Kobject: remove kobject_init() as no one uses it anymore
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
b238b3d4 42static void drive_stat_acct(struct request *rq, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4 793 BUG_ON(bqt->busy);
1da177e4
LT
794
795 kfree(bqt->tag_index);
796 bqt->tag_index = NULL;
797
798 kfree(bqt->tag_map);
799 bqt->tag_map = NULL;
800
801 kfree(bqt);
492dfb48 802
1da177e4
LT
803 }
804
492dfb48
JB
805 return retval;
806}
807
808/**
809 * __blk_queue_free_tags - release tag maintenance info
810 * @q: the request queue for the device
811 *
812 * Notes:
813 * blk_cleanup_queue() will take care of calling this function, if tagging
814 * has been used. So there's no need to call this directly.
815 **/
165125e1 816static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
817{
818 struct blk_queue_tag *bqt = q->queue_tags;
819
820 if (!bqt)
821 return;
822
823 __blk_free_tags(bqt);
824
1da177e4
LT
825 q->queue_tags = NULL;
826 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
827}
828
492dfb48
JB
829
830/**
831 * blk_free_tags - release a given set of tag maintenance info
832 * @bqt: the tag map to free
833 *
834 * For externally managed @bqt@ frees the map. Callers of this
835 * function must guarantee to have released all the queues that
836 * might have been using this tag map.
837 */
838void blk_free_tags(struct blk_queue_tag *bqt)
839{
840 if (unlikely(!__blk_free_tags(bqt)))
841 BUG();
842}
843EXPORT_SYMBOL(blk_free_tags);
844
1da177e4
LT
845/**
846 * blk_queue_free_tags - release tag maintenance info
847 * @q: the request queue for the device
848 *
849 * Notes:
850 * This is used to disabled tagged queuing to a device, yet leave
851 * queue in function.
852 **/
165125e1 853void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
854{
855 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
856}
857
858EXPORT_SYMBOL(blk_queue_free_tags);
859
860static int
165125e1 861init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 862{
1da177e4
LT
863 struct request **tag_index;
864 unsigned long *tag_map;
fa72b903 865 int nr_ulongs;
1da177e4 866
492dfb48 867 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
868 depth = q->nr_requests * 2;
869 printk(KERN_ERR "%s: adjusted depth to %d\n",
870 __FUNCTION__, depth);
871 }
872
f68110fc 873 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
874 if (!tag_index)
875 goto fail;
876
f7d37d02 877 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 878 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
879 if (!tag_map)
880 goto fail;
881
ba025082 882 tags->real_max_depth = depth;
1da177e4 883 tags->max_depth = depth;
1da177e4
LT
884 tags->tag_index = tag_index;
885 tags->tag_map = tag_map;
886
1da177e4
LT
887 return 0;
888fail:
889 kfree(tag_index);
890 return -ENOMEM;
891}
892
492dfb48
JB
893static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
894 int depth)
895{
896 struct blk_queue_tag *tags;
897
898 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
899 if (!tags)
900 goto fail;
901
902 if (init_tag_map(q, tags, depth))
903 goto fail;
904
492dfb48
JB
905 tags->busy = 0;
906 atomic_set(&tags->refcnt, 1);
907 return tags;
908fail:
909 kfree(tags);
910 return NULL;
911}
912
913/**
914 * blk_init_tags - initialize the tag info for an external tag map
915 * @depth: the maximum queue depth supported
916 * @tags: the tag to use
917 **/
918struct blk_queue_tag *blk_init_tags(int depth)
919{
920 return __blk_queue_init_tags(NULL, depth);
921}
922EXPORT_SYMBOL(blk_init_tags);
923
1da177e4
LT
924/**
925 * blk_queue_init_tags - initialize the queue tag info
926 * @q: the request queue for the device
927 * @depth: the maximum queue depth supported
928 * @tags: the tag to use
929 **/
165125e1 930int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
931 struct blk_queue_tag *tags)
932{
933 int rc;
934
935 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
936
937 if (!tags && !q->queue_tags) {
492dfb48 938 tags = __blk_queue_init_tags(q, depth);
1da177e4 939
492dfb48 940 if (!tags)
1da177e4 941 goto fail;
1da177e4
LT
942 } else if (q->queue_tags) {
943 if ((rc = blk_queue_resize_tags(q, depth)))
944 return rc;
945 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
946 return 0;
947 } else
948 atomic_inc(&tags->refcnt);
949
950 /*
951 * assign it, all done
952 */
953 q->queue_tags = tags;
954 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
6eca9004 955 INIT_LIST_HEAD(&q->tag_busy_list);
1da177e4
LT
956 return 0;
957fail:
958 kfree(tags);
959 return -ENOMEM;
960}
961
962EXPORT_SYMBOL(blk_queue_init_tags);
963
964/**
965 * blk_queue_resize_tags - change the queueing depth
966 * @q: the request queue for the device
967 * @new_depth: the new max command queueing depth
968 *
969 * Notes:
970 * Must be called with the queue lock held.
971 **/
165125e1 972int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
973{
974 struct blk_queue_tag *bqt = q->queue_tags;
975 struct request **tag_index;
976 unsigned long *tag_map;
fa72b903 977 int max_depth, nr_ulongs;
1da177e4
LT
978
979 if (!bqt)
980 return -ENXIO;
981
ba025082
TH
982 /*
983 * if we already have large enough real_max_depth. just
984 * adjust max_depth. *NOTE* as requests with tag value
985 * between new_depth and real_max_depth can be in-flight, tag
986 * map can not be shrunk blindly here.
987 */
988 if (new_depth <= bqt->real_max_depth) {
989 bqt->max_depth = new_depth;
990 return 0;
991 }
992
492dfb48
JB
993 /*
994 * Currently cannot replace a shared tag map with a new
995 * one, so error out if this is the case
996 */
997 if (atomic_read(&bqt->refcnt) != 1)
998 return -EBUSY;
999
1da177e4
LT
1000 /*
1001 * save the old state info, so we can copy it back
1002 */
1003 tag_index = bqt->tag_index;
1004 tag_map = bqt->tag_map;
ba025082 1005 max_depth = bqt->real_max_depth;
1da177e4
LT
1006
1007 if (init_tag_map(q, bqt, new_depth))
1008 return -ENOMEM;
1009
1010 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1011 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1012 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1013
1014 kfree(tag_index);
1015 kfree(tag_map);
1016 return 0;
1017}
1018
1019EXPORT_SYMBOL(blk_queue_resize_tags);
1020
1021/**
1022 * blk_queue_end_tag - end tag operations for a request
1023 * @q: the request queue for the device
1024 * @rq: the request that has completed
1025 *
1026 * Description:
1027 * Typically called when end_that_request_first() returns 0, meaning
1028 * all transfers have been done for a request. It's important to call
1029 * this function before end_that_request_last(), as that will put the
1030 * request back on the free list thus corrupting the internal tag list.
1031 *
1032 * Notes:
1033 * queue lock must be held.
1034 **/
165125e1 1035void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1036{
1037 struct blk_queue_tag *bqt = q->queue_tags;
1038 int tag = rq->tag;
1039
1040 BUG_ON(tag == -1);
1041
ba025082 1042 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1043 /*
1044 * This can happen after tag depth has been reduced.
1045 * FIXME: how about a warning or info message here?
1046 */
1da177e4
LT
1047 return;
1048
1da177e4 1049 list_del_init(&rq->queuelist);
4aff5e23 1050 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1051 rq->tag = -1;
1052
1053 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1054 printk(KERN_ERR "%s: tag %d is missing\n",
1055 __FUNCTION__, tag);
1da177e4
LT
1056
1057 bqt->tag_index[tag] = NULL;
f3da54ba 1058
adb4ddbb 1059 if (unlikely(!test_bit(tag, bqt->tag_map))) {
f3da54ba
JA
1060 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1061 __FUNCTION__, tag);
1062 return;
1063 }
adb4ddbb
NP
1064 /*
1065 * The tag_map bit acts as a lock for tag_index[bit], so we need
1066 * unlock memory barrier semantics.
1067 */
1068 clear_bit_unlock(tag, bqt->tag_map);
1da177e4
LT
1069 bqt->busy--;
1070}
1071
1072EXPORT_SYMBOL(blk_queue_end_tag);
1073
1074/**
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1078 *
1079 * Description:
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1088 *
1089 * Notes:
1090 * queue lock must be held.
1091 **/
165125e1 1092int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1093{
1094 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1095 int tag;
1da177e4 1096
4aff5e23 1097 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1098 printk(KERN_ERR
040c928c
TH
1099 "%s: request %p for device [%s] already tagged %d",
1100 __FUNCTION__, rq,
1101 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1102 BUG();
1103 }
1104
059af497
JA
1105 /*
1106 * Protect against shared tag maps, as we may not have exclusive
1107 * access to the tag map.
1108 */
1109 do {
1110 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1111 if (tag >= bqt->max_depth)
1112 return 1;
1da177e4 1113
adb4ddbb 1114 } while (test_and_set_bit_lock(tag, bqt->tag_map));
dd941252 1115 /*
adb4ddbb
NP
1116 * We need lock ordering semantics given by test_and_set_bit_lock.
1117 * See blk_queue_end_tag for details.
dd941252 1118 */
1da177e4 1119
4aff5e23 1120 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1121 rq->tag = tag;
1122 bqt->tag_index[tag] = rq;
1123 blkdev_dequeue_request(rq);
6eca9004 1124 list_add(&rq->queuelist, &q->tag_busy_list);
1da177e4
LT
1125 bqt->busy++;
1126 return 0;
1127}
1128
1129EXPORT_SYMBOL(blk_queue_start_tag);
1130
1131/**
1132 * blk_queue_invalidate_tags - invalidate all pending tags
1133 * @q: the request queue for the device
1134 *
1135 * Description:
1136 * Hardware conditions may dictate a need to stop all pending requests.
1137 * In this case, we will safely clear the block side of the tag queue and
1138 * readd all requests to the request queue in the right order.
1139 *
1140 * Notes:
1141 * queue lock must be held.
1142 **/
165125e1 1143void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4 1144{
1da177e4 1145 struct list_head *tmp, *n;
1da177e4 1146
d85532ed
JA
1147 list_for_each_safe(tmp, n, &q->tag_busy_list)
1148 blk_requeue_request(q, list_entry_rq(tmp));
1da177e4
LT
1149}
1150
1151EXPORT_SYMBOL(blk_queue_invalidate_tags);
1152
1da177e4
LT
1153void blk_dump_rq_flags(struct request *rq, char *msg)
1154{
1155 int bit;
1156
4aff5e23
JA
1157 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1158 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1159 rq->cmd_flags);
1da177e4
LT
1160
1161 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1162 rq->nr_sectors,
1163 rq->current_nr_sectors);
1164 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1165
4aff5e23 1166 if (blk_pc_request(rq)) {
1da177e4
LT
1167 printk("cdb: ");
1168 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1169 printk("%02x ", rq->cmd[bit]);
1170 printk("\n");
1171 }
1172}
1173
1174EXPORT_SYMBOL(blk_dump_rq_flags);
1175
165125e1 1176void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1177{
9dfa5283
N
1178 struct request rq;
1179 struct bio *nxt = bio->bi_next;
1180 rq.q = q;
1181 rq.bio = rq.biotail = bio;
1182 bio->bi_next = NULL;
1183 blk_recalc_rq_segments(&rq);
1184 bio->bi_next = nxt;
1185 bio->bi_phys_segments = rq.nr_phys_segments;
1186 bio->bi_hw_segments = rq.nr_hw_segments;
1187 bio->bi_flags |= (1 << BIO_SEG_VALID);
1188}
1189EXPORT_SYMBOL(blk_recount_segments);
1190
1191static void blk_recalc_rq_segments(struct request *rq)
1192{
1193 int nr_phys_segs;
1194 int nr_hw_segs;
1195 unsigned int phys_size;
1196 unsigned int hw_size;
1da177e4 1197 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1198 int seg_size;
1199 int hw_seg_size;
1200 int cluster;
5705f702 1201 struct req_iterator iter;
1da177e4 1202 int high, highprv = 1;
9dfa5283 1203 struct request_queue *q = rq->q;
1da177e4 1204
9dfa5283 1205 if (!rq->bio)
1da177e4
LT
1206 return;
1207
1208 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1209 hw_seg_size = seg_size = 0;
1210 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1211 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1212 /*
1213 * the trick here is making sure that a high page is never
1214 * considered part of another segment, since that might
1215 * change with the bounce page.
1216 */
f772b3d9 1217 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1218 if (high || highprv)
1219 goto new_hw_segment;
1220 if (cluster) {
1221 if (seg_size + bv->bv_len > q->max_segment_size)
1222 goto new_segment;
1223 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1224 goto new_segment;
1225 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1226 goto new_segment;
1227 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1228 goto new_hw_segment;
1229
1230 seg_size += bv->bv_len;
1231 hw_seg_size += bv->bv_len;
1232 bvprv = bv;
1233 continue;
1234 }
1235new_segment:
1236 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1237 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1238 hw_seg_size += bv->bv_len;
9dfa5283 1239 else {
1da177e4 1240new_hw_segment:
9dfa5283
N
1241 if (nr_hw_segs == 1 &&
1242 hw_seg_size > rq->bio->bi_hw_front_size)
1243 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1244 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1245 nr_hw_segs++;
1246 }
1247
1248 nr_phys_segs++;
1249 bvprv = bv;
1250 seg_size = bv->bv_len;
1251 highprv = high;
1252 }
9dfa5283
N
1253
1254 if (nr_hw_segs == 1 &&
1255 hw_seg_size > rq->bio->bi_hw_front_size)
1256 rq->bio->bi_hw_front_size = hw_seg_size;
1257 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1258 rq->biotail->bi_hw_back_size = hw_seg_size;
1259 rq->nr_phys_segments = nr_phys_segs;
1260 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1261}
1da177e4 1262
165125e1 1263static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1264 struct bio *nxt)
1265{
1266 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1267 return 0;
1268
1269 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1270 return 0;
1271 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1272 return 0;
1273
1274 /*
1275 * bio and nxt are contigous in memory, check if the queue allows
1276 * these two to be merged into one
1277 */
1278 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1279 return 1;
1280
1281 return 0;
1282}
1283
165125e1 1284static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1285 struct bio *nxt)
1286{
1287 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1288 blk_recount_segments(q, bio);
1289 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1290 blk_recount_segments(q, nxt);
1291 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1292 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1293 return 0;
32eef964 1294 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1295 return 0;
1296
1297 return 1;
1298}
1299
1da177e4
LT
1300/*
1301 * map a request to scatterlist, return number of sg entries setup. Caller
1302 * must make sure sg can hold rq->nr_phys_segments entries
1303 */
165125e1 1304int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1305 struct scatterlist *sglist)
1da177e4
LT
1306{
1307 struct bio_vec *bvec, *bvprv;
5705f702 1308 struct req_iterator iter;
ba951841 1309 struct scatterlist *sg;
5705f702 1310 int nsegs, cluster;
1da177e4
LT
1311
1312 nsegs = 0;
1313 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1314
1315 /*
1316 * for each bio in rq
1317 */
1318 bvprv = NULL;
ba951841 1319 sg = NULL;
5705f702 1320 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1321 int nbytes = bvec->bv_len;
1da177e4 1322
6c92e699 1323 if (bvprv && cluster) {
f565913e 1324 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1325 goto new_segment;
1da177e4 1326
6c92e699
JA
1327 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1328 goto new_segment;
1329 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1330 goto new_segment;
1da177e4 1331
f565913e 1332 sg->length += nbytes;
6c92e699 1333 } else {
1da177e4 1334new_segment:
ba951841
JA
1335 if (!sg)
1336 sg = sglist;
7aeacf98
JA
1337 else {
1338 /*
1339 * If the driver previously mapped a shorter
1340 * list, we could see a termination bit
1341 * prematurely unless it fully inits the sg
1342 * table on each mapping. We KNOW that there
1343 * must be more entries here or the driver
1344 * would be buggy, so force clear the
1345 * termination bit to avoid doing a full
1346 * sg_init_table() in drivers for each command.
1347 */
1348 sg->page_link &= ~0x02;
ba951841 1349 sg = sg_next(sg);
7aeacf98 1350 }
6c92e699 1351
642f1490 1352 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1353 nsegs++;
1354 }
1355 bvprv = bvec;
5705f702 1356 } /* segments in rq */
1da177e4 1357
9b61764b 1358 if (sg)
c46f2334 1359 sg_mark_end(sg);
9b61764b 1360
1da177e4
LT
1361 return nsegs;
1362}
1363
1364EXPORT_SYMBOL(blk_rq_map_sg);
1365
1366/*
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1369 */
1370
165125e1 1371static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1372 struct request *req,
1373 struct bio *bio)
1374{
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1376
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1378 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1381 return 0;
1382 }
1383
1384 /*
1385 * A hw segment is just getting larger, bump just the phys
1386 * counter.
1387 */
1388 req->nr_phys_segments += nr_phys_segs;
1389 return 1;
1390}
1391
165125e1 1392static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1393 struct request *req,
1394 struct bio *bio)
1395{
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1398
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1401 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1404 return 0;
1405 }
1406
1407 /*
1408 * This will form the start of a new hw segment. Bump both
1409 * counters.
1410 */
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414}
1415
3001ca77
N
1416static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1417 struct bio *bio)
1da177e4 1418{
defd94b7 1419 unsigned short max_sectors;
1da177e4
LT
1420 int len;
1421
defd94b7
MC
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1424 else
1425 max_sectors = q->max_sectors;
1426
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1428 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1431 return 0;
1432 }
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1441
1442 if (mergeable) {
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1447 }
1448 return mergeable;
1449 }
1450
1451 return ll_new_hw_segment(q, req, bio);
1452}
1453
165125e1 1454static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1455 struct bio *bio)
1456{
defd94b7 1457 unsigned short max_sectors;
1da177e4
LT
1458 int len;
1459
defd94b7
MC
1460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1462 else
1463 max_sectors = q->max_sectors;
1464
1465
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1467 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1471 }
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1480
1481 if (mergeable) {
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1486 }
1487 return mergeable;
1488 }
1489
1490 return ll_new_hw_segment(q, req, bio);
1491}
1492
165125e1 1493static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1494 struct request *next)
1495{
dfa1a553
ND
1496 int total_phys_segments;
1497 int total_hw_segments;
1da177e4
LT
1498
1499 /*
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1502 */
1503 if (req->special || next->special)
1504 return 0;
1505
1506 /*
dfa1a553 1507 * Will it become too large?
1da177e4
LT
1508 */
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1510 return 0;
1511
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1515
1516 if (total_phys_segments > q->max_phys_segments)
1517 return 0;
1518
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1522 /*
1523 * propagate the combined length to the end of the requests
1524 */
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1530 }
1531
1532 if (total_hw_segments > q->max_hw_segments)
1533 return 0;
1534
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1538 return 1;
1539}
1540
1541/*
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1544 * on the list.
1545 *
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1548 */
165125e1 1549void blk_plug_device(struct request_queue *q)
1da177e4
LT
1550{
1551 WARN_ON(!irqs_disabled());
1552
1553 /*
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1556 */
7daac490 1557 if (blk_queue_stopped(q))
1da177e4
LT
1558 return;
1559
2056a782 1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1562 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1563 }
1da177e4
LT
1564}
1565
1566EXPORT_SYMBOL(blk_plug_device);
1567
1568/*
1569 * remove the queue from the plugged list, if present. called with
1570 * queue lock held and interrupts disabled.
1571 */
165125e1 1572int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1573{
1574 WARN_ON(!irqs_disabled());
1575
1576 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1577 return 0;
1578
1579 del_timer(&q->unplug_timer);
1580 return 1;
1581}
1582
1583EXPORT_SYMBOL(blk_remove_plug);
1584
1585/*
1586 * remove the plug and let it rip..
1587 */
165125e1 1588void __generic_unplug_device(struct request_queue *q)
1da177e4 1589{
7daac490 1590 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1591 return;
1592
1593 if (!blk_remove_plug(q))
1594 return;
1595
22e2c507 1596 q->request_fn(q);
1da177e4
LT
1597}
1598EXPORT_SYMBOL(__generic_unplug_device);
1599
1600/**
1601 * generic_unplug_device - fire a request queue
165125e1 1602 * @q: The &struct request_queue in question
1da177e4
LT
1603 *
1604 * Description:
1605 * Linux uses plugging to build bigger requests queues before letting
1606 * the device have at them. If a queue is plugged, the I/O scheduler
1607 * is still adding and merging requests on the queue. Once the queue
1608 * gets unplugged, the request_fn defined for the queue is invoked and
1609 * transfers started.
1610 **/
165125e1 1611void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1612{
1613 spin_lock_irq(q->queue_lock);
1614 __generic_unplug_device(q);
1615 spin_unlock_irq(q->queue_lock);
1616}
1617EXPORT_SYMBOL(generic_unplug_device);
1618
1619static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1620 struct page *page)
1621{
165125e1 1622 struct request_queue *q = bdi->unplug_io_data;
1da177e4 1623
2ad8b1ef 1624 blk_unplug(q);
1da177e4
LT
1625}
1626
65f27f38 1627static void blk_unplug_work(struct work_struct *work)
1da177e4 1628{
165125e1
JA
1629 struct request_queue *q =
1630 container_of(work, struct request_queue, unplug_work);
1da177e4 1631
2056a782
JA
1632 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1633 q->rq.count[READ] + q->rq.count[WRITE]);
1634
1da177e4
LT
1635 q->unplug_fn(q);
1636}
1637
1638static void blk_unplug_timeout(unsigned long data)
1639{
165125e1 1640 struct request_queue *q = (struct request_queue *)data;
1da177e4 1641
2056a782
JA
1642 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1643 q->rq.count[READ] + q->rq.count[WRITE]);
1644
1da177e4
LT
1645 kblockd_schedule_work(&q->unplug_work);
1646}
1647
2ad8b1ef
AB
1648void blk_unplug(struct request_queue *q)
1649{
1650 /*
1651 * devices don't necessarily have an ->unplug_fn defined
1652 */
1653 if (q->unplug_fn) {
1654 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1655 q->rq.count[READ] + q->rq.count[WRITE]);
1656
1657 q->unplug_fn(q);
1658 }
1659}
1660EXPORT_SYMBOL(blk_unplug);
1661
1da177e4
LT
1662/**
1663 * blk_start_queue - restart a previously stopped queue
165125e1 1664 * @q: The &struct request_queue in question
1da177e4
LT
1665 *
1666 * Description:
1667 * blk_start_queue() will clear the stop flag on the queue, and call
1668 * the request_fn for the queue if it was in a stopped state when
1669 * entered. Also see blk_stop_queue(). Queue lock must be held.
1670 **/
165125e1 1671void blk_start_queue(struct request_queue *q)
1da177e4 1672{
a038e253
PBG
1673 WARN_ON(!irqs_disabled());
1674
1da177e4
LT
1675 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1676
1677 /*
1678 * one level of recursion is ok and is much faster than kicking
1679 * the unplug handling
1680 */
1681 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1682 q->request_fn(q);
1683 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1684 } else {
1685 blk_plug_device(q);
1686 kblockd_schedule_work(&q->unplug_work);
1687 }
1688}
1689
1690EXPORT_SYMBOL(blk_start_queue);
1691
1692/**
1693 * blk_stop_queue - stop a queue
165125e1 1694 * @q: The &struct request_queue in question
1da177e4
LT
1695 *
1696 * Description:
1697 * The Linux block layer assumes that a block driver will consume all
1698 * entries on the request queue when the request_fn strategy is called.
1699 * Often this will not happen, because of hardware limitations (queue
1700 * depth settings). If a device driver gets a 'queue full' response,
1701 * or if it simply chooses not to queue more I/O at one point, it can
1702 * call this function to prevent the request_fn from being called until
1703 * the driver has signalled it's ready to go again. This happens by calling
1704 * blk_start_queue() to restart queue operations. Queue lock must be held.
1705 **/
165125e1 1706void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1707{
1708 blk_remove_plug(q);
1709 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1710}
1711EXPORT_SYMBOL(blk_stop_queue);
1712
1713/**
1714 * blk_sync_queue - cancel any pending callbacks on a queue
1715 * @q: the queue
1716 *
1717 * Description:
1718 * The block layer may perform asynchronous callback activity
1719 * on a queue, such as calling the unplug function after a timeout.
1720 * A block device may call blk_sync_queue to ensure that any
1721 * such activity is cancelled, thus allowing it to release resources
59c51591 1722 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1723 * that its ->make_request_fn will not re-add plugging prior to calling
1724 * this function.
1725 *
1726 */
1727void blk_sync_queue(struct request_queue *q)
1728{
1729 del_timer_sync(&q->unplug_timer);
abbeb88d 1730 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
1731}
1732EXPORT_SYMBOL(blk_sync_queue);
1733
1734/**
1735 * blk_run_queue - run a single device queue
1736 * @q: The queue to run
1737 */
1738void blk_run_queue(struct request_queue *q)
1739{
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(q->queue_lock, flags);
1743 blk_remove_plug(q);
dac07ec1
JA
1744
1745 /*
1746 * Only recurse once to avoid overrunning the stack, let the unplug
1747 * handling reinvoke the handler shortly if we already got there.
1748 */
1749 if (!elv_queue_empty(q)) {
1750 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1751 q->request_fn(q);
1752 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1753 } else {
1754 blk_plug_device(q);
1755 kblockd_schedule_work(&q->unplug_work);
1756 }
1757 }
1758
1da177e4
LT
1759 spin_unlock_irqrestore(q->queue_lock, flags);
1760}
1761EXPORT_SYMBOL(blk_run_queue);
1762
1763/**
165125e1 1764 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1765 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1766 *
1767 * Description:
1768 * blk_cleanup_queue is the pair to blk_init_queue() or
1769 * blk_queue_make_request(). It should be called when a request queue is
1770 * being released; typically when a block device is being de-registered.
1771 * Currently, its primary task it to free all the &struct request
1772 * structures that were allocated to the queue and the queue itself.
1773 *
1774 * Caveat:
1775 * Hopefully the low level driver will have finished any
1776 * outstanding requests first...
1777 **/
483f4afc 1778static void blk_release_queue(struct kobject *kobj)
1da177e4 1779{
165125e1
JA
1780 struct request_queue *q =
1781 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1782 struct request_list *rl = &q->rq;
1783
1da177e4
LT
1784 blk_sync_queue(q);
1785
1786 if (rl->rq_pool)
1787 mempool_destroy(rl->rq_pool);
1788
1789 if (q->queue_tags)
1790 __blk_queue_free_tags(q);
1791
6c5c9341 1792 blk_trace_shutdown(q);
2056a782 1793
e0bf68dd 1794 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1795 kmem_cache_free(requestq_cachep, q);
1796}
1797
165125e1 1798void blk_put_queue(struct request_queue *q)
483f4afc
AV
1799{
1800 kobject_put(&q->kobj);
1801}
1802EXPORT_SYMBOL(blk_put_queue);
1803
165125e1 1804void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1805{
1806 mutex_lock(&q->sysfs_lock);
1807 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1808 mutex_unlock(&q->sysfs_lock);
1809
1810 if (q->elevator)
1811 elevator_exit(q->elevator);
1812
1813 blk_put_queue(q);
1814}
1815
1da177e4
LT
1816EXPORT_SYMBOL(blk_cleanup_queue);
1817
165125e1 1818static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1819{
1820 struct request_list *rl = &q->rq;
1821
1822 rl->count[READ] = rl->count[WRITE] = 0;
1823 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1824 rl->elvpriv = 0;
1da177e4
LT
1825 init_waitqueue_head(&rl->wait[READ]);
1826 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1827
1946089a
CL
1828 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1829 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1830
1831 if (!rl->rq_pool)
1832 return -ENOMEM;
1833
1834 return 0;
1835}
1836
165125e1 1837struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1838{
1946089a
CL
1839 return blk_alloc_queue_node(gfp_mask, -1);
1840}
1841EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1842
483f4afc
AV
1843static struct kobj_type queue_ktype;
1844
165125e1 1845struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1846{
165125e1 1847 struct request_queue *q;
e0bf68dd 1848 int err;
1946089a 1849
94f6030c
CL
1850 q = kmem_cache_alloc_node(requestq_cachep,
1851 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1852 if (!q)
1853 return NULL;
1854
e0bf68dd
PZ
1855 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1856 q->backing_dev_info.unplug_io_data = q;
1857 err = bdi_init(&q->backing_dev_info);
1858 if (err) {
1859 kmem_cache_free(requestq_cachep, q);
1860 return NULL;
1861 }
1862
1da177e4 1863 init_timer(&q->unplug_timer);
483f4afc 1864
d5a379f7 1865 kobject_init_ng(&q->kobj, &queue_ktype);
1da177e4 1866
483f4afc
AV
1867 mutex_init(&q->sysfs_lock);
1868
1da177e4
LT
1869 return q;
1870}
1946089a 1871EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1872
1873/**
1874 * blk_init_queue - prepare a request queue for use with a block device
1875 * @rfn: The function to be called to process requests that have been
1876 * placed on the queue.
1877 * @lock: Request queue spin lock
1878 *
1879 * Description:
1880 * If a block device wishes to use the standard request handling procedures,
1881 * which sorts requests and coalesces adjacent requests, then it must
1882 * call blk_init_queue(). The function @rfn will be called when there
1883 * are requests on the queue that need to be processed. If the device
1884 * supports plugging, then @rfn may not be called immediately when requests
1885 * are available on the queue, but may be called at some time later instead.
1886 * Plugged queues are generally unplugged when a buffer belonging to one
1887 * of the requests on the queue is needed, or due to memory pressure.
1888 *
1889 * @rfn is not required, or even expected, to remove all requests off the
1890 * queue, but only as many as it can handle at a time. If it does leave
1891 * requests on the queue, it is responsible for arranging that the requests
1892 * get dealt with eventually.
1893 *
1894 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1895 * request queue; this lock will be taken also from interrupt context, so irq
1896 * disabling is needed for it.
1da177e4
LT
1897 *
1898 * Function returns a pointer to the initialized request queue, or NULL if
1899 * it didn't succeed.
1900 *
1901 * Note:
1902 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1903 * when the block device is deactivated (such as at module unload).
1904 **/
1946089a 1905
165125e1 1906struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1907{
1946089a
CL
1908 return blk_init_queue_node(rfn, lock, -1);
1909}
1910EXPORT_SYMBOL(blk_init_queue);
1911
165125e1 1912struct request_queue *
1946089a
CL
1913blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1914{
165125e1 1915 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1916
1917 if (!q)
1918 return NULL;
1919
1946089a 1920 q->node = node_id;
8669aafd
AV
1921 if (blk_init_free_list(q)) {
1922 kmem_cache_free(requestq_cachep, q);
1923 return NULL;
1924 }
1da177e4 1925
152587de
JA
1926 /*
1927 * if caller didn't supply a lock, they get per-queue locking with
1928 * our embedded lock
1929 */
1930 if (!lock) {
1931 spin_lock_init(&q->__queue_lock);
1932 lock = &q->__queue_lock;
1933 }
1934
1da177e4 1935 q->request_fn = rfn;
1da177e4
LT
1936 q->prep_rq_fn = NULL;
1937 q->unplug_fn = generic_unplug_device;
1938 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1939 q->queue_lock = lock;
1940
1941 blk_queue_segment_boundary(q, 0xffffffff);
1942
1943 blk_queue_make_request(q, __make_request);
1944 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1945
1946 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1947 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1948
44ec9542
AS
1949 q->sg_reserved_size = INT_MAX;
1950
1da177e4
LT
1951 /*
1952 * all done
1953 */
1954 if (!elevator_init(q, NULL)) {
1955 blk_queue_congestion_threshold(q);
1956 return q;
1957 }
1958
8669aafd 1959 blk_put_queue(q);
1da177e4
LT
1960 return NULL;
1961}
1946089a 1962EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1963
165125e1 1964int blk_get_queue(struct request_queue *q)
1da177e4 1965{
fde6ad22 1966 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1967 kobject_get(&q->kobj);
1da177e4
LT
1968 return 0;
1969 }
1970
1971 return 1;
1972}
1973
1974EXPORT_SYMBOL(blk_get_queue);
1975
165125e1 1976static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1977{
4aff5e23 1978 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1979 elv_put_request(q, rq);
1da177e4
LT
1980 mempool_free(rq, q->rq.rq_pool);
1981}
1982
1ea25ecb 1983static struct request *
165125e1 1984blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1985{
1986 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1987
1988 if (!rq)
1989 return NULL;
1990
1991 /*
4aff5e23 1992 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1993 * see bio.h and blkdev.h
1994 */
49171e5c 1995 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1996
cb98fc8b 1997 if (priv) {
cb78b285 1998 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1999 mempool_free(rq, q->rq.rq_pool);
2000 return NULL;
2001 }
4aff5e23 2002 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2003 }
1da177e4 2004
cb98fc8b 2005 return rq;
1da177e4
LT
2006}
2007
2008/*
2009 * ioc_batching returns true if the ioc is a valid batching request and
2010 * should be given priority access to a request.
2011 */
165125e1 2012static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2013{
2014 if (!ioc)
2015 return 0;
2016
2017 /*
2018 * Make sure the process is able to allocate at least 1 request
2019 * even if the batch times out, otherwise we could theoretically
2020 * lose wakeups.
2021 */
2022 return ioc->nr_batch_requests == q->nr_batching ||
2023 (ioc->nr_batch_requests > 0
2024 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2025}
2026
2027/*
2028 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2029 * will cause the process to be a "batcher" on all queues in the system. This
2030 * is the behaviour we want though - once it gets a wakeup it should be given
2031 * a nice run.
2032 */
165125e1 2033static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2034{
2035 if (!ioc || ioc_batching(q, ioc))
2036 return;
2037
2038 ioc->nr_batch_requests = q->nr_batching;
2039 ioc->last_waited = jiffies;
2040}
2041
165125e1 2042static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2043{
2044 struct request_list *rl = &q->rq;
2045
2046 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2047 blk_clear_queue_congested(q, rw);
1da177e4
LT
2048
2049 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2050 if (waitqueue_active(&rl->wait[rw]))
2051 wake_up(&rl->wait[rw]);
2052
2053 blk_clear_queue_full(q, rw);
2054 }
2055}
2056
2057/*
2058 * A request has just been released. Account for it, update the full and
2059 * congestion status, wake up any waiters. Called under q->queue_lock.
2060 */
165125e1 2061static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2062{
2063 struct request_list *rl = &q->rq;
2064
2065 rl->count[rw]--;
cb98fc8b
TH
2066 if (priv)
2067 rl->elvpriv--;
1da177e4
LT
2068
2069 __freed_request(q, rw);
2070
2071 if (unlikely(rl->starved[rw ^ 1]))
2072 __freed_request(q, rw ^ 1);
1da177e4
LT
2073}
2074
2075#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2076/*
d6344532
NP
2077 * Get a free request, queue_lock must be held.
2078 * Returns NULL on failure, with queue_lock held.
2079 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2080 */
165125e1 2081static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2082 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2083{
2084 struct request *rq = NULL;
2085 struct request_list *rl = &q->rq;
88ee5ef1 2086 struct io_context *ioc = NULL;
7749a8d4 2087 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2088 int may_queue, priv;
2089
7749a8d4 2090 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2091 if (may_queue == ELV_MQUEUE_NO)
2092 goto rq_starved;
2093
2094 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2095 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2096 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2097 /*
2098 * The queue will fill after this allocation, so set
2099 * it as full, and mark this process as "batching".
2100 * This process will be allowed to complete a batch of
2101 * requests, others will be blocked.
2102 */
2103 if (!blk_queue_full(q, rw)) {
2104 ioc_set_batching(q, ioc);
2105 blk_set_queue_full(q, rw);
2106 } else {
2107 if (may_queue != ELV_MQUEUE_MUST
2108 && !ioc_batching(q, ioc)) {
2109 /*
2110 * The queue is full and the allocating
2111 * process is not a "batcher", and not
2112 * exempted by the IO scheduler
2113 */
2114 goto out;
2115 }
2116 }
1da177e4 2117 }
79e2de4b 2118 blk_set_queue_congested(q, rw);
1da177e4
LT
2119 }
2120
082cf69e
JA
2121 /*
2122 * Only allow batching queuers to allocate up to 50% over the defined
2123 * limit of requests, otherwise we could have thousands of requests
2124 * allocated with any setting of ->nr_requests
2125 */
fd782a4a 2126 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2127 goto out;
fd782a4a 2128
1da177e4
LT
2129 rl->count[rw]++;
2130 rl->starved[rw] = 0;
cb98fc8b 2131
64521d1a 2132 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2133 if (priv)
2134 rl->elvpriv++;
2135
1da177e4
LT
2136 spin_unlock_irq(q->queue_lock);
2137
7749a8d4 2138 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2139 if (unlikely(!rq)) {
1da177e4
LT
2140 /*
2141 * Allocation failed presumably due to memory. Undo anything
2142 * we might have messed up.
2143 *
2144 * Allocating task should really be put onto the front of the
2145 * wait queue, but this is pretty rare.
2146 */
2147 spin_lock_irq(q->queue_lock);
cb98fc8b 2148 freed_request(q, rw, priv);
1da177e4
LT
2149
2150 /*
2151 * in the very unlikely event that allocation failed and no
2152 * requests for this direction was pending, mark us starved
2153 * so that freeing of a request in the other direction will
2154 * notice us. another possible fix would be to split the
2155 * rq mempool into READ and WRITE
2156 */
2157rq_starved:
2158 if (unlikely(rl->count[rw] == 0))
2159 rl->starved[rw] = 1;
2160
1da177e4
LT
2161 goto out;
2162 }
2163
88ee5ef1
JA
2164 /*
2165 * ioc may be NULL here, and ioc_batching will be false. That's
2166 * OK, if the queue is under the request limit then requests need
2167 * not count toward the nr_batch_requests limit. There will always
2168 * be some limit enforced by BLK_BATCH_TIME.
2169 */
1da177e4
LT
2170 if (ioc_batching(q, ioc))
2171 ioc->nr_batch_requests--;
2172
2173 rq_init(q, rq);
2056a782
JA
2174
2175 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2176out:
1da177e4
LT
2177 return rq;
2178}
2179
2180/*
2181 * No available requests for this queue, unplug the device and wait for some
2182 * requests to become available.
d6344532
NP
2183 *
2184 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2185 */
165125e1 2186static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2187 struct bio *bio)
1da177e4 2188{
7749a8d4 2189 const int rw = rw_flags & 0x01;
1da177e4
LT
2190 struct request *rq;
2191
7749a8d4 2192 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2193 while (!rq) {
2194 DEFINE_WAIT(wait);
1da177e4
LT
2195 struct request_list *rl = &q->rq;
2196
2197 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2198 TASK_UNINTERRUPTIBLE);
2199
7749a8d4 2200 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2201
2202 if (!rq) {
2203 struct io_context *ioc;
2204
2056a782
JA
2205 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2206
d6344532
NP
2207 __generic_unplug_device(q);
2208 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2209 io_schedule();
2210
2211 /*
2212 * After sleeping, we become a "batching" process and
2213 * will be able to allocate at least one request, and
2214 * up to a big batch of them for a small period time.
2215 * See ioc_batching, ioc_set_batching
2216 */
b5deef90 2217 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2218 ioc_set_batching(q, ioc);
d6344532
NP
2219
2220 spin_lock_irq(q->queue_lock);
1da177e4
LT
2221 }
2222 finish_wait(&rl->wait[rw], &wait);
450991bc 2223 }
1da177e4
LT
2224
2225 return rq;
2226}
2227
165125e1 2228struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2229{
2230 struct request *rq;
2231
2232 BUG_ON(rw != READ && rw != WRITE);
2233
d6344532
NP
2234 spin_lock_irq(q->queue_lock);
2235 if (gfp_mask & __GFP_WAIT) {
22e2c507 2236 rq = get_request_wait(q, rw, NULL);
d6344532 2237 } else {
22e2c507 2238 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2239 if (!rq)
2240 spin_unlock_irq(q->queue_lock);
2241 }
2242 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2243
2244 return rq;
2245}
1da177e4
LT
2246EXPORT_SYMBOL(blk_get_request);
2247
dc72ef4a
JA
2248/**
2249 * blk_start_queueing - initiate dispatch of requests to device
2250 * @q: request queue to kick into gear
2251 *
2252 * This is basically a helper to remove the need to know whether a queue
2253 * is plugged or not if someone just wants to initiate dispatch of requests
2254 * for this queue.
2255 *
2256 * The queue lock must be held with interrupts disabled.
2257 */
165125e1 2258void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2259{
2260 if (!blk_queue_plugged(q))
2261 q->request_fn(q);
2262 else
2263 __generic_unplug_device(q);
2264}
2265EXPORT_SYMBOL(blk_start_queueing);
2266
1da177e4
LT
2267/**
2268 * blk_requeue_request - put a request back on queue
2269 * @q: request queue where request should be inserted
2270 * @rq: request to be inserted
2271 *
2272 * Description:
2273 * Drivers often keep queueing requests until the hardware cannot accept
2274 * more, when that condition happens we need to put the request back
2275 * on the queue. Must be called with queue lock held.
2276 */
165125e1 2277void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2278{
2056a782
JA
2279 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2280
1da177e4
LT
2281 if (blk_rq_tagged(rq))
2282 blk_queue_end_tag(q, rq);
2283
2284 elv_requeue_request(q, rq);
2285}
2286
2287EXPORT_SYMBOL(blk_requeue_request);
2288
2289/**
2290 * blk_insert_request - insert a special request in to a request queue
2291 * @q: request queue where request should be inserted
2292 * @rq: request to be inserted
2293 * @at_head: insert request at head or tail of queue
2294 * @data: private data
1da177e4
LT
2295 *
2296 * Description:
2297 * Many block devices need to execute commands asynchronously, so they don't
2298 * block the whole kernel from preemption during request execution. This is
2299 * accomplished normally by inserting aritficial requests tagged as
2300 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2301 * scheduled for actual execution by the request queue.
2302 *
2303 * We have the option of inserting the head or the tail of the queue.
2304 * Typically we use the tail for new ioctls and so forth. We use the head
2305 * of the queue for things like a QUEUE_FULL message from a device, or a
2306 * host that is unable to accept a particular command.
2307 */
165125e1 2308void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2309 int at_head, void *data)
1da177e4 2310{
867d1191 2311 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2312 unsigned long flags;
2313
2314 /*
2315 * tell I/O scheduler that this isn't a regular read/write (ie it
2316 * must not attempt merges on this) and that it acts as a soft
2317 * barrier
2318 */
4aff5e23
JA
2319 rq->cmd_type = REQ_TYPE_SPECIAL;
2320 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2321
2322 rq->special = data;
2323
2324 spin_lock_irqsave(q->queue_lock, flags);
2325
2326 /*
2327 * If command is tagged, release the tag
2328 */
867d1191
TH
2329 if (blk_rq_tagged(rq))
2330 blk_queue_end_tag(q, rq);
1da177e4 2331
b238b3d4 2332 drive_stat_acct(rq, 1);
867d1191 2333 __elv_add_request(q, rq, where, 0);
dc72ef4a 2334 blk_start_queueing(q);
1da177e4
LT
2335 spin_unlock_irqrestore(q->queue_lock, flags);
2336}
2337
2338EXPORT_SYMBOL(blk_insert_request);
2339
0e75f906
MC
2340static int __blk_rq_unmap_user(struct bio *bio)
2341{
2342 int ret = 0;
2343
2344 if (bio) {
2345 if (bio_flagged(bio, BIO_USER_MAPPED))
2346 bio_unmap_user(bio);
2347 else
2348 ret = bio_uncopy_user(bio);
2349 }
2350
2351 return ret;
2352}
2353
3001ca77
N
2354int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2355 struct bio *bio)
2356{
2357 if (!rq->bio)
2358 blk_rq_bio_prep(q, rq, bio);
2359 else if (!ll_back_merge_fn(q, rq, bio))
2360 return -EINVAL;
2361 else {
2362 rq->biotail->bi_next = bio;
2363 rq->biotail = bio;
2364
2365 rq->data_len += bio->bi_size;
2366 }
2367 return 0;
2368}
2369EXPORT_SYMBOL(blk_rq_append_bio);
2370
165125e1 2371static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2372 void __user *ubuf, unsigned int len)
2373{
2374 unsigned long uaddr;
2375 struct bio *bio, *orig_bio;
2376 int reading, ret;
2377
2378 reading = rq_data_dir(rq) == READ;
2379
2380 /*
2381 * if alignment requirement is satisfied, map in user pages for
2382 * direct dma. else, set up kernel bounce buffers
2383 */
2384 uaddr = (unsigned long) ubuf;
2385 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2386 bio = bio_map_user(q, NULL, uaddr, len, reading);
2387 else
2388 bio = bio_copy_user(q, uaddr, len, reading);
2389
2985259b 2390 if (IS_ERR(bio))
0e75f906 2391 return PTR_ERR(bio);
0e75f906
MC
2392
2393 orig_bio = bio;
2394 blk_queue_bounce(q, &bio);
2985259b 2395
0e75f906
MC
2396 /*
2397 * We link the bounce buffer in and could have to traverse it
2398 * later so we have to get a ref to prevent it from being freed
2399 */
2400 bio_get(bio);
2401
3001ca77
N
2402 ret = blk_rq_append_bio(q, rq, bio);
2403 if (!ret)
2404 return bio->bi_size;
0e75f906 2405
0e75f906 2406 /* if it was boucned we must call the end io function */
6712ecf8 2407 bio_endio(bio, 0);
0e75f906
MC
2408 __blk_rq_unmap_user(orig_bio);
2409 bio_put(bio);
2410 return ret;
2411}
2412
1da177e4
LT
2413/**
2414 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2415 * @q: request queue where request should be inserted
73747aed 2416 * @rq: request structure to fill
1da177e4
LT
2417 * @ubuf: the user buffer
2418 * @len: length of user data
2419 *
2420 * Description:
2421 * Data will be mapped directly for zero copy io, if possible. Otherwise
2422 * a kernel bounce buffer is used.
2423 *
2424 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2425 * still in process context.
2426 *
2427 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2428 * before being submitted to the device, as pages mapped may be out of
2429 * reach. It's the callers responsibility to make sure this happens. The
2430 * original bio must be passed back in to blk_rq_unmap_user() for proper
2431 * unmapping.
2432 */
165125e1
JA
2433int blk_rq_map_user(struct request_queue *q, struct request *rq,
2434 void __user *ubuf, unsigned long len)
1da177e4 2435{
0e75f906 2436 unsigned long bytes_read = 0;
8e5cfc45 2437 struct bio *bio = NULL;
0e75f906 2438 int ret;
1da177e4 2439
defd94b7 2440 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2441 return -EINVAL;
2442 if (!len || !ubuf)
2443 return -EINVAL;
1da177e4 2444
0e75f906
MC
2445 while (bytes_read != len) {
2446 unsigned long map_len, end, start;
1da177e4 2447
0e75f906
MC
2448 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2449 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2450 >> PAGE_SHIFT;
2451 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2452
0e75f906
MC
2453 /*
2454 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2455 * pages. If this happens we just lower the requested
2456 * mapping len by a page so that we can fit
2457 */
2458 if (end - start > BIO_MAX_PAGES)
2459 map_len -= PAGE_SIZE;
1da177e4 2460
0e75f906
MC
2461 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2462 if (ret < 0)
2463 goto unmap_rq;
8e5cfc45
JA
2464 if (!bio)
2465 bio = rq->bio;
0e75f906
MC
2466 bytes_read += ret;
2467 ubuf += ret;
1da177e4
LT
2468 }
2469
0e75f906
MC
2470 rq->buffer = rq->data = NULL;
2471 return 0;
2472unmap_rq:
8e5cfc45 2473 blk_rq_unmap_user(bio);
0e75f906 2474 return ret;
1da177e4
LT
2475}
2476
2477EXPORT_SYMBOL(blk_rq_map_user);
2478
f1970baf
JB
2479/**
2480 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2481 * @q: request queue where request should be inserted
2482 * @rq: request to map data to
2483 * @iov: pointer to the iovec
2484 * @iov_count: number of elements in the iovec
af9997e4 2485 * @len: I/O byte count
f1970baf
JB
2486 *
2487 * Description:
2488 * Data will be mapped directly for zero copy io, if possible. Otherwise
2489 * a kernel bounce buffer is used.
2490 *
2491 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2492 * still in process context.
2493 *
2494 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2495 * before being submitted to the device, as pages mapped may be out of
2496 * reach. It's the callers responsibility to make sure this happens. The
2497 * original bio must be passed back in to blk_rq_unmap_user() for proper
2498 * unmapping.
2499 */
165125e1 2500int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2501 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2502{
2503 struct bio *bio;
2504
2505 if (!iov || iov_count <= 0)
2506 return -EINVAL;
2507
2508 /* we don't allow misaligned data like bio_map_user() does. If the
2509 * user is using sg, they're expected to know the alignment constraints
2510 * and respect them accordingly */
2511 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2512 if (IS_ERR(bio))
2513 return PTR_ERR(bio);
2514
0e75f906 2515 if (bio->bi_size != len) {
6712ecf8 2516 bio_endio(bio, 0);
0e75f906
MC
2517 bio_unmap_user(bio);
2518 return -EINVAL;
2519 }
2520
2521 bio_get(bio);
f1970baf
JB
2522 blk_rq_bio_prep(q, rq, bio);
2523 rq->buffer = rq->data = NULL;
f1970baf
JB
2524 return 0;
2525}
2526
2527EXPORT_SYMBOL(blk_rq_map_user_iov);
2528
1da177e4
LT
2529/**
2530 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2531 * @bio: start of bio list
1da177e4
LT
2532 *
2533 * Description:
8e5cfc45
JA
2534 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2535 * supply the original rq->bio from the blk_rq_map_user() return, since
2536 * the io completion may have changed rq->bio.
1da177e4 2537 */
8e5cfc45 2538int blk_rq_unmap_user(struct bio *bio)
1da177e4 2539{
8e5cfc45 2540 struct bio *mapped_bio;
48785bb9 2541 int ret = 0, ret2;
1da177e4 2542
8e5cfc45
JA
2543 while (bio) {
2544 mapped_bio = bio;
2545 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2546 mapped_bio = bio->bi_private;
1da177e4 2547
48785bb9
JA
2548 ret2 = __blk_rq_unmap_user(mapped_bio);
2549 if (ret2 && !ret)
2550 ret = ret2;
2551
8e5cfc45
JA
2552 mapped_bio = bio;
2553 bio = bio->bi_next;
2554 bio_put(mapped_bio);
0e75f906 2555 }
48785bb9
JA
2556
2557 return ret;
1da177e4
LT
2558}
2559
2560EXPORT_SYMBOL(blk_rq_unmap_user);
2561
df46b9a4
MC
2562/**
2563 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2564 * @q: request queue where request should be inserted
73747aed 2565 * @rq: request to fill
df46b9a4
MC
2566 * @kbuf: the kernel buffer
2567 * @len: length of user data
73747aed 2568 * @gfp_mask: memory allocation flags
df46b9a4 2569 */
165125e1 2570int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2571 unsigned int len, gfp_t gfp_mask)
df46b9a4 2572{
df46b9a4
MC
2573 struct bio *bio;
2574
defd94b7 2575 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2576 return -EINVAL;
2577 if (!len || !kbuf)
2578 return -EINVAL;
df46b9a4
MC
2579
2580 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2581 if (IS_ERR(bio))
2582 return PTR_ERR(bio);
df46b9a4 2583
dd1cab95
JA
2584 if (rq_data_dir(rq) == WRITE)
2585 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2586
dd1cab95 2587 blk_rq_bio_prep(q, rq, bio);
821de3a2 2588 blk_queue_bounce(q, &rq->bio);
dd1cab95 2589 rq->buffer = rq->data = NULL;
dd1cab95 2590 return 0;
df46b9a4
MC
2591}
2592
2593EXPORT_SYMBOL(blk_rq_map_kern);
2594
73747aed
CH
2595/**
2596 * blk_execute_rq_nowait - insert a request into queue for execution
2597 * @q: queue to insert the request in
2598 * @bd_disk: matching gendisk
2599 * @rq: request to insert
2600 * @at_head: insert request at head or tail of queue
2601 * @done: I/O completion handler
2602 *
2603 * Description:
2604 * Insert a fully prepared request at the back of the io scheduler queue
2605 * for execution. Don't wait for completion.
2606 */
165125e1 2607void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2608 struct request *rq, int at_head,
8ffdc655 2609 rq_end_io_fn *done)
f1970baf
JB
2610{
2611 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2612
2613 rq->rq_disk = bd_disk;
4aff5e23 2614 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2615 rq->end_io = done;
4c5d0bbd
AM
2616 WARN_ON(irqs_disabled());
2617 spin_lock_irq(q->queue_lock);
2618 __elv_add_request(q, rq, where, 1);
2619 __generic_unplug_device(q);
2620 spin_unlock_irq(q->queue_lock);
f1970baf 2621}
6e39b69e
MC
2622EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2623
1da177e4
LT
2624/**
2625 * blk_execute_rq - insert a request into queue for execution
2626 * @q: queue to insert the request in
2627 * @bd_disk: matching gendisk
2628 * @rq: request to insert
994ca9a1 2629 * @at_head: insert request at head or tail of queue
1da177e4
LT
2630 *
2631 * Description:
2632 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2633 * for execution and wait for completion.
1da177e4 2634 */
165125e1 2635int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2636 struct request *rq, int at_head)
1da177e4 2637{
60be6b9a 2638 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2639 char sense[SCSI_SENSE_BUFFERSIZE];
2640 int err = 0;
2641
1da177e4
LT
2642 /*
2643 * we need an extra reference to the request, so we can look at
2644 * it after io completion
2645 */
2646 rq->ref_count++;
2647
2648 if (!rq->sense) {
2649 memset(sense, 0, sizeof(sense));
2650 rq->sense = sense;
2651 rq->sense_len = 0;
2652 }
2653
c00895ab 2654 rq->end_io_data = &wait;
994ca9a1 2655 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2656 wait_for_completion(&wait);
1da177e4
LT
2657
2658 if (rq->errors)
2659 err = -EIO;
2660
2661 return err;
2662}
2663
2664EXPORT_SYMBOL(blk_execute_rq);
2665
fd5d8062
JA
2666static void bio_end_empty_barrier(struct bio *bio, int err)
2667{
2668 if (err)
2669 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2670
2671 complete(bio->bi_private);
2672}
2673
1da177e4
LT
2674/**
2675 * blkdev_issue_flush - queue a flush
2676 * @bdev: blockdev to issue flush for
2677 * @error_sector: error sector
2678 *
2679 * Description:
2680 * Issue a flush for the block device in question. Caller can supply
2681 * room for storing the error offset in case of a flush error, if they
2682 * wish to. Caller must run wait_for_completion() on its own.
2683 */
2684int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2685{
fd5d8062 2686 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2687 struct request_queue *q;
fd5d8062
JA
2688 struct bio *bio;
2689 int ret;
1da177e4
LT
2690
2691 if (bdev->bd_disk == NULL)
2692 return -ENXIO;
2693
2694 q = bdev_get_queue(bdev);
2695 if (!q)
2696 return -ENXIO;
1da177e4 2697
fd5d8062
JA
2698 bio = bio_alloc(GFP_KERNEL, 0);
2699 if (!bio)
2700 return -ENOMEM;
2701
2702 bio->bi_end_io = bio_end_empty_barrier;
2703 bio->bi_private = &wait;
2704 bio->bi_bdev = bdev;
2705 submit_bio(1 << BIO_RW_BARRIER, bio);
2706
2707 wait_for_completion(&wait);
2708
2709 /*
2710 * The driver must store the error location in ->bi_sector, if
2711 * it supports it. For non-stacked drivers, this should be copied
2712 * from rq->sector.
2713 */
2714 if (error_sector)
2715 *error_sector = bio->bi_sector;
2716
2717 ret = 0;
2718 if (!bio_flagged(bio, BIO_UPTODATE))
2719 ret = -EIO;
2720
2721 bio_put(bio);
2722 return ret;
1da177e4
LT
2723}
2724
2725EXPORT_SYMBOL(blkdev_issue_flush);
2726
b238b3d4 2727static void drive_stat_acct(struct request *rq, int new_io)
1da177e4
LT
2728{
2729 int rw = rq_data_dir(rq);
2730
2731 if (!blk_fs_request(rq) || !rq->rq_disk)
2732 return;
2733
d72d904a 2734 if (!new_io) {
a362357b 2735 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2736 } else {
1da177e4
LT
2737 disk_round_stats(rq->rq_disk);
2738 rq->rq_disk->in_flight++;
2739 }
2740}
2741
2742/*
2743 * add-request adds a request to the linked list.
2744 * queue lock is held and interrupts disabled, as we muck with the
2745 * request queue list.
2746 */
165125e1 2747static inline void add_request(struct request_queue * q, struct request * req)
1da177e4 2748{
b238b3d4 2749 drive_stat_acct(req, 1);
1da177e4 2750
1da177e4
LT
2751 /*
2752 * elevator indicated where it wants this request to be
2753 * inserted at elevator_merge time
2754 */
2755 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2756}
2757
2758/*
2759 * disk_round_stats() - Round off the performance stats on a struct
2760 * disk_stats.
2761 *
2762 * The average IO queue length and utilisation statistics are maintained
2763 * by observing the current state of the queue length and the amount of
2764 * time it has been in this state for.
2765 *
2766 * Normally, that accounting is done on IO completion, but that can result
2767 * in more than a second's worth of IO being accounted for within any one
2768 * second, leading to >100% utilisation. To deal with that, we call this
2769 * function to do a round-off before returning the results when reading
2770 * /proc/diskstats. This accounts immediately for all queue usage up to
2771 * the current jiffies and restarts the counters again.
2772 */
2773void disk_round_stats(struct gendisk *disk)
2774{
2775 unsigned long now = jiffies;
2776
b2982649
KC
2777 if (now == disk->stamp)
2778 return;
1da177e4 2779
20e5c81f
KC
2780 if (disk->in_flight) {
2781 __disk_stat_add(disk, time_in_queue,
2782 disk->in_flight * (now - disk->stamp));
2783 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2784 }
1da177e4 2785 disk->stamp = now;
1da177e4
LT
2786}
2787
3eaf840e
JNN
2788EXPORT_SYMBOL_GPL(disk_round_stats);
2789
1da177e4
LT
2790/*
2791 * queue lock must be held
2792 */
165125e1 2793void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2794{
1da177e4
LT
2795 if (unlikely(!q))
2796 return;
2797 if (unlikely(--req->ref_count))
2798 return;
2799
8922e16c
TH
2800 elv_completed_request(q, req);
2801
1da177e4
LT
2802 /*
2803 * Request may not have originated from ll_rw_blk. if not,
2804 * it didn't come out of our reserved rq pools
2805 */
49171e5c 2806 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2807 int rw = rq_data_dir(req);
4aff5e23 2808 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2809
1da177e4 2810 BUG_ON(!list_empty(&req->queuelist));
9817064b 2811 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2812
2813 blk_free_request(q, req);
cb98fc8b 2814 freed_request(q, rw, priv);
1da177e4
LT
2815 }
2816}
2817
6e39b69e
MC
2818EXPORT_SYMBOL_GPL(__blk_put_request);
2819
1da177e4
LT
2820void blk_put_request(struct request *req)
2821{
8922e16c 2822 unsigned long flags;
165125e1 2823 struct request_queue *q = req->q;
8922e16c 2824
1da177e4 2825 /*
8922e16c
TH
2826 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2827 * following if (q) test.
1da177e4 2828 */
8922e16c 2829 if (q) {
1da177e4
LT
2830 spin_lock_irqsave(q->queue_lock, flags);
2831 __blk_put_request(q, req);
2832 spin_unlock_irqrestore(q->queue_lock, flags);
2833 }
2834}
2835
2836EXPORT_SYMBOL(blk_put_request);
2837
2838/**
2839 * blk_end_sync_rq - executes a completion event on a request
2840 * @rq: request to complete
fddfdeaf 2841 * @error: end io status of the request
1da177e4 2842 */
8ffdc655 2843void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2844{
c00895ab 2845 struct completion *waiting = rq->end_io_data;
1da177e4 2846
c00895ab 2847 rq->end_io_data = NULL;
1da177e4
LT
2848 __blk_put_request(rq->q, rq);
2849
2850 /*
2851 * complete last, if this is a stack request the process (and thus
2852 * the rq pointer) could be invalid right after this complete()
2853 */
2854 complete(waiting);
2855}
2856EXPORT_SYMBOL(blk_end_sync_rq);
2857
1da177e4
LT
2858/*
2859 * Has to be called with the request spinlock acquired
2860 */
165125e1 2861static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2862 struct request *next)
2863{
2864 if (!rq_mergeable(req) || !rq_mergeable(next))
2865 return 0;
2866
2867 /*
d6e05edc 2868 * not contiguous
1da177e4
LT
2869 */
2870 if (req->sector + req->nr_sectors != next->sector)
2871 return 0;
2872
2873 if (rq_data_dir(req) != rq_data_dir(next)
2874 || req->rq_disk != next->rq_disk
c00895ab 2875 || next->special)
1da177e4
LT
2876 return 0;
2877
2878 /*
2879 * If we are allowed to merge, then append bio list
2880 * from next to rq and release next. merge_requests_fn
2881 * will have updated segment counts, update sector
2882 * counts here.
2883 */
1aa4f24f 2884 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2885 return 0;
2886
2887 /*
2888 * At this point we have either done a back merge
2889 * or front merge. We need the smaller start_time of
2890 * the merged requests to be the current request
2891 * for accounting purposes.
2892 */
2893 if (time_after(req->start_time, next->start_time))
2894 req->start_time = next->start_time;
2895
2896 req->biotail->bi_next = next->bio;
2897 req->biotail = next->biotail;
2898
2899 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2900
2901 elv_merge_requests(q, req, next);
2902
2903 if (req->rq_disk) {
2904 disk_round_stats(req->rq_disk);
2905 req->rq_disk->in_flight--;
2906 }
2907
22e2c507
JA
2908 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2909
1da177e4
LT
2910 __blk_put_request(q, next);
2911 return 1;
2912}
2913
165125e1
JA
2914static inline int attempt_back_merge(struct request_queue *q,
2915 struct request *rq)
1da177e4
LT
2916{
2917 struct request *next = elv_latter_request(q, rq);
2918
2919 if (next)
2920 return attempt_merge(q, rq, next);
2921
2922 return 0;
2923}
2924
165125e1
JA
2925static inline int attempt_front_merge(struct request_queue *q,
2926 struct request *rq)
1da177e4
LT
2927{
2928 struct request *prev = elv_former_request(q, rq);
2929
2930 if (prev)
2931 return attempt_merge(q, prev, rq);
2932
2933 return 0;
2934}
2935
52d9e675
TH
2936static void init_request_from_bio(struct request *req, struct bio *bio)
2937{
4aff5e23 2938 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2939
2940 /*
2941 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2942 */
2943 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2944 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2945
2946 /*
2947 * REQ_BARRIER implies no merging, but lets make it explicit
2948 */
2949 if (unlikely(bio_barrier(bio)))
4aff5e23 2950 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2951
b31dc66a 2952 if (bio_sync(bio))
4aff5e23 2953 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2954 if (bio_rw_meta(bio))
2955 req->cmd_flags |= REQ_RW_META;
b31dc66a 2956
52d9e675
TH
2957 req->errors = 0;
2958 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2959 req->ioprio = bio_prio(bio);
52d9e675 2960 req->start_time = jiffies;
bc1c56fd 2961 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2962}
2963
165125e1 2964static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2965{
450991bc 2966 struct request *req;
51da90fc
JA
2967 int el_ret, nr_sectors, barrier, err;
2968 const unsigned short prio = bio_prio(bio);
2969 const int sync = bio_sync(bio);
7749a8d4 2970 int rw_flags;
1da177e4 2971
1da177e4 2972 nr_sectors = bio_sectors(bio);
1da177e4
LT
2973
2974 /*
2975 * low level driver can indicate that it wants pages above a
2976 * certain limit bounced to low memory (ie for highmem, or even
2977 * ISA dma in theory)
2978 */
2979 blk_queue_bounce(q, &bio);
2980
1da177e4 2981 barrier = bio_barrier(bio);
797e7dbb 2982 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2983 err = -EOPNOTSUPP;
2984 goto end_io;
2985 }
2986
1da177e4
LT
2987 spin_lock_irq(q->queue_lock);
2988
450991bc 2989 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2990 goto get_rq;
2991
2992 el_ret = elv_merge(q, &req, bio);
2993 switch (el_ret) {
2994 case ELEVATOR_BACK_MERGE:
2995 BUG_ON(!rq_mergeable(req));
2996
1aa4f24f 2997 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2998 break;
2999
2056a782
JA
3000 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3001
1da177e4
LT
3002 req->biotail->bi_next = bio;
3003 req->biotail = bio;
3004 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3005 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3006 drive_stat_acct(req, 0);
1da177e4 3007 if (!attempt_back_merge(q, req))
2e662b65 3008 elv_merged_request(q, req, el_ret);
1da177e4
LT
3009 goto out;
3010
3011 case ELEVATOR_FRONT_MERGE:
3012 BUG_ON(!rq_mergeable(req));
3013
1aa4f24f 3014 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3015 break;
3016
2056a782
JA
3017 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3018
1da177e4
LT
3019 bio->bi_next = req->bio;
3020 req->bio = bio;
3021
3022 /*
3023 * may not be valid. if the low level driver said
3024 * it didn't need a bounce buffer then it better
3025 * not touch req->buffer either...
3026 */
3027 req->buffer = bio_data(bio);
51da90fc
JA
3028 req->current_nr_sectors = bio_cur_sectors(bio);
3029 req->hard_cur_sectors = req->current_nr_sectors;
3030 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3031 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3032 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3033 drive_stat_acct(req, 0);
1da177e4 3034 if (!attempt_front_merge(q, req))
2e662b65 3035 elv_merged_request(q, req, el_ret);
1da177e4
LT
3036 goto out;
3037
450991bc 3038 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3039 default:
450991bc 3040 ;
1da177e4
LT
3041 }
3042
450991bc 3043get_rq:
7749a8d4
JA
3044 /*
3045 * This sync check and mask will be re-done in init_request_from_bio(),
3046 * but we need to set it earlier to expose the sync flag to the
3047 * rq allocator and io schedulers.
3048 */
3049 rw_flags = bio_data_dir(bio);
3050 if (sync)
3051 rw_flags |= REQ_RW_SYNC;
3052
1da177e4 3053 /*
450991bc 3054 * Grab a free request. This is might sleep but can not fail.
d6344532 3055 * Returns with the queue unlocked.
450991bc 3056 */
7749a8d4 3057 req = get_request_wait(q, rw_flags, bio);
d6344532 3058
450991bc
NP
3059 /*
3060 * After dropping the lock and possibly sleeping here, our request
3061 * may now be mergeable after it had proven unmergeable (above).
3062 * We don't worry about that case for efficiency. It won't happen
3063 * often, and the elevators are able to handle it.
1da177e4 3064 */
52d9e675 3065 init_request_from_bio(req, bio);
1da177e4 3066
450991bc
NP
3067 spin_lock_irq(q->queue_lock);
3068 if (elv_queue_empty(q))
3069 blk_plug_device(q);
1da177e4
LT
3070 add_request(q, req);
3071out:
4a534f93 3072 if (sync)
1da177e4
LT
3073 __generic_unplug_device(q);
3074
3075 spin_unlock_irq(q->queue_lock);
3076 return 0;
3077
3078end_io:
6712ecf8 3079 bio_endio(bio, err);
1da177e4
LT
3080 return 0;
3081}
3082
3083/*
3084 * If bio->bi_dev is a partition, remap the location
3085 */
3086static inline void blk_partition_remap(struct bio *bio)
3087{
3088 struct block_device *bdev = bio->bi_bdev;
3089
bf2de6f5 3090 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3091 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3092 const int rw = bio_data_dir(bio);
3093
3094 p->sectors[rw] += bio_sectors(bio);
3095 p->ios[rw]++;
1da177e4 3096
1da177e4
LT
3097 bio->bi_sector += p->start_sect;
3098 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3099
3100 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3101 bdev->bd_dev, bio->bi_sector,
3102 bio->bi_sector - p->start_sect);
1da177e4
LT
3103 }
3104}
3105
1da177e4
LT
3106static void handle_bad_sector(struct bio *bio)
3107{
3108 char b[BDEVNAME_SIZE];
3109
3110 printk(KERN_INFO "attempt to access beyond end of device\n");
3111 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3112 bdevname(bio->bi_bdev, b),
3113 bio->bi_rw,
3114 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3115 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3116
3117 set_bit(BIO_EOF, &bio->bi_flags);
3118}
3119
c17bb495
AM
3120#ifdef CONFIG_FAIL_MAKE_REQUEST
3121
3122static DECLARE_FAULT_ATTR(fail_make_request);
3123
3124static int __init setup_fail_make_request(char *str)
3125{
3126 return setup_fault_attr(&fail_make_request, str);
3127}
3128__setup("fail_make_request=", setup_fail_make_request);
3129
3130static int should_fail_request(struct bio *bio)
3131{
3132 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3133 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3134 return should_fail(&fail_make_request, bio->bi_size);
3135
3136 return 0;
3137}
3138
3139static int __init fail_make_request_debugfs(void)
3140{
3141 return init_fault_attr_dentries(&fail_make_request,
3142 "fail_make_request");
3143}
3144
3145late_initcall(fail_make_request_debugfs);
3146
3147#else /* CONFIG_FAIL_MAKE_REQUEST */
3148
3149static inline int should_fail_request(struct bio *bio)
3150{
3151 return 0;
3152}
3153
3154#endif /* CONFIG_FAIL_MAKE_REQUEST */
3155
c07e2b41
JA
3156/*
3157 * Check whether this bio extends beyond the end of the device.
3158 */
3159static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3160{
3161 sector_t maxsector;
3162
3163 if (!nr_sectors)
3164 return 0;
3165
3166 /* Test device or partition size, when known. */
3167 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3168 if (maxsector) {
3169 sector_t sector = bio->bi_sector;
3170
3171 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3172 /*
3173 * This may well happen - the kernel calls bread()
3174 * without checking the size of the device, e.g., when
3175 * mounting a device.
3176 */
3177 handle_bad_sector(bio);
3178 return 1;
3179 }
3180 }
3181
3182 return 0;
3183}
3184
1da177e4
LT
3185/**
3186 * generic_make_request: hand a buffer to its device driver for I/O
3187 * @bio: The bio describing the location in memory and on the device.
3188 *
3189 * generic_make_request() is used to make I/O requests of block
3190 * devices. It is passed a &struct bio, which describes the I/O that needs
3191 * to be done.
3192 *
3193 * generic_make_request() does not return any status. The
3194 * success/failure status of the request, along with notification of
3195 * completion, is delivered asynchronously through the bio->bi_end_io
3196 * function described (one day) else where.
3197 *
3198 * The caller of generic_make_request must make sure that bi_io_vec
3199 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3200 * set to describe the device address, and the
3201 * bi_end_io and optionally bi_private are set to describe how
3202 * completion notification should be signaled.
3203 *
3204 * generic_make_request and the drivers it calls may use bi_next if this
3205 * bio happens to be merged with someone else, and may change bi_dev and
3206 * bi_sector for remaps as it sees fit. So the values of these fields
3207 * should NOT be depended on after the call to generic_make_request.
3208 */
d89d8796 3209static inline void __generic_make_request(struct bio *bio)
1da177e4 3210{
165125e1 3211 struct request_queue *q;
5ddfe969 3212 sector_t old_sector;
1da177e4 3213 int ret, nr_sectors = bio_sectors(bio);
2056a782 3214 dev_t old_dev;
51fd77bd 3215 int err = -EIO;
1da177e4
LT
3216
3217 might_sleep();
1da177e4 3218
c07e2b41
JA
3219 if (bio_check_eod(bio, nr_sectors))
3220 goto end_io;
1da177e4
LT
3221
3222 /*
3223 * Resolve the mapping until finished. (drivers are
3224 * still free to implement/resolve their own stacking
3225 * by explicitly returning 0)
3226 *
3227 * NOTE: we don't repeat the blk_size check for each new device.
3228 * Stacking drivers are expected to know what they are doing.
3229 */
5ddfe969 3230 old_sector = -1;
2056a782 3231 old_dev = 0;
1da177e4
LT
3232 do {
3233 char b[BDEVNAME_SIZE];
3234
3235 q = bdev_get_queue(bio->bi_bdev);
3236 if (!q) {
3237 printk(KERN_ERR
3238 "generic_make_request: Trying to access "
3239 "nonexistent block-device %s (%Lu)\n",
3240 bdevname(bio->bi_bdev, b),
3241 (long long) bio->bi_sector);
3242end_io:
51fd77bd 3243 bio_endio(bio, err);
1da177e4
LT
3244 break;
3245 }
3246
4fa253f3 3247 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3248 printk("bio too big device %s (%u > %u)\n",
3249 bdevname(bio->bi_bdev, b),
3250 bio_sectors(bio),
3251 q->max_hw_sectors);
3252 goto end_io;
3253 }
3254
fde6ad22 3255 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3256 goto end_io;
3257
c17bb495
AM
3258 if (should_fail_request(bio))
3259 goto end_io;
3260
1da177e4
LT
3261 /*
3262 * If this device has partitions, remap block n
3263 * of partition p to block n+start(p) of the disk.
3264 */
3265 blk_partition_remap(bio);
3266
5ddfe969 3267 if (old_sector != -1)
4fa253f3 3268 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3269 old_sector);
2056a782
JA
3270
3271 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3272
5ddfe969 3273 old_sector = bio->bi_sector;
2056a782
JA
3274 old_dev = bio->bi_bdev->bd_dev;
3275
c07e2b41
JA
3276 if (bio_check_eod(bio, nr_sectors))
3277 goto end_io;
51fd77bd
JA
3278 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
3279 err = -EOPNOTSUPP;
3280 goto end_io;
3281 }
5ddfe969 3282
1da177e4
LT
3283 ret = q->make_request_fn(q, bio);
3284 } while (ret);
3285}
3286
d89d8796
NB
3287/*
3288 * We only want one ->make_request_fn to be active at a time,
3289 * else stack usage with stacked devices could be a problem.
3290 * So use current->bio_{list,tail} to keep a list of requests
3291 * submited by a make_request_fn function.
3292 * current->bio_tail is also used as a flag to say if
3293 * generic_make_request is currently active in this task or not.
3294 * If it is NULL, then no make_request is active. If it is non-NULL,
3295 * then a make_request is active, and new requests should be added
3296 * at the tail
3297 */
3298void generic_make_request(struct bio *bio)
3299{
3300 if (current->bio_tail) {
3301 /* make_request is active */
3302 *(current->bio_tail) = bio;
3303 bio->bi_next = NULL;
3304 current->bio_tail = &bio->bi_next;
3305 return;
3306 }
3307 /* following loop may be a bit non-obvious, and so deserves some
3308 * explanation.
3309 * Before entering the loop, bio->bi_next is NULL (as all callers
3310 * ensure that) so we have a list with a single bio.
3311 * We pretend that we have just taken it off a longer list, so
3312 * we assign bio_list to the next (which is NULL) and bio_tail
3313 * to &bio_list, thus initialising the bio_list of new bios to be
3314 * added. __generic_make_request may indeed add some more bios
3315 * through a recursive call to generic_make_request. If it
3316 * did, we find a non-NULL value in bio_list and re-enter the loop
3317 * from the top. In this case we really did just take the bio
3318 * of the top of the list (no pretending) and so fixup bio_list and
3319 * bio_tail or bi_next, and call into __generic_make_request again.
3320 *
3321 * The loop was structured like this to make only one call to
3322 * __generic_make_request (which is important as it is large and
3323 * inlined) and to keep the structure simple.
3324 */
3325 BUG_ON(bio->bi_next);
3326 do {
3327 current->bio_list = bio->bi_next;
3328 if (bio->bi_next == NULL)
3329 current->bio_tail = &current->bio_list;
3330 else
3331 bio->bi_next = NULL;
3332 __generic_make_request(bio);
3333 bio = current->bio_list;
3334 } while (bio);
3335 current->bio_tail = NULL; /* deactivate */
3336}
3337
1da177e4
LT
3338EXPORT_SYMBOL(generic_make_request);
3339
3340/**
3341 * submit_bio: submit a bio to the block device layer for I/O
3342 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3343 * @bio: The &struct bio which describes the I/O
3344 *
3345 * submit_bio() is very similar in purpose to generic_make_request(), and
3346 * uses that function to do most of the work. Both are fairly rough
3347 * interfaces, @bio must be presetup and ready for I/O.
3348 *
3349 */
3350void submit_bio(int rw, struct bio *bio)
3351{
3352 int count = bio_sectors(bio);
3353
22e2c507 3354 bio->bi_rw |= rw;
1da177e4 3355
bf2de6f5
JA
3356 /*
3357 * If it's a regular read/write or a barrier with data attached,
3358 * go through the normal accounting stuff before submission.
3359 */
3360 if (!bio_empty_barrier(bio)) {
3361
3362 BIO_BUG_ON(!bio->bi_size);
3363 BIO_BUG_ON(!bio->bi_io_vec);
3364
3365 if (rw & WRITE) {
3366 count_vm_events(PGPGOUT, count);
3367 } else {
3368 task_io_account_read(bio->bi_size);
3369 count_vm_events(PGPGIN, count);
3370 }
3371
3372 if (unlikely(block_dump)) {
3373 char b[BDEVNAME_SIZE];
3374 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3375 current->comm, task_pid_nr(current),
bf2de6f5
JA
3376 (rw & WRITE) ? "WRITE" : "READ",
3377 (unsigned long long)bio->bi_sector,
3378 bdevname(bio->bi_bdev,b));
3379 }
1da177e4
LT
3380 }
3381
3382 generic_make_request(bio);
3383}
3384
3385EXPORT_SYMBOL(submit_bio);
3386
93d17d3d 3387static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3388{
3389 if (blk_fs_request(rq)) {
3390 rq->hard_sector += nsect;
3391 rq->hard_nr_sectors -= nsect;
3392
3393 /*
3394 * Move the I/O submission pointers ahead if required.
3395 */
3396 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3397 (rq->sector <= rq->hard_sector)) {
3398 rq->sector = rq->hard_sector;
3399 rq->nr_sectors = rq->hard_nr_sectors;
3400 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3401 rq->current_nr_sectors = rq->hard_cur_sectors;
3402 rq->buffer = bio_data(rq->bio);
3403 }
3404
3405 /*
3406 * if total number of sectors is less than the first segment
3407 * size, something has gone terribly wrong
3408 */
3409 if (rq->nr_sectors < rq->current_nr_sectors) {
3410 printk("blk: request botched\n");
3411 rq->nr_sectors = rq->current_nr_sectors;
3412 }
3413 }
3414}
3415
3416static int __end_that_request_first(struct request *req, int uptodate,
3417 int nr_bytes)
3418{
3419 int total_bytes, bio_nbytes, error, next_idx = 0;
3420 struct bio *bio;
3421
2056a782
JA
3422 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3423
1da177e4
LT
3424 /*
3425 * extend uptodate bool to allow < 0 value to be direct io error
3426 */
3427 error = 0;
3428 if (end_io_error(uptodate))
3429 error = !uptodate ? -EIO : uptodate;
3430
3431 /*
3432 * for a REQ_BLOCK_PC request, we want to carry any eventual
3433 * sense key with us all the way through
3434 */
3435 if (!blk_pc_request(req))
3436 req->errors = 0;
3437
3438 if (!uptodate) {
4aff5e23 3439 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3440 printk("end_request: I/O error, dev %s, sector %llu\n",
3441 req->rq_disk ? req->rq_disk->disk_name : "?",
3442 (unsigned long long)req->sector);
3443 }
3444
d72d904a 3445 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3446 const int rw = rq_data_dir(req);
3447
53e86061 3448 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3449 }
3450
1da177e4
LT
3451 total_bytes = bio_nbytes = 0;
3452 while ((bio = req->bio) != NULL) {
3453 int nbytes;
3454
bf2de6f5
JA
3455 /*
3456 * For an empty barrier request, the low level driver must
3457 * store a potential error location in ->sector. We pass
3458 * that back up in ->bi_sector.
3459 */
3460 if (blk_empty_barrier(req))
3461 bio->bi_sector = req->sector;
3462
1da177e4
LT
3463 if (nr_bytes >= bio->bi_size) {
3464 req->bio = bio->bi_next;
3465 nbytes = bio->bi_size;
5bb23a68 3466 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3467 next_idx = 0;
3468 bio_nbytes = 0;
3469 } else {
3470 int idx = bio->bi_idx + next_idx;
3471
3472 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3473 blk_dump_rq_flags(req, "__end_that");
3474 printk("%s: bio idx %d >= vcnt %d\n",
3475 __FUNCTION__,
3476 bio->bi_idx, bio->bi_vcnt);
3477 break;
3478 }
3479
3480 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3481 BIO_BUG_ON(nbytes > bio->bi_size);
3482
3483 /*
3484 * not a complete bvec done
3485 */
3486 if (unlikely(nbytes > nr_bytes)) {
3487 bio_nbytes += nr_bytes;
3488 total_bytes += nr_bytes;
3489 break;
3490 }
3491
3492 /*
3493 * advance to the next vector
3494 */
3495 next_idx++;
3496 bio_nbytes += nbytes;
3497 }
3498
3499 total_bytes += nbytes;
3500 nr_bytes -= nbytes;
3501
3502 if ((bio = req->bio)) {
3503 /*
3504 * end more in this run, or just return 'not-done'
3505 */
3506 if (unlikely(nr_bytes <= 0))
3507 break;
3508 }
3509 }
3510
3511 /*
3512 * completely done
3513 */
3514 if (!req->bio)
3515 return 0;
3516
3517 /*
3518 * if the request wasn't completed, update state
3519 */
3520 if (bio_nbytes) {
5bb23a68 3521 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3522 bio->bi_idx += next_idx;
3523 bio_iovec(bio)->bv_offset += nr_bytes;
3524 bio_iovec(bio)->bv_len -= nr_bytes;
3525 }
3526
3527 blk_recalc_rq_sectors(req, total_bytes >> 9);
3528 blk_recalc_rq_segments(req);
3529 return 1;
3530}
3531
3532/**
3533 * end_that_request_first - end I/O on a request
3534 * @req: the request being processed
3535 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3536 * @nr_sectors: number of sectors to end I/O on
3537 *
3538 * Description:
3539 * Ends I/O on a number of sectors attached to @req, and sets it up
3540 * for the next range of segments (if any) in the cluster.
3541 *
3542 * Return:
3543 * 0 - we are done with this request, call end_that_request_last()
3544 * 1 - still buffers pending for this request
3545 **/
3546int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3547{
3548 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3549}
3550
3551EXPORT_SYMBOL(end_that_request_first);
3552
3553/**
3554 * end_that_request_chunk - end I/O on a request
3555 * @req: the request being processed
3556 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3557 * @nr_bytes: number of bytes to complete
3558 *
3559 * Description:
3560 * Ends I/O on a number of bytes attached to @req, and sets it up
3561 * for the next range of segments (if any). Like end_that_request_first(),
3562 * but deals with bytes instead of sectors.
3563 *
3564 * Return:
3565 * 0 - we are done with this request, call end_that_request_last()
3566 * 1 - still buffers pending for this request
3567 **/
3568int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3569{
3570 return __end_that_request_first(req, uptodate, nr_bytes);
3571}
3572
3573EXPORT_SYMBOL(end_that_request_chunk);
3574
ff856bad
JA
3575/*
3576 * splice the completion data to a local structure and hand off to
3577 * process_completion_queue() to complete the requests
3578 */
3579static void blk_done_softirq(struct softirq_action *h)
3580{
626ab0e6 3581 struct list_head *cpu_list, local_list;
ff856bad
JA
3582
3583 local_irq_disable();
3584 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3585 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3586 local_irq_enable();
3587
3588 while (!list_empty(&local_list)) {
3589 struct request *rq = list_entry(local_list.next, struct request, donelist);
3590
3591 list_del_init(&rq->donelist);
3592 rq->q->softirq_done_fn(rq);
3593 }
3594}
3595
db47d475 3596static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3597 void *hcpu)
3598{
3599 /*
3600 * If a CPU goes away, splice its entries to the current CPU
3601 * and trigger a run of the softirq
3602 */
8bb78442 3603 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3604 int cpu = (unsigned long) hcpu;
3605
3606 local_irq_disable();
3607 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3608 &__get_cpu_var(blk_cpu_done));
3609 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3610 local_irq_enable();
3611 }
3612
3613 return NOTIFY_OK;
3614}
3615
3616
db47d475 3617static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3618 .notifier_call = blk_cpu_notify,
3619};
3620
ff856bad
JA
3621/**
3622 * blk_complete_request - end I/O on a request
3623 * @req: the request being processed
3624 *
3625 * Description:
3626 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3627 * unless the driver actually implements this in its completion callback
4fa253f3 3628 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3629 * through a softirq handler. The user must have registered a completion
3630 * callback through blk_queue_softirq_done().
3631 **/
3632
3633void blk_complete_request(struct request *req)
3634{
3635 struct list_head *cpu_list;
3636 unsigned long flags;
3637
3638 BUG_ON(!req->q->softirq_done_fn);
3639
3640 local_irq_save(flags);
3641
3642 cpu_list = &__get_cpu_var(blk_cpu_done);
3643 list_add_tail(&req->donelist, cpu_list);
3644 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3645
3646 local_irq_restore(flags);
3647}
3648
3649EXPORT_SYMBOL(blk_complete_request);
3650
1da177e4
LT
3651/*
3652 * queue lock must be held
3653 */
8ffdc655 3654void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3655{
3656 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3657 int error;
3658
3659 /*
3660 * extend uptodate bool to allow < 0 value to be direct io error
3661 */
3662 error = 0;
3663 if (end_io_error(uptodate))
3664 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3665
3666 if (unlikely(laptop_mode) && blk_fs_request(req))
3667 laptop_io_completion();
3668
fd0ff8aa
JA
3669 /*
3670 * Account IO completion. bar_rq isn't accounted as a normal
3671 * IO on queueing nor completion. Accounting the containing
3672 * request is enough.
3673 */
3674 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3675 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3676 const int rw = rq_data_dir(req);
3677
3678 __disk_stat_inc(disk, ios[rw]);
3679 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3680 disk_round_stats(disk);
3681 disk->in_flight--;
3682 }
3683 if (req->end_io)
8ffdc655 3684 req->end_io(req, error);
1da177e4
LT
3685 else
3686 __blk_put_request(req->q, req);
3687}
3688
3689EXPORT_SYMBOL(end_that_request_last);
3690
a0cd1285
JA
3691static inline void __end_request(struct request *rq, int uptodate,
3692 unsigned int nr_bytes, int dequeue)
1da177e4 3693{
a0cd1285
JA
3694 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3695 if (dequeue)
3696 blkdev_dequeue_request(rq);
3697 add_disk_randomness(rq->rq_disk);
3698 end_that_request_last(rq, uptodate);
1da177e4
LT
3699 }
3700}
3701
a0cd1285
JA
3702static unsigned int rq_byte_size(struct request *rq)
3703{
3704 if (blk_fs_request(rq))
3705 return rq->hard_nr_sectors << 9;
3706
3707 return rq->data_len;
3708}
3709
3710/**
3711 * end_queued_request - end all I/O on a queued request
3712 * @rq: the request being processed
3713 * @uptodate: error value or 0/1 uptodate flag
3714 *
3715 * Description:
3716 * Ends all I/O on a request, and removes it from the block layer queues.
3717 * Not suitable for normal IO completion, unless the driver still has
3718 * the request attached to the block layer.
3719 *
3720 **/
3721void end_queued_request(struct request *rq, int uptodate)
3722{
3723 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3724}
3725EXPORT_SYMBOL(end_queued_request);
3726
3727/**
3728 * end_dequeued_request - end all I/O on a dequeued request
3729 * @rq: the request being processed
3730 * @uptodate: error value or 0/1 uptodate flag
3731 *
3732 * Description:
3733 * Ends all I/O on a request. The request must already have been
3734 * dequeued using blkdev_dequeue_request(), as is normally the case
3735 * for most drivers.
3736 *
3737 **/
3738void end_dequeued_request(struct request *rq, int uptodate)
3739{
3740 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3741}
3742EXPORT_SYMBOL(end_dequeued_request);
3743
3744
3745/**
3746 * end_request - end I/O on the current segment of the request
8f731f7d 3747 * @req: the request being processed
a0cd1285
JA
3748 * @uptodate: error value or 0/1 uptodate flag
3749 *
3750 * Description:
3751 * Ends I/O on the current segment of a request. If that is the only
3752 * remaining segment, the request is also completed and freed.
3753 *
3754 * This is a remnant of how older block drivers handled IO completions.
3755 * Modern drivers typically end IO on the full request in one go, unless
3756 * they have a residual value to account for. For that case this function
3757 * isn't really useful, unless the residual just happens to be the
3758 * full current segment. In other words, don't use this function in new
3759 * code. Either use end_request_completely(), or the
3760 * end_that_request_chunk() (along with end_that_request_last()) for
3761 * partial completions.
3762 *
3763 **/
3764void end_request(struct request *req, int uptodate)
3765{
3766 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3767}
1da177e4
LT
3768EXPORT_SYMBOL(end_request);
3769
66846572
N
3770static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3771 struct bio *bio)
1da177e4 3772{
4aff5e23
JA
3773 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3774 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3775
3776 rq->nr_phys_segments = bio_phys_segments(q, bio);
3777 rq->nr_hw_segments = bio_hw_segments(q, bio);
3778 rq->current_nr_sectors = bio_cur_sectors(bio);
3779 rq->hard_cur_sectors = rq->current_nr_sectors;
3780 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3781 rq->buffer = bio_data(bio);
0e75f906 3782 rq->data_len = bio->bi_size;
1da177e4
LT
3783
3784 rq->bio = rq->biotail = bio;
1da177e4 3785
66846572
N
3786 if (bio->bi_bdev)
3787 rq->rq_disk = bio->bi_bdev->bd_disk;
3788}
1da177e4
LT
3789
3790int kblockd_schedule_work(struct work_struct *work)
3791{
3792 return queue_work(kblockd_workqueue, work);
3793}
3794
3795EXPORT_SYMBOL(kblockd_schedule_work);
3796
19a75d83 3797void kblockd_flush_work(struct work_struct *work)
1da177e4 3798{
28e53bdd 3799 cancel_work_sync(work);
1da177e4 3800}
19a75d83 3801EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3802
3803int __init blk_dev_init(void)
3804{
ff856bad
JA
3805 int i;
3806
1da177e4
LT
3807 kblockd_workqueue = create_workqueue("kblockd");
3808 if (!kblockd_workqueue)
3809 panic("Failed to create kblockd\n");
3810
3811 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3812 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3813
3814 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3815 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3816
3817 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3818 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3819
0a945022 3820 for_each_possible_cpu(i)
ff856bad
JA
3821 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3822
3823 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3824 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3825
f772b3d9
VT
3826 blk_max_low_pfn = max_low_pfn - 1;
3827 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3828
3829 return 0;
3830}
3831
3832/*
3833 * IO Context helper functions
3834 */
3835void put_io_context(struct io_context *ioc)
3836{
3837 if (ioc == NULL)
3838 return;
3839
3840 BUG_ON(atomic_read(&ioc->refcount) == 0);
3841
3842 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3843 struct cfq_io_context *cic;
3844
334e94de 3845 rcu_read_lock();
1da177e4
LT
3846 if (ioc->aic && ioc->aic->dtor)
3847 ioc->aic->dtor(ioc->aic);
e2d74ac0 3848 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3849 struct rb_node *n = rb_first(&ioc->cic_root);
3850
3851 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3852 cic->dtor(ioc);
3853 }
334e94de 3854 rcu_read_unlock();
1da177e4
LT
3855
3856 kmem_cache_free(iocontext_cachep, ioc);
3857 }
3858}
3859EXPORT_SYMBOL(put_io_context);
3860
3861/* Called by the exitting task */
3862void exit_io_context(void)
3863{
1da177e4 3864 struct io_context *ioc;
e2d74ac0 3865 struct cfq_io_context *cic;
1da177e4 3866
22e2c507 3867 task_lock(current);
1da177e4
LT
3868 ioc = current->io_context;
3869 current->io_context = NULL;
22e2c507 3870 task_unlock(current);
1da177e4 3871
25034d7a 3872 ioc->task = NULL;
1da177e4
LT
3873 if (ioc->aic && ioc->aic->exit)
3874 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3875 if (ioc->cic_root.rb_node != NULL) {
3876 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3877 cic->exit(ioc);
3878 }
25034d7a 3879
1da177e4
LT
3880 put_io_context(ioc);
3881}
3882
3883/*
3884 * If the current task has no IO context then create one and initialise it.
fb3cc432 3885 * Otherwise, return its existing IO context.
1da177e4 3886 *
fb3cc432
NP
3887 * This returned IO context doesn't have a specifically elevated refcount,
3888 * but since the current task itself holds a reference, the context can be
3889 * used in general code, so long as it stays within `current` context.
1da177e4 3890 */
b5deef90 3891static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3892{
3893 struct task_struct *tsk = current;
1da177e4
LT
3894 struct io_context *ret;
3895
1da177e4 3896 ret = tsk->io_context;
fb3cc432
NP
3897 if (likely(ret))
3898 return ret;
1da177e4 3899
b5deef90 3900 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3901 if (ret) {
3902 atomic_set(&ret->refcount, 1);
22e2c507 3903 ret->task = current;
fc46379d 3904 ret->ioprio_changed = 0;
1da177e4
LT
3905 ret->last_waited = jiffies; /* doesn't matter... */
3906 ret->nr_batch_requests = 0; /* because this is 0 */
3907 ret->aic = NULL;
e2d74ac0 3908 ret->cic_root.rb_node = NULL;
4e521c27 3909 ret->ioc_data = NULL;
9f83e45e
ON
3910 /* make sure set_task_ioprio() sees the settings above */
3911 smp_wmb();
fb3cc432
NP
3912 tsk->io_context = ret;
3913 }
1da177e4 3914
fb3cc432
NP
3915 return ret;
3916}
1da177e4 3917
fb3cc432
NP
3918/*
3919 * If the current task has no IO context then create one and initialise it.
3920 * If it does have a context, take a ref on it.
3921 *
3922 * This is always called in the context of the task which submitted the I/O.
3923 */
b5deef90 3924struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3925{
3926 struct io_context *ret;
b5deef90 3927 ret = current_io_context(gfp_flags, node);
fb3cc432 3928 if (likely(ret))
1da177e4 3929 atomic_inc(&ret->refcount);
1da177e4
LT
3930 return ret;
3931}
3932EXPORT_SYMBOL(get_io_context);
3933
3934void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3935{
3936 struct io_context *src = *psrc;
3937 struct io_context *dst = *pdst;
3938
3939 if (src) {
3940 BUG_ON(atomic_read(&src->refcount) == 0);
3941 atomic_inc(&src->refcount);
3942 put_io_context(dst);
3943 *pdst = src;
3944 }
3945}
3946EXPORT_SYMBOL(copy_io_context);
3947
3948void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3949{
3950 struct io_context *temp;
3951 temp = *ioc1;
3952 *ioc1 = *ioc2;
3953 *ioc2 = temp;
3954}
3955EXPORT_SYMBOL(swap_io_context);
3956
3957/*
3958 * sysfs parts below
3959 */
3960struct queue_sysfs_entry {
3961 struct attribute attr;
3962 ssize_t (*show)(struct request_queue *, char *);
3963 ssize_t (*store)(struct request_queue *, const char *, size_t);
3964};
3965
3966static ssize_t
3967queue_var_show(unsigned int var, char *page)
3968{
3969 return sprintf(page, "%d\n", var);
3970}
3971
3972static ssize_t
3973queue_var_store(unsigned long *var, const char *page, size_t count)
3974{
3975 char *p = (char *) page;
3976
3977 *var = simple_strtoul(p, &p, 10);
3978 return count;
3979}
3980
3981static ssize_t queue_requests_show(struct request_queue *q, char *page)
3982{
3983 return queue_var_show(q->nr_requests, (page));
3984}
3985
3986static ssize_t
3987queue_requests_store(struct request_queue *q, const char *page, size_t count)
3988{
3989 struct request_list *rl = &q->rq;
c981ff9f
AV
3990 unsigned long nr;
3991 int ret = queue_var_store(&nr, page, count);
3992 if (nr < BLKDEV_MIN_RQ)
3993 nr = BLKDEV_MIN_RQ;
1da177e4 3994
c981ff9f
AV
3995 spin_lock_irq(q->queue_lock);
3996 q->nr_requests = nr;
1da177e4
LT
3997 blk_queue_congestion_threshold(q);
3998
3999 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 4000 blk_set_queue_congested(q, READ);
1da177e4 4001 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 4002 blk_clear_queue_congested(q, READ);
1da177e4
LT
4003
4004 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4005 blk_set_queue_congested(q, WRITE);
1da177e4 4006 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4007 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4008
4009 if (rl->count[READ] >= q->nr_requests) {
4010 blk_set_queue_full(q, READ);
4011 } else if (rl->count[READ]+1 <= q->nr_requests) {
4012 blk_clear_queue_full(q, READ);
4013 wake_up(&rl->wait[READ]);
4014 }
4015
4016 if (rl->count[WRITE] >= q->nr_requests) {
4017 blk_set_queue_full(q, WRITE);
4018 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4019 blk_clear_queue_full(q, WRITE);
4020 wake_up(&rl->wait[WRITE]);
4021 }
c981ff9f 4022 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4023 return ret;
4024}
4025
4026static ssize_t queue_ra_show(struct request_queue *q, char *page)
4027{
4028 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4029
4030 return queue_var_show(ra_kb, (page));
4031}
4032
4033static ssize_t
4034queue_ra_store(struct request_queue *q, const char *page, size_t count)
4035{
4036 unsigned long ra_kb;
4037 ssize_t ret = queue_var_store(&ra_kb, page, count);
4038
4039 spin_lock_irq(q->queue_lock);
1da177e4
LT
4040 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4041 spin_unlock_irq(q->queue_lock);
4042
4043 return ret;
4044}
4045
4046static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4047{
4048 int max_sectors_kb = q->max_sectors >> 1;
4049
4050 return queue_var_show(max_sectors_kb, (page));
4051}
4052
4053static ssize_t
4054queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4055{
4056 unsigned long max_sectors_kb,
4057 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4058 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4059 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4060
4061 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4062 return -EINVAL;
4063 /*
4064 * Take the queue lock to update the readahead and max_sectors
4065 * values synchronously:
4066 */
4067 spin_lock_irq(q->queue_lock);
1da177e4
LT
4068 q->max_sectors = max_sectors_kb << 1;
4069 spin_unlock_irq(q->queue_lock);
4070
4071 return ret;
4072}
4073
4074static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4075{
4076 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4077
4078 return queue_var_show(max_hw_sectors_kb, (page));
4079}
4080
4081
4082static struct queue_sysfs_entry queue_requests_entry = {
4083 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4084 .show = queue_requests_show,
4085 .store = queue_requests_store,
4086};
4087
4088static struct queue_sysfs_entry queue_ra_entry = {
4089 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4090 .show = queue_ra_show,
4091 .store = queue_ra_store,
4092};
4093
4094static struct queue_sysfs_entry queue_max_sectors_entry = {
4095 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4096 .show = queue_max_sectors_show,
4097 .store = queue_max_sectors_store,
4098};
4099
4100static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4101 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4102 .show = queue_max_hw_sectors_show,
4103};
4104
4105static struct queue_sysfs_entry queue_iosched_entry = {
4106 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4107 .show = elv_iosched_show,
4108 .store = elv_iosched_store,
4109};
4110
4111static struct attribute *default_attrs[] = {
4112 &queue_requests_entry.attr,
4113 &queue_ra_entry.attr,
4114 &queue_max_hw_sectors_entry.attr,
4115 &queue_max_sectors_entry.attr,
4116 &queue_iosched_entry.attr,
4117 NULL,
4118};
4119
4120#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4121
4122static ssize_t
4123queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4124{
4125 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4126 struct request_queue *q =
4127 container_of(kobj, struct request_queue, kobj);
483f4afc 4128 ssize_t res;
1da177e4 4129
1da177e4 4130 if (!entry->show)
6c1852a0 4131 return -EIO;
483f4afc
AV
4132 mutex_lock(&q->sysfs_lock);
4133 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4134 mutex_unlock(&q->sysfs_lock);
4135 return -ENOENT;
4136 }
4137 res = entry->show(q, page);
4138 mutex_unlock(&q->sysfs_lock);
4139 return res;
1da177e4
LT
4140}
4141
4142static ssize_t
4143queue_attr_store(struct kobject *kobj, struct attribute *attr,
4144 const char *page, size_t length)
4145{
4146 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4147 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4148
4149 ssize_t res;
1da177e4 4150
1da177e4 4151 if (!entry->store)
6c1852a0 4152 return -EIO;
483f4afc
AV
4153 mutex_lock(&q->sysfs_lock);
4154 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4155 mutex_unlock(&q->sysfs_lock);
4156 return -ENOENT;
4157 }
4158 res = entry->store(q, page, length);
4159 mutex_unlock(&q->sysfs_lock);
4160 return res;
1da177e4
LT
4161}
4162
4163static struct sysfs_ops queue_sysfs_ops = {
4164 .show = queue_attr_show,
4165 .store = queue_attr_store,
4166};
4167
93d17d3d 4168static struct kobj_type queue_ktype = {
1da177e4
LT
4169 .sysfs_ops = &queue_sysfs_ops,
4170 .default_attrs = default_attrs,
483f4afc 4171 .release = blk_release_queue,
1da177e4
LT
4172};
4173
4174int blk_register_queue(struct gendisk *disk)
4175{
4176 int ret;
4177
165125e1 4178 struct request_queue *q = disk->queue;
1da177e4
LT
4179
4180 if (!q || !q->request_fn)
4181 return -ENXIO;
4182
b2d6db58
GKH
4183 ret = kobject_add(&q->kobj, kobject_get(&disk->dev.kobj),
4184 "%s", "queue");
1da177e4
LT
4185 if (ret < 0)
4186 return ret;
4187
483f4afc
AV
4188 kobject_uevent(&q->kobj, KOBJ_ADD);
4189
1da177e4
LT
4190 ret = elv_register_queue(q);
4191 if (ret) {
483f4afc
AV
4192 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4193 kobject_del(&q->kobj);
1da177e4
LT
4194 return ret;
4195 }
4196
4197 return 0;
4198}
4199
4200void blk_unregister_queue(struct gendisk *disk)
4201{
165125e1 4202 struct request_queue *q = disk->queue;
1da177e4
LT
4203
4204 if (q && q->request_fn) {
4205 elv_unregister_queue(q);
4206
483f4afc
AV
4207 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4208 kobject_del(&q->kobj);
edfaa7c3 4209 kobject_put(&disk->dev.kobj);
1da177e4
LT
4210 }
4211}