ext4: add block plug for .writepages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
21#include <linux/module.h>
22#include <linux/fs.h>
23#include <linux/time.h>
dab291af 24#include <linux/jbd2.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
a8901d34 40#include <linux/ratelimit.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7ff9c073 54 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
678aaf48
JK
66}
67
64769240 68static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
69static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 75
ac27a0ec
DK
76/*
77 * Test whether an inode is a fast symlink.
78 */
617ba13b 79static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 80{
617ba13b 81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85}
86
ac27a0ec
DK
87/*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
fa5d1113 92int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 93 int nblocks)
ac27a0ec 94{
487caeef
JK
95 int ret;
96
97 /*
e35fd660 98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
0390131b 103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 104 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 105 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 106 ret = ext4_journal_restart(handle, nblocks);
487caeef 107 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 108 ext4_discard_preallocations(inode);
487caeef
JK
109
110 return ret;
ac27a0ec
DK
111}
112
113/*
114 * Called at the last iput() if i_nlink is zero.
115 */
0930fcc1 116void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
117{
118 handle_t *handle;
bc965ab3 119 int err;
ac27a0ec 120
7ff9c073 121 trace_ext4_evict_inode(inode);
2581fdc8 122
2581fdc8
JZ
123 ext4_ioend_wait(inode);
124
0930fcc1 125 if (inode->i_nlink) {
2d859db3
JK
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
0930fcc1
AV
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
907f4554 157 if (!is_bad_inode(inode))
871a2931 158 dquot_initialize(inode);
907f4554 159
678aaf48
JK
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
9f125d64 167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 168 if (IS_ERR(handle)) {
bc965ab3 169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
617ba13b 175 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
0390131b 180 ext4_handle_sync(handle);
ac27a0ec 181 inode->i_size = 0;
bc965ab3
TT
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
12062ddd 184 ext4_warning(inode->i_sb,
bc965ab3
TT
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
ac27a0ec 188 if (inode->i_blocks)
617ba13b 189 ext4_truncate(inode);
bc965ab3
TT
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
0390131b 197 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
45388219 206 ext4_orphan_del(NULL, inode);
bc965ab3
TT
207 goto no_delete;
208 }
209 }
210
ac27a0ec 211 /*
617ba13b 212 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 213 * AKPM: I think this can be inside the above `if'.
617ba13b 214 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 215 * deletion of a non-existent orphan - this is because we don't
617ba13b 216 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
217 * (Well, we could do this if we need to, but heck - it works)
218 */
617ba13b
MC
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
617ba13b 229 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 230 /* If that failed, just do the required in-core inode clear. */
0930fcc1 231 ext4_clear_inode(inode);
ac27a0ec 232 else
617ba13b
MC
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
ac27a0ec
DK
235 return;
236no_delete:
0930fcc1 237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
238}
239
a9e7f447
DM
240#ifdef CONFIG_QUOTA
241qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 242{
a9e7f447 243 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 244}
a9e7f447 245#endif
9d0be502 246
12219aea
AK
247/*
248 * Calculate the number of metadata blocks need to reserve
9d0be502 249 * to allocate a block located at @lblock
12219aea 250 */
01f49d0b 251static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 252{
12e9b892 253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 254 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 255
8bb2b247 256 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
257}
258
0637c6f4
TT
259/*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
5f634d06
AK
263void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
12219aea
AK
265{
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 267 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
268
269 spin_lock(&ei->i_block_reservation_lock);
d8990240 270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
12219aea 279
0637c6f4
TT
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
0637c6f4 282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 284 used + ei->i_allocated_meta_blocks);
0637c6f4 285 ei->i_allocated_meta_blocks = 0;
6bc6e63f 286
0637c6f4
TT
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
57042651 293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 294 ei->i_reserved_meta_blocks);
ee5f4d9c 295 ei->i_reserved_meta_blocks = 0;
9d0be502 296 ei->i_da_metadata_calc_len = 0;
6bc6e63f 297 }
12219aea 298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 299
72b8ab9d
ES
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
7b415bf6 302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 303 else {
5f634d06
AK
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
72b8ab9d 307 * not re-claim the quota for fallocated blocks.
5f634d06 308 */
7b415bf6 309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 310 }
d6014301
AK
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
0637c6f4
TT
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
d6014301 319 ext4_discard_preallocations(inode);
12219aea
AK
320}
321
e29136f8 322static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
323 unsigned int line,
324 struct ext4_map_blocks *map)
6fd058f7 325{
24676da4
TT
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
c398eda0
TT
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
6fd058f7
TT
332 return -EIO;
333 }
334 return 0;
335}
336
e29136f8 337#define check_block_validity(inode, map) \
c398eda0 338 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 339
55138e0b 340/*
1f94533d
TT
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
55138e0b
TT
343 */
344static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346{
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
1f94533d
TT
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
55138e0b
TT
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
659c6009
ES
390 if (num >= max_pages) {
391 done = 1;
55138e0b 392 break;
659c6009 393 }
55138e0b
TT
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398}
399
5356f261
AK
400/*
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402 */
403static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
405{
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
410
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
425
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
429
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
436 }
437 index++;
438 }
439 pagevec_release(&pvec);
440 }
441}
442
f5ab0d1f 443/*
e35fd660 444 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 445 * and returns if the blocks are already mapped.
f5ab0d1f 446 *
f5ab0d1f
MC
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
e35fd660
TT
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 461 * that case, buffer head is unmapped
f5ab0d1f
MC
462 *
463 * It returns the error in case of allocation failure.
464 */
e35fd660
TT
465int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
467{
468 int retval;
f5ab0d1f 469
e35fd660
TT
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
4df3d265 474 /*
b920c755
TT
475 * Try to see if we can get the block without requesting a new
476 * file system block.
4df3d265
AK
477 */
478 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 480 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 481 } else {
e35fd660 482 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 483 }
4df3d265 484 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 485
e35fd660 486 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 487 int ret = check_block_validity(inode, map);
6fd058f7
TT
488 if (ret != 0)
489 return ret;
490 }
491
f5ab0d1f 492 /* If it is only a block(s) look up */
c2177057 493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
494 return retval;
495
496 /*
497 * Returns if the blocks have already allocated
498 *
499 * Note that if blocks have been preallocated
df3ab170 500 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
501 * with buffer head unmapped.
502 */
e35fd660 503 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
504 return retval;
505
2a8964d6
AK
506 /*
507 * When we call get_blocks without the create flag, the
508 * BH_Unwritten flag could have gotten set if the blocks
509 * requested were part of a uninitialized extent. We need to
510 * clear this flag now that we are committed to convert all or
511 * part of the uninitialized extent to be an initialized
512 * extent. This is because we need to avoid the combination
513 * of BH_Unwritten and BH_Mapped flags being simultaneously
514 * set on the buffer_head.
515 */
e35fd660 516 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 517
4df3d265 518 /*
f5ab0d1f
MC
519 * New blocks allocate and/or writing to uninitialized extent
520 * will possibly result in updating i_data, so we take
521 * the write lock of i_data_sem, and call get_blocks()
522 * with create == 1 flag.
4df3d265
AK
523 */
524 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
525
526 /*
527 * if the caller is from delayed allocation writeout path
528 * we have already reserved fs blocks for allocation
529 * let the underlying get_block() function know to
530 * avoid double accounting
531 */
c2177057 532 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 533 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
534 /*
535 * We need to check for EXT4 here because migrate
536 * could have changed the inode type in between
537 */
12e9b892 538 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 539 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 540 } else {
e35fd660 541 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 542
e35fd660 543 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
544 /*
545 * We allocated new blocks which will result in
546 * i_data's format changing. Force the migrate
547 * to fail by clearing migrate flags
548 */
19f5fb7a 549 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 550 }
d2a17637 551
5f634d06
AK
552 /*
553 * Update reserved blocks/metadata blocks after successful
554 * block allocation which had been deferred till now. We don't
555 * support fallocate for non extent files. So we can update
556 * reserve space here.
557 */
558 if ((retval > 0) &&
1296cc85 559 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
560 ext4_da_update_reserve_space(inode, retval, 1);
561 }
5356f261 562 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 563 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 564
5356f261
AK
565 /* If we have successfully mapped the delayed allocated blocks,
566 * set the BH_Da_Mapped bit on them. Its important to do this
567 * under the protection of i_data_sem.
568 */
569 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
570 set_buffers_da_mapped(inode, map);
571 }
572
4df3d265 573 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 575 int ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
0e855ac8
AK
579 return retval;
580}
581
f3bd1f3f
MC
582/* Maximum number of blocks we map for direct IO at once. */
583#define DIO_MAX_BLOCKS 4096
584
2ed88685
TT
585static int _ext4_get_block(struct inode *inode, sector_t iblock,
586 struct buffer_head *bh, int flags)
ac27a0ec 587{
3e4fdaf8 588 handle_t *handle = ext4_journal_current_handle();
2ed88685 589 struct ext4_map_blocks map;
7fb5409d 590 int ret = 0, started = 0;
f3bd1f3f 591 int dio_credits;
ac27a0ec 592
2ed88685
TT
593 map.m_lblk = iblock;
594 map.m_len = bh->b_size >> inode->i_blkbits;
595
596 if (flags && !handle) {
7fb5409d 597 /* Direct IO write... */
2ed88685
TT
598 if (map.m_len > DIO_MAX_BLOCKS)
599 map.m_len = DIO_MAX_BLOCKS;
600 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 601 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 602 if (IS_ERR(handle)) {
ac27a0ec 603 ret = PTR_ERR(handle);
2ed88685 604 return ret;
ac27a0ec 605 }
7fb5409d 606 started = 1;
ac27a0ec
DK
607 }
608
2ed88685 609 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 610 if (ret > 0) {
2ed88685
TT
611 map_bh(bh, inode->i_sb, map.m_pblk);
612 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
613 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 614 ret = 0;
ac27a0ec 615 }
7fb5409d
JK
616 if (started)
617 ext4_journal_stop(handle);
ac27a0ec
DK
618 return ret;
619}
620
2ed88685
TT
621int ext4_get_block(struct inode *inode, sector_t iblock,
622 struct buffer_head *bh, int create)
623{
624 return _ext4_get_block(inode, iblock, bh,
625 create ? EXT4_GET_BLOCKS_CREATE : 0);
626}
627
ac27a0ec
DK
628/*
629 * `handle' can be NULL if create is zero
630 */
617ba13b 631struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 632 ext4_lblk_t block, int create, int *errp)
ac27a0ec 633{
2ed88685
TT
634 struct ext4_map_blocks map;
635 struct buffer_head *bh;
ac27a0ec
DK
636 int fatal = 0, err;
637
638 J_ASSERT(handle != NULL || create == 0);
639
2ed88685
TT
640 map.m_lblk = block;
641 map.m_len = 1;
642 err = ext4_map_blocks(handle, inode, &map,
643 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 644
2ed88685
TT
645 if (err < 0)
646 *errp = err;
647 if (err <= 0)
648 return NULL;
649 *errp = 0;
650
651 bh = sb_getblk(inode->i_sb, map.m_pblk);
652 if (!bh) {
653 *errp = -EIO;
654 return NULL;
ac27a0ec 655 }
2ed88685
TT
656 if (map.m_flags & EXT4_MAP_NEW) {
657 J_ASSERT(create != 0);
658 J_ASSERT(handle != NULL);
ac27a0ec 659
2ed88685
TT
660 /*
661 * Now that we do not always journal data, we should
662 * keep in mind whether this should always journal the
663 * new buffer as metadata. For now, regular file
664 * writes use ext4_get_block instead, so it's not a
665 * problem.
666 */
667 lock_buffer(bh);
668 BUFFER_TRACE(bh, "call get_create_access");
669 fatal = ext4_journal_get_create_access(handle, bh);
670 if (!fatal && !buffer_uptodate(bh)) {
671 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
672 set_buffer_uptodate(bh);
ac27a0ec 673 }
2ed88685
TT
674 unlock_buffer(bh);
675 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
676 err = ext4_handle_dirty_metadata(handle, inode, bh);
677 if (!fatal)
678 fatal = err;
679 } else {
680 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 681 }
2ed88685
TT
682 if (fatal) {
683 *errp = fatal;
684 brelse(bh);
685 bh = NULL;
686 }
687 return bh;
ac27a0ec
DK
688}
689
617ba13b 690struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 691 ext4_lblk_t block, int create, int *err)
ac27a0ec 692{
af5bc92d 693 struct buffer_head *bh;
ac27a0ec 694
617ba13b 695 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
696 if (!bh)
697 return bh;
698 if (buffer_uptodate(bh))
699 return bh;
700 ll_rw_block(READ_META, 1, &bh);
701 wait_on_buffer(bh);
702 if (buffer_uptodate(bh))
703 return bh;
704 put_bh(bh);
705 *err = -EIO;
706 return NULL;
707}
708
af5bc92d
TT
709static int walk_page_buffers(handle_t *handle,
710 struct buffer_head *head,
711 unsigned from,
712 unsigned to,
713 int *partial,
714 int (*fn)(handle_t *handle,
715 struct buffer_head *bh))
ac27a0ec
DK
716{
717 struct buffer_head *bh;
718 unsigned block_start, block_end;
719 unsigned blocksize = head->b_size;
720 int err, ret = 0;
721 struct buffer_head *next;
722
af5bc92d
TT
723 for (bh = head, block_start = 0;
724 ret == 0 && (bh != head || !block_start);
de9a55b8 725 block_start = block_end, bh = next) {
ac27a0ec
DK
726 next = bh->b_this_page;
727 block_end = block_start + blocksize;
728 if (block_end <= from || block_start >= to) {
729 if (partial && !buffer_uptodate(bh))
730 *partial = 1;
731 continue;
732 }
733 err = (*fn)(handle, bh);
734 if (!ret)
735 ret = err;
736 }
737 return ret;
738}
739
740/*
741 * To preserve ordering, it is essential that the hole instantiation and
742 * the data write be encapsulated in a single transaction. We cannot
617ba13b 743 * close off a transaction and start a new one between the ext4_get_block()
dab291af 744 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
745 * prepare_write() is the right place.
746 *
617ba13b
MC
747 * Also, this function can nest inside ext4_writepage() ->
748 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
749 * has generated enough buffer credits to do the whole page. So we won't
750 * block on the journal in that case, which is good, because the caller may
751 * be PF_MEMALLOC.
752 *
617ba13b 753 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
754 * quota file writes. If we were to commit the transaction while thus
755 * reentered, there can be a deadlock - we would be holding a quota
756 * lock, and the commit would never complete if another thread had a
757 * transaction open and was blocking on the quota lock - a ranking
758 * violation.
759 *
dab291af 760 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
761 * will _not_ run commit under these circumstances because handle->h_ref
762 * is elevated. We'll still have enough credits for the tiny quotafile
763 * write.
764 */
765static int do_journal_get_write_access(handle_t *handle,
de9a55b8 766 struct buffer_head *bh)
ac27a0ec 767{
56d35a4c
JK
768 int dirty = buffer_dirty(bh);
769 int ret;
770
ac27a0ec
DK
771 if (!buffer_mapped(bh) || buffer_freed(bh))
772 return 0;
56d35a4c 773 /*
ebdec241 774 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
775 * the dirty bit as jbd2_journal_get_write_access() could complain
776 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 777 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
778 * the bit before releasing a page lock and thus writeback cannot
779 * ever write the buffer.
780 */
781 if (dirty)
782 clear_buffer_dirty(bh);
783 ret = ext4_journal_get_write_access(handle, bh);
784 if (!ret && dirty)
785 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
786 return ret;
ac27a0ec
DK
787}
788
744692dc
JZ
789static int ext4_get_block_write(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create);
bfc1af65 791static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
792 loff_t pos, unsigned len, unsigned flags,
793 struct page **pagep, void **fsdata)
ac27a0ec 794{
af5bc92d 795 struct inode *inode = mapping->host;
1938a150 796 int ret, needed_blocks;
ac27a0ec
DK
797 handle_t *handle;
798 int retries = 0;
af5bc92d 799 struct page *page;
de9a55b8 800 pgoff_t index;
af5bc92d 801 unsigned from, to;
bfc1af65 802
9bffad1e 803 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
804 /*
805 * Reserve one block more for addition to orphan list in case
806 * we allocate blocks but write fails for some reason
807 */
808 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 809 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
810 from = pos & (PAGE_CACHE_SIZE - 1);
811 to = from + len;
ac27a0ec
DK
812
813retry:
af5bc92d
TT
814 handle = ext4_journal_start(inode, needed_blocks);
815 if (IS_ERR(handle)) {
816 ret = PTR_ERR(handle);
817 goto out;
7479d2b9 818 }
ac27a0ec 819
ebd3610b
JK
820 /* We cannot recurse into the filesystem as the transaction is already
821 * started */
822 flags |= AOP_FLAG_NOFS;
823
54566b2c 824 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
825 if (!page) {
826 ext4_journal_stop(handle);
827 ret = -ENOMEM;
828 goto out;
829 }
830 *pagep = page;
831
744692dc 832 if (ext4_should_dioread_nolock(inode))
6e1db88d 833 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 834 else
6e1db88d 835 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
836
837 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
838 ret = walk_page_buffers(handle, page_buffers(page),
839 from, to, NULL, do_journal_get_write_access);
840 }
bfc1af65
NP
841
842 if (ret) {
af5bc92d 843 unlock_page(page);
af5bc92d 844 page_cache_release(page);
ae4d5372 845 /*
6e1db88d 846 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
847 * outside i_size. Trim these off again. Don't need
848 * i_size_read because we hold i_mutex.
1938a150
AK
849 *
850 * Add inode to orphan list in case we crash before
851 * truncate finishes
ae4d5372 852 */
ffacfa7a 853 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
854 ext4_orphan_add(handle, inode);
855
856 ext4_journal_stop(handle);
857 if (pos + len > inode->i_size) {
b9a4207d 858 ext4_truncate_failed_write(inode);
de9a55b8 859 /*
ffacfa7a 860 * If truncate failed early the inode might
1938a150
AK
861 * still be on the orphan list; we need to
862 * make sure the inode is removed from the
863 * orphan list in that case.
864 */
865 if (inode->i_nlink)
866 ext4_orphan_del(NULL, inode);
867 }
bfc1af65
NP
868 }
869
617ba13b 870 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 871 goto retry;
7479d2b9 872out:
ac27a0ec
DK
873 return ret;
874}
875
bfc1af65
NP
876/* For write_end() in data=journal mode */
877static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
878{
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
881 set_buffer_uptodate(bh);
0390131b 882 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
883}
884
f8514083 885static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
886 struct address_space *mapping,
887 loff_t pos, unsigned len, unsigned copied,
888 struct page *page, void *fsdata)
f8514083
AK
889{
890 int i_size_changed = 0;
891 struct inode *inode = mapping->host;
892 handle_t *handle = ext4_journal_current_handle();
893
894 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
895
896 /*
897 * No need to use i_size_read() here, the i_size
898 * cannot change under us because we hold i_mutex.
899 *
900 * But it's important to update i_size while still holding page lock:
901 * page writeout could otherwise come in and zero beyond i_size.
902 */
903 if (pos + copied > inode->i_size) {
904 i_size_write(inode, pos + copied);
905 i_size_changed = 1;
906 }
907
908 if (pos + copied > EXT4_I(inode)->i_disksize) {
909 /* We need to mark inode dirty even if
910 * new_i_size is less that inode->i_size
911 * bu greater than i_disksize.(hint delalloc)
912 */
913 ext4_update_i_disksize(inode, (pos + copied));
914 i_size_changed = 1;
915 }
916 unlock_page(page);
917 page_cache_release(page);
918
919 /*
920 * Don't mark the inode dirty under page lock. First, it unnecessarily
921 * makes the holding time of page lock longer. Second, it forces lock
922 * ordering of page lock and transaction start for journaling
923 * filesystems.
924 */
925 if (i_size_changed)
926 ext4_mark_inode_dirty(handle, inode);
927
928 return copied;
929}
930
ac27a0ec
DK
931/*
932 * We need to pick up the new inode size which generic_commit_write gave us
933 * `file' can be NULL - eg, when called from page_symlink().
934 *
617ba13b 935 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
936 * buffers are managed internally.
937 */
bfc1af65 938static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
939 struct address_space *mapping,
940 loff_t pos, unsigned len, unsigned copied,
941 struct page *page, void *fsdata)
ac27a0ec 942{
617ba13b 943 handle_t *handle = ext4_journal_current_handle();
cf108bca 944 struct inode *inode = mapping->host;
ac27a0ec
DK
945 int ret = 0, ret2;
946
9bffad1e 947 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 948 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
949
950 if (ret == 0) {
f8514083 951 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 952 page, fsdata);
f8a87d89 953 copied = ret2;
ffacfa7a 954 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
955 /* if we have allocated more blocks and copied
956 * less. We will have blocks allocated outside
957 * inode->i_size. So truncate them
958 */
959 ext4_orphan_add(handle, inode);
f8a87d89
RK
960 if (ret2 < 0)
961 ret = ret2;
ac27a0ec 962 }
617ba13b 963 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
964 if (!ret)
965 ret = ret2;
bfc1af65 966
f8514083 967 if (pos + len > inode->i_size) {
b9a4207d 968 ext4_truncate_failed_write(inode);
de9a55b8 969 /*
ffacfa7a 970 * If truncate failed early the inode might still be
f8514083
AK
971 * on the orphan list; we need to make sure the inode
972 * is removed from the orphan list in that case.
973 */
974 if (inode->i_nlink)
975 ext4_orphan_del(NULL, inode);
976 }
977
978
bfc1af65 979 return ret ? ret : copied;
ac27a0ec
DK
980}
981
bfc1af65 982static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
983 struct address_space *mapping,
984 loff_t pos, unsigned len, unsigned copied,
985 struct page *page, void *fsdata)
ac27a0ec 986{
617ba13b 987 handle_t *handle = ext4_journal_current_handle();
cf108bca 988 struct inode *inode = mapping->host;
ac27a0ec 989 int ret = 0, ret2;
ac27a0ec 990
9bffad1e 991 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 992 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 993 page, fsdata);
f8a87d89 994 copied = ret2;
ffacfa7a 995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
996 /* if we have allocated more blocks and copied
997 * less. We will have blocks allocated outside
998 * inode->i_size. So truncate them
999 */
1000 ext4_orphan_add(handle, inode);
1001
f8a87d89
RK
1002 if (ret2 < 0)
1003 ret = ret2;
ac27a0ec 1004
617ba13b 1005 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1006 if (!ret)
1007 ret = ret2;
bfc1af65 1008
f8514083 1009 if (pos + len > inode->i_size) {
b9a4207d 1010 ext4_truncate_failed_write(inode);
de9a55b8 1011 /*
ffacfa7a 1012 * If truncate failed early the inode might still be
f8514083
AK
1013 * on the orphan list; we need to make sure the inode
1014 * is removed from the orphan list in that case.
1015 */
1016 if (inode->i_nlink)
1017 ext4_orphan_del(NULL, inode);
1018 }
1019
bfc1af65 1020 return ret ? ret : copied;
ac27a0ec
DK
1021}
1022
bfc1af65 1023static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1024 struct address_space *mapping,
1025 loff_t pos, unsigned len, unsigned copied,
1026 struct page *page, void *fsdata)
ac27a0ec 1027{
617ba13b 1028 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1029 struct inode *inode = mapping->host;
ac27a0ec
DK
1030 int ret = 0, ret2;
1031 int partial = 0;
bfc1af65 1032 unsigned from, to;
cf17fea6 1033 loff_t new_i_size;
ac27a0ec 1034
9bffad1e 1035 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1036 from = pos & (PAGE_CACHE_SIZE - 1);
1037 to = from + len;
1038
441c8508
CW
1039 BUG_ON(!ext4_handle_valid(handle));
1040
bfc1af65
NP
1041 if (copied < len) {
1042 if (!PageUptodate(page))
1043 copied = 0;
1044 page_zero_new_buffers(page, from+copied, to);
1045 }
ac27a0ec
DK
1046
1047 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1048 to, &partial, write_end_fn);
ac27a0ec
DK
1049 if (!partial)
1050 SetPageUptodate(page);
cf17fea6
AK
1051 new_i_size = pos + copied;
1052 if (new_i_size > inode->i_size)
bfc1af65 1053 i_size_write(inode, pos+copied);
19f5fb7a 1054 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1055 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1056 if (new_i_size > EXT4_I(inode)->i_disksize) {
1057 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1058 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1059 if (!ret)
1060 ret = ret2;
1061 }
bfc1af65 1062
cf108bca 1063 unlock_page(page);
f8514083 1064 page_cache_release(page);
ffacfa7a 1065 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1066 /* if we have allocated more blocks and copied
1067 * less. We will have blocks allocated outside
1068 * inode->i_size. So truncate them
1069 */
1070 ext4_orphan_add(handle, inode);
1071
617ba13b 1072 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1073 if (!ret)
1074 ret = ret2;
f8514083 1075 if (pos + len > inode->i_size) {
b9a4207d 1076 ext4_truncate_failed_write(inode);
de9a55b8 1077 /*
ffacfa7a 1078 * If truncate failed early the inode might still be
f8514083
AK
1079 * on the orphan list; we need to make sure the inode
1080 * is removed from the orphan list in that case.
1081 */
1082 if (inode->i_nlink)
1083 ext4_orphan_del(NULL, inode);
1084 }
bfc1af65
NP
1085
1086 return ret ? ret : copied;
ac27a0ec 1087}
d2a17637 1088
9d0be502 1089/*
7b415bf6 1090 * Reserve a single cluster located at lblock
9d0be502 1091 */
5356f261 1092static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1093{
030ba6bc 1094 int retries = 0;
60e58e0f 1095 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1096 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1097 unsigned int md_needed;
5dd4056d 1098 int ret;
d2a17637
MC
1099
1100 /*
1101 * recalculate the amount of metadata blocks to reserve
1102 * in order to allocate nrblocks
1103 * worse case is one extent per block
1104 */
030ba6bc 1105repeat:
0637c6f4 1106 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1107 md_needed = EXT4_NUM_B2C(sbi,
1108 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1109 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1110 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1111
60e58e0f 1112 /*
72b8ab9d
ES
1113 * We will charge metadata quota at writeout time; this saves
1114 * us from metadata over-estimation, though we may go over by
1115 * a small amount in the end. Here we just reserve for data.
60e58e0f 1116 */
7b415bf6 1117 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1118 if (ret)
1119 return ret;
72b8ab9d
ES
1120 /*
1121 * We do still charge estimated metadata to the sb though;
1122 * we cannot afford to run out of free blocks.
1123 */
e7d5f315 1124 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1125 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1126 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1127 yield();
1128 goto repeat;
1129 }
d2a17637
MC
1130 return -ENOSPC;
1131 }
0637c6f4 1132 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1133 ei->i_reserved_data_blocks++;
0637c6f4
TT
1134 ei->i_reserved_meta_blocks += md_needed;
1135 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1136
d2a17637
MC
1137 return 0; /* success */
1138}
1139
12219aea 1140static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1141{
1142 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1143 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1144
cd213226
MC
1145 if (!to_free)
1146 return; /* Nothing to release, exit */
1147
d2a17637 1148 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1149
5a58ec87 1150 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1151 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1152 /*
0637c6f4
TT
1153 * if there aren't enough reserved blocks, then the
1154 * counter is messed up somewhere. Since this
1155 * function is called from invalidate page, it's
1156 * harmless to return without any action.
cd213226 1157 */
0637c6f4
TT
1158 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1159 "ino %lu, to_free %d with only %d reserved "
1160 "data blocks\n", inode->i_ino, to_free,
1161 ei->i_reserved_data_blocks);
1162 WARN_ON(1);
1163 to_free = ei->i_reserved_data_blocks;
cd213226 1164 }
0637c6f4 1165 ei->i_reserved_data_blocks -= to_free;
cd213226 1166
0637c6f4
TT
1167 if (ei->i_reserved_data_blocks == 0) {
1168 /*
1169 * We can release all of the reserved metadata blocks
1170 * only when we have written all of the delayed
1171 * allocation blocks.
7b415bf6
AK
1172 * Note that in case of bigalloc, i_reserved_meta_blocks,
1173 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1174 */
57042651 1175 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1176 ei->i_reserved_meta_blocks);
ee5f4d9c 1177 ei->i_reserved_meta_blocks = 0;
9d0be502 1178 ei->i_da_metadata_calc_len = 0;
0637c6f4 1179 }
d2a17637 1180
72b8ab9d 1181 /* update fs dirty data blocks counter */
57042651 1182 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1183
d2a17637 1184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1185
7b415bf6 1186 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1187}
1188
1189static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1190 unsigned long offset)
d2a17637
MC
1191{
1192 int to_release = 0;
1193 struct buffer_head *head, *bh;
1194 unsigned int curr_off = 0;
7b415bf6
AK
1195 struct inode *inode = page->mapping->host;
1196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1197 int num_clusters;
d2a17637
MC
1198
1199 head = page_buffers(page);
1200 bh = head;
1201 do {
1202 unsigned int next_off = curr_off + bh->b_size;
1203
1204 if ((offset <= curr_off) && (buffer_delay(bh))) {
1205 to_release++;
1206 clear_buffer_delay(bh);
5356f261 1207 clear_buffer_da_mapped(bh);
d2a17637
MC
1208 }
1209 curr_off = next_off;
1210 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1211
1212 /* If we have released all the blocks belonging to a cluster, then we
1213 * need to release the reserved space for that cluster. */
1214 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1215 while (num_clusters > 0) {
1216 ext4_fsblk_t lblk;
1217 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1218 ((num_clusters - 1) << sbi->s_cluster_bits);
1219 if (sbi->s_cluster_ratio == 1 ||
1220 !ext4_find_delalloc_cluster(inode, lblk, 1))
1221 ext4_da_release_space(inode, 1);
1222
1223 num_clusters--;
1224 }
d2a17637 1225}
ac27a0ec 1226
64769240
AT
1227/*
1228 * Delayed allocation stuff
1229 */
1230
64769240
AT
1231/*
1232 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1233 * them with writepage() call back
64769240
AT
1234 *
1235 * @mpd->inode: inode
1236 * @mpd->first_page: first page of the extent
1237 * @mpd->next_page: page after the last page of the extent
64769240
AT
1238 *
1239 * By the time mpage_da_submit_io() is called we expect all blocks
1240 * to be allocated. this may be wrong if allocation failed.
1241 *
1242 * As pages are already locked by write_cache_pages(), we can't use it
1243 */
1de3e3df
TT
1244static int mpage_da_submit_io(struct mpage_da_data *mpd,
1245 struct ext4_map_blocks *map)
64769240 1246{
791b7f08
AK
1247 struct pagevec pvec;
1248 unsigned long index, end;
1249 int ret = 0, err, nr_pages, i;
1250 struct inode *inode = mpd->inode;
1251 struct address_space *mapping = inode->i_mapping;
cb20d518 1252 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1253 unsigned int len, block_start;
1254 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1255 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1256 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1257 struct ext4_io_submit io_submit;
64769240
AT
1258
1259 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1260 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1261 /*
1262 * We need to start from the first_page to the next_page - 1
1263 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1264 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1265 * at the currently mapped buffer_heads.
1266 */
64769240
AT
1267 index = mpd->first_page;
1268 end = mpd->next_page - 1;
1269
791b7f08 1270 pagevec_init(&pvec, 0);
64769240 1271 while (index <= end) {
791b7f08 1272 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1273 if (nr_pages == 0)
1274 break;
1275 for (i = 0; i < nr_pages; i++) {
97498956 1276 int commit_write = 0, skip_page = 0;
64769240
AT
1277 struct page *page = pvec.pages[i];
1278
791b7f08
AK
1279 index = page->index;
1280 if (index > end)
1281 break;
cb20d518
TT
1282
1283 if (index == size >> PAGE_CACHE_SHIFT)
1284 len = size & ~PAGE_CACHE_MASK;
1285 else
1286 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1287 if (map) {
1288 cur_logical = index << (PAGE_CACHE_SHIFT -
1289 inode->i_blkbits);
1290 pblock = map->m_pblk + (cur_logical -
1291 map->m_lblk);
1292 }
791b7f08
AK
1293 index++;
1294
1295 BUG_ON(!PageLocked(page));
1296 BUG_ON(PageWriteback(page));
1297
64769240 1298 /*
cb20d518
TT
1299 * If the page does not have buffers (for
1300 * whatever reason), try to create them using
a107e5a3 1301 * __block_write_begin. If this fails,
97498956 1302 * skip the page and move on.
64769240 1303 */
cb20d518 1304 if (!page_has_buffers(page)) {
a107e5a3 1305 if (__block_write_begin(page, 0, len,
cb20d518 1306 noalloc_get_block_write)) {
97498956 1307 skip_page:
cb20d518
TT
1308 unlock_page(page);
1309 continue;
1310 }
1311 commit_write = 1;
1312 }
64769240 1313
3ecdb3a1
TT
1314 bh = page_bufs = page_buffers(page);
1315 block_start = 0;
64769240 1316 do {
1de3e3df 1317 if (!bh)
97498956 1318 goto skip_page;
1de3e3df
TT
1319 if (map && (cur_logical >= map->m_lblk) &&
1320 (cur_logical <= (map->m_lblk +
1321 (map->m_len - 1)))) {
29fa89d0
AK
1322 if (buffer_delay(bh)) {
1323 clear_buffer_delay(bh);
1324 bh->b_blocknr = pblock;
29fa89d0 1325 }
5356f261
AK
1326 if (buffer_da_mapped(bh))
1327 clear_buffer_da_mapped(bh);
1de3e3df
TT
1328 if (buffer_unwritten(bh) ||
1329 buffer_mapped(bh))
1330 BUG_ON(bh->b_blocknr != pblock);
1331 if (map->m_flags & EXT4_MAP_UNINIT)
1332 set_buffer_uninit(bh);
1333 clear_buffer_unwritten(bh);
1334 }
29fa89d0 1335
97498956 1336 /* skip page if block allocation undone */
1de3e3df 1337 if (buffer_delay(bh) || buffer_unwritten(bh))
97498956 1338 skip_page = 1;
3ecdb3a1
TT
1339 bh = bh->b_this_page;
1340 block_start += bh->b_size;
64769240
AT
1341 cur_logical++;
1342 pblock++;
1de3e3df
TT
1343 } while (bh != page_bufs);
1344
97498956
TT
1345 if (skip_page)
1346 goto skip_page;
cb20d518
TT
1347
1348 if (commit_write)
1349 /* mark the buffer_heads as dirty & uptodate */
1350 block_commit_write(page, 0, len);
1351
97498956 1352 clear_page_dirty_for_io(page);
bd2d0210
TT
1353 /*
1354 * Delalloc doesn't support data journalling,
1355 * but eventually maybe we'll lift this
1356 * restriction.
1357 */
1358 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1359 err = __ext4_journalled_writepage(page, len);
1449032b 1360 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1361 err = ext4_bio_write_page(&io_submit, page,
1362 len, mpd->wbc);
9dd75f1f
TT
1363 else if (buffer_uninit(page_bufs)) {
1364 ext4_set_bh_endio(page_bufs, inode);
1365 err = block_write_full_page_endio(page,
1366 noalloc_get_block_write,
1367 mpd->wbc, ext4_end_io_buffer_write);
1368 } else
1449032b
TT
1369 err = block_write_full_page(page,
1370 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1371
1372 if (!err)
a1d6cc56 1373 mpd->pages_written++;
64769240
AT
1374 /*
1375 * In error case, we have to continue because
1376 * remaining pages are still locked
64769240
AT
1377 */
1378 if (ret == 0)
1379 ret = err;
64769240
AT
1380 }
1381 pagevec_release(&pvec);
1382 }
bd2d0210 1383 ext4_io_submit(&io_submit);
64769240 1384 return ret;
64769240
AT
1385}
1386
c7f5938a 1387static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1388{
1389 int nr_pages, i;
1390 pgoff_t index, end;
1391 struct pagevec pvec;
1392 struct inode *inode = mpd->inode;
1393 struct address_space *mapping = inode->i_mapping;
1394
c7f5938a
CW
1395 index = mpd->first_page;
1396 end = mpd->next_page - 1;
c4a0c46e
AK
1397 while (index <= end) {
1398 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1399 if (nr_pages == 0)
1400 break;
1401 for (i = 0; i < nr_pages; i++) {
1402 struct page *page = pvec.pages[i];
9b1d0998 1403 if (page->index > end)
c4a0c46e 1404 break;
c4a0c46e
AK
1405 BUG_ON(!PageLocked(page));
1406 BUG_ON(PageWriteback(page));
1407 block_invalidatepage(page, 0);
1408 ClearPageUptodate(page);
1409 unlock_page(page);
1410 }
9b1d0998
JK
1411 index = pvec.pages[nr_pages - 1]->index + 1;
1412 pagevec_release(&pvec);
c4a0c46e
AK
1413 }
1414 return;
1415}
1416
df22291f
AK
1417static void ext4_print_free_blocks(struct inode *inode)
1418{
1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e 1420 printk(KERN_CRIT "Total free blocks count %lld\n",
5dee5437
TT
1421 EXT4_C2B(EXT4_SB(inode->i_sb),
1422 ext4_count_free_clusters(inode->i_sb)));
1693918e
TT
1423 printk(KERN_CRIT "Free/Dirty block details\n");
1424 printk(KERN_CRIT "free_blocks=%lld\n",
57042651
TT
1425 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1426 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1693918e 1427 printk(KERN_CRIT "dirty_blocks=%lld\n",
7b415bf6
AK
1428 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1429 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1693918e
TT
1430 printk(KERN_CRIT "Block reservation details\n");
1431 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1432 EXT4_I(inode)->i_reserved_data_blocks);
1433 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1434 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1435 return;
1436}
1437
64769240 1438/*
5a87b7a5
TT
1439 * mpage_da_map_and_submit - go through given space, map them
1440 * if necessary, and then submit them for I/O
64769240 1441 *
8dc207c0 1442 * @mpd - bh describing space
64769240
AT
1443 *
1444 * The function skips space we know is already mapped to disk blocks.
1445 *
64769240 1446 */
5a87b7a5 1447static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1448{
2ac3b6e0 1449 int err, blks, get_blocks_flags;
1de3e3df 1450 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1451 sector_t next = mpd->b_blocknr;
1452 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1453 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1454 handle_t *handle = NULL;
64769240
AT
1455
1456 /*
5a87b7a5
TT
1457 * If the blocks are mapped already, or we couldn't accumulate
1458 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1459 */
5a87b7a5
TT
1460 if ((mpd->b_size == 0) ||
1461 ((mpd->b_state & (1 << BH_Mapped)) &&
1462 !(mpd->b_state & (1 << BH_Delay)) &&
1463 !(mpd->b_state & (1 << BH_Unwritten))))
1464 goto submit_io;
2fa3cdfb
TT
1465
1466 handle = ext4_journal_current_handle();
1467 BUG_ON(!handle);
1468
79ffab34 1469 /*
79e83036 1470 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1471 * blocks, or to convert an uninitialized extent to be
1472 * initialized (in the case where we have written into
1473 * one or more preallocated blocks).
1474 *
1475 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1476 * indicate that we are on the delayed allocation path. This
1477 * affects functions in many different parts of the allocation
1478 * call path. This flag exists primarily because we don't
79e83036 1479 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1480 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1481 * inode's allocation semaphore is taken.
1482 *
1483 * If the blocks in questions were delalloc blocks, set
1484 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1485 * variables are updated after the blocks have been allocated.
79ffab34 1486 */
2ed88685
TT
1487 map.m_lblk = next;
1488 map.m_len = max_blocks;
1296cc85 1489 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1490 if (ext4_should_dioread_nolock(mpd->inode))
1491 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1492 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1493 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1494
2ed88685 1495 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1496 if (blks < 0) {
e3570639
ES
1497 struct super_block *sb = mpd->inode->i_sb;
1498
2fa3cdfb 1499 err = blks;
ed5bde0b 1500 /*
5a87b7a5 1501 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1502 * appears to be free blocks we will just let
1503 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1504 */
1505 if (err == -EAGAIN)
5a87b7a5 1506 goto submit_io;
df22291f 1507
5dee5437 1508 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1509 mpd->retval = err;
5a87b7a5 1510 goto submit_io;
df22291f
AK
1511 }
1512
c4a0c46e 1513 /*
ed5bde0b
TT
1514 * get block failure will cause us to loop in
1515 * writepages, because a_ops->writepage won't be able
1516 * to make progress. The page will be redirtied by
1517 * writepage and writepages will again try to write
1518 * the same.
c4a0c46e 1519 */
e3570639
ES
1520 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1521 ext4_msg(sb, KERN_CRIT,
1522 "delayed block allocation failed for inode %lu "
1523 "at logical offset %llu with max blocks %zd "
1524 "with error %d", mpd->inode->i_ino,
1525 (unsigned long long) next,
1526 mpd->b_size >> mpd->inode->i_blkbits, err);
1527 ext4_msg(sb, KERN_CRIT,
1528 "This should not happen!! Data will be lost\n");
1529 if (err == -ENOSPC)
1530 ext4_print_free_blocks(mpd->inode);
030ba6bc 1531 }
2fa3cdfb 1532 /* invalidate all the pages */
c7f5938a 1533 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1534
1535 /* Mark this page range as having been completed */
1536 mpd->io_done = 1;
5a87b7a5 1537 return;
c4a0c46e 1538 }
2fa3cdfb
TT
1539 BUG_ON(blks == 0);
1540
1de3e3df 1541 mapp = &map;
2ed88685
TT
1542 if (map.m_flags & EXT4_MAP_NEW) {
1543 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1544 int i;
64769240 1545
2ed88685
TT
1546 for (i = 0; i < map.m_len; i++)
1547 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1548
decbd919
TT
1549 if (ext4_should_order_data(mpd->inode)) {
1550 err = ext4_jbd2_file_inode(handle, mpd->inode);
1551 if (err)
1552 /* Only if the journal is aborted */
1553 return;
1554 }
2fa3cdfb
TT
1555 }
1556
1557 /*
03f5d8bc 1558 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1559 */
1560 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1561 if (disksize > i_size_read(mpd->inode))
1562 disksize = i_size_read(mpd->inode);
1563 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1564 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1565 err = ext4_mark_inode_dirty(handle, mpd->inode);
1566 if (err)
1567 ext4_error(mpd->inode->i_sb,
1568 "Failed to mark inode %lu dirty",
1569 mpd->inode->i_ino);
2fa3cdfb
TT
1570 }
1571
5a87b7a5 1572submit_io:
1de3e3df 1573 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1574 mpd->io_done = 1;
64769240
AT
1575}
1576
bf068ee2
AK
1577#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1578 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1579
1580/*
1581 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1582 *
1583 * @mpd->lbh - extent of blocks
1584 * @logical - logical number of the block in the file
1585 * @bh - bh of the block (used to access block's state)
1586 *
1587 * the function is used to collect contig. blocks in same state
1588 */
1589static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1590 sector_t logical, size_t b_size,
1591 unsigned long b_state)
64769240 1592{
64769240 1593 sector_t next;
8dc207c0 1594 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1595
c445e3e0
ES
1596 /*
1597 * XXX Don't go larger than mballoc is willing to allocate
1598 * This is a stopgap solution. We eventually need to fold
1599 * mpage_da_submit_io() into this function and then call
79e83036 1600 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1601 */
1602 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1603 goto flush_it;
1604
525f4ed8 1605 /* check if thereserved journal credits might overflow */
12e9b892 1606 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1607 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1608 /*
1609 * With non-extent format we are limited by the journal
1610 * credit available. Total credit needed to insert
1611 * nrblocks contiguous blocks is dependent on the
1612 * nrblocks. So limit nrblocks.
1613 */
1614 goto flush_it;
1615 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1616 EXT4_MAX_TRANS_DATA) {
1617 /*
1618 * Adding the new buffer_head would make it cross the
1619 * allowed limit for which we have journal credit
1620 * reserved. So limit the new bh->b_size
1621 */
1622 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1623 mpd->inode->i_blkbits;
1624 /* we will do mpage_da_submit_io in the next loop */
1625 }
1626 }
64769240
AT
1627 /*
1628 * First block in the extent
1629 */
8dc207c0
TT
1630 if (mpd->b_size == 0) {
1631 mpd->b_blocknr = logical;
1632 mpd->b_size = b_size;
1633 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1634 return;
1635 }
1636
8dc207c0 1637 next = mpd->b_blocknr + nrblocks;
64769240
AT
1638 /*
1639 * Can we merge the block to our big extent?
1640 */
8dc207c0
TT
1641 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1642 mpd->b_size += b_size;
64769240
AT
1643 return;
1644 }
1645
525f4ed8 1646flush_it:
64769240
AT
1647 /*
1648 * We couldn't merge the block to our extent, so we
1649 * need to flush current extent and start new one
1650 */
5a87b7a5 1651 mpage_da_map_and_submit(mpd);
a1d6cc56 1652 return;
64769240
AT
1653}
1654
c364b22c 1655static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1656{
c364b22c 1657 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1658}
1659
5356f261
AK
1660/*
1661 * This function is grabs code from the very beginning of
1662 * ext4_map_blocks, but assumes that the caller is from delayed write
1663 * time. This function looks up the requested blocks and sets the
1664 * buffer delay bit under the protection of i_data_sem.
1665 */
1666static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1667 struct ext4_map_blocks *map,
1668 struct buffer_head *bh)
1669{
1670 int retval;
1671 sector_t invalid_block = ~((sector_t) 0xffff);
1672
1673 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1674 invalid_block = ~0;
1675
1676 map->m_flags = 0;
1677 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1678 "logical block %lu\n", inode->i_ino, map->m_len,
1679 (unsigned long) map->m_lblk);
1680 /*
1681 * Try to see if we can get the block without requesting a new
1682 * file system block.
1683 */
1684 down_read((&EXT4_I(inode)->i_data_sem));
1685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1686 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1687 else
1688 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1689
1690 if (retval == 0) {
1691 /*
1692 * XXX: __block_prepare_write() unmaps passed block,
1693 * is it OK?
1694 */
1695 /* If the block was allocated from previously allocated cluster,
1696 * then we dont need to reserve it again. */
1697 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1698 retval = ext4_da_reserve_space(inode, iblock);
1699 if (retval)
1700 /* not enough space to reserve */
1701 goto out_unlock;
1702 }
1703
1704 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1705 * and it should not appear on the bh->b_state.
1706 */
1707 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1708
1709 map_bh(bh, inode->i_sb, invalid_block);
1710 set_buffer_new(bh);
1711 set_buffer_delay(bh);
1712 }
1713
1714out_unlock:
1715 up_read((&EXT4_I(inode)->i_data_sem));
1716
1717 return retval;
1718}
1719
64769240 1720/*
b920c755
TT
1721 * This is a special get_blocks_t callback which is used by
1722 * ext4_da_write_begin(). It will either return mapped block or
1723 * reserve space for a single block.
29fa89d0
AK
1724 *
1725 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1726 * We also have b_blocknr = -1 and b_bdev initialized properly
1727 *
1728 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1729 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1730 * initialized properly.
64769240
AT
1731 */
1732static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1733 struct buffer_head *bh, int create)
64769240 1734{
2ed88685 1735 struct ext4_map_blocks map;
64769240
AT
1736 int ret = 0;
1737
1738 BUG_ON(create == 0);
2ed88685
TT
1739 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1740
1741 map.m_lblk = iblock;
1742 map.m_len = 1;
64769240
AT
1743
1744 /*
1745 * first, we need to know whether the block is allocated already
1746 * preallocated blocks are unmapped but should treated
1747 * the same as allocated blocks.
1748 */
5356f261
AK
1749 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1750 if (ret <= 0)
2ed88685 1751 return ret;
64769240 1752
2ed88685
TT
1753 map_bh(bh, inode->i_sb, map.m_pblk);
1754 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1755
1756 if (buffer_unwritten(bh)) {
1757 /* A delayed write to unwritten bh should be marked
1758 * new and mapped. Mapped ensures that we don't do
1759 * get_block multiple times when we write to the same
1760 * offset and new ensures that we do proper zero out
1761 * for partial write.
1762 */
1763 set_buffer_new(bh);
c8205636 1764 set_buffer_mapped(bh);
2ed88685
TT
1765 }
1766 return 0;
64769240 1767}
61628a3f 1768
b920c755
TT
1769/*
1770 * This function is used as a standard get_block_t calback function
1771 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1772 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1773 * These functions should only try to map a single block at a time.
b920c755
TT
1774 *
1775 * Since this function doesn't do block allocations even if the caller
1776 * requests it by passing in create=1, it is critically important that
1777 * any caller checks to make sure that any buffer heads are returned
1778 * by this function are either all already mapped or marked for
206f7ab4
CH
1779 * delayed allocation before calling block_write_full_page(). Otherwise,
1780 * b_blocknr could be left unitialized, and the page write functions will
1781 * be taken by surprise.
b920c755
TT
1782 */
1783static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1784 struct buffer_head *bh_result, int create)
1785{
a2dc52b5 1786 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1787 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1788}
1789
62e086be
AK
1790static int bget_one(handle_t *handle, struct buffer_head *bh)
1791{
1792 get_bh(bh);
1793 return 0;
1794}
1795
1796static int bput_one(handle_t *handle, struct buffer_head *bh)
1797{
1798 put_bh(bh);
1799 return 0;
1800}
1801
1802static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1803 unsigned int len)
1804{
1805 struct address_space *mapping = page->mapping;
1806 struct inode *inode = mapping->host;
1807 struct buffer_head *page_bufs;
1808 handle_t *handle = NULL;
1809 int ret = 0;
1810 int err;
1811
cb20d518 1812 ClearPageChecked(page);
62e086be
AK
1813 page_bufs = page_buffers(page);
1814 BUG_ON(!page_bufs);
1815 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1816 /* As soon as we unlock the page, it can go away, but we have
1817 * references to buffers so we are safe */
1818 unlock_page(page);
1819
1820 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1821 if (IS_ERR(handle)) {
1822 ret = PTR_ERR(handle);
1823 goto out;
1824 }
1825
441c8508
CW
1826 BUG_ON(!ext4_handle_valid(handle));
1827
62e086be
AK
1828 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1829 do_journal_get_write_access);
1830
1831 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1832 write_end_fn);
1833 if (ret == 0)
1834 ret = err;
2d859db3 1835 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1836 err = ext4_journal_stop(handle);
1837 if (!ret)
1838 ret = err;
1839
1840 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1841 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1842out:
1843 return ret;
1844}
1845
744692dc
JZ
1846static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1847static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1848
61628a3f 1849/*
43ce1d23
AK
1850 * Note that we don't need to start a transaction unless we're journaling data
1851 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1852 * need to file the inode to the transaction's list in ordered mode because if
1853 * we are writing back data added by write(), the inode is already there and if
25985edc 1854 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1855 * transaction the data will hit the disk. In case we are journaling data, we
1856 * cannot start transaction directly because transaction start ranks above page
1857 * lock so we have to do some magic.
1858 *
b920c755
TT
1859 * This function can get called via...
1860 * - ext4_da_writepages after taking page lock (have journal handle)
1861 * - journal_submit_inode_data_buffers (no journal handle)
1862 * - shrink_page_list via pdflush (no journal handle)
1863 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1864 *
1865 * We don't do any block allocation in this function. If we have page with
1866 * multiple blocks we need to write those buffer_heads that are mapped. This
1867 * is important for mmaped based write. So if we do with blocksize 1K
1868 * truncate(f, 1024);
1869 * a = mmap(f, 0, 4096);
1870 * a[0] = 'a';
1871 * truncate(f, 4096);
1872 * we have in the page first buffer_head mapped via page_mkwrite call back
1873 * but other bufer_heads would be unmapped but dirty(dirty done via the
1874 * do_wp_page). So writepage should write the first block. If we modify
1875 * the mmap area beyond 1024 we will again get a page_fault and the
1876 * page_mkwrite callback will do the block allocation and mark the
1877 * buffer_heads mapped.
1878 *
1879 * We redirty the page if we have any buffer_heads that is either delay or
1880 * unwritten in the page.
1881 *
1882 * We can get recursively called as show below.
1883 *
1884 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1885 * ext4_writepage()
1886 *
1887 * But since we don't do any block allocation we should not deadlock.
1888 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1889 */
43ce1d23 1890static int ext4_writepage(struct page *page,
62e086be 1891 struct writeback_control *wbc)
64769240 1892{
a42afc5f 1893 int ret = 0, commit_write = 0;
61628a3f 1894 loff_t size;
498e5f24 1895 unsigned int len;
744692dc 1896 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1897 struct inode *inode = page->mapping->host;
1898
a9c667f8 1899 trace_ext4_writepage(page);
f0e6c985
AK
1900 size = i_size_read(inode);
1901 if (page->index == size >> PAGE_CACHE_SHIFT)
1902 len = size & ~PAGE_CACHE_MASK;
1903 else
1904 len = PAGE_CACHE_SIZE;
64769240 1905
a42afc5f
TT
1906 /*
1907 * If the page does not have buffers (for whatever reason),
a107e5a3 1908 * try to create them using __block_write_begin. If this
a42afc5f
TT
1909 * fails, redirty the page and move on.
1910 */
b1142e8f 1911 if (!page_has_buffers(page)) {
a107e5a3 1912 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1913 noalloc_get_block_write)) {
1914 redirty_page:
f0e6c985
AK
1915 redirty_page_for_writepage(wbc, page);
1916 unlock_page(page);
1917 return 0;
1918 }
a42afc5f
TT
1919 commit_write = 1;
1920 }
1921 page_bufs = page_buffers(page);
1922 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1923 ext4_bh_delay_or_unwritten)) {
f0e6c985 1924 /*
b1142e8f
TT
1925 * We don't want to do block allocation, so redirty
1926 * the page and return. We may reach here when we do
1927 * a journal commit via journal_submit_inode_data_buffers.
1928 * We can also reach here via shrink_page_list
f0e6c985 1929 */
a42afc5f
TT
1930 goto redirty_page;
1931 }
1932 if (commit_write)
ed9b3e33 1933 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1934 block_commit_write(page, 0, len);
64769240 1935
cb20d518 1936 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1937 /*
1938 * It's mmapped pagecache. Add buffers and journal it. There
1939 * doesn't seem much point in redirtying the page here.
1940 */
3f0ca309 1941 return __ext4_journalled_writepage(page, len);
43ce1d23 1942
a42afc5f 1943 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1944 ext4_set_bh_endio(page_bufs, inode);
1945 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1946 wbc, ext4_end_io_buffer_write);
1947 } else
b920c755
TT
1948 ret = block_write_full_page(page, noalloc_get_block_write,
1949 wbc);
64769240 1950
64769240
AT
1951 return ret;
1952}
1953
61628a3f 1954/*
525f4ed8 1955 * This is called via ext4_da_writepages() to
25985edc 1956 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1957 * a single extent allocation into a single transaction,
1958 * ext4_da_writpeages() will loop calling this before
1959 * the block allocation.
61628a3f 1960 */
525f4ed8
MC
1961
1962static int ext4_da_writepages_trans_blocks(struct inode *inode)
1963{
1964 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1965
1966 /*
1967 * With non-extent format the journal credit needed to
1968 * insert nrblocks contiguous block is dependent on
1969 * number of contiguous block. So we will limit
1970 * number of contiguous block to a sane value
1971 */
12e9b892 1972 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1973 (max_blocks > EXT4_MAX_TRANS_DATA))
1974 max_blocks = EXT4_MAX_TRANS_DATA;
1975
1976 return ext4_chunk_trans_blocks(inode, max_blocks);
1977}
61628a3f 1978
8e48dcfb
TT
1979/*
1980 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1981 * address space and accumulate pages that need writing, and call
168fc022
TT
1982 * mpage_da_map_and_submit to map a single contiguous memory region
1983 * and then write them.
8e48dcfb
TT
1984 */
1985static int write_cache_pages_da(struct address_space *mapping,
1986 struct writeback_control *wbc,
72f84e65
ES
1987 struct mpage_da_data *mpd,
1988 pgoff_t *done_index)
8e48dcfb 1989{
4f01b02c 1990 struct buffer_head *bh, *head;
168fc022 1991 struct inode *inode = mapping->host;
4f01b02c
TT
1992 struct pagevec pvec;
1993 unsigned int nr_pages;
1994 sector_t logical;
1995 pgoff_t index, end;
1996 long nr_to_write = wbc->nr_to_write;
1997 int i, tag, ret = 0;
8e48dcfb 1998
168fc022
TT
1999 memset(mpd, 0, sizeof(struct mpage_da_data));
2000 mpd->wbc = wbc;
2001 mpd->inode = inode;
8e48dcfb
TT
2002 pagevec_init(&pvec, 0);
2003 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2004 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2005
6e6938b6 2006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2007 tag = PAGECACHE_TAG_TOWRITE;
2008 else
2009 tag = PAGECACHE_TAG_DIRTY;
2010
72f84e65 2011 *done_index = index;
4f01b02c 2012 while (index <= end) {
5b41d924 2013 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2014 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2015 if (nr_pages == 0)
4f01b02c 2016 return 0;
8e48dcfb
TT
2017
2018 for (i = 0; i < nr_pages; i++) {
2019 struct page *page = pvec.pages[i];
2020
2021 /*
2022 * At this point, the page may be truncated or
2023 * invalidated (changing page->mapping to NULL), or
2024 * even swizzled back from swapper_space to tmpfs file
2025 * mapping. However, page->index will not change
2026 * because we have a reference on the page.
2027 */
4f01b02c
TT
2028 if (page->index > end)
2029 goto out;
8e48dcfb 2030
72f84e65
ES
2031 *done_index = page->index + 1;
2032
78aaced3
TT
2033 /*
2034 * If we can't merge this page, and we have
2035 * accumulated an contiguous region, write it
2036 */
2037 if ((mpd->next_page != page->index) &&
2038 (mpd->next_page != mpd->first_page)) {
2039 mpage_da_map_and_submit(mpd);
2040 goto ret_extent_tail;
2041 }
2042
8e48dcfb
TT
2043 lock_page(page);
2044
2045 /*
4f01b02c
TT
2046 * If the page is no longer dirty, or its
2047 * mapping no longer corresponds to inode we
2048 * are writing (which means it has been
2049 * truncated or invalidated), or the page is
2050 * already under writeback and we are not
2051 * doing a data integrity writeback, skip the page
8e48dcfb 2052 */
4f01b02c
TT
2053 if (!PageDirty(page) ||
2054 (PageWriteback(page) &&
2055 (wbc->sync_mode == WB_SYNC_NONE)) ||
2056 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2057 unlock_page(page);
2058 continue;
2059 }
2060
7cb1a535 2061 wait_on_page_writeback(page);
8e48dcfb 2062 BUG_ON(PageWriteback(page));
8e48dcfb 2063
168fc022 2064 if (mpd->next_page != page->index)
8eb9e5ce 2065 mpd->first_page = page->index;
8eb9e5ce
TT
2066 mpd->next_page = page->index + 1;
2067 logical = (sector_t) page->index <<
2068 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2069
2070 if (!page_has_buffers(page)) {
4f01b02c
TT
2071 mpage_add_bh_to_extent(mpd, logical,
2072 PAGE_CACHE_SIZE,
8eb9e5ce 2073 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2074 if (mpd->io_done)
2075 goto ret_extent_tail;
8eb9e5ce
TT
2076 } else {
2077 /*
4f01b02c
TT
2078 * Page with regular buffer heads,
2079 * just add all dirty ones
8eb9e5ce
TT
2080 */
2081 head = page_buffers(page);
2082 bh = head;
2083 do {
2084 BUG_ON(buffer_locked(bh));
2085 /*
2086 * We need to try to allocate
2087 * unmapped blocks in the same page.
2088 * Otherwise we won't make progress
2089 * with the page in ext4_writepage
2090 */
2091 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2092 mpage_add_bh_to_extent(mpd, logical,
2093 bh->b_size,
2094 bh->b_state);
4f01b02c
TT
2095 if (mpd->io_done)
2096 goto ret_extent_tail;
8eb9e5ce
TT
2097 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2098 /*
4f01b02c
TT
2099 * mapped dirty buffer. We need
2100 * to update the b_state
2101 * because we look at b_state
2102 * in mpage_da_map_blocks. We
2103 * don't update b_size because
2104 * if we find an unmapped
2105 * buffer_head later we need to
2106 * use the b_state flag of that
2107 * buffer_head.
8eb9e5ce
TT
2108 */
2109 if (mpd->b_size == 0)
2110 mpd->b_state = bh->b_state & BH_FLAGS;
2111 }
2112 logical++;
2113 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2114 }
2115
2116 if (nr_to_write > 0) {
2117 nr_to_write--;
2118 if (nr_to_write == 0 &&
4f01b02c 2119 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2120 /*
2121 * We stop writing back only if we are
2122 * not doing integrity sync. In case of
2123 * integrity sync we have to keep going
2124 * because someone may be concurrently
2125 * dirtying pages, and we might have
2126 * synced a lot of newly appeared dirty
2127 * pages, but have not synced all of the
2128 * old dirty pages.
2129 */
4f01b02c 2130 goto out;
8e48dcfb
TT
2131 }
2132 }
2133 pagevec_release(&pvec);
2134 cond_resched();
2135 }
4f01b02c
TT
2136 return 0;
2137ret_extent_tail:
2138 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2139out:
2140 pagevec_release(&pvec);
2141 cond_resched();
8e48dcfb
TT
2142 return ret;
2143}
2144
2145
64769240 2146static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2147 struct writeback_control *wbc)
64769240 2148{
22208ded
AK
2149 pgoff_t index;
2150 int range_whole = 0;
61628a3f 2151 handle_t *handle = NULL;
df22291f 2152 struct mpage_da_data mpd;
5e745b04 2153 struct inode *inode = mapping->host;
498e5f24 2154 int pages_written = 0;
55138e0b 2155 unsigned int max_pages;
2acf2c26 2156 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2157 int needed_blocks, ret = 0;
2158 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2159 loff_t range_start = wbc->range_start;
5e745b04 2160 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2161 pgoff_t done_index = 0;
5b41d924 2162 pgoff_t end;
1bce63d1 2163 struct blk_plug plug;
61628a3f 2164
9bffad1e 2165 trace_ext4_da_writepages(inode, wbc);
ba80b101 2166
61628a3f
MC
2167 /*
2168 * No pages to write? This is mainly a kludge to avoid starting
2169 * a transaction for special inodes like journal inode on last iput()
2170 * because that could violate lock ordering on umount
2171 */
a1d6cc56 2172 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2173 return 0;
2a21e37e
TT
2174
2175 /*
2176 * If the filesystem has aborted, it is read-only, so return
2177 * right away instead of dumping stack traces later on that
2178 * will obscure the real source of the problem. We test
4ab2f15b 2179 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2180 * the latter could be true if the filesystem is mounted
2181 * read-only, and in that case, ext4_da_writepages should
2182 * *never* be called, so if that ever happens, we would want
2183 * the stack trace.
2184 */
4ab2f15b 2185 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2186 return -EROFS;
2187
22208ded
AK
2188 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2189 range_whole = 1;
61628a3f 2190
2acf2c26
AK
2191 range_cyclic = wbc->range_cyclic;
2192 if (wbc->range_cyclic) {
22208ded 2193 index = mapping->writeback_index;
2acf2c26
AK
2194 if (index)
2195 cycled = 0;
2196 wbc->range_start = index << PAGE_CACHE_SHIFT;
2197 wbc->range_end = LLONG_MAX;
2198 wbc->range_cyclic = 0;
5b41d924
ES
2199 end = -1;
2200 } else {
22208ded 2201 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2202 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2203 }
a1d6cc56 2204
55138e0b
TT
2205 /*
2206 * This works around two forms of stupidity. The first is in
2207 * the writeback code, which caps the maximum number of pages
2208 * written to be 1024 pages. This is wrong on multiple
2209 * levels; different architectues have a different page size,
2210 * which changes the maximum amount of data which gets
2211 * written. Secondly, 4 megabytes is way too small. XFS
2212 * forces this value to be 16 megabytes by multiplying
2213 * nr_to_write parameter by four, and then relies on its
2214 * allocator to allocate larger extents to make them
2215 * contiguous. Unfortunately this brings us to the second
2216 * stupidity, which is that ext4's mballoc code only allocates
2217 * at most 2048 blocks. So we force contiguous writes up to
2218 * the number of dirty blocks in the inode, or
2219 * sbi->max_writeback_mb_bump whichever is smaller.
2220 */
2221 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2222 if (!range_cyclic && range_whole) {
2223 if (wbc->nr_to_write == LONG_MAX)
2224 desired_nr_to_write = wbc->nr_to_write;
2225 else
2226 desired_nr_to_write = wbc->nr_to_write * 8;
2227 } else
55138e0b
TT
2228 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2229 max_pages);
2230 if (desired_nr_to_write > max_pages)
2231 desired_nr_to_write = max_pages;
2232
2233 if (wbc->nr_to_write < desired_nr_to_write) {
2234 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2235 wbc->nr_to_write = desired_nr_to_write;
2236 }
2237
2acf2c26 2238retry:
6e6938b6 2239 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2240 tag_pages_for_writeback(mapping, index, end);
2241
1bce63d1 2242 blk_start_plug(&plug);
22208ded 2243 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2244
2245 /*
2246 * we insert one extent at a time. So we need
2247 * credit needed for single extent allocation.
2248 * journalled mode is currently not supported
2249 * by delalloc
2250 */
2251 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2252 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2253
61628a3f
MC
2254 /* start a new transaction*/
2255 handle = ext4_journal_start(inode, needed_blocks);
2256 if (IS_ERR(handle)) {
2257 ret = PTR_ERR(handle);
1693918e 2258 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2259 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2260 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2261 goto out_writepages;
2262 }
f63e6005
TT
2263
2264 /*
8eb9e5ce 2265 * Now call write_cache_pages_da() to find the next
f63e6005 2266 * contiguous region of logical blocks that need
8eb9e5ce 2267 * blocks to be allocated by ext4 and submit them.
f63e6005 2268 */
72f84e65 2269 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2270 /*
af901ca1 2271 * If we have a contiguous extent of pages and we
f63e6005
TT
2272 * haven't done the I/O yet, map the blocks and submit
2273 * them for I/O.
2274 */
2275 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2276 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2277 ret = MPAGE_DA_EXTENT_TAIL;
2278 }
b3a3ca8c 2279 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2280 wbc->nr_to_write -= mpd.pages_written;
df22291f 2281
61628a3f 2282 ext4_journal_stop(handle);
df22291f 2283
8f64b32e 2284 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2285 /* commit the transaction which would
2286 * free blocks released in the transaction
2287 * and try again
2288 */
df22291f 2289 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2290 ret = 0;
2291 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2292 /*
2293 * got one extent now try with
2294 * rest of the pages
2295 */
22208ded 2296 pages_written += mpd.pages_written;
a1d6cc56 2297 ret = 0;
2acf2c26 2298 io_done = 1;
22208ded 2299 } else if (wbc->nr_to_write)
61628a3f
MC
2300 /*
2301 * There is no more writeout needed
2302 * or we requested for a noblocking writeout
2303 * and we found the device congested
2304 */
61628a3f 2305 break;
a1d6cc56 2306 }
1bce63d1 2307 blk_finish_plug(&plug);
2acf2c26
AK
2308 if (!io_done && !cycled) {
2309 cycled = 1;
2310 index = 0;
2311 wbc->range_start = index << PAGE_CACHE_SHIFT;
2312 wbc->range_end = mapping->writeback_index - 1;
2313 goto retry;
2314 }
22208ded
AK
2315
2316 /* Update index */
2acf2c26 2317 wbc->range_cyclic = range_cyclic;
22208ded
AK
2318 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2319 /*
2320 * set the writeback_index so that range_cyclic
2321 * mode will write it back later
2322 */
72f84e65 2323 mapping->writeback_index = done_index;
a1d6cc56 2324
61628a3f 2325out_writepages:
2faf2e19 2326 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2327 wbc->range_start = range_start;
9bffad1e 2328 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2329 return ret;
64769240
AT
2330}
2331
79f0be8d
AK
2332#define FALL_BACK_TO_NONDELALLOC 1
2333static int ext4_nonda_switch(struct super_block *sb)
2334{
2335 s64 free_blocks, dirty_blocks;
2336 struct ext4_sb_info *sbi = EXT4_SB(sb);
2337
2338 /*
2339 * switch to non delalloc mode if we are running low
2340 * on free block. The free block accounting via percpu
179f7ebf 2341 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2342 * accumulated on each CPU without updating global counters
2343 * Delalloc need an accurate free block accounting. So switch
2344 * to non delalloc when we are near to error range.
2345 */
57042651
TT
2346 free_blocks = EXT4_C2B(sbi,
2347 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2348 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2349 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2350 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2351 /*
c8afb446
ES
2352 * free block count is less than 150% of dirty blocks
2353 * or free blocks is less than watermark
79f0be8d
AK
2354 */
2355 return 1;
2356 }
c8afb446
ES
2357 /*
2358 * Even if we don't switch but are nearing capacity,
2359 * start pushing delalloc when 1/2 of free blocks are dirty.
2360 */
2361 if (free_blocks < 2 * dirty_blocks)
2362 writeback_inodes_sb_if_idle(sb);
2363
79f0be8d
AK
2364 return 0;
2365}
2366
64769240 2367static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
64769240 2370{
72b8ab9d 2371 int ret, retries = 0;
64769240
AT
2372 struct page *page;
2373 pgoff_t index;
64769240
AT
2374 struct inode *inode = mapping->host;
2375 handle_t *handle;
02fac129 2376 loff_t page_len;
64769240
AT
2377
2378 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2379
2380 if (ext4_nonda_switch(inode->i_sb)) {
2381 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2382 return ext4_write_begin(file, mapping, pos,
2383 len, flags, pagep, fsdata);
2384 }
2385 *fsdata = (void *)0;
9bffad1e 2386 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2387retry:
64769240
AT
2388 /*
2389 * With delayed allocation, we don't log the i_disksize update
2390 * if there is delayed block allocation. But we still need
2391 * to journalling the i_disksize update if writes to the end
2392 * of file which has an already mapped buffer.
2393 */
2394 handle = ext4_journal_start(inode, 1);
2395 if (IS_ERR(handle)) {
2396 ret = PTR_ERR(handle);
2397 goto out;
2398 }
ebd3610b
JK
2399 /* We cannot recurse into the filesystem as the transaction is already
2400 * started */
2401 flags |= AOP_FLAG_NOFS;
64769240 2402
54566b2c 2403 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2404 if (!page) {
2405 ext4_journal_stop(handle);
2406 ret = -ENOMEM;
2407 goto out;
2408 }
64769240
AT
2409 *pagep = page;
2410
6e1db88d 2411 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2412 if (ret < 0) {
2413 unlock_page(page);
2414 ext4_journal_stop(handle);
2415 page_cache_release(page);
ae4d5372
AK
2416 /*
2417 * block_write_begin may have instantiated a few blocks
2418 * outside i_size. Trim these off again. Don't need
2419 * i_size_read because we hold i_mutex.
2420 */
2421 if (pos + len > inode->i_size)
b9a4207d 2422 ext4_truncate_failed_write(inode);
02fac129
AH
2423 } else {
2424 page_len = pos & (PAGE_CACHE_SIZE - 1);
2425 if (page_len > 0) {
2426 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2427 inode, page, pos - page_len, page_len,
2428 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2429 }
64769240
AT
2430 }
2431
d2a17637
MC
2432 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2433 goto retry;
64769240
AT
2434out:
2435 return ret;
2436}
2437
632eaeab
MC
2438/*
2439 * Check if we should update i_disksize
2440 * when write to the end of file but not require block allocation
2441 */
2442static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2443 unsigned long offset)
632eaeab
MC
2444{
2445 struct buffer_head *bh;
2446 struct inode *inode = page->mapping->host;
2447 unsigned int idx;
2448 int i;
2449
2450 bh = page_buffers(page);
2451 idx = offset >> inode->i_blkbits;
2452
af5bc92d 2453 for (i = 0; i < idx; i++)
632eaeab
MC
2454 bh = bh->b_this_page;
2455
29fa89d0 2456 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2457 return 0;
2458 return 1;
2459}
2460
64769240 2461static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2462 struct address_space *mapping,
2463 loff_t pos, unsigned len, unsigned copied,
2464 struct page *page, void *fsdata)
64769240
AT
2465{
2466 struct inode *inode = mapping->host;
2467 int ret = 0, ret2;
2468 handle_t *handle = ext4_journal_current_handle();
2469 loff_t new_i_size;
632eaeab 2470 unsigned long start, end;
79f0be8d 2471 int write_mode = (int)(unsigned long)fsdata;
02fac129 2472 loff_t page_len;
79f0be8d
AK
2473
2474 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2475 if (ext4_should_order_data(inode)) {
2476 return ext4_ordered_write_end(file, mapping, pos,
2477 len, copied, page, fsdata);
2478 } else if (ext4_should_writeback_data(inode)) {
2479 return ext4_writeback_write_end(file, mapping, pos,
2480 len, copied, page, fsdata);
2481 } else {
2482 BUG();
2483 }
2484 }
632eaeab 2485
9bffad1e 2486 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2487 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2488 end = start + copied - 1;
64769240
AT
2489
2490 /*
2491 * generic_write_end() will run mark_inode_dirty() if i_size
2492 * changes. So let's piggyback the i_disksize mark_inode_dirty
2493 * into that.
2494 */
2495
2496 new_i_size = pos + copied;
632eaeab
MC
2497 if (new_i_size > EXT4_I(inode)->i_disksize) {
2498 if (ext4_da_should_update_i_disksize(page, end)) {
2499 down_write(&EXT4_I(inode)->i_data_sem);
2500 if (new_i_size > EXT4_I(inode)->i_disksize) {
2501 /*
2502 * Updating i_disksize when extending file
2503 * without needing block allocation
2504 */
2505 if (ext4_should_order_data(inode))
2506 ret = ext4_jbd2_file_inode(handle,
2507 inode);
64769240 2508
632eaeab
MC
2509 EXT4_I(inode)->i_disksize = new_i_size;
2510 }
2511 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2512 /* We need to mark inode dirty even if
2513 * new_i_size is less that inode->i_size
2514 * bu greater than i_disksize.(hint delalloc)
2515 */
2516 ext4_mark_inode_dirty(handle, inode);
64769240 2517 }
632eaeab 2518 }
64769240
AT
2519 ret2 = generic_write_end(file, mapping, pos, len, copied,
2520 page, fsdata);
02fac129
AH
2521
2522 page_len = PAGE_CACHE_SIZE -
2523 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2524
2525 if (page_len > 0) {
2526 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2527 inode, page, pos + copied - 1, page_len,
2528 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2529 }
2530
64769240
AT
2531 copied = ret2;
2532 if (ret2 < 0)
2533 ret = ret2;
2534 ret2 = ext4_journal_stop(handle);
2535 if (!ret)
2536 ret = ret2;
2537
2538 return ret ? ret : copied;
2539}
2540
2541static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2542{
64769240
AT
2543 /*
2544 * Drop reserved blocks
2545 */
2546 BUG_ON(!PageLocked(page));
2547 if (!page_has_buffers(page))
2548 goto out;
2549
d2a17637 2550 ext4_da_page_release_reservation(page, offset);
64769240
AT
2551
2552out:
2553 ext4_invalidatepage(page, offset);
2554
2555 return;
2556}
2557
ccd2506b
TT
2558/*
2559 * Force all delayed allocation blocks to be allocated for a given inode.
2560 */
2561int ext4_alloc_da_blocks(struct inode *inode)
2562{
fb40ba0d
TT
2563 trace_ext4_alloc_da_blocks(inode);
2564
ccd2506b
TT
2565 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2566 !EXT4_I(inode)->i_reserved_meta_blocks)
2567 return 0;
2568
2569 /*
2570 * We do something simple for now. The filemap_flush() will
2571 * also start triggering a write of the data blocks, which is
2572 * not strictly speaking necessary (and for users of
2573 * laptop_mode, not even desirable). However, to do otherwise
2574 * would require replicating code paths in:
de9a55b8 2575 *
ccd2506b
TT
2576 * ext4_da_writepages() ->
2577 * write_cache_pages() ---> (via passed in callback function)
2578 * __mpage_da_writepage() -->
2579 * mpage_add_bh_to_extent()
2580 * mpage_da_map_blocks()
2581 *
2582 * The problem is that write_cache_pages(), located in
2583 * mm/page-writeback.c, marks pages clean in preparation for
2584 * doing I/O, which is not desirable if we're not planning on
2585 * doing I/O at all.
2586 *
2587 * We could call write_cache_pages(), and then redirty all of
380cf090 2588 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2589 * would be ugly in the extreme. So instead we would need to
2590 * replicate parts of the code in the above functions,
25985edc 2591 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2592 * write out the pages, but rather only collect contiguous
2593 * logical block extents, call the multi-block allocator, and
2594 * then update the buffer heads with the block allocations.
de9a55b8 2595 *
ccd2506b
TT
2596 * For now, though, we'll cheat by calling filemap_flush(),
2597 * which will map the blocks, and start the I/O, but not
2598 * actually wait for the I/O to complete.
2599 */
2600 return filemap_flush(inode->i_mapping);
2601}
64769240 2602
ac27a0ec
DK
2603/*
2604 * bmap() is special. It gets used by applications such as lilo and by
2605 * the swapper to find the on-disk block of a specific piece of data.
2606 *
2607 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2608 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2609 * filesystem and enables swap, then they may get a nasty shock when the
2610 * data getting swapped to that swapfile suddenly gets overwritten by
2611 * the original zero's written out previously to the journal and
2612 * awaiting writeback in the kernel's buffer cache.
2613 *
2614 * So, if we see any bmap calls here on a modified, data-journaled file,
2615 * take extra steps to flush any blocks which might be in the cache.
2616 */
617ba13b 2617static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2618{
2619 struct inode *inode = mapping->host;
2620 journal_t *journal;
2621 int err;
2622
64769240
AT
2623 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2624 test_opt(inode->i_sb, DELALLOC)) {
2625 /*
2626 * With delalloc we want to sync the file
2627 * so that we can make sure we allocate
2628 * blocks for file
2629 */
2630 filemap_write_and_wait(mapping);
2631 }
2632
19f5fb7a
TT
2633 if (EXT4_JOURNAL(inode) &&
2634 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2635 /*
2636 * This is a REALLY heavyweight approach, but the use of
2637 * bmap on dirty files is expected to be extremely rare:
2638 * only if we run lilo or swapon on a freshly made file
2639 * do we expect this to happen.
2640 *
2641 * (bmap requires CAP_SYS_RAWIO so this does not
2642 * represent an unprivileged user DOS attack --- we'd be
2643 * in trouble if mortal users could trigger this path at
2644 * will.)
2645 *
617ba13b 2646 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2647 * regular files. If somebody wants to bmap a directory
2648 * or symlink and gets confused because the buffer
2649 * hasn't yet been flushed to disk, they deserve
2650 * everything they get.
2651 */
2652
19f5fb7a 2653 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2654 journal = EXT4_JOURNAL(inode);
dab291af
MC
2655 jbd2_journal_lock_updates(journal);
2656 err = jbd2_journal_flush(journal);
2657 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2658
2659 if (err)
2660 return 0;
2661 }
2662
af5bc92d 2663 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2664}
2665
617ba13b 2666static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2667{
0562e0ba 2668 trace_ext4_readpage(page);
617ba13b 2669 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2670}
2671
2672static int
617ba13b 2673ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2674 struct list_head *pages, unsigned nr_pages)
2675{
617ba13b 2676 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2677}
2678
744692dc
JZ
2679static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2680{
2681 struct buffer_head *head, *bh;
2682 unsigned int curr_off = 0;
2683
2684 if (!page_has_buffers(page))
2685 return;
2686 head = bh = page_buffers(page);
2687 do {
2688 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2689 && bh->b_private) {
2690 ext4_free_io_end(bh->b_private);
2691 bh->b_private = NULL;
2692 bh->b_end_io = NULL;
2693 }
2694 curr_off = curr_off + bh->b_size;
2695 bh = bh->b_this_page;
2696 } while (bh != head);
2697}
2698
617ba13b 2699static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2700{
617ba13b 2701 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2702
0562e0ba
JZ
2703 trace_ext4_invalidatepage(page, offset);
2704
744692dc
JZ
2705 /*
2706 * free any io_end structure allocated for buffers to be discarded
2707 */
2708 if (ext4_should_dioread_nolock(page->mapping->host))
2709 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2710 /*
2711 * If it's a full truncate we just forget about the pending dirtying
2712 */
2713 if (offset == 0)
2714 ClearPageChecked(page);
2715
0390131b
FM
2716 if (journal)
2717 jbd2_journal_invalidatepage(journal, page, offset);
2718 else
2719 block_invalidatepage(page, offset);
ac27a0ec
DK
2720}
2721
617ba13b 2722static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2723{
617ba13b 2724 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2725
0562e0ba
JZ
2726 trace_ext4_releasepage(page);
2727
ac27a0ec
DK
2728 WARN_ON(PageChecked(page));
2729 if (!page_has_buffers(page))
2730 return 0;
0390131b
FM
2731 if (journal)
2732 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2733 else
2734 return try_to_free_buffers(page);
ac27a0ec
DK
2735}
2736
2ed88685
TT
2737/*
2738 * ext4_get_block used when preparing for a DIO write or buffer write.
2739 * We allocate an uinitialized extent if blocks haven't been allocated.
2740 * The extent will be converted to initialized after the IO is complete.
2741 */
c7064ef1 2742static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2743 struct buffer_head *bh_result, int create)
2744{
c7064ef1 2745 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2746 inode->i_ino, create);
2ed88685
TT
2747 return _ext4_get_block(inode, iblock, bh_result,
2748 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2749}
2750
4c0425ff 2751static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2752 ssize_t size, void *private, int ret,
2753 bool is_async)
4c0425ff 2754{
72c5052d 2755 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2756 ext4_io_end_t *io_end = iocb->private;
2757 struct workqueue_struct *wq;
744692dc
JZ
2758 unsigned long flags;
2759 struct ext4_inode_info *ei;
4c0425ff 2760
4b70df18
M
2761 /* if not async direct IO or dio with 0 bytes write, just return */
2762 if (!io_end || !size)
552ef802 2763 goto out;
4b70df18 2764
8d5d02e6
MC
2765 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2767 iocb->private, io_end->inode->i_ino, iocb, offset,
2768 size);
8d5d02e6
MC
2769
2770 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2771 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
2772 ext4_free_io_end(io_end);
2773 iocb->private = NULL;
5b3ff237
JZ
2774out:
2775 if (is_async)
2776 aio_complete(iocb, ret, 0);
72c5052d 2777 inode_dio_done(inode);
5b3ff237 2778 return;
8d5d02e6
MC
2779 }
2780
4c0425ff
MC
2781 io_end->offset = offset;
2782 io_end->size = size;
5b3ff237
JZ
2783 if (is_async) {
2784 io_end->iocb = iocb;
2785 io_end->result = ret;
2786 }
4c0425ff
MC
2787 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2788
8d5d02e6 2789 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2790 ei = EXT4_I(io_end->inode);
2791 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2792 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2793 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2794
2795 /* queue the work to convert unwritten extents to written */
2796 queue_work(wq, &io_end->work);
4c0425ff 2797 iocb->private = NULL;
72c5052d
CH
2798
2799 /* XXX: probably should move into the real I/O completion handler */
2800 inode_dio_done(inode);
4c0425ff 2801}
c7064ef1 2802
744692dc
JZ
2803static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2804{
2805 ext4_io_end_t *io_end = bh->b_private;
2806 struct workqueue_struct *wq;
2807 struct inode *inode;
2808 unsigned long flags;
2809
2810 if (!test_clear_buffer_uninit(bh) || !io_end)
2811 goto out;
2812
2813 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2814 printk("sb umounted, discard end_io request for inode %lu\n",
2815 io_end->inode->i_ino);
2816 ext4_free_io_end(io_end);
2817 goto out;
2818 }
2819
32c80b32
TM
2820 /*
2821 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2822 * but being more careful is always safe for the future change.
2823 */
744692dc 2824 inode = io_end->inode;
32c80b32
TM
2825 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2826 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2827 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2828 }
744692dc
JZ
2829
2830 /* Add the io_end to per-inode completed io list*/
2831 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2832 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2833 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2834
2835 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2836 /* queue the work to convert unwritten extents to written */
2837 queue_work(wq, &io_end->work);
2838out:
2839 bh->b_private = NULL;
2840 bh->b_end_io = NULL;
2841 clear_buffer_uninit(bh);
2842 end_buffer_async_write(bh, uptodate);
2843}
2844
2845static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2846{
2847 ext4_io_end_t *io_end;
2848 struct page *page = bh->b_page;
2849 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2850 size_t size = bh->b_size;
2851
2852retry:
2853 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2854 if (!io_end) {
6db26ffc 2855 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2856 schedule();
2857 goto retry;
2858 }
2859 io_end->offset = offset;
2860 io_end->size = size;
2861 /*
2862 * We need to hold a reference to the page to make sure it
2863 * doesn't get evicted before ext4_end_io_work() has a chance
2864 * to convert the extent from written to unwritten.
2865 */
2866 io_end->page = page;
2867 get_page(io_end->page);
2868
2869 bh->b_private = io_end;
2870 bh->b_end_io = ext4_end_io_buffer_write;
2871 return 0;
2872}
2873
4c0425ff
MC
2874/*
2875 * For ext4 extent files, ext4 will do direct-io write to holes,
2876 * preallocated extents, and those write extend the file, no need to
2877 * fall back to buffered IO.
2878 *
b595076a 2879 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2880 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2881 * still keep the range to write as uninitialized.
4c0425ff 2882 *
8d5d02e6
MC
2883 * The unwrritten extents will be converted to written when DIO is completed.
2884 * For async direct IO, since the IO may still pending when return, we
25985edc 2885 * set up an end_io call back function, which will do the conversion
8d5d02e6 2886 * when async direct IO completed.
4c0425ff
MC
2887 *
2888 * If the O_DIRECT write will extend the file then add this inode to the
2889 * orphan list. So recovery will truncate it back to the original size
2890 * if the machine crashes during the write.
2891 *
2892 */
2893static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2894 const struct iovec *iov, loff_t offset,
2895 unsigned long nr_segs)
2896{
2897 struct file *file = iocb->ki_filp;
2898 struct inode *inode = file->f_mapping->host;
2899 ssize_t ret;
2900 size_t count = iov_length(iov, nr_segs);
2901
2902 loff_t final_size = offset + count;
2903 if (rw == WRITE && final_size <= inode->i_size) {
2904 /*
8d5d02e6
MC
2905 * We could direct write to holes and fallocate.
2906 *
2907 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2908 * to prevent parallel buffered read to expose the stale data
4c0425ff 2909 * before DIO complete the data IO.
8d5d02e6
MC
2910 *
2911 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2912 * will just simply mark the buffer mapped but still
2913 * keep the extents uninitialized.
2914 *
8d5d02e6
MC
2915 * for non AIO case, we will convert those unwritten extents
2916 * to written after return back from blockdev_direct_IO.
2917 *
2918 * for async DIO, the conversion needs to be defered when
2919 * the IO is completed. The ext4 end_io callback function
2920 * will be called to take care of the conversion work.
2921 * Here for async case, we allocate an io_end structure to
2922 * hook to the iocb.
4c0425ff 2923 */
8d5d02e6
MC
2924 iocb->private = NULL;
2925 EXT4_I(inode)->cur_aio_dio = NULL;
2926 if (!is_sync_kiocb(iocb)) {
744692dc 2927 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
2928 if (!iocb->private)
2929 return -ENOMEM;
2930 /*
2931 * we save the io structure for current async
79e83036 2932 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2933 * could flag the io structure whether there
2934 * is a unwritten extents needs to be converted
2935 * when IO is completed.
2936 */
2937 EXT4_I(inode)->cur_aio_dio = iocb->private;
2938 }
2939
aacfc19c 2940 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2941 inode->i_sb->s_bdev, iov,
2942 offset, nr_segs,
c7064ef1 2943 ext4_get_block_write,
aacfc19c
CH
2944 ext4_end_io_dio,
2945 NULL,
2946 DIO_LOCKING | DIO_SKIP_HOLES);
8d5d02e6
MC
2947 if (iocb->private)
2948 EXT4_I(inode)->cur_aio_dio = NULL;
2949 /*
2950 * The io_end structure takes a reference to the inode,
2951 * that structure needs to be destroyed and the
2952 * reference to the inode need to be dropped, when IO is
2953 * complete, even with 0 byte write, or failed.
2954 *
2955 * In the successful AIO DIO case, the io_end structure will be
2956 * desctroyed and the reference to the inode will be dropped
2957 * after the end_io call back function is called.
2958 *
2959 * In the case there is 0 byte write, or error case, since
2960 * VFS direct IO won't invoke the end_io call back function,
2961 * we need to free the end_io structure here.
2962 */
2963 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2964 ext4_free_io_end(iocb->private);
2965 iocb->private = NULL;
19f5fb7a
TT
2966 } else if (ret > 0 && ext4_test_inode_state(inode,
2967 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2968 int err;
8d5d02e6
MC
2969 /*
2970 * for non AIO case, since the IO is already
25985edc 2971 * completed, we could do the conversion right here
8d5d02e6 2972 */
109f5565
M
2973 err = ext4_convert_unwritten_extents(inode,
2974 offset, ret);
2975 if (err < 0)
2976 ret = err;
19f5fb7a 2977 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2978 }
4c0425ff
MC
2979 return ret;
2980 }
8d5d02e6
MC
2981
2982 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2983 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984}
2985
2986static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2987 const struct iovec *iov, loff_t offset,
2988 unsigned long nr_segs)
2989{
2990 struct file *file = iocb->ki_filp;
2991 struct inode *inode = file->f_mapping->host;
0562e0ba 2992 ssize_t ret;
4c0425ff 2993
84ebd795
TT
2994 /*
2995 * If we are doing data journalling we don't support O_DIRECT
2996 */
2997 if (ext4_should_journal_data(inode))
2998 return 0;
2999
0562e0ba 3000 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3001 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3002 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3003 else
3004 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3005 trace_ext4_direct_IO_exit(inode, offset,
3006 iov_length(iov, nr_segs), rw, ret);
3007 return ret;
4c0425ff
MC
3008}
3009
ac27a0ec 3010/*
617ba13b 3011 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3012 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3013 * much here because ->set_page_dirty is called under VFS locks. The page is
3014 * not necessarily locked.
3015 *
3016 * We cannot just dirty the page and leave attached buffers clean, because the
3017 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3018 * or jbddirty because all the journalling code will explode.
3019 *
3020 * So what we do is to mark the page "pending dirty" and next time writepage
3021 * is called, propagate that into the buffers appropriately.
3022 */
617ba13b 3023static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3024{
3025 SetPageChecked(page);
3026 return __set_page_dirty_nobuffers(page);
3027}
3028
617ba13b 3029static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3030 .readpage = ext4_readpage,
3031 .readpages = ext4_readpages,
43ce1d23 3032 .writepage = ext4_writepage,
8ab22b9a
HH
3033 .write_begin = ext4_write_begin,
3034 .write_end = ext4_ordered_write_end,
3035 .bmap = ext4_bmap,
3036 .invalidatepage = ext4_invalidatepage,
3037 .releasepage = ext4_releasepage,
3038 .direct_IO = ext4_direct_IO,
3039 .migratepage = buffer_migrate_page,
3040 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3041 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3042};
3043
617ba13b 3044static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3045 .readpage = ext4_readpage,
3046 .readpages = ext4_readpages,
43ce1d23 3047 .writepage = ext4_writepage,
8ab22b9a
HH
3048 .write_begin = ext4_write_begin,
3049 .write_end = ext4_writeback_write_end,
3050 .bmap = ext4_bmap,
3051 .invalidatepage = ext4_invalidatepage,
3052 .releasepage = ext4_releasepage,
3053 .direct_IO = ext4_direct_IO,
3054 .migratepage = buffer_migrate_page,
3055 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3056 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3057};
3058
617ba13b 3059static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3060 .readpage = ext4_readpage,
3061 .readpages = ext4_readpages,
43ce1d23 3062 .writepage = ext4_writepage,
8ab22b9a
HH
3063 .write_begin = ext4_write_begin,
3064 .write_end = ext4_journalled_write_end,
3065 .set_page_dirty = ext4_journalled_set_page_dirty,
3066 .bmap = ext4_bmap,
3067 .invalidatepage = ext4_invalidatepage,
3068 .releasepage = ext4_releasepage,
84ebd795 3069 .direct_IO = ext4_direct_IO,
8ab22b9a 3070 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3071 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3072};
3073
64769240 3074static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3075 .readpage = ext4_readpage,
3076 .readpages = ext4_readpages,
43ce1d23 3077 .writepage = ext4_writepage,
8ab22b9a 3078 .writepages = ext4_da_writepages,
8ab22b9a
HH
3079 .write_begin = ext4_da_write_begin,
3080 .write_end = ext4_da_write_end,
3081 .bmap = ext4_bmap,
3082 .invalidatepage = ext4_da_invalidatepage,
3083 .releasepage = ext4_releasepage,
3084 .direct_IO = ext4_direct_IO,
3085 .migratepage = buffer_migrate_page,
3086 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3087 .error_remove_page = generic_error_remove_page,
64769240
AT
3088};
3089
617ba13b 3090void ext4_set_aops(struct inode *inode)
ac27a0ec 3091{
cd1aac32
AK
3092 if (ext4_should_order_data(inode) &&
3093 test_opt(inode->i_sb, DELALLOC))
3094 inode->i_mapping->a_ops = &ext4_da_aops;
3095 else if (ext4_should_order_data(inode))
617ba13b 3096 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3097 else if (ext4_should_writeback_data(inode) &&
3098 test_opt(inode->i_sb, DELALLOC))
3099 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3100 else if (ext4_should_writeback_data(inode))
3101 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3102 else
617ba13b 3103 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3104}
3105
4e96b2db
AH
3106
3107/*
3108 * ext4_discard_partial_page_buffers()
3109 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3110 * This function finds and locks the page containing the offset
3111 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3112 * Calling functions that already have the page locked should call
3113 * ext4_discard_partial_page_buffers_no_lock directly.
3114 */
3115int ext4_discard_partial_page_buffers(handle_t *handle,
3116 struct address_space *mapping, loff_t from,
3117 loff_t length, int flags)
3118{
3119 struct inode *inode = mapping->host;
3120 struct page *page;
3121 int err = 0;
3122
3123 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3124 mapping_gfp_mask(mapping) & ~__GFP_FS);
3125 if (!page)
3126 return -EINVAL;
3127
3128 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3129 from, length, flags);
3130
3131 unlock_page(page);
3132 page_cache_release(page);
3133 return err;
3134}
3135
3136/*
3137 * ext4_discard_partial_page_buffers_no_lock()
3138 * Zeros a page range of length 'length' starting from offset 'from'.
3139 * Buffer heads that correspond to the block aligned regions of the
3140 * zeroed range will be unmapped. Unblock aligned regions
3141 * will have the corresponding buffer head mapped if needed so that
3142 * that region of the page can be updated with the partial zero out.
3143 *
3144 * This function assumes that the page has already been locked. The
3145 * The range to be discarded must be contained with in the given page.
3146 * If the specified range exceeds the end of the page it will be shortened
3147 * to the end of the page that corresponds to 'from'. This function is
3148 * appropriate for updating a page and it buffer heads to be unmapped and
3149 * zeroed for blocks that have been either released, or are going to be
3150 * released.
3151 *
3152 * handle: The journal handle
3153 * inode: The files inode
3154 * page: A locked page that contains the offset "from"
3155 * from: The starting byte offset (from the begining of the file)
3156 * to begin discarding
3157 * len: The length of bytes to discard
3158 * flags: Optional flags that may be used:
3159 *
3160 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3161 * Only zero the regions of the page whose buffer heads
3162 * have already been unmapped. This flag is appropriate
3163 * for updateing the contents of a page whose blocks may
3164 * have already been released, and we only want to zero
3165 * out the regions that correspond to those released blocks.
3166 *
3167 * Returns zero on sucess or negative on failure.
3168 */
3169int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3170 struct inode *inode, struct page *page, loff_t from,
3171 loff_t length, int flags)
3172{
3173 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3174 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3175 unsigned int blocksize, max, pos;
3176 unsigned int end_of_block, range_to_discard;
3177 ext4_lblk_t iblock;
3178 struct buffer_head *bh;
3179 int err = 0;
3180
3181 blocksize = inode->i_sb->s_blocksize;
3182 max = PAGE_CACHE_SIZE - offset;
3183
3184 if (index != page->index)
3185 return -EINVAL;
3186
3187 /*
3188 * correct length if it does not fall between
3189 * 'from' and the end of the page
3190 */
3191 if (length > max || length < 0)
3192 length = max;
3193
3194 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3195
3196 if (!page_has_buffers(page)) {
3197 /*
3198 * If the range to be discarded covers a partial block
3199 * we need to get the page buffers. This is because
3200 * partial blocks cannot be released and the page needs
3201 * to be updated with the contents of the block before
3202 * we write the zeros on top of it.
3203 */
3204 if (!(from & (blocksize - 1)) ||
3205 !((from + length) & (blocksize - 1))) {
3206 create_empty_buffers(page, blocksize, 0);
3207 } else {
3208 /*
3209 * If there are no partial blocks,
3210 * there is nothing to update,
3211 * so we can return now
3212 */
3213 return 0;
3214 }
3215 }
3216
3217 /* Find the buffer that contains "offset" */
3218 bh = page_buffers(page);
3219 pos = blocksize;
3220 while (offset >= pos) {
3221 bh = bh->b_this_page;
3222 iblock++;
3223 pos += blocksize;
3224 }
3225
3226 pos = offset;
3227 while (pos < offset + length) {
3228 err = 0;
3229
3230 /* The length of space left to zero and unmap */
3231 range_to_discard = offset + length - pos;
3232
3233 /* The length of space until the end of the block */
3234 end_of_block = blocksize - (pos & (blocksize-1));
3235
3236 /*
3237 * Do not unmap or zero past end of block
3238 * for this buffer head
3239 */
3240 if (range_to_discard > end_of_block)
3241 range_to_discard = end_of_block;
3242
3243
3244 /*
3245 * Skip this buffer head if we are only zeroing unampped
3246 * regions of the page
3247 */
3248 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3249 buffer_mapped(bh))
3250 goto next;
3251
3252 /* If the range is block aligned, unmap */
3253 if (range_to_discard == blocksize) {
3254 clear_buffer_dirty(bh);
3255 bh->b_bdev = NULL;
3256 clear_buffer_mapped(bh);
3257 clear_buffer_req(bh);
3258 clear_buffer_new(bh);
3259 clear_buffer_delay(bh);
3260 clear_buffer_unwritten(bh);
3261 clear_buffer_uptodate(bh);
3262 zero_user(page, pos, range_to_discard);
3263 BUFFER_TRACE(bh, "Buffer discarded");
3264 goto next;
3265 }
3266
3267 /*
3268 * If this block is not completely contained in the range
3269 * to be discarded, then it is not going to be released. Because
3270 * we need to keep this block, we need to make sure this part
3271 * of the page is uptodate before we modify it by writeing
3272 * partial zeros on it.
3273 */
3274 if (!buffer_mapped(bh)) {
3275 /*
3276 * Buffer head must be mapped before we can read
3277 * from the block
3278 */
3279 BUFFER_TRACE(bh, "unmapped");
3280 ext4_get_block(inode, iblock, bh, 0);
3281 /* unmapped? It's a hole - nothing to do */
3282 if (!buffer_mapped(bh)) {
3283 BUFFER_TRACE(bh, "still unmapped");
3284 goto next;
3285 }
3286 }
3287
3288 /* Ok, it's mapped. Make sure it's up-to-date */
3289 if (PageUptodate(page))
3290 set_buffer_uptodate(bh);
3291
3292 if (!buffer_uptodate(bh)) {
3293 err = -EIO;
3294 ll_rw_block(READ, 1, &bh);
3295 wait_on_buffer(bh);
3296 /* Uhhuh. Read error. Complain and punt.*/
3297 if (!buffer_uptodate(bh))
3298 goto next;
3299 }
3300
3301 if (ext4_should_journal_data(inode)) {
3302 BUFFER_TRACE(bh, "get write access");
3303 err = ext4_journal_get_write_access(handle, bh);
3304 if (err)
3305 goto next;
3306 }
3307
3308 zero_user(page, pos, range_to_discard);
3309
3310 err = 0;
3311 if (ext4_should_journal_data(inode)) {
3312 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3313 } else
4e96b2db 3314 mark_buffer_dirty(bh);
4e96b2db
AH
3315
3316 BUFFER_TRACE(bh, "Partial buffer zeroed");
3317next:
3318 bh = bh->b_this_page;
3319 iblock++;
3320 pos += range_to_discard;
3321 }
3322
3323 return err;
3324}
3325
ac27a0ec 3326/*
617ba13b 3327 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3328 * up to the end of the block which corresponds to `from'.
3329 * This required during truncate. We need to physically zero the tail end
3330 * of that block so it doesn't yield old data if the file is later grown.
3331 */
cf108bca 3332int ext4_block_truncate_page(handle_t *handle,
ac27a0ec 3333 struct address_space *mapping, loff_t from)
30848851
AH
3334{
3335 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336 unsigned length;
3337 unsigned blocksize;
3338 struct inode *inode = mapping->host;
3339
3340 blocksize = inode->i_sb->s_blocksize;
3341 length = blocksize - (offset & (blocksize - 1));
3342
3343 return ext4_block_zero_page_range(handle, mapping, from, length);
3344}
3345
3346/*
3347 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348 * starting from file offset 'from'. The range to be zero'd must
3349 * be contained with in one block. If the specified range exceeds
3350 * the end of the block it will be shortened to end of the block
3351 * that cooresponds to 'from'
3352 */
3353int ext4_block_zero_page_range(handle_t *handle,
3354 struct address_space *mapping, loff_t from, loff_t length)
ac27a0ec 3355{
617ba13b 3356 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3357 unsigned offset = from & (PAGE_CACHE_SIZE-1);
30848851 3358 unsigned blocksize, max, pos;
725d26d3 3359 ext4_lblk_t iblock;
ac27a0ec
DK
3360 struct inode *inode = mapping->host;
3361 struct buffer_head *bh;
cf108bca 3362 struct page *page;
ac27a0ec 3363 int err = 0;
ac27a0ec 3364
f4a01017
TT
3365 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3367 if (!page)
3368 return -EINVAL;
3369
ac27a0ec 3370 blocksize = inode->i_sb->s_blocksize;
30848851
AH
3371 max = blocksize - (offset & (blocksize - 1));
3372
3373 /*
3374 * correct length if it does not fall between
3375 * 'from' and the end of the block
3376 */
3377 if (length > max || length < 0)
3378 length = max;
3379
ac27a0ec
DK
3380 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381
ac27a0ec
DK
3382 if (!page_has_buffers(page))
3383 create_empty_buffers(page, blocksize, 0);
3384
3385 /* Find the buffer that contains "offset" */
3386 bh = page_buffers(page);
3387 pos = blocksize;
3388 while (offset >= pos) {
3389 bh = bh->b_this_page;
3390 iblock++;
3391 pos += blocksize;
3392 }
3393
3394 err = 0;
3395 if (buffer_freed(bh)) {
3396 BUFFER_TRACE(bh, "freed: skip");
3397 goto unlock;
3398 }
3399
3400 if (!buffer_mapped(bh)) {
3401 BUFFER_TRACE(bh, "unmapped");
617ba13b 3402 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3403 /* unmapped? It's a hole - nothing to do */
3404 if (!buffer_mapped(bh)) {
3405 BUFFER_TRACE(bh, "still unmapped");
3406 goto unlock;
3407 }
3408 }
3409
3410 /* Ok, it's mapped. Make sure it's up-to-date */
3411 if (PageUptodate(page))
3412 set_buffer_uptodate(bh);
3413
3414 if (!buffer_uptodate(bh)) {
3415 err = -EIO;
3416 ll_rw_block(READ, 1, &bh);
3417 wait_on_buffer(bh);
3418 /* Uhhuh. Read error. Complain and punt. */
3419 if (!buffer_uptodate(bh))
3420 goto unlock;
3421 }
3422
617ba13b 3423 if (ext4_should_journal_data(inode)) {
ac27a0ec 3424 BUFFER_TRACE(bh, "get write access");
617ba13b 3425 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3426 if (err)
3427 goto unlock;
3428 }
3429
eebd2aa3 3430 zero_user(page, offset, length);
ac27a0ec
DK
3431
3432 BUFFER_TRACE(bh, "zeroed end of block");
3433
3434 err = 0;
617ba13b 3435 if (ext4_should_journal_data(inode)) {
0390131b 3436 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3437 } else
ac27a0ec 3438 mark_buffer_dirty(bh);
ac27a0ec
DK
3439
3440unlock:
3441 unlock_page(page);
3442 page_cache_release(page);
3443 return err;
3444}
3445
91ef4caf
DG
3446int ext4_can_truncate(struct inode *inode)
3447{
91ef4caf
DG
3448 if (S_ISREG(inode->i_mode))
3449 return 1;
3450 if (S_ISDIR(inode->i_mode))
3451 return 1;
3452 if (S_ISLNK(inode->i_mode))
3453 return !ext4_inode_is_fast_symlink(inode);
3454 return 0;
3455}
3456
a4bb6b64
AH
3457/*
3458 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3459 * associated with the given offset and length
3460 *
3461 * @inode: File inode
3462 * @offset: The offset where the hole will begin
3463 * @len: The length of the hole
3464 *
3465 * Returns: 0 on sucess or negative on failure
3466 */
3467
3468int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3469{
3470 struct inode *inode = file->f_path.dentry->d_inode;
3471 if (!S_ISREG(inode->i_mode))
3472 return -ENOTSUPP;
3473
3474 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3475 /* TODO: Add support for non extent hole punching */
3476 return -ENOTSUPP;
3477 }
3478
bab08ab9
TT
3479 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3480 /* TODO: Add support for bigalloc file systems */
3481 return -ENOTSUPP;
3482 }
3483
a4bb6b64
AH
3484 return ext4_ext_punch_hole(file, offset, length);
3485}
3486
ac27a0ec 3487/*
617ba13b 3488 * ext4_truncate()
ac27a0ec 3489 *
617ba13b
MC
3490 * We block out ext4_get_block() block instantiations across the entire
3491 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3492 * simultaneously on behalf of the same inode.
3493 *
3494 * As we work through the truncate and commmit bits of it to the journal there
3495 * is one core, guiding principle: the file's tree must always be consistent on
3496 * disk. We must be able to restart the truncate after a crash.
3497 *
3498 * The file's tree may be transiently inconsistent in memory (although it
3499 * probably isn't), but whenever we close off and commit a journal transaction,
3500 * the contents of (the filesystem + the journal) must be consistent and
3501 * restartable. It's pretty simple, really: bottom up, right to left (although
3502 * left-to-right works OK too).
3503 *
3504 * Note that at recovery time, journal replay occurs *before* the restart of
3505 * truncate against the orphan inode list.
3506 *
3507 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3508 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3509 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3510 * ext4_truncate() to have another go. So there will be instantiated blocks
3511 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3512 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3513 * ext4_truncate() run will find them and release them.
ac27a0ec 3514 */
617ba13b 3515void ext4_truncate(struct inode *inode)
ac27a0ec 3516{
0562e0ba
JZ
3517 trace_ext4_truncate_enter(inode);
3518
91ef4caf 3519 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3520 return;
3521
12e9b892 3522 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3523
5534fb5b 3524 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3525 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3526
ff9893dc 3527 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3528 ext4_ext_truncate(inode);
ff9893dc
AG
3529 else
3530 ext4_ind_truncate(inode);
ac27a0ec 3531
0562e0ba 3532 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3533}
3534
ac27a0ec 3535/*
617ba13b 3536 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3537 * underlying buffer_head on success. If 'in_mem' is true, we have all
3538 * data in memory that is needed to recreate the on-disk version of this
3539 * inode.
3540 */
617ba13b
MC
3541static int __ext4_get_inode_loc(struct inode *inode,
3542 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3543{
240799cd
TT
3544 struct ext4_group_desc *gdp;
3545 struct buffer_head *bh;
3546 struct super_block *sb = inode->i_sb;
3547 ext4_fsblk_t block;
3548 int inodes_per_block, inode_offset;
3549
3a06d778 3550 iloc->bh = NULL;
240799cd
TT
3551 if (!ext4_valid_inum(sb, inode->i_ino))
3552 return -EIO;
ac27a0ec 3553
240799cd
TT
3554 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3555 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3556 if (!gdp)
ac27a0ec
DK
3557 return -EIO;
3558
240799cd
TT
3559 /*
3560 * Figure out the offset within the block group inode table
3561 */
00d09882 3562 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3563 inode_offset = ((inode->i_ino - 1) %
3564 EXT4_INODES_PER_GROUP(sb));
3565 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3566 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3567
3568 bh = sb_getblk(sb, block);
ac27a0ec 3569 if (!bh) {
c398eda0
TT
3570 EXT4_ERROR_INODE_BLOCK(inode, block,
3571 "unable to read itable block");
ac27a0ec
DK
3572 return -EIO;
3573 }
3574 if (!buffer_uptodate(bh)) {
3575 lock_buffer(bh);
9c83a923
HK
3576
3577 /*
3578 * If the buffer has the write error flag, we have failed
3579 * to write out another inode in the same block. In this
3580 * case, we don't have to read the block because we may
3581 * read the old inode data successfully.
3582 */
3583 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3584 set_buffer_uptodate(bh);
3585
ac27a0ec
DK
3586 if (buffer_uptodate(bh)) {
3587 /* someone brought it uptodate while we waited */
3588 unlock_buffer(bh);
3589 goto has_buffer;
3590 }
3591
3592 /*
3593 * If we have all information of the inode in memory and this
3594 * is the only valid inode in the block, we need not read the
3595 * block.
3596 */
3597 if (in_mem) {
3598 struct buffer_head *bitmap_bh;
240799cd 3599 int i, start;
ac27a0ec 3600
240799cd 3601 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3602
240799cd
TT
3603 /* Is the inode bitmap in cache? */
3604 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3605 if (!bitmap_bh)
3606 goto make_io;
3607
3608 /*
3609 * If the inode bitmap isn't in cache then the
3610 * optimisation may end up performing two reads instead
3611 * of one, so skip it.
3612 */
3613 if (!buffer_uptodate(bitmap_bh)) {
3614 brelse(bitmap_bh);
3615 goto make_io;
3616 }
240799cd 3617 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3618 if (i == inode_offset)
3619 continue;
617ba13b 3620 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3621 break;
3622 }
3623 brelse(bitmap_bh);
240799cd 3624 if (i == start + inodes_per_block) {
ac27a0ec
DK
3625 /* all other inodes are free, so skip I/O */
3626 memset(bh->b_data, 0, bh->b_size);
3627 set_buffer_uptodate(bh);
3628 unlock_buffer(bh);
3629 goto has_buffer;
3630 }
3631 }
3632
3633make_io:
240799cd
TT
3634 /*
3635 * If we need to do any I/O, try to pre-readahead extra
3636 * blocks from the inode table.
3637 */
3638 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3639 ext4_fsblk_t b, end, table;
3640 unsigned num;
3641
3642 table = ext4_inode_table(sb, gdp);
b713a5ec 3643 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3644 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3645 if (table > b)
3646 b = table;
3647 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3648 num = EXT4_INODES_PER_GROUP(sb);
3649 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3650 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3651 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3652 table += num / inodes_per_block;
3653 if (end > table)
3654 end = table;
3655 while (b <= end)
3656 sb_breadahead(sb, b++);
3657 }
3658
ac27a0ec
DK
3659 /*
3660 * There are other valid inodes in the buffer, this inode
3661 * has in-inode xattrs, or we don't have this inode in memory.
3662 * Read the block from disk.
3663 */
0562e0ba 3664 trace_ext4_load_inode(inode);
ac27a0ec
DK
3665 get_bh(bh);
3666 bh->b_end_io = end_buffer_read_sync;
3667 submit_bh(READ_META, bh);
3668 wait_on_buffer(bh);
3669 if (!buffer_uptodate(bh)) {
c398eda0
TT
3670 EXT4_ERROR_INODE_BLOCK(inode, block,
3671 "unable to read itable block");
ac27a0ec
DK
3672 brelse(bh);
3673 return -EIO;
3674 }
3675 }
3676has_buffer:
3677 iloc->bh = bh;
3678 return 0;
3679}
3680
617ba13b 3681int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3682{
3683 /* We have all inode data except xattrs in memory here. */
617ba13b 3684 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3685 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3686}
3687
617ba13b 3688void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3689{
617ba13b 3690 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3691
3692 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3693 if (flags & EXT4_SYNC_FL)
ac27a0ec 3694 inode->i_flags |= S_SYNC;
617ba13b 3695 if (flags & EXT4_APPEND_FL)
ac27a0ec 3696 inode->i_flags |= S_APPEND;
617ba13b 3697 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3698 inode->i_flags |= S_IMMUTABLE;
617ba13b 3699 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3700 inode->i_flags |= S_NOATIME;
617ba13b 3701 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3702 inode->i_flags |= S_DIRSYNC;
3703}
3704
ff9ddf7e
JK
3705/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3706void ext4_get_inode_flags(struct ext4_inode_info *ei)
3707{
84a8dce2
DM
3708 unsigned int vfs_fl;
3709 unsigned long old_fl, new_fl;
3710
3711 do {
3712 vfs_fl = ei->vfs_inode.i_flags;
3713 old_fl = ei->i_flags;
3714 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3715 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3716 EXT4_DIRSYNC_FL);
3717 if (vfs_fl & S_SYNC)
3718 new_fl |= EXT4_SYNC_FL;
3719 if (vfs_fl & S_APPEND)
3720 new_fl |= EXT4_APPEND_FL;
3721 if (vfs_fl & S_IMMUTABLE)
3722 new_fl |= EXT4_IMMUTABLE_FL;
3723 if (vfs_fl & S_NOATIME)
3724 new_fl |= EXT4_NOATIME_FL;
3725 if (vfs_fl & S_DIRSYNC)
3726 new_fl |= EXT4_DIRSYNC_FL;
3727 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3728}
de9a55b8 3729
0fc1b451 3730static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3731 struct ext4_inode_info *ei)
0fc1b451
AK
3732{
3733 blkcnt_t i_blocks ;
8180a562
AK
3734 struct inode *inode = &(ei->vfs_inode);
3735 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3736
3737 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3738 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3739 /* we are using combined 48 bit field */
3740 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3741 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3742 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3743 /* i_blocks represent file system block size */
3744 return i_blocks << (inode->i_blkbits - 9);
3745 } else {
3746 return i_blocks;
3747 }
0fc1b451
AK
3748 } else {
3749 return le32_to_cpu(raw_inode->i_blocks_lo);
3750 }
3751}
ff9ddf7e 3752
1d1fe1ee 3753struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3754{
617ba13b
MC
3755 struct ext4_iloc iloc;
3756 struct ext4_inode *raw_inode;
1d1fe1ee 3757 struct ext4_inode_info *ei;
1d1fe1ee 3758 struct inode *inode;
b436b9be 3759 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3760 long ret;
ac27a0ec
DK
3761 int block;
3762
1d1fe1ee
DH
3763 inode = iget_locked(sb, ino);
3764 if (!inode)
3765 return ERR_PTR(-ENOMEM);
3766 if (!(inode->i_state & I_NEW))
3767 return inode;
3768
3769 ei = EXT4_I(inode);
7dc57615 3770 iloc.bh = NULL;
ac27a0ec 3771
1d1fe1ee
DH
3772 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3773 if (ret < 0)
ac27a0ec 3774 goto bad_inode;
617ba13b 3775 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3776 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3777 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3778 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3779 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3780 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3781 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3782 }
3783 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 3784
353eb83c 3785 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3786 ei->i_dir_start_lookup = 0;
3787 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3788 /* We now have enough fields to check if the inode was active or not.
3789 * This is needed because nfsd might try to access dead inodes
3790 * the test is that same one that e2fsck uses
3791 * NeilBrown 1999oct15
3792 */
3793 if (inode->i_nlink == 0) {
3794 if (inode->i_mode == 0 ||
617ba13b 3795 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3796 /* this inode is deleted */
1d1fe1ee 3797 ret = -ESTALE;
ac27a0ec
DK
3798 goto bad_inode;
3799 }
3800 /* The only unlinked inodes we let through here have
3801 * valid i_mode and are being read by the orphan
3802 * recovery code: that's fine, we're about to complete
3803 * the process of deleting those. */
3804 }
ac27a0ec 3805 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3806 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3807 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3808 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3809 ei->i_file_acl |=
3810 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3811 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3812 ei->i_disksize = inode->i_size;
a9e7f447
DM
3813#ifdef CONFIG_QUOTA
3814 ei->i_reserved_quota = 0;
3815#endif
ac27a0ec
DK
3816 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3817 ei->i_block_group = iloc.block_group;
a4912123 3818 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3819 /*
3820 * NOTE! The in-memory inode i_data array is in little-endian order
3821 * even on big-endian machines: we do NOT byteswap the block numbers!
3822 */
617ba13b 3823 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3824 ei->i_data[block] = raw_inode->i_block[block];
3825 INIT_LIST_HEAD(&ei->i_orphan);
3826
b436b9be
JK
3827 /*
3828 * Set transaction id's of transactions that have to be committed
3829 * to finish f[data]sync. We set them to currently running transaction
3830 * as we cannot be sure that the inode or some of its metadata isn't
3831 * part of the transaction - the inode could have been reclaimed and
3832 * now it is reread from disk.
3833 */
3834 if (journal) {
3835 transaction_t *transaction;
3836 tid_t tid;
3837
a931da6a 3838 read_lock(&journal->j_state_lock);
b436b9be
JK
3839 if (journal->j_running_transaction)
3840 transaction = journal->j_running_transaction;
3841 else
3842 transaction = journal->j_committing_transaction;
3843 if (transaction)
3844 tid = transaction->t_tid;
3845 else
3846 tid = journal->j_commit_sequence;
a931da6a 3847 read_unlock(&journal->j_state_lock);
b436b9be
JK
3848 ei->i_sync_tid = tid;
3849 ei->i_datasync_tid = tid;
3850 }
3851
0040d987 3852 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3853 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3854 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3855 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3856 ret = -EIO;
ac27a0ec 3857 goto bad_inode;
e5d2861f 3858 }
ac27a0ec
DK
3859 if (ei->i_extra_isize == 0) {
3860 /* The extra space is currently unused. Use it. */
617ba13b
MC
3861 ei->i_extra_isize = sizeof(struct ext4_inode) -
3862 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3863 } else {
3864 __le32 *magic = (void *)raw_inode +
617ba13b 3865 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3866 ei->i_extra_isize;
617ba13b 3867 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3868 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3869 }
3870 } else
3871 ei->i_extra_isize = 0;
3872
ef7f3835
KS
3873 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3874 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3875 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3876 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3877
25ec56b5
JNC
3878 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3879 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3880 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3881 inode->i_version |=
3882 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3883 }
3884
c4b5a614 3885 ret = 0;
485c26ec 3886 if (ei->i_file_acl &&
1032988c 3887 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3888 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3889 ei->i_file_acl);
485c26ec
TT
3890 ret = -EIO;
3891 goto bad_inode;
07a03824 3892 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3893 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3894 (S_ISLNK(inode->i_mode) &&
3895 !ext4_inode_is_fast_symlink(inode)))
3896 /* Validate extent which is part of inode */
3897 ret = ext4_ext_check_inode(inode);
de9a55b8 3898 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3899 (S_ISLNK(inode->i_mode) &&
3900 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3901 /* Validate block references which are part of inode */
1f7d1e77 3902 ret = ext4_ind_check_inode(inode);
fe2c8191 3903 }
567f3e9a 3904 if (ret)
de9a55b8 3905 goto bad_inode;
7a262f7c 3906
ac27a0ec 3907 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3908 inode->i_op = &ext4_file_inode_operations;
3909 inode->i_fop = &ext4_file_operations;
3910 ext4_set_aops(inode);
ac27a0ec 3911 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3912 inode->i_op = &ext4_dir_inode_operations;
3913 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3914 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3915 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3916 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3917 nd_terminate_link(ei->i_data, inode->i_size,
3918 sizeof(ei->i_data) - 1);
3919 } else {
617ba13b
MC
3920 inode->i_op = &ext4_symlink_inode_operations;
3921 ext4_set_aops(inode);
ac27a0ec 3922 }
563bdd61
TT
3923 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3924 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3925 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3926 if (raw_inode->i_block[0])
3927 init_special_inode(inode, inode->i_mode,
3928 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3929 else
3930 init_special_inode(inode, inode->i_mode,
3931 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3932 } else {
563bdd61 3933 ret = -EIO;
24676da4 3934 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3935 goto bad_inode;
ac27a0ec 3936 }
af5bc92d 3937 brelse(iloc.bh);
617ba13b 3938 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3939 unlock_new_inode(inode);
3940 return inode;
ac27a0ec
DK
3941
3942bad_inode:
567f3e9a 3943 brelse(iloc.bh);
1d1fe1ee
DH
3944 iget_failed(inode);
3945 return ERR_PTR(ret);
ac27a0ec
DK
3946}
3947
0fc1b451
AK
3948static int ext4_inode_blocks_set(handle_t *handle,
3949 struct ext4_inode *raw_inode,
3950 struct ext4_inode_info *ei)
3951{
3952 struct inode *inode = &(ei->vfs_inode);
3953 u64 i_blocks = inode->i_blocks;
3954 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3955
3956 if (i_blocks <= ~0U) {
3957 /*
3958 * i_blocks can be represnted in a 32 bit variable
3959 * as multiple of 512 bytes
3960 */
8180a562 3961 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3962 raw_inode->i_blocks_high = 0;
84a8dce2 3963 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3964 return 0;
3965 }
3966 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3967 return -EFBIG;
3968
3969 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3970 /*
3971 * i_blocks can be represented in a 48 bit variable
3972 * as multiple of 512 bytes
3973 */
8180a562 3974 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3975 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3976 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3977 } else {
84a8dce2 3978 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3979 /* i_block is stored in file system block size */
3980 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3981 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3982 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3983 }
f287a1a5 3984 return 0;
0fc1b451
AK
3985}
3986
ac27a0ec
DK
3987/*
3988 * Post the struct inode info into an on-disk inode location in the
3989 * buffer-cache. This gobbles the caller's reference to the
3990 * buffer_head in the inode location struct.
3991 *
3992 * The caller must have write access to iloc->bh.
3993 */
617ba13b 3994static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3995 struct inode *inode,
830156c7 3996 struct ext4_iloc *iloc)
ac27a0ec 3997{
617ba13b
MC
3998 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3999 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4000 struct buffer_head *bh = iloc->bh;
4001 int err = 0, rc, block;
4002
4003 /* For fields not not tracking in the in-memory inode,
4004 * initialise them to zero for new inodes. */
19f5fb7a 4005 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4006 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4007
ff9ddf7e 4008 ext4_get_inode_flags(ei);
ac27a0ec 4009 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4010 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4011 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4012 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4013/*
4014 * Fix up interoperability with old kernels. Otherwise, old inodes get
4015 * re-used with the upper 16 bits of the uid/gid intact
4016 */
af5bc92d 4017 if (!ei->i_dtime) {
ac27a0ec
DK
4018 raw_inode->i_uid_high =
4019 cpu_to_le16(high_16_bits(inode->i_uid));
4020 raw_inode->i_gid_high =
4021 cpu_to_le16(high_16_bits(inode->i_gid));
4022 } else {
4023 raw_inode->i_uid_high = 0;
4024 raw_inode->i_gid_high = 0;
4025 }
4026 } else {
4027 raw_inode->i_uid_low =
4028 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4029 raw_inode->i_gid_low =
4030 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4031 raw_inode->i_uid_high = 0;
4032 raw_inode->i_gid_high = 0;
4033 }
4034 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4035
4036 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4037 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4038 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4039 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4040
0fc1b451
AK
4041 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4042 goto out_brelse;
ac27a0ec 4043 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4044 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4045 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4046 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4047 raw_inode->i_file_acl_high =
4048 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4049 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4050 ext4_isize_set(raw_inode, ei->i_disksize);
4051 if (ei->i_disksize > 0x7fffffffULL) {
4052 struct super_block *sb = inode->i_sb;
4053 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4054 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4055 EXT4_SB(sb)->s_es->s_rev_level ==
4056 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4057 /* If this is the first large file
4058 * created, add a flag to the superblock.
4059 */
4060 err = ext4_journal_get_write_access(handle,
4061 EXT4_SB(sb)->s_sbh);
4062 if (err)
4063 goto out_brelse;
4064 ext4_update_dynamic_rev(sb);
4065 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4066 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4067 sb->s_dirt = 1;
0390131b 4068 ext4_handle_sync(handle);
73b50c1c 4069 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 4070 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4071 }
4072 }
4073 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4074 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4075 if (old_valid_dev(inode->i_rdev)) {
4076 raw_inode->i_block[0] =
4077 cpu_to_le32(old_encode_dev(inode->i_rdev));
4078 raw_inode->i_block[1] = 0;
4079 } else {
4080 raw_inode->i_block[0] = 0;
4081 raw_inode->i_block[1] =
4082 cpu_to_le32(new_encode_dev(inode->i_rdev));
4083 raw_inode->i_block[2] = 0;
4084 }
de9a55b8
TT
4085 } else
4086 for (block = 0; block < EXT4_N_BLOCKS; block++)
4087 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4088
25ec56b5
JNC
4089 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4090 if (ei->i_extra_isize) {
4091 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4092 raw_inode->i_version_hi =
4093 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4094 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4095 }
4096
830156c7 4097 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4098 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4099 if (!err)
4100 err = rc;
19f5fb7a 4101 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4102
b436b9be 4103 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4104out_brelse:
af5bc92d 4105 brelse(bh);
617ba13b 4106 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4107 return err;
4108}
4109
4110/*
617ba13b 4111 * ext4_write_inode()
ac27a0ec
DK
4112 *
4113 * We are called from a few places:
4114 *
4115 * - Within generic_file_write() for O_SYNC files.
4116 * Here, there will be no transaction running. We wait for any running
4117 * trasnaction to commit.
4118 *
4119 * - Within sys_sync(), kupdate and such.
4120 * We wait on commit, if tol to.
4121 *
4122 * - Within prune_icache() (PF_MEMALLOC == true)
4123 * Here we simply return. We can't afford to block kswapd on the
4124 * journal commit.
4125 *
4126 * In all cases it is actually safe for us to return without doing anything,
4127 * because the inode has been copied into a raw inode buffer in
617ba13b 4128 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4129 * knfsd.
4130 *
4131 * Note that we are absolutely dependent upon all inode dirtiers doing the
4132 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4133 * which we are interested.
4134 *
4135 * It would be a bug for them to not do this. The code:
4136 *
4137 * mark_inode_dirty(inode)
4138 * stuff();
4139 * inode->i_size = expr;
4140 *
4141 * is in error because a kswapd-driven write_inode() could occur while
4142 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4143 * will no longer be on the superblock's dirty inode list.
4144 */
a9185b41 4145int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4146{
91ac6f43
FM
4147 int err;
4148
ac27a0ec
DK
4149 if (current->flags & PF_MEMALLOC)
4150 return 0;
4151
91ac6f43
FM
4152 if (EXT4_SB(inode->i_sb)->s_journal) {
4153 if (ext4_journal_current_handle()) {
4154 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4155 dump_stack();
4156 return -EIO;
4157 }
ac27a0ec 4158
a9185b41 4159 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4160 return 0;
4161
4162 err = ext4_force_commit(inode->i_sb);
4163 } else {
4164 struct ext4_iloc iloc;
ac27a0ec 4165
8b472d73 4166 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4167 if (err)
4168 return err;
a9185b41 4169 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4170 sync_dirty_buffer(iloc.bh);
4171 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4172 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4173 "IO error syncing inode");
830156c7
FM
4174 err = -EIO;
4175 }
fd2dd9fb 4176 brelse(iloc.bh);
91ac6f43
FM
4177 }
4178 return err;
ac27a0ec
DK
4179}
4180
4181/*
617ba13b 4182 * ext4_setattr()
ac27a0ec
DK
4183 *
4184 * Called from notify_change.
4185 *
4186 * We want to trap VFS attempts to truncate the file as soon as
4187 * possible. In particular, we want to make sure that when the VFS
4188 * shrinks i_size, we put the inode on the orphan list and modify
4189 * i_disksize immediately, so that during the subsequent flushing of
4190 * dirty pages and freeing of disk blocks, we can guarantee that any
4191 * commit will leave the blocks being flushed in an unused state on
4192 * disk. (On recovery, the inode will get truncated and the blocks will
4193 * be freed, so we have a strong guarantee that no future commit will
4194 * leave these blocks visible to the user.)
4195 *
678aaf48
JK
4196 * Another thing we have to assure is that if we are in ordered mode
4197 * and inode is still attached to the committing transaction, we must
4198 * we start writeout of all the dirty pages which are being truncated.
4199 * This way we are sure that all the data written in the previous
4200 * transaction are already on disk (truncate waits for pages under
4201 * writeback).
4202 *
4203 * Called with inode->i_mutex down.
ac27a0ec 4204 */
617ba13b 4205int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4206{
4207 struct inode *inode = dentry->d_inode;
4208 int error, rc = 0;
3d287de3 4209 int orphan = 0;
ac27a0ec
DK
4210 const unsigned int ia_valid = attr->ia_valid;
4211
4212 error = inode_change_ok(inode, attr);
4213 if (error)
4214 return error;
4215
12755627 4216 if (is_quota_modification(inode, attr))
871a2931 4217 dquot_initialize(inode);
ac27a0ec
DK
4218 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4219 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4220 handle_t *handle;
4221
4222 /* (user+group)*(old+new) structure, inode write (sb,
4223 * inode block, ? - but truncate inode update has it) */
5aca07eb 4224 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4225 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4226 if (IS_ERR(handle)) {
4227 error = PTR_ERR(handle);
4228 goto err_out;
4229 }
b43fa828 4230 error = dquot_transfer(inode, attr);
ac27a0ec 4231 if (error) {
617ba13b 4232 ext4_journal_stop(handle);
ac27a0ec
DK
4233 return error;
4234 }
4235 /* Update corresponding info in inode so that everything is in
4236 * one transaction */
4237 if (attr->ia_valid & ATTR_UID)
4238 inode->i_uid = attr->ia_uid;
4239 if (attr->ia_valid & ATTR_GID)
4240 inode->i_gid = attr->ia_gid;
617ba13b
MC
4241 error = ext4_mark_inode_dirty(handle, inode);
4242 ext4_journal_stop(handle);
ac27a0ec
DK
4243 }
4244
e2b46574 4245 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4246 inode_dio_wait(inode);
4247
12e9b892 4248 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4249 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4250
0c095c7f
TT
4251 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4252 return -EFBIG;
e2b46574
ES
4253 }
4254 }
4255
ac27a0ec 4256 if (S_ISREG(inode->i_mode) &&
c8d46e41 4257 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4258 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4259 handle_t *handle;
4260
617ba13b 4261 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4262 if (IS_ERR(handle)) {
4263 error = PTR_ERR(handle);
4264 goto err_out;
4265 }
3d287de3
DM
4266 if (ext4_handle_valid(handle)) {
4267 error = ext4_orphan_add(handle, inode);
4268 orphan = 1;
4269 }
617ba13b
MC
4270 EXT4_I(inode)->i_disksize = attr->ia_size;
4271 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4272 if (!error)
4273 error = rc;
617ba13b 4274 ext4_journal_stop(handle);
678aaf48
JK
4275
4276 if (ext4_should_order_data(inode)) {
4277 error = ext4_begin_ordered_truncate(inode,
4278 attr->ia_size);
4279 if (error) {
4280 /* Do as much error cleanup as possible */
4281 handle = ext4_journal_start(inode, 3);
4282 if (IS_ERR(handle)) {
4283 ext4_orphan_del(NULL, inode);
4284 goto err_out;
4285 }
4286 ext4_orphan_del(handle, inode);
3d287de3 4287 orphan = 0;
678aaf48
JK
4288 ext4_journal_stop(handle);
4289 goto err_out;
4290 }
4291 }
ac27a0ec
DK
4292 }
4293
072bd7ea
TT
4294 if (attr->ia_valid & ATTR_SIZE) {
4295 if (attr->ia_size != i_size_read(inode)) {
4296 truncate_setsize(inode, attr->ia_size);
4297 ext4_truncate(inode);
4298 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4299 ext4_truncate(inode);
4300 }
ac27a0ec 4301
1025774c
CH
4302 if (!rc) {
4303 setattr_copy(inode, attr);
4304 mark_inode_dirty(inode);
4305 }
4306
4307 /*
4308 * If the call to ext4_truncate failed to get a transaction handle at
4309 * all, we need to clean up the in-core orphan list manually.
4310 */
3d287de3 4311 if (orphan && inode->i_nlink)
617ba13b 4312 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4313
4314 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4315 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4316
4317err_out:
617ba13b 4318 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4319 if (!error)
4320 error = rc;
4321 return error;
4322}
4323
3e3398a0
MC
4324int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4325 struct kstat *stat)
4326{
4327 struct inode *inode;
4328 unsigned long delalloc_blocks;
4329
4330 inode = dentry->d_inode;
4331 generic_fillattr(inode, stat);
4332
4333 /*
4334 * We can't update i_blocks if the block allocation is delayed
4335 * otherwise in the case of system crash before the real block
4336 * allocation is done, we will have i_blocks inconsistent with
4337 * on-disk file blocks.
4338 * We always keep i_blocks updated together with real
4339 * allocation. But to not confuse with user, stat
4340 * will return the blocks that include the delayed allocation
4341 * blocks for this file.
4342 */
3e3398a0 4343 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
4344
4345 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346 return 0;
4347}
ac27a0ec 4348
a02908f1
MC
4349static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4350{
12e9b892 4351 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4352 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4353 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4354}
ac51d837 4355
ac27a0ec 4356/*
a02908f1
MC
4357 * Account for index blocks, block groups bitmaps and block group
4358 * descriptor blocks if modify datablocks and index blocks
4359 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4360 *
a02908f1 4361 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4362 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4363 * they could still across block group boundary.
ac27a0ec 4364 *
a02908f1
MC
4365 * Also account for superblock, inode, quota and xattr blocks
4366 */
1f109d5a 4367static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4368{
8df9675f
TT
4369 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4370 int gdpblocks;
a02908f1
MC
4371 int idxblocks;
4372 int ret = 0;
4373
4374 /*
4375 * How many index blocks need to touch to modify nrblocks?
4376 * The "Chunk" flag indicating whether the nrblocks is
4377 * physically contiguous on disk
4378 *
4379 * For Direct IO and fallocate, they calls get_block to allocate
4380 * one single extent at a time, so they could set the "Chunk" flag
4381 */
4382 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4383
4384 ret = idxblocks;
4385
4386 /*
4387 * Now let's see how many group bitmaps and group descriptors need
4388 * to account
4389 */
4390 groups = idxblocks;
4391 if (chunk)
4392 groups += 1;
4393 else
4394 groups += nrblocks;
4395
4396 gdpblocks = groups;
8df9675f
TT
4397 if (groups > ngroups)
4398 groups = ngroups;
a02908f1
MC
4399 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4400 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4401
4402 /* bitmaps and block group descriptor blocks */
4403 ret += groups + gdpblocks;
4404
4405 /* Blocks for super block, inode, quota and xattr blocks */
4406 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4407
4408 return ret;
4409}
4410
4411/*
25985edc 4412 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4413 * the modification of a single pages into a single transaction,
4414 * which may include multiple chunks of block allocations.
ac27a0ec 4415 *
525f4ed8 4416 * This could be called via ext4_write_begin()
ac27a0ec 4417 *
525f4ed8 4418 * We need to consider the worse case, when
a02908f1 4419 * one new block per extent.
ac27a0ec 4420 */
a86c6181 4421int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4422{
617ba13b 4423 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4424 int ret;
4425
a02908f1 4426 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4427
a02908f1 4428 /* Account for data blocks for journalled mode */
617ba13b 4429 if (ext4_should_journal_data(inode))
a02908f1 4430 ret += bpp;
ac27a0ec
DK
4431 return ret;
4432}
f3bd1f3f
MC
4433
4434/*
4435 * Calculate the journal credits for a chunk of data modification.
4436 *
4437 * This is called from DIO, fallocate or whoever calling
79e83036 4438 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4439 *
4440 * journal buffers for data blocks are not included here, as DIO
4441 * and fallocate do no need to journal data buffers.
4442 */
4443int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4444{
4445 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4446}
4447
ac27a0ec 4448/*
617ba13b 4449 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4450 * Give this, we know that the caller already has write access to iloc->bh.
4451 */
617ba13b 4452int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4453 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4454{
4455 int err = 0;
4456
25ec56b5
JNC
4457 if (test_opt(inode->i_sb, I_VERSION))
4458 inode_inc_iversion(inode);
4459
ac27a0ec
DK
4460 /* the do_update_inode consumes one bh->b_count */
4461 get_bh(iloc->bh);
4462
dab291af 4463 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4464 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4465 put_bh(iloc->bh);
4466 return err;
4467}
4468
4469/*
4470 * On success, We end up with an outstanding reference count against
4471 * iloc->bh. This _must_ be cleaned up later.
4472 */
4473
4474int
617ba13b
MC
4475ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4476 struct ext4_iloc *iloc)
ac27a0ec 4477{
0390131b
FM
4478 int err;
4479
4480 err = ext4_get_inode_loc(inode, iloc);
4481 if (!err) {
4482 BUFFER_TRACE(iloc->bh, "get_write_access");
4483 err = ext4_journal_get_write_access(handle, iloc->bh);
4484 if (err) {
4485 brelse(iloc->bh);
4486 iloc->bh = NULL;
ac27a0ec
DK
4487 }
4488 }
617ba13b 4489 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4490 return err;
4491}
4492
6dd4ee7c
KS
4493/*
4494 * Expand an inode by new_extra_isize bytes.
4495 * Returns 0 on success or negative error number on failure.
4496 */
1d03ec98
AK
4497static int ext4_expand_extra_isize(struct inode *inode,
4498 unsigned int new_extra_isize,
4499 struct ext4_iloc iloc,
4500 handle_t *handle)
6dd4ee7c
KS
4501{
4502 struct ext4_inode *raw_inode;
4503 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4504
4505 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4506 return 0;
4507
4508 raw_inode = ext4_raw_inode(&iloc);
4509
4510 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4511
4512 /* No extended attributes present */
19f5fb7a
TT
4513 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4514 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4515 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4516 new_extra_isize);
4517 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4518 return 0;
4519 }
4520
4521 /* try to expand with EAs present */
4522 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4523 raw_inode, handle);
4524}
4525
ac27a0ec
DK
4526/*
4527 * What we do here is to mark the in-core inode as clean with respect to inode
4528 * dirtiness (it may still be data-dirty).
4529 * This means that the in-core inode may be reaped by prune_icache
4530 * without having to perform any I/O. This is a very good thing,
4531 * because *any* task may call prune_icache - even ones which
4532 * have a transaction open against a different journal.
4533 *
4534 * Is this cheating? Not really. Sure, we haven't written the
4535 * inode out, but prune_icache isn't a user-visible syncing function.
4536 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4537 * we start and wait on commits.
4538 *
4539 * Is this efficient/effective? Well, we're being nice to the system
4540 * by cleaning up our inodes proactively so they can be reaped
4541 * without I/O. But we are potentially leaving up to five seconds'
4542 * worth of inodes floating about which prune_icache wants us to
4543 * write out. One way to fix that would be to get prune_icache()
4544 * to do a write_super() to free up some memory. It has the desired
4545 * effect.
4546 */
617ba13b 4547int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4548{
617ba13b 4549 struct ext4_iloc iloc;
6dd4ee7c
KS
4550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4551 static unsigned int mnt_count;
4552 int err, ret;
ac27a0ec
DK
4553
4554 might_sleep();
7ff9c073 4555 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4556 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4557 if (ext4_handle_valid(handle) &&
4558 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4559 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4560 /*
4561 * We need extra buffer credits since we may write into EA block
4562 * with this same handle. If journal_extend fails, then it will
4563 * only result in a minor loss of functionality for that inode.
4564 * If this is felt to be critical, then e2fsck should be run to
4565 * force a large enough s_min_extra_isize.
4566 */
4567 if ((jbd2_journal_extend(handle,
4568 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4569 ret = ext4_expand_extra_isize(inode,
4570 sbi->s_want_extra_isize,
4571 iloc, handle);
4572 if (ret) {
19f5fb7a
TT
4573 ext4_set_inode_state(inode,
4574 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4575 if (mnt_count !=
4576 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4577 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4578 "Unable to expand inode %lu. Delete"
4579 " some EAs or run e2fsck.",
4580 inode->i_ino);
c1bddad9
AK
4581 mnt_count =
4582 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4583 }
4584 }
4585 }
4586 }
ac27a0ec 4587 if (!err)
617ba13b 4588 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4589 return err;
4590}
4591
4592/*
617ba13b 4593 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4594 *
4595 * We're really interested in the case where a file is being extended.
4596 * i_size has been changed by generic_commit_write() and we thus need
4597 * to include the updated inode in the current transaction.
4598 *
5dd4056d 4599 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4600 * are allocated to the file.
4601 *
4602 * If the inode is marked synchronous, we don't honour that here - doing
4603 * so would cause a commit on atime updates, which we don't bother doing.
4604 * We handle synchronous inodes at the highest possible level.
4605 */
aa385729 4606void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4607{
ac27a0ec
DK
4608 handle_t *handle;
4609
617ba13b 4610 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4611 if (IS_ERR(handle))
4612 goto out;
f3dc272f 4613
f3dc272f
CW
4614 ext4_mark_inode_dirty(handle, inode);
4615
617ba13b 4616 ext4_journal_stop(handle);
ac27a0ec
DK
4617out:
4618 return;
4619}
4620
4621#if 0
4622/*
4623 * Bind an inode's backing buffer_head into this transaction, to prevent
4624 * it from being flushed to disk early. Unlike
617ba13b 4625 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4626 * returns no iloc structure, so the caller needs to repeat the iloc
4627 * lookup to mark the inode dirty later.
4628 */
617ba13b 4629static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4630{
617ba13b 4631 struct ext4_iloc iloc;
ac27a0ec
DK
4632
4633 int err = 0;
4634 if (handle) {
617ba13b 4635 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4636 if (!err) {
4637 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4638 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4639 if (!err)
0390131b 4640 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4641 NULL,
0390131b 4642 iloc.bh);
ac27a0ec
DK
4643 brelse(iloc.bh);
4644 }
4645 }
617ba13b 4646 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4647 return err;
4648}
4649#endif
4650
617ba13b 4651int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4652{
4653 journal_t *journal;
4654 handle_t *handle;
4655 int err;
4656
4657 /*
4658 * We have to be very careful here: changing a data block's
4659 * journaling status dynamically is dangerous. If we write a
4660 * data block to the journal, change the status and then delete
4661 * that block, we risk forgetting to revoke the old log record
4662 * from the journal and so a subsequent replay can corrupt data.
4663 * So, first we make sure that the journal is empty and that
4664 * nobody is changing anything.
4665 */
4666
617ba13b 4667 journal = EXT4_JOURNAL(inode);
0390131b
FM
4668 if (!journal)
4669 return 0;
d699594d 4670 if (is_journal_aborted(journal))
ac27a0ec
DK
4671 return -EROFS;
4672
dab291af
MC
4673 jbd2_journal_lock_updates(journal);
4674 jbd2_journal_flush(journal);
ac27a0ec
DK
4675
4676 /*
4677 * OK, there are no updates running now, and all cached data is
4678 * synced to disk. We are now in a completely consistent state
4679 * which doesn't have anything in the journal, and we know that
4680 * no filesystem updates are running, so it is safe to modify
4681 * the inode's in-core data-journaling state flag now.
4682 */
4683
4684 if (val)
12e9b892 4685 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 4686 else
12e9b892 4687 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 4688 ext4_set_aops(inode);
ac27a0ec 4689
dab291af 4690 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4691
4692 /* Finally we can mark the inode as dirty. */
4693
617ba13b 4694 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4695 if (IS_ERR(handle))
4696 return PTR_ERR(handle);
4697
617ba13b 4698 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4699 ext4_handle_sync(handle);
617ba13b
MC
4700 ext4_journal_stop(handle);
4701 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4702
4703 return err;
4704}
2e9ee850
AK
4705
4706static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4707{
4708 return !buffer_mapped(bh);
4709}
4710
c2ec175c 4711int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4712{
c2ec175c 4713 struct page *page = vmf->page;
2e9ee850
AK
4714 loff_t size;
4715 unsigned long len;
9ea7df53 4716 int ret;
2e9ee850
AK
4717 struct file *file = vma->vm_file;
4718 struct inode *inode = file->f_path.dentry->d_inode;
4719 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4720 handle_t *handle;
4721 get_block_t *get_block;
4722 int retries = 0;
2e9ee850
AK
4723
4724 /*
9ea7df53
JK
4725 * This check is racy but catches the common case. We rely on
4726 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4727 */
9ea7df53
JK
4728 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4729 /* Delalloc case is easy... */
4730 if (test_opt(inode->i_sb, DELALLOC) &&
4731 !ext4_should_journal_data(inode) &&
4732 !ext4_nonda_switch(inode->i_sb)) {
4733 do {
4734 ret = __block_page_mkwrite(vma, vmf,
4735 ext4_da_get_block_prep);
4736 } while (ret == -ENOSPC &&
4737 ext4_should_retry_alloc(inode->i_sb, &retries));
4738 goto out_ret;
2e9ee850 4739 }
0e499890
DW
4740
4741 lock_page(page);
9ea7df53
JK
4742 size = i_size_read(inode);
4743 /* Page got truncated from under us? */
4744 if (page->mapping != mapping || page_offset(page) > size) {
4745 unlock_page(page);
4746 ret = VM_FAULT_NOPAGE;
4747 goto out;
0e499890 4748 }
2e9ee850
AK
4749
4750 if (page->index == size >> PAGE_CACHE_SHIFT)
4751 len = size & ~PAGE_CACHE_MASK;
4752 else
4753 len = PAGE_CACHE_SIZE;
a827eaff 4754 /*
9ea7df53
JK
4755 * Return if we have all the buffers mapped. This avoids the need to do
4756 * journal_start/journal_stop which can block and take a long time
a827eaff 4757 */
2e9ee850 4758 if (page_has_buffers(page)) {
2e9ee850 4759 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4760 ext4_bh_unmapped)) {
9ea7df53
JK
4761 /* Wait so that we don't change page under IO */
4762 wait_on_page_writeback(page);
4763 ret = VM_FAULT_LOCKED;
4764 goto out;
a827eaff 4765 }
2e9ee850 4766 }
a827eaff 4767 unlock_page(page);
9ea7df53
JK
4768 /* OK, we need to fill the hole... */
4769 if (ext4_should_dioread_nolock(inode))
4770 get_block = ext4_get_block_write;
4771 else
4772 get_block = ext4_get_block;
4773retry_alloc:
4774 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4775 if (IS_ERR(handle)) {
c2ec175c 4776 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4777 goto out;
4778 }
4779 ret = __block_page_mkwrite(vma, vmf, get_block);
4780 if (!ret && ext4_should_journal_data(inode)) {
4781 if (walk_page_buffers(handle, page_buffers(page), 0,
4782 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4783 unlock_page(page);
4784 ret = VM_FAULT_SIGBUS;
4785 goto out;
4786 }
4787 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4788 }
4789 ext4_journal_stop(handle);
4790 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4791 goto retry_alloc;
4792out_ret:
4793 ret = block_page_mkwrite_return(ret);
4794out:
2e9ee850
AK
4795 return ret;
4796}