ext4: use bio layer instead of buffer layer in mpage_da_submit_io
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240 62static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
63static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64 struct buffer_head *bh_result, int create);
65static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 69
ac27a0ec
DK
70/*
71 * Test whether an inode is a fast symlink.
72 */
617ba13b 73static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 74{
617ba13b 75 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
76 (inode->i_sb->s_blocksize >> 9) : 0;
77
78 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79}
80
ac27a0ec
DK
81/*
82 * Work out how many blocks we need to proceed with the next chunk of a
83 * truncate transaction.
84 */
85static unsigned long blocks_for_truncate(struct inode *inode)
86{
725d26d3 87 ext4_lblk_t needed;
ac27a0ec
DK
88
89 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91 /* Give ourselves just enough room to cope with inodes in which
92 * i_blocks is corrupt: we've seen disk corruptions in the past
93 * which resulted in random data in an inode which looked enough
617ba13b 94 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
95 * will go a bit crazy if that happens, but at least we should
96 * try not to panic the whole kernel. */
97 if (needed < 2)
98 needed = 2;
99
100 /* But we need to bound the transaction so we don't overflow the
101 * journal. */
617ba13b
MC
102 if (needed > EXT4_MAX_TRANS_DATA)
103 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 104
617ba13b 105 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
106}
107
108/*
109 * Truncate transactions can be complex and absolutely huge. So we need to
110 * be able to restart the transaction at a conventient checkpoint to make
111 * sure we don't overflow the journal.
112 *
113 * start_transaction gets us a new handle for a truncate transaction,
114 * and extend_transaction tries to extend the existing one a bit. If
115 * extend fails, we need to propagate the failure up and restart the
116 * transaction in the top-level truncate loop. --sct
117 */
118static handle_t *start_transaction(struct inode *inode)
119{
120 handle_t *result;
121
617ba13b 122 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
123 if (!IS_ERR(result))
124 return result;
125
617ba13b 126 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
127 return result;
128}
129
130/*
131 * Try to extend this transaction for the purposes of truncation.
132 *
133 * Returns 0 if we managed to create more room. If we can't create more
134 * room, and the transaction must be restarted we return 1.
135 */
136static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137{
0390131b
FM
138 if (!ext4_handle_valid(handle))
139 return 0;
140 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 141 return 0;
617ba13b 142 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
143 return 0;
144 return 1;
145}
146
147/*
148 * Restart the transaction associated with *handle. This does a commit,
149 * so before we call here everything must be consistently dirtied against
150 * this transaction.
151 */
fa5d1113 152int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 153 int nblocks)
ac27a0ec 154{
487caeef
JK
155 int ret;
156
157 /*
e35fd660 158 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
159 * moment, get_block can be called only for blocks inside i_size since
160 * page cache has been already dropped and writes are blocked by
161 * i_mutex. So we can safely drop the i_data_sem here.
162 */
0390131b 163 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 164 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
165 up_write(&EXT4_I(inode)->i_data_sem);
166 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 168 ext4_discard_preallocations(inode);
487caeef
JK
169
170 return ret;
ac27a0ec
DK
171}
172
173/*
174 * Called at the last iput() if i_nlink is zero.
175 */
0930fcc1 176void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
177{
178 handle_t *handle;
bc965ab3 179 int err;
ac27a0ec 180
0930fcc1
AV
181 if (inode->i_nlink) {
182 truncate_inode_pages(&inode->i_data, 0);
183 goto no_delete;
184 }
185
907f4554 186 if (!is_bad_inode(inode))
871a2931 187 dquot_initialize(inode);
907f4554 188
678aaf48
JK
189 if (ext4_should_order_data(inode))
190 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
191 truncate_inode_pages(&inode->i_data, 0);
192
193 if (is_bad_inode(inode))
194 goto no_delete;
195
bc965ab3 196 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 197 if (IS_ERR(handle)) {
bc965ab3 198 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
199 /*
200 * If we're going to skip the normal cleanup, we still need to
201 * make sure that the in-core orphan linked list is properly
202 * cleaned up.
203 */
617ba13b 204 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
205 goto no_delete;
206 }
207
208 if (IS_SYNC(inode))
0390131b 209 ext4_handle_sync(handle);
ac27a0ec 210 inode->i_size = 0;
bc965ab3
TT
211 err = ext4_mark_inode_dirty(handle, inode);
212 if (err) {
12062ddd 213 ext4_warning(inode->i_sb,
bc965ab3
TT
214 "couldn't mark inode dirty (err %d)", err);
215 goto stop_handle;
216 }
ac27a0ec 217 if (inode->i_blocks)
617ba13b 218 ext4_truncate(inode);
bc965ab3
TT
219
220 /*
221 * ext4_ext_truncate() doesn't reserve any slop when it
222 * restarts journal transactions; therefore there may not be
223 * enough credits left in the handle to remove the inode from
224 * the orphan list and set the dtime field.
225 */
0390131b 226 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
227 err = ext4_journal_extend(handle, 3);
228 if (err > 0)
229 err = ext4_journal_restart(handle, 3);
230 if (err != 0) {
12062ddd 231 ext4_warning(inode->i_sb,
bc965ab3
TT
232 "couldn't extend journal (err %d)", err);
233 stop_handle:
234 ext4_journal_stop(handle);
45388219 235 ext4_orphan_del(NULL, inode);
bc965ab3
TT
236 goto no_delete;
237 }
238 }
239
ac27a0ec 240 /*
617ba13b 241 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 242 * AKPM: I think this can be inside the above `if'.
617ba13b 243 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 244 * deletion of a non-existent orphan - this is because we don't
617ba13b 245 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
246 * (Well, we could do this if we need to, but heck - it works)
247 */
617ba13b
MC
248 ext4_orphan_del(handle, inode);
249 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
250
251 /*
252 * One subtle ordering requirement: if anything has gone wrong
253 * (transaction abort, IO errors, whatever), then we can still
254 * do these next steps (the fs will already have been marked as
255 * having errors), but we can't free the inode if the mark_dirty
256 * fails.
257 */
617ba13b 258 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 259 /* If that failed, just do the required in-core inode clear. */
0930fcc1 260 ext4_clear_inode(inode);
ac27a0ec 261 else
617ba13b
MC
262 ext4_free_inode(handle, inode);
263 ext4_journal_stop(handle);
ac27a0ec
DK
264 return;
265no_delete:
0930fcc1 266 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
267}
268
269typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273} Indirect;
274
275static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276{
277 p->key = *(p->p = v);
278 p->bh = bh;
279}
280
ac27a0ec 281/**
617ba13b 282 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
283 * @inode: inode in question (we are only interested in its superblock)
284 * @i_block: block number to be parsed
285 * @offsets: array to store the offsets in
8c55e204
DK
286 * @boundary: set this non-zero if the referred-to block is likely to be
287 * followed (on disk) by an indirect block.
ac27a0ec 288 *
617ba13b 289 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
290 * for UNIX filesystems - tree of pointers anchored in the inode, with
291 * data blocks at leaves and indirect blocks in intermediate nodes.
292 * This function translates the block number into path in that tree -
293 * return value is the path length and @offsets[n] is the offset of
294 * pointer to (n+1)th node in the nth one. If @block is out of range
295 * (negative or too large) warning is printed and zero returned.
296 *
297 * Note: function doesn't find node addresses, so no IO is needed. All
298 * we need to know is the capacity of indirect blocks (taken from the
299 * inode->i_sb).
300 */
301
302/*
303 * Portability note: the last comparison (check that we fit into triple
304 * indirect block) is spelled differently, because otherwise on an
305 * architecture with 32-bit longs and 8Kb pages we might get into trouble
306 * if our filesystem had 8Kb blocks. We might use long long, but that would
307 * kill us on x86. Oh, well, at least the sign propagation does not matter -
308 * i_block would have to be negative in the very beginning, so we would not
309 * get there at all.
310 */
311
617ba13b 312static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
313 ext4_lblk_t i_block,
314 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 315{
617ba13b
MC
316 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
319 indirect_blocks = ptrs,
320 double_blocks = (1 << (ptrs_bits * 2));
321 int n = 0;
322 int final = 0;
323
c333e073 324 if (i_block < direct_blocks) {
ac27a0ec
DK
325 offsets[n++] = i_block;
326 final = direct_blocks;
af5bc92d 327 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 328 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
329 offsets[n++] = i_block;
330 final = ptrs;
331 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 332 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
333 offsets[n++] = i_block >> ptrs_bits;
334 offsets[n++] = i_block & (ptrs - 1);
335 final = ptrs;
336 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 337 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
338 offsets[n++] = i_block >> (ptrs_bits * 2);
339 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340 offsets[n++] = i_block & (ptrs - 1);
341 final = ptrs;
342 } else {
12062ddd 343 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
344 i_block + direct_blocks +
345 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
346 }
347 if (boundary)
348 *boundary = final - 1 - (i_block & (ptrs - 1));
349 return n;
350}
351
c398eda0
TT
352static int __ext4_check_blockref(const char *function, unsigned int line,
353 struct inode *inode,
6fd058f7
TT
354 __le32 *p, unsigned int max)
355{
1c13d5c0 356 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 357 __le32 *bref = p;
6fd058f7
TT
358 unsigned int blk;
359
fe2c8191 360 while (bref < p+max) {
6fd058f7 361 blk = le32_to_cpu(*bref++);
de9a55b8
TT
362 if (blk &&
363 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 364 blk, 1))) {
1c13d5c0 365 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
366 ext4_error_inode(inode, function, line, blk,
367 "invalid block");
de9a55b8
TT
368 return -EIO;
369 }
370 }
371 return 0;
fe2c8191
TN
372}
373
374
375#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 (__le32 *)(bh)->b_data, \
fe2c8191
TN
378 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380#define ext4_check_inode_blockref(inode) \
c398eda0
TT
381 __ext4_check_blockref(__func__, __LINE__, inode, \
382 EXT4_I(inode)->i_data, \
fe2c8191
TN
383 EXT4_NDIR_BLOCKS)
384
ac27a0ec 385/**
617ba13b 386 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
387 * @inode: inode in question
388 * @depth: depth of the chain (1 - direct pointer, etc.)
389 * @offsets: offsets of pointers in inode/indirect blocks
390 * @chain: place to store the result
391 * @err: here we store the error value
392 *
393 * Function fills the array of triples <key, p, bh> and returns %NULL
394 * if everything went OK or the pointer to the last filled triple
395 * (incomplete one) otherwise. Upon the return chain[i].key contains
396 * the number of (i+1)-th block in the chain (as it is stored in memory,
397 * i.e. little-endian 32-bit), chain[i].p contains the address of that
398 * number (it points into struct inode for i==0 and into the bh->b_data
399 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400 * block for i>0 and NULL for i==0. In other words, it holds the block
401 * numbers of the chain, addresses they were taken from (and where we can
402 * verify that chain did not change) and buffer_heads hosting these
403 * numbers.
404 *
405 * Function stops when it stumbles upon zero pointer (absent block)
406 * (pointer to last triple returned, *@err == 0)
407 * or when it gets an IO error reading an indirect block
408 * (ditto, *@err == -EIO)
ac27a0ec
DK
409 * or when it reads all @depth-1 indirect blocks successfully and finds
410 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
411 *
412 * Need to be called with
0e855ac8 413 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 414 */
725d26d3
AK
415static Indirect *ext4_get_branch(struct inode *inode, int depth,
416 ext4_lblk_t *offsets,
ac27a0ec
DK
417 Indirect chain[4], int *err)
418{
419 struct super_block *sb = inode->i_sb;
420 Indirect *p = chain;
421 struct buffer_head *bh;
422
423 *err = 0;
424 /* i_data is not going away, no lock needed */
af5bc92d 425 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
426 if (!p->key)
427 goto no_block;
428 while (--depth) {
fe2c8191
TN
429 bh = sb_getblk(sb, le32_to_cpu(p->key));
430 if (unlikely(!bh))
ac27a0ec 431 goto failure;
de9a55b8 432
fe2c8191
TN
433 if (!bh_uptodate_or_lock(bh)) {
434 if (bh_submit_read(bh) < 0) {
435 put_bh(bh);
436 goto failure;
437 }
438 /* validate block references */
439 if (ext4_check_indirect_blockref(inode, bh)) {
440 put_bh(bh);
441 goto failure;
442 }
443 }
de9a55b8 444
af5bc92d 445 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
446 /* Reader: end */
447 if (!p->key)
448 goto no_block;
449 }
450 return NULL;
451
ac27a0ec
DK
452failure:
453 *err = -EIO;
454no_block:
455 return p;
456}
457
458/**
617ba13b 459 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
460 * @inode: owner
461 * @ind: descriptor of indirect block.
462 *
1cc8dcf5 463 * This function returns the preferred place for block allocation.
ac27a0ec
DK
464 * It is used when heuristic for sequential allocation fails.
465 * Rules are:
466 * + if there is a block to the left of our position - allocate near it.
467 * + if pointer will live in indirect block - allocate near that block.
468 * + if pointer will live in inode - allocate in the same
469 * cylinder group.
470 *
471 * In the latter case we colour the starting block by the callers PID to
472 * prevent it from clashing with concurrent allocations for a different inode
473 * in the same block group. The PID is used here so that functionally related
474 * files will be close-by on-disk.
475 *
476 * Caller must make sure that @ind is valid and will stay that way.
477 */
617ba13b 478static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 479{
617ba13b 480 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 481 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 482 __le32 *p;
617ba13b 483 ext4_fsblk_t bg_start;
74d3487f 484 ext4_fsblk_t last_block;
617ba13b 485 ext4_grpblk_t colour;
a4912123
TT
486 ext4_group_t block_group;
487 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
488
489 /* Try to find previous block */
490 for (p = ind->p - 1; p >= start; p--) {
491 if (*p)
492 return le32_to_cpu(*p);
493 }
494
495 /* No such thing, so let's try location of indirect block */
496 if (ind->bh)
497 return ind->bh->b_blocknr;
498
499 /*
500 * It is going to be referred to from the inode itself? OK, just put it
501 * into the same cylinder group then.
502 */
a4912123
TT
503 block_group = ei->i_block_group;
504 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505 block_group &= ~(flex_size-1);
506 if (S_ISREG(inode->i_mode))
507 block_group++;
508 }
509 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
510 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
a4912123
TT
512 /*
513 * If we are doing delayed allocation, we don't need take
514 * colour into account.
515 */
516 if (test_opt(inode->i_sb, DELALLOC))
517 return bg_start;
518
74d3487f
VC
519 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520 colour = (current->pid % 16) *
617ba13b 521 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
522 else
523 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
524 return bg_start + colour;
525}
526
527/**
1cc8dcf5 528 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
529 * @inode: owner
530 * @block: block we want
ac27a0ec 531 * @partial: pointer to the last triple within a chain
ac27a0ec 532 *
1cc8dcf5 533 * Normally this function find the preferred place for block allocation,
fb01bfda 534 * returns it.
fb0a387d
ES
535 * Because this is only used for non-extent files, we limit the block nr
536 * to 32 bits.
ac27a0ec 537 */
725d26d3 538static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 539 Indirect *partial)
ac27a0ec 540{
fb0a387d
ES
541 ext4_fsblk_t goal;
542
ac27a0ec 543 /*
c2ea3fde 544 * XXX need to get goal block from mballoc's data structures
ac27a0ec 545 */
ac27a0ec 546
fb0a387d
ES
547 goal = ext4_find_near(inode, partial);
548 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549 return goal;
ac27a0ec
DK
550}
551
552/**
617ba13b 553 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
554 * of direct blocks need to be allocated for the given branch.
555 *
556 * @branch: chain of indirect blocks
557 * @k: number of blocks need for indirect blocks
558 * @blks: number of data blocks to be mapped.
559 * @blocks_to_boundary: the offset in the indirect block
560 *
561 * return the total number of blocks to be allocate, including the
562 * direct and indirect blocks.
563 */
498e5f24 564static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 565 int blocks_to_boundary)
ac27a0ec 566{
498e5f24 567 unsigned int count = 0;
ac27a0ec
DK
568
569 /*
570 * Simple case, [t,d]Indirect block(s) has not allocated yet
571 * then it's clear blocks on that path have not allocated
572 */
573 if (k > 0) {
574 /* right now we don't handle cross boundary allocation */
575 if (blks < blocks_to_boundary + 1)
576 count += blks;
577 else
578 count += blocks_to_boundary + 1;
579 return count;
580 }
581
582 count++;
583 while (count < blks && count <= blocks_to_boundary &&
584 le32_to_cpu(*(branch[0].p + count)) == 0) {
585 count++;
586 }
587 return count;
588}
589
590/**
617ba13b 591 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
592 * @indirect_blks: the number of blocks need to allocate for indirect
593 * blocks
594 *
595 * @new_blocks: on return it will store the new block numbers for
596 * the indirect blocks(if needed) and the first direct block,
597 * @blks: on return it will store the total number of allocated
598 * direct blocks
599 */
617ba13b 600static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
601 ext4_lblk_t iblock, ext4_fsblk_t goal,
602 int indirect_blks, int blks,
603 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 604{
815a1130 605 struct ext4_allocation_request ar;
ac27a0ec 606 int target, i;
7061eba7 607 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 608 int index = 0;
617ba13b 609 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
610 int ret = 0;
611
612 /*
613 * Here we try to allocate the requested multiple blocks at once,
614 * on a best-effort basis.
615 * To build a branch, we should allocate blocks for
616 * the indirect blocks(if not allocated yet), and at least
617 * the first direct block of this branch. That's the
618 * minimum number of blocks need to allocate(required)
619 */
7061eba7
AK
620 /* first we try to allocate the indirect blocks */
621 target = indirect_blks;
622 while (target > 0) {
ac27a0ec
DK
623 count = target;
624 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
625 current_block = ext4_new_meta_blocks(handle, inode,
626 goal, &count, err);
ac27a0ec
DK
627 if (*err)
628 goto failed_out;
629
273df556
FM
630 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631 EXT4_ERROR_INODE(inode,
632 "current_block %llu + count %lu > %d!",
633 current_block, count,
634 EXT4_MAX_BLOCK_FILE_PHYS);
635 *err = -EIO;
636 goto failed_out;
637 }
fb0a387d 638
ac27a0ec
DK
639 target -= count;
640 /* allocate blocks for indirect blocks */
641 while (index < indirect_blks && count) {
642 new_blocks[index++] = current_block++;
643 count--;
644 }
7061eba7
AK
645 if (count > 0) {
646 /*
647 * save the new block number
648 * for the first direct block
649 */
650 new_blocks[index] = current_block;
651 printk(KERN_INFO "%s returned more blocks than "
652 "requested\n", __func__);
653 WARN_ON(1);
ac27a0ec 654 break;
7061eba7 655 }
ac27a0ec
DK
656 }
657
7061eba7
AK
658 target = blks - count ;
659 blk_allocated = count;
660 if (!target)
661 goto allocated;
662 /* Now allocate data blocks */
815a1130
TT
663 memset(&ar, 0, sizeof(ar));
664 ar.inode = inode;
665 ar.goal = goal;
666 ar.len = target;
667 ar.logical = iblock;
668 if (S_ISREG(inode->i_mode))
669 /* enable in-core preallocation only for regular files */
670 ar.flags = EXT4_MB_HINT_DATA;
671
672 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
673 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674 EXT4_ERROR_INODE(inode,
675 "current_block %llu + ar.len %d > %d!",
676 current_block, ar.len,
677 EXT4_MAX_BLOCK_FILE_PHYS);
678 *err = -EIO;
679 goto failed_out;
680 }
815a1130 681
7061eba7
AK
682 if (*err && (target == blks)) {
683 /*
684 * if the allocation failed and we didn't allocate
685 * any blocks before
686 */
687 goto failed_out;
688 }
689 if (!*err) {
690 if (target == blks) {
de9a55b8
TT
691 /*
692 * save the new block number
693 * for the first direct block
694 */
7061eba7
AK
695 new_blocks[index] = current_block;
696 }
815a1130 697 blk_allocated += ar.len;
7061eba7
AK
698 }
699allocated:
ac27a0ec 700 /* total number of blocks allocated for direct blocks */
7061eba7 701 ret = blk_allocated;
ac27a0ec
DK
702 *err = 0;
703 return ret;
704failed_out:
af5bc92d 705 for (i = 0; i < index; i++)
e6362609 706 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
707 return ret;
708}
709
710/**
617ba13b 711 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
712 * @inode: owner
713 * @indirect_blks: number of allocated indirect blocks
714 * @blks: number of allocated direct blocks
715 * @offsets: offsets (in the blocks) to store the pointers to next.
716 * @branch: place to store the chain in.
717 *
718 * This function allocates blocks, zeroes out all but the last one,
719 * links them into chain and (if we are synchronous) writes them to disk.
720 * In other words, it prepares a branch that can be spliced onto the
721 * inode. It stores the information about that chain in the branch[], in
617ba13b 722 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
723 * we had read the existing part of chain and partial points to the last
724 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 725 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
726 * place chain is disconnected - *branch->p is still zero (we did not
727 * set the last link), but branch->key contains the number that should
728 * be placed into *branch->p to fill that gap.
729 *
730 * If allocation fails we free all blocks we've allocated (and forget
731 * their buffer_heads) and return the error value the from failed
617ba13b 732 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
733 * as described above and return 0.
734 */
617ba13b 735static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
736 ext4_lblk_t iblock, int indirect_blks,
737 int *blks, ext4_fsblk_t goal,
738 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
739{
740 int blocksize = inode->i_sb->s_blocksize;
741 int i, n = 0;
742 int err = 0;
743 struct buffer_head *bh;
744 int num;
617ba13b
MC
745 ext4_fsblk_t new_blocks[4];
746 ext4_fsblk_t current_block;
ac27a0ec 747
7061eba7 748 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
749 *blks, new_blocks, &err);
750 if (err)
751 return err;
752
753 branch[0].key = cpu_to_le32(new_blocks[0]);
754 /*
755 * metadata blocks and data blocks are allocated.
756 */
757 for (n = 1; n <= indirect_blks; n++) {
758 /*
759 * Get buffer_head for parent block, zero it out
760 * and set the pointer to new one, then send
761 * parent to disk.
762 */
763 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764 branch[n].bh = bh;
765 lock_buffer(bh);
766 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 767 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 768 if (err) {
6487a9d3
CW
769 /* Don't brelse(bh) here; it's done in
770 * ext4_journal_forget() below */
ac27a0ec 771 unlock_buffer(bh);
ac27a0ec
DK
772 goto failed;
773 }
774
775 memset(bh->b_data, 0, blocksize);
776 branch[n].p = (__le32 *) bh->b_data + offsets[n];
777 branch[n].key = cpu_to_le32(new_blocks[n]);
778 *branch[n].p = branch[n].key;
af5bc92d 779 if (n == indirect_blks) {
ac27a0ec
DK
780 current_block = new_blocks[n];
781 /*
782 * End of chain, update the last new metablock of
783 * the chain to point to the new allocated
784 * data blocks numbers
785 */
de9a55b8 786 for (i = 1; i < num; i++)
ac27a0ec
DK
787 *(branch[n].p + i) = cpu_to_le32(++current_block);
788 }
789 BUFFER_TRACE(bh, "marking uptodate");
790 set_buffer_uptodate(bh);
791 unlock_buffer(bh);
792
0390131b
FM
793 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
794 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
795 if (err)
796 goto failed;
797 }
798 *blks = num;
799 return err;
800failed:
801 /* Allocation failed, free what we already allocated */
e6362609 802 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 803 for (i = 1; i <= n ; i++) {
60e6679e 804 /*
e6362609
TT
805 * branch[i].bh is newly allocated, so there is no
806 * need to revoke the block, which is why we don't
807 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 808 */
e6362609
TT
809 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
810 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 811 }
e6362609
TT
812 for (i = n+1; i < indirect_blks; i++)
813 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 814
e6362609 815 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
816
817 return err;
818}
819
820/**
617ba13b 821 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
822 * @inode: owner
823 * @block: (logical) number of block we are adding
824 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 825 * ext4_alloc_branch)
ac27a0ec
DK
826 * @where: location of missing link
827 * @num: number of indirect blocks we are adding
828 * @blks: number of direct blocks we are adding
829 *
830 * This function fills the missing link and does all housekeeping needed in
831 * inode (->i_blocks, etc.). In case of success we end up with the full
832 * chain to new block and return 0.
833 */
617ba13b 834static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
835 ext4_lblk_t block, Indirect *where, int num,
836 int blks)
ac27a0ec
DK
837{
838 int i;
839 int err = 0;
617ba13b 840 ext4_fsblk_t current_block;
ac27a0ec 841
ac27a0ec
DK
842 /*
843 * If we're splicing into a [td]indirect block (as opposed to the
844 * inode) then we need to get write access to the [td]indirect block
845 * before the splice.
846 */
847 if (where->bh) {
848 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 849 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
850 if (err)
851 goto err_out;
852 }
853 /* That's it */
854
855 *where->p = where->key;
856
857 /*
858 * Update the host buffer_head or inode to point to more just allocated
859 * direct blocks blocks
860 */
861 if (num == 0 && blks > 1) {
862 current_block = le32_to_cpu(where->key) + 1;
863 for (i = 1; i < blks; i++)
af5bc92d 864 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
865 }
866
ac27a0ec 867 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
868 /* had we spliced it onto indirect block? */
869 if (where->bh) {
870 /*
871 * If we spliced it onto an indirect block, we haven't
872 * altered the inode. Note however that if it is being spliced
873 * onto an indirect block at the very end of the file (the
874 * file is growing) then we *will* alter the inode to reflect
875 * the new i_size. But that is not done here - it is done in
617ba13b 876 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
877 */
878 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
879 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
880 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
881 if (err)
882 goto err_out;
883 } else {
884 /*
885 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 886 */
41591750 887 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
888 jbd_debug(5, "splicing direct\n");
889 }
890 return err;
891
892err_out:
893 for (i = 1; i <= num; i++) {
60e6679e 894 /*
e6362609
TT
895 * branch[i].bh is newly allocated, so there is no
896 * need to revoke the block, which is why we don't
897 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 898 */
e6362609
TT
899 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
900 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 901 }
e6362609
TT
902 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
903 blks, 0);
ac27a0ec
DK
904
905 return err;
906}
907
908/*
e35fd660 909 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 910 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 911 * scheme) for ext4_map_blocks().
b920c755 912 *
ac27a0ec
DK
913 * Allocation strategy is simple: if we have to allocate something, we will
914 * have to go the whole way to leaf. So let's do it before attaching anything
915 * to tree, set linkage between the newborn blocks, write them if sync is
916 * required, recheck the path, free and repeat if check fails, otherwise
917 * set the last missing link (that will protect us from any truncate-generated
918 * removals - all blocks on the path are immune now) and possibly force the
919 * write on the parent block.
920 * That has a nice additional property: no special recovery from the failed
921 * allocations is needed - we simply release blocks and do not touch anything
922 * reachable from inode.
923 *
924 * `handle' can be NULL if create == 0.
925 *
ac27a0ec
DK
926 * return > 0, # of blocks mapped or allocated.
927 * return = 0, if plain lookup failed.
928 * return < 0, error case.
c278bfec 929 *
b920c755
TT
930 * The ext4_ind_get_blocks() function should be called with
931 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
932 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
933 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
934 * blocks.
ac27a0ec 935 */
e35fd660
TT
936static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
937 struct ext4_map_blocks *map,
de9a55b8 938 int flags)
ac27a0ec
DK
939{
940 int err = -EIO;
725d26d3 941 ext4_lblk_t offsets[4];
ac27a0ec
DK
942 Indirect chain[4];
943 Indirect *partial;
617ba13b 944 ext4_fsblk_t goal;
ac27a0ec
DK
945 int indirect_blks;
946 int blocks_to_boundary = 0;
947 int depth;
ac27a0ec 948 int count = 0;
617ba13b 949 ext4_fsblk_t first_block = 0;
ac27a0ec 950
12e9b892 951 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 952 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 953 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 954 &blocks_to_boundary);
ac27a0ec
DK
955
956 if (depth == 0)
957 goto out;
958
617ba13b 959 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
960
961 /* Simplest case - block found, no allocation needed */
962 if (!partial) {
963 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
964 count++;
965 /*map more blocks*/
e35fd660 966 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 967 ext4_fsblk_t blk;
ac27a0ec 968
ac27a0ec
DK
969 blk = le32_to_cpu(*(chain[depth-1].p + count));
970
971 if (blk == first_block + count)
972 count++;
973 else
974 break;
975 }
c278bfec 976 goto got_it;
ac27a0ec
DK
977 }
978
979 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 980 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
981 goto cleanup;
982
ac27a0ec 983 /*
c2ea3fde 984 * Okay, we need to do block allocation.
ac27a0ec 985 */
e35fd660 986 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
987
988 /* the number of blocks need to allocate for [d,t]indirect blocks */
989 indirect_blks = (chain + depth) - partial - 1;
990
991 /*
992 * Next look up the indirect map to count the totoal number of
993 * direct blocks to allocate for this branch.
994 */
617ba13b 995 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 996 map->m_len, blocks_to_boundary);
ac27a0ec 997 /*
617ba13b 998 * Block out ext4_truncate while we alter the tree
ac27a0ec 999 */
e35fd660 1000 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
1001 &count, goal,
1002 offsets + (partial - chain), partial);
ac27a0ec
DK
1003
1004 /*
617ba13b 1005 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1006 * on the new chain if there is a failure, but that risks using
1007 * up transaction credits, especially for bitmaps where the
1008 * credits cannot be returned. Can we handle this somehow? We
1009 * may need to return -EAGAIN upwards in the worst case. --sct
1010 */
1011 if (!err)
e35fd660 1012 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1013 partial, indirect_blks, count);
2bba702d 1014 if (err)
ac27a0ec
DK
1015 goto cleanup;
1016
e35fd660 1017 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1018
1019 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1020got_it:
e35fd660
TT
1021 map->m_flags |= EXT4_MAP_MAPPED;
1022 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1023 map->m_len = count;
ac27a0ec 1024 if (count > blocks_to_boundary)
e35fd660 1025 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1026 err = count;
1027 /* Clean up and exit */
1028 partial = chain + depth - 1; /* the whole chain */
1029cleanup:
1030 while (partial > chain) {
1031 BUFFER_TRACE(partial->bh, "call brelse");
1032 brelse(partial->bh);
1033 partial--;
1034 }
ac27a0ec
DK
1035out:
1036 return err;
1037}
1038
a9e7f447
DM
1039#ifdef CONFIG_QUOTA
1040qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1041{
a9e7f447 1042 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1043}
a9e7f447 1044#endif
9d0be502 1045
12219aea
AK
1046/*
1047 * Calculate the number of metadata blocks need to reserve
9d0be502 1048 * to allocate a new block at @lblocks for non extent file based file
12219aea 1049 */
9d0be502
TT
1050static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1051 sector_t lblock)
12219aea 1052{
9d0be502 1053 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1054 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1055 int blk_bits;
12219aea 1056
9d0be502
TT
1057 if (lblock < EXT4_NDIR_BLOCKS)
1058 return 0;
12219aea 1059
9d0be502 1060 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1061
9d0be502
TT
1062 if (ei->i_da_metadata_calc_len &&
1063 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1064 ei->i_da_metadata_calc_len++;
1065 return 0;
1066 }
1067 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1068 ei->i_da_metadata_calc_len = 1;
d330a5be 1069 blk_bits = order_base_2(lblock);
9d0be502 1070 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1071}
1072
1073/*
1074 * Calculate the number of metadata blocks need to reserve
9d0be502 1075 * to allocate a block located at @lblock
12219aea 1076 */
9d0be502 1077static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1078{
12e9b892 1079 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1080 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1081
9d0be502 1082 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1083}
1084
0637c6f4
TT
1085/*
1086 * Called with i_data_sem down, which is important since we can call
1087 * ext4_discard_preallocations() from here.
1088 */
5f634d06
AK
1089void ext4_da_update_reserve_space(struct inode *inode,
1090 int used, int quota_claim)
12219aea
AK
1091{
1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1093 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1094
1095 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1096 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1097 if (unlikely(used > ei->i_reserved_data_blocks)) {
1098 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1099 "with only %d reserved data blocks\n",
1100 __func__, inode->i_ino, used,
1101 ei->i_reserved_data_blocks);
1102 WARN_ON(1);
1103 used = ei->i_reserved_data_blocks;
1104 }
12219aea 1105
0637c6f4
TT
1106 /* Update per-inode reservations */
1107 ei->i_reserved_data_blocks -= used;
0637c6f4 1108 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1110 used + ei->i_allocated_meta_blocks);
0637c6f4 1111 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1112
0637c6f4
TT
1113 if (ei->i_reserved_data_blocks == 0) {
1114 /*
1115 * We can release all of the reserved metadata blocks
1116 * only when we have written all of the delayed
1117 * allocation blocks.
1118 */
72b8ab9d
ES
1119 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120 ei->i_reserved_meta_blocks);
ee5f4d9c 1121 ei->i_reserved_meta_blocks = 0;
9d0be502 1122 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1123 }
12219aea 1124 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1125
72b8ab9d
ES
1126 /* Update quota subsystem for data blocks */
1127 if (quota_claim)
5dd4056d 1128 dquot_claim_block(inode, used);
72b8ab9d 1129 else {
5f634d06
AK
1130 /*
1131 * We did fallocate with an offset that is already delayed
1132 * allocated. So on delayed allocated writeback we should
72b8ab9d 1133 * not re-claim the quota for fallocated blocks.
5f634d06 1134 */
72b8ab9d 1135 dquot_release_reservation_block(inode, used);
5f634d06 1136 }
d6014301
AK
1137
1138 /*
1139 * If we have done all the pending block allocations and if
1140 * there aren't any writers on the inode, we can discard the
1141 * inode's preallocations.
1142 */
0637c6f4
TT
1143 if ((ei->i_reserved_data_blocks == 0) &&
1144 (atomic_read(&inode->i_writecount) == 0))
d6014301 1145 ext4_discard_preallocations(inode);
12219aea
AK
1146}
1147
e29136f8 1148static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1149 unsigned int line,
1150 struct ext4_map_blocks *map)
6fd058f7 1151{
24676da4
TT
1152 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1153 map->m_len)) {
c398eda0
TT
1154 ext4_error_inode(inode, func, line, map->m_pblk,
1155 "lblock %lu mapped to illegal pblock "
1156 "(length %d)", (unsigned long) map->m_lblk,
1157 map->m_len);
6fd058f7
TT
1158 return -EIO;
1159 }
1160 return 0;
1161}
1162
e29136f8 1163#define check_block_validity(inode, map) \
c398eda0 1164 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1165
55138e0b 1166/*
1f94533d
TT
1167 * Return the number of contiguous dirty pages in a given inode
1168 * starting at page frame idx.
55138e0b
TT
1169 */
1170static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1171 unsigned int max_pages)
1172{
1173 struct address_space *mapping = inode->i_mapping;
1174 pgoff_t index;
1175 struct pagevec pvec;
1176 pgoff_t num = 0;
1177 int i, nr_pages, done = 0;
1178
1179 if (max_pages == 0)
1180 return 0;
1181 pagevec_init(&pvec, 0);
1182 while (!done) {
1183 index = idx;
1184 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1185 PAGECACHE_TAG_DIRTY,
1186 (pgoff_t)PAGEVEC_SIZE);
1187 if (nr_pages == 0)
1188 break;
1189 for (i = 0; i < nr_pages; i++) {
1190 struct page *page = pvec.pages[i];
1191 struct buffer_head *bh, *head;
1192
1193 lock_page(page);
1194 if (unlikely(page->mapping != mapping) ||
1195 !PageDirty(page) ||
1196 PageWriteback(page) ||
1197 page->index != idx) {
1198 done = 1;
1199 unlock_page(page);
1200 break;
1201 }
1f94533d
TT
1202 if (page_has_buffers(page)) {
1203 bh = head = page_buffers(page);
1204 do {
1205 if (!buffer_delay(bh) &&
1206 !buffer_unwritten(bh))
1207 done = 1;
1208 bh = bh->b_this_page;
1209 } while (!done && (bh != head));
1210 }
55138e0b
TT
1211 unlock_page(page);
1212 if (done)
1213 break;
1214 idx++;
1215 num++;
659c6009
ES
1216 if (num >= max_pages) {
1217 done = 1;
55138e0b 1218 break;
659c6009 1219 }
55138e0b
TT
1220 }
1221 pagevec_release(&pvec);
1222 }
1223 return num;
1224}
1225
f5ab0d1f 1226/*
e35fd660 1227 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1228 * and returns if the blocks are already mapped.
f5ab0d1f 1229 *
f5ab0d1f
MC
1230 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1231 * and store the allocated blocks in the result buffer head and mark it
1232 * mapped.
1233 *
e35fd660
TT
1234 * If file type is extents based, it will call ext4_ext_map_blocks(),
1235 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1236 * based files
1237 *
1238 * On success, it returns the number of blocks being mapped or allocate.
1239 * if create==0 and the blocks are pre-allocated and uninitialized block,
1240 * the result buffer head is unmapped. If the create ==1, it will make sure
1241 * the buffer head is mapped.
1242 *
1243 * It returns 0 if plain look up failed (blocks have not been allocated), in
1244 * that casem, buffer head is unmapped
1245 *
1246 * It returns the error in case of allocation failure.
1247 */
e35fd660
TT
1248int ext4_map_blocks(handle_t *handle, struct inode *inode,
1249 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1250{
1251 int retval;
f5ab0d1f 1252
e35fd660
TT
1253 map->m_flags = 0;
1254 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1255 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1256 (unsigned long) map->m_lblk);
4df3d265 1257 /*
b920c755
TT
1258 * Try to see if we can get the block without requesting a new
1259 * file system block.
4df3d265
AK
1260 */
1261 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1262 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1263 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1264 } else {
e35fd660 1265 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1266 }
4df3d265 1267 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1268
e35fd660 1269 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1270 int ret = check_block_validity(inode, map);
6fd058f7
TT
1271 if (ret != 0)
1272 return ret;
1273 }
1274
f5ab0d1f 1275 /* If it is only a block(s) look up */
c2177057 1276 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1277 return retval;
1278
1279 /*
1280 * Returns if the blocks have already allocated
1281 *
1282 * Note that if blocks have been preallocated
1283 * ext4_ext_get_block() returns th create = 0
1284 * with buffer head unmapped.
1285 */
e35fd660 1286 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1287 return retval;
1288
2a8964d6
AK
1289 /*
1290 * When we call get_blocks without the create flag, the
1291 * BH_Unwritten flag could have gotten set if the blocks
1292 * requested were part of a uninitialized extent. We need to
1293 * clear this flag now that we are committed to convert all or
1294 * part of the uninitialized extent to be an initialized
1295 * extent. This is because we need to avoid the combination
1296 * of BH_Unwritten and BH_Mapped flags being simultaneously
1297 * set on the buffer_head.
1298 */
e35fd660 1299 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1300
4df3d265 1301 /*
f5ab0d1f
MC
1302 * New blocks allocate and/or writing to uninitialized extent
1303 * will possibly result in updating i_data, so we take
1304 * the write lock of i_data_sem, and call get_blocks()
1305 * with create == 1 flag.
4df3d265
AK
1306 */
1307 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1308
1309 /*
1310 * if the caller is from delayed allocation writeout path
1311 * we have already reserved fs blocks for allocation
1312 * let the underlying get_block() function know to
1313 * avoid double accounting
1314 */
c2177057 1315 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1316 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1317 /*
1318 * We need to check for EXT4 here because migrate
1319 * could have changed the inode type in between
1320 */
12e9b892 1321 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1322 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1323 } else {
e35fd660 1324 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1325
e35fd660 1326 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1327 /*
1328 * We allocated new blocks which will result in
1329 * i_data's format changing. Force the migrate
1330 * to fail by clearing migrate flags
1331 */
19f5fb7a 1332 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1333 }
d2a17637 1334
5f634d06
AK
1335 /*
1336 * Update reserved blocks/metadata blocks after successful
1337 * block allocation which had been deferred till now. We don't
1338 * support fallocate for non extent files. So we can update
1339 * reserve space here.
1340 */
1341 if ((retval > 0) &&
1296cc85 1342 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1343 ext4_da_update_reserve_space(inode, retval, 1);
1344 }
2ac3b6e0 1345 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1346 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1347
4df3d265 1348 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1349 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1350 int ret = check_block_validity(inode, map);
6fd058f7
TT
1351 if (ret != 0)
1352 return ret;
1353 }
0e855ac8
AK
1354 return retval;
1355}
1356
f3bd1f3f
MC
1357/* Maximum number of blocks we map for direct IO at once. */
1358#define DIO_MAX_BLOCKS 4096
1359
2ed88685
TT
1360static int _ext4_get_block(struct inode *inode, sector_t iblock,
1361 struct buffer_head *bh, int flags)
ac27a0ec 1362{
3e4fdaf8 1363 handle_t *handle = ext4_journal_current_handle();
2ed88685 1364 struct ext4_map_blocks map;
7fb5409d 1365 int ret = 0, started = 0;
f3bd1f3f 1366 int dio_credits;
ac27a0ec 1367
2ed88685
TT
1368 map.m_lblk = iblock;
1369 map.m_len = bh->b_size >> inode->i_blkbits;
1370
1371 if (flags && !handle) {
7fb5409d 1372 /* Direct IO write... */
2ed88685
TT
1373 if (map.m_len > DIO_MAX_BLOCKS)
1374 map.m_len = DIO_MAX_BLOCKS;
1375 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1376 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1377 if (IS_ERR(handle)) {
ac27a0ec 1378 ret = PTR_ERR(handle);
2ed88685 1379 return ret;
ac27a0ec 1380 }
7fb5409d 1381 started = 1;
ac27a0ec
DK
1382 }
1383
2ed88685 1384 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1385 if (ret > 0) {
2ed88685
TT
1386 map_bh(bh, inode->i_sb, map.m_pblk);
1387 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1388 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1389 ret = 0;
ac27a0ec 1390 }
7fb5409d
JK
1391 if (started)
1392 ext4_journal_stop(handle);
ac27a0ec
DK
1393 return ret;
1394}
1395
2ed88685
TT
1396int ext4_get_block(struct inode *inode, sector_t iblock,
1397 struct buffer_head *bh, int create)
1398{
1399 return _ext4_get_block(inode, iblock, bh,
1400 create ? EXT4_GET_BLOCKS_CREATE : 0);
1401}
1402
ac27a0ec
DK
1403/*
1404 * `handle' can be NULL if create is zero
1405 */
617ba13b 1406struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1407 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1408{
2ed88685
TT
1409 struct ext4_map_blocks map;
1410 struct buffer_head *bh;
ac27a0ec
DK
1411 int fatal = 0, err;
1412
1413 J_ASSERT(handle != NULL || create == 0);
1414
2ed88685
TT
1415 map.m_lblk = block;
1416 map.m_len = 1;
1417 err = ext4_map_blocks(handle, inode, &map,
1418 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1419
2ed88685
TT
1420 if (err < 0)
1421 *errp = err;
1422 if (err <= 0)
1423 return NULL;
1424 *errp = 0;
1425
1426 bh = sb_getblk(inode->i_sb, map.m_pblk);
1427 if (!bh) {
1428 *errp = -EIO;
1429 return NULL;
ac27a0ec 1430 }
2ed88685
TT
1431 if (map.m_flags & EXT4_MAP_NEW) {
1432 J_ASSERT(create != 0);
1433 J_ASSERT(handle != NULL);
ac27a0ec 1434
2ed88685
TT
1435 /*
1436 * Now that we do not always journal data, we should
1437 * keep in mind whether this should always journal the
1438 * new buffer as metadata. For now, regular file
1439 * writes use ext4_get_block instead, so it's not a
1440 * problem.
1441 */
1442 lock_buffer(bh);
1443 BUFFER_TRACE(bh, "call get_create_access");
1444 fatal = ext4_journal_get_create_access(handle, bh);
1445 if (!fatal && !buffer_uptodate(bh)) {
1446 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447 set_buffer_uptodate(bh);
ac27a0ec 1448 }
2ed88685
TT
1449 unlock_buffer(bh);
1450 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451 err = ext4_handle_dirty_metadata(handle, inode, bh);
1452 if (!fatal)
1453 fatal = err;
1454 } else {
1455 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1456 }
2ed88685
TT
1457 if (fatal) {
1458 *errp = fatal;
1459 brelse(bh);
1460 bh = NULL;
1461 }
1462 return bh;
ac27a0ec
DK
1463}
1464
617ba13b 1465struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1466 ext4_lblk_t block, int create, int *err)
ac27a0ec 1467{
af5bc92d 1468 struct buffer_head *bh;
ac27a0ec 1469
617ba13b 1470 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1471 if (!bh)
1472 return bh;
1473 if (buffer_uptodate(bh))
1474 return bh;
1475 ll_rw_block(READ_META, 1, &bh);
1476 wait_on_buffer(bh);
1477 if (buffer_uptodate(bh))
1478 return bh;
1479 put_bh(bh);
1480 *err = -EIO;
1481 return NULL;
1482}
1483
af5bc92d
TT
1484static int walk_page_buffers(handle_t *handle,
1485 struct buffer_head *head,
1486 unsigned from,
1487 unsigned to,
1488 int *partial,
1489 int (*fn)(handle_t *handle,
1490 struct buffer_head *bh))
ac27a0ec
DK
1491{
1492 struct buffer_head *bh;
1493 unsigned block_start, block_end;
1494 unsigned blocksize = head->b_size;
1495 int err, ret = 0;
1496 struct buffer_head *next;
1497
af5bc92d
TT
1498 for (bh = head, block_start = 0;
1499 ret == 0 && (bh != head || !block_start);
de9a55b8 1500 block_start = block_end, bh = next) {
ac27a0ec
DK
1501 next = bh->b_this_page;
1502 block_end = block_start + blocksize;
1503 if (block_end <= from || block_start >= to) {
1504 if (partial && !buffer_uptodate(bh))
1505 *partial = 1;
1506 continue;
1507 }
1508 err = (*fn)(handle, bh);
1509 if (!ret)
1510 ret = err;
1511 }
1512 return ret;
1513}
1514
1515/*
1516 * To preserve ordering, it is essential that the hole instantiation and
1517 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1518 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1519 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1520 * prepare_write() is the right place.
1521 *
617ba13b
MC
1522 * Also, this function can nest inside ext4_writepage() ->
1523 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1524 * has generated enough buffer credits to do the whole page. So we won't
1525 * block on the journal in that case, which is good, because the caller may
1526 * be PF_MEMALLOC.
1527 *
617ba13b 1528 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1529 * quota file writes. If we were to commit the transaction while thus
1530 * reentered, there can be a deadlock - we would be holding a quota
1531 * lock, and the commit would never complete if another thread had a
1532 * transaction open and was blocking on the quota lock - a ranking
1533 * violation.
1534 *
dab291af 1535 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1536 * will _not_ run commit under these circumstances because handle->h_ref
1537 * is elevated. We'll still have enough credits for the tiny quotafile
1538 * write.
1539 */
1540static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1541 struct buffer_head *bh)
ac27a0ec 1542{
56d35a4c
JK
1543 int dirty = buffer_dirty(bh);
1544 int ret;
1545
ac27a0ec
DK
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1547 return 0;
56d35a4c
JK
1548 /*
1549 * __block_prepare_write() could have dirtied some buffers. Clean
1550 * the dirty bit as jbd2_journal_get_write_access() could complain
1551 * otherwise about fs integrity issues. Setting of the dirty bit
1552 * by __block_prepare_write() isn't a real problem here as we clear
1553 * the bit before releasing a page lock and thus writeback cannot
1554 * ever write the buffer.
1555 */
1556 if (dirty)
1557 clear_buffer_dirty(bh);
1558 ret = ext4_journal_get_write_access(handle, bh);
1559 if (!ret && dirty)
1560 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1561 return ret;
ac27a0ec
DK
1562}
1563
b9a4207d
JK
1564/*
1565 * Truncate blocks that were not used by write. We have to truncate the
1566 * pagecache as well so that corresponding buffers get properly unmapped.
1567 */
1568static void ext4_truncate_failed_write(struct inode *inode)
1569{
1570 truncate_inode_pages(inode->i_mapping, inode->i_size);
1571 ext4_truncate(inode);
1572}
1573
744692dc
JZ
1574static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1575 struct buffer_head *bh_result, int create);
bfc1af65 1576static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1577 loff_t pos, unsigned len, unsigned flags,
1578 struct page **pagep, void **fsdata)
ac27a0ec 1579{
af5bc92d 1580 struct inode *inode = mapping->host;
1938a150 1581 int ret, needed_blocks;
ac27a0ec
DK
1582 handle_t *handle;
1583 int retries = 0;
af5bc92d 1584 struct page *page;
de9a55b8 1585 pgoff_t index;
af5bc92d 1586 unsigned from, to;
bfc1af65 1587
9bffad1e 1588 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1589 /*
1590 * Reserve one block more for addition to orphan list in case
1591 * we allocate blocks but write fails for some reason
1592 */
1593 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1594 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1595 from = pos & (PAGE_CACHE_SIZE - 1);
1596 to = from + len;
ac27a0ec
DK
1597
1598retry:
af5bc92d
TT
1599 handle = ext4_journal_start(inode, needed_blocks);
1600 if (IS_ERR(handle)) {
1601 ret = PTR_ERR(handle);
1602 goto out;
7479d2b9 1603 }
ac27a0ec 1604
ebd3610b
JK
1605 /* We cannot recurse into the filesystem as the transaction is already
1606 * started */
1607 flags |= AOP_FLAG_NOFS;
1608
54566b2c 1609 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1610 if (!page) {
1611 ext4_journal_stop(handle);
1612 ret = -ENOMEM;
1613 goto out;
1614 }
1615 *pagep = page;
1616
744692dc 1617 if (ext4_should_dioread_nolock(inode))
6e1db88d 1618 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1619 else
6e1db88d 1620 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1621
1622 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1623 ret = walk_page_buffers(handle, page_buffers(page),
1624 from, to, NULL, do_journal_get_write_access);
1625 }
bfc1af65
NP
1626
1627 if (ret) {
af5bc92d 1628 unlock_page(page);
af5bc92d 1629 page_cache_release(page);
ae4d5372 1630 /*
6e1db88d 1631 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1632 * outside i_size. Trim these off again. Don't need
1633 * i_size_read because we hold i_mutex.
1938a150
AK
1634 *
1635 * Add inode to orphan list in case we crash before
1636 * truncate finishes
ae4d5372 1637 */
ffacfa7a 1638 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1639 ext4_orphan_add(handle, inode);
1640
1641 ext4_journal_stop(handle);
1642 if (pos + len > inode->i_size) {
b9a4207d 1643 ext4_truncate_failed_write(inode);
de9a55b8 1644 /*
ffacfa7a 1645 * If truncate failed early the inode might
1938a150
AK
1646 * still be on the orphan list; we need to
1647 * make sure the inode is removed from the
1648 * orphan list in that case.
1649 */
1650 if (inode->i_nlink)
1651 ext4_orphan_del(NULL, inode);
1652 }
bfc1af65
NP
1653 }
1654
617ba13b 1655 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1656 goto retry;
7479d2b9 1657out:
ac27a0ec
DK
1658 return ret;
1659}
1660
bfc1af65
NP
1661/* For write_end() in data=journal mode */
1662static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1663{
1664 if (!buffer_mapped(bh) || buffer_freed(bh))
1665 return 0;
1666 set_buffer_uptodate(bh);
0390131b 1667 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1668}
1669
f8514083 1670static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1671 struct address_space *mapping,
1672 loff_t pos, unsigned len, unsigned copied,
1673 struct page *page, void *fsdata)
f8514083
AK
1674{
1675 int i_size_changed = 0;
1676 struct inode *inode = mapping->host;
1677 handle_t *handle = ext4_journal_current_handle();
1678
1679 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1680
1681 /*
1682 * No need to use i_size_read() here, the i_size
1683 * cannot change under us because we hold i_mutex.
1684 *
1685 * But it's important to update i_size while still holding page lock:
1686 * page writeout could otherwise come in and zero beyond i_size.
1687 */
1688 if (pos + copied > inode->i_size) {
1689 i_size_write(inode, pos + copied);
1690 i_size_changed = 1;
1691 }
1692
1693 if (pos + copied > EXT4_I(inode)->i_disksize) {
1694 /* We need to mark inode dirty even if
1695 * new_i_size is less that inode->i_size
1696 * bu greater than i_disksize.(hint delalloc)
1697 */
1698 ext4_update_i_disksize(inode, (pos + copied));
1699 i_size_changed = 1;
1700 }
1701 unlock_page(page);
1702 page_cache_release(page);
1703
1704 /*
1705 * Don't mark the inode dirty under page lock. First, it unnecessarily
1706 * makes the holding time of page lock longer. Second, it forces lock
1707 * ordering of page lock and transaction start for journaling
1708 * filesystems.
1709 */
1710 if (i_size_changed)
1711 ext4_mark_inode_dirty(handle, inode);
1712
1713 return copied;
1714}
1715
ac27a0ec
DK
1716/*
1717 * We need to pick up the new inode size which generic_commit_write gave us
1718 * `file' can be NULL - eg, when called from page_symlink().
1719 *
617ba13b 1720 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1721 * buffers are managed internally.
1722 */
bfc1af65 1723static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1724 struct address_space *mapping,
1725 loff_t pos, unsigned len, unsigned copied,
1726 struct page *page, void *fsdata)
ac27a0ec 1727{
617ba13b 1728 handle_t *handle = ext4_journal_current_handle();
cf108bca 1729 struct inode *inode = mapping->host;
ac27a0ec
DK
1730 int ret = 0, ret2;
1731
9bffad1e 1732 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1733 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1734
1735 if (ret == 0) {
f8514083 1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1737 page, fsdata);
f8a87d89 1738 copied = ret2;
ffacfa7a 1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1743 */
1744 ext4_orphan_add(handle, inode);
f8a87d89
RK
1745 if (ret2 < 0)
1746 ret = ret2;
ac27a0ec 1747 }
617ba13b 1748 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1749 if (!ret)
1750 ret = ret2;
bfc1af65 1751
f8514083 1752 if (pos + len > inode->i_size) {
b9a4207d 1753 ext4_truncate_failed_write(inode);
de9a55b8 1754 /*
ffacfa7a 1755 * If truncate failed early the inode might still be
f8514083
AK
1756 * on the orphan list; we need to make sure the inode
1757 * is removed from the orphan list in that case.
1758 */
1759 if (inode->i_nlink)
1760 ext4_orphan_del(NULL, inode);
1761 }
1762
1763
bfc1af65 1764 return ret ? ret : copied;
ac27a0ec
DK
1765}
1766
bfc1af65 1767static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
ac27a0ec 1771{
617ba13b 1772 handle_t *handle = ext4_journal_current_handle();
cf108bca 1773 struct inode *inode = mapping->host;
ac27a0ec 1774 int ret = 0, ret2;
ac27a0ec 1775
9bffad1e 1776 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1777 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1778 page, fsdata);
f8a87d89 1779 copied = ret2;
ffacfa7a 1780 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1781 /* if we have allocated more blocks and copied
1782 * less. We will have blocks allocated outside
1783 * inode->i_size. So truncate them
1784 */
1785 ext4_orphan_add(handle, inode);
1786
f8a87d89
RK
1787 if (ret2 < 0)
1788 ret = ret2;
ac27a0ec 1789
617ba13b 1790 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1791 if (!ret)
1792 ret = ret2;
bfc1af65 1793
f8514083 1794 if (pos + len > inode->i_size) {
b9a4207d 1795 ext4_truncate_failed_write(inode);
de9a55b8 1796 /*
ffacfa7a 1797 * If truncate failed early the inode might still be
f8514083
AK
1798 * on the orphan list; we need to make sure the inode
1799 * is removed from the orphan list in that case.
1800 */
1801 if (inode->i_nlink)
1802 ext4_orphan_del(NULL, inode);
1803 }
1804
bfc1af65 1805 return ret ? ret : copied;
ac27a0ec
DK
1806}
1807
bfc1af65 1808static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1809 struct address_space *mapping,
1810 loff_t pos, unsigned len, unsigned copied,
1811 struct page *page, void *fsdata)
ac27a0ec 1812{
617ba13b 1813 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1814 struct inode *inode = mapping->host;
ac27a0ec
DK
1815 int ret = 0, ret2;
1816 int partial = 0;
bfc1af65 1817 unsigned from, to;
cf17fea6 1818 loff_t new_i_size;
ac27a0ec 1819
9bffad1e 1820 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1821 from = pos & (PAGE_CACHE_SIZE - 1);
1822 to = from + len;
1823
1824 if (copied < len) {
1825 if (!PageUptodate(page))
1826 copied = 0;
1827 page_zero_new_buffers(page, from+copied, to);
1828 }
ac27a0ec
DK
1829
1830 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1831 to, &partial, write_end_fn);
ac27a0ec
DK
1832 if (!partial)
1833 SetPageUptodate(page);
cf17fea6
AK
1834 new_i_size = pos + copied;
1835 if (new_i_size > inode->i_size)
bfc1af65 1836 i_size_write(inode, pos+copied);
19f5fb7a 1837 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1838 if (new_i_size > EXT4_I(inode)->i_disksize) {
1839 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1840 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1841 if (!ret)
1842 ret = ret2;
1843 }
bfc1af65 1844
cf108bca 1845 unlock_page(page);
f8514083 1846 page_cache_release(page);
ffacfa7a 1847 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1848 /* if we have allocated more blocks and copied
1849 * less. We will have blocks allocated outside
1850 * inode->i_size. So truncate them
1851 */
1852 ext4_orphan_add(handle, inode);
1853
617ba13b 1854 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1855 if (!ret)
1856 ret = ret2;
f8514083 1857 if (pos + len > inode->i_size) {
b9a4207d 1858 ext4_truncate_failed_write(inode);
de9a55b8 1859 /*
ffacfa7a 1860 * If truncate failed early the inode might still be
f8514083
AK
1861 * on the orphan list; we need to make sure the inode
1862 * is removed from the orphan list in that case.
1863 */
1864 if (inode->i_nlink)
1865 ext4_orphan_del(NULL, inode);
1866 }
bfc1af65
NP
1867
1868 return ret ? ret : copied;
ac27a0ec 1869}
d2a17637 1870
9d0be502
TT
1871/*
1872 * Reserve a single block located at lblock
1873 */
1874static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1875{
030ba6bc 1876 int retries = 0;
60e58e0f 1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1878 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1879 unsigned long md_needed;
5dd4056d 1880 int ret;
d2a17637
MC
1881
1882 /*
1883 * recalculate the amount of metadata blocks to reserve
1884 * in order to allocate nrblocks
1885 * worse case is one extent per block
1886 */
030ba6bc 1887repeat:
0637c6f4 1888 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1889 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1890 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1891 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1892
60e58e0f 1893 /*
72b8ab9d
ES
1894 * We will charge metadata quota at writeout time; this saves
1895 * us from metadata over-estimation, though we may go over by
1896 * a small amount in the end. Here we just reserve for data.
60e58e0f 1897 */
72b8ab9d 1898 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1899 if (ret)
1900 return ret;
72b8ab9d
ES
1901 /*
1902 * We do still charge estimated metadata to the sb though;
1903 * we cannot afford to run out of free blocks.
1904 */
9d0be502 1905 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1906 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1907 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1908 yield();
1909 goto repeat;
1910 }
d2a17637
MC
1911 return -ENOSPC;
1912 }
0637c6f4 1913 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1914 ei->i_reserved_data_blocks++;
0637c6f4
TT
1915 ei->i_reserved_meta_blocks += md_needed;
1916 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1917
d2a17637
MC
1918 return 0; /* success */
1919}
1920
12219aea 1921static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1922{
1923 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1924 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1925
cd213226
MC
1926 if (!to_free)
1927 return; /* Nothing to release, exit */
1928
d2a17637 1929 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1930
5a58ec87 1931 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1932 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1933 /*
0637c6f4
TT
1934 * if there aren't enough reserved blocks, then the
1935 * counter is messed up somewhere. Since this
1936 * function is called from invalidate page, it's
1937 * harmless to return without any action.
cd213226 1938 */
0637c6f4
TT
1939 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1940 "ino %lu, to_free %d with only %d reserved "
1941 "data blocks\n", inode->i_ino, to_free,
1942 ei->i_reserved_data_blocks);
1943 WARN_ON(1);
1944 to_free = ei->i_reserved_data_blocks;
cd213226 1945 }
0637c6f4 1946 ei->i_reserved_data_blocks -= to_free;
cd213226 1947
0637c6f4
TT
1948 if (ei->i_reserved_data_blocks == 0) {
1949 /*
1950 * We can release all of the reserved metadata blocks
1951 * only when we have written all of the delayed
1952 * allocation blocks.
1953 */
72b8ab9d
ES
1954 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1955 ei->i_reserved_meta_blocks);
ee5f4d9c 1956 ei->i_reserved_meta_blocks = 0;
9d0be502 1957 ei->i_da_metadata_calc_len = 0;
0637c6f4 1958 }
d2a17637 1959
72b8ab9d 1960 /* update fs dirty data blocks counter */
0637c6f4 1961 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1962
d2a17637 1963 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1964
5dd4056d 1965 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1966}
1967
1968static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1969 unsigned long offset)
d2a17637
MC
1970{
1971 int to_release = 0;
1972 struct buffer_head *head, *bh;
1973 unsigned int curr_off = 0;
1974
1975 head = page_buffers(page);
1976 bh = head;
1977 do {
1978 unsigned int next_off = curr_off + bh->b_size;
1979
1980 if ((offset <= curr_off) && (buffer_delay(bh))) {
1981 to_release++;
1982 clear_buffer_delay(bh);
1983 }
1984 curr_off = next_off;
1985 } while ((bh = bh->b_this_page) != head);
12219aea 1986 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1987}
ac27a0ec 1988
64769240
AT
1989/*
1990 * Delayed allocation stuff
1991 */
1992
64769240
AT
1993/*
1994 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1995 * them with writepage() call back
64769240
AT
1996 *
1997 * @mpd->inode: inode
1998 * @mpd->first_page: first page of the extent
1999 * @mpd->next_page: page after the last page of the extent
64769240
AT
2000 *
2001 * By the time mpage_da_submit_io() is called we expect all blocks
2002 * to be allocated. this may be wrong if allocation failed.
2003 *
2004 * As pages are already locked by write_cache_pages(), we can't use it
2005 */
1de3e3df
TT
2006static int mpage_da_submit_io(struct mpage_da_data *mpd,
2007 struct ext4_map_blocks *map)
64769240 2008{
791b7f08
AK
2009 struct pagevec pvec;
2010 unsigned long index, end;
2011 int ret = 0, err, nr_pages, i;
2012 struct inode *inode = mpd->inode;
2013 struct address_space *mapping = inode->i_mapping;
cb20d518 2014 loff_t size = i_size_read(inode);
3ecdb3a1
TT
2015 unsigned int len, block_start;
2016 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 2017 int journal_data = ext4_should_journal_data(inode);
1de3e3df 2018 sector_t pblock = 0, cur_logical = 0;
bd2d0210 2019 struct ext4_io_submit io_submit;
64769240
AT
2020
2021 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 2022 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
2023 /*
2024 * We need to start from the first_page to the next_page - 1
2025 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2026 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2027 * at the currently mapped buffer_heads.
2028 */
64769240
AT
2029 index = mpd->first_page;
2030 end = mpd->next_page - 1;
2031
791b7f08 2032 pagevec_init(&pvec, 0);
64769240 2033 while (index <= end) {
791b7f08 2034 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2035 if (nr_pages == 0)
2036 break;
2037 for (i = 0; i < nr_pages; i++) {
1de3e3df 2038 int commit_write = 0, redirty_page = 0;
64769240
AT
2039 struct page *page = pvec.pages[i];
2040
791b7f08
AK
2041 index = page->index;
2042 if (index > end)
2043 break;
cb20d518
TT
2044
2045 if (index == size >> PAGE_CACHE_SHIFT)
2046 len = size & ~PAGE_CACHE_MASK;
2047 else
2048 len = PAGE_CACHE_SIZE;
1de3e3df
TT
2049 if (map) {
2050 cur_logical = index << (PAGE_CACHE_SHIFT -
2051 inode->i_blkbits);
2052 pblock = map->m_pblk + (cur_logical -
2053 map->m_lblk);
2054 }
791b7f08
AK
2055 index++;
2056
2057 BUG_ON(!PageLocked(page));
2058 BUG_ON(PageWriteback(page));
2059
cb20d518
TT
2060 /*
2061 * If the page does not have buffers (for
2062 * whatever reason), try to create them using
2063 * block_prepare_write. If this fails,
2064 * redirty the page and move on.
2065 */
2066 if (!page_has_buffers(page)) {
2067 if (block_prepare_write(page, 0, len,
2068 noalloc_get_block_write)) {
2069 redirty_page:
2070 redirty_page_for_writepage(mpd->wbc,
2071 page);
2072 unlock_page(page);
2073 continue;
2074 }
2075 commit_write = 1;
2076 }
3ecdb3a1
TT
2077
2078 bh = page_bufs = page_buffers(page);
2079 block_start = 0;
2080 do {
1de3e3df 2081 if (!bh)
3ecdb3a1 2082 goto redirty_page;
1de3e3df
TT
2083 if (map && (cur_logical >= map->m_lblk) &&
2084 (cur_logical <= (map->m_lblk +
2085 (map->m_len - 1)))) {
2086 if (buffer_delay(bh)) {
2087 clear_buffer_delay(bh);
2088 bh->b_blocknr = pblock;
2089 }
2090 if (buffer_unwritten(bh) ||
2091 buffer_mapped(bh))
2092 BUG_ON(bh->b_blocknr != pblock);
2093 if (map->m_flags & EXT4_MAP_UNINIT)
2094 set_buffer_uninit(bh);
2095 clear_buffer_unwritten(bh);
2096 }
2097
2098 /* redirty page if block allocation undone */
2099 if (buffer_delay(bh) || buffer_unwritten(bh))
2100 redirty_page = 1;
3ecdb3a1
TT
2101 bh = bh->b_this_page;
2102 block_start += bh->b_size;
1de3e3df
TT
2103 cur_logical++;
2104 pblock++;
2105 } while (bh != page_bufs);
2106
2107 if (redirty_page)
2108 goto redirty_page;
cb20d518
TT
2109
2110 if (commit_write)
2111 /* mark the buffer_heads as dirty & uptodate */
2112 block_commit_write(page, 0, len);
2113
bd2d0210
TT
2114 /*
2115 * Delalloc doesn't support data journalling,
2116 * but eventually maybe we'll lift this
2117 * restriction.
2118 */
2119 if (unlikely(journal_data && PageChecked(page)))
cb20d518 2120 err = __ext4_journalled_writepage(page, len);
bd2d0210
TT
2121 else
2122 err = ext4_bio_write_page(&io_submit, page,
2123 len, mpd->wbc);
cb20d518
TT
2124
2125 if (!err)
a1d6cc56 2126 mpd->pages_written++;
64769240
AT
2127 /*
2128 * In error case, we have to continue because
2129 * remaining pages are still locked
64769240
AT
2130 */
2131 if (ret == 0)
2132 ret = err;
2133 }
2134 pagevec_release(&pvec);
2135 }
bd2d0210 2136 ext4_io_submit(&io_submit);
64769240
AT
2137 return ret;
2138}
2139
c4a0c46e
AK
2140static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2141 sector_t logical, long blk_cnt)
2142{
2143 int nr_pages, i;
2144 pgoff_t index, end;
2145 struct pagevec pvec;
2146 struct inode *inode = mpd->inode;
2147 struct address_space *mapping = inode->i_mapping;
2148
2149 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2150 end = (logical + blk_cnt - 1) >>
2151 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 while (index <= end) {
2153 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2154 if (nr_pages == 0)
2155 break;
2156 for (i = 0; i < nr_pages; i++) {
2157 struct page *page = pvec.pages[i];
9b1d0998 2158 if (page->index > end)
c4a0c46e 2159 break;
c4a0c46e
AK
2160 BUG_ON(!PageLocked(page));
2161 BUG_ON(PageWriteback(page));
2162 block_invalidatepage(page, 0);
2163 ClearPageUptodate(page);
2164 unlock_page(page);
2165 }
9b1d0998
JK
2166 index = pvec.pages[nr_pages - 1]->index + 1;
2167 pagevec_release(&pvec);
c4a0c46e
AK
2168 }
2169 return;
2170}
2171
df22291f
AK
2172static void ext4_print_free_blocks(struct inode *inode)
2173{
2174 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2175 printk(KERN_CRIT "Total free blocks count %lld\n",
2176 ext4_count_free_blocks(inode->i_sb));
2177 printk(KERN_CRIT "Free/Dirty block details\n");
2178 printk(KERN_CRIT "free_blocks=%lld\n",
2179 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2180 printk(KERN_CRIT "dirty_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2182 printk(KERN_CRIT "Block reservation details\n");
2183 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2184 EXT4_I(inode)->i_reserved_data_blocks);
2185 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2187 return;
2188}
2189
64769240 2190/*
5a87b7a5
TT
2191 * mpage_da_map_and_submit - go through given space, map them
2192 * if necessary, and then submit them for I/O
64769240 2193 *
8dc207c0 2194 * @mpd - bh describing space
64769240
AT
2195 *
2196 * The function skips space we know is already mapped to disk blocks.
2197 *
64769240 2198 */
5a87b7a5 2199static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2200{
2ac3b6e0 2201 int err, blks, get_blocks_flags;
1de3e3df 2202 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
2203 sector_t next = mpd->b_blocknr;
2204 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2205 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2206 handle_t *handle = NULL;
64769240
AT
2207
2208 /*
5a87b7a5
TT
2209 * If the blocks are mapped already, or we couldn't accumulate
2210 * any blocks, then proceed immediately to the submission stage.
64769240 2211 */
5a87b7a5
TT
2212 if ((mpd->b_size == 0) ||
2213 ((mpd->b_state & (1 << BH_Mapped)) &&
2214 !(mpd->b_state & (1 << BH_Delay)) &&
2215 !(mpd->b_state & (1 << BH_Unwritten))))
2216 goto submit_io;
2fa3cdfb
TT
2217
2218 handle = ext4_journal_current_handle();
2219 BUG_ON(!handle);
2220
79ffab34 2221 /*
79e83036 2222 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2223 * blocks, or to convert an uninitialized extent to be
2224 * initialized (in the case where we have written into
2225 * one or more preallocated blocks).
2226 *
2227 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2228 * indicate that we are on the delayed allocation path. This
2229 * affects functions in many different parts of the allocation
2230 * call path. This flag exists primarily because we don't
79e83036 2231 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2232 * will set the magic i_delalloc_reserved_flag once the
2233 * inode's allocation semaphore is taken.
2234 *
2235 * If the blocks in questions were delalloc blocks, set
2236 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2237 * variables are updated after the blocks have been allocated.
79ffab34 2238 */
2ed88685
TT
2239 map.m_lblk = next;
2240 map.m_len = max_blocks;
1296cc85 2241 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2242 if (ext4_should_dioread_nolock(mpd->inode))
2243 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2244 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2245 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2246
2ed88685 2247 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2248 if (blks < 0) {
e3570639
ES
2249 struct super_block *sb = mpd->inode->i_sb;
2250
2fa3cdfb 2251 err = blks;
ed5bde0b 2252 /*
5a87b7a5
TT
2253 * If get block returns EAGAIN or ENOSPC and there
2254 * appears to be free blocks we will call
2255 * ext4_writepage() for all of the pages which will
2256 * just redirty the pages.
c4a0c46e
AK
2257 */
2258 if (err == -EAGAIN)
5a87b7a5 2259 goto submit_io;
df22291f
AK
2260
2261 if (err == -ENOSPC &&
e3570639 2262 ext4_count_free_blocks(sb)) {
df22291f 2263 mpd->retval = err;
5a87b7a5 2264 goto submit_io;
df22291f
AK
2265 }
2266
c4a0c46e 2267 /*
ed5bde0b
TT
2268 * get block failure will cause us to loop in
2269 * writepages, because a_ops->writepage won't be able
2270 * to make progress. The page will be redirtied by
2271 * writepage and writepages will again try to write
2272 * the same.
c4a0c46e 2273 */
e3570639
ES
2274 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2275 ext4_msg(sb, KERN_CRIT,
2276 "delayed block allocation failed for inode %lu "
2277 "at logical offset %llu with max blocks %zd "
2278 "with error %d", mpd->inode->i_ino,
2279 (unsigned long long) next,
2280 mpd->b_size >> mpd->inode->i_blkbits, err);
2281 ext4_msg(sb, KERN_CRIT,
2282 "This should not happen!! Data will be lost\n");
2283 if (err == -ENOSPC)
2284 ext4_print_free_blocks(mpd->inode);
030ba6bc 2285 }
2fa3cdfb 2286 /* invalidate all the pages */
c4a0c46e 2287 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2288 mpd->b_size >> mpd->inode->i_blkbits);
5a87b7a5 2289 return;
c4a0c46e 2290 }
2fa3cdfb
TT
2291 BUG_ON(blks == 0);
2292
1de3e3df 2293 mapp = &map;
2ed88685
TT
2294 if (map.m_flags & EXT4_MAP_NEW) {
2295 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2296 int i;
64769240 2297
2ed88685
TT
2298 for (i = 0; i < map.m_len; i++)
2299 unmap_underlying_metadata(bdev, map.m_pblk + i);
2300 }
64769240 2301
2fa3cdfb
TT
2302 if (ext4_should_order_data(mpd->inode)) {
2303 err = ext4_jbd2_file_inode(handle, mpd->inode);
2304 if (err)
5a87b7a5
TT
2305 /* This only happens if the journal is aborted */
2306 return;
2fa3cdfb
TT
2307 }
2308
2309 /*
03f5d8bc 2310 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2311 */
2312 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2313 if (disksize > i_size_read(mpd->inode))
2314 disksize = i_size_read(mpd->inode);
2315 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2316 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2317 err = ext4_mark_inode_dirty(handle, mpd->inode);
2318 if (err)
2319 ext4_error(mpd->inode->i_sb,
2320 "Failed to mark inode %lu dirty",
2321 mpd->inode->i_ino);
2fa3cdfb
TT
2322 }
2323
5a87b7a5 2324submit_io:
1de3e3df 2325 mpage_da_submit_io(mpd, mapp);
5a87b7a5 2326 mpd->io_done = 1;
64769240
AT
2327}
2328
bf068ee2
AK
2329#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2330 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2331
2332/*
2333 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2334 *
2335 * @mpd->lbh - extent of blocks
2336 * @logical - logical number of the block in the file
2337 * @bh - bh of the block (used to access block's state)
2338 *
2339 * the function is used to collect contig. blocks in same state
2340 */
2341static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2342 sector_t logical, size_t b_size,
2343 unsigned long b_state)
64769240 2344{
64769240 2345 sector_t next;
8dc207c0 2346 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2347
c445e3e0
ES
2348 /*
2349 * XXX Don't go larger than mballoc is willing to allocate
2350 * This is a stopgap solution. We eventually need to fold
2351 * mpage_da_submit_io() into this function and then call
79e83036 2352 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2353 */
2354 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2355 goto flush_it;
2356
525f4ed8 2357 /* check if thereserved journal credits might overflow */
12e9b892 2358 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2359 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2360 /*
2361 * With non-extent format we are limited by the journal
2362 * credit available. Total credit needed to insert
2363 * nrblocks contiguous blocks is dependent on the
2364 * nrblocks. So limit nrblocks.
2365 */
2366 goto flush_it;
2367 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2368 EXT4_MAX_TRANS_DATA) {
2369 /*
2370 * Adding the new buffer_head would make it cross the
2371 * allowed limit for which we have journal credit
2372 * reserved. So limit the new bh->b_size
2373 */
2374 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2375 mpd->inode->i_blkbits;
2376 /* we will do mpage_da_submit_io in the next loop */
2377 }
2378 }
64769240
AT
2379 /*
2380 * First block in the extent
2381 */
8dc207c0
TT
2382 if (mpd->b_size == 0) {
2383 mpd->b_blocknr = logical;
2384 mpd->b_size = b_size;
2385 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2386 return;
2387 }
2388
8dc207c0 2389 next = mpd->b_blocknr + nrblocks;
64769240
AT
2390 /*
2391 * Can we merge the block to our big extent?
2392 */
8dc207c0
TT
2393 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2394 mpd->b_size += b_size;
64769240
AT
2395 return;
2396 }
2397
525f4ed8 2398flush_it:
64769240
AT
2399 /*
2400 * We couldn't merge the block to our extent, so we
2401 * need to flush current extent and start new one
2402 */
5a87b7a5 2403 mpage_da_map_and_submit(mpd);
a1d6cc56 2404 return;
64769240
AT
2405}
2406
c364b22c 2407static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2408{
c364b22c 2409 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2410}
2411
64769240
AT
2412/*
2413 * __mpage_da_writepage - finds extent of pages and blocks
2414 *
2415 * @page: page to consider
2416 * @wbc: not used, we just follow rules
2417 * @data: context
2418 *
2419 * The function finds extents of pages and scan them for all blocks.
2420 */
2421static int __mpage_da_writepage(struct page *page,
2422 struct writeback_control *wbc, void *data)
2423{
2424 struct mpage_da_data *mpd = data;
2425 struct inode *inode = mpd->inode;
8dc207c0 2426 struct buffer_head *bh, *head;
64769240
AT
2427 sector_t logical;
2428
2429 /*
2430 * Can we merge this page to current extent?
2431 */
2432 if (mpd->next_page != page->index) {
2433 /*
2434 * Nope, we can't. So, we map non-allocated blocks
5a87b7a5 2435 * and start IO on them
64769240
AT
2436 */
2437 if (mpd->next_page != mpd->first_page) {
5a87b7a5 2438 mpage_da_map_and_submit(mpd);
a1d6cc56
AK
2439 /*
2440 * skip rest of the page in the page_vec
2441 */
a1d6cc56
AK
2442 redirty_page_for_writepage(wbc, page);
2443 unlock_page(page);
2444 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2445 }
2446
2447 /*
2448 * Start next extent of pages ...
2449 */
2450 mpd->first_page = page->index;
2451
2452 /*
2453 * ... and blocks
2454 */
8dc207c0
TT
2455 mpd->b_size = 0;
2456 mpd->b_state = 0;
2457 mpd->b_blocknr = 0;
64769240
AT
2458 }
2459
2460 mpd->next_page = page->index + 1;
2461 logical = (sector_t) page->index <<
2462 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2463
2464 if (!page_has_buffers(page)) {
8dc207c0
TT
2465 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2466 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2467 if (mpd->io_done)
2468 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2469 } else {
2470 /*
2471 * Page with regular buffer heads, just add all dirty ones
2472 */
2473 head = page_buffers(page);
2474 bh = head;
2475 do {
2476 BUG_ON(buffer_locked(bh));
791b7f08
AK
2477 /*
2478 * We need to try to allocate
2479 * unmapped blocks in the same page.
2480 * Otherwise we won't make progress
43ce1d23 2481 * with the page in ext4_writepage
791b7f08 2482 */
c364b22c 2483 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2484 mpage_add_bh_to_extent(mpd, logical,
2485 bh->b_size,
2486 bh->b_state);
a1d6cc56
AK
2487 if (mpd->io_done)
2488 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2489 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2490 /*
2491 * mapped dirty buffer. We need to update
2492 * the b_state because we look at
2493 * b_state in mpage_da_map_blocks. We don't
2494 * update b_size because if we find an
2495 * unmapped buffer_head later we need to
2496 * use the b_state flag of that buffer_head.
2497 */
8dc207c0
TT
2498 if (mpd->b_size == 0)
2499 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2500 }
64769240
AT
2501 logical++;
2502 } while ((bh = bh->b_this_page) != head);
2503 }
2504
2505 return 0;
2506}
2507
64769240 2508/*
b920c755
TT
2509 * This is a special get_blocks_t callback which is used by
2510 * ext4_da_write_begin(). It will either return mapped block or
2511 * reserve space for a single block.
29fa89d0
AK
2512 *
2513 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2514 * We also have b_blocknr = -1 and b_bdev initialized properly
2515 *
2516 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2517 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2518 * initialized properly.
64769240
AT
2519 */
2520static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2521 struct buffer_head *bh, int create)
64769240 2522{
2ed88685 2523 struct ext4_map_blocks map;
64769240 2524 int ret = 0;
33b9817e
AK
2525 sector_t invalid_block = ~((sector_t) 0xffff);
2526
2527 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2528 invalid_block = ~0;
64769240
AT
2529
2530 BUG_ON(create == 0);
2ed88685
TT
2531 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2532
2533 map.m_lblk = iblock;
2534 map.m_len = 1;
64769240
AT
2535
2536 /*
2537 * first, we need to know whether the block is allocated already
2538 * preallocated blocks are unmapped but should treated
2539 * the same as allocated blocks.
2540 */
2ed88685
TT
2541 ret = ext4_map_blocks(NULL, inode, &map, 0);
2542 if (ret < 0)
2543 return ret;
2544 if (ret == 0) {
2545 if (buffer_delay(bh))
2546 return 0; /* Not sure this could or should happen */
64769240
AT
2547 /*
2548 * XXX: __block_prepare_write() unmaps passed block,
2549 * is it OK?
2550 */
9d0be502 2551 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2552 if (ret)
2553 /* not enough space to reserve */
2554 return ret;
2555
2ed88685
TT
2556 map_bh(bh, inode->i_sb, invalid_block);
2557 set_buffer_new(bh);
2558 set_buffer_delay(bh);
2559 return 0;
64769240
AT
2560 }
2561
2ed88685
TT
2562 map_bh(bh, inode->i_sb, map.m_pblk);
2563 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2564
2565 if (buffer_unwritten(bh)) {
2566 /* A delayed write to unwritten bh should be marked
2567 * new and mapped. Mapped ensures that we don't do
2568 * get_block multiple times when we write to the same
2569 * offset and new ensures that we do proper zero out
2570 * for partial write.
2571 */
2572 set_buffer_new(bh);
2573 set_buffer_mapped(bh);
2574 }
2575 return 0;
64769240 2576}
61628a3f 2577
b920c755
TT
2578/*
2579 * This function is used as a standard get_block_t calback function
2580 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2581 * callback function for block_prepare_write() and block_write_full_page().
2582 * These functions should only try to map a single block at a time.
b920c755
TT
2583 *
2584 * Since this function doesn't do block allocations even if the caller
2585 * requests it by passing in create=1, it is critically important that
2586 * any caller checks to make sure that any buffer heads are returned
2587 * by this function are either all already mapped or marked for
206f7ab4
CH
2588 * delayed allocation before calling block_write_full_page(). Otherwise,
2589 * b_blocknr could be left unitialized, and the page write functions will
2590 * be taken by surprise.
b920c755
TT
2591 */
2592static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2593 struct buffer_head *bh_result, int create)
2594{
a2dc52b5 2595 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2596 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2597}
2598
62e086be
AK
2599static int bget_one(handle_t *handle, struct buffer_head *bh)
2600{
2601 get_bh(bh);
2602 return 0;
2603}
2604
2605static int bput_one(handle_t *handle, struct buffer_head *bh)
2606{
2607 put_bh(bh);
2608 return 0;
2609}
2610
2611static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2612 unsigned int len)
2613{
2614 struct address_space *mapping = page->mapping;
2615 struct inode *inode = mapping->host;
2616 struct buffer_head *page_bufs;
2617 handle_t *handle = NULL;
2618 int ret = 0;
2619 int err;
2620
cb20d518 2621 ClearPageChecked(page);
62e086be
AK
2622 page_bufs = page_buffers(page);
2623 BUG_ON(!page_bufs);
2624 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2625 /* As soon as we unlock the page, it can go away, but we have
2626 * references to buffers so we are safe */
2627 unlock_page(page);
2628
2629 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2630 if (IS_ERR(handle)) {
2631 ret = PTR_ERR(handle);
2632 goto out;
2633 }
2634
2635 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2636 do_journal_get_write_access);
2637
2638 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2639 write_end_fn);
2640 if (ret == 0)
2641 ret = err;
2642 err = ext4_journal_stop(handle);
2643 if (!ret)
2644 ret = err;
2645
2646 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2647 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2648out:
2649 return ret;
2650}
2651
744692dc
JZ
2652static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2653static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2654
61628a3f 2655/*
43ce1d23
AK
2656 * Note that we don't need to start a transaction unless we're journaling data
2657 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2658 * need to file the inode to the transaction's list in ordered mode because if
2659 * we are writing back data added by write(), the inode is already there and if
2660 * we are writing back data modified via mmap(), noone guarantees in which
2661 * transaction the data will hit the disk. In case we are journaling data, we
2662 * cannot start transaction directly because transaction start ranks above page
2663 * lock so we have to do some magic.
2664 *
b920c755
TT
2665 * This function can get called via...
2666 * - ext4_da_writepages after taking page lock (have journal handle)
2667 * - journal_submit_inode_data_buffers (no journal handle)
2668 * - shrink_page_list via pdflush (no journal handle)
2669 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2670 *
2671 * We don't do any block allocation in this function. If we have page with
2672 * multiple blocks we need to write those buffer_heads that are mapped. This
2673 * is important for mmaped based write. So if we do with blocksize 1K
2674 * truncate(f, 1024);
2675 * a = mmap(f, 0, 4096);
2676 * a[0] = 'a';
2677 * truncate(f, 4096);
2678 * we have in the page first buffer_head mapped via page_mkwrite call back
2679 * but other bufer_heads would be unmapped but dirty(dirty done via the
2680 * do_wp_page). So writepage should write the first block. If we modify
2681 * the mmap area beyond 1024 we will again get a page_fault and the
2682 * page_mkwrite callback will do the block allocation and mark the
2683 * buffer_heads mapped.
2684 *
2685 * We redirty the page if we have any buffer_heads that is either delay or
2686 * unwritten in the page.
2687 *
2688 * We can get recursively called as show below.
2689 *
2690 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2691 * ext4_writepage()
2692 *
2693 * But since we don't do any block allocation we should not deadlock.
2694 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2695 */
43ce1d23 2696static int ext4_writepage(struct page *page,
62e086be 2697 struct writeback_control *wbc)
64769240 2698{
a42afc5f 2699 int ret = 0, commit_write = 0;
61628a3f 2700 loff_t size;
498e5f24 2701 unsigned int len;
744692dc 2702 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2703 struct inode *inode = page->mapping->host;
2704
43ce1d23 2705 trace_ext4_writepage(inode, page);
f0e6c985
AK
2706 size = i_size_read(inode);
2707 if (page->index == size >> PAGE_CACHE_SHIFT)
2708 len = size & ~PAGE_CACHE_MASK;
2709 else
2710 len = PAGE_CACHE_SIZE;
64769240 2711
a42afc5f
TT
2712 /*
2713 * If the page does not have buffers (for whatever reason),
2714 * try to create them using block_prepare_write. If this
2715 * fails, redirty the page and move on.
2716 */
2717 if (!page_buffers(page)) {
2718 if (block_prepare_write(page, 0, len,
2719 noalloc_get_block_write)) {
2720 redirty_page:
f0e6c985
AK
2721 redirty_page_for_writepage(wbc, page);
2722 unlock_page(page);
2723 return 0;
2724 }
a42afc5f
TT
2725 commit_write = 1;
2726 }
2727 page_bufs = page_buffers(page);
2728 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2729 ext4_bh_delay_or_unwritten)) {
f0e6c985 2730 /*
a42afc5f
TT
2731 * We don't want to do block allocation So redirty the
2732 * page and return We may reach here when we do a
2733 * journal commit via
2734 * journal_submit_inode_data_buffers. If we don't
2735 * have mapping block we just ignore them. We can also
2736 * reach here via shrink_page_list
f0e6c985 2737 */
a42afc5f
TT
2738 goto redirty_page;
2739 }
2740 if (commit_write)
ed9b3e33 2741 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2742 block_commit_write(page, 0, len);
64769240 2743
cb20d518 2744 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2745 /*
2746 * It's mmapped pagecache. Add buffers and journal it. There
2747 * doesn't seem much point in redirtying the page here.
2748 */
3f0ca309 2749 return __ext4_journalled_writepage(page, len);
43ce1d23 2750
a42afc5f 2751 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2752 ext4_set_bh_endio(page_bufs, inode);
2753 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2754 wbc, ext4_end_io_buffer_write);
2755 } else
b920c755
TT
2756 ret = block_write_full_page(page, noalloc_get_block_write,
2757 wbc);
64769240 2758
64769240
AT
2759 return ret;
2760}
2761
61628a3f 2762/*
525f4ed8
MC
2763 * This is called via ext4_da_writepages() to
2764 * calulate the total number of credits to reserve to fit
2765 * a single extent allocation into a single transaction,
2766 * ext4_da_writpeages() will loop calling this before
2767 * the block allocation.
61628a3f 2768 */
525f4ed8
MC
2769
2770static int ext4_da_writepages_trans_blocks(struct inode *inode)
2771{
2772 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2773
2774 /*
2775 * With non-extent format the journal credit needed to
2776 * insert nrblocks contiguous block is dependent on
2777 * number of contiguous block. So we will limit
2778 * number of contiguous block to a sane value
2779 */
12e9b892 2780 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2781 (max_blocks > EXT4_MAX_TRANS_DATA))
2782 max_blocks = EXT4_MAX_TRANS_DATA;
2783
2784 return ext4_chunk_trans_blocks(inode, max_blocks);
2785}
61628a3f 2786
8e48dcfb
TT
2787/*
2788 * write_cache_pages_da - walk the list of dirty pages of the given
2789 * address space and call the callback function (which usually writes
2790 * the pages).
2791 *
2792 * This is a forked version of write_cache_pages(). Differences:
2793 * Range cyclic is ignored.
2794 * no_nrwrite_index_update is always presumed true
2795 */
2796static int write_cache_pages_da(struct address_space *mapping,
2797 struct writeback_control *wbc,
2798 struct mpage_da_data *mpd)
2799{
2800 int ret = 0;
2801 int done = 0;
2802 struct pagevec pvec;
2803 int nr_pages;
2804 pgoff_t index;
2805 pgoff_t end; /* Inclusive */
2806 long nr_to_write = wbc->nr_to_write;
2807
2808 pagevec_init(&pvec, 0);
2809 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2810 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2811
2812 while (!done && (index <= end)) {
2813 int i;
2814
2815 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2816 PAGECACHE_TAG_DIRTY,
2817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2818 if (nr_pages == 0)
2819 break;
2820
2821 for (i = 0; i < nr_pages; i++) {
2822 struct page *page = pvec.pages[i];
2823
2824 /*
2825 * At this point, the page may be truncated or
2826 * invalidated (changing page->mapping to NULL), or
2827 * even swizzled back from swapper_space to tmpfs file
2828 * mapping. However, page->index will not change
2829 * because we have a reference on the page.
2830 */
2831 if (page->index > end) {
2832 done = 1;
2833 break;
2834 }
2835
2836 lock_page(page);
2837
2838 /*
2839 * Page truncated or invalidated. We can freely skip it
2840 * then, even for data integrity operations: the page
2841 * has disappeared concurrently, so there could be no
2842 * real expectation of this data interity operation
2843 * even if there is now a new, dirty page at the same
2844 * pagecache address.
2845 */
2846 if (unlikely(page->mapping != mapping)) {
2847continue_unlock:
2848 unlock_page(page);
2849 continue;
2850 }
2851
2852 if (!PageDirty(page)) {
2853 /* someone wrote it for us */
2854 goto continue_unlock;
2855 }
2856
2857 if (PageWriteback(page)) {
2858 if (wbc->sync_mode != WB_SYNC_NONE)
2859 wait_on_page_writeback(page);
2860 else
2861 goto continue_unlock;
2862 }
2863
2864 BUG_ON(PageWriteback(page));
2865 if (!clear_page_dirty_for_io(page))
2866 goto continue_unlock;
2867
2868 ret = __mpage_da_writepage(page, wbc, mpd);
2869 if (unlikely(ret)) {
2870 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2871 unlock_page(page);
2872 ret = 0;
2873 } else {
2874 done = 1;
2875 break;
2876 }
2877 }
2878
2879 if (nr_to_write > 0) {
2880 nr_to_write--;
2881 if (nr_to_write == 0 &&
2882 wbc->sync_mode == WB_SYNC_NONE) {
2883 /*
2884 * We stop writing back only if we are
2885 * not doing integrity sync. In case of
2886 * integrity sync we have to keep going
2887 * because someone may be concurrently
2888 * dirtying pages, and we might have
2889 * synced a lot of newly appeared dirty
2890 * pages, but have not synced all of the
2891 * old dirty pages.
2892 */
2893 done = 1;
2894 break;
2895 }
2896 }
2897 }
2898 pagevec_release(&pvec);
2899 cond_resched();
2900 }
2901 return ret;
2902}
2903
2904
64769240 2905static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2906 struct writeback_control *wbc)
64769240 2907{
22208ded
AK
2908 pgoff_t index;
2909 int range_whole = 0;
61628a3f 2910 handle_t *handle = NULL;
df22291f 2911 struct mpage_da_data mpd;
5e745b04 2912 struct inode *inode = mapping->host;
498e5f24
TT
2913 int pages_written = 0;
2914 long pages_skipped;
55138e0b 2915 unsigned int max_pages;
2acf2c26 2916 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2917 int needed_blocks, ret = 0;
2918 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2919 loff_t range_start = wbc->range_start;
5e745b04 2920 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2921
9bffad1e 2922 trace_ext4_da_writepages(inode, wbc);
ba80b101 2923
61628a3f
MC
2924 /*
2925 * No pages to write? This is mainly a kludge to avoid starting
2926 * a transaction for special inodes like journal inode on last iput()
2927 * because that could violate lock ordering on umount
2928 */
a1d6cc56 2929 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2930 return 0;
2a21e37e
TT
2931
2932 /*
2933 * If the filesystem has aborted, it is read-only, so return
2934 * right away instead of dumping stack traces later on that
2935 * will obscure the real source of the problem. We test
4ab2f15b 2936 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2937 * the latter could be true if the filesystem is mounted
2938 * read-only, and in that case, ext4_da_writepages should
2939 * *never* be called, so if that ever happens, we would want
2940 * the stack trace.
2941 */
4ab2f15b 2942 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2943 return -EROFS;
2944
22208ded
AK
2945 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2946 range_whole = 1;
61628a3f 2947
2acf2c26
AK
2948 range_cyclic = wbc->range_cyclic;
2949 if (wbc->range_cyclic) {
22208ded 2950 index = mapping->writeback_index;
2acf2c26
AK
2951 if (index)
2952 cycled = 0;
2953 wbc->range_start = index << PAGE_CACHE_SHIFT;
2954 wbc->range_end = LLONG_MAX;
2955 wbc->range_cyclic = 0;
2956 } else
22208ded 2957 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2958
55138e0b
TT
2959 /*
2960 * This works around two forms of stupidity. The first is in
2961 * the writeback code, which caps the maximum number of pages
2962 * written to be 1024 pages. This is wrong on multiple
2963 * levels; different architectues have a different page size,
2964 * which changes the maximum amount of data which gets
2965 * written. Secondly, 4 megabytes is way too small. XFS
2966 * forces this value to be 16 megabytes by multiplying
2967 * nr_to_write parameter by four, and then relies on its
2968 * allocator to allocate larger extents to make them
2969 * contiguous. Unfortunately this brings us to the second
2970 * stupidity, which is that ext4's mballoc code only allocates
2971 * at most 2048 blocks. So we force contiguous writes up to
2972 * the number of dirty blocks in the inode, or
2973 * sbi->max_writeback_mb_bump whichever is smaller.
2974 */
2975 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2976 if (!range_cyclic && range_whole) {
2977 if (wbc->nr_to_write == LONG_MAX)
2978 desired_nr_to_write = wbc->nr_to_write;
2979 else
2980 desired_nr_to_write = wbc->nr_to_write * 8;
2981 } else
55138e0b
TT
2982 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2983 max_pages);
2984 if (desired_nr_to_write > max_pages)
2985 desired_nr_to_write = max_pages;
2986
2987 if (wbc->nr_to_write < desired_nr_to_write) {
2988 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2989 wbc->nr_to_write = desired_nr_to_write;
2990 }
2991
df22291f
AK
2992 mpd.wbc = wbc;
2993 mpd.inode = mapping->host;
2994
22208ded
AK
2995 pages_skipped = wbc->pages_skipped;
2996
2acf2c26 2997retry:
22208ded 2998 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2999
3000 /*
3001 * we insert one extent at a time. So we need
3002 * credit needed for single extent allocation.
3003 * journalled mode is currently not supported
3004 * by delalloc
3005 */
3006 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3007 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3008
61628a3f
MC
3009 /* start a new transaction*/
3010 handle = ext4_journal_start(inode, needed_blocks);
3011 if (IS_ERR(handle)) {
3012 ret = PTR_ERR(handle);
1693918e 3013 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3014 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3015 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3016 goto out_writepages;
3017 }
f63e6005
TT
3018
3019 /*
3020 * Now call __mpage_da_writepage to find the next
3021 * contiguous region of logical blocks that need
3022 * blocks to be allocated by ext4. We don't actually
3023 * submit the blocks for I/O here, even though
3024 * write_cache_pages thinks it will, and will set the
3025 * pages as clean for write before calling
3026 * __mpage_da_writepage().
3027 */
3028 mpd.b_size = 0;
3029 mpd.b_state = 0;
3030 mpd.b_blocknr = 0;
3031 mpd.first_page = 0;
3032 mpd.next_page = 0;
3033 mpd.io_done = 0;
3034 mpd.pages_written = 0;
3035 mpd.retval = 0;
8e48dcfb 3036 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3037 /*
af901ca1 3038 * If we have a contiguous extent of pages and we
f63e6005
TT
3039 * haven't done the I/O yet, map the blocks and submit
3040 * them for I/O.
3041 */
3042 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 3043 mpage_da_map_and_submit(&mpd);
f63e6005
TT
3044 ret = MPAGE_DA_EXTENT_TAIL;
3045 }
b3a3ca8c 3046 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3047 wbc->nr_to_write -= mpd.pages_written;
df22291f 3048
61628a3f 3049 ext4_journal_stop(handle);
df22291f 3050
8f64b32e 3051 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3052 /* commit the transaction which would
3053 * free blocks released in the transaction
3054 * and try again
3055 */
df22291f 3056 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3057 wbc->pages_skipped = pages_skipped;
3058 ret = 0;
3059 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3060 /*
3061 * got one extent now try with
3062 * rest of the pages
3063 */
22208ded
AK
3064 pages_written += mpd.pages_written;
3065 wbc->pages_skipped = pages_skipped;
a1d6cc56 3066 ret = 0;
2acf2c26 3067 io_done = 1;
22208ded 3068 } else if (wbc->nr_to_write)
61628a3f
MC
3069 /*
3070 * There is no more writeout needed
3071 * or we requested for a noblocking writeout
3072 * and we found the device congested
3073 */
61628a3f 3074 break;
a1d6cc56 3075 }
2acf2c26
AK
3076 if (!io_done && !cycled) {
3077 cycled = 1;
3078 index = 0;
3079 wbc->range_start = index << PAGE_CACHE_SHIFT;
3080 wbc->range_end = mapping->writeback_index - 1;
3081 goto retry;
3082 }
22208ded 3083 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3084 ext4_msg(inode->i_sb, KERN_CRIT,
3085 "This should not happen leaving %s "
fbe845dd 3086 "with nr_to_write = %ld ret = %d",
1693918e 3087 __func__, wbc->nr_to_write, ret);
22208ded
AK
3088
3089 /* Update index */
3090 index += pages_written;
2acf2c26 3091 wbc->range_cyclic = range_cyclic;
22208ded
AK
3092 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3093 /*
3094 * set the writeback_index so that range_cyclic
3095 * mode will write it back later
3096 */
3097 mapping->writeback_index = index;
a1d6cc56 3098
61628a3f 3099out_writepages:
2faf2e19 3100 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3101 wbc->range_start = range_start;
9bffad1e 3102 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3103 return ret;
64769240
AT
3104}
3105
79f0be8d
AK
3106#define FALL_BACK_TO_NONDELALLOC 1
3107static int ext4_nonda_switch(struct super_block *sb)
3108{
3109 s64 free_blocks, dirty_blocks;
3110 struct ext4_sb_info *sbi = EXT4_SB(sb);
3111
3112 /*
3113 * switch to non delalloc mode if we are running low
3114 * on free block. The free block accounting via percpu
179f7ebf 3115 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3116 * accumulated on each CPU without updating global counters
3117 * Delalloc need an accurate free block accounting. So switch
3118 * to non delalloc when we are near to error range.
3119 */
3120 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3121 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3122 if (2 * free_blocks < 3 * dirty_blocks ||
3123 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3124 /*
c8afb446
ES
3125 * free block count is less than 150% of dirty blocks
3126 * or free blocks is less than watermark
79f0be8d
AK
3127 */
3128 return 1;
3129 }
c8afb446
ES
3130 /*
3131 * Even if we don't switch but are nearing capacity,
3132 * start pushing delalloc when 1/2 of free blocks are dirty.
3133 */
3134 if (free_blocks < 2 * dirty_blocks)
3135 writeback_inodes_sb_if_idle(sb);
3136
79f0be8d
AK
3137 return 0;
3138}
3139
64769240 3140static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3141 loff_t pos, unsigned len, unsigned flags,
3142 struct page **pagep, void **fsdata)
64769240 3143{
72b8ab9d 3144 int ret, retries = 0;
64769240
AT
3145 struct page *page;
3146 pgoff_t index;
64769240
AT
3147 struct inode *inode = mapping->host;
3148 handle_t *handle;
3149
3150 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3151
3152 if (ext4_nonda_switch(inode->i_sb)) {
3153 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3154 return ext4_write_begin(file, mapping, pos,
3155 len, flags, pagep, fsdata);
3156 }
3157 *fsdata = (void *)0;
9bffad1e 3158 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3159retry:
64769240
AT
3160 /*
3161 * With delayed allocation, we don't log the i_disksize update
3162 * if there is delayed block allocation. But we still need
3163 * to journalling the i_disksize update if writes to the end
3164 * of file which has an already mapped buffer.
3165 */
3166 handle = ext4_journal_start(inode, 1);
3167 if (IS_ERR(handle)) {
3168 ret = PTR_ERR(handle);
3169 goto out;
3170 }
ebd3610b
JK
3171 /* We cannot recurse into the filesystem as the transaction is already
3172 * started */
3173 flags |= AOP_FLAG_NOFS;
64769240 3174
54566b2c 3175 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3176 if (!page) {
3177 ext4_journal_stop(handle);
3178 ret = -ENOMEM;
3179 goto out;
3180 }
64769240
AT
3181 *pagep = page;
3182
6e1db88d 3183 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3184 if (ret < 0) {
3185 unlock_page(page);
3186 ext4_journal_stop(handle);
3187 page_cache_release(page);
ae4d5372
AK
3188 /*
3189 * block_write_begin may have instantiated a few blocks
3190 * outside i_size. Trim these off again. Don't need
3191 * i_size_read because we hold i_mutex.
3192 */
3193 if (pos + len > inode->i_size)
b9a4207d 3194 ext4_truncate_failed_write(inode);
64769240
AT
3195 }
3196
d2a17637
MC
3197 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3198 goto retry;
64769240
AT
3199out:
3200 return ret;
3201}
3202
632eaeab
MC
3203/*
3204 * Check if we should update i_disksize
3205 * when write to the end of file but not require block allocation
3206 */
3207static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3208 unsigned long offset)
632eaeab
MC
3209{
3210 struct buffer_head *bh;
3211 struct inode *inode = page->mapping->host;
3212 unsigned int idx;
3213 int i;
3214
3215 bh = page_buffers(page);
3216 idx = offset >> inode->i_blkbits;
3217
af5bc92d 3218 for (i = 0; i < idx; i++)
632eaeab
MC
3219 bh = bh->b_this_page;
3220
29fa89d0 3221 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3222 return 0;
3223 return 1;
3224}
3225
64769240 3226static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3227 struct address_space *mapping,
3228 loff_t pos, unsigned len, unsigned copied,
3229 struct page *page, void *fsdata)
64769240
AT
3230{
3231 struct inode *inode = mapping->host;
3232 int ret = 0, ret2;
3233 handle_t *handle = ext4_journal_current_handle();
3234 loff_t new_i_size;
632eaeab 3235 unsigned long start, end;
79f0be8d
AK
3236 int write_mode = (int)(unsigned long)fsdata;
3237
3238 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3239 if (ext4_should_order_data(inode)) {
3240 return ext4_ordered_write_end(file, mapping, pos,
3241 len, copied, page, fsdata);
3242 } else if (ext4_should_writeback_data(inode)) {
3243 return ext4_writeback_write_end(file, mapping, pos,
3244 len, copied, page, fsdata);
3245 } else {
3246 BUG();
3247 }
3248 }
632eaeab 3249
9bffad1e 3250 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3251 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3252 end = start + copied - 1;
64769240
AT
3253
3254 /*
3255 * generic_write_end() will run mark_inode_dirty() if i_size
3256 * changes. So let's piggyback the i_disksize mark_inode_dirty
3257 * into that.
3258 */
3259
3260 new_i_size = pos + copied;
632eaeab
MC
3261 if (new_i_size > EXT4_I(inode)->i_disksize) {
3262 if (ext4_da_should_update_i_disksize(page, end)) {
3263 down_write(&EXT4_I(inode)->i_data_sem);
3264 if (new_i_size > EXT4_I(inode)->i_disksize) {
3265 /*
3266 * Updating i_disksize when extending file
3267 * without needing block allocation
3268 */
3269 if (ext4_should_order_data(inode))
3270 ret = ext4_jbd2_file_inode(handle,
3271 inode);
64769240 3272
632eaeab
MC
3273 EXT4_I(inode)->i_disksize = new_i_size;
3274 }
3275 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3276 /* We need to mark inode dirty even if
3277 * new_i_size is less that inode->i_size
3278 * bu greater than i_disksize.(hint delalloc)
3279 */
3280 ext4_mark_inode_dirty(handle, inode);
64769240 3281 }
632eaeab 3282 }
64769240
AT
3283 ret2 = generic_write_end(file, mapping, pos, len, copied,
3284 page, fsdata);
3285 copied = ret2;
3286 if (ret2 < 0)
3287 ret = ret2;
3288 ret2 = ext4_journal_stop(handle);
3289 if (!ret)
3290 ret = ret2;
3291
3292 return ret ? ret : copied;
3293}
3294
3295static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3296{
64769240
AT
3297 /*
3298 * Drop reserved blocks
3299 */
3300 BUG_ON(!PageLocked(page));
3301 if (!page_has_buffers(page))
3302 goto out;
3303
d2a17637 3304 ext4_da_page_release_reservation(page, offset);
64769240
AT
3305
3306out:
3307 ext4_invalidatepage(page, offset);
3308
3309 return;
3310}
3311
ccd2506b
TT
3312/*
3313 * Force all delayed allocation blocks to be allocated for a given inode.
3314 */
3315int ext4_alloc_da_blocks(struct inode *inode)
3316{
fb40ba0d
TT
3317 trace_ext4_alloc_da_blocks(inode);
3318
ccd2506b
TT
3319 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3320 !EXT4_I(inode)->i_reserved_meta_blocks)
3321 return 0;
3322
3323 /*
3324 * We do something simple for now. The filemap_flush() will
3325 * also start triggering a write of the data blocks, which is
3326 * not strictly speaking necessary (and for users of
3327 * laptop_mode, not even desirable). However, to do otherwise
3328 * would require replicating code paths in:
de9a55b8 3329 *
ccd2506b
TT
3330 * ext4_da_writepages() ->
3331 * write_cache_pages() ---> (via passed in callback function)
3332 * __mpage_da_writepage() -->
3333 * mpage_add_bh_to_extent()
3334 * mpage_da_map_blocks()
3335 *
3336 * The problem is that write_cache_pages(), located in
3337 * mm/page-writeback.c, marks pages clean in preparation for
3338 * doing I/O, which is not desirable if we're not planning on
3339 * doing I/O at all.
3340 *
3341 * We could call write_cache_pages(), and then redirty all of
3342 * the pages by calling redirty_page_for_writeback() but that
3343 * would be ugly in the extreme. So instead we would need to
3344 * replicate parts of the code in the above functions,
3345 * simplifying them becuase we wouldn't actually intend to
3346 * write out the pages, but rather only collect contiguous
3347 * logical block extents, call the multi-block allocator, and
3348 * then update the buffer heads with the block allocations.
de9a55b8 3349 *
ccd2506b
TT
3350 * For now, though, we'll cheat by calling filemap_flush(),
3351 * which will map the blocks, and start the I/O, but not
3352 * actually wait for the I/O to complete.
3353 */
3354 return filemap_flush(inode->i_mapping);
3355}
64769240 3356
ac27a0ec
DK
3357/*
3358 * bmap() is special. It gets used by applications such as lilo and by
3359 * the swapper to find the on-disk block of a specific piece of data.
3360 *
3361 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3362 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3363 * filesystem and enables swap, then they may get a nasty shock when the
3364 * data getting swapped to that swapfile suddenly gets overwritten by
3365 * the original zero's written out previously to the journal and
3366 * awaiting writeback in the kernel's buffer cache.
3367 *
3368 * So, if we see any bmap calls here on a modified, data-journaled file,
3369 * take extra steps to flush any blocks which might be in the cache.
3370 */
617ba13b 3371static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3372{
3373 struct inode *inode = mapping->host;
3374 journal_t *journal;
3375 int err;
3376
64769240
AT
3377 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3378 test_opt(inode->i_sb, DELALLOC)) {
3379 /*
3380 * With delalloc we want to sync the file
3381 * so that we can make sure we allocate
3382 * blocks for file
3383 */
3384 filemap_write_and_wait(mapping);
3385 }
3386
19f5fb7a
TT
3387 if (EXT4_JOURNAL(inode) &&
3388 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3389 /*
3390 * This is a REALLY heavyweight approach, but the use of
3391 * bmap on dirty files is expected to be extremely rare:
3392 * only if we run lilo or swapon on a freshly made file
3393 * do we expect this to happen.
3394 *
3395 * (bmap requires CAP_SYS_RAWIO so this does not
3396 * represent an unprivileged user DOS attack --- we'd be
3397 * in trouble if mortal users could trigger this path at
3398 * will.)
3399 *
617ba13b 3400 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3401 * regular files. If somebody wants to bmap a directory
3402 * or symlink and gets confused because the buffer
3403 * hasn't yet been flushed to disk, they deserve
3404 * everything they get.
3405 */
3406
19f5fb7a 3407 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3408 journal = EXT4_JOURNAL(inode);
dab291af
MC
3409 jbd2_journal_lock_updates(journal);
3410 err = jbd2_journal_flush(journal);
3411 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3412
3413 if (err)
3414 return 0;
3415 }
3416
af5bc92d 3417 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3418}
3419
617ba13b 3420static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3421{
617ba13b 3422 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3423}
3424
3425static int
617ba13b 3426ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3427 struct list_head *pages, unsigned nr_pages)
3428{
617ba13b 3429 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3430}
3431
744692dc
JZ
3432static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3433{
3434 struct buffer_head *head, *bh;
3435 unsigned int curr_off = 0;
3436
3437 if (!page_has_buffers(page))
3438 return;
3439 head = bh = page_buffers(page);
3440 do {
3441 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3442 && bh->b_private) {
3443 ext4_free_io_end(bh->b_private);
3444 bh->b_private = NULL;
3445 bh->b_end_io = NULL;
3446 }
3447 curr_off = curr_off + bh->b_size;
3448 bh = bh->b_this_page;
3449 } while (bh != head);
3450}
3451
617ba13b 3452static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3453{
617ba13b 3454 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3455
744692dc
JZ
3456 /*
3457 * free any io_end structure allocated for buffers to be discarded
3458 */
3459 if (ext4_should_dioread_nolock(page->mapping->host))
3460 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3461 /*
3462 * If it's a full truncate we just forget about the pending dirtying
3463 */
3464 if (offset == 0)
3465 ClearPageChecked(page);
3466
0390131b
FM
3467 if (journal)
3468 jbd2_journal_invalidatepage(journal, page, offset);
3469 else
3470 block_invalidatepage(page, offset);
ac27a0ec
DK
3471}
3472
617ba13b 3473static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3474{
617ba13b 3475 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3476
3477 WARN_ON(PageChecked(page));
3478 if (!page_has_buffers(page))
3479 return 0;
0390131b
FM
3480 if (journal)
3481 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3482 else
3483 return try_to_free_buffers(page);
ac27a0ec
DK
3484}
3485
3486/*
4c0425ff
MC
3487 * O_DIRECT for ext3 (or indirect map) based files
3488 *
ac27a0ec
DK
3489 * If the O_DIRECT write will extend the file then add this inode to the
3490 * orphan list. So recovery will truncate it back to the original size
3491 * if the machine crashes during the write.
3492 *
3493 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3494 * crashes then stale disk data _may_ be exposed inside the file. But current
3495 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3496 */
4c0425ff 3497static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3498 const struct iovec *iov, loff_t offset,
3499 unsigned long nr_segs)
ac27a0ec
DK
3500{
3501 struct file *file = iocb->ki_filp;
3502 struct inode *inode = file->f_mapping->host;
617ba13b 3503 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3504 handle_t *handle;
ac27a0ec
DK
3505 ssize_t ret;
3506 int orphan = 0;
3507 size_t count = iov_length(iov, nr_segs);
fbbf6945 3508 int retries = 0;
ac27a0ec
DK
3509
3510 if (rw == WRITE) {
3511 loff_t final_size = offset + count;
3512
ac27a0ec 3513 if (final_size > inode->i_size) {
7fb5409d
JK
3514 /* Credits for sb + inode write */
3515 handle = ext4_journal_start(inode, 2);
3516 if (IS_ERR(handle)) {
3517 ret = PTR_ERR(handle);
3518 goto out;
3519 }
617ba13b 3520 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3521 if (ret) {
3522 ext4_journal_stop(handle);
3523 goto out;
3524 }
ac27a0ec
DK
3525 orphan = 1;
3526 ei->i_disksize = inode->i_size;
7fb5409d 3527 ext4_journal_stop(handle);
ac27a0ec
DK
3528 }
3529 }
3530
fbbf6945 3531retry:
b7adc1f3 3532 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3533 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3534 inode->i_sb->s_bdev, iov,
3535 offset, nr_segs,
eafdc7d1
CH
3536 ext4_get_block, NULL, NULL, 0);
3537 else {
b7adc1f3
JZ
3538 ret = blockdev_direct_IO(rw, iocb, inode,
3539 inode->i_sb->s_bdev, iov,
ac27a0ec 3540 offset, nr_segs,
617ba13b 3541 ext4_get_block, NULL);
eafdc7d1
CH
3542
3543 if (unlikely((rw & WRITE) && ret < 0)) {
3544 loff_t isize = i_size_read(inode);
3545 loff_t end = offset + iov_length(iov, nr_segs);
3546
3547 if (end > isize)
3548 vmtruncate(inode, isize);
3549 }
3550 }
fbbf6945
ES
3551 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3552 goto retry;
ac27a0ec 3553
7fb5409d 3554 if (orphan) {
ac27a0ec
DK
3555 int err;
3556
7fb5409d
JK
3557 /* Credits for sb + inode write */
3558 handle = ext4_journal_start(inode, 2);
3559 if (IS_ERR(handle)) {
3560 /* This is really bad luck. We've written the data
3561 * but cannot extend i_size. Bail out and pretend
3562 * the write failed... */
3563 ret = PTR_ERR(handle);
da1dafca
DM
3564 if (inode->i_nlink)
3565 ext4_orphan_del(NULL, inode);
3566
7fb5409d
JK
3567 goto out;
3568 }
3569 if (inode->i_nlink)
617ba13b 3570 ext4_orphan_del(handle, inode);
7fb5409d 3571 if (ret > 0) {
ac27a0ec
DK
3572 loff_t end = offset + ret;
3573 if (end > inode->i_size) {
3574 ei->i_disksize = end;
3575 i_size_write(inode, end);
3576 /*
3577 * We're going to return a positive `ret'
3578 * here due to non-zero-length I/O, so there's
3579 * no way of reporting error returns from
617ba13b 3580 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3581 * ignore it.
3582 */
617ba13b 3583 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3584 }
3585 }
617ba13b 3586 err = ext4_journal_stop(handle);
ac27a0ec
DK
3587 if (ret == 0)
3588 ret = err;
3589 }
3590out:
3591 return ret;
3592}
3593
2ed88685
TT
3594/*
3595 * ext4_get_block used when preparing for a DIO write or buffer write.
3596 * We allocate an uinitialized extent if blocks haven't been allocated.
3597 * The extent will be converted to initialized after the IO is complete.
3598 */
c7064ef1 3599static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3600 struct buffer_head *bh_result, int create)
3601{
c7064ef1 3602 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3603 inode->i_ino, create);
2ed88685
TT
3604 return _ext4_get_block(inode, iblock, bh_result,
3605 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3606}
3607
c7064ef1 3608static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3609{
3610#ifdef EXT4_DEBUG
3611 struct list_head *cur, *before, *after;
3612 ext4_io_end_t *io, *io0, *io1;
744692dc 3613 unsigned long flags;
8d5d02e6 3614
c7064ef1
JZ
3615 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3616 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3617 return;
3618 }
3619
c7064ef1 3620 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3621 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3622 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3623 cur = &io->list;
3624 before = cur->prev;
3625 io0 = container_of(before, ext4_io_end_t, list);
3626 after = cur->next;
3627 io1 = container_of(after, ext4_io_end_t, list);
3628
3629 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3630 io, inode->i_ino, io0, io1);
3631 }
744692dc 3632 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3633#endif
3634}
4c0425ff 3635
8d5d02e6
MC
3636/*
3637 * This function is called from ext4_sync_file().
3638 *
c7064ef1
JZ
3639 * When IO is completed, the work to convert unwritten extents to
3640 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3641 * scheduled. When fsync is called, we need to ensure the
3642 * conversion is complete before fsync returns.
c7064ef1
JZ
3643 * The inode keeps track of a list of pending/completed IO that
3644 * might needs to do the conversion. This function walks through
3645 * the list and convert the related unwritten extents for completed IO
3646 * to written.
3647 * The function return the number of pending IOs on success.
8d5d02e6 3648 */
c7064ef1 3649int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3650{
3651 ext4_io_end_t *io;
744692dc
JZ
3652 struct ext4_inode_info *ei = EXT4_I(inode);
3653 unsigned long flags;
8d5d02e6
MC
3654 int ret = 0;
3655 int ret2 = 0;
3656
744692dc 3657 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3658 return ret;
3659
c7064ef1 3660 dump_completed_IO(inode);
744692dc
JZ
3661 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3662 while (!list_empty(&ei->i_completed_io_list)){
3663 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3664 ext4_io_end_t, list);
3665 /*
c7064ef1 3666 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3667 * IO to written.
3668 *
3669 * When ext4_sync_file() is called, run_queue() may already
3670 * about to flush the work corresponding to this io structure.
3671 * It will be upset if it founds the io structure related
3672 * to the work-to-be schedule is freed.
3673 *
3674 * Thus we need to keep the io structure still valid here after
3675 * convertion finished. The io structure has a flag to
3676 * avoid double converting from both fsync and background work
3677 * queue work.
3678 */
744692dc 3679 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3680 ret = ext4_end_io_nolock(io);
744692dc 3681 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3682 if (ret < 0)
3683 ret2 = ret;
3684 else
3685 list_del_init(&io->list);
3686 }
744692dc 3687 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3688 return (ret2 < 0) ? ret2 : 0;
3689}
3690
4c0425ff 3691static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3692 ssize_t size, void *private, int ret,
3693 bool is_async)
4c0425ff
MC
3694{
3695 ext4_io_end_t *io_end = iocb->private;
3696 struct workqueue_struct *wq;
744692dc
JZ
3697 unsigned long flags;
3698 struct ext4_inode_info *ei;
4c0425ff 3699
4b70df18
M
3700 /* if not async direct IO or dio with 0 bytes write, just return */
3701 if (!io_end || !size)
552ef802 3702 goto out;
4b70df18 3703
8d5d02e6
MC
3704 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3705 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3706 iocb->private, io_end->inode->i_ino, iocb, offset,
3707 size);
8d5d02e6
MC
3708
3709 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3710 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
3711 ext4_free_io_end(io_end);
3712 iocb->private = NULL;
5b3ff237
JZ
3713out:
3714 if (is_async)
3715 aio_complete(iocb, ret, 0);
3716 return;
8d5d02e6
MC
3717 }
3718
4c0425ff
MC
3719 io_end->offset = offset;
3720 io_end->size = size;
5b3ff237
JZ
3721 if (is_async) {
3722 io_end->iocb = iocb;
3723 io_end->result = ret;
3724 }
4c0425ff
MC
3725 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3726
8d5d02e6 3727 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3728 ei = EXT4_I(io_end->inode);
3729 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3730 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3731 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3732
3733 /* queue the work to convert unwritten extents to written */
3734 queue_work(wq, &io_end->work);
4c0425ff
MC
3735 iocb->private = NULL;
3736}
c7064ef1 3737
744692dc
JZ
3738static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3739{
3740 ext4_io_end_t *io_end = bh->b_private;
3741 struct workqueue_struct *wq;
3742 struct inode *inode;
3743 unsigned long flags;
3744
3745 if (!test_clear_buffer_uninit(bh) || !io_end)
3746 goto out;
3747
3748 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3749 printk("sb umounted, discard end_io request for inode %lu\n",
3750 io_end->inode->i_ino);
3751 ext4_free_io_end(io_end);
3752 goto out;
3753 }
3754
bd2d0210 3755 io_end->flag = EXT4_IO_END_UNWRITTEN;
744692dc
JZ
3756 inode = io_end->inode;
3757
3758 /* Add the io_end to per-inode completed io list*/
3759 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3760 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3761 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3762
3763 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3764 /* queue the work to convert unwritten extents to written */
3765 queue_work(wq, &io_end->work);
3766out:
3767 bh->b_private = NULL;
3768 bh->b_end_io = NULL;
3769 clear_buffer_uninit(bh);
3770 end_buffer_async_write(bh, uptodate);
3771}
3772
3773static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3774{
3775 ext4_io_end_t *io_end;
3776 struct page *page = bh->b_page;
3777 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3778 size_t size = bh->b_size;
3779
3780retry:
3781 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3782 if (!io_end) {
3783 if (printk_ratelimit())
3784 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3785 schedule();
3786 goto retry;
3787 }
3788 io_end->offset = offset;
3789 io_end->size = size;
3790 /*
3791 * We need to hold a reference to the page to make sure it
3792 * doesn't get evicted before ext4_end_io_work() has a chance
3793 * to convert the extent from written to unwritten.
3794 */
3795 io_end->page = page;
3796 get_page(io_end->page);
3797
3798 bh->b_private = io_end;
3799 bh->b_end_io = ext4_end_io_buffer_write;
3800 return 0;
3801}
3802
4c0425ff
MC
3803/*
3804 * For ext4 extent files, ext4 will do direct-io write to holes,
3805 * preallocated extents, and those write extend the file, no need to
3806 * fall back to buffered IO.
3807 *
3808 * For holes, we fallocate those blocks, mark them as unintialized
3809 * If those blocks were preallocated, we mark sure they are splited, but
3810 * still keep the range to write as unintialized.
3811 *
8d5d02e6
MC
3812 * The unwrritten extents will be converted to written when DIO is completed.
3813 * For async direct IO, since the IO may still pending when return, we
3814 * set up an end_io call back function, which will do the convertion
3815 * when async direct IO completed.
4c0425ff
MC
3816 *
3817 * If the O_DIRECT write will extend the file then add this inode to the
3818 * orphan list. So recovery will truncate it back to the original size
3819 * if the machine crashes during the write.
3820 *
3821 */
3822static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3823 const struct iovec *iov, loff_t offset,
3824 unsigned long nr_segs)
3825{
3826 struct file *file = iocb->ki_filp;
3827 struct inode *inode = file->f_mapping->host;
3828 ssize_t ret;
3829 size_t count = iov_length(iov, nr_segs);
3830
3831 loff_t final_size = offset + count;
3832 if (rw == WRITE && final_size <= inode->i_size) {
3833 /*
8d5d02e6
MC
3834 * We could direct write to holes and fallocate.
3835 *
3836 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3837 * to prevent paralel buffered read to expose the stale data
3838 * before DIO complete the data IO.
8d5d02e6
MC
3839 *
3840 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3841 * will just simply mark the buffer mapped but still
3842 * keep the extents uninitialized.
3843 *
8d5d02e6
MC
3844 * for non AIO case, we will convert those unwritten extents
3845 * to written after return back from blockdev_direct_IO.
3846 *
3847 * for async DIO, the conversion needs to be defered when
3848 * the IO is completed. The ext4 end_io callback function
3849 * will be called to take care of the conversion work.
3850 * Here for async case, we allocate an io_end structure to
3851 * hook to the iocb.
4c0425ff 3852 */
8d5d02e6
MC
3853 iocb->private = NULL;
3854 EXT4_I(inode)->cur_aio_dio = NULL;
3855 if (!is_sync_kiocb(iocb)) {
744692dc 3856 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3857 if (!iocb->private)
3858 return -ENOMEM;
3859 /*
3860 * we save the io structure for current async
79e83036 3861 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3862 * could flag the io structure whether there
3863 * is a unwritten extents needs to be converted
3864 * when IO is completed.
3865 */
3866 EXT4_I(inode)->cur_aio_dio = iocb->private;
3867 }
3868
4c0425ff
MC
3869 ret = blockdev_direct_IO(rw, iocb, inode,
3870 inode->i_sb->s_bdev, iov,
3871 offset, nr_segs,
c7064ef1 3872 ext4_get_block_write,
4c0425ff 3873 ext4_end_io_dio);
8d5d02e6
MC
3874 if (iocb->private)
3875 EXT4_I(inode)->cur_aio_dio = NULL;
3876 /*
3877 * The io_end structure takes a reference to the inode,
3878 * that structure needs to be destroyed and the
3879 * reference to the inode need to be dropped, when IO is
3880 * complete, even with 0 byte write, or failed.
3881 *
3882 * In the successful AIO DIO case, the io_end structure will be
3883 * desctroyed and the reference to the inode will be dropped
3884 * after the end_io call back function is called.
3885 *
3886 * In the case there is 0 byte write, or error case, since
3887 * VFS direct IO won't invoke the end_io call back function,
3888 * we need to free the end_io structure here.
3889 */
3890 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3891 ext4_free_io_end(iocb->private);
3892 iocb->private = NULL;
19f5fb7a
TT
3893 } else if (ret > 0 && ext4_test_inode_state(inode,
3894 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3895 int err;
8d5d02e6
MC
3896 /*
3897 * for non AIO case, since the IO is already
3898 * completed, we could do the convertion right here
3899 */
109f5565
M
3900 err = ext4_convert_unwritten_extents(inode,
3901 offset, ret);
3902 if (err < 0)
3903 ret = err;
19f5fb7a 3904 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3905 }
4c0425ff
MC
3906 return ret;
3907 }
8d5d02e6
MC
3908
3909 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3910 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3911}
3912
3913static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3914 const struct iovec *iov, loff_t offset,
3915 unsigned long nr_segs)
3916{
3917 struct file *file = iocb->ki_filp;
3918 struct inode *inode = file->f_mapping->host;
3919
12e9b892 3920 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
3921 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3922
3923 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3924}
3925
ac27a0ec 3926/*
617ba13b 3927 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3928 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3929 * much here because ->set_page_dirty is called under VFS locks. The page is
3930 * not necessarily locked.
3931 *
3932 * We cannot just dirty the page and leave attached buffers clean, because the
3933 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3934 * or jbddirty because all the journalling code will explode.
3935 *
3936 * So what we do is to mark the page "pending dirty" and next time writepage
3937 * is called, propagate that into the buffers appropriately.
3938 */
617ba13b 3939static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3940{
3941 SetPageChecked(page);
3942 return __set_page_dirty_nobuffers(page);
3943}
3944
617ba13b 3945static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3946 .readpage = ext4_readpage,
3947 .readpages = ext4_readpages,
43ce1d23 3948 .writepage = ext4_writepage,
8ab22b9a
HH
3949 .sync_page = block_sync_page,
3950 .write_begin = ext4_write_begin,
3951 .write_end = ext4_ordered_write_end,
3952 .bmap = ext4_bmap,
3953 .invalidatepage = ext4_invalidatepage,
3954 .releasepage = ext4_releasepage,
3955 .direct_IO = ext4_direct_IO,
3956 .migratepage = buffer_migrate_page,
3957 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3958 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3959};
3960
617ba13b 3961static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3962 .readpage = ext4_readpage,
3963 .readpages = ext4_readpages,
43ce1d23 3964 .writepage = ext4_writepage,
8ab22b9a
HH
3965 .sync_page = block_sync_page,
3966 .write_begin = ext4_write_begin,
3967 .write_end = ext4_writeback_write_end,
3968 .bmap = ext4_bmap,
3969 .invalidatepage = ext4_invalidatepage,
3970 .releasepage = ext4_releasepage,
3971 .direct_IO = ext4_direct_IO,
3972 .migratepage = buffer_migrate_page,
3973 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3974 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3975};
3976
617ba13b 3977static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3978 .readpage = ext4_readpage,
3979 .readpages = ext4_readpages,
43ce1d23 3980 .writepage = ext4_writepage,
8ab22b9a
HH
3981 .sync_page = block_sync_page,
3982 .write_begin = ext4_write_begin,
3983 .write_end = ext4_journalled_write_end,
3984 .set_page_dirty = ext4_journalled_set_page_dirty,
3985 .bmap = ext4_bmap,
3986 .invalidatepage = ext4_invalidatepage,
3987 .releasepage = ext4_releasepage,
3988 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3989 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3990};
3991
64769240 3992static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3993 .readpage = ext4_readpage,
3994 .readpages = ext4_readpages,
43ce1d23 3995 .writepage = ext4_writepage,
8ab22b9a
HH
3996 .writepages = ext4_da_writepages,
3997 .sync_page = block_sync_page,
3998 .write_begin = ext4_da_write_begin,
3999 .write_end = ext4_da_write_end,
4000 .bmap = ext4_bmap,
4001 .invalidatepage = ext4_da_invalidatepage,
4002 .releasepage = ext4_releasepage,
4003 .direct_IO = ext4_direct_IO,
4004 .migratepage = buffer_migrate_page,
4005 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4006 .error_remove_page = generic_error_remove_page,
64769240
AT
4007};
4008
617ba13b 4009void ext4_set_aops(struct inode *inode)
ac27a0ec 4010{
cd1aac32
AK
4011 if (ext4_should_order_data(inode) &&
4012 test_opt(inode->i_sb, DELALLOC))
4013 inode->i_mapping->a_ops = &ext4_da_aops;
4014 else if (ext4_should_order_data(inode))
617ba13b 4015 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4016 else if (ext4_should_writeback_data(inode) &&
4017 test_opt(inode->i_sb, DELALLOC))
4018 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4019 else if (ext4_should_writeback_data(inode))
4020 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4021 else
617ba13b 4022 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4023}
4024
4025/*
617ba13b 4026 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4027 * up to the end of the block which corresponds to `from'.
4028 * This required during truncate. We need to physically zero the tail end
4029 * of that block so it doesn't yield old data if the file is later grown.
4030 */
cf108bca 4031int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4032 struct address_space *mapping, loff_t from)
4033{
617ba13b 4034 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4035 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4036 unsigned blocksize, length, pos;
4037 ext4_lblk_t iblock;
ac27a0ec
DK
4038 struct inode *inode = mapping->host;
4039 struct buffer_head *bh;
cf108bca 4040 struct page *page;
ac27a0ec 4041 int err = 0;
ac27a0ec 4042
f4a01017
TT
4043 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4044 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4045 if (!page)
4046 return -EINVAL;
4047
ac27a0ec
DK
4048 blocksize = inode->i_sb->s_blocksize;
4049 length = blocksize - (offset & (blocksize - 1));
4050 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4051
ac27a0ec
DK
4052 if (!page_has_buffers(page))
4053 create_empty_buffers(page, blocksize, 0);
4054
4055 /* Find the buffer that contains "offset" */
4056 bh = page_buffers(page);
4057 pos = blocksize;
4058 while (offset >= pos) {
4059 bh = bh->b_this_page;
4060 iblock++;
4061 pos += blocksize;
4062 }
4063
4064 err = 0;
4065 if (buffer_freed(bh)) {
4066 BUFFER_TRACE(bh, "freed: skip");
4067 goto unlock;
4068 }
4069
4070 if (!buffer_mapped(bh)) {
4071 BUFFER_TRACE(bh, "unmapped");
617ba13b 4072 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4073 /* unmapped? It's a hole - nothing to do */
4074 if (!buffer_mapped(bh)) {
4075 BUFFER_TRACE(bh, "still unmapped");
4076 goto unlock;
4077 }
4078 }
4079
4080 /* Ok, it's mapped. Make sure it's up-to-date */
4081 if (PageUptodate(page))
4082 set_buffer_uptodate(bh);
4083
4084 if (!buffer_uptodate(bh)) {
4085 err = -EIO;
4086 ll_rw_block(READ, 1, &bh);
4087 wait_on_buffer(bh);
4088 /* Uhhuh. Read error. Complain and punt. */
4089 if (!buffer_uptodate(bh))
4090 goto unlock;
4091 }
4092
617ba13b 4093 if (ext4_should_journal_data(inode)) {
ac27a0ec 4094 BUFFER_TRACE(bh, "get write access");
617ba13b 4095 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4096 if (err)
4097 goto unlock;
4098 }
4099
eebd2aa3 4100 zero_user(page, offset, length);
ac27a0ec
DK
4101
4102 BUFFER_TRACE(bh, "zeroed end of block");
4103
4104 err = 0;
617ba13b 4105 if (ext4_should_journal_data(inode)) {
0390131b 4106 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4107 } else {
617ba13b 4108 if (ext4_should_order_data(inode))
678aaf48 4109 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4110 mark_buffer_dirty(bh);
4111 }
4112
4113unlock:
4114 unlock_page(page);
4115 page_cache_release(page);
4116 return err;
4117}
4118
4119/*
4120 * Probably it should be a library function... search for first non-zero word
4121 * or memcmp with zero_page, whatever is better for particular architecture.
4122 * Linus?
4123 */
4124static inline int all_zeroes(__le32 *p, __le32 *q)
4125{
4126 while (p < q)
4127 if (*p++)
4128 return 0;
4129 return 1;
4130}
4131
4132/**
617ba13b 4133 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4134 * @inode: inode in question
4135 * @depth: depth of the affected branch
617ba13b 4136 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4137 * @chain: place to store the pointers to partial indirect blocks
4138 * @top: place to the (detached) top of branch
4139 *
617ba13b 4140 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4141 *
4142 * When we do truncate() we may have to clean the ends of several
4143 * indirect blocks but leave the blocks themselves alive. Block is
4144 * partially truncated if some data below the new i_size is refered
4145 * from it (and it is on the path to the first completely truncated
4146 * data block, indeed). We have to free the top of that path along
4147 * with everything to the right of the path. Since no allocation
617ba13b 4148 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4149 * finishes, we may safely do the latter, but top of branch may
4150 * require special attention - pageout below the truncation point
4151 * might try to populate it.
4152 *
4153 * We atomically detach the top of branch from the tree, store the
4154 * block number of its root in *@top, pointers to buffer_heads of
4155 * partially truncated blocks - in @chain[].bh and pointers to
4156 * their last elements that should not be removed - in
4157 * @chain[].p. Return value is the pointer to last filled element
4158 * of @chain.
4159 *
4160 * The work left to caller to do the actual freeing of subtrees:
4161 * a) free the subtree starting from *@top
4162 * b) free the subtrees whose roots are stored in
4163 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4164 * c) free the subtrees growing from the inode past the @chain[0].
4165 * (no partially truncated stuff there). */
4166
617ba13b 4167static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4168 ext4_lblk_t offsets[4], Indirect chain[4],
4169 __le32 *top)
ac27a0ec
DK
4170{
4171 Indirect *partial, *p;
4172 int k, err;
4173
4174 *top = 0;
bf48aabb 4175 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4176 for (k = depth; k > 1 && !offsets[k-1]; k--)
4177 ;
617ba13b 4178 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4179 /* Writer: pointers */
4180 if (!partial)
4181 partial = chain + k-1;
4182 /*
4183 * If the branch acquired continuation since we've looked at it -
4184 * fine, it should all survive and (new) top doesn't belong to us.
4185 */
4186 if (!partial->key && *partial->p)
4187 /* Writer: end */
4188 goto no_top;
af5bc92d 4189 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4190 ;
4191 /*
4192 * OK, we've found the last block that must survive. The rest of our
4193 * branch should be detached before unlocking. However, if that rest
4194 * of branch is all ours and does not grow immediately from the inode
4195 * it's easier to cheat and just decrement partial->p.
4196 */
4197 if (p == chain + k - 1 && p > chain) {
4198 p->p--;
4199 } else {
4200 *top = *p->p;
617ba13b 4201 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4202#if 0
4203 *p->p = 0;
4204#endif
4205 }
4206 /* Writer: end */
4207
af5bc92d 4208 while (partial > p) {
ac27a0ec
DK
4209 brelse(partial->bh);
4210 partial--;
4211 }
4212no_top:
4213 return partial;
4214}
4215
4216/*
4217 * Zero a number of block pointers in either an inode or an indirect block.
4218 * If we restart the transaction we must again get write access to the
4219 * indirect block for further modification.
4220 *
4221 * We release `count' blocks on disk, but (last - first) may be greater
4222 * than `count' because there can be holes in there.
4223 */
1f2acb60
TT
4224static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4225 struct buffer_head *bh,
4226 ext4_fsblk_t block_to_free,
4227 unsigned long count, __le32 *first,
4228 __le32 *last)
ac27a0ec
DK
4229{
4230 __le32 *p;
1f2acb60 4231 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4232
4233 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4234 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4235
1f2acb60
TT
4236 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4237 count)) {
24676da4
TT
4238 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4239 "blocks %llu len %lu",
4240 (unsigned long long) block_to_free, count);
1f2acb60
TT
4241 return 1;
4242 }
4243
ac27a0ec
DK
4244 if (try_to_extend_transaction(handle, inode)) {
4245 if (bh) {
0390131b
FM
4246 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4247 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4248 }
617ba13b 4249 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4250 ext4_truncate_restart_trans(handle, inode,
4251 blocks_for_truncate(inode));
ac27a0ec
DK
4252 if (bh) {
4253 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4254 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4255 }
4256 }
4257
e6362609
TT
4258 for (p = first; p < last; p++)
4259 *p = 0;
ac27a0ec 4260
e6362609 4261 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4262 return 0;
ac27a0ec
DK
4263}
4264
4265/**
617ba13b 4266 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4267 * @handle: handle for this transaction
4268 * @inode: inode we are dealing with
4269 * @this_bh: indirect buffer_head which contains *@first and *@last
4270 * @first: array of block numbers
4271 * @last: points immediately past the end of array
4272 *
4273 * We are freeing all blocks refered from that array (numbers are stored as
4274 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4275 *
4276 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4277 * blocks are contiguous then releasing them at one time will only affect one
4278 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4279 * actually use a lot of journal space.
4280 *
4281 * @this_bh will be %NULL if @first and @last point into the inode's direct
4282 * block pointers.
4283 */
617ba13b 4284static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4285 struct buffer_head *this_bh,
4286 __le32 *first, __le32 *last)
4287{
617ba13b 4288 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4289 unsigned long count = 0; /* Number of blocks in the run */
4290 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4291 corresponding to
4292 block_to_free */
617ba13b 4293 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4294 __le32 *p; /* Pointer into inode/ind
4295 for current block */
4296 int err;
4297
4298 if (this_bh) { /* For indirect block */
4299 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4300 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4301 /* Important: if we can't update the indirect pointers
4302 * to the blocks, we can't free them. */
4303 if (err)
4304 return;
4305 }
4306
4307 for (p = first; p < last; p++) {
4308 nr = le32_to_cpu(*p);
4309 if (nr) {
4310 /* accumulate blocks to free if they're contiguous */
4311 if (count == 0) {
4312 block_to_free = nr;
4313 block_to_free_p = p;
4314 count = 1;
4315 } else if (nr == block_to_free + count) {
4316 count++;
4317 } else {
1f2acb60
TT
4318 if (ext4_clear_blocks(handle, inode, this_bh,
4319 block_to_free, count,
4320 block_to_free_p, p))
4321 break;
ac27a0ec
DK
4322 block_to_free = nr;
4323 block_to_free_p = p;
4324 count = 1;
4325 }
4326 }
4327 }
4328
4329 if (count > 0)
617ba13b 4330 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4331 count, block_to_free_p, p);
4332
4333 if (this_bh) {
0390131b 4334 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4335
4336 /*
4337 * The buffer head should have an attached journal head at this
4338 * point. However, if the data is corrupted and an indirect
4339 * block pointed to itself, it would have been detached when
4340 * the block was cleared. Check for this instead of OOPSing.
4341 */
e7f07968 4342 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4343 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4344 else
24676da4
TT
4345 EXT4_ERROR_INODE(inode,
4346 "circular indirect block detected at "
4347 "block %llu",
4348 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4349 }
4350}
4351
4352/**
617ba13b 4353 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4354 * @handle: JBD handle for this transaction
4355 * @inode: inode we are dealing with
4356 * @parent_bh: the buffer_head which contains *@first and *@last
4357 * @first: array of block numbers
4358 * @last: pointer immediately past the end of array
4359 * @depth: depth of the branches to free
4360 *
4361 * We are freeing all blocks refered from these branches (numbers are
4362 * stored as little-endian 32-bit) and updating @inode->i_blocks
4363 * appropriately.
4364 */
617ba13b 4365static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4366 struct buffer_head *parent_bh,
4367 __le32 *first, __le32 *last, int depth)
4368{
617ba13b 4369 ext4_fsblk_t nr;
ac27a0ec
DK
4370 __le32 *p;
4371
0390131b 4372 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4373 return;
4374
4375 if (depth--) {
4376 struct buffer_head *bh;
617ba13b 4377 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4378 p = last;
4379 while (--p >= first) {
4380 nr = le32_to_cpu(*p);
4381 if (!nr)
4382 continue; /* A hole */
4383
1f2acb60
TT
4384 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4385 nr, 1)) {
24676da4
TT
4386 EXT4_ERROR_INODE(inode,
4387 "invalid indirect mapped "
4388 "block %lu (level %d)",
4389 (unsigned long) nr, depth);
1f2acb60
TT
4390 break;
4391 }
4392
ac27a0ec
DK
4393 /* Go read the buffer for the next level down */
4394 bh = sb_bread(inode->i_sb, nr);
4395
4396 /*
4397 * A read failure? Report error and clear slot
4398 * (should be rare).
4399 */
4400 if (!bh) {
c398eda0
TT
4401 EXT4_ERROR_INODE_BLOCK(inode, nr,
4402 "Read failure");
ac27a0ec
DK
4403 continue;
4404 }
4405
4406 /* This zaps the entire block. Bottom up. */
4407 BUFFER_TRACE(bh, "free child branches");
617ba13b 4408 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4409 (__le32 *) bh->b_data,
4410 (__le32 *) bh->b_data + addr_per_block,
4411 depth);
ac27a0ec 4412
ac27a0ec
DK
4413 /*
4414 * Everything below this this pointer has been
4415 * released. Now let this top-of-subtree go.
4416 *
4417 * We want the freeing of this indirect block to be
4418 * atomic in the journal with the updating of the
4419 * bitmap block which owns it. So make some room in
4420 * the journal.
4421 *
4422 * We zero the parent pointer *after* freeing its
4423 * pointee in the bitmaps, so if extend_transaction()
4424 * for some reason fails to put the bitmap changes and
4425 * the release into the same transaction, recovery
4426 * will merely complain about releasing a free block,
4427 * rather than leaking blocks.
4428 */
0390131b 4429 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4430 return;
4431 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4432 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4433 ext4_truncate_restart_trans(handle, inode,
4434 blocks_for_truncate(inode));
ac27a0ec
DK
4435 }
4436
40389687
A
4437 /*
4438 * The forget flag here is critical because if
4439 * we are journaling (and not doing data
4440 * journaling), we have to make sure a revoke
4441 * record is written to prevent the journal
4442 * replay from overwriting the (former)
4443 * indirect block if it gets reallocated as a
4444 * data block. This must happen in the same
4445 * transaction where the data blocks are
4446 * actually freed.
4447 */
e6362609 4448 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4449 EXT4_FREE_BLOCKS_METADATA|
4450 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4451
4452 if (parent_bh) {
4453 /*
4454 * The block which we have just freed is
4455 * pointed to by an indirect block: journal it
4456 */
4457 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4458 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4459 parent_bh)){
4460 *p = 0;
4461 BUFFER_TRACE(parent_bh,
0390131b
FM
4462 "call ext4_handle_dirty_metadata");
4463 ext4_handle_dirty_metadata(handle,
4464 inode,
4465 parent_bh);
ac27a0ec
DK
4466 }
4467 }
4468 }
4469 } else {
4470 /* We have reached the bottom of the tree. */
4471 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4472 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4473 }
4474}
4475
91ef4caf
DG
4476int ext4_can_truncate(struct inode *inode)
4477{
4478 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4479 return 0;
4480 if (S_ISREG(inode->i_mode))
4481 return 1;
4482 if (S_ISDIR(inode->i_mode))
4483 return 1;
4484 if (S_ISLNK(inode->i_mode))
4485 return !ext4_inode_is_fast_symlink(inode);
4486 return 0;
4487}
4488
ac27a0ec 4489/*
617ba13b 4490 * ext4_truncate()
ac27a0ec 4491 *
617ba13b
MC
4492 * We block out ext4_get_block() block instantiations across the entire
4493 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4494 * simultaneously on behalf of the same inode.
4495 *
4496 * As we work through the truncate and commmit bits of it to the journal there
4497 * is one core, guiding principle: the file's tree must always be consistent on
4498 * disk. We must be able to restart the truncate after a crash.
4499 *
4500 * The file's tree may be transiently inconsistent in memory (although it
4501 * probably isn't), but whenever we close off and commit a journal transaction,
4502 * the contents of (the filesystem + the journal) must be consistent and
4503 * restartable. It's pretty simple, really: bottom up, right to left (although
4504 * left-to-right works OK too).
4505 *
4506 * Note that at recovery time, journal replay occurs *before* the restart of
4507 * truncate against the orphan inode list.
4508 *
4509 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4510 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4511 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4512 * ext4_truncate() to have another go. So there will be instantiated blocks
4513 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4514 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4515 * ext4_truncate() run will find them and release them.
ac27a0ec 4516 */
617ba13b 4517void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4518{
4519 handle_t *handle;
617ba13b 4520 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4521 __le32 *i_data = ei->i_data;
617ba13b 4522 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4523 struct address_space *mapping = inode->i_mapping;
725d26d3 4524 ext4_lblk_t offsets[4];
ac27a0ec
DK
4525 Indirect chain[4];
4526 Indirect *partial;
4527 __le32 nr = 0;
4528 int n;
725d26d3 4529 ext4_lblk_t last_block;
ac27a0ec 4530 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4531
91ef4caf 4532 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4533 return;
4534
12e9b892 4535 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4536
5534fb5b 4537 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4538 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4539
12e9b892 4540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4541 ext4_ext_truncate(inode);
1d03ec98
AK
4542 return;
4543 }
a86c6181 4544
ac27a0ec 4545 handle = start_transaction(inode);
cf108bca 4546 if (IS_ERR(handle))
ac27a0ec 4547 return; /* AKPM: return what? */
ac27a0ec
DK
4548
4549 last_block = (inode->i_size + blocksize-1)
617ba13b 4550 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4551
cf108bca
JK
4552 if (inode->i_size & (blocksize - 1))
4553 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4554 goto out_stop;
ac27a0ec 4555
617ba13b 4556 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4557 if (n == 0)
4558 goto out_stop; /* error */
4559
4560 /*
4561 * OK. This truncate is going to happen. We add the inode to the
4562 * orphan list, so that if this truncate spans multiple transactions,
4563 * and we crash, we will resume the truncate when the filesystem
4564 * recovers. It also marks the inode dirty, to catch the new size.
4565 *
4566 * Implication: the file must always be in a sane, consistent
4567 * truncatable state while each transaction commits.
4568 */
617ba13b 4569 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4570 goto out_stop;
4571
632eaeab
MC
4572 /*
4573 * From here we block out all ext4_get_block() callers who want to
4574 * modify the block allocation tree.
4575 */
4576 down_write(&ei->i_data_sem);
b4df2030 4577
c2ea3fde 4578 ext4_discard_preallocations(inode);
b4df2030 4579
ac27a0ec
DK
4580 /*
4581 * The orphan list entry will now protect us from any crash which
4582 * occurs before the truncate completes, so it is now safe to propagate
4583 * the new, shorter inode size (held for now in i_size) into the
4584 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4585 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4586 */
4587 ei->i_disksize = inode->i_size;
4588
ac27a0ec 4589 if (n == 1) { /* direct blocks */
617ba13b
MC
4590 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4591 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4592 goto do_indirects;
4593 }
4594
617ba13b 4595 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4596 /* Kill the top of shared branch (not detached) */
4597 if (nr) {
4598 if (partial == chain) {
4599 /* Shared branch grows from the inode */
617ba13b 4600 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4601 &nr, &nr+1, (chain+n-1) - partial);
4602 *partial->p = 0;
4603 /*
4604 * We mark the inode dirty prior to restart,
4605 * and prior to stop. No need for it here.
4606 */
4607 } else {
4608 /* Shared branch grows from an indirect block */
4609 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4610 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4611 partial->p,
4612 partial->p+1, (chain+n-1) - partial);
4613 }
4614 }
4615 /* Clear the ends of indirect blocks on the shared branch */
4616 while (partial > chain) {
617ba13b 4617 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4618 (__le32*)partial->bh->b_data+addr_per_block,
4619 (chain+n-1) - partial);
4620 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4621 brelse(partial->bh);
ac27a0ec
DK
4622 partial--;
4623 }
4624do_indirects:
4625 /* Kill the remaining (whole) subtrees */
4626 switch (offsets[0]) {
4627 default:
617ba13b 4628 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4629 if (nr) {
617ba13b
MC
4630 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4631 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4632 }
617ba13b
MC
4633 case EXT4_IND_BLOCK:
4634 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4635 if (nr) {
617ba13b
MC
4636 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4637 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4638 }
617ba13b
MC
4639 case EXT4_DIND_BLOCK:
4640 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4641 if (nr) {
617ba13b
MC
4642 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4643 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4644 }
617ba13b 4645 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4646 ;
4647 }
4648
0e855ac8 4649 up_write(&ei->i_data_sem);
ef7f3835 4650 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4651 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4652
4653 /*
4654 * In a multi-transaction truncate, we only make the final transaction
4655 * synchronous
4656 */
4657 if (IS_SYNC(inode))
0390131b 4658 ext4_handle_sync(handle);
ac27a0ec
DK
4659out_stop:
4660 /*
4661 * If this was a simple ftruncate(), and the file will remain alive
4662 * then we need to clear up the orphan record which we created above.
4663 * However, if this was a real unlink then we were called by
617ba13b 4664 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4665 * orphan info for us.
4666 */
4667 if (inode->i_nlink)
617ba13b 4668 ext4_orphan_del(handle, inode);
ac27a0ec 4669
617ba13b 4670 ext4_journal_stop(handle);
ac27a0ec
DK
4671}
4672
ac27a0ec 4673/*
617ba13b 4674 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4675 * underlying buffer_head on success. If 'in_mem' is true, we have all
4676 * data in memory that is needed to recreate the on-disk version of this
4677 * inode.
4678 */
617ba13b
MC
4679static int __ext4_get_inode_loc(struct inode *inode,
4680 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4681{
240799cd
TT
4682 struct ext4_group_desc *gdp;
4683 struct buffer_head *bh;
4684 struct super_block *sb = inode->i_sb;
4685 ext4_fsblk_t block;
4686 int inodes_per_block, inode_offset;
4687
3a06d778 4688 iloc->bh = NULL;
240799cd
TT
4689 if (!ext4_valid_inum(sb, inode->i_ino))
4690 return -EIO;
ac27a0ec 4691
240799cd
TT
4692 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4693 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4694 if (!gdp)
ac27a0ec
DK
4695 return -EIO;
4696
240799cd
TT
4697 /*
4698 * Figure out the offset within the block group inode table
4699 */
4700 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4701 inode_offset = ((inode->i_ino - 1) %
4702 EXT4_INODES_PER_GROUP(sb));
4703 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4704 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4705
4706 bh = sb_getblk(sb, block);
ac27a0ec 4707 if (!bh) {
c398eda0
TT
4708 EXT4_ERROR_INODE_BLOCK(inode, block,
4709 "unable to read itable block");
ac27a0ec
DK
4710 return -EIO;
4711 }
4712 if (!buffer_uptodate(bh)) {
4713 lock_buffer(bh);
9c83a923
HK
4714
4715 /*
4716 * If the buffer has the write error flag, we have failed
4717 * to write out another inode in the same block. In this
4718 * case, we don't have to read the block because we may
4719 * read the old inode data successfully.
4720 */
4721 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4722 set_buffer_uptodate(bh);
4723
ac27a0ec
DK
4724 if (buffer_uptodate(bh)) {
4725 /* someone brought it uptodate while we waited */
4726 unlock_buffer(bh);
4727 goto has_buffer;
4728 }
4729
4730 /*
4731 * If we have all information of the inode in memory and this
4732 * is the only valid inode in the block, we need not read the
4733 * block.
4734 */
4735 if (in_mem) {
4736 struct buffer_head *bitmap_bh;
240799cd 4737 int i, start;
ac27a0ec 4738
240799cd 4739 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4740
240799cd
TT
4741 /* Is the inode bitmap in cache? */
4742 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4743 if (!bitmap_bh)
4744 goto make_io;
4745
4746 /*
4747 * If the inode bitmap isn't in cache then the
4748 * optimisation may end up performing two reads instead
4749 * of one, so skip it.
4750 */
4751 if (!buffer_uptodate(bitmap_bh)) {
4752 brelse(bitmap_bh);
4753 goto make_io;
4754 }
240799cd 4755 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4756 if (i == inode_offset)
4757 continue;
617ba13b 4758 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4759 break;
4760 }
4761 brelse(bitmap_bh);
240799cd 4762 if (i == start + inodes_per_block) {
ac27a0ec
DK
4763 /* all other inodes are free, so skip I/O */
4764 memset(bh->b_data, 0, bh->b_size);
4765 set_buffer_uptodate(bh);
4766 unlock_buffer(bh);
4767 goto has_buffer;
4768 }
4769 }
4770
4771make_io:
240799cd
TT
4772 /*
4773 * If we need to do any I/O, try to pre-readahead extra
4774 * blocks from the inode table.
4775 */
4776 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4777 ext4_fsblk_t b, end, table;
4778 unsigned num;
4779
4780 table = ext4_inode_table(sb, gdp);
b713a5ec 4781 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4782 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4783 if (table > b)
4784 b = table;
4785 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4786 num = EXT4_INODES_PER_GROUP(sb);
4787 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4788 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4789 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4790 table += num / inodes_per_block;
4791 if (end > table)
4792 end = table;
4793 while (b <= end)
4794 sb_breadahead(sb, b++);
4795 }
4796
ac27a0ec
DK
4797 /*
4798 * There are other valid inodes in the buffer, this inode
4799 * has in-inode xattrs, or we don't have this inode in memory.
4800 * Read the block from disk.
4801 */
4802 get_bh(bh);
4803 bh->b_end_io = end_buffer_read_sync;
4804 submit_bh(READ_META, bh);
4805 wait_on_buffer(bh);
4806 if (!buffer_uptodate(bh)) {
c398eda0
TT
4807 EXT4_ERROR_INODE_BLOCK(inode, block,
4808 "unable to read itable block");
ac27a0ec
DK
4809 brelse(bh);
4810 return -EIO;
4811 }
4812 }
4813has_buffer:
4814 iloc->bh = bh;
4815 return 0;
4816}
4817
617ba13b 4818int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4819{
4820 /* We have all inode data except xattrs in memory here. */
617ba13b 4821 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4822 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4823}
4824
617ba13b 4825void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4826{
617ba13b 4827 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4828
4829 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4830 if (flags & EXT4_SYNC_FL)
ac27a0ec 4831 inode->i_flags |= S_SYNC;
617ba13b 4832 if (flags & EXT4_APPEND_FL)
ac27a0ec 4833 inode->i_flags |= S_APPEND;
617ba13b 4834 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4835 inode->i_flags |= S_IMMUTABLE;
617ba13b 4836 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4837 inode->i_flags |= S_NOATIME;
617ba13b 4838 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4839 inode->i_flags |= S_DIRSYNC;
4840}
4841
ff9ddf7e
JK
4842/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4843void ext4_get_inode_flags(struct ext4_inode_info *ei)
4844{
84a8dce2
DM
4845 unsigned int vfs_fl;
4846 unsigned long old_fl, new_fl;
4847
4848 do {
4849 vfs_fl = ei->vfs_inode.i_flags;
4850 old_fl = ei->i_flags;
4851 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4852 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4853 EXT4_DIRSYNC_FL);
4854 if (vfs_fl & S_SYNC)
4855 new_fl |= EXT4_SYNC_FL;
4856 if (vfs_fl & S_APPEND)
4857 new_fl |= EXT4_APPEND_FL;
4858 if (vfs_fl & S_IMMUTABLE)
4859 new_fl |= EXT4_IMMUTABLE_FL;
4860 if (vfs_fl & S_NOATIME)
4861 new_fl |= EXT4_NOATIME_FL;
4862 if (vfs_fl & S_DIRSYNC)
4863 new_fl |= EXT4_DIRSYNC_FL;
4864 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4865}
de9a55b8 4866
0fc1b451 4867static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4868 struct ext4_inode_info *ei)
0fc1b451
AK
4869{
4870 blkcnt_t i_blocks ;
8180a562
AK
4871 struct inode *inode = &(ei->vfs_inode);
4872 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4873
4874 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4875 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4876 /* we are using combined 48 bit field */
4877 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4878 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4879 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4880 /* i_blocks represent file system block size */
4881 return i_blocks << (inode->i_blkbits - 9);
4882 } else {
4883 return i_blocks;
4884 }
0fc1b451
AK
4885 } else {
4886 return le32_to_cpu(raw_inode->i_blocks_lo);
4887 }
4888}
ff9ddf7e 4889
1d1fe1ee 4890struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4891{
617ba13b
MC
4892 struct ext4_iloc iloc;
4893 struct ext4_inode *raw_inode;
1d1fe1ee 4894 struct ext4_inode_info *ei;
1d1fe1ee 4895 struct inode *inode;
b436b9be 4896 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4897 long ret;
ac27a0ec
DK
4898 int block;
4899
1d1fe1ee
DH
4900 inode = iget_locked(sb, ino);
4901 if (!inode)
4902 return ERR_PTR(-ENOMEM);
4903 if (!(inode->i_state & I_NEW))
4904 return inode;
4905
4906 ei = EXT4_I(inode);
567f3e9a 4907 iloc.bh = 0;
ac27a0ec 4908
1d1fe1ee
DH
4909 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4910 if (ret < 0)
ac27a0ec 4911 goto bad_inode;
617ba13b 4912 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4913 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4914 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4915 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4916 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4917 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4918 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4919 }
4920 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4921
19f5fb7a 4922 ei->i_state_flags = 0;
ac27a0ec
DK
4923 ei->i_dir_start_lookup = 0;
4924 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4925 /* We now have enough fields to check if the inode was active or not.
4926 * This is needed because nfsd might try to access dead inodes
4927 * the test is that same one that e2fsck uses
4928 * NeilBrown 1999oct15
4929 */
4930 if (inode->i_nlink == 0) {
4931 if (inode->i_mode == 0 ||
617ba13b 4932 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4933 /* this inode is deleted */
1d1fe1ee 4934 ret = -ESTALE;
ac27a0ec
DK
4935 goto bad_inode;
4936 }
4937 /* The only unlinked inodes we let through here have
4938 * valid i_mode and are being read by the orphan
4939 * recovery code: that's fine, we're about to complete
4940 * the process of deleting those. */
4941 }
ac27a0ec 4942 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4943 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4944 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4945 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4946 ei->i_file_acl |=
4947 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4948 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4949 ei->i_disksize = inode->i_size;
a9e7f447
DM
4950#ifdef CONFIG_QUOTA
4951 ei->i_reserved_quota = 0;
4952#endif
ac27a0ec
DK
4953 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4954 ei->i_block_group = iloc.block_group;
a4912123 4955 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4956 /*
4957 * NOTE! The in-memory inode i_data array is in little-endian order
4958 * even on big-endian machines: we do NOT byteswap the block numbers!
4959 */
617ba13b 4960 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4961 ei->i_data[block] = raw_inode->i_block[block];
4962 INIT_LIST_HEAD(&ei->i_orphan);
4963
b436b9be
JK
4964 /*
4965 * Set transaction id's of transactions that have to be committed
4966 * to finish f[data]sync. We set them to currently running transaction
4967 * as we cannot be sure that the inode or some of its metadata isn't
4968 * part of the transaction - the inode could have been reclaimed and
4969 * now it is reread from disk.
4970 */
4971 if (journal) {
4972 transaction_t *transaction;
4973 tid_t tid;
4974
a931da6a 4975 read_lock(&journal->j_state_lock);
b436b9be
JK
4976 if (journal->j_running_transaction)
4977 transaction = journal->j_running_transaction;
4978 else
4979 transaction = journal->j_committing_transaction;
4980 if (transaction)
4981 tid = transaction->t_tid;
4982 else
4983 tid = journal->j_commit_sequence;
a931da6a 4984 read_unlock(&journal->j_state_lock);
b436b9be
JK
4985 ei->i_sync_tid = tid;
4986 ei->i_datasync_tid = tid;
4987 }
4988
0040d987 4989 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4990 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4991 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4992 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4993 ret = -EIO;
ac27a0ec 4994 goto bad_inode;
e5d2861f 4995 }
ac27a0ec
DK
4996 if (ei->i_extra_isize == 0) {
4997 /* The extra space is currently unused. Use it. */
617ba13b
MC
4998 ei->i_extra_isize = sizeof(struct ext4_inode) -
4999 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5000 } else {
5001 __le32 *magic = (void *)raw_inode +
617ba13b 5002 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5003 ei->i_extra_isize;
617ba13b 5004 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5005 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5006 }
5007 } else
5008 ei->i_extra_isize = 0;
5009
ef7f3835
KS
5010 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5011 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5012 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5013 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5014
25ec56b5
JNC
5015 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5016 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5017 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5018 inode->i_version |=
5019 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5020 }
5021
c4b5a614 5022 ret = 0;
485c26ec 5023 if (ei->i_file_acl &&
1032988c 5024 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5025 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5026 ei->i_file_acl);
485c26ec
TT
5027 ret = -EIO;
5028 goto bad_inode;
07a03824 5029 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5030 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5031 (S_ISLNK(inode->i_mode) &&
5032 !ext4_inode_is_fast_symlink(inode)))
5033 /* Validate extent which is part of inode */
5034 ret = ext4_ext_check_inode(inode);
de9a55b8 5035 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5036 (S_ISLNK(inode->i_mode) &&
5037 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5038 /* Validate block references which are part of inode */
fe2c8191
TN
5039 ret = ext4_check_inode_blockref(inode);
5040 }
567f3e9a 5041 if (ret)
de9a55b8 5042 goto bad_inode;
7a262f7c 5043
ac27a0ec 5044 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5045 inode->i_op = &ext4_file_inode_operations;
5046 inode->i_fop = &ext4_file_operations;
5047 ext4_set_aops(inode);
ac27a0ec 5048 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5049 inode->i_op = &ext4_dir_inode_operations;
5050 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5051 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5052 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5053 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5054 nd_terminate_link(ei->i_data, inode->i_size,
5055 sizeof(ei->i_data) - 1);
5056 } else {
617ba13b
MC
5057 inode->i_op = &ext4_symlink_inode_operations;
5058 ext4_set_aops(inode);
ac27a0ec 5059 }
563bdd61
TT
5060 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5061 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5062 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5063 if (raw_inode->i_block[0])
5064 init_special_inode(inode, inode->i_mode,
5065 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5066 else
5067 init_special_inode(inode, inode->i_mode,
5068 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5069 } else {
563bdd61 5070 ret = -EIO;
24676da4 5071 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5072 goto bad_inode;
ac27a0ec 5073 }
af5bc92d 5074 brelse(iloc.bh);
617ba13b 5075 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5076 unlock_new_inode(inode);
5077 return inode;
ac27a0ec
DK
5078
5079bad_inode:
567f3e9a 5080 brelse(iloc.bh);
1d1fe1ee
DH
5081 iget_failed(inode);
5082 return ERR_PTR(ret);
ac27a0ec
DK
5083}
5084
0fc1b451
AK
5085static int ext4_inode_blocks_set(handle_t *handle,
5086 struct ext4_inode *raw_inode,
5087 struct ext4_inode_info *ei)
5088{
5089 struct inode *inode = &(ei->vfs_inode);
5090 u64 i_blocks = inode->i_blocks;
5091 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5092
5093 if (i_blocks <= ~0U) {
5094 /*
5095 * i_blocks can be represnted in a 32 bit variable
5096 * as multiple of 512 bytes
5097 */
8180a562 5098 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5099 raw_inode->i_blocks_high = 0;
84a8dce2 5100 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5101 return 0;
5102 }
5103 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5104 return -EFBIG;
5105
5106 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5107 /*
5108 * i_blocks can be represented in a 48 bit variable
5109 * as multiple of 512 bytes
5110 */
8180a562 5111 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5112 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5113 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5114 } else {
84a8dce2 5115 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5116 /* i_block is stored in file system block size */
5117 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5119 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5120 }
f287a1a5 5121 return 0;
0fc1b451
AK
5122}
5123
ac27a0ec
DK
5124/*
5125 * Post the struct inode info into an on-disk inode location in the
5126 * buffer-cache. This gobbles the caller's reference to the
5127 * buffer_head in the inode location struct.
5128 *
5129 * The caller must have write access to iloc->bh.
5130 */
617ba13b 5131static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5132 struct inode *inode,
830156c7 5133 struct ext4_iloc *iloc)
ac27a0ec 5134{
617ba13b
MC
5135 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5136 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5137 struct buffer_head *bh = iloc->bh;
5138 int err = 0, rc, block;
5139
5140 /* For fields not not tracking in the in-memory inode,
5141 * initialise them to zero for new inodes. */
19f5fb7a 5142 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5143 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5144
ff9ddf7e 5145 ext4_get_inode_flags(ei);
ac27a0ec 5146 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5147 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5148 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5149 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5150/*
5151 * Fix up interoperability with old kernels. Otherwise, old inodes get
5152 * re-used with the upper 16 bits of the uid/gid intact
5153 */
af5bc92d 5154 if (!ei->i_dtime) {
ac27a0ec
DK
5155 raw_inode->i_uid_high =
5156 cpu_to_le16(high_16_bits(inode->i_uid));
5157 raw_inode->i_gid_high =
5158 cpu_to_le16(high_16_bits(inode->i_gid));
5159 } else {
5160 raw_inode->i_uid_high = 0;
5161 raw_inode->i_gid_high = 0;
5162 }
5163 } else {
5164 raw_inode->i_uid_low =
5165 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5166 raw_inode->i_gid_low =
5167 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5168 raw_inode->i_uid_high = 0;
5169 raw_inode->i_gid_high = 0;
5170 }
5171 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5172
5173 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5174 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5175 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5176 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5177
0fc1b451
AK
5178 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5179 goto out_brelse;
ac27a0ec 5180 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5181 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5182 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5183 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5184 raw_inode->i_file_acl_high =
5185 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5186 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5187 ext4_isize_set(raw_inode, ei->i_disksize);
5188 if (ei->i_disksize > 0x7fffffffULL) {
5189 struct super_block *sb = inode->i_sb;
5190 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5191 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5192 EXT4_SB(sb)->s_es->s_rev_level ==
5193 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5194 /* If this is the first large file
5195 * created, add a flag to the superblock.
5196 */
5197 err = ext4_journal_get_write_access(handle,
5198 EXT4_SB(sb)->s_sbh);
5199 if (err)
5200 goto out_brelse;
5201 ext4_update_dynamic_rev(sb);
5202 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5203 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5204 sb->s_dirt = 1;
0390131b 5205 ext4_handle_sync(handle);
73b50c1c 5206 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5207 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5208 }
5209 }
5210 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5211 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5212 if (old_valid_dev(inode->i_rdev)) {
5213 raw_inode->i_block[0] =
5214 cpu_to_le32(old_encode_dev(inode->i_rdev));
5215 raw_inode->i_block[1] = 0;
5216 } else {
5217 raw_inode->i_block[0] = 0;
5218 raw_inode->i_block[1] =
5219 cpu_to_le32(new_encode_dev(inode->i_rdev));
5220 raw_inode->i_block[2] = 0;
5221 }
de9a55b8
TT
5222 } else
5223 for (block = 0; block < EXT4_N_BLOCKS; block++)
5224 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5225
25ec56b5
JNC
5226 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5227 if (ei->i_extra_isize) {
5228 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5229 raw_inode->i_version_hi =
5230 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5231 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5232 }
5233
830156c7 5234 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5235 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5236 if (!err)
5237 err = rc;
19f5fb7a 5238 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5239
b436b9be 5240 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5241out_brelse:
af5bc92d 5242 brelse(bh);
617ba13b 5243 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5244 return err;
5245}
5246
5247/*
617ba13b 5248 * ext4_write_inode()
ac27a0ec
DK
5249 *
5250 * We are called from a few places:
5251 *
5252 * - Within generic_file_write() for O_SYNC files.
5253 * Here, there will be no transaction running. We wait for any running
5254 * trasnaction to commit.
5255 *
5256 * - Within sys_sync(), kupdate and such.
5257 * We wait on commit, if tol to.
5258 *
5259 * - Within prune_icache() (PF_MEMALLOC == true)
5260 * Here we simply return. We can't afford to block kswapd on the
5261 * journal commit.
5262 *
5263 * In all cases it is actually safe for us to return without doing anything,
5264 * because the inode has been copied into a raw inode buffer in
617ba13b 5265 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5266 * knfsd.
5267 *
5268 * Note that we are absolutely dependent upon all inode dirtiers doing the
5269 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5270 * which we are interested.
5271 *
5272 * It would be a bug for them to not do this. The code:
5273 *
5274 * mark_inode_dirty(inode)
5275 * stuff();
5276 * inode->i_size = expr;
5277 *
5278 * is in error because a kswapd-driven write_inode() could occur while
5279 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5280 * will no longer be on the superblock's dirty inode list.
5281 */
a9185b41 5282int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5283{
91ac6f43
FM
5284 int err;
5285
ac27a0ec
DK
5286 if (current->flags & PF_MEMALLOC)
5287 return 0;
5288
91ac6f43
FM
5289 if (EXT4_SB(inode->i_sb)->s_journal) {
5290 if (ext4_journal_current_handle()) {
5291 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5292 dump_stack();
5293 return -EIO;
5294 }
ac27a0ec 5295
a9185b41 5296 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5297 return 0;
5298
5299 err = ext4_force_commit(inode->i_sb);
5300 } else {
5301 struct ext4_iloc iloc;
ac27a0ec 5302
8b472d73 5303 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5304 if (err)
5305 return err;
a9185b41 5306 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5307 sync_dirty_buffer(iloc.bh);
5308 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5309 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5310 "IO error syncing inode");
830156c7
FM
5311 err = -EIO;
5312 }
fd2dd9fb 5313 brelse(iloc.bh);
91ac6f43
FM
5314 }
5315 return err;
ac27a0ec
DK
5316}
5317
5318/*
617ba13b 5319 * ext4_setattr()
ac27a0ec
DK
5320 *
5321 * Called from notify_change.
5322 *
5323 * We want to trap VFS attempts to truncate the file as soon as
5324 * possible. In particular, we want to make sure that when the VFS
5325 * shrinks i_size, we put the inode on the orphan list and modify
5326 * i_disksize immediately, so that during the subsequent flushing of
5327 * dirty pages and freeing of disk blocks, we can guarantee that any
5328 * commit will leave the blocks being flushed in an unused state on
5329 * disk. (On recovery, the inode will get truncated and the blocks will
5330 * be freed, so we have a strong guarantee that no future commit will
5331 * leave these blocks visible to the user.)
5332 *
678aaf48
JK
5333 * Another thing we have to assure is that if we are in ordered mode
5334 * and inode is still attached to the committing transaction, we must
5335 * we start writeout of all the dirty pages which are being truncated.
5336 * This way we are sure that all the data written in the previous
5337 * transaction are already on disk (truncate waits for pages under
5338 * writeback).
5339 *
5340 * Called with inode->i_mutex down.
ac27a0ec 5341 */
617ba13b 5342int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5343{
5344 struct inode *inode = dentry->d_inode;
5345 int error, rc = 0;
5346 const unsigned int ia_valid = attr->ia_valid;
5347
5348 error = inode_change_ok(inode, attr);
5349 if (error)
5350 return error;
5351
12755627 5352 if (is_quota_modification(inode, attr))
871a2931 5353 dquot_initialize(inode);
ac27a0ec
DK
5354 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5355 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5356 handle_t *handle;
5357
5358 /* (user+group)*(old+new) structure, inode write (sb,
5359 * inode block, ? - but truncate inode update has it) */
5aca07eb 5360 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5361 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5362 if (IS_ERR(handle)) {
5363 error = PTR_ERR(handle);
5364 goto err_out;
5365 }
b43fa828 5366 error = dquot_transfer(inode, attr);
ac27a0ec 5367 if (error) {
617ba13b 5368 ext4_journal_stop(handle);
ac27a0ec
DK
5369 return error;
5370 }
5371 /* Update corresponding info in inode so that everything is in
5372 * one transaction */
5373 if (attr->ia_valid & ATTR_UID)
5374 inode->i_uid = attr->ia_uid;
5375 if (attr->ia_valid & ATTR_GID)
5376 inode->i_gid = attr->ia_gid;
617ba13b
MC
5377 error = ext4_mark_inode_dirty(handle, inode);
5378 ext4_journal_stop(handle);
ac27a0ec
DK
5379 }
5380
e2b46574 5381 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5382 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5383 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5384
0c095c7f
TT
5385 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5386 return -EFBIG;
e2b46574
ES
5387 }
5388 }
5389
ac27a0ec 5390 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5391 attr->ia_valid & ATTR_SIZE &&
5392 (attr->ia_size < inode->i_size ||
12e9b892 5393 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5394 handle_t *handle;
5395
617ba13b 5396 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5397 if (IS_ERR(handle)) {
5398 error = PTR_ERR(handle);
5399 goto err_out;
5400 }
5401
617ba13b
MC
5402 error = ext4_orphan_add(handle, inode);
5403 EXT4_I(inode)->i_disksize = attr->ia_size;
5404 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5405 if (!error)
5406 error = rc;
617ba13b 5407 ext4_journal_stop(handle);
678aaf48
JK
5408
5409 if (ext4_should_order_data(inode)) {
5410 error = ext4_begin_ordered_truncate(inode,
5411 attr->ia_size);
5412 if (error) {
5413 /* Do as much error cleanup as possible */
5414 handle = ext4_journal_start(inode, 3);
5415 if (IS_ERR(handle)) {
5416 ext4_orphan_del(NULL, inode);
5417 goto err_out;
5418 }
5419 ext4_orphan_del(handle, inode);
5420 ext4_journal_stop(handle);
5421 goto err_out;
5422 }
5423 }
c8d46e41 5424 /* ext4_truncate will clear the flag */
12e9b892 5425 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5426 ext4_truncate(inode);
ac27a0ec
DK
5427 }
5428
1025774c
CH
5429 if ((attr->ia_valid & ATTR_SIZE) &&
5430 attr->ia_size != i_size_read(inode))
5431 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5432
1025774c
CH
5433 if (!rc) {
5434 setattr_copy(inode, attr);
5435 mark_inode_dirty(inode);
5436 }
5437
5438 /*
5439 * If the call to ext4_truncate failed to get a transaction handle at
5440 * all, we need to clean up the in-core orphan list manually.
5441 */
ac27a0ec 5442 if (inode->i_nlink)
617ba13b 5443 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5444
5445 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5446 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5447
5448err_out:
617ba13b 5449 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5450 if (!error)
5451 error = rc;
5452 return error;
5453}
5454
3e3398a0
MC
5455int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5456 struct kstat *stat)
5457{
5458 struct inode *inode;
5459 unsigned long delalloc_blocks;
5460
5461 inode = dentry->d_inode;
5462 generic_fillattr(inode, stat);
5463
5464 /*
5465 * We can't update i_blocks if the block allocation is delayed
5466 * otherwise in the case of system crash before the real block
5467 * allocation is done, we will have i_blocks inconsistent with
5468 * on-disk file blocks.
5469 * We always keep i_blocks updated together with real
5470 * allocation. But to not confuse with user, stat
5471 * will return the blocks that include the delayed allocation
5472 * blocks for this file.
5473 */
5474 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5475 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5476 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5477
5478 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5479 return 0;
5480}
ac27a0ec 5481
a02908f1
MC
5482static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5483 int chunk)
5484{
5485 int indirects;
5486
5487 /* if nrblocks are contiguous */
5488 if (chunk) {
5489 /*
5490 * With N contiguous data blocks, it need at most
5491 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5492 * 2 dindirect blocks
5493 * 1 tindirect block
5494 */
5495 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5496 return indirects + 3;
5497 }
5498 /*
5499 * if nrblocks are not contiguous, worse case, each block touch
5500 * a indirect block, and each indirect block touch a double indirect
5501 * block, plus a triple indirect block
5502 */
5503 indirects = nrblocks * 2 + 1;
5504 return indirects;
5505}
5506
5507static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5508{
12e9b892 5509 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5510 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5511 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5512}
ac51d837 5513
ac27a0ec 5514/*
a02908f1
MC
5515 * Account for index blocks, block groups bitmaps and block group
5516 * descriptor blocks if modify datablocks and index blocks
5517 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5518 *
a02908f1 5519 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5520 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5521 * they could still across block group boundary.
ac27a0ec 5522 *
a02908f1
MC
5523 * Also account for superblock, inode, quota and xattr blocks
5524 */
5525int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5526{
8df9675f
TT
5527 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5528 int gdpblocks;
a02908f1
MC
5529 int idxblocks;
5530 int ret = 0;
5531
5532 /*
5533 * How many index blocks need to touch to modify nrblocks?
5534 * The "Chunk" flag indicating whether the nrblocks is
5535 * physically contiguous on disk
5536 *
5537 * For Direct IO and fallocate, they calls get_block to allocate
5538 * one single extent at a time, so they could set the "Chunk" flag
5539 */
5540 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5541
5542 ret = idxblocks;
5543
5544 /*
5545 * Now let's see how many group bitmaps and group descriptors need
5546 * to account
5547 */
5548 groups = idxblocks;
5549 if (chunk)
5550 groups += 1;
5551 else
5552 groups += nrblocks;
5553
5554 gdpblocks = groups;
8df9675f
TT
5555 if (groups > ngroups)
5556 groups = ngroups;
a02908f1
MC
5557 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5558 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5559
5560 /* bitmaps and block group descriptor blocks */
5561 ret += groups + gdpblocks;
5562
5563 /* Blocks for super block, inode, quota and xattr blocks */
5564 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5565
5566 return ret;
5567}
5568
5569/*
5570 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5571 * the modification of a single pages into a single transaction,
5572 * which may include multiple chunks of block allocations.
ac27a0ec 5573 *
525f4ed8 5574 * This could be called via ext4_write_begin()
ac27a0ec 5575 *
525f4ed8 5576 * We need to consider the worse case, when
a02908f1 5577 * one new block per extent.
ac27a0ec 5578 */
a86c6181 5579int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5580{
617ba13b 5581 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5582 int ret;
5583
a02908f1 5584 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5585
a02908f1 5586 /* Account for data blocks for journalled mode */
617ba13b 5587 if (ext4_should_journal_data(inode))
a02908f1 5588 ret += bpp;
ac27a0ec
DK
5589 return ret;
5590}
f3bd1f3f
MC
5591
5592/*
5593 * Calculate the journal credits for a chunk of data modification.
5594 *
5595 * This is called from DIO, fallocate or whoever calling
79e83036 5596 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5597 *
5598 * journal buffers for data blocks are not included here, as DIO
5599 * and fallocate do no need to journal data buffers.
5600 */
5601int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5602{
5603 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5604}
5605
ac27a0ec 5606/*
617ba13b 5607 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5608 * Give this, we know that the caller already has write access to iloc->bh.
5609 */
617ba13b 5610int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5611 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5612{
5613 int err = 0;
5614
25ec56b5
JNC
5615 if (test_opt(inode->i_sb, I_VERSION))
5616 inode_inc_iversion(inode);
5617
ac27a0ec
DK
5618 /* the do_update_inode consumes one bh->b_count */
5619 get_bh(iloc->bh);
5620
dab291af 5621 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5622 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5623 put_bh(iloc->bh);
5624 return err;
5625}
5626
5627/*
5628 * On success, We end up with an outstanding reference count against
5629 * iloc->bh. This _must_ be cleaned up later.
5630 */
5631
5632int
617ba13b
MC
5633ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5634 struct ext4_iloc *iloc)
ac27a0ec 5635{
0390131b
FM
5636 int err;
5637
5638 err = ext4_get_inode_loc(inode, iloc);
5639 if (!err) {
5640 BUFFER_TRACE(iloc->bh, "get_write_access");
5641 err = ext4_journal_get_write_access(handle, iloc->bh);
5642 if (err) {
5643 brelse(iloc->bh);
5644 iloc->bh = NULL;
ac27a0ec
DK
5645 }
5646 }
617ba13b 5647 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5648 return err;
5649}
5650
6dd4ee7c
KS
5651/*
5652 * Expand an inode by new_extra_isize bytes.
5653 * Returns 0 on success or negative error number on failure.
5654 */
1d03ec98
AK
5655static int ext4_expand_extra_isize(struct inode *inode,
5656 unsigned int new_extra_isize,
5657 struct ext4_iloc iloc,
5658 handle_t *handle)
6dd4ee7c
KS
5659{
5660 struct ext4_inode *raw_inode;
5661 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5662
5663 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5664 return 0;
5665
5666 raw_inode = ext4_raw_inode(&iloc);
5667
5668 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5669
5670 /* No extended attributes present */
19f5fb7a
TT
5671 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5672 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5673 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5674 new_extra_isize);
5675 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5676 return 0;
5677 }
5678
5679 /* try to expand with EAs present */
5680 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5681 raw_inode, handle);
5682}
5683
ac27a0ec
DK
5684/*
5685 * What we do here is to mark the in-core inode as clean with respect to inode
5686 * dirtiness (it may still be data-dirty).
5687 * This means that the in-core inode may be reaped by prune_icache
5688 * without having to perform any I/O. This is a very good thing,
5689 * because *any* task may call prune_icache - even ones which
5690 * have a transaction open against a different journal.
5691 *
5692 * Is this cheating? Not really. Sure, we haven't written the
5693 * inode out, but prune_icache isn't a user-visible syncing function.
5694 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5695 * we start and wait on commits.
5696 *
5697 * Is this efficient/effective? Well, we're being nice to the system
5698 * by cleaning up our inodes proactively so they can be reaped
5699 * without I/O. But we are potentially leaving up to five seconds'
5700 * worth of inodes floating about which prune_icache wants us to
5701 * write out. One way to fix that would be to get prune_icache()
5702 * to do a write_super() to free up some memory. It has the desired
5703 * effect.
5704 */
617ba13b 5705int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5706{
617ba13b 5707 struct ext4_iloc iloc;
6dd4ee7c
KS
5708 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5709 static unsigned int mnt_count;
5710 int err, ret;
ac27a0ec
DK
5711
5712 might_sleep();
617ba13b 5713 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5714 if (ext4_handle_valid(handle) &&
5715 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5716 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5717 /*
5718 * We need extra buffer credits since we may write into EA block
5719 * with this same handle. If journal_extend fails, then it will
5720 * only result in a minor loss of functionality for that inode.
5721 * If this is felt to be critical, then e2fsck should be run to
5722 * force a large enough s_min_extra_isize.
5723 */
5724 if ((jbd2_journal_extend(handle,
5725 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5726 ret = ext4_expand_extra_isize(inode,
5727 sbi->s_want_extra_isize,
5728 iloc, handle);
5729 if (ret) {
19f5fb7a
TT
5730 ext4_set_inode_state(inode,
5731 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5732 if (mnt_count !=
5733 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5734 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5735 "Unable to expand inode %lu. Delete"
5736 " some EAs or run e2fsck.",
5737 inode->i_ino);
c1bddad9
AK
5738 mnt_count =
5739 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5740 }
5741 }
5742 }
5743 }
ac27a0ec 5744 if (!err)
617ba13b 5745 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5746 return err;
5747}
5748
5749/*
617ba13b 5750 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5751 *
5752 * We're really interested in the case where a file is being extended.
5753 * i_size has been changed by generic_commit_write() and we thus need
5754 * to include the updated inode in the current transaction.
5755 *
5dd4056d 5756 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5757 * are allocated to the file.
5758 *
5759 * If the inode is marked synchronous, we don't honour that here - doing
5760 * so would cause a commit on atime updates, which we don't bother doing.
5761 * We handle synchronous inodes at the highest possible level.
5762 */
617ba13b 5763void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5764{
ac27a0ec
DK
5765 handle_t *handle;
5766
617ba13b 5767 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5768 if (IS_ERR(handle))
5769 goto out;
f3dc272f 5770
f3dc272f
CW
5771 ext4_mark_inode_dirty(handle, inode);
5772
617ba13b 5773 ext4_journal_stop(handle);
ac27a0ec
DK
5774out:
5775 return;
5776}
5777
5778#if 0
5779/*
5780 * Bind an inode's backing buffer_head into this transaction, to prevent
5781 * it from being flushed to disk early. Unlike
617ba13b 5782 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5783 * returns no iloc structure, so the caller needs to repeat the iloc
5784 * lookup to mark the inode dirty later.
5785 */
617ba13b 5786static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5787{
617ba13b 5788 struct ext4_iloc iloc;
ac27a0ec
DK
5789
5790 int err = 0;
5791 if (handle) {
617ba13b 5792 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5793 if (!err) {
5794 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5795 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5796 if (!err)
0390131b 5797 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5798 NULL,
0390131b 5799 iloc.bh);
ac27a0ec
DK
5800 brelse(iloc.bh);
5801 }
5802 }
617ba13b 5803 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5804 return err;
5805}
5806#endif
5807
617ba13b 5808int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5809{
5810 journal_t *journal;
5811 handle_t *handle;
5812 int err;
5813
5814 /*
5815 * We have to be very careful here: changing a data block's
5816 * journaling status dynamically is dangerous. If we write a
5817 * data block to the journal, change the status and then delete
5818 * that block, we risk forgetting to revoke the old log record
5819 * from the journal and so a subsequent replay can corrupt data.
5820 * So, first we make sure that the journal is empty and that
5821 * nobody is changing anything.
5822 */
5823
617ba13b 5824 journal = EXT4_JOURNAL(inode);
0390131b
FM
5825 if (!journal)
5826 return 0;
d699594d 5827 if (is_journal_aborted(journal))
ac27a0ec
DK
5828 return -EROFS;
5829
dab291af
MC
5830 jbd2_journal_lock_updates(journal);
5831 jbd2_journal_flush(journal);
ac27a0ec
DK
5832
5833 /*
5834 * OK, there are no updates running now, and all cached data is
5835 * synced to disk. We are now in a completely consistent state
5836 * which doesn't have anything in the journal, and we know that
5837 * no filesystem updates are running, so it is safe to modify
5838 * the inode's in-core data-journaling state flag now.
5839 */
5840
5841 if (val)
12e9b892 5842 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5843 else
12e9b892 5844 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5845 ext4_set_aops(inode);
ac27a0ec 5846
dab291af 5847 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5848
5849 /* Finally we can mark the inode as dirty. */
5850
617ba13b 5851 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5852 if (IS_ERR(handle))
5853 return PTR_ERR(handle);
5854
617ba13b 5855 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5856 ext4_handle_sync(handle);
617ba13b
MC
5857 ext4_journal_stop(handle);
5858 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5859
5860 return err;
5861}
2e9ee850
AK
5862
5863static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5864{
5865 return !buffer_mapped(bh);
5866}
5867
c2ec175c 5868int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5869{
c2ec175c 5870 struct page *page = vmf->page;
2e9ee850
AK
5871 loff_t size;
5872 unsigned long len;
5873 int ret = -EINVAL;
79f0be8d 5874 void *fsdata;
2e9ee850
AK
5875 struct file *file = vma->vm_file;
5876 struct inode *inode = file->f_path.dentry->d_inode;
5877 struct address_space *mapping = inode->i_mapping;
5878
5879 /*
5880 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5881 * get i_mutex because we are already holding mmap_sem.
5882 */
5883 down_read(&inode->i_alloc_sem);
5884 size = i_size_read(inode);
5885 if (page->mapping != mapping || size <= page_offset(page)
5886 || !PageUptodate(page)) {
5887 /* page got truncated from under us? */
5888 goto out_unlock;
5889 }
5890 ret = 0;
5891 if (PageMappedToDisk(page))
5892 goto out_unlock;
5893
5894 if (page->index == size >> PAGE_CACHE_SHIFT)
5895 len = size & ~PAGE_CACHE_MASK;
5896 else
5897 len = PAGE_CACHE_SIZE;
5898
a827eaff
AK
5899 lock_page(page);
5900 /*
5901 * return if we have all the buffers mapped. This avoid
5902 * the need to call write_begin/write_end which does a
5903 * journal_start/journal_stop which can block and take
5904 * long time
5905 */
2e9ee850 5906 if (page_has_buffers(page)) {
2e9ee850 5907 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5908 ext4_bh_unmapped)) {
5909 unlock_page(page);
2e9ee850 5910 goto out_unlock;
a827eaff 5911 }
2e9ee850 5912 }
a827eaff 5913 unlock_page(page);
2e9ee850
AK
5914 /*
5915 * OK, we need to fill the hole... Do write_begin write_end
5916 * to do block allocation/reservation.We are not holding
5917 * inode.i__mutex here. That allow * parallel write_begin,
5918 * write_end call. lock_page prevent this from happening
5919 * on the same page though
5920 */
5921 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5922 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5923 if (ret < 0)
5924 goto out_unlock;
5925 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5926 len, len, page, fsdata);
2e9ee850
AK
5927 if (ret < 0)
5928 goto out_unlock;
5929 ret = 0;
5930out_unlock:
c2ec175c
NP
5931 if (ret)
5932 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5933 up_read(&inode->i_alloc_sem);
5934 return ret;
5935}