cpu hotplug: Introduce cpu_notifier() to handle !HOTPLUG_CPU case
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
38#include <asm/atomic.h>
39#include <linux/bitops.h>
40#include <linux/module.h>
41#include <linux/completion.h>
42#include <linux/moduleparam.h>
43#include <linux/percpu.h>
44#include <linux/notifier.h>
45#include <linux/cpu.h>
46#include <linux/mutex.h>
47#include <linux/time.h>
48
49#ifdef CONFIG_DEBUG_LOCK_ALLOC
50static struct lock_class_key rcu_lock_key;
51struct lockdep_map rcu_lock_map =
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
53EXPORT_SYMBOL_GPL(rcu_lock_map);
54#endif
55
56/* Data structures. */
57
58#define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
60 .levelcnt = { \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
62 NUM_RCU_LVL_1, \
63 NUM_RCU_LVL_2, \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_SIGNAL_INIT, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs = 0, \
72 .n_force_qs_ngp = 0, \
73}
74
6258c4fb
IM
75struct rcu_state rcu_state = RCU_STATE_INITIALIZER(rcu_state);
76DEFINE_PER_CPU(struct rcu_data, rcu_data);
64db4cff 77
6258c4fb
IM
78struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05
IM
80
81/*
82 * Increment the quiescent state counter.
83 * The counter is a bit degenerated: We do not need to know
84 * how many quiescent states passed, just if there was at least
85 * one since the start of the grace period. Thus just a flag.
86 */
87void rcu_qsctr_inc(int cpu)
88{
89 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
90 rdp->passed_quiesc = 1;
91 rdp->passed_quiesc_completed = rdp->completed;
92}
93
94void rcu_bh_qsctr_inc(int cpu)
95{
96 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
97 rdp->passed_quiesc = 1;
98 rdp->passed_quiesc_completed = rdp->completed;
99}
64db4cff
PM
100
101#ifdef CONFIG_NO_HZ
90a4d2c0
PM
102DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
103 .dynticks_nesting = 1,
104 .dynticks = 1,
105};
64db4cff
PM
106#endif /* #ifdef CONFIG_NO_HZ */
107
108static int blimit = 10; /* Maximum callbacks per softirq. */
109static int qhimark = 10000; /* If this many pending, ignore blimit. */
110static int qlowmark = 100; /* Once only this many pending, use blimit. */
111
112static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
113
114/*
115 * Return the number of RCU batches processed thus far for debug & stats.
116 */
117long rcu_batches_completed(void)
118{
119 return rcu_state.completed;
120}
121EXPORT_SYMBOL_GPL(rcu_batches_completed);
122
123/*
124 * Return the number of RCU BH batches processed thus far for debug & stats.
125 */
126long rcu_batches_completed_bh(void)
127{
128 return rcu_bh_state.completed;
129}
130EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
131
132/*
133 * Does the CPU have callbacks ready to be invoked?
134 */
135static int
136cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
137{
138 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
139}
140
141/*
142 * Does the current CPU require a yet-as-unscheduled grace period?
143 */
144static int
145cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
146{
147 /* ACCESS_ONCE() because we are accessing outside of lock. */
148 return *rdp->nxttail[RCU_DONE_TAIL] &&
149 ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum);
150}
151
152/*
153 * Return the root node of the specified rcu_state structure.
154 */
155static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
156{
157 return &rsp->node[0];
158}
159
160#ifdef CONFIG_SMP
161
162/*
163 * If the specified CPU is offline, tell the caller that it is in
164 * a quiescent state. Otherwise, whack it with a reschedule IPI.
165 * Grace periods can end up waiting on an offline CPU when that
166 * CPU is in the process of coming online -- it will be added to the
167 * rcu_node bitmasks before it actually makes it online. The same thing
168 * can happen while a CPU is in the process of coming online. Because this
169 * race is quite rare, we check for it after detecting that the grace
170 * period has been delayed rather than checking each and every CPU
171 * each and every time we start a new grace period.
172 */
173static int rcu_implicit_offline_qs(struct rcu_data *rdp)
174{
175 /*
176 * If the CPU is offline, it is in a quiescent state. We can
177 * trust its state not to change because interrupts are disabled.
178 */
179 if (cpu_is_offline(rdp->cpu)) {
180 rdp->offline_fqs++;
181 return 1;
182 }
183
184 /* The CPU is online, so send it a reschedule IPI. */
185 if (rdp->cpu != smp_processor_id())
186 smp_send_reschedule(rdp->cpu);
187 else
188 set_need_resched();
189 rdp->resched_ipi++;
190 return 0;
191}
192
193#endif /* #ifdef CONFIG_SMP */
194
195#ifdef CONFIG_NO_HZ
196static DEFINE_RATELIMIT_STATE(rcu_rs, 10 * HZ, 5);
197
198/**
199 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
200 *
201 * Enter nohz mode, in other words, -leave- the mode in which RCU
202 * read-side critical sections can occur. (Though RCU read-side
203 * critical sections can occur in irq handlers in nohz mode, a possibility
204 * handled by rcu_irq_enter() and rcu_irq_exit()).
205 */
206void rcu_enter_nohz(void)
207{
208 unsigned long flags;
209 struct rcu_dynticks *rdtp;
210
211 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
212 local_irq_save(flags);
213 rdtp = &__get_cpu_var(rcu_dynticks);
214 rdtp->dynticks++;
215 rdtp->dynticks_nesting--;
216 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
217 local_irq_restore(flags);
218}
219
220/*
221 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
222 *
223 * Exit nohz mode, in other words, -enter- the mode in which RCU
224 * read-side critical sections normally occur.
225 */
226void rcu_exit_nohz(void)
227{
228 unsigned long flags;
229 struct rcu_dynticks *rdtp;
230
231 local_irq_save(flags);
232 rdtp = &__get_cpu_var(rcu_dynticks);
233 rdtp->dynticks++;
234 rdtp->dynticks_nesting++;
235 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
236 local_irq_restore(flags);
237 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
238}
239
240/**
241 * rcu_nmi_enter - inform RCU of entry to NMI context
242 *
243 * If the CPU was idle with dynamic ticks active, and there is no
244 * irq handler running, this updates rdtp->dynticks_nmi to let the
245 * RCU grace-period handling know that the CPU is active.
246 */
247void rcu_nmi_enter(void)
248{
249 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
250
251 if (rdtp->dynticks & 0x1)
252 return;
253 rdtp->dynticks_nmi++;
254 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1), &rcu_rs);
255 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
256}
257
258/**
259 * rcu_nmi_exit - inform RCU of exit from NMI context
260 *
261 * If the CPU was idle with dynamic ticks active, and there is no
262 * irq handler running, this updates rdtp->dynticks_nmi to let the
263 * RCU grace-period handling know that the CPU is no longer active.
264 */
265void rcu_nmi_exit(void)
266{
267 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
268
269 if (rdtp->dynticks & 0x1)
270 return;
271 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
272 rdtp->dynticks_nmi++;
273 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
274}
275
276/**
277 * rcu_irq_enter - inform RCU of entry to hard irq context
278 *
279 * If the CPU was idle with dynamic ticks active, this updates the
280 * rdtp->dynticks to let the RCU handling know that the CPU is active.
281 */
282void rcu_irq_enter(void)
283{
284 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
285
286 if (rdtp->dynticks_nesting++)
287 return;
288 rdtp->dynticks++;
289 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
291}
292
293/**
294 * rcu_irq_exit - inform RCU of exit from hard irq context
295 *
296 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
297 * to put let the RCU handling be aware that the CPU is going back to idle
298 * with no ticks.
299 */
300void rcu_irq_exit(void)
301{
302 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
303
304 if (--rdtp->dynticks_nesting)
305 return;
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
307 rdtp->dynticks++;
308 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
309
310 /* If the interrupt queued a callback, get out of dyntick mode. */
311 if (__get_cpu_var(rcu_data).nxtlist ||
312 __get_cpu_var(rcu_bh_data).nxtlist)
313 set_need_resched();
314}
315
316/*
317 * Record the specified "completed" value, which is later used to validate
318 * dynticks counter manipulations. Specify "rsp->completed - 1" to
319 * unconditionally invalidate any future dynticks manipulations (which is
320 * useful at the beginning of a grace period).
321 */
322static void dyntick_record_completed(struct rcu_state *rsp, long comp)
323{
324 rsp->dynticks_completed = comp;
325}
326
327#ifdef CONFIG_SMP
328
329/*
330 * Recall the previously recorded value of the completion for dynticks.
331 */
332static long dyntick_recall_completed(struct rcu_state *rsp)
333{
334 return rsp->dynticks_completed;
335}
336
337/*
338 * Snapshot the specified CPU's dynticks counter so that we can later
339 * credit them with an implicit quiescent state. Return 1 if this CPU
340 * is already in a quiescent state courtesy of dynticks idle mode.
341 */
342static int dyntick_save_progress_counter(struct rcu_data *rdp)
343{
344 int ret;
345 int snap;
346 int snap_nmi;
347
348 snap = rdp->dynticks->dynticks;
349 snap_nmi = rdp->dynticks->dynticks_nmi;
350 smp_mb(); /* Order sampling of snap with end of grace period. */
351 rdp->dynticks_snap = snap;
352 rdp->dynticks_nmi_snap = snap_nmi;
353 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
354 if (ret)
355 rdp->dynticks_fqs++;
356 return ret;
357}
358
359/*
360 * Return true if the specified CPU has passed through a quiescent
361 * state by virtue of being in or having passed through an dynticks
362 * idle state since the last call to dyntick_save_progress_counter()
363 * for this same CPU.
364 */
365static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
366{
367 long curr;
368 long curr_nmi;
369 long snap;
370 long snap_nmi;
371
372 curr = rdp->dynticks->dynticks;
373 snap = rdp->dynticks_snap;
374 curr_nmi = rdp->dynticks->dynticks_nmi;
375 snap_nmi = rdp->dynticks_nmi_snap;
376 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
377
378 /*
379 * If the CPU passed through or entered a dynticks idle phase with
380 * no active irq/NMI handlers, then we can safely pretend that the CPU
381 * already acknowledged the request to pass through a quiescent
382 * state. Either way, that CPU cannot possibly be in an RCU
383 * read-side critical section that started before the beginning
384 * of the current RCU grace period.
385 */
386 if ((curr != snap || (curr & 0x1) == 0) &&
387 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
388 rdp->dynticks_fqs++;
389 return 1;
390 }
391
392 /* Go check for the CPU being offline. */
393 return rcu_implicit_offline_qs(rdp);
394}
395
396#endif /* #ifdef CONFIG_SMP */
397
398#else /* #ifdef CONFIG_NO_HZ */
399
400static void dyntick_record_completed(struct rcu_state *rsp, long comp)
401{
402}
403
404#ifdef CONFIG_SMP
405
406/*
407 * If there are no dynticks, then the only way that a CPU can passively
408 * be in a quiescent state is to be offline. Unlike dynticks idle, which
409 * is a point in time during the prior (already finished) grace period,
410 * an offline CPU is always in a quiescent state, and thus can be
411 * unconditionally applied. So just return the current value of completed.
412 */
413static long dyntick_recall_completed(struct rcu_state *rsp)
414{
415 return rsp->completed;
416}
417
418static int dyntick_save_progress_counter(struct rcu_data *rdp)
419{
420 return 0;
421}
422
423static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
424{
425 return rcu_implicit_offline_qs(rdp);
426}
427
428#endif /* #ifdef CONFIG_SMP */
429
430#endif /* #else #ifdef CONFIG_NO_HZ */
431
432#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
433
434static void record_gp_stall_check_time(struct rcu_state *rsp)
435{
436 rsp->gp_start = jiffies;
437 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
438}
439
440static void print_other_cpu_stall(struct rcu_state *rsp)
441{
442 int cpu;
443 long delta;
444 unsigned long flags;
445 struct rcu_node *rnp = rcu_get_root(rsp);
446 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
447 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
448
449 /* Only let one CPU complain about others per time interval. */
450
451 spin_lock_irqsave(&rnp->lock, flags);
452 delta = jiffies - rsp->jiffies_stall;
453 if (delta < RCU_STALL_RAT_DELAY || rsp->gpnum == rsp->completed) {
454 spin_unlock_irqrestore(&rnp->lock, flags);
455 return;
456 }
457 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
458 spin_unlock_irqrestore(&rnp->lock, flags);
459
460 /* OK, time to rat on our buddy... */
461
462 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
463 for (; rnp_cur < rnp_end; rnp_cur++) {
464 if (rnp_cur->qsmask == 0)
465 continue;
466 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
467 if (rnp_cur->qsmask & (1UL << cpu))
468 printk(" %d", rnp_cur->grplo + cpu);
469 }
470 printk(" (detected by %d, t=%ld jiffies)\n",
471 smp_processor_id(), (long)(jiffies - rsp->gp_start));
472 force_quiescent_state(rsp, 0); /* Kick them all. */
473}
474
475static void print_cpu_stall(struct rcu_state *rsp)
476{
477 unsigned long flags;
478 struct rcu_node *rnp = rcu_get_root(rsp);
479
480 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies - rsp->gp_start);
482 dump_stack();
483 spin_lock_irqsave(&rnp->lock, flags);
484 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
485 rsp->jiffies_stall =
486 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
487 spin_unlock_irqrestore(&rnp->lock, flags);
488 set_need_resched(); /* kick ourselves to get things going. */
489}
490
491static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
492{
493 long delta;
494 struct rcu_node *rnp;
495
496 delta = jiffies - rsp->jiffies_stall;
497 rnp = rdp->mynode;
498 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
499
500 /* We haven't checked in, so go dump stack. */
501 print_cpu_stall(rsp);
502
503 } else if (rsp->gpnum != rsp->completed &&
504 delta >= RCU_STALL_RAT_DELAY) {
505
506 /* They had two time units to dump stack, so complain. */
507 print_other_cpu_stall(rsp);
508 }
509}
510
511#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
512
513static void record_gp_stall_check_time(struct rcu_state *rsp)
514{
515}
516
517static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
518{
519}
520
521#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
522
523/*
524 * Update CPU-local rcu_data state to record the newly noticed grace period.
525 * This is used both when we started the grace period and when we notice
526 * that someone else started the grace period.
527 */
528static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
529{
530 rdp->qs_pending = 1;
531 rdp->passed_quiesc = 0;
532 rdp->gpnum = rsp->gpnum;
64db4cff
PM
533}
534
535/*
536 * Did someone else start a new RCU grace period start since we last
537 * checked? Update local state appropriately if so. Must be called
538 * on the CPU corresponding to rdp.
539 */
540static int
541check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
542{
543 unsigned long flags;
544 int ret = 0;
545
546 local_irq_save(flags);
547 if (rdp->gpnum != rsp->gpnum) {
548 note_new_gpnum(rsp, rdp);
549 ret = 1;
550 }
551 local_irq_restore(flags);
552 return ret;
553}
554
555/*
556 * Start a new RCU grace period if warranted, re-initializing the hierarchy
557 * in preparation for detecting the next grace period. The caller must hold
558 * the root node's ->lock, which is released before return. Hard irqs must
559 * be disabled.
560 */
561static void
562rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
563 __releases(rcu_get_root(rsp)->lock)
564{
565 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
566 struct rcu_node *rnp = rcu_get_root(rsp);
567 struct rcu_node *rnp_cur;
568 struct rcu_node *rnp_end;
569
570 if (!cpu_needs_another_gp(rsp, rdp)) {
571 spin_unlock_irqrestore(&rnp->lock, flags);
572 return;
573 }
574
575 /* Advance to a new grace period and initialize state. */
576 rsp->gpnum++;
577 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
578 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
579 record_gp_stall_check_time(rsp);
580 dyntick_record_completed(rsp, rsp->completed - 1);
581 note_new_gpnum(rsp, rdp);
582
583 /*
584 * Because we are first, we know that all our callbacks will
585 * be covered by this upcoming grace period, even the ones
586 * that were registered arbitrarily recently.
587 */
588 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
589 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
590
591 /* Special-case the common single-level case. */
592 if (NUM_RCU_NODES == 1) {
593 rnp->qsmask = rnp->qsmaskinit;
c12172c0 594 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
595 spin_unlock_irqrestore(&rnp->lock, flags);
596 return;
597 }
598
599 spin_unlock(&rnp->lock); /* leave irqs disabled. */
600
601
602 /* Exclude any concurrent CPU-hotplug operations. */
603 spin_lock(&rsp->onofflock); /* irqs already disabled. */
604
605 /*
606 * Set the quiescent-state-needed bits in all the non-leaf RCU
607 * nodes for all currently online CPUs. This operation relies
608 * on the layout of the hierarchy within the rsp->node[] array.
609 * Note that other CPUs will access only the leaves of the
610 * hierarchy, which still indicate that no grace period is in
611 * progress. In addition, we have excluded CPU-hotplug operations.
612 *
613 * We therefore do not need to hold any locks. Any required
614 * memory barriers will be supplied by the locks guarding the
615 * leaf rcu_nodes in the hierarchy.
616 */
617
618 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
619 for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++)
620 rnp_cur->qsmask = rnp_cur->qsmaskinit;
621
622 /*
623 * Now set up the leaf nodes. Here we must be careful. First,
624 * we need to hold the lock in order to exclude other CPUs, which
625 * might be contending for the leaf nodes' locks. Second, as
626 * soon as we initialize a given leaf node, its CPUs might run
627 * up the rest of the hierarchy. We must therefore acquire locks
628 * for each node that we touch during this stage. (But we still
629 * are excluding CPU-hotplug operations.)
630 *
631 * Note that the grace period cannot complete until we finish
632 * the initialization process, as there will be at least one
633 * qsmask bit set in the root node until that time, namely the
634 * one corresponding to this CPU.
635 */
636 rnp_end = &rsp->node[NUM_RCU_NODES];
637 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
638 for (; rnp_cur < rnp_end; rnp_cur++) {
639 spin_lock(&rnp_cur->lock); /* irqs already disabled. */
640 rnp_cur->qsmask = rnp_cur->qsmaskinit;
641 spin_unlock(&rnp_cur->lock); /* irqs already disabled. */
642 }
643
644 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
645 spin_unlock_irqrestore(&rsp->onofflock, flags);
646}
647
648/*
649 * Advance this CPU's callbacks, but only if the current grace period
650 * has ended. This may be called only from the CPU to whom the rdp
651 * belongs.
652 */
653static void
654rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
655{
656 long completed_snap;
657 unsigned long flags;
658
659 local_irq_save(flags);
660 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
661
662 /* Did another grace period end? */
663 if (rdp->completed != completed_snap) {
664
665 /* Advance callbacks. No harm if list empty. */
666 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
667 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
668 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
669
670 /* Remember that we saw this grace-period completion. */
671 rdp->completed = completed_snap;
672 }
673 local_irq_restore(flags);
674}
675
676/*
677 * Similar to cpu_quiet(), for which it is a helper function. Allows
678 * a group of CPUs to be quieted at one go, though all the CPUs in the
679 * group must be represented by the same leaf rcu_node structure.
680 * That structure's lock must be held upon entry, and it is released
681 * before return.
682 */
683static void
684cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
685 unsigned long flags)
686 __releases(rnp->lock)
687{
688 /* Walk up the rcu_node hierarchy. */
689 for (;;) {
690 if (!(rnp->qsmask & mask)) {
691
692 /* Our bit has already been cleared, so done. */
693 spin_unlock_irqrestore(&rnp->lock, flags);
694 return;
695 }
696 rnp->qsmask &= ~mask;
697 if (rnp->qsmask != 0) {
698
699 /* Other bits still set at this level, so done. */
700 spin_unlock_irqrestore(&rnp->lock, flags);
701 return;
702 }
703 mask = rnp->grpmask;
704 if (rnp->parent == NULL) {
705
706 /* No more levels. Exit loop holding root lock. */
707
708 break;
709 }
710 spin_unlock_irqrestore(&rnp->lock, flags);
711 rnp = rnp->parent;
712 spin_lock_irqsave(&rnp->lock, flags);
713 }
714
715 /*
716 * Get here if we are the last CPU to pass through a quiescent
717 * state for this grace period. Clean up and let rcu_start_gp()
718 * start up the next grace period if one is needed. Note that
719 * we still hold rnp->lock, as required by rcu_start_gp(), which
720 * will release it.
721 */
722 rsp->completed = rsp->gpnum;
723 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
724 rcu_start_gp(rsp, flags); /* releases rnp->lock. */
725}
726
727/*
728 * Record a quiescent state for the specified CPU, which must either be
729 * the current CPU or an offline CPU. The lastcomp argument is used to
730 * make sure we are still in the grace period of interest. We don't want
731 * to end the current grace period based on quiescent states detected in
732 * an earlier grace period!
733 */
734static void
735cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
736{
737 unsigned long flags;
738 unsigned long mask;
739 struct rcu_node *rnp;
740
741 rnp = rdp->mynode;
742 spin_lock_irqsave(&rnp->lock, flags);
743 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
744
745 /*
746 * Someone beat us to it for this grace period, so leave.
747 * The race with GP start is resolved by the fact that we
748 * hold the leaf rcu_node lock, so that the per-CPU bits
749 * cannot yet be initialized -- so we would simply find our
750 * CPU's bit already cleared in cpu_quiet_msk() if this race
751 * occurred.
752 */
753 rdp->passed_quiesc = 0; /* try again later! */
754 spin_unlock_irqrestore(&rnp->lock, flags);
755 return;
756 }
757 mask = rdp->grpmask;
758 if ((rnp->qsmask & mask) == 0) {
759 spin_unlock_irqrestore(&rnp->lock, flags);
760 } else {
761 rdp->qs_pending = 0;
762
763 /*
764 * This GP can't end until cpu checks in, so all of our
765 * callbacks can be processed during the next GP.
766 */
767 rdp = rsp->rda[smp_processor_id()];
768 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
769
770 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
771 }
772}
773
774/*
775 * Check to see if there is a new grace period of which this CPU
776 * is not yet aware, and if so, set up local rcu_data state for it.
777 * Otherwise, see if this CPU has just passed through its first
778 * quiescent state for this grace period, and record that fact if so.
779 */
780static void
781rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
782{
783 /* If there is now a new grace period, record and return. */
784 if (check_for_new_grace_period(rsp, rdp))
785 return;
786
787 /*
788 * Does this CPU still need to do its part for current grace period?
789 * If no, return and let the other CPUs do their part as well.
790 */
791 if (!rdp->qs_pending)
792 return;
793
794 /*
795 * Was there a quiescent state since the beginning of the grace
796 * period? If no, then exit and wait for the next call.
797 */
798 if (!rdp->passed_quiesc)
799 return;
800
801 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
802 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
803}
804
805#ifdef CONFIG_HOTPLUG_CPU
806
807/*
808 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
809 * and move all callbacks from the outgoing CPU to the current one.
810 */
811static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
812{
813 int i;
814 unsigned long flags;
815 long lastcomp;
816 unsigned long mask;
817 struct rcu_data *rdp = rsp->rda[cpu];
818 struct rcu_data *rdp_me;
819 struct rcu_node *rnp;
820
821 /* Exclude any attempts to start a new grace period. */
822 spin_lock_irqsave(&rsp->onofflock, flags);
823
824 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
825 rnp = rdp->mynode;
826 mask = rdp->grpmask; /* rnp->grplo is constant. */
827 do {
828 spin_lock(&rnp->lock); /* irqs already disabled. */
829 rnp->qsmaskinit &= ~mask;
830 if (rnp->qsmaskinit != 0) {
831 spin_unlock(&rnp->lock); /* irqs already disabled. */
832 break;
833 }
834 mask = rnp->grpmask;
835 spin_unlock(&rnp->lock); /* irqs already disabled. */
836 rnp = rnp->parent;
837 } while (rnp != NULL);
838 lastcomp = rsp->completed;
839
840 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
841
842 /* Being offline is a quiescent state, so go record it. */
843 cpu_quiet(cpu, rsp, rdp, lastcomp);
844
845 /*
846 * Move callbacks from the outgoing CPU to the running CPU.
847 * Note that the outgoing CPU is now quiscent, so it is now
848 * (uncharacteristically) safe to access it rcu_data structure.
849 * Note also that we must carefully retain the order of the
850 * outgoing CPU's callbacks in order for rcu_barrier() to work
851 * correctly. Finally, note that we start all the callbacks
852 * afresh, even those that have passed through a grace period
853 * and are therefore ready to invoke. The theory is that hotplug
854 * events are rare, and that if they are frequent enough to
855 * indefinitely delay callbacks, you have far worse things to
856 * be worrying about.
857 */
858 rdp_me = rsp->rda[smp_processor_id()];
859 if (rdp->nxtlist != NULL) {
860 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
861 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
862 rdp->nxtlist = NULL;
863 for (i = 0; i < RCU_NEXT_SIZE; i++)
864 rdp->nxttail[i] = &rdp->nxtlist;
865 rdp_me->qlen += rdp->qlen;
866 rdp->qlen = 0;
867 }
868 local_irq_restore(flags);
869}
870
871/*
872 * Remove the specified CPU from the RCU hierarchy and move any pending
873 * callbacks that it might have to the current CPU. This code assumes
874 * that at least one CPU in the system will remain running at all times.
875 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
876 */
877static void rcu_offline_cpu(int cpu)
878{
879 __rcu_offline_cpu(cpu, &rcu_state);
880 __rcu_offline_cpu(cpu, &rcu_bh_state);
881}
882
883#else /* #ifdef CONFIG_HOTPLUG_CPU */
884
885static void rcu_offline_cpu(int cpu)
886{
887}
888
889#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
890
891/*
892 * Invoke any RCU callbacks that have made it to the end of their grace
893 * period. Thottle as specified by rdp->blimit.
894 */
895static void rcu_do_batch(struct rcu_data *rdp)
896{
897 unsigned long flags;
898 struct rcu_head *next, *list, **tail;
899 int count;
900
901 /* If no callbacks are ready, just return.*/
902 if (!cpu_has_callbacks_ready_to_invoke(rdp))
903 return;
904
905 /*
906 * Extract the list of ready callbacks, disabling to prevent
907 * races with call_rcu() from interrupt handlers.
908 */
909 local_irq_save(flags);
910 list = rdp->nxtlist;
911 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
912 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
913 tail = rdp->nxttail[RCU_DONE_TAIL];
914 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
915 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
916 rdp->nxttail[count] = &rdp->nxtlist;
917 local_irq_restore(flags);
918
919 /* Invoke callbacks. */
920 count = 0;
921 while (list) {
922 next = list->next;
923 prefetch(next);
924 list->func(list);
925 list = next;
926 if (++count >= rdp->blimit)
927 break;
928 }
929
930 local_irq_save(flags);
931
932 /* Update count, and requeue any remaining callbacks. */
933 rdp->qlen -= count;
934 if (list != NULL) {
935 *tail = rdp->nxtlist;
936 rdp->nxtlist = list;
937 for (count = 0; count < RCU_NEXT_SIZE; count++)
938 if (&rdp->nxtlist == rdp->nxttail[count])
939 rdp->nxttail[count] = tail;
940 else
941 break;
942 }
943
944 /* Reinstate batch limit if we have worked down the excess. */
945 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
946 rdp->blimit = blimit;
947
948 local_irq_restore(flags);
949
950 /* Re-raise the RCU softirq if there are callbacks remaining. */
951 if (cpu_has_callbacks_ready_to_invoke(rdp))
952 raise_softirq(RCU_SOFTIRQ);
953}
954
955/*
956 * Check to see if this CPU is in a non-context-switch quiescent state
957 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
958 * Also schedule the RCU softirq handler.
959 *
960 * This function must be called with hardirqs disabled. It is normally
961 * invoked from the scheduling-clock interrupt. If rcu_pending returns
962 * false, there is no point in invoking rcu_check_callbacks().
963 */
964void rcu_check_callbacks(int cpu, int user)
965{
966 if (user ||
a6826048
PM
967 (idle_cpu(cpu) && rcu_scheduler_active &&
968 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
969
970 /*
971 * Get here if this CPU took its interrupt from user
972 * mode or from the idle loop, and if this is not a
973 * nested interrupt. In this case, the CPU is in
974 * a quiescent state, so count it.
975 *
976 * No memory barrier is required here because both
977 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
978 * only CPU-local variables that other CPUs neither
979 * access nor modify, at least not while the corresponding
980 * CPU is online.
981 */
982
983 rcu_qsctr_inc(cpu);
984 rcu_bh_qsctr_inc(cpu);
985
986 } else if (!in_softirq()) {
987
988 /*
989 * Get here if this CPU did not take its interrupt from
990 * softirq, in other words, if it is not interrupting
991 * a rcu_bh read-side critical section. This is an _bh
992 * critical section, so count it.
993 */
994
995 rcu_bh_qsctr_inc(cpu);
996 }
997 raise_softirq(RCU_SOFTIRQ);
998}
999
1000#ifdef CONFIG_SMP
1001
1002/*
1003 * Scan the leaf rcu_node structures, processing dyntick state for any that
1004 * have not yet encountered a quiescent state, using the function specified.
1005 * Returns 1 if the current grace period ends while scanning (possibly
1006 * because we made it end).
1007 */
1008static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1009 int (*f)(struct rcu_data *))
1010{
1011 unsigned long bit;
1012 int cpu;
1013 unsigned long flags;
1014 unsigned long mask;
1015 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1016 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1017
1018 for (; rnp_cur < rnp_end; rnp_cur++) {
1019 mask = 0;
1020 spin_lock_irqsave(&rnp_cur->lock, flags);
1021 if (rsp->completed != lastcomp) {
1022 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1023 return 1;
1024 }
1025 if (rnp_cur->qsmask == 0) {
1026 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1027 continue;
1028 }
1029 cpu = rnp_cur->grplo;
1030 bit = 1;
1031 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1032 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1033 mask |= bit;
1034 }
1035 if (mask != 0 && rsp->completed == lastcomp) {
1036
1037 /* cpu_quiet_msk() releases rnp_cur->lock. */
1038 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1039 continue;
1040 }
1041 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1042 }
1043 return 0;
1044}
1045
1046/*
1047 * Force quiescent states on reluctant CPUs, and also detect which
1048 * CPUs are in dyntick-idle mode.
1049 */
1050static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1051{
1052 unsigned long flags;
1053 long lastcomp;
64db4cff
PM
1054 struct rcu_node *rnp = rcu_get_root(rsp);
1055 u8 signaled;
1056
1057 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum))
1058 return; /* No grace period in progress, nothing to force. */
1059 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1060 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1061 return; /* Someone else is already on the job. */
1062 }
1063 if (relaxed &&
ef631b0c 1064 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1065 goto unlock_ret; /* no emergency and done recently. */
1066 rsp->n_force_qs++;
1067 spin_lock(&rnp->lock);
1068 lastcomp = rsp->completed;
1069 signaled = rsp->signaled;
1070 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1071 if (lastcomp == rsp->gpnum) {
1072 rsp->n_force_qs_ngp++;
1073 spin_unlock(&rnp->lock);
1074 goto unlock_ret; /* no GP in progress, time updated. */
1075 }
1076 spin_unlock(&rnp->lock);
1077 switch (signaled) {
1078 case RCU_GP_INIT:
1079
1080 break; /* grace period still initializing, ignore. */
1081
1082 case RCU_SAVE_DYNTICK:
1083
1084 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1085 break; /* So gcc recognizes the dead code. */
1086
1087 /* Record dyntick-idle state. */
1088 if (rcu_process_dyntick(rsp, lastcomp,
1089 dyntick_save_progress_counter))
1090 goto unlock_ret;
1091
1092 /* Update state, record completion counter. */
1093 spin_lock(&rnp->lock);
1094 if (lastcomp == rsp->completed) {
1095 rsp->signaled = RCU_FORCE_QS;
1096 dyntick_record_completed(rsp, lastcomp);
1097 }
1098 spin_unlock(&rnp->lock);
1099 break;
1100
1101 case RCU_FORCE_QS:
1102
1103 /* Check dyntick-idle state, send IPI to laggarts. */
1104 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1105 rcu_implicit_dynticks_qs))
1106 goto unlock_ret;
1107
1108 /* Leave state in case more forcing is required. */
1109
1110 break;
1111 }
1112unlock_ret:
1113 spin_unlock_irqrestore(&rsp->fqslock, flags);
1114}
1115
1116#else /* #ifdef CONFIG_SMP */
1117
1118static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1119{
1120 set_need_resched();
1121}
1122
1123#endif /* #else #ifdef CONFIG_SMP */
1124
1125/*
1126 * This does the RCU processing work from softirq context for the
1127 * specified rcu_state and rcu_data structures. This may be called
1128 * only from the CPU to whom the rdp belongs.
1129 */
1130static void
1131__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1132{
1133 unsigned long flags;
1134
1135 /*
1136 * If an RCU GP has gone long enough, go check for dyntick
1137 * idle CPUs and, if needed, send resched IPIs.
1138 */
ef631b0c 1139 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1140 force_quiescent_state(rsp, 1);
1141
1142 /*
1143 * Advance callbacks in response to end of earlier grace
1144 * period that some other CPU ended.
1145 */
1146 rcu_process_gp_end(rsp, rdp);
1147
1148 /* Update RCU state based on any recent quiescent states. */
1149 rcu_check_quiescent_state(rsp, rdp);
1150
1151 /* Does this CPU require a not-yet-started grace period? */
1152 if (cpu_needs_another_gp(rsp, rdp)) {
1153 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1154 rcu_start_gp(rsp, flags); /* releases above lock */
1155 }
1156
1157 /* If there are callbacks ready, invoke them. */
1158 rcu_do_batch(rdp);
1159}
1160
1161/*
1162 * Do softirq processing for the current CPU.
1163 */
1164static void rcu_process_callbacks(struct softirq_action *unused)
1165{
1166 /*
1167 * Memory references from any prior RCU read-side critical sections
1168 * executed by the interrupted code must be seen before any RCU
1169 * grace-period manipulations below.
1170 */
1171 smp_mb(); /* See above block comment. */
1172
1173 __rcu_process_callbacks(&rcu_state, &__get_cpu_var(rcu_data));
1174 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1175
1176 /*
1177 * Memory references from any later RCU read-side critical sections
1178 * executed by the interrupted code must be seen after any RCU
1179 * grace-period manipulations above.
1180 */
1181 smp_mb(); /* See above block comment. */
1182}
1183
1184static void
1185__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1186 struct rcu_state *rsp)
1187{
1188 unsigned long flags;
1189 struct rcu_data *rdp;
1190
1191 head->func = func;
1192 head->next = NULL;
1193
1194 smp_mb(); /* Ensure RCU update seen before callback registry. */
1195
1196 /*
1197 * Opportunistically note grace-period endings and beginnings.
1198 * Note that we might see a beginning right after we see an
1199 * end, but never vice versa, since this CPU has to pass through
1200 * a quiescent state betweentimes.
1201 */
1202 local_irq_save(flags);
1203 rdp = rsp->rda[smp_processor_id()];
1204 rcu_process_gp_end(rsp, rdp);
1205 check_for_new_grace_period(rsp, rdp);
1206
1207 /* Add the callback to our list. */
1208 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1209 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1210
1211 /* Start a new grace period if one not already started. */
1212 if (ACCESS_ONCE(rsp->completed) == ACCESS_ONCE(rsp->gpnum)) {
1213 unsigned long nestflag;
1214 struct rcu_node *rnp_root = rcu_get_root(rsp);
1215
1216 spin_lock_irqsave(&rnp_root->lock, nestflag);
1217 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1218 }
1219
1220 /* Force the grace period if too many callbacks or too long waiting. */
1221 if (unlikely(++rdp->qlen > qhimark)) {
1222 rdp->blimit = LONG_MAX;
1223 force_quiescent_state(rsp, 0);
ef631b0c 1224 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1225 force_quiescent_state(rsp, 1);
1226 local_irq_restore(flags);
1227}
1228
1229/*
1230 * Queue an RCU callback for invocation after a grace period.
1231 */
1232void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1233{
1234 __call_rcu(head, func, &rcu_state);
1235}
1236EXPORT_SYMBOL_GPL(call_rcu);
1237
1238/*
1239 * Queue an RCU for invocation after a quicker grace period.
1240 */
1241void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1242{
1243 __call_rcu(head, func, &rcu_bh_state);
1244}
1245EXPORT_SYMBOL_GPL(call_rcu_bh);
1246
1247/*
1248 * Check to see if there is any immediate RCU-related work to be done
1249 * by the current CPU, for the specified type of RCU, returning 1 if so.
1250 * The checks are in order of increasing expense: checks that can be
1251 * carried out against CPU-local state are performed first. However,
1252 * we must check for CPU stalls first, else we might not get a chance.
1253 */
1254static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1255{
1256 rdp->n_rcu_pending++;
1257
1258 /* Check for CPU stalls, if enabled. */
1259 check_cpu_stall(rsp, rdp);
1260
1261 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1262 if (rdp->qs_pending) {
1263 rdp->n_rp_qs_pending++;
64db4cff 1264 return 1;
7ba5c840 1265 }
64db4cff
PM
1266
1267 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1268 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1269 rdp->n_rp_cb_ready++;
64db4cff 1270 return 1;
7ba5c840 1271 }
64db4cff
PM
1272
1273 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1274 if (cpu_needs_another_gp(rsp, rdp)) {
1275 rdp->n_rp_cpu_needs_gp++;
64db4cff 1276 return 1;
7ba5c840 1277 }
64db4cff
PM
1278
1279 /* Has another RCU grace period completed? */
7ba5c840
PM
1280 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1281 rdp->n_rp_gp_completed++;
64db4cff 1282 return 1;
7ba5c840 1283 }
64db4cff
PM
1284
1285 /* Has a new RCU grace period started? */
7ba5c840
PM
1286 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1287 rdp->n_rp_gp_started++;
64db4cff 1288 return 1;
7ba5c840 1289 }
64db4cff
PM
1290
1291 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1292 if (ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum) &&
7ba5c840
PM
1293 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1294 rdp->n_rp_need_fqs++;
64db4cff 1295 return 1;
7ba5c840 1296 }
64db4cff
PM
1297
1298 /* nothing to do */
7ba5c840 1299 rdp->n_rp_need_nothing++;
64db4cff
PM
1300 return 0;
1301}
1302
1303/*
1304 * Check to see if there is any immediate RCU-related work to be done
1305 * by the current CPU, returning 1 if so. This function is part of the
1306 * RCU implementation; it is -not- an exported member of the RCU API.
1307 */
1308int rcu_pending(int cpu)
1309{
1310 return __rcu_pending(&rcu_state, &per_cpu(rcu_data, cpu)) ||
1311 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu));
1312}
1313
1314/*
1315 * Check to see if any future RCU-related work will need to be done
1316 * by the current CPU, even if none need be done immediately, returning
1317 * 1 if so. This function is part of the RCU implementation; it is -not-
1318 * an exported member of the RCU API.
1319 */
1320int rcu_needs_cpu(int cpu)
1321{
1322 /* RCU callbacks either ready or pending? */
1323 return per_cpu(rcu_data, cpu).nxtlist ||
1324 per_cpu(rcu_bh_data, cpu).nxtlist;
1325}
1326
1327/*
27569620
PM
1328 * Do boot-time initialization of a CPU's per-CPU RCU data.
1329 */
1330static void __init
1331rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1332{
1333 unsigned long flags;
1334 int i;
1335 struct rcu_data *rdp = rsp->rda[cpu];
1336 struct rcu_node *rnp = rcu_get_root(rsp);
1337
1338 /* Set up local state, ensuring consistent view of global state. */
1339 spin_lock_irqsave(&rnp->lock, flags);
1340 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1341 rdp->nxtlist = NULL;
1342 for (i = 0; i < RCU_NEXT_SIZE; i++)
1343 rdp->nxttail[i] = &rdp->nxtlist;
1344 rdp->qlen = 0;
1345#ifdef CONFIG_NO_HZ
1346 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1347#endif /* #ifdef CONFIG_NO_HZ */
1348 rdp->cpu = cpu;
1349 spin_unlock_irqrestore(&rnp->lock, flags);
1350}
1351
1352/*
1353 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1354 * offline event can be happening at a given time. Note also that we
1355 * can accept some slop in the rsp->completed access due to the fact
1356 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1357 */
e4fa4c97 1358static void __cpuinit
64db4cff
PM
1359rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
1360{
1361 unsigned long flags;
64db4cff
PM
1362 long lastcomp;
1363 unsigned long mask;
1364 struct rcu_data *rdp = rsp->rda[cpu];
1365 struct rcu_node *rnp = rcu_get_root(rsp);
1366
1367 /* Set up local state, ensuring consistent view of global state. */
1368 spin_lock_irqsave(&rnp->lock, flags);
1369 lastcomp = rsp->completed;
1370 rdp->completed = lastcomp;
1371 rdp->gpnum = lastcomp;
1372 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1373 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1374 rdp->beenonline = 1; /* We have now been online. */
1375 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1376 rdp->blimit = blimit;
64db4cff
PM
1377 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1378
1379 /*
1380 * A new grace period might start here. If so, we won't be part
1381 * of it, but that is OK, as we are currently in a quiescent state.
1382 */
1383
1384 /* Exclude any attempts to start a new GP on large systems. */
1385 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1386
1387 /* Add CPU to rcu_node bitmasks. */
1388 rnp = rdp->mynode;
1389 mask = rdp->grpmask;
1390 do {
1391 /* Exclude any attempts to start a new GP on small systems. */
1392 spin_lock(&rnp->lock); /* irqs already disabled. */
1393 rnp->qsmaskinit |= mask;
1394 mask = rnp->grpmask;
1395 spin_unlock(&rnp->lock); /* irqs already disabled. */
1396 rnp = rnp->parent;
1397 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1398
1399 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1400
1401 /*
1402 * A new grace period might start here. If so, we will be part of
1403 * it, and its gpnum will be greater than ours, so we will
1404 * participate. It is also possible for the gpnum to have been
1405 * incremented before this function was called, and the bitmasks
1406 * to not be filled out until now, in which case we will also
1407 * participate due to our gpnum being behind.
1408 */
1409
1410 /* Since it is coming online, the CPU is in a quiescent state. */
1411 cpu_quiet(cpu, rsp, rdp, lastcomp);
1412 local_irq_restore(flags);
1413}
1414
1415static void __cpuinit rcu_online_cpu(int cpu)
1416{
64db4cff
PM
1417 rcu_init_percpu_data(cpu, &rcu_state);
1418 rcu_init_percpu_data(cpu, &rcu_bh_state);
1419 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1420}
1421
1422/*
1423 * Handle CPU online/offline notifcation events.
1424 */
1425static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1426 unsigned long action, void *hcpu)
1427{
1428 long cpu = (long)hcpu;
1429
1430 switch (action) {
1431 case CPU_UP_PREPARE:
1432 case CPU_UP_PREPARE_FROZEN:
1433 rcu_online_cpu(cpu);
1434 break;
1435 case CPU_DEAD:
1436 case CPU_DEAD_FROZEN:
1437 case CPU_UP_CANCELED:
1438 case CPU_UP_CANCELED_FROZEN:
1439 rcu_offline_cpu(cpu);
1440 break;
1441 default:
1442 break;
1443 }
1444 return NOTIFY_OK;
1445}
1446
1447/*
1448 * Compute the per-level fanout, either using the exact fanout specified
1449 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1450 */
1451#ifdef CONFIG_RCU_FANOUT_EXACT
1452static void __init rcu_init_levelspread(struct rcu_state *rsp)
1453{
1454 int i;
1455
1456 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1457 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1458}
1459#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1460static void __init rcu_init_levelspread(struct rcu_state *rsp)
1461{
1462 int ccur;
1463 int cprv;
1464 int i;
1465
1466 cprv = NR_CPUS;
1467 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1468 ccur = rsp->levelcnt[i];
1469 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1470 cprv = ccur;
1471 }
1472}
1473#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1474
1475/*
1476 * Helper function for rcu_init() that initializes one rcu_state structure.
1477 */
1478static void __init rcu_init_one(struct rcu_state *rsp)
1479{
1480 int cpustride = 1;
1481 int i;
1482 int j;
1483 struct rcu_node *rnp;
1484
1485 /* Initialize the level-tracking arrays. */
1486
1487 for (i = 1; i < NUM_RCU_LVLS; i++)
1488 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1489 rcu_init_levelspread(rsp);
1490
1491 /* Initialize the elements themselves, starting from the leaves. */
1492
1493 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1494 cpustride *= rsp->levelspread[i];
1495 rnp = rsp->level[i];
1496 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1497 spin_lock_init(&rnp->lock);
1498 rnp->qsmask = 0;
1499 rnp->qsmaskinit = 0;
1500 rnp->grplo = j * cpustride;
1501 rnp->grphi = (j + 1) * cpustride - 1;
1502 if (rnp->grphi >= NR_CPUS)
1503 rnp->grphi = NR_CPUS - 1;
1504 if (i == 0) {
1505 rnp->grpnum = 0;
1506 rnp->grpmask = 0;
1507 rnp->parent = NULL;
1508 } else {
1509 rnp->grpnum = j % rsp->levelspread[i - 1];
1510 rnp->grpmask = 1UL << rnp->grpnum;
1511 rnp->parent = rsp->level[i - 1] +
1512 j / rsp->levelspread[i - 1];
1513 }
1514 rnp->level = i;
1515 }
1516 }
1517}
1518
1519/*
1520 * Helper macro for __rcu_init(). To be used nowhere else!
1521 * Assigns leaf node pointers into each CPU's rcu_data structure.
1522 */
1523#define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1524do { \
1525 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1526 j = 0; \
1527 for_each_possible_cpu(i) { \
1528 if (i > rnp[j].grphi) \
1529 j++; \
1530 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1531 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1532 } \
1533} while (0)
1534
1535static struct notifier_block __cpuinitdata rcu_nb = {
1536 .notifier_call = rcu_cpu_notify,
1537};
1538
1539void __init __rcu_init(void)
1540{
1541 int i; /* All used by RCU_DATA_PTR_INIT(). */
1542 int j;
1543 struct rcu_node *rnp;
1544
f6faac71 1545 printk(KERN_INFO "Hierarchical RCU implementation.\n");
64db4cff
PM
1546#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1547 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1548#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1549 rcu_init_one(&rcu_state);
1550 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
27569620
PM
1551 for_each_possible_cpu(i)
1552 rcu_boot_init_percpu_data(i, &rcu_state);
64db4cff
PM
1553 rcu_init_one(&rcu_bh_state);
1554 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
27569620
PM
1555 for_each_possible_cpu(i)
1556 rcu_boot_init_percpu_data(i, &rcu_bh_state);
64db4cff
PM
1557
1558 for_each_online_cpu(i)
1559 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long)i);
1560 /* Register notifier for non-boot CPUs */
1561 register_cpu_notifier(&rcu_nb);
64db4cff
PM
1562}
1563
1564module_param(blimit, int, 0);
1565module_param(qhimark, int, 0);
1566module_param(qlowmark, int, 0);