rcu: refactor RCU's context-switch handling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52/* Data structures. */
53
b668c9cf 54static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 55
64db4cff
PM
56#define RCU_STATE_INITIALIZER(name) { \
57 .level = { &name.node[0] }, \
58 .levelcnt = { \
59 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_1, \
61 NUM_RCU_LVL_2, \
cf244dc0
PM
62 NUM_RCU_LVL_3, \
63 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 64 }, \
83f5b01f 65 .signaled = RCU_GP_IDLE, \
64db4cff
PM
66 .gpnum = -300, \
67 .completed = -300, \
1304afb2 68 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&name.onofflock), \
e74f4c45
PM
69 .orphan_cbs_list = NULL, \
70 .orphan_cbs_tail = &name.orphan_cbs_list, \
71 .orphan_qlen = 0, \
1304afb2 72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&name.fqslock), \
64db4cff
PM
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75}
76
d6714c22
PM
77struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
78DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 79
6258c4fb
IM
80struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
81DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 82
fc2219d4
PM
83/*
84 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
85 * permit this function to be invoked without holding the root rcu_node
86 * structure's ->lock, but of course results can be subject to change.
87 */
88static int rcu_gp_in_progress(struct rcu_state *rsp)
89{
90 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
91}
92
b1f77b05 93/*
d6714c22 94 * Note a quiescent state. Because we do not need to know
b1f77b05 95 * how many quiescent states passed, just if there was at least
d6714c22 96 * one since the start of the grace period, this just sets a flag.
b1f77b05 97 */
d6714c22 98void rcu_sched_qs(int cpu)
b1f77b05 99{
25502a6c 100 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 101
c64ac3ce 102 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
103 barrier();
104 rdp->passed_quiesc = 1;
b1f77b05
IM
105}
106
d6714c22 107void rcu_bh_qs(int cpu)
b1f77b05 108{
25502a6c 109 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 110
c64ac3ce 111 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
112 barrier();
113 rdp->passed_quiesc = 1;
b1f77b05 114}
64db4cff 115
25502a6c
PM
116/*
117 * Note a context switch. This is a quiescent state for RCU-sched,
118 * and requires special handling for preemptible RCU.
119 */
120void rcu_note_context_switch(int cpu)
121{
122 rcu_sched_qs(cpu);
123 rcu_preempt_note_context_switch(cpu);
124}
125
64db4cff 126#ifdef CONFIG_NO_HZ
90a4d2c0
PM
127DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
128 .dynticks_nesting = 1,
129 .dynticks = 1,
130};
64db4cff
PM
131#endif /* #ifdef CONFIG_NO_HZ */
132
133static int blimit = 10; /* Maximum callbacks per softirq. */
134static int qhimark = 10000; /* If this many pending, ignore blimit. */
135static int qlowmark = 100; /* Once only this many pending, use blimit. */
136
3d76c082
PM
137module_param(blimit, int, 0);
138module_param(qhimark, int, 0);
139module_param(qlowmark, int, 0);
140
64db4cff 141static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 142static int rcu_pending(int cpu);
64db4cff
PM
143
144/*
d6714c22 145 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 146 */
d6714c22 147long rcu_batches_completed_sched(void)
64db4cff 148{
d6714c22 149 return rcu_sched_state.completed;
64db4cff 150}
d6714c22 151EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
152
153/*
154 * Return the number of RCU BH batches processed thus far for debug & stats.
155 */
156long rcu_batches_completed_bh(void)
157{
158 return rcu_bh_state.completed;
159}
160EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
161
bf66f18e
PM
162/*
163 * Force a quiescent state for RCU BH.
164 */
165void rcu_bh_force_quiescent_state(void)
166{
167 force_quiescent_state(&rcu_bh_state, 0);
168}
169EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
170
171/*
172 * Force a quiescent state for RCU-sched.
173 */
174void rcu_sched_force_quiescent_state(void)
175{
176 force_quiescent_state(&rcu_sched_state, 0);
177}
178EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
179
64db4cff
PM
180/*
181 * Does the CPU have callbacks ready to be invoked?
182 */
183static int
184cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
185{
186 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
187}
188
189/*
190 * Does the current CPU require a yet-as-unscheduled grace period?
191 */
192static int
193cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
194{
fc2219d4 195 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
196}
197
198/*
199 * Return the root node of the specified rcu_state structure.
200 */
201static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
202{
203 return &rsp->node[0];
204}
205
206#ifdef CONFIG_SMP
207
208/*
209 * If the specified CPU is offline, tell the caller that it is in
210 * a quiescent state. Otherwise, whack it with a reschedule IPI.
211 * Grace periods can end up waiting on an offline CPU when that
212 * CPU is in the process of coming online -- it will be added to the
213 * rcu_node bitmasks before it actually makes it online. The same thing
214 * can happen while a CPU is in the process of coming online. Because this
215 * race is quite rare, we check for it after detecting that the grace
216 * period has been delayed rather than checking each and every CPU
217 * each and every time we start a new grace period.
218 */
219static int rcu_implicit_offline_qs(struct rcu_data *rdp)
220{
221 /*
222 * If the CPU is offline, it is in a quiescent state. We can
223 * trust its state not to change because interrupts are disabled.
224 */
225 if (cpu_is_offline(rdp->cpu)) {
226 rdp->offline_fqs++;
227 return 1;
228 }
229
f41d911f
PM
230 /* If preemptable RCU, no point in sending reschedule IPI. */
231 if (rdp->preemptable)
232 return 0;
233
64db4cff
PM
234 /* The CPU is online, so send it a reschedule IPI. */
235 if (rdp->cpu != smp_processor_id())
236 smp_send_reschedule(rdp->cpu);
237 else
238 set_need_resched();
239 rdp->resched_ipi++;
240 return 0;
241}
242
243#endif /* #ifdef CONFIG_SMP */
244
245#ifdef CONFIG_NO_HZ
64db4cff
PM
246
247/**
248 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
249 *
250 * Enter nohz mode, in other words, -leave- the mode in which RCU
251 * read-side critical sections can occur. (Though RCU read-side
252 * critical sections can occur in irq handlers in nohz mode, a possibility
253 * handled by rcu_irq_enter() and rcu_irq_exit()).
254 */
255void rcu_enter_nohz(void)
256{
257 unsigned long flags;
258 struct rcu_dynticks *rdtp;
259
260 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
261 local_irq_save(flags);
262 rdtp = &__get_cpu_var(rcu_dynticks);
263 rdtp->dynticks++;
264 rdtp->dynticks_nesting--;
86848966 265 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
266 local_irq_restore(flags);
267}
268
269/*
270 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
271 *
272 * Exit nohz mode, in other words, -enter- the mode in which RCU
273 * read-side critical sections normally occur.
274 */
275void rcu_exit_nohz(void)
276{
277 unsigned long flags;
278 struct rcu_dynticks *rdtp;
279
280 local_irq_save(flags);
281 rdtp = &__get_cpu_var(rcu_dynticks);
282 rdtp->dynticks++;
283 rdtp->dynticks_nesting++;
86848966 284 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
285 local_irq_restore(flags);
286 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
287}
288
289/**
290 * rcu_nmi_enter - inform RCU of entry to NMI context
291 *
292 * If the CPU was idle with dynamic ticks active, and there is no
293 * irq handler running, this updates rdtp->dynticks_nmi to let the
294 * RCU grace-period handling know that the CPU is active.
295 */
296void rcu_nmi_enter(void)
297{
298 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
299
300 if (rdtp->dynticks & 0x1)
301 return;
302 rdtp->dynticks_nmi++;
86848966 303 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
304 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
305}
306
307/**
308 * rcu_nmi_exit - inform RCU of exit from NMI context
309 *
310 * If the CPU was idle with dynamic ticks active, and there is no
311 * irq handler running, this updates rdtp->dynticks_nmi to let the
312 * RCU grace-period handling know that the CPU is no longer active.
313 */
314void rcu_nmi_exit(void)
315{
316 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
317
318 if (rdtp->dynticks & 0x1)
319 return;
320 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
321 rdtp->dynticks_nmi++;
86848966 322 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
323}
324
325/**
326 * rcu_irq_enter - inform RCU of entry to hard irq context
327 *
328 * If the CPU was idle with dynamic ticks active, this updates the
329 * rdtp->dynticks to let the RCU handling know that the CPU is active.
330 */
331void rcu_irq_enter(void)
332{
333 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
334
335 if (rdtp->dynticks_nesting++)
336 return;
337 rdtp->dynticks++;
86848966 338 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
339 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
340}
341
342/**
343 * rcu_irq_exit - inform RCU of exit from hard irq context
344 *
345 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
346 * to put let the RCU handling be aware that the CPU is going back to idle
347 * with no ticks.
348 */
349void rcu_irq_exit(void)
350{
351 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
352
353 if (--rdtp->dynticks_nesting)
354 return;
355 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
356 rdtp->dynticks++;
86848966 357 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
358
359 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 360 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
361 __get_cpu_var(rcu_bh_data).nxtlist)
362 set_need_resched();
363}
364
64db4cff
PM
365#ifdef CONFIG_SMP
366
64db4cff
PM
367/*
368 * Snapshot the specified CPU's dynticks counter so that we can later
369 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 370 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
371 */
372static int dyntick_save_progress_counter(struct rcu_data *rdp)
373{
374 int ret;
375 int snap;
376 int snap_nmi;
377
378 snap = rdp->dynticks->dynticks;
379 snap_nmi = rdp->dynticks->dynticks_nmi;
380 smp_mb(); /* Order sampling of snap with end of grace period. */
381 rdp->dynticks_snap = snap;
382 rdp->dynticks_nmi_snap = snap_nmi;
383 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
384 if (ret)
385 rdp->dynticks_fqs++;
386 return ret;
387}
388
389/*
390 * Return true if the specified CPU has passed through a quiescent
391 * state by virtue of being in or having passed through an dynticks
392 * idle state since the last call to dyntick_save_progress_counter()
393 * for this same CPU.
394 */
395static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
396{
397 long curr;
398 long curr_nmi;
399 long snap;
400 long snap_nmi;
401
402 curr = rdp->dynticks->dynticks;
403 snap = rdp->dynticks_snap;
404 curr_nmi = rdp->dynticks->dynticks_nmi;
405 snap_nmi = rdp->dynticks_nmi_snap;
406 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
407
408 /*
409 * If the CPU passed through or entered a dynticks idle phase with
410 * no active irq/NMI handlers, then we can safely pretend that the CPU
411 * already acknowledged the request to pass through a quiescent
412 * state. Either way, that CPU cannot possibly be in an RCU
413 * read-side critical section that started before the beginning
414 * of the current RCU grace period.
415 */
416 if ((curr != snap || (curr & 0x1) == 0) &&
417 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
418 rdp->dynticks_fqs++;
419 return 1;
420 }
421
422 /* Go check for the CPU being offline. */
423 return rcu_implicit_offline_qs(rdp);
424}
425
426#endif /* #ifdef CONFIG_SMP */
427
428#else /* #ifdef CONFIG_NO_HZ */
429
64db4cff
PM
430#ifdef CONFIG_SMP
431
64db4cff
PM
432static int dyntick_save_progress_counter(struct rcu_data *rdp)
433{
434 return 0;
435}
436
437static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
438{
439 return rcu_implicit_offline_qs(rdp);
440}
441
442#endif /* #ifdef CONFIG_SMP */
443
444#endif /* #else #ifdef CONFIG_NO_HZ */
445
446#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
447
448static void record_gp_stall_check_time(struct rcu_state *rsp)
449{
450 rsp->gp_start = jiffies;
451 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
452}
453
454static void print_other_cpu_stall(struct rcu_state *rsp)
455{
456 int cpu;
457 long delta;
458 unsigned long flags;
459 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
460
461 /* Only let one CPU complain about others per time interval. */
462
1304afb2 463 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 464 delta = jiffies - rsp->jiffies_stall;
fc2219d4 465 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 466 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
467 return;
468 }
469 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
470
471 /*
472 * Now rat on any tasks that got kicked up to the root rcu_node
473 * due to CPU offlining.
474 */
475 rcu_print_task_stall(rnp);
1304afb2 476 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
477
478 /* OK, time to rat on our buddy... */
479
480 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
a0b6c9a7 481 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 482 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 483 rcu_print_task_stall(rnp);
3acd9eb3 484 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 485 if (rnp->qsmask == 0)
64db4cff 486 continue;
a0b6c9a7
PM
487 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
488 if (rnp->qsmask & (1UL << cpu))
489 printk(" %d", rnp->grplo + cpu);
64db4cff
PM
490 }
491 printk(" (detected by %d, t=%ld jiffies)\n",
492 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
493 trigger_all_cpu_backtrace();
494
1ed509a2
PM
495 /* If so configured, complain about tasks blocking the grace period. */
496
497 rcu_print_detail_task_stall(rsp);
498
64db4cff
PM
499 force_quiescent_state(rsp, 0); /* Kick them all. */
500}
501
502static void print_cpu_stall(struct rcu_state *rsp)
503{
504 unsigned long flags;
505 struct rcu_node *rnp = rcu_get_root(rsp);
506
507 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
508 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
509 trigger_all_cpu_backtrace();
510
1304afb2 511 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 512 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
513 rsp->jiffies_stall =
514 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 515 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 516
64db4cff
PM
517 set_need_resched(); /* kick ourselves to get things going. */
518}
519
520static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
521{
522 long delta;
523 struct rcu_node *rnp;
524
525 delta = jiffies - rsp->jiffies_stall;
526 rnp = rdp->mynode;
527 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
528
529 /* We haven't checked in, so go dump stack. */
530 print_cpu_stall(rsp);
531
fc2219d4 532 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
533
534 /* They had two time units to dump stack, so complain. */
535 print_other_cpu_stall(rsp);
536 }
537}
538
539#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
540
541static void record_gp_stall_check_time(struct rcu_state *rsp)
542{
543}
544
545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
546{
547}
548
549#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
550
551/*
552 * Update CPU-local rcu_data state to record the newly noticed grace period.
553 * This is used both when we started the grace period and when we notice
9160306e
PM
554 * that someone else started the grace period. The caller must hold the
555 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
556 * and must have irqs disabled.
64db4cff 557 */
9160306e
PM
558static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
559{
560 if (rdp->gpnum != rnp->gpnum) {
561 rdp->qs_pending = 1;
562 rdp->passed_quiesc = 0;
563 rdp->gpnum = rnp->gpnum;
564 }
565}
566
64db4cff
PM
567static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
568{
9160306e
PM
569 unsigned long flags;
570 struct rcu_node *rnp;
571
572 local_irq_save(flags);
573 rnp = rdp->mynode;
574 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 575 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
576 local_irq_restore(flags);
577 return;
578 }
579 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 580 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
581}
582
583/*
584 * Did someone else start a new RCU grace period start since we last
585 * checked? Update local state appropriately if so. Must be called
586 * on the CPU corresponding to rdp.
587 */
588static int
589check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
590{
591 unsigned long flags;
592 int ret = 0;
593
594 local_irq_save(flags);
595 if (rdp->gpnum != rsp->gpnum) {
596 note_new_gpnum(rsp, rdp);
597 ret = 1;
598 }
599 local_irq_restore(flags);
600 return ret;
601}
602
d09b62df
PM
603/*
604 * Advance this CPU's callbacks, but only if the current grace period
605 * has ended. This may be called only from the CPU to whom the rdp
606 * belongs. In addition, the corresponding leaf rcu_node structure's
607 * ->lock must be held by the caller, with irqs disabled.
608 */
609static void
610__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
611{
612 /* Did another grace period end? */
613 if (rdp->completed != rnp->completed) {
614
615 /* Advance callbacks. No harm if list empty. */
616 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
617 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
618 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
619
620 /* Remember that we saw this grace-period completion. */
621 rdp->completed = rnp->completed;
622 }
623}
624
625/*
626 * Advance this CPU's callbacks, but only if the current grace period
627 * has ended. This may be called only from the CPU to whom the rdp
628 * belongs.
629 */
630static void
631rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
632{
633 unsigned long flags;
634 struct rcu_node *rnp;
635
636 local_irq_save(flags);
637 rnp = rdp->mynode;
638 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 639 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
640 local_irq_restore(flags);
641 return;
642 }
643 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
645}
646
647/*
648 * Do per-CPU grace-period initialization for running CPU. The caller
649 * must hold the lock of the leaf rcu_node structure corresponding to
650 * this CPU.
651 */
652static void
653rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
654{
655 /* Prior grace period ended, so advance callbacks for current CPU. */
656 __rcu_process_gp_end(rsp, rnp, rdp);
657
658 /*
659 * Because this CPU just now started the new grace period, we know
660 * that all of its callbacks will be covered by this upcoming grace
661 * period, even the ones that were registered arbitrarily recently.
662 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
663 *
664 * Other CPUs cannot be sure exactly when the grace period started.
665 * Therefore, their recently registered callbacks must pass through
666 * an additional RCU_NEXT_READY stage, so that they will be handled
667 * by the next RCU grace period.
668 */
669 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
670 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
671
672 /* Set state so that this CPU will detect the next quiescent state. */
673 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
674}
675
64db4cff
PM
676/*
677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
678 * in preparation for detecting the next grace period. The caller must hold
679 * the root node's ->lock, which is released before return. Hard irqs must
680 * be disabled.
681 */
682static void
683rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
684 __releases(rcu_get_root(rsp)->lock)
685{
686 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
687 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 688
07079d53 689 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
690 if (cpu_needs_another_gp(rsp, rdp))
691 rsp->fqs_need_gp = 1;
b32e9eb6 692 if (rnp->completed == rsp->completed) {
1304afb2 693 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
694 return;
695 }
1304afb2 696 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
697
698 /*
699 * Propagate new ->completed value to rcu_node structures
700 * so that other CPUs don't have to wait until the start
701 * of the next grace period to process their callbacks.
702 */
703 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 704 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 705 rnp->completed = rsp->completed;
1304afb2 706 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
707 }
708 local_irq_restore(flags);
64db4cff
PM
709 return;
710 }
711
712 /* Advance to a new grace period and initialize state. */
713 rsp->gpnum++;
c3422bea 714 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
715 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
716 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 717 record_gp_stall_check_time(rsp);
64db4cff 718
64db4cff
PM
719 /* Special-case the common single-level case. */
720 if (NUM_RCU_NODES == 1) {
b0e165c0 721 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 722 rnp->qsmask = rnp->qsmaskinit;
de078d87 723 rnp->gpnum = rsp->gpnum;
d09b62df 724 rnp->completed = rsp->completed;
c12172c0 725 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 726 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 727 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
728 return;
729 }
730
1304afb2 731 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
732
733
734 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 735 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
736
737 /*
b835db1f
PM
738 * Set the quiescent-state-needed bits in all the rcu_node
739 * structures for all currently online CPUs in breadth-first
740 * order, starting from the root rcu_node structure. This
741 * operation relies on the layout of the hierarchy within the
742 * rsp->node[] array. Note that other CPUs will access only
743 * the leaves of the hierarchy, which still indicate that no
744 * grace period is in progress, at least until the corresponding
745 * leaf node has been initialized. In addition, we have excluded
746 * CPU-hotplug operations.
64db4cff
PM
747 *
748 * Note that the grace period cannot complete until we finish
749 * the initialization process, as there will be at least one
750 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
751 * one corresponding to this CPU, due to the fact that we have
752 * irqs disabled.
64db4cff 753 */
a0b6c9a7 754 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 755 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 756 rcu_preempt_check_blocked_tasks(rnp);
49e29126 757 rnp->qsmask = rnp->qsmaskinit;
de078d87 758 rnp->gpnum = rsp->gpnum;
d09b62df
PM
759 rnp->completed = rsp->completed;
760 if (rnp == rdp->mynode)
761 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 762 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
763 }
764
83f5b01f 765 rnp = rcu_get_root(rsp);
1304afb2 766 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 767 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
768 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
769 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
770}
771
f41d911f 772/*
d3f6bad3
PM
773 * Report a full set of quiescent states to the specified rcu_state
774 * data structure. This involves cleaning up after the prior grace
775 * period and letting rcu_start_gp() start up the next grace period
776 * if one is needed. Note that the caller must hold rnp->lock, as
777 * required by rcu_start_gp(), which will release it.
f41d911f 778 */
d3f6bad3 779static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 780 __releases(rcu_get_root(rsp)->lock)
f41d911f 781{
fc2219d4 782 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f 783 rsp->completed = rsp->gpnum;
83f5b01f 784 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
785 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
786}
787
64db4cff 788/*
d3f6bad3
PM
789 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
790 * Allows quiescent states for a group of CPUs to be reported at one go
791 * to the specified rcu_node structure, though all the CPUs in the group
792 * must be represented by the same rcu_node structure (which need not be
793 * a leaf rcu_node structure, though it often will be). That structure's
794 * lock must be held upon entry, and it is released before return.
64db4cff
PM
795 */
796static void
d3f6bad3
PM
797rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
798 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
799 __releases(rnp->lock)
800{
28ecd580
PM
801 struct rcu_node *rnp_c;
802
64db4cff
PM
803 /* Walk up the rcu_node hierarchy. */
804 for (;;) {
805 if (!(rnp->qsmask & mask)) {
806
807 /* Our bit has already been cleared, so done. */
1304afb2 808 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
809 return;
810 }
811 rnp->qsmask &= ~mask;
f41d911f 812 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
813
814 /* Other bits still set at this level, so done. */
1304afb2 815 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
816 return;
817 }
818 mask = rnp->grpmask;
819 if (rnp->parent == NULL) {
820
821 /* No more levels. Exit loop holding root lock. */
822
823 break;
824 }
1304afb2 825 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 826 rnp_c = rnp;
64db4cff 827 rnp = rnp->parent;
1304afb2 828 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 829 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
830 }
831
832 /*
833 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 834 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 835 * to clean up and start the next grace period if one is needed.
64db4cff 836 */
d3f6bad3 837 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
838}
839
840/*
d3f6bad3
PM
841 * Record a quiescent state for the specified CPU to that CPU's rcu_data
842 * structure. This must be either called from the specified CPU, or
843 * called when the specified CPU is known to be offline (and when it is
844 * also known that no other CPU is concurrently trying to help the offline
845 * CPU). The lastcomp argument is used to make sure we are still in the
846 * grace period of interest. We don't want to end the current grace period
847 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
848 */
849static void
d3f6bad3 850rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
851{
852 unsigned long flags;
853 unsigned long mask;
854 struct rcu_node *rnp;
855
856 rnp = rdp->mynode;
1304afb2 857 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 858 if (lastcomp != rnp->completed) {
64db4cff
PM
859
860 /*
861 * Someone beat us to it for this grace period, so leave.
862 * The race with GP start is resolved by the fact that we
863 * hold the leaf rcu_node lock, so that the per-CPU bits
864 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
865 * CPU's bit already cleared in rcu_report_qs_rnp() if this
866 * race occurred.
64db4cff
PM
867 */
868 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 869 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
870 return;
871 }
872 mask = rdp->grpmask;
873 if ((rnp->qsmask & mask) == 0) {
1304afb2 874 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
875 } else {
876 rdp->qs_pending = 0;
877
878 /*
879 * This GP can't end until cpu checks in, so all of our
880 * callbacks can be processed during the next GP.
881 */
64db4cff
PM
882 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
883
d3f6bad3 884 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
885 }
886}
887
888/*
889 * Check to see if there is a new grace period of which this CPU
890 * is not yet aware, and if so, set up local rcu_data state for it.
891 * Otherwise, see if this CPU has just passed through its first
892 * quiescent state for this grace period, and record that fact if so.
893 */
894static void
895rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
896{
897 /* If there is now a new grace period, record and return. */
898 if (check_for_new_grace_period(rsp, rdp))
899 return;
900
901 /*
902 * Does this CPU still need to do its part for current grace period?
903 * If no, return and let the other CPUs do their part as well.
904 */
905 if (!rdp->qs_pending)
906 return;
907
908 /*
909 * Was there a quiescent state since the beginning of the grace
910 * period? If no, then exit and wait for the next call.
911 */
912 if (!rdp->passed_quiesc)
913 return;
914
d3f6bad3
PM
915 /*
916 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
917 * judge of that).
918 */
919 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
920}
921
922#ifdef CONFIG_HOTPLUG_CPU
923
e74f4c45
PM
924/*
925 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
926 * specified flavor of RCU. The callbacks will be adopted by the next
927 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
928 * comes first. Because this is invoked from the CPU_DYING notifier,
929 * irqs are already disabled.
930 */
931static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
932{
933 int i;
934 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
935
936 if (rdp->nxtlist == NULL)
937 return; /* irqs disabled, so comparison is stable. */
1304afb2 938 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
e74f4c45
PM
939 *rsp->orphan_cbs_tail = rdp->nxtlist;
940 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
941 rdp->nxtlist = NULL;
942 for (i = 0; i < RCU_NEXT_SIZE; i++)
943 rdp->nxttail[i] = &rdp->nxtlist;
944 rsp->orphan_qlen += rdp->qlen;
945 rdp->qlen = 0;
1304afb2 946 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
e74f4c45
PM
947}
948
949/*
950 * Adopt previously orphaned RCU callbacks.
951 */
952static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
953{
954 unsigned long flags;
955 struct rcu_data *rdp;
956
1304afb2 957 raw_spin_lock_irqsave(&rsp->onofflock, flags);
e74f4c45
PM
958 rdp = rsp->rda[smp_processor_id()];
959 if (rsp->orphan_cbs_list == NULL) {
1304afb2 960 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
961 return;
962 }
963 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
964 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
965 rdp->qlen += rsp->orphan_qlen;
966 rsp->orphan_cbs_list = NULL;
967 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
968 rsp->orphan_qlen = 0;
1304afb2 969 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
e74f4c45
PM
970}
971
64db4cff
PM
972/*
973 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
974 * and move all callbacks from the outgoing CPU to the current one.
975 */
976static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
977{
64db4cff 978 unsigned long flags;
64db4cff 979 unsigned long mask;
d9a3da06 980 int need_report = 0;
64db4cff 981 struct rcu_data *rdp = rsp->rda[cpu];
64db4cff
PM
982 struct rcu_node *rnp;
983
984 /* Exclude any attempts to start a new grace period. */
1304afb2 985 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
986
987 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 988 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
989 mask = rdp->grpmask; /* rnp->grplo is constant. */
990 do {
1304afb2 991 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
992 rnp->qsmaskinit &= ~mask;
993 if (rnp->qsmaskinit != 0) {
b668c9cf 994 if (rnp != rdp->mynode)
1304afb2 995 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
996 break;
997 }
b668c9cf 998 if (rnp == rdp->mynode)
d9a3da06 999 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1000 else
1304afb2 1001 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1002 mask = rnp->grpmask;
64db4cff
PM
1003 rnp = rnp->parent;
1004 } while (rnp != NULL);
64db4cff 1005
b668c9cf
PM
1006 /*
1007 * We still hold the leaf rcu_node structure lock here, and
1008 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1009 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1010 * held leads to deadlock.
b668c9cf 1011 */
1304afb2 1012 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1013 rnp = rdp->mynode;
d9a3da06 1014 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1015 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1016 else
1304afb2 1017 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1018 if (need_report & RCU_OFL_TASKS_EXP_GP)
1019 rcu_report_exp_rnp(rsp, rnp);
64db4cff 1020
e74f4c45 1021 rcu_adopt_orphan_cbs(rsp);
64db4cff
PM
1022}
1023
1024/*
1025 * Remove the specified CPU from the RCU hierarchy and move any pending
1026 * callbacks that it might have to the current CPU. This code assumes
1027 * that at least one CPU in the system will remain running at all times.
1028 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1029 */
1030static void rcu_offline_cpu(int cpu)
1031{
d6714c22 1032 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1033 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1034 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1035}
1036
1037#else /* #ifdef CONFIG_HOTPLUG_CPU */
1038
e74f4c45
PM
1039static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1040{
1041}
1042
1043static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1044{
1045}
1046
64db4cff
PM
1047static void rcu_offline_cpu(int cpu)
1048{
1049}
1050
1051#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1052
1053/*
1054 * Invoke any RCU callbacks that have made it to the end of their grace
1055 * period. Thottle as specified by rdp->blimit.
1056 */
37c72e56 1057static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1058{
1059 unsigned long flags;
1060 struct rcu_head *next, *list, **tail;
1061 int count;
1062
1063 /* If no callbacks are ready, just return.*/
1064 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1065 return;
1066
1067 /*
1068 * Extract the list of ready callbacks, disabling to prevent
1069 * races with call_rcu() from interrupt handlers.
1070 */
1071 local_irq_save(flags);
1072 list = rdp->nxtlist;
1073 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1074 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1075 tail = rdp->nxttail[RCU_DONE_TAIL];
1076 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1077 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1078 rdp->nxttail[count] = &rdp->nxtlist;
1079 local_irq_restore(flags);
1080
1081 /* Invoke callbacks. */
1082 count = 0;
1083 while (list) {
1084 next = list->next;
1085 prefetch(next);
1086 list->func(list);
1087 list = next;
1088 if (++count >= rdp->blimit)
1089 break;
1090 }
1091
1092 local_irq_save(flags);
1093
1094 /* Update count, and requeue any remaining callbacks. */
1095 rdp->qlen -= count;
1096 if (list != NULL) {
1097 *tail = rdp->nxtlist;
1098 rdp->nxtlist = list;
1099 for (count = 0; count < RCU_NEXT_SIZE; count++)
1100 if (&rdp->nxtlist == rdp->nxttail[count])
1101 rdp->nxttail[count] = tail;
1102 else
1103 break;
1104 }
1105
1106 /* Reinstate batch limit if we have worked down the excess. */
1107 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1108 rdp->blimit = blimit;
1109
37c72e56
PM
1110 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1111 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1112 rdp->qlen_last_fqs_check = 0;
1113 rdp->n_force_qs_snap = rsp->n_force_qs;
1114 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1115 rdp->qlen_last_fqs_check = rdp->qlen;
1116
64db4cff
PM
1117 local_irq_restore(flags);
1118
1119 /* Re-raise the RCU softirq if there are callbacks remaining. */
1120 if (cpu_has_callbacks_ready_to_invoke(rdp))
1121 raise_softirq(RCU_SOFTIRQ);
1122}
1123
1124/*
1125 * Check to see if this CPU is in a non-context-switch quiescent state
1126 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1127 * Also schedule the RCU softirq handler.
1128 *
1129 * This function must be called with hardirqs disabled. It is normally
1130 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1131 * false, there is no point in invoking rcu_check_callbacks().
1132 */
1133void rcu_check_callbacks(int cpu, int user)
1134{
a157229c
PM
1135 if (!rcu_pending(cpu))
1136 return; /* if nothing for RCU to do. */
64db4cff 1137 if (user ||
a6826048
PM
1138 (idle_cpu(cpu) && rcu_scheduler_active &&
1139 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1140
1141 /*
1142 * Get here if this CPU took its interrupt from user
1143 * mode or from the idle loop, and if this is not a
1144 * nested interrupt. In this case, the CPU is in
d6714c22 1145 * a quiescent state, so note it.
64db4cff
PM
1146 *
1147 * No memory barrier is required here because both
d6714c22
PM
1148 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1149 * variables that other CPUs neither access nor modify,
1150 * at least not while the corresponding CPU is online.
64db4cff
PM
1151 */
1152
d6714c22
PM
1153 rcu_sched_qs(cpu);
1154 rcu_bh_qs(cpu);
64db4cff
PM
1155
1156 } else if (!in_softirq()) {
1157
1158 /*
1159 * Get here if this CPU did not take its interrupt from
1160 * softirq, in other words, if it is not interrupting
1161 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1162 * critical section, so note it.
64db4cff
PM
1163 */
1164
d6714c22 1165 rcu_bh_qs(cpu);
64db4cff 1166 }
f41d911f 1167 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1168 raise_softirq(RCU_SOFTIRQ);
1169}
1170
1171#ifdef CONFIG_SMP
1172
1173/*
1174 * Scan the leaf rcu_node structures, processing dyntick state for any that
1175 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1176 * The caller must have suppressed start of new grace periods.
64db4cff 1177 */
45f014c5 1178static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1179{
1180 unsigned long bit;
1181 int cpu;
1182 unsigned long flags;
1183 unsigned long mask;
a0b6c9a7 1184 struct rcu_node *rnp;
64db4cff 1185
a0b6c9a7 1186 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1187 mask = 0;
1304afb2 1188 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1189 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1190 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1191 return;
64db4cff 1192 }
a0b6c9a7 1193 if (rnp->qsmask == 0) {
1304afb2 1194 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1195 continue;
1196 }
a0b6c9a7 1197 cpu = rnp->grplo;
64db4cff 1198 bit = 1;
a0b6c9a7
PM
1199 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1200 if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
64db4cff
PM
1201 mask |= bit;
1202 }
45f014c5 1203 if (mask != 0) {
64db4cff 1204
d3f6bad3
PM
1205 /* rcu_report_qs_rnp() releases rnp->lock. */
1206 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1207 continue;
1208 }
1304afb2 1209 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1210 }
64db4cff
PM
1211}
1212
1213/*
1214 * Force quiescent states on reluctant CPUs, and also detect which
1215 * CPUs are in dyntick-idle mode.
1216 */
1217static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1218{
1219 unsigned long flags;
64db4cff 1220 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1221
fc2219d4 1222 if (!rcu_gp_in_progress(rsp))
64db4cff 1223 return; /* No grace period in progress, nothing to force. */
1304afb2 1224 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1225 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1226 return; /* Someone else is already on the job. */
1227 }
20133cfc 1228 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1229 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1230 rsp->n_force_qs++;
1304afb2 1231 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1232 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1233 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1234 rsp->n_force_qs_ngp++;
1304afb2 1235 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1236 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1237 }
07079d53 1238 rsp->fqs_active = 1;
f3a8b5c6 1239 switch (rsp->signaled) {
83f5b01f 1240 case RCU_GP_IDLE:
64db4cff
PM
1241 case RCU_GP_INIT:
1242
83f5b01f 1243 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1244
1245 case RCU_SAVE_DYNTICK:
64db4cff
PM
1246 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1247 break; /* So gcc recognizes the dead code. */
1248
f261414f
LJ
1249 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1250
64db4cff 1251 /* Record dyntick-idle state. */
45f014c5 1252 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1253 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1254 if (rcu_gp_in_progress(rsp))
64db4cff 1255 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1256 break;
64db4cff
PM
1257
1258 case RCU_FORCE_QS:
1259
1260 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1261 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1262 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1263
1264 /* Leave state in case more forcing is required. */
1265
1304afb2 1266 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1267 break;
64db4cff 1268 }
07079d53 1269 rsp->fqs_active = 0;
46a1e34e 1270 if (rsp->fqs_need_gp) {
1304afb2 1271 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1272 rsp->fqs_need_gp = 0;
1273 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1274 return;
1275 }
1304afb2 1276 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1277unlock_fqs_ret:
1304afb2 1278 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1279}
1280
1281#else /* #ifdef CONFIG_SMP */
1282
1283static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1284{
1285 set_need_resched();
1286}
1287
1288#endif /* #else #ifdef CONFIG_SMP */
1289
1290/*
1291 * This does the RCU processing work from softirq context for the
1292 * specified rcu_state and rcu_data structures. This may be called
1293 * only from the CPU to whom the rdp belongs.
1294 */
1295static void
1296__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1297{
1298 unsigned long flags;
1299
2e597558
PM
1300 WARN_ON_ONCE(rdp->beenonline == 0);
1301
64db4cff
PM
1302 /*
1303 * If an RCU GP has gone long enough, go check for dyntick
1304 * idle CPUs and, if needed, send resched IPIs.
1305 */
20133cfc 1306 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1307 force_quiescent_state(rsp, 1);
1308
1309 /*
1310 * Advance callbacks in response to end of earlier grace
1311 * period that some other CPU ended.
1312 */
1313 rcu_process_gp_end(rsp, rdp);
1314
1315 /* Update RCU state based on any recent quiescent states. */
1316 rcu_check_quiescent_state(rsp, rdp);
1317
1318 /* Does this CPU require a not-yet-started grace period? */
1319 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1320 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1321 rcu_start_gp(rsp, flags); /* releases above lock */
1322 }
1323
1324 /* If there are callbacks ready, invoke them. */
37c72e56 1325 rcu_do_batch(rsp, rdp);
64db4cff
PM
1326}
1327
1328/*
1329 * Do softirq processing for the current CPU.
1330 */
1331static void rcu_process_callbacks(struct softirq_action *unused)
1332{
1333 /*
1334 * Memory references from any prior RCU read-side critical sections
1335 * executed by the interrupted code must be seen before any RCU
1336 * grace-period manipulations below.
1337 */
1338 smp_mb(); /* See above block comment. */
1339
d6714c22
PM
1340 __rcu_process_callbacks(&rcu_sched_state,
1341 &__get_cpu_var(rcu_sched_data));
64db4cff 1342 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1343 rcu_preempt_process_callbacks();
64db4cff
PM
1344
1345 /*
1346 * Memory references from any later RCU read-side critical sections
1347 * executed by the interrupted code must be seen after any RCU
1348 * grace-period manipulations above.
1349 */
1350 smp_mb(); /* See above block comment. */
a47cd880
PM
1351
1352 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1353 rcu_needs_cpu_flush();
64db4cff
PM
1354}
1355
1356static void
1357__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1358 struct rcu_state *rsp)
1359{
1360 unsigned long flags;
1361 struct rcu_data *rdp;
1362
1363 head->func = func;
1364 head->next = NULL;
1365
1366 smp_mb(); /* Ensure RCU update seen before callback registry. */
1367
1368 /*
1369 * Opportunistically note grace-period endings and beginnings.
1370 * Note that we might see a beginning right after we see an
1371 * end, but never vice versa, since this CPU has to pass through
1372 * a quiescent state betweentimes.
1373 */
1374 local_irq_save(flags);
1375 rdp = rsp->rda[smp_processor_id()];
1376 rcu_process_gp_end(rsp, rdp);
1377 check_for_new_grace_period(rsp, rdp);
1378
1379 /* Add the callback to our list. */
1380 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1381 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1382
1383 /* Start a new grace period if one not already started. */
fc2219d4 1384 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1385 unsigned long nestflag;
1386 struct rcu_node *rnp_root = rcu_get_root(rsp);
1387
1304afb2 1388 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
64db4cff
PM
1389 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1390 }
1391
37c72e56
PM
1392 /*
1393 * Force the grace period if too many callbacks or too long waiting.
1394 * Enforce hysteresis, and don't invoke force_quiescent_state()
1395 * if some other CPU has recently done so. Also, don't bother
1396 * invoking force_quiescent_state() if the newly enqueued callback
1397 * is the only one waiting for a grace period to complete.
1398 */
1399 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
64db4cff 1400 rdp->blimit = LONG_MAX;
37c72e56
PM
1401 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1402 *rdp->nxttail[RCU_DONE_TAIL] != head)
1403 force_quiescent_state(rsp, 0);
1404 rdp->n_force_qs_snap = rsp->n_force_qs;
1405 rdp->qlen_last_fqs_check = rdp->qlen;
20133cfc 1406 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1407 force_quiescent_state(rsp, 1);
1408 local_irq_restore(flags);
1409}
1410
1411/*
d6714c22 1412 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1413 */
d6714c22 1414void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1415{
d6714c22 1416 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1417}
d6714c22 1418EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1419
1420/*
1421 * Queue an RCU for invocation after a quicker grace period.
1422 */
1423void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1424{
1425 __call_rcu(head, func, &rcu_bh_state);
1426}
1427EXPORT_SYMBOL_GPL(call_rcu_bh);
1428
6ebb237b
PM
1429/**
1430 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1431 *
1432 * Control will return to the caller some time after a full rcu-sched
1433 * grace period has elapsed, in other words after all currently executing
1434 * rcu-sched read-side critical sections have completed. These read-side
1435 * critical sections are delimited by rcu_read_lock_sched() and
1436 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1437 * local_irq_disable(), and so on may be used in place of
1438 * rcu_read_lock_sched().
1439 *
1440 * This means that all preempt_disable code sequences, including NMI and
1441 * hardware-interrupt handlers, in progress on entry will have completed
1442 * before this primitive returns. However, this does not guarantee that
1443 * softirq handlers will have completed, since in some kernels, these
1444 * handlers can run in process context, and can block.
1445 *
1446 * This primitive provides the guarantees made by the (now removed)
1447 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1448 * guarantees that rcu_read_lock() sections will have completed.
1449 * In "classic RCU", these two guarantees happen to be one and
1450 * the same, but can differ in realtime RCU implementations.
1451 */
1452void synchronize_sched(void)
1453{
1454 struct rcu_synchronize rcu;
1455
1456 if (rcu_blocking_is_gp())
1457 return;
1458
1459 init_completion(&rcu.completion);
1460 /* Will wake me after RCU finished. */
1461 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1462 /* Wait for it. */
1463 wait_for_completion(&rcu.completion);
1464}
1465EXPORT_SYMBOL_GPL(synchronize_sched);
1466
1467/**
1468 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1469 *
1470 * Control will return to the caller some time after a full rcu_bh grace
1471 * period has elapsed, in other words after all currently executing rcu_bh
1472 * read-side critical sections have completed. RCU read-side critical
1473 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1474 * and may be nested.
1475 */
1476void synchronize_rcu_bh(void)
1477{
1478 struct rcu_synchronize rcu;
1479
1480 if (rcu_blocking_is_gp())
1481 return;
1482
1483 init_completion(&rcu.completion);
1484 /* Will wake me after RCU finished. */
1485 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1486 /* Wait for it. */
1487 wait_for_completion(&rcu.completion);
1488}
1489EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1490
64db4cff
PM
1491/*
1492 * Check to see if there is any immediate RCU-related work to be done
1493 * by the current CPU, for the specified type of RCU, returning 1 if so.
1494 * The checks are in order of increasing expense: checks that can be
1495 * carried out against CPU-local state are performed first. However,
1496 * we must check for CPU stalls first, else we might not get a chance.
1497 */
1498static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1499{
2f51f988
PM
1500 struct rcu_node *rnp = rdp->mynode;
1501
64db4cff
PM
1502 rdp->n_rcu_pending++;
1503
1504 /* Check for CPU stalls, if enabled. */
1505 check_cpu_stall(rsp, rdp);
1506
1507 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840 1508 if (rdp->qs_pending) {
d25eb944
PM
1509
1510 /*
1511 * If force_quiescent_state() coming soon and this CPU
1512 * needs a quiescent state, and this is either RCU-sched
1513 * or RCU-bh, force a local reschedule.
1514 */
1515 if (!rdp->preemptable &&
1516 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1517 jiffies))
1518 set_need_resched();
7ba5c840 1519 rdp->n_rp_qs_pending++;
64db4cff 1520 return 1;
7ba5c840 1521 }
64db4cff
PM
1522
1523 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1524 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1525 rdp->n_rp_cb_ready++;
64db4cff 1526 return 1;
7ba5c840 1527 }
64db4cff
PM
1528
1529 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1530 if (cpu_needs_another_gp(rsp, rdp)) {
1531 rdp->n_rp_cpu_needs_gp++;
64db4cff 1532 return 1;
7ba5c840 1533 }
64db4cff
PM
1534
1535 /* Has another RCU grace period completed? */
2f51f988 1536 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1537 rdp->n_rp_gp_completed++;
64db4cff 1538 return 1;
7ba5c840 1539 }
64db4cff
PM
1540
1541 /* Has a new RCU grace period started? */
2f51f988 1542 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1543 rdp->n_rp_gp_started++;
64db4cff 1544 return 1;
7ba5c840 1545 }
64db4cff
PM
1546
1547 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1548 if (rcu_gp_in_progress(rsp) &&
20133cfc 1549 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1550 rdp->n_rp_need_fqs++;
64db4cff 1551 return 1;
7ba5c840 1552 }
64db4cff
PM
1553
1554 /* nothing to do */
7ba5c840 1555 rdp->n_rp_need_nothing++;
64db4cff
PM
1556 return 0;
1557}
1558
1559/*
1560 * Check to see if there is any immediate RCU-related work to be done
1561 * by the current CPU, returning 1 if so. This function is part of the
1562 * RCU implementation; it is -not- an exported member of the RCU API.
1563 */
a157229c 1564static int rcu_pending(int cpu)
64db4cff 1565{
d6714c22 1566 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1567 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1568 rcu_preempt_pending(cpu);
64db4cff
PM
1569}
1570
1571/*
1572 * Check to see if any future RCU-related work will need to be done
1573 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1574 * 1 if so.
64db4cff 1575 */
8bd93a2c 1576static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1577{
1578 /* RCU callbacks either ready or pending? */
d6714c22 1579 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1580 per_cpu(rcu_bh_data, cpu).nxtlist ||
1581 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1582}
1583
d0ec774c
PM
1584static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1585static atomic_t rcu_barrier_cpu_count;
1586static DEFINE_MUTEX(rcu_barrier_mutex);
1587static struct completion rcu_barrier_completion;
d0ec774c
PM
1588
1589static void rcu_barrier_callback(struct rcu_head *notused)
1590{
1591 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1592 complete(&rcu_barrier_completion);
1593}
1594
1595/*
1596 * Called with preemption disabled, and from cross-cpu IRQ context.
1597 */
1598static void rcu_barrier_func(void *type)
1599{
1600 int cpu = smp_processor_id();
1601 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1602 void (*call_rcu_func)(struct rcu_head *head,
1603 void (*func)(struct rcu_head *head));
1604
1605 atomic_inc(&rcu_barrier_cpu_count);
1606 call_rcu_func = type;
1607 call_rcu_func(head, rcu_barrier_callback);
1608}
1609
d0ec774c
PM
1610/*
1611 * Orchestrate the specified type of RCU barrier, waiting for all
1612 * RCU callbacks of the specified type to complete.
1613 */
e74f4c45
PM
1614static void _rcu_barrier(struct rcu_state *rsp,
1615 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1616 void (*func)(struct rcu_head *head)))
1617{
1618 BUG_ON(in_interrupt());
e74f4c45 1619 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1620 mutex_lock(&rcu_barrier_mutex);
1621 init_completion(&rcu_barrier_completion);
1622 /*
1623 * Initialize rcu_barrier_cpu_count to 1, then invoke
1624 * rcu_barrier_func() on each CPU, so that each CPU also has
1625 * incremented rcu_barrier_cpu_count. Only then is it safe to
1626 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1627 * might complete its grace period before all of the other CPUs
1628 * did their increment, causing this function to return too
1629 * early.
1630 */
1631 atomic_set(&rcu_barrier_cpu_count, 1);
e74f4c45
PM
1632 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1633 rcu_adopt_orphan_cbs(rsp);
d0ec774c 1634 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
e74f4c45 1635 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
d0ec774c
PM
1636 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1637 complete(&rcu_barrier_completion);
1638 wait_for_completion(&rcu_barrier_completion);
1639 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1640}
d0ec774c
PM
1641
1642/**
1643 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1644 */
1645void rcu_barrier_bh(void)
1646{
e74f4c45 1647 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1648}
1649EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1650
1651/**
1652 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1653 */
1654void rcu_barrier_sched(void)
1655{
e74f4c45 1656 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
1657}
1658EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1659
64db4cff 1660/*
27569620 1661 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1662 */
27569620
PM
1663static void __init
1664rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1665{
1666 unsigned long flags;
1667 int i;
27569620
PM
1668 struct rcu_data *rdp = rsp->rda[cpu];
1669 struct rcu_node *rnp = rcu_get_root(rsp);
1670
1671 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1672 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
1673 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1674 rdp->nxtlist = NULL;
1675 for (i = 0; i < RCU_NEXT_SIZE; i++)
1676 rdp->nxttail[i] = &rdp->nxtlist;
1677 rdp->qlen = 0;
1678#ifdef CONFIG_NO_HZ
1679 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1680#endif /* #ifdef CONFIG_NO_HZ */
1681 rdp->cpu = cpu;
1304afb2 1682 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
1683}
1684
1685/*
1686 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1687 * offline event can be happening at a given time. Note also that we
1688 * can accept some slop in the rsp->completed access due to the fact
1689 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1690 */
e4fa4c97 1691static void __cpuinit
f41d911f 1692rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1693{
1694 unsigned long flags;
64db4cff
PM
1695 unsigned long mask;
1696 struct rcu_data *rdp = rsp->rda[cpu];
1697 struct rcu_node *rnp = rcu_get_root(rsp);
1698
1699 /* Set up local state, ensuring consistent view of global state. */
1304afb2 1700 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1701 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1702 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1703 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1704 rdp->preemptable = preemptable;
37c72e56
PM
1705 rdp->qlen_last_fqs_check = 0;
1706 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 1707 rdp->blimit = blimit;
1304afb2 1708 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1709
1710 /*
1711 * A new grace period might start here. If so, we won't be part
1712 * of it, but that is OK, as we are currently in a quiescent state.
1713 */
1714
1715 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 1716 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1717
1718 /* Add CPU to rcu_node bitmasks. */
1719 rnp = rdp->mynode;
1720 mask = rdp->grpmask;
1721 do {
1722 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 1723 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1724 rnp->qsmaskinit |= mask;
1725 mask = rnp->grpmask;
d09b62df
PM
1726 if (rnp == rdp->mynode) {
1727 rdp->gpnum = rnp->completed; /* if GP in progress... */
1728 rdp->completed = rnp->completed;
1729 rdp->passed_quiesc_completed = rnp->completed - 1;
1730 }
1304afb2 1731 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1732 rnp = rnp->parent;
1733 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1734
1304afb2 1735 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1736}
1737
1738static void __cpuinit rcu_online_cpu(int cpu)
1739{
f41d911f
PM
1740 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1741 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1742 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1743}
1744
1745/*
f41d911f 1746 * Handle CPU online/offline notification events.
64db4cff 1747 */
9f680ab4
PM
1748static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1749 unsigned long action, void *hcpu)
64db4cff
PM
1750{
1751 long cpu = (long)hcpu;
1752
1753 switch (action) {
1754 case CPU_UP_PREPARE:
1755 case CPU_UP_PREPARE_FROZEN:
1756 rcu_online_cpu(cpu);
1757 break;
d0ec774c
PM
1758 case CPU_DYING:
1759 case CPU_DYING_FROZEN:
1760 /*
e74f4c45 1761 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
d0ec774c 1762 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
e74f4c45
PM
1763 * returns, all online cpus have queued rcu_barrier_func().
1764 * The dying CPU clears its cpu_online_mask bit and
1765 * moves all of its RCU callbacks to ->orphan_cbs_list
1766 * in the context of stop_machine(), so subsequent calls
1767 * to _rcu_barrier() will adopt these callbacks and only
1768 * then queue rcu_barrier_func() on all remaining CPUs.
d0ec774c 1769 */
e74f4c45
PM
1770 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1771 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1772 rcu_preempt_send_cbs_to_orphanage();
d0ec774c 1773 break;
64db4cff
PM
1774 case CPU_DEAD:
1775 case CPU_DEAD_FROZEN:
1776 case CPU_UP_CANCELED:
1777 case CPU_UP_CANCELED_FROZEN:
1778 rcu_offline_cpu(cpu);
1779 break;
1780 default:
1781 break;
1782 }
1783 return NOTIFY_OK;
1784}
1785
1786/*
1787 * Compute the per-level fanout, either using the exact fanout specified
1788 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1789 */
1790#ifdef CONFIG_RCU_FANOUT_EXACT
1791static void __init rcu_init_levelspread(struct rcu_state *rsp)
1792{
1793 int i;
1794
1795 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1796 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1797}
1798#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1799static void __init rcu_init_levelspread(struct rcu_state *rsp)
1800{
1801 int ccur;
1802 int cprv;
1803 int i;
1804
1805 cprv = NR_CPUS;
1806 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1807 ccur = rsp->levelcnt[i];
1808 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1809 cprv = ccur;
1810 }
1811}
1812#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1813
1814/*
1815 * Helper function for rcu_init() that initializes one rcu_state structure.
1816 */
1817static void __init rcu_init_one(struct rcu_state *rsp)
1818{
b6407e86
PM
1819 static char *buf[] = { "rcu_node_level_0",
1820 "rcu_node_level_1",
1821 "rcu_node_level_2",
1822 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
1823 int cpustride = 1;
1824 int i;
1825 int j;
1826 struct rcu_node *rnp;
1827
b6407e86
PM
1828 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1829
64db4cff
PM
1830 /* Initialize the level-tracking arrays. */
1831
1832 for (i = 1; i < NUM_RCU_LVLS; i++)
1833 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1834 rcu_init_levelspread(rsp);
1835
1836 /* Initialize the elements themselves, starting from the leaves. */
1837
1838 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1839 cpustride *= rsp->levelspread[i];
1840 rnp = rsp->level[i];
1841 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 1842 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
1843 lockdep_set_class_and_name(&rnp->lock,
1844 &rcu_node_class[i], buf[i]);
f41d911f 1845 rnp->gpnum = 0;
64db4cff
PM
1846 rnp->qsmask = 0;
1847 rnp->qsmaskinit = 0;
1848 rnp->grplo = j * cpustride;
1849 rnp->grphi = (j + 1) * cpustride - 1;
1850 if (rnp->grphi >= NR_CPUS)
1851 rnp->grphi = NR_CPUS - 1;
1852 if (i == 0) {
1853 rnp->grpnum = 0;
1854 rnp->grpmask = 0;
1855 rnp->parent = NULL;
1856 } else {
1857 rnp->grpnum = j % rsp->levelspread[i - 1];
1858 rnp->grpmask = 1UL << rnp->grpnum;
1859 rnp->parent = rsp->level[i - 1] +
1860 j / rsp->levelspread[i - 1];
1861 }
1862 rnp->level = i;
f41d911f
PM
1863 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1864 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
d9a3da06
PM
1865 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1866 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
64db4cff
PM
1867 }
1868 }
0c34029a
LJ
1869
1870 rnp = rsp->level[NUM_RCU_LVLS - 1];
1871 for_each_possible_cpu(i) {
1872 if (i > rnp->grphi)
1873 rnp++;
1874 rsp->rda[i]->mynode = rnp;
1875 rcu_boot_init_percpu_data(i, rsp);
1876 }
64db4cff
PM
1877}
1878
1879/*
f41d911f
PM
1880 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1881 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1882 * structure.
64db4cff 1883 */
65cf8f86 1884#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1885do { \
a0b6c9a7 1886 int i; \
a0b6c9a7 1887 \
64db4cff 1888 for_each_possible_cpu(i) { \
64db4cff
PM
1889 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1890 } \
0c34029a 1891 rcu_init_one(rsp); \
64db4cff
PM
1892} while (0)
1893
9f680ab4 1894void __init rcu_init(void)
64db4cff 1895{
017c4261 1896 int cpu;
9f680ab4 1897
f41d911f 1898 rcu_bootup_announce();
64db4cff
PM
1899#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1900 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1901#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
cf244dc0
PM
1902#if NUM_RCU_LVL_4 != 0
1903 printk(KERN_INFO "Experimental four-level hierarchy is enabled.\n");
1904#endif /* #if NUM_RCU_LVL_4 != 0 */
65cf8f86
PM
1905 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1906 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1907 __rcu_init_preempt();
2e597558 1908 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
1909
1910 /*
1911 * We don't need protection against CPU-hotplug here because
1912 * this is called early in boot, before either interrupts
1913 * or the scheduler are operational.
1914 */
1915 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
1916 for_each_online_cpu(cpu)
1917 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
1918}
1919
1eba8f84 1920#include "rcutree_plugin.h"