigned long)func))
1825 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1826 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1827 else
486e2593 1828 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1829
2655d57e
PM
1830 /* If interrupts were disabled, don't dive into RCU core. */
1831 if (irqs_disabled_flags(flags)) {
1832 local_irq_restore(flags);
1833 return;
1834 }
64db4cff 1835
37c72e56
PM
1836 /*
1837 * Force the grace period if too many callbacks or too long waiting.
1838 * Enforce hysteresis, and don't invoke force_quiescent_state()
1839 * if some other CPU has recently done so. Also, don't bother
1840 * invoking force_quiescent_state() if the newly enqueued callback
1841 * is the only one waiting for a grace period to complete.
1842 */
2655d57e 1843 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1844
1845 /* Are we ignoring a completed grace period? */
1846 rcu_process_gp_end(rsp, rdp);
1847 check_for_new_grace_period(rsp, rdp);
1848
1849 /* Start a new grace period if one not already started. */
1850 if (!rcu_gp_in_progress(rsp)) {
1851 unsigned long nestflag;
1852 struct rcu_node *rnp_root = rcu_get_root(rsp);
1853
1854 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1855 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1856 } else {
1857 /* Give the grace period a kick. */
1858 rdp->blimit = LONG_MAX;
1859 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1860 *rdp->nxttail[RCU_DONE_TAIL] != head)
1861 force_quiescent_state(rsp, 0);
1862 rdp->n_force_qs_snap = rsp->n_force_qs;
1863 rdp->qlen_last_fqs_check = rdp->qlen;
1864 }
20133cfc 1865 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1866 force_quiescent_state(rsp, 1);
1867 local_irq_restore(flags);
1868}
1869
1870/*
d6714c22 1871 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1872 */
d6714c22 1873void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1874{
486e2593 1875 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1876}
d6714c22 1877EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1878
1879/*
486e2593 1880 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1881 */
1882void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1883{
486e2593 1884 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1885}
1886EXPORT_SYMBOL_GPL(call_rcu_bh);
1887
6ebb237b
PM
1888/**
1889 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1890 *
1891 * Control will return to the caller some time after a full rcu-sched
1892 * grace period has elapsed, in other words after all currently executing
1893 * rcu-sched read-side critical sections have completed. These read-side
1894 * critical sections are delimited by rcu_read_lock_sched() and
1895 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1896 * local_irq_disable(), and so on may be used in place of
1897 * rcu_read_lock_sched().
1898 *
1899 * This means that all preempt_disable code sequences, including NMI and
1900 * hardware-interrupt handlers, in progress on entry will have completed
1901 * before this primitive returns. However, this does not guarantee that
1902 * softirq handlers will have completed, since in some kernels, these
1903 * handlers can run in process context, and can block.
1904 *
1905 * This primitive provides the guarantees made by the (now removed)
1906 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1907 * guarantees that rcu_read_lock() sections will have completed.
1908 * In "classic RCU", these two guarantees happen to be one and
1909 * the same, but can differ in realtime RCU implementations.
1910 */
1911void synchronize_sched(void)
1912{
fe15d706
PM
1913 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1914 !lock_is_held(&rcu_lock_map) &&
1915 !lock_is_held(&rcu_sched_lock_map),
1916 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1917 if (rcu_blocking_is_gp())
1918 return;
2c42818e 1919 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1920}
1921EXPORT_SYMBOL_GPL(synchronize_sched);
1922
1923/**
1924 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1925 *
1926 * Control will return to the caller some time after a full rcu_bh grace
1927 * period has elapsed, in other words after all currently executing rcu_bh
1928 * read-side critical sections have completed. RCU read-side critical
1929 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1930 * and may be nested.
1931 */
1932void synchronize_rcu_bh(void)
1933{
fe15d706
PM
1934 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1935 !lock_is_held(&rcu_lock_map) &&
1936 !lock_is_held(&rcu_sched_lock_map),
1937 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1938 if (rcu_blocking_is_gp())
1939 return;
2c42818e 1940 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1941}
1942EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1943
3d3b7db0
PM
1944static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1945static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1946
1947static int synchronize_sched_expedited_cpu_stop(void *data)
1948{
1949 /*
1950 * There must be a full memory barrier on each affected CPU
1951 * between the time that try_stop_cpus() is called and the
1952 * time that it returns.
1953 *
1954 * In the current initial implementation of cpu_stop, the
1955 * above condition is already met when the control reaches
1956 * this point and the following smp_mb() is not strictly
1957 * necessary. Do smp_mb() anyway for documentation and
1958 * robustness against future implementation changes.
1959 */
1960 smp_mb(); /* See above comment block. */
1961 return 0;
1962}
1963
236fefaf
PM
1964/**
1965 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1966 *
1967 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1968 * approach to force the grace period to end quickly. This consumes
1969 * significant time on all CPUs and is unfriendly to real-time workloads,
1970 * so is thus not recommended for any sort of common-case code. In fact,
1971 * if you are using synchronize_sched_expedited() in a loop, please
1972 * restructure your code to batch your updates, and then use a single
1973 * synchronize_sched() instead.
3d3b7db0 1974 *
236fefaf
PM
1975 * Note that it is illegal to call this function while holding any lock
1976 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1977 * to call this function from a CPU-hotplug notifier. Failing to observe
1978 * these restriction will result in deadlock.
3d3b7db0
PM
1979 *
1980 * This implementation can be thought of as an application of ticket
1981 * locking to RCU, with sync_sched_expedited_started and
1982 * sync_sched_expedited_done taking on the roles of the halves
1983 * of the ticket-lock word. Each task atomically increments
1984 * sync_sched_expedited_started upon entry, snapshotting the old value,
1985 * then attempts to stop all the CPUs. If this succeeds, then each
1986 * CPU will have executed a context switch, resulting in an RCU-sched
1987 * grace period. We are then done, so we use atomic_cmpxchg() to
1988 * update sync_sched_expedited_done to match our snapshot -- but
1989 * only if someone else has not already advanced past our snapshot.
1990 *
1991 * On the other hand, if try_stop_cpus() fails, we check the value
1992 * of sync_sched_expedited_done. If it has advanced past our
1993 * initial snapshot, then someone else must have forced a grace period
1994 * some time after we took our snapshot. In this case, our work is
1995 * done for us, and we can simply return. Otherwise, we try again,
1996 * but keep our initial snapshot for purposes of checking for someone
1997 * doing our work for us.
1998 *
1999 * If we fail too many times in a row, we fall back to synchronize_sched().
2000 */
2001void synchronize_sched_expedited(void)
2002{
2003 int firstsnap, s, snap, trycount = 0;
2004
2005 /* Note that atomic_inc_return() implies full memory barrier. */
2006 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2007 get_online_cpus();
2008 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2009
2010 /*
2011 * Each pass through the following loop attempts to force a
2012 * context switch on each CPU.
2013 */
2014 while (try_stop_cpus(cpu_online_mask,
2015 synchronize_sched_expedited_cpu_stop,
2016 NULL) == -EAGAIN) {
2017 put_online_cpus();
2018
2019 /* No joy, try again later. Or just synchronize_sched(). */
2020 if (trycount++ < 10)
2021 udelay(trycount * num_online_cpus());
2022 else {
2023 synchronize_sched();
2024 return;
2025 }
2026
2027 /* Check to see if someone else did our work for us. */
2028 s = atomic_read(&sync_sched_expedited_done);
2029 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2030 smp_mb(); /* ensure test happens before caller kfree */
2031 return;
2032 }
2033
2034 /*
2035 * Refetching sync_sched_expedited_started allows later
2036 * callers to piggyback on our grace period. We subtract
2037 * 1 to get the same token that the last incrementer got.
2038 * We retry after they started, so our grace period works
2039 * for them, and they started after our first try, so their
2040 * grace period works for us.
2041 */
2042 get_online_cpus();
2043 snap = atomic_read(&sync_sched_expedited_started);
2044 smp_mb(); /* ensure read is before try_stop_cpus(). */
2045 }
2046
2047 /*
2048 * Everyone up to our most recent fetch is covered by our grace
2049 * period. Update the counter, but only if our work is still
2050 * relevant -- which it won't be if someone who started later
2051 * than we did beat us to the punch.
2052 */
2053 do {
2054 s = atomic_read(&sync_sched_expedited_done);
2055 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2056 smp_mb(); /* ensure test happens before caller kfree */
2057 break;
2058 }
2059 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2060
2061 put_online_cpus();
2062}
2063EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2064
64db4cff
PM
2065/*
2066 * Check to see if there is any immediate RCU-related work to be done
2067 * by the current CPU, for the specified type of RCU, returning 1 if so.
2068 * The checks are in order of increasing expense: checks that can be
2069 * carried out against CPU-local state are performed first. However,
2070 * we must check for CPU stalls first, else we might not get a chance.
2071 */
2072static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2073{
2f51f988
PM
2074 struct rcu_node *rnp = rdp->mynode;
2075
64db4cff
PM
2076 rdp->n_rcu_pending++;
2077
2078 /* Check for CPU stalls, if enabled. */
2079 check_cpu_stall(rsp, rdp);
2080
2081 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2082 if (rcu_scheduler_fully_active &&
2083 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2084
2085 /*
2086 * If force_quiescent_state() coming soon and this CPU
2087 * needs a quiescent state, and this is either RCU-sched
2088 * or RCU-bh, force a local reschedule.
2089 */
d21670ac 2090 rdp->n_rp_qs_pending++;
6cc68793 2091 if (!rdp->preemptible &&
d25eb944
PM
2092 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2093 jiffies))
2094 set_need_resched();
e4cc1f22 2095 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2096 rdp->n_rp_report_qs++;
64db4cff 2097 return 1;
7ba5c840 2098 }
64db4cff
PM
2099
2100 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2101 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2102 rdp->n_rp_cb_ready++;
64db4cff 2103 return 1;
7ba5c840 2104 }
64db4cff
PM
2105
2106 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2107 if (cpu_needs_another_gp(rsp, rdp)) {
2108 rdp->n_rp_cpu_needs_gp++;
64db4cff 2109 return 1;
7ba5c840 2110 }
64db4cff
PM
2111
2112 /* Has another RCU grace period completed? */
2f51f988 2113 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2114 rdp->n_rp_gp_completed++;
64db4cff 2115 return 1;
7ba5c840 2116 }
64db4cff
PM
2117
2118 /* Has a new RCU grace period started? */
2f51f988 2119 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2120 rdp->n_rp_gp_started++;
64db4cff 2121 return 1;
7ba5c840 2122 }
64db4cff
PM
2123
2124 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2125 if (rcu_gp_in_progress(rsp) &&
20133cfc 2126 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2127 rdp->n_rp_need_fqs++;
64db4cff 2128 return 1;
7ba5c840 2129 }
64db4cff
PM
2130
2131 /* nothing to do */
7ba5c840 2132 rdp->n_rp_need_nothing++;
64db4cff
PM
2133 return 0;
2134}
2135
2136/*
2137 * Check to see if there is any immediate RCU-related work to be done
2138 * by the current CPU, returning 1 if so. This function is part of the
2139 * RCU implementation; it is -not- an exported member of the RCU API.
2140 */
a157229c 2141static int rcu_pending(int cpu)
64db4cff 2142{
d6714c22 2143 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2144 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2145 rcu_preempt_pending(cpu);
64db4cff
PM
2146}
2147
2148/*
2149 * Check to see if any future RCU-related work will need to be done
2150 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2151 * 1 if so.
64db4cff 2152 */
aea1b35e 2153static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2154{
2155 /* RCU callbacks either ready or pending? */
d6714c22 2156 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2157 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2158 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2159}
2160
d0ec774c
PM
2161static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2162static atomic_t rcu_barrier_cpu_count;
2163static DEFINE_MUTEX(rcu_barrier_mutex);
2164static struct completion rcu_barrier_completion;
d0ec774c
PM
2165
2166static void rcu_barrier_callback(struct rcu_head *notused)
2167{
2168 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2169 complete(&rcu_barrier_completion);
2170}
2171
2172/*
2173 * Called with preemption disabled, and from cross-cpu IRQ context.
2174 */
2175static void rcu_barrier_func(void *type)
2176{
2177 int cpu = smp_processor_id();
2178 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2179 void (*call_rcu_func)(struct rcu_head *head,
2180 void (*func)(struct rcu_head *head));
2181
2182 atomic_inc(&rcu_barrier_cpu_count);
2183 call_rcu_func = type;
2184 call_rcu_func(head, rcu_barrier_callback);
2185}
2186
d0ec774c
PM
2187/*
2188 * Orchestrate the specified type of RCU barrier, waiting for all
2189 * RCU callbacks of the specified type to complete.
2190 */
e74f4c45
PM
2191static void _rcu_barrier(struct rcu_state *rsp,
2192 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2193 void (*func)(struct rcu_head *head)))
2194{
2195 BUG_ON(in_interrupt());
e74f4c45 2196 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
2197 mutex_lock(&rcu_barrier_mutex);
2198 init_completion(&rcu_barrier_completion);
2199 /*
2200 * Initialize rcu_barrier_cpu_count to 1, then invoke
2201 * rcu_barrier_func() on each CPU, so that each CPU also has
2202 * incremented rcu_barrier_cpu_count. Only then is it safe to
2203 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2204 * might complete its grace period before all of the other CPUs
2205 * did their increment, causing this function to return too
2d999e03
PM
2206 * early. Note that on_each_cpu() disables irqs, which prevents
2207 * any CPUs from coming online or going offline until each online
2208 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2209 */
2210 atomic_set(&rcu_barrier_cpu_count, 1);
2211 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2212 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2213 complete(&rcu_barrier_completion);
2214 wait_for_completion(&rcu_barrier_completion);
2215 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2216}
d0ec774c
PM
2217
2218/**
2219 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2220 */
2221void rcu_barrier_bh(void)
2222{
e74f4c45 2223 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2224}
2225EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2226
2227/**
2228 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2229 */
2230void rcu_barrier_sched(void)
2231{
e74f4c45 2232 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2233}
2234EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2235
64db4cff 2236/*
27569620 2237 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2238 */
27569620
PM
2239static void __init
2240rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2241{
2242 unsigned long flags;
2243 int i;
394f99a9 2244 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2245 struct rcu_node *rnp = rcu_get_root(rsp);
2246
2247 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2248 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2249 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2250 rdp->nxtlist = NULL;
2251 for (i = 0; i < RCU_NEXT_SIZE; i++)
2252 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2253 rdp->qlen_lazy = 0;
27569620 2254 rdp->qlen = 0;
27569620 2255 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145fa7f 2256 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
9b2e4f18 2257 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2258 rdp->cpu = cpu;
d4c08f2a 2259 rdp->rsp = rsp;
1304afb2 2260 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2261}
2262
2263/*
2264 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2265 * offline event can be happening at a given time. Note also that we
2266 * can accept some slop in the rsp->completed access due to the fact
2267 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2268 */
e4fa4c97 2269static void __cpuinit
6cc68793 2270rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2271{
2272 unsigned long flags;
64db4cff 2273 unsigned long mask;
394f99a9 2274 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2275 struct rcu_node *rnp = rcu_get_root(rsp);
2276
2277 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2278 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2279 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2280 rdp->preemptible = preemptible;
37c72e56
PM
2281 rdp->qlen_last_fqs_check = 0;
2282 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2283 rdp->blimit = blimit;
c92b131b
PM
2284 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2285 atomic_set(&rdp->dynticks->dynticks,
2286 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2287 rcu_prepare_for_idle_init(cpu);
1304afb2 2288 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2289
2290 /*
2291 * A new grace period might start here. If so, we won't be part
2292 * of it, but that is OK, as we are currently in a quiescent state.
2293 */
2294
2295 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2296 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2297
2298 /* Add CPU to rcu_node bitmasks. */
2299 rnp = rdp->mynode;
2300 mask = rdp->grpmask;
2301 do {
2302 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2303 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2304 rnp->qsmaskinit |= mask;
2305 mask = rnp->grpmask;
d09b62df 2306 if (rnp == rdp->mynode) {
06ae115a
PM
2307 /*
2308 * If there is a grace period in progress, we will
2309 * set up to wait for it next time we run the
2310 * RCU core code.
2311 */
2312 rdp->gpnum = rnp->completed;
d09b62df 2313 rdp->completed = rnp->completed;
06ae115a
PM
2314 rdp->passed_quiesce = 0;
2315 rdp->qs_pending = 0;
e4cc1f22 2316 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2317 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2318 }
1304afb2 2319 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2320 rnp = rnp->parent;
2321 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2322
1304afb2 2323 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2324}
2325
d72bce0e 2326static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2327{
f41d911f
PM
2328 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2329 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2330 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2331}
2332
2333/*
f41d911f 2334 * Handle CPU online/offline notification events.
64db4cff 2335 */
9f680ab4
PM
2336static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2337 unsigned long action, void *hcpu)
64db4cff
PM
2338{
2339 long cpu = (long)hcpu;
27f4d280 2340 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2341 struct rcu_node *rnp = rdp->mynode;
64db4cff 2342
300df91c 2343 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2344 switch (action) {
2345 case CPU_UP_PREPARE:
2346 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2347 rcu_prepare_cpu(cpu);
2348 rcu_prepare_kthreads(cpu);
a26ac245
PM
2349 break;
2350 case CPU_ONLINE:
0f962a5e
PM
2351 case CPU_DOWN_FAILED:
2352 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2353 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2354 break;
2355 case CPU_DOWN_PREPARE:
2356 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2357 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2358 break;
d0ec774c
PM
2359 case CPU_DYING:
2360 case CPU_DYING_FROZEN:
2361 /*
2d999e03
PM
2362 * The whole machine is "stopped" except this CPU, so we can
2363 * touch any data without introducing corruption. We send the
2364 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2365 */
e5601400
PM
2366 rcu_cleanup_dying_cpu(&rcu_bh_state);
2367 rcu_cleanup_dying_cpu(&rcu_sched_state);
2368 rcu_preempt_cleanup_dying_cpu();
7cb92499 2369 rcu_cleanup_after_idle(cpu);
d0ec774c 2370 break;
64db4cff
PM
2371 case CPU_DEAD:
2372 case CPU_DEAD_FROZEN:
2373 case CPU_UP_CANCELED:
2374 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2375 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2376 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2377 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2378 break;
2379 default:
2380 break;
2381 }
300df91c 2382 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2383 return NOTIFY_OK;
2384}
2385
bbad9379
PM
2386/*
2387 * This function is invoked towards the end of the scheduler's initialization
2388 * process. Before this is called, the idle task might contain
2389 * RCU read-side critical sections (during which time, this idle
2390 * task is booting the system). After this function is called, the
2391 * idle tasks are prohibited from containing RCU read-side critical
2392 * sections. This function also enables RCU lockdep checking.
2393 */
2394void rcu_scheduler_starting(void)
2395{
2396 WARN_ON(num_online_cpus() != 1);
2397 WARN_ON(nr_context_switches() > 0);
2398 rcu_scheduler_active = 1;
2399}
2400
64db4cff
PM
2401/*
2402 * Compute the per-level fanout, either using the exact fanout specified
2403 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2404 */
2405#ifdef CONFIG_RCU_FANOUT_EXACT
2406static void __init rcu_init_levelspread(struct rcu_state *rsp)
2407{
2408 int i;
2409
0209f649 2410 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2411 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2412 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2413}
2414#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2415static void __init rcu_init_levelspread(struct rcu_state *rsp)
2416{
2417 int ccur;
2418 int cprv;
2419 int i;
2420
2421 cprv = NR_CPUS;
2422 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2423 ccur = rsp->levelcnt[i];
2424 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2425 cprv = ccur;
2426 }
2427}
2428#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2429
2430/*
2431 * Helper function for rcu_init() that initializes one rcu_state structure.
2432 */
394f99a9
LJ
2433static void __init rcu_init_one(struct rcu_state *rsp,
2434 struct rcu_data __percpu *rda)
64db4cff 2435{
b6407e86
PM
2436 static char *buf[] = { "rcu_node_level_0",
2437 "rcu_node_level_1",
2438 "rcu_node_level_2",
2439 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2440 int cpustride = 1;
2441 int i;
2442 int j;
2443 struct rcu_node *rnp;
2444
b6407e86
PM
2445 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2446
64db4cff
PM
2447 /* Initialize the level-tracking arrays. */
2448
2449 for (i = 1; i < NUM_RCU_LVLS; i++)
2450 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2451 rcu_init_levelspread(rsp);
2452
2453 /* Initialize the elements themselves, starting from the leaves. */
2454
2455 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2456 cpustride *= rsp->levelspread[i];
2457 rnp = rsp->level[i];
2458 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2459 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2460 lockdep_set_class_and_name(&rnp->lock,
2461 &rcu_node_class[i], buf[i]);
f41d911f 2462 rnp->gpnum = 0;
64db4cff
PM
2463 rnp->qsmask = 0;
2464 rnp->qsmaskinit = 0;
2465 rnp->grplo = j * cpustride;
2466 rnp->grphi = (j + 1) * cpustride - 1;
2467 if (rnp->grphi >= NR_CPUS)
2468 rnp->grphi = NR_CPUS - 1;
2469 if (i == 0) {
2470 rnp->grpnum = 0;
2471 rnp->grpmask = 0;
2472 rnp->parent = NULL;
2473 } else {
2474 rnp->grpnum = j % rsp->levelspread[i - 1];
2475 rnp->grpmask = 1UL << rnp->grpnum;
2476 rnp->parent = rsp->level[i - 1] +
2477 j / rsp->levelspread[i - 1];
2478 }
2479 rnp->level = i;
12f5f524 2480 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2481 }
2482 }
0c34029a 2483
394f99a9 2484 rsp->rda = rda;
0c34029a
LJ
2485 rnp = rsp->level[NUM_RCU_LVLS - 1];
2486 for_each_possible_cpu(i) {
4a90a068 2487 while (i > rnp->grphi)
0c34029a 2488 rnp++;
394f99a9 2489 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2490 rcu_boot_init_percpu_data(i, rsp);
2491 }
64db4cff
PM
2492}
2493
9f680ab4 2494void __init rcu_init(void)
64db4cff 2495{
017c4261 2496 int cpu;
9f680ab4 2497
f41d911f 2498 rcu_bootup_announce();
394f99a9
LJ
2499 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2500 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2501 __rcu_init_preempt();
09223371 2502 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2503
2504 /*
2505 * We don't need protection against CPU-hotplug here because
2506 * this is called early in boot, before either interrupts
2507 * or the scheduler are operational.
2508 */
2509 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2510 for_each_online_cpu(cpu)
2511 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2512 check_cpu_stall_init();
64db4cff
PM
2513}
2514
1eba8f84 2515#include "rcutree_plugin.h"