[PATCH] update blk_execute_rq to take an at_head parameter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / ll_rw_blk.c
CommitLineData
1da177e4
LT
1/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
31
32/*
33 * for max sense size
34 */
35#include <scsi/scsi_cmnd.h>
36
37static void blk_unplug_work(void *data);
38static void blk_unplug_timeout(unsigned long data);
39
40/*
41 * For the allocated request tables
42 */
43static kmem_cache_t *request_cachep;
44
45/*
46 * For queue allocation
47 */
48static kmem_cache_t *requestq_cachep;
49
50/*
51 * For io context allocations
52 */
53static kmem_cache_t *iocontext_cachep;
54
55static wait_queue_head_t congestion_wqh[2] = {
56 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
58 };
59
60/*
61 * Controlling structure to kblockd
62 */
63static struct workqueue_struct *kblockd_workqueue;
64
65unsigned long blk_max_low_pfn, blk_max_pfn;
66
67EXPORT_SYMBOL(blk_max_low_pfn);
68EXPORT_SYMBOL(blk_max_pfn);
69
70/* Amount of time in which a process may batch requests */
71#define BLK_BATCH_TIME (HZ/50UL)
72
73/* Number of requests a "batching" process may submit */
74#define BLK_BATCH_REQ 32
75
76/*
77 * Return the threshold (number of used requests) at which the queue is
78 * considered to be congested. It include a little hysteresis to keep the
79 * context switch rate down.
80 */
81static inline int queue_congestion_on_threshold(struct request_queue *q)
82{
83 return q->nr_congestion_on;
84}
85
86/*
87 * The threshold at which a queue is considered to be uncongested
88 */
89static inline int queue_congestion_off_threshold(struct request_queue *q)
90{
91 return q->nr_congestion_off;
92}
93
94static void blk_queue_congestion_threshold(struct request_queue *q)
95{
96 int nr;
97
98 nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 if (nr > q->nr_requests)
100 nr = q->nr_requests;
101 q->nr_congestion_on = nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 if (nr < 1)
105 nr = 1;
106 q->nr_congestion_off = nr;
107}
108
109/*
110 * A queue has just exitted congestion. Note this in the global counter of
111 * congested queues, and wake up anyone who was waiting for requests to be
112 * put back.
113 */
114static void clear_queue_congested(request_queue_t *q, int rw)
115{
116 enum bdi_state bit;
117 wait_queue_head_t *wqh = &congestion_wqh[rw];
118
119 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
120 clear_bit(bit, &q->backing_dev_info.state);
121 smp_mb__after_clear_bit();
122 if (waitqueue_active(wqh))
123 wake_up(wqh);
124}
125
126/*
127 * A queue has just entered congestion. Flag that in the queue's VM-visible
128 * state flags and increment the global gounter of congested queues.
129 */
130static void set_queue_congested(request_queue_t *q, int rw)
131{
132 enum bdi_state bit;
133
134 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
135 set_bit(bit, &q->backing_dev_info.state);
136}
137
138/**
139 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
140 * @bdev: device
141 *
142 * Locates the passed device's request queue and returns the address of its
143 * backing_dev_info
144 *
145 * Will return NULL if the request queue cannot be located.
146 */
147struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
148{
149 struct backing_dev_info *ret = NULL;
150 request_queue_t *q = bdev_get_queue(bdev);
151
152 if (q)
153 ret = &q->backing_dev_info;
154 return ret;
155}
156
157EXPORT_SYMBOL(blk_get_backing_dev_info);
158
159void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
160{
161 q->activity_fn = fn;
162 q->activity_data = data;
163}
164
165EXPORT_SYMBOL(blk_queue_activity_fn);
166
167/**
168 * blk_queue_prep_rq - set a prepare_request function for queue
169 * @q: queue
170 * @pfn: prepare_request function
171 *
172 * It's possible for a queue to register a prepare_request callback which
173 * is invoked before the request is handed to the request_fn. The goal of
174 * the function is to prepare a request for I/O, it can be used to build a
175 * cdb from the request data for instance.
176 *
177 */
178void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
179{
180 q->prep_rq_fn = pfn;
181}
182
183EXPORT_SYMBOL(blk_queue_prep_rq);
184
185/**
186 * blk_queue_merge_bvec - set a merge_bvec function for queue
187 * @q: queue
188 * @mbfn: merge_bvec_fn
189 *
190 * Usually queues have static limitations on the max sectors or segments that
191 * we can put in a request. Stacking drivers may have some settings that
192 * are dynamic, and thus we have to query the queue whether it is ok to
193 * add a new bio_vec to a bio at a given offset or not. If the block device
194 * has such limitations, it needs to register a merge_bvec_fn to control
195 * the size of bio's sent to it. Note that a block device *must* allow a
196 * single page to be added to an empty bio. The block device driver may want
197 * to use the bio_split() function to deal with these bio's. By default
198 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
199 * honored.
200 */
201void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
202{
203 q->merge_bvec_fn = mbfn;
204}
205
206EXPORT_SYMBOL(blk_queue_merge_bvec);
207
208/**
209 * blk_queue_make_request - define an alternate make_request function for a device
210 * @q: the request queue for the device to be affected
211 * @mfn: the alternate make_request function
212 *
213 * Description:
214 * The normal way for &struct bios to be passed to a device
215 * driver is for them to be collected into requests on a request
216 * queue, and then to allow the device driver to select requests
217 * off that queue when it is ready. This works well for many block
218 * devices. However some block devices (typically virtual devices
219 * such as md or lvm) do not benefit from the processing on the
220 * request queue, and are served best by having the requests passed
221 * directly to them. This can be achieved by providing a function
222 * to blk_queue_make_request().
223 *
224 * Caveat:
225 * The driver that does this *must* be able to deal appropriately
226 * with buffers in "highmemory". This can be accomplished by either calling
227 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
228 * blk_queue_bounce() to create a buffer in normal memory.
229 **/
230void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
231{
232 /*
233 * set defaults
234 */
235 q->nr_requests = BLKDEV_MAX_RQ;
236 q->max_phys_segments = MAX_PHYS_SEGMENTS;
237 q->max_hw_segments = MAX_HW_SEGMENTS;
238 q->make_request_fn = mfn;
239 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
240 q->backing_dev_info.state = 0;
241 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
242 blk_queue_max_sectors(q, MAX_SECTORS);
243 blk_queue_hardsect_size(q, 512);
244 blk_queue_dma_alignment(q, 511);
245 blk_queue_congestion_threshold(q);
246 q->nr_batching = BLK_BATCH_REQ;
247
248 q->unplug_thresh = 4; /* hmm */
249 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
250 if (q->unplug_delay == 0)
251 q->unplug_delay = 1;
252
253 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
254
255 q->unplug_timer.function = blk_unplug_timeout;
256 q->unplug_timer.data = (unsigned long)q;
257
258 /*
259 * by default assume old behaviour and bounce for any highmem page
260 */
261 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
262
263 blk_queue_activity_fn(q, NULL, NULL);
264
265 INIT_LIST_HEAD(&q->drain_list);
266}
267
268EXPORT_SYMBOL(blk_queue_make_request);
269
270static inline void rq_init(request_queue_t *q, struct request *rq)
271{
272 INIT_LIST_HEAD(&rq->queuelist);
273
274 rq->errors = 0;
275 rq->rq_status = RQ_ACTIVE;
276 rq->bio = rq->biotail = NULL;
277 rq->buffer = NULL;
278 rq->ref_count = 1;
279 rq->q = q;
280 rq->waiting = NULL;
281 rq->special = NULL;
282 rq->data_len = 0;
283 rq->data = NULL;
df46b9a4 284 rq->nr_phys_segments = 0;
1da177e4
LT
285 rq->sense = NULL;
286 rq->end_io = NULL;
287 rq->end_io_data = NULL;
288}
289
290/**
291 * blk_queue_ordered - does this queue support ordered writes
292 * @q: the request queue
293 * @flag: see below
294 *
295 * Description:
296 * For journalled file systems, doing ordered writes on a commit
297 * block instead of explicitly doing wait_on_buffer (which is bad
298 * for performance) can be a big win. Block drivers supporting this
299 * feature should call this function and indicate so.
300 *
301 **/
302void blk_queue_ordered(request_queue_t *q, int flag)
303{
304 switch (flag) {
305 case QUEUE_ORDERED_NONE:
306 if (q->flush_rq)
307 kmem_cache_free(request_cachep, q->flush_rq);
308 q->flush_rq = NULL;
309 q->ordered = flag;
310 break;
311 case QUEUE_ORDERED_TAG:
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_FLUSH:
315 q->ordered = flag;
316 if (!q->flush_rq)
317 q->flush_rq = kmem_cache_alloc(request_cachep,
318 GFP_KERNEL);
319 break;
320 default:
321 printk("blk_queue_ordered: bad value %d\n", flag);
322 break;
323 }
324}
325
326EXPORT_SYMBOL(blk_queue_ordered);
327
328/**
329 * blk_queue_issue_flush_fn - set function for issuing a flush
330 * @q: the request queue
331 * @iff: the function to be called issuing the flush
332 *
333 * Description:
334 * If a driver supports issuing a flush command, the support is notified
335 * to the block layer by defining it through this call.
336 *
337 **/
338void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339{
340 q->issue_flush_fn = iff;
341}
342
343EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345/*
346 * Cache flushing for ordered writes handling
347 */
348static void blk_pre_flush_end_io(struct request *flush_rq)
349{
350 struct request *rq = flush_rq->end_io_data;
351 request_queue_t *q = rq->q;
352
353 rq->flags |= REQ_BAR_PREFLUSH;
354
355 if (!flush_rq->errors)
356 elv_requeue_request(q, rq);
357 else {
358 q->end_flush_fn(q, flush_rq);
359 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360 q->request_fn(q);
361 }
362}
363
364static void blk_post_flush_end_io(struct request *flush_rq)
365{
366 struct request *rq = flush_rq->end_io_data;
367 request_queue_t *q = rq->q;
368
369 rq->flags |= REQ_BAR_POSTFLUSH;
370
371 q->end_flush_fn(q, flush_rq);
372 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373 q->request_fn(q);
374}
375
376struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377{
378 struct request *flush_rq = q->flush_rq;
379
380 BUG_ON(!blk_barrier_rq(rq));
381
382 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383 return NULL;
384
385 rq_init(q, flush_rq);
386 flush_rq->elevator_private = NULL;
387 flush_rq->flags = REQ_BAR_FLUSH;
388 flush_rq->rq_disk = rq->rq_disk;
389 flush_rq->rl = NULL;
390
391 /*
392 * prepare_flush returns 0 if no flush is needed, just mark both
393 * pre and post flush as done in that case
394 */
395 if (!q->prepare_flush_fn(q, flush_rq)) {
396 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398 return rq;
399 }
400
401 /*
402 * some drivers dequeue requests right away, some only after io
403 * completion. make sure the request is dequeued.
404 */
405 if (!list_empty(&rq->queuelist))
406 blkdev_dequeue_request(rq);
407
408 elv_deactivate_request(q, rq);
409
410 flush_rq->end_io_data = rq;
411 flush_rq->end_io = blk_pre_flush_end_io;
412
413 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414 return flush_rq;
415}
416
417static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418{
419 struct request *flush_rq = q->flush_rq;
420
421 BUG_ON(!blk_barrier_rq(rq));
422
423 rq_init(q, flush_rq);
424 flush_rq->elevator_private = NULL;
425 flush_rq->flags = REQ_BAR_FLUSH;
426 flush_rq->rq_disk = rq->rq_disk;
427 flush_rq->rl = NULL;
428
429 if (q->prepare_flush_fn(q, flush_rq)) {
430 flush_rq->end_io_data = rq;
431 flush_rq->end_io = blk_post_flush_end_io;
432
433 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434 q->request_fn(q);
435 }
436}
437
438static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439 int sectors)
440{
441 if (sectors > rq->nr_sectors)
442 sectors = rq->nr_sectors;
443
444 rq->nr_sectors -= sectors;
445 return rq->nr_sectors;
446}
447
448static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449 int sectors, int queue_locked)
450{
451 if (q->ordered != QUEUE_ORDERED_FLUSH)
452 return 0;
453 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454 return 0;
455 if (blk_barrier_postflush(rq))
456 return 0;
457
458 if (!blk_check_end_barrier(q, rq, sectors)) {
459 unsigned long flags = 0;
460
461 if (!queue_locked)
462 spin_lock_irqsave(q->queue_lock, flags);
463
464 blk_start_post_flush(q, rq);
465
466 if (!queue_locked)
467 spin_unlock_irqrestore(q->queue_lock, flags);
468 }
469
470 return 1;
471}
472
473/**
474 * blk_complete_barrier_rq - complete possible barrier request
475 * @q: the request queue for the device
476 * @rq: the request
477 * @sectors: number of sectors to complete
478 *
479 * Description:
480 * Used in driver end_io handling to determine whether to postpone
481 * completion of a barrier request until a post flush has been done. This
482 * is the unlocked variant, used if the caller doesn't already hold the
483 * queue lock.
484 **/
485int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486{
487 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488}
489EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491/**
492 * blk_complete_barrier_rq_locked - complete possible barrier request
493 * @q: the request queue for the device
494 * @rq: the request
495 * @sectors: number of sectors to complete
496 *
497 * Description:
498 * See blk_complete_barrier_rq(). This variant must be used if the caller
499 * holds the queue lock.
500 **/
501int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502 int sectors)
503{
504 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505}
506EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508/**
509 * blk_queue_bounce_limit - set bounce buffer limit for queue
510 * @q: the request queue for the device
511 * @dma_addr: bus address limit
512 *
513 * Description:
514 * Different hardware can have different requirements as to what pages
515 * it can do I/O directly to. A low level driver can call
516 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
517 * buffers for doing I/O to pages residing above @page. By default
518 * the block layer sets this to the highest numbered "low" memory page.
519 **/
520void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521{
522 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524 /*
525 * set appropriate bounce gfp mask -- unfortunately we don't have a
526 * full 4GB zone, so we have to resort to low memory for any bounces.
527 * ISA has its own < 16MB zone.
528 */
529 if (bounce_pfn < blk_max_low_pfn) {
530 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531 init_emergency_isa_pool();
532 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533 } else
534 q->bounce_gfp = GFP_NOIO;
535
536 q->bounce_pfn = bounce_pfn;
537}
538
539EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541/**
542 * blk_queue_max_sectors - set max sectors for a request for this queue
543 * @q: the request queue for the device
544 * @max_sectors: max sectors in the usual 512b unit
545 *
546 * Description:
547 * Enables a low level driver to set an upper limit on the size of
548 * received requests.
549 **/
550void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551{
552 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555 }
556
557 q->max_sectors = q->max_hw_sectors = max_sectors;
558}
559
560EXPORT_SYMBOL(blk_queue_max_sectors);
561
562/**
563 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564 * @q: the request queue for the device
565 * @max_segments: max number of segments
566 *
567 * Description:
568 * Enables a low level driver to set an upper limit on the number of
569 * physical data segments in a request. This would be the largest sized
570 * scatter list the driver could handle.
571 **/
572void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573{
574 if (!max_segments) {
575 max_segments = 1;
576 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577 }
578
579 q->max_phys_segments = max_segments;
580}
581
582EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584/**
585 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586 * @q: the request queue for the device
587 * @max_segments: max number of segments
588 *
589 * Description:
590 * Enables a low level driver to set an upper limit on the number of
591 * hw data segments in a request. This would be the largest number of
592 * address/length pairs the host adapter can actually give as once
593 * to the device.
594 **/
595void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596{
597 if (!max_segments) {
598 max_segments = 1;
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600 }
601
602 q->max_hw_segments = max_segments;
603}
604
605EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607/**
608 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609 * @q: the request queue for the device
610 * @max_size: max size of segment in bytes
611 *
612 * Description:
613 * Enables a low level driver to set an upper limit on the size of a
614 * coalesced segment
615 **/
616void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617{
618 if (max_size < PAGE_CACHE_SIZE) {
619 max_size = PAGE_CACHE_SIZE;
620 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621 }
622
623 q->max_segment_size = max_size;
624}
625
626EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628/**
629 * blk_queue_hardsect_size - set hardware sector size for the queue
630 * @q: the request queue for the device
631 * @size: the hardware sector size, in bytes
632 *
633 * Description:
634 * This should typically be set to the lowest possible sector size
635 * that the hardware can operate on (possible without reverting to
636 * even internal read-modify-write operations). Usually the default
637 * of 512 covers most hardware.
638 **/
639void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640{
641 q->hardsect_size = size;
642}
643
644EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646/*
647 * Returns the minimum that is _not_ zero, unless both are zero.
648 */
649#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651/**
652 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653 * @t: the stacking driver (top)
654 * @b: the underlying device (bottom)
655 **/
656void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657{
658 /* zero is "infinity" */
659 t->max_sectors = t->max_hw_sectors =
660 min_not_zero(t->max_sectors,b->max_sectors);
661
662 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666}
667
668EXPORT_SYMBOL(blk_queue_stack_limits);
669
670/**
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
674 **/
675void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676{
677 if (mask < PAGE_CACHE_SIZE - 1) {
678 mask = PAGE_CACHE_SIZE - 1;
679 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680 }
681
682 q->seg_boundary_mask = mask;
683}
684
685EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687/**
688 * blk_queue_dma_alignment - set dma length and memory alignment
689 * @q: the request queue for the device
690 * @mask: alignment mask
691 *
692 * description:
693 * set required memory and length aligment for direct dma transactions.
694 * this is used when buiding direct io requests for the queue.
695 *
696 **/
697void blk_queue_dma_alignment(request_queue_t *q, int mask)
698{
699 q->dma_alignment = mask;
700}
701
702EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704/**
705 * blk_queue_find_tag - find a request by its tag and queue
706 *
707 * @q: The request queue for the device
708 * @tag: The tag of the request
709 *
710 * Notes:
711 * Should be used when a device returns a tag and you want to match
712 * it with a request.
713 *
714 * no locks need be held.
715 **/
716struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717{
718 struct blk_queue_tag *bqt = q->queue_tags;
719
720 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
721 return NULL;
722
723 return bqt->tag_index[tag];
724}
725
726EXPORT_SYMBOL(blk_queue_find_tag);
727
728/**
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
731 *
732 * Notes:
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
735 **/
736static void __blk_queue_free_tags(request_queue_t *q)
737{
738 struct blk_queue_tag *bqt = q->queue_tags;
739
740 if (!bqt)
741 return;
742
743 if (atomic_dec_and_test(&bqt->refcnt)) {
744 BUG_ON(bqt->busy);
745 BUG_ON(!list_empty(&bqt->busy_list));
746
747 kfree(bqt->tag_index);
748 bqt->tag_index = NULL;
749
750 kfree(bqt->tag_map);
751 bqt->tag_map = NULL;
752
753 kfree(bqt);
754 }
755
756 q->queue_tags = NULL;
757 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758}
759
760/**
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
763 *
764 * Notes:
765 * This is used to disabled tagged queuing to a device, yet leave
766 * queue in function.
767 **/
768void blk_queue_free_tags(request_queue_t *q)
769{
770 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771}
772
773EXPORT_SYMBOL(blk_queue_free_tags);
774
775static int
776init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777{
778 int bits, i;
779 struct request **tag_index;
780 unsigned long *tag_map;
781
782 if (depth > q->nr_requests * 2) {
783 depth = q->nr_requests * 2;
784 printk(KERN_ERR "%s: adjusted depth to %d\n",
785 __FUNCTION__, depth);
786 }
787
788 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789 if (!tag_index)
790 goto fail;
791
792 bits = (depth / BLK_TAGS_PER_LONG) + 1;
793 tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
794 if (!tag_map)
795 goto fail;
796
797 memset(tag_index, 0, depth * sizeof(struct request *));
798 memset(tag_map, 0, bits * sizeof(unsigned long));
799 tags->max_depth = depth;
800 tags->real_max_depth = bits * BITS_PER_LONG;
801 tags->tag_index = tag_index;
802 tags->tag_map = tag_map;
803
804 /*
805 * set the upper bits if the depth isn't a multiple of the word size
806 */
807 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
808 __set_bit(i, tag_map);
809
810 return 0;
811fail:
812 kfree(tag_index);
813 return -ENOMEM;
814}
815
816/**
817 * blk_queue_init_tags - initialize the queue tag info
818 * @q: the request queue for the device
819 * @depth: the maximum queue depth supported
820 * @tags: the tag to use
821 **/
822int blk_queue_init_tags(request_queue_t *q, int depth,
823 struct blk_queue_tag *tags)
824{
825 int rc;
826
827 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828
829 if (!tags && !q->queue_tags) {
830 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
831 if (!tags)
832 goto fail;
833
834 if (init_tag_map(q, tags, depth))
835 goto fail;
836
837 INIT_LIST_HEAD(&tags->busy_list);
838 tags->busy = 0;
839 atomic_set(&tags->refcnt, 1);
840 } else if (q->queue_tags) {
841 if ((rc = blk_queue_resize_tags(q, depth)))
842 return rc;
843 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
844 return 0;
845 } else
846 atomic_inc(&tags->refcnt);
847
848 /*
849 * assign it, all done
850 */
851 q->queue_tags = tags;
852 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
853 return 0;
854fail:
855 kfree(tags);
856 return -ENOMEM;
857}
858
859EXPORT_SYMBOL(blk_queue_init_tags);
860
861/**
862 * blk_queue_resize_tags - change the queueing depth
863 * @q: the request queue for the device
864 * @new_depth: the new max command queueing depth
865 *
866 * Notes:
867 * Must be called with the queue lock held.
868 **/
869int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870{
871 struct blk_queue_tag *bqt = q->queue_tags;
872 struct request **tag_index;
873 unsigned long *tag_map;
874 int bits, max_depth;
875
876 if (!bqt)
877 return -ENXIO;
878
879 /*
880 * don't bother sizing down
881 */
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
884 return 0;
885 }
886
887 /*
888 * save the old state info, so we can copy it back
889 */
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
892 max_depth = bqt->real_max_depth;
893
894 if (init_tag_map(q, bqt, new_depth))
895 return -ENOMEM;
896
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898 bits = max_depth / BLK_TAGS_PER_LONG;
899 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
900
901 kfree(tag_index);
902 kfree(tag_map);
903 return 0;
904}
905
906EXPORT_SYMBOL(blk_queue_resize_tags);
907
908/**
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
912 *
913 * Description:
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
918 *
919 * Notes:
920 * queue lock must be held.
921 **/
922void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923{
924 struct blk_queue_tag *bqt = q->queue_tags;
925 int tag = rq->tag;
926
927 BUG_ON(tag == -1);
928
929 if (unlikely(tag >= bqt->real_max_depth))
930 return;
931
932 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
933 printk("attempt to clear non-busy tag (%d)\n", tag);
934 return;
935 }
936
937 list_del_init(&rq->queuelist);
938 rq->flags &= ~REQ_QUEUED;
939 rq->tag = -1;
940
941 if (unlikely(bqt->tag_index[tag] == NULL))
942 printk("tag %d is missing\n", tag);
943
944 bqt->tag_index[tag] = NULL;
945 bqt->busy--;
946}
947
948EXPORT_SYMBOL(blk_queue_end_tag);
949
950/**
951 * blk_queue_start_tag - find a free tag and assign it
952 * @q: the request queue for the device
953 * @rq: the block request that needs tagging
954 *
955 * Description:
956 * This can either be used as a stand-alone helper, or possibly be
957 * assigned as the queue &prep_rq_fn (in which case &struct request
958 * automagically gets a tag assigned). Note that this function
959 * assumes that any type of request can be queued! if this is not
960 * true for your device, you must check the request type before
961 * calling this function. The request will also be removed from
962 * the request queue, so it's the drivers responsibility to readd
963 * it if it should need to be restarted for some reason.
964 *
965 * Notes:
966 * queue lock must be held.
967 **/
968int blk_queue_start_tag(request_queue_t *q, struct request *rq)
969{
970 struct blk_queue_tag *bqt = q->queue_tags;
971 unsigned long *map = bqt->tag_map;
972 int tag = 0;
973
974 if (unlikely((rq->flags & REQ_QUEUED))) {
975 printk(KERN_ERR
976 "request %p for device [%s] already tagged %d",
977 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
978 BUG();
979 }
980
981 for (map = bqt->tag_map; *map == -1UL; map++) {
982 tag += BLK_TAGS_PER_LONG;
983
984 if (tag >= bqt->max_depth)
985 return 1;
986 }
987
988 tag += ffz(*map);
989 __set_bit(tag, bqt->tag_map);
990
991 rq->flags |= REQ_QUEUED;
992 rq->tag = tag;
993 bqt->tag_index[tag] = rq;
994 blkdev_dequeue_request(rq);
995 list_add(&rq->queuelist, &bqt->busy_list);
996 bqt->busy++;
997 return 0;
998}
999
1000EXPORT_SYMBOL(blk_queue_start_tag);
1001
1002/**
1003 * blk_queue_invalidate_tags - invalidate all pending tags
1004 * @q: the request queue for the device
1005 *
1006 * Description:
1007 * Hardware conditions may dictate a need to stop all pending requests.
1008 * In this case, we will safely clear the block side of the tag queue and
1009 * readd all requests to the request queue in the right order.
1010 *
1011 * Notes:
1012 * queue lock must be held.
1013 **/
1014void blk_queue_invalidate_tags(request_queue_t *q)
1015{
1016 struct blk_queue_tag *bqt = q->queue_tags;
1017 struct list_head *tmp, *n;
1018 struct request *rq;
1019
1020 list_for_each_safe(tmp, n, &bqt->busy_list) {
1021 rq = list_entry_rq(tmp);
1022
1023 if (rq->tag == -1) {
1024 printk("bad tag found on list\n");
1025 list_del_init(&rq->queuelist);
1026 rq->flags &= ~REQ_QUEUED;
1027 } else
1028 blk_queue_end_tag(q, rq);
1029
1030 rq->flags &= ~REQ_STARTED;
1031 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1032 }
1033}
1034
1035EXPORT_SYMBOL(blk_queue_invalidate_tags);
1036
1037static char *rq_flags[] = {
1038 "REQ_RW",
1039 "REQ_FAILFAST",
1040 "REQ_SOFTBARRIER",
1041 "REQ_HARDBARRIER",
1042 "REQ_CMD",
1043 "REQ_NOMERGE",
1044 "REQ_STARTED",
1045 "REQ_DONTPREP",
1046 "REQ_QUEUED",
1047 "REQ_PC",
1048 "REQ_BLOCK_PC",
1049 "REQ_SENSE",
1050 "REQ_FAILED",
1051 "REQ_QUIET",
1052 "REQ_SPECIAL",
1053 "REQ_DRIVE_CMD",
1054 "REQ_DRIVE_TASK",
1055 "REQ_DRIVE_TASKFILE",
1056 "REQ_PREEMPT",
1057 "REQ_PM_SUSPEND",
1058 "REQ_PM_RESUME",
1059 "REQ_PM_SHUTDOWN",
1060};
1061
1062void blk_dump_rq_flags(struct request *rq, char *msg)
1063{
1064 int bit;
1065
1066 printk("%s: dev %s: flags = ", msg,
1067 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1068 bit = 0;
1069 do {
1070 if (rq->flags & (1 << bit))
1071 printk("%s ", rq_flags[bit]);
1072 bit++;
1073 } while (bit < __REQ_NR_BITS);
1074
1075 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1076 rq->nr_sectors,
1077 rq->current_nr_sectors);
1078 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1079
1080 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1081 printk("cdb: ");
1082 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1083 printk("%02x ", rq->cmd[bit]);
1084 printk("\n");
1085 }
1086}
1087
1088EXPORT_SYMBOL(blk_dump_rq_flags);
1089
1090void blk_recount_segments(request_queue_t *q, struct bio *bio)
1091{
1092 struct bio_vec *bv, *bvprv = NULL;
1093 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1094 int high, highprv = 1;
1095
1096 if (unlikely(!bio->bi_io_vec))
1097 return;
1098
1099 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1100 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1101 bio_for_each_segment(bv, bio, i) {
1102 /*
1103 * the trick here is making sure that a high page is never
1104 * considered part of another segment, since that might
1105 * change with the bounce page.
1106 */
1107 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1108 if (high || highprv)
1109 goto new_hw_segment;
1110 if (cluster) {
1111 if (seg_size + bv->bv_len > q->max_segment_size)
1112 goto new_segment;
1113 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1114 goto new_segment;
1115 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1116 goto new_segment;
1117 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1118 goto new_hw_segment;
1119
1120 seg_size += bv->bv_len;
1121 hw_seg_size += bv->bv_len;
1122 bvprv = bv;
1123 continue;
1124 }
1125new_segment:
1126 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1127 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1128 hw_seg_size += bv->bv_len;
1129 } else {
1130new_hw_segment:
1131 if (hw_seg_size > bio->bi_hw_front_size)
1132 bio->bi_hw_front_size = hw_seg_size;
1133 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1134 nr_hw_segs++;
1135 }
1136
1137 nr_phys_segs++;
1138 bvprv = bv;
1139 seg_size = bv->bv_len;
1140 highprv = high;
1141 }
1142 if (hw_seg_size > bio->bi_hw_back_size)
1143 bio->bi_hw_back_size = hw_seg_size;
1144 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1145 bio->bi_hw_front_size = hw_seg_size;
1146 bio->bi_phys_segments = nr_phys_segs;
1147 bio->bi_hw_segments = nr_hw_segs;
1148 bio->bi_flags |= (1 << BIO_SEG_VALID);
1149}
1150
1151
1152int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1153 struct bio *nxt)
1154{
1155 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1156 return 0;
1157
1158 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1159 return 0;
1160 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1161 return 0;
1162
1163 /*
1164 * bio and nxt are contigous in memory, check if the queue allows
1165 * these two to be merged into one
1166 */
1167 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1168 return 1;
1169
1170 return 0;
1171}
1172
1173EXPORT_SYMBOL(blk_phys_contig_segment);
1174
1175int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1176 struct bio *nxt)
1177{
1178 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1179 blk_recount_segments(q, bio);
1180 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1181 blk_recount_segments(q, nxt);
1182 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1183 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1184 return 0;
1185 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1186 return 0;
1187
1188 return 1;
1189}
1190
1191EXPORT_SYMBOL(blk_hw_contig_segment);
1192
1193/*
1194 * map a request to scatterlist, return number of sg entries setup. Caller
1195 * must make sure sg can hold rq->nr_phys_segments entries
1196 */
1197int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198{
1199 struct bio_vec *bvec, *bvprv;
1200 struct bio *bio;
1201 int nsegs, i, cluster;
1202
1203 nsegs = 0;
1204 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1205
1206 /*
1207 * for each bio in rq
1208 */
1209 bvprv = NULL;
1210 rq_for_each_bio(bio, rq) {
1211 /*
1212 * for each segment in bio
1213 */
1214 bio_for_each_segment(bvec, bio, i) {
1215 int nbytes = bvec->bv_len;
1216
1217 if (bvprv && cluster) {
1218 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1219 goto new_segment;
1220
1221 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1222 goto new_segment;
1223 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1224 goto new_segment;
1225
1226 sg[nsegs - 1].length += nbytes;
1227 } else {
1228new_segment:
1229 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1230 sg[nsegs].page = bvec->bv_page;
1231 sg[nsegs].length = nbytes;
1232 sg[nsegs].offset = bvec->bv_offset;
1233
1234 nsegs++;
1235 }
1236 bvprv = bvec;
1237 } /* segments in bio */
1238 } /* bios in rq */
1239
1240 return nsegs;
1241}
1242
1243EXPORT_SYMBOL(blk_rq_map_sg);
1244
1245/*
1246 * the standard queue merge functions, can be overridden with device
1247 * specific ones if so desired
1248 */
1249
1250static inline int ll_new_mergeable(request_queue_t *q,
1251 struct request *req,
1252 struct bio *bio)
1253{
1254 int nr_phys_segs = bio_phys_segments(q, bio);
1255
1256 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1257 req->flags |= REQ_NOMERGE;
1258 if (req == q->last_merge)
1259 q->last_merge = NULL;
1260 return 0;
1261 }
1262
1263 /*
1264 * A hw segment is just getting larger, bump just the phys
1265 * counter.
1266 */
1267 req->nr_phys_segments += nr_phys_segs;
1268 return 1;
1269}
1270
1271static inline int ll_new_hw_segment(request_queue_t *q,
1272 struct request *req,
1273 struct bio *bio)
1274{
1275 int nr_hw_segs = bio_hw_segments(q, bio);
1276 int nr_phys_segs = bio_phys_segments(q, bio);
1277
1278 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1279 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1280 req->flags |= REQ_NOMERGE;
1281 if (req == q->last_merge)
1282 q->last_merge = NULL;
1283 return 0;
1284 }
1285
1286 /*
1287 * This will form the start of a new hw segment. Bump both
1288 * counters.
1289 */
1290 req->nr_hw_segments += nr_hw_segs;
1291 req->nr_phys_segments += nr_phys_segs;
1292 return 1;
1293}
1294
1295static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1296 struct bio *bio)
1297{
1298 int len;
1299
1300 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1301 req->flags |= REQ_NOMERGE;
1302 if (req == q->last_merge)
1303 q->last_merge = NULL;
1304 return 0;
1305 }
1306 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1307 blk_recount_segments(q, req->biotail);
1308 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1309 blk_recount_segments(q, bio);
1310 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1311 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1312 !BIOVEC_VIRT_OVERSIZE(len)) {
1313 int mergeable = ll_new_mergeable(q, req, bio);
1314
1315 if (mergeable) {
1316 if (req->nr_hw_segments == 1)
1317 req->bio->bi_hw_front_size = len;
1318 if (bio->bi_hw_segments == 1)
1319 bio->bi_hw_back_size = len;
1320 }
1321 return mergeable;
1322 }
1323
1324 return ll_new_hw_segment(q, req, bio);
1325}
1326
1327static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1328 struct bio *bio)
1329{
1330 int len;
1331
1332 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1333 req->flags |= REQ_NOMERGE;
1334 if (req == q->last_merge)
1335 q->last_merge = NULL;
1336 return 0;
1337 }
1338 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1339 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1340 blk_recount_segments(q, bio);
1341 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1342 blk_recount_segments(q, req->bio);
1343 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1344 !BIOVEC_VIRT_OVERSIZE(len)) {
1345 int mergeable = ll_new_mergeable(q, req, bio);
1346
1347 if (mergeable) {
1348 if (bio->bi_hw_segments == 1)
1349 bio->bi_hw_front_size = len;
1350 if (req->nr_hw_segments == 1)
1351 req->biotail->bi_hw_back_size = len;
1352 }
1353 return mergeable;
1354 }
1355
1356 return ll_new_hw_segment(q, req, bio);
1357}
1358
1359static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1360 struct request *next)
1361{
1362 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1363 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1364
1365 /*
1366 * First check if the either of the requests are re-queued
1367 * requests. Can't merge them if they are.
1368 */
1369 if (req->special || next->special)
1370 return 0;
1371
1372 /*
1373 * Will it become to large?
1374 */
1375 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1376 return 0;
1377
1378 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1379 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1380 total_phys_segments--;
1381
1382 if (total_phys_segments > q->max_phys_segments)
1383 return 0;
1384
1385 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1386 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1387 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388 /*
1389 * propagate the combined length to the end of the requests
1390 */
1391 if (req->nr_hw_segments == 1)
1392 req->bio->bi_hw_front_size = len;
1393 if (next->nr_hw_segments == 1)
1394 next->biotail->bi_hw_back_size = len;
1395 total_hw_segments--;
1396 }
1397
1398 if (total_hw_segments > q->max_hw_segments)
1399 return 0;
1400
1401 /* Merge is OK... */
1402 req->nr_phys_segments = total_phys_segments;
1403 req->nr_hw_segments = total_hw_segments;
1404 return 1;
1405}
1406
1407/*
1408 * "plug" the device if there are no outstanding requests: this will
1409 * force the transfer to start only after we have put all the requests
1410 * on the list.
1411 *
1412 * This is called with interrupts off and no requests on the queue and
1413 * with the queue lock held.
1414 */
1415void blk_plug_device(request_queue_t *q)
1416{
1417 WARN_ON(!irqs_disabled());
1418
1419 /*
1420 * don't plug a stopped queue, it must be paired with blk_start_queue()
1421 * which will restart the queueing
1422 */
1423 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1424 return;
1425
1426 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1428}
1429
1430EXPORT_SYMBOL(blk_plug_device);
1431
1432/*
1433 * remove the queue from the plugged list, if present. called with
1434 * queue lock held and interrupts disabled.
1435 */
1436int blk_remove_plug(request_queue_t *q)
1437{
1438 WARN_ON(!irqs_disabled());
1439
1440 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1441 return 0;
1442
1443 del_timer(&q->unplug_timer);
1444 return 1;
1445}
1446
1447EXPORT_SYMBOL(blk_remove_plug);
1448
1449/*
1450 * remove the plug and let it rip..
1451 */
1452void __generic_unplug_device(request_queue_t *q)
1453{
1454 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1455 return;
1456
1457 if (!blk_remove_plug(q))
1458 return;
1459
1460 /*
1461 * was plugged, fire request_fn if queue has stuff to do
1462 */
1463 if (elv_next_request(q))
1464 q->request_fn(q);
1465}
1466EXPORT_SYMBOL(__generic_unplug_device);
1467
1468/**
1469 * generic_unplug_device - fire a request queue
1470 * @q: The &request_queue_t in question
1471 *
1472 * Description:
1473 * Linux uses plugging to build bigger requests queues before letting
1474 * the device have at them. If a queue is plugged, the I/O scheduler
1475 * is still adding and merging requests on the queue. Once the queue
1476 * gets unplugged, the request_fn defined for the queue is invoked and
1477 * transfers started.
1478 **/
1479void generic_unplug_device(request_queue_t *q)
1480{
1481 spin_lock_irq(q->queue_lock);
1482 __generic_unplug_device(q);
1483 spin_unlock_irq(q->queue_lock);
1484}
1485EXPORT_SYMBOL(generic_unplug_device);
1486
1487static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1488 struct page *page)
1489{
1490 request_queue_t *q = bdi->unplug_io_data;
1491
1492 /*
1493 * devices don't necessarily have an ->unplug_fn defined
1494 */
1495 if (q->unplug_fn)
1496 q->unplug_fn(q);
1497}
1498
1499static void blk_unplug_work(void *data)
1500{
1501 request_queue_t *q = data;
1502
1503 q->unplug_fn(q);
1504}
1505
1506static void blk_unplug_timeout(unsigned long data)
1507{
1508 request_queue_t *q = (request_queue_t *)data;
1509
1510 kblockd_schedule_work(&q->unplug_work);
1511}
1512
1513/**
1514 * blk_start_queue - restart a previously stopped queue
1515 * @q: The &request_queue_t in question
1516 *
1517 * Description:
1518 * blk_start_queue() will clear the stop flag on the queue, and call
1519 * the request_fn for the queue if it was in a stopped state when
1520 * entered. Also see blk_stop_queue(). Queue lock must be held.
1521 **/
1522void blk_start_queue(request_queue_t *q)
1523{
1524 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1525
1526 /*
1527 * one level of recursion is ok and is much faster than kicking
1528 * the unplug handling
1529 */
1530 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1531 q->request_fn(q);
1532 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1533 } else {
1534 blk_plug_device(q);
1535 kblockd_schedule_work(&q->unplug_work);
1536 }
1537}
1538
1539EXPORT_SYMBOL(blk_start_queue);
1540
1541/**
1542 * blk_stop_queue - stop a queue
1543 * @q: The &request_queue_t in question
1544 *
1545 * Description:
1546 * The Linux block layer assumes that a block driver will consume all
1547 * entries on the request queue when the request_fn strategy is called.
1548 * Often this will not happen, because of hardware limitations (queue
1549 * depth settings). If a device driver gets a 'queue full' response,
1550 * or if it simply chooses not to queue more I/O at one point, it can
1551 * call this function to prevent the request_fn from being called until
1552 * the driver has signalled it's ready to go again. This happens by calling
1553 * blk_start_queue() to restart queue operations. Queue lock must be held.
1554 **/
1555void blk_stop_queue(request_queue_t *q)
1556{
1557 blk_remove_plug(q);
1558 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1559}
1560EXPORT_SYMBOL(blk_stop_queue);
1561
1562/**
1563 * blk_sync_queue - cancel any pending callbacks on a queue
1564 * @q: the queue
1565 *
1566 * Description:
1567 * The block layer may perform asynchronous callback activity
1568 * on a queue, such as calling the unplug function after a timeout.
1569 * A block device may call blk_sync_queue to ensure that any
1570 * such activity is cancelled, thus allowing it to release resources
1571 * the the callbacks might use. The caller must already have made sure
1572 * that its ->make_request_fn will not re-add plugging prior to calling
1573 * this function.
1574 *
1575 */
1576void blk_sync_queue(struct request_queue *q)
1577{
1578 del_timer_sync(&q->unplug_timer);
1579 kblockd_flush();
1580}
1581EXPORT_SYMBOL(blk_sync_queue);
1582
1583/**
1584 * blk_run_queue - run a single device queue
1585 * @q: The queue to run
1586 */
1587void blk_run_queue(struct request_queue *q)
1588{
1589 unsigned long flags;
1590
1591 spin_lock_irqsave(q->queue_lock, flags);
1592 blk_remove_plug(q);
a2997382
KC
1593 if (!elv_queue_empty(q))
1594 q->request_fn(q);
1da177e4
LT
1595 spin_unlock_irqrestore(q->queue_lock, flags);
1596}
1597EXPORT_SYMBOL(blk_run_queue);
1598
1599/**
1600 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1601 * @q: the request queue to be released
1602 *
1603 * Description:
1604 * blk_cleanup_queue is the pair to blk_init_queue() or
1605 * blk_queue_make_request(). It should be called when a request queue is
1606 * being released; typically when a block device is being de-registered.
1607 * Currently, its primary task it to free all the &struct request
1608 * structures that were allocated to the queue and the queue itself.
1609 *
1610 * Caveat:
1611 * Hopefully the low level driver will have finished any
1612 * outstanding requests first...
1613 **/
1614void blk_cleanup_queue(request_queue_t * q)
1615{
1616 struct request_list *rl = &q->rq;
1617
1618 if (!atomic_dec_and_test(&q->refcnt))
1619 return;
1620
1621 if (q->elevator)
1622 elevator_exit(q->elevator);
1623
1624 blk_sync_queue(q);
1625
1626 if (rl->rq_pool)
1627 mempool_destroy(rl->rq_pool);
1628
1629 if (q->queue_tags)
1630 __blk_queue_free_tags(q);
1631
1632 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1633
1634 kmem_cache_free(requestq_cachep, q);
1635}
1636
1637EXPORT_SYMBOL(blk_cleanup_queue);
1638
1639static int blk_init_free_list(request_queue_t *q)
1640{
1641 struct request_list *rl = &q->rq;
1642
1643 rl->count[READ] = rl->count[WRITE] = 0;
1644 rl->starved[READ] = rl->starved[WRITE] = 0;
1645 init_waitqueue_head(&rl->wait[READ]);
1646 init_waitqueue_head(&rl->wait[WRITE]);
1647 init_waitqueue_head(&rl->drain);
1648
1649 rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1650
1651 if (!rl->rq_pool)
1652 return -ENOMEM;
1653
1654 return 0;
1655}
1656
1657static int __make_request(request_queue_t *, struct bio *);
1658
1659request_queue_t *blk_alloc_queue(int gfp_mask)
1660{
1661 request_queue_t *q = kmem_cache_alloc(requestq_cachep, gfp_mask);
1662
1663 if (!q)
1664 return NULL;
1665
1666 memset(q, 0, sizeof(*q));
1667 init_timer(&q->unplug_timer);
1668 atomic_set(&q->refcnt, 1);
1669
1670 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1671 q->backing_dev_info.unplug_io_data = q;
1672
1673 return q;
1674}
1675
1676EXPORT_SYMBOL(blk_alloc_queue);
1677
1678/**
1679 * blk_init_queue - prepare a request queue for use with a block device
1680 * @rfn: The function to be called to process requests that have been
1681 * placed on the queue.
1682 * @lock: Request queue spin lock
1683 *
1684 * Description:
1685 * If a block device wishes to use the standard request handling procedures,
1686 * which sorts requests and coalesces adjacent requests, then it must
1687 * call blk_init_queue(). The function @rfn will be called when there
1688 * are requests on the queue that need to be processed. If the device
1689 * supports plugging, then @rfn may not be called immediately when requests
1690 * are available on the queue, but may be called at some time later instead.
1691 * Plugged queues are generally unplugged when a buffer belonging to one
1692 * of the requests on the queue is needed, or due to memory pressure.
1693 *
1694 * @rfn is not required, or even expected, to remove all requests off the
1695 * queue, but only as many as it can handle at a time. If it does leave
1696 * requests on the queue, it is responsible for arranging that the requests
1697 * get dealt with eventually.
1698 *
1699 * The queue spin lock must be held while manipulating the requests on the
1700 * request queue.
1701 *
1702 * Function returns a pointer to the initialized request queue, or NULL if
1703 * it didn't succeed.
1704 *
1705 * Note:
1706 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1707 * when the block device is deactivated (such as at module unload).
1708 **/
1709request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1710{
1711 request_queue_t *q = blk_alloc_queue(GFP_KERNEL);
1712
1713 if (!q)
1714 return NULL;
1715
1716 if (blk_init_free_list(q))
1717 goto out_init;
1718
152587de
JA
1719 /*
1720 * if caller didn't supply a lock, they get per-queue locking with
1721 * our embedded lock
1722 */
1723 if (!lock) {
1724 spin_lock_init(&q->__queue_lock);
1725 lock = &q->__queue_lock;
1726 }
1727
1da177e4
LT
1728 q->request_fn = rfn;
1729 q->back_merge_fn = ll_back_merge_fn;
1730 q->front_merge_fn = ll_front_merge_fn;
1731 q->merge_requests_fn = ll_merge_requests_fn;
1732 q->prep_rq_fn = NULL;
1733 q->unplug_fn = generic_unplug_device;
1734 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1735 q->queue_lock = lock;
1736
1737 blk_queue_segment_boundary(q, 0xffffffff);
1738
1739 blk_queue_make_request(q, __make_request);
1740 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1741
1742 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1743 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1744
1745 /*
1746 * all done
1747 */
1748 if (!elevator_init(q, NULL)) {
1749 blk_queue_congestion_threshold(q);
1750 return q;
1751 }
1752
1753 blk_cleanup_queue(q);
1754out_init:
1755 kmem_cache_free(requestq_cachep, q);
1756 return NULL;
1757}
1758
1759EXPORT_SYMBOL(blk_init_queue);
1760
1761int blk_get_queue(request_queue_t *q)
1762{
1763 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1764 atomic_inc(&q->refcnt);
1765 return 0;
1766 }
1767
1768 return 1;
1769}
1770
1771EXPORT_SYMBOL(blk_get_queue);
1772
1773static inline void blk_free_request(request_queue_t *q, struct request *rq)
1774{
1775 elv_put_request(q, rq);
1776 mempool_free(rq, q->rq.rq_pool);
1777}
1778
1779static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1780 int gfp_mask)
1781{
1782 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1783
1784 if (!rq)
1785 return NULL;
1786
1787 /*
1788 * first three bits are identical in rq->flags and bio->bi_rw,
1789 * see bio.h and blkdev.h
1790 */
1791 rq->flags = rw;
1792
1793 if (!elv_set_request(q, rq, gfp_mask))
1794 return rq;
1795
1796 mempool_free(rq, q->rq.rq_pool);
1797 return NULL;
1798}
1799
1800/*
1801 * ioc_batching returns true if the ioc is a valid batching request and
1802 * should be given priority access to a request.
1803 */
1804static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1805{
1806 if (!ioc)
1807 return 0;
1808
1809 /*
1810 * Make sure the process is able to allocate at least 1 request
1811 * even if the batch times out, otherwise we could theoretically
1812 * lose wakeups.
1813 */
1814 return ioc->nr_batch_requests == q->nr_batching ||
1815 (ioc->nr_batch_requests > 0
1816 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1817}
1818
1819/*
1820 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1821 * will cause the process to be a "batcher" on all queues in the system. This
1822 * is the behaviour we want though - once it gets a wakeup it should be given
1823 * a nice run.
1824 */
1825void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1826{
1827 if (!ioc || ioc_batching(q, ioc))
1828 return;
1829
1830 ioc->nr_batch_requests = q->nr_batching;
1831 ioc->last_waited = jiffies;
1832}
1833
1834static void __freed_request(request_queue_t *q, int rw)
1835{
1836 struct request_list *rl = &q->rq;
1837
1838 if (rl->count[rw] < queue_congestion_off_threshold(q))
1839 clear_queue_congested(q, rw);
1840
1841 if (rl->count[rw] + 1 <= q->nr_requests) {
1842 smp_mb();
1843 if (waitqueue_active(&rl->wait[rw]))
1844 wake_up(&rl->wait[rw]);
1845
1846 blk_clear_queue_full(q, rw);
1847 }
1848}
1849
1850/*
1851 * A request has just been released. Account for it, update the full and
1852 * congestion status, wake up any waiters. Called under q->queue_lock.
1853 */
1854static void freed_request(request_queue_t *q, int rw)
1855{
1856 struct request_list *rl = &q->rq;
1857
1858 rl->count[rw]--;
1859
1860 __freed_request(q, rw);
1861
1862 if (unlikely(rl->starved[rw ^ 1]))
1863 __freed_request(q, rw ^ 1);
1864
1865 if (!rl->count[READ] && !rl->count[WRITE]) {
1866 smp_mb();
1867 if (unlikely(waitqueue_active(&rl->drain)))
1868 wake_up(&rl->drain);
1869 }
1870}
1871
1872#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1873/*
1874 * Get a free request, queue_lock must not be held
1875 */
1876static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1877{
1878 struct request *rq = NULL;
1879 struct request_list *rl = &q->rq;
1880 struct io_context *ioc = get_io_context(gfp_mask);
1881
1882 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1883 goto out;
1884
1885 spin_lock_irq(q->queue_lock);
1886 if (rl->count[rw]+1 >= q->nr_requests) {
1887 /*
1888 * The queue will fill after this allocation, so set it as
1889 * full, and mark this process as "batching". This process
1890 * will be allowed to complete a batch of requests, others
1891 * will be blocked.
1892 */
1893 if (!blk_queue_full(q, rw)) {
1894 ioc_set_batching(q, ioc);
1895 blk_set_queue_full(q, rw);
1896 }
1897 }
1898
1899 switch (elv_may_queue(q, rw)) {
1900 case ELV_MQUEUE_NO:
1901 goto rq_starved;
1902 case ELV_MQUEUE_MAY:
1903 break;
1904 case ELV_MQUEUE_MUST:
1905 goto get_rq;
1906 }
1907
1908 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1909 /*
1910 * The queue is full and the allocating process is not a
1911 * "batcher", and not exempted by the IO scheduler
1912 */
1913 spin_unlock_irq(q->queue_lock);
1914 goto out;
1915 }
1916
1917get_rq:
1918 rl->count[rw]++;
1919 rl->starved[rw] = 0;
1920 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1921 set_queue_congested(q, rw);
1922 spin_unlock_irq(q->queue_lock);
1923
1924 rq = blk_alloc_request(q, rw, gfp_mask);
1925 if (!rq) {
1926 /*
1927 * Allocation failed presumably due to memory. Undo anything
1928 * we might have messed up.
1929 *
1930 * Allocating task should really be put onto the front of the
1931 * wait queue, but this is pretty rare.
1932 */
1933 spin_lock_irq(q->queue_lock);
1934 freed_request(q, rw);
1935
1936 /*
1937 * in the very unlikely event that allocation failed and no
1938 * requests for this direction was pending, mark us starved
1939 * so that freeing of a request in the other direction will
1940 * notice us. another possible fix would be to split the
1941 * rq mempool into READ and WRITE
1942 */
1943rq_starved:
1944 if (unlikely(rl->count[rw] == 0))
1945 rl->starved[rw] = 1;
1946
1947 spin_unlock_irq(q->queue_lock);
1948 goto out;
1949 }
1950
1951 if (ioc_batching(q, ioc))
1952 ioc->nr_batch_requests--;
1953
1954 rq_init(q, rq);
1955 rq->rl = rl;
1956out:
1957 put_io_context(ioc);
1958 return rq;
1959}
1960
1961/*
1962 * No available requests for this queue, unplug the device and wait for some
1963 * requests to become available.
1964 */
1965static struct request *get_request_wait(request_queue_t *q, int rw)
1966{
1967 DEFINE_WAIT(wait);
1968 struct request *rq;
1969
1970 generic_unplug_device(q);
1971 do {
1972 struct request_list *rl = &q->rq;
1973
1974 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1975 TASK_UNINTERRUPTIBLE);
1976
1977 rq = get_request(q, rw, GFP_NOIO);
1978
1979 if (!rq) {
1980 struct io_context *ioc;
1981
1982 io_schedule();
1983
1984 /*
1985 * After sleeping, we become a "batching" process and
1986 * will be able to allocate at least one request, and
1987 * up to a big batch of them for a small period time.
1988 * See ioc_batching, ioc_set_batching
1989 */
1990 ioc = get_io_context(GFP_NOIO);
1991 ioc_set_batching(q, ioc);
1992 put_io_context(ioc);
1993 }
1994 finish_wait(&rl->wait[rw], &wait);
1995 } while (!rq);
1996
1997 return rq;
1998}
1999
2000struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2001{
2002 struct request *rq;
2003
2004 BUG_ON(rw != READ && rw != WRITE);
2005
2006 if (gfp_mask & __GFP_WAIT)
2007 rq = get_request_wait(q, rw);
2008 else
2009 rq = get_request(q, rw, gfp_mask);
2010
2011 return rq;
2012}
2013
2014EXPORT_SYMBOL(blk_get_request);
2015
2016/**
2017 * blk_requeue_request - put a request back on queue
2018 * @q: request queue where request should be inserted
2019 * @rq: request to be inserted
2020 *
2021 * Description:
2022 * Drivers often keep queueing requests until the hardware cannot accept
2023 * more, when that condition happens we need to put the request back
2024 * on the queue. Must be called with queue lock held.
2025 */
2026void blk_requeue_request(request_queue_t *q, struct request *rq)
2027{
2028 if (blk_rq_tagged(rq))
2029 blk_queue_end_tag(q, rq);
2030
2031 elv_requeue_request(q, rq);
2032}
2033
2034EXPORT_SYMBOL(blk_requeue_request);
2035
2036/**
2037 * blk_insert_request - insert a special request in to a request queue
2038 * @q: request queue where request should be inserted
2039 * @rq: request to be inserted
2040 * @at_head: insert request at head or tail of queue
2041 * @data: private data
1da177e4
LT
2042 *
2043 * Description:
2044 * Many block devices need to execute commands asynchronously, so they don't
2045 * block the whole kernel from preemption during request execution. This is
2046 * accomplished normally by inserting aritficial requests tagged as
2047 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2048 * scheduled for actual execution by the request queue.
2049 *
2050 * We have the option of inserting the head or the tail of the queue.
2051 * Typically we use the tail for new ioctls and so forth. We use the head
2052 * of the queue for things like a QUEUE_FULL message from a device, or a
2053 * host that is unable to accept a particular command.
2054 */
2055void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2056 int at_head, void *data)
1da177e4 2057{
867d1191 2058 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2059 unsigned long flags;
2060
2061 /*
2062 * tell I/O scheduler that this isn't a regular read/write (ie it
2063 * must not attempt merges on this) and that it acts as a soft
2064 * barrier
2065 */
2066 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2067
2068 rq->special = data;
2069
2070 spin_lock_irqsave(q->queue_lock, flags);
2071
2072 /*
2073 * If command is tagged, release the tag
2074 */
867d1191
TH
2075 if (blk_rq_tagged(rq))
2076 blk_queue_end_tag(q, rq);
1da177e4 2077
867d1191
TH
2078 drive_stat_acct(rq, rq->nr_sectors, 1);
2079 __elv_add_request(q, rq, where, 0);
1da177e4 2080
1da177e4
LT
2081 if (blk_queue_plugged(q))
2082 __generic_unplug_device(q);
2083 else
2084 q->request_fn(q);
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2086}
2087
2088EXPORT_SYMBOL(blk_insert_request);
2089
2090/**
2091 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2092 * @q: request queue where request should be inserted
2093 * @rw: READ or WRITE data
2094 * @ubuf: the user buffer
2095 * @len: length of user data
2096 *
2097 * Description:
2098 * Data will be mapped directly for zero copy io, if possible. Otherwise
2099 * a kernel bounce buffer is used.
2100 *
2101 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2102 * still in process context.
2103 *
2104 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2105 * before being submitted to the device, as pages mapped may be out of
2106 * reach. It's the callers responsibility to make sure this happens. The
2107 * original bio must be passed back in to blk_rq_unmap_user() for proper
2108 * unmapping.
2109 */
dd1cab95
JA
2110int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2111 unsigned int len)
1da177e4
LT
2112{
2113 unsigned long uaddr;
1da177e4 2114 struct bio *bio;
dd1cab95 2115 int reading;
1da177e4
LT
2116
2117 if (len > (q->max_sectors << 9))
dd1cab95
JA
2118 return -EINVAL;
2119 if (!len || !ubuf)
2120 return -EINVAL;
1da177e4 2121
dd1cab95 2122 reading = rq_data_dir(rq) == READ;
1da177e4
LT
2123
2124 /*
2125 * if alignment requirement is satisfied, map in user pages for
2126 * direct dma. else, set up kernel bounce buffers
2127 */
2128 uaddr = (unsigned long) ubuf;
2129 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
dd1cab95 2130 bio = bio_map_user(q, NULL, uaddr, len, reading);
1da177e4 2131 else
dd1cab95 2132 bio = bio_copy_user(q, uaddr, len, reading);
1da177e4
LT
2133
2134 if (!IS_ERR(bio)) {
2135 rq->bio = rq->biotail = bio;
2136 blk_rq_bio_prep(q, rq, bio);
2137
2138 rq->buffer = rq->data = NULL;
2139 rq->data_len = len;
dd1cab95 2140 return 0;
1da177e4
LT
2141 }
2142
2143 /*
2144 * bio is the err-ptr
2145 */
dd1cab95 2146 return PTR_ERR(bio);
1da177e4
LT
2147}
2148
2149EXPORT_SYMBOL(blk_rq_map_user);
2150
f1970baf
JB
2151/**
2152 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2153 * @q: request queue where request should be inserted
2154 * @rq: request to map data to
2155 * @iov: pointer to the iovec
2156 * @iov_count: number of elements in the iovec
2157 *
2158 * Description:
2159 * Data will be mapped directly for zero copy io, if possible. Otherwise
2160 * a kernel bounce buffer is used.
2161 *
2162 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2163 * still in process context.
2164 *
2165 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2166 * before being submitted to the device, as pages mapped may be out of
2167 * reach. It's the callers responsibility to make sure this happens. The
2168 * original bio must be passed back in to blk_rq_unmap_user() for proper
2169 * unmapping.
2170 */
2171int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2172 struct sg_iovec *iov, int iov_count)
2173{
2174 struct bio *bio;
2175
2176 if (!iov || iov_count <= 0)
2177 return -EINVAL;
2178
2179 /* we don't allow misaligned data like bio_map_user() does. If the
2180 * user is using sg, they're expected to know the alignment constraints
2181 * and respect them accordingly */
2182 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2183 if (IS_ERR(bio))
2184 return PTR_ERR(bio);
2185
2186 rq->bio = rq->biotail = bio;
2187 blk_rq_bio_prep(q, rq, bio);
2188 rq->buffer = rq->data = NULL;
2189 rq->data_len = bio->bi_size;
2190 return 0;
2191}
2192
2193EXPORT_SYMBOL(blk_rq_map_user_iov);
2194
1da177e4
LT
2195/**
2196 * blk_rq_unmap_user - unmap a request with user data
2197 * @rq: request to be unmapped
2198 * @bio: bio for the request
2199 * @ulen: length of user buffer
2200 *
2201 * Description:
2202 * Unmap a request previously mapped by blk_rq_map_user().
2203 */
dd1cab95 2204int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
1da177e4
LT
2205{
2206 int ret = 0;
2207
2208 if (bio) {
2209 if (bio_flagged(bio, BIO_USER_MAPPED))
2210 bio_unmap_user(bio);
2211 else
2212 ret = bio_uncopy_user(bio);
2213 }
2214
dd1cab95 2215 return 0;
1da177e4
LT
2216}
2217
2218EXPORT_SYMBOL(blk_rq_unmap_user);
2219
df46b9a4
MC
2220/**
2221 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2222 * @q: request queue where request should be inserted
2223 * @rw: READ or WRITE data
2224 * @kbuf: the kernel buffer
2225 * @len: length of user data
2226 */
dd1cab95
JA
2227int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2228 unsigned int len, unsigned int gfp_mask)
df46b9a4 2229{
df46b9a4
MC
2230 struct bio *bio;
2231
2232 if (len > (q->max_sectors << 9))
dd1cab95
JA
2233 return -EINVAL;
2234 if (!len || !kbuf)
2235 return -EINVAL;
df46b9a4
MC
2236
2237 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2238 if (IS_ERR(bio))
2239 return PTR_ERR(bio);
df46b9a4 2240
dd1cab95
JA
2241 if (rq_data_dir(rq) == WRITE)
2242 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2243
dd1cab95
JA
2244 rq->bio = rq->biotail = bio;
2245 blk_rq_bio_prep(q, rq, bio);
df46b9a4 2246
dd1cab95
JA
2247 rq->buffer = rq->data = NULL;
2248 rq->data_len = len;
2249 return 0;
df46b9a4
MC
2250}
2251
2252EXPORT_SYMBOL(blk_rq_map_kern);
2253
f1970baf
JB
2254void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2255 struct request *rq, int at_head,
2256 void (*done)(struct request *))
2257{
2258 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2259
2260 rq->rq_disk = bd_disk;
2261 rq->flags |= REQ_NOMERGE;
2262 rq->end_io = done;
2263 elv_add_request(q, rq, where, 1);
2264 generic_unplug_device(q);
2265}
2266
1da177e4
LT
2267/**
2268 * blk_execute_rq - insert a request into queue for execution
2269 * @q: queue to insert the request in
2270 * @bd_disk: matching gendisk
2271 * @rq: request to insert
994ca9a1 2272 * @at_head: insert request at head or tail of queue
1da177e4
LT
2273 *
2274 * Description:
2275 * Insert a fully prepared request at the back of the io scheduler queue
2276 * for execution.
2277 */
2278int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2279 struct request *rq, int at_head)
1da177e4
LT
2280{
2281 DECLARE_COMPLETION(wait);
2282 char sense[SCSI_SENSE_BUFFERSIZE];
2283 int err = 0;
2284
1da177e4
LT
2285 /*
2286 * we need an extra reference to the request, so we can look at
2287 * it after io completion
2288 */
2289 rq->ref_count++;
2290
2291 if (!rq->sense) {
2292 memset(sense, 0, sizeof(sense));
2293 rq->sense = sense;
2294 rq->sense_len = 0;
2295 }
2296
1da177e4 2297 rq->waiting = &wait;
994ca9a1 2298 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4
LT
2299 wait_for_completion(&wait);
2300 rq->waiting = NULL;
2301
2302 if (rq->errors)
2303 err = -EIO;
2304
2305 return err;
2306}
2307
2308EXPORT_SYMBOL(blk_execute_rq);
2309
2310/**
2311 * blkdev_issue_flush - queue a flush
2312 * @bdev: blockdev to issue flush for
2313 * @error_sector: error sector
2314 *
2315 * Description:
2316 * Issue a flush for the block device in question. Caller can supply
2317 * room for storing the error offset in case of a flush error, if they
2318 * wish to. Caller must run wait_for_completion() on its own.
2319 */
2320int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2321{
2322 request_queue_t *q;
2323
2324 if (bdev->bd_disk == NULL)
2325 return -ENXIO;
2326
2327 q = bdev_get_queue(bdev);
2328 if (!q)
2329 return -ENXIO;
2330 if (!q->issue_flush_fn)
2331 return -EOPNOTSUPP;
2332
2333 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2334}
2335
2336EXPORT_SYMBOL(blkdev_issue_flush);
2337
2338/**
2339 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2340 * @q: device queue
2341 * @disk: gendisk
2342 * @error_sector: error offset
2343 *
2344 * Description:
2345 * Devices understanding the SCSI command set, can use this function as
2346 * a helper for issuing a cache flush. Note: driver is required to store
2347 * the error offset (in case of error flushing) in ->sector of struct
2348 * request.
2349 */
2350int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2351 sector_t *error_sector)
2352{
2353 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2354 int ret;
2355
2356 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2357 rq->sector = 0;
2358 memset(rq->cmd, 0, sizeof(rq->cmd));
2359 rq->cmd[0] = 0x35;
2360 rq->cmd_len = 12;
2361 rq->data = NULL;
2362 rq->data_len = 0;
2363 rq->timeout = 60 * HZ;
2364
994ca9a1 2365 ret = blk_execute_rq(q, disk, rq, 0);
1da177e4
LT
2366
2367 if (ret && error_sector)
2368 *error_sector = rq->sector;
2369
2370 blk_put_request(rq);
2371 return ret;
2372}
2373
2374EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2375
2376void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2377{
2378 int rw = rq_data_dir(rq);
2379
2380 if (!blk_fs_request(rq) || !rq->rq_disk)
2381 return;
2382
2383 if (rw == READ) {
2384 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2385 if (!new_io)
2386 __disk_stat_inc(rq->rq_disk, read_merges);
2387 } else if (rw == WRITE) {
2388 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2389 if (!new_io)
2390 __disk_stat_inc(rq->rq_disk, write_merges);
2391 }
2392 if (new_io) {
2393 disk_round_stats(rq->rq_disk);
2394 rq->rq_disk->in_flight++;
2395 }
2396}
2397
2398/*
2399 * add-request adds a request to the linked list.
2400 * queue lock is held and interrupts disabled, as we muck with the
2401 * request queue list.
2402 */
2403static inline void add_request(request_queue_t * q, struct request * req)
2404{
2405 drive_stat_acct(req, req->nr_sectors, 1);
2406
2407 if (q->activity_fn)
2408 q->activity_fn(q->activity_data, rq_data_dir(req));
2409
2410 /*
2411 * elevator indicated where it wants this request to be
2412 * inserted at elevator_merge time
2413 */
2414 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2415}
2416
2417/*
2418 * disk_round_stats() - Round off the performance stats on a struct
2419 * disk_stats.
2420 *
2421 * The average IO queue length and utilisation statistics are maintained
2422 * by observing the current state of the queue length and the amount of
2423 * time it has been in this state for.
2424 *
2425 * Normally, that accounting is done on IO completion, but that can result
2426 * in more than a second's worth of IO being accounted for within any one
2427 * second, leading to >100% utilisation. To deal with that, we call this
2428 * function to do a round-off before returning the results when reading
2429 * /proc/diskstats. This accounts immediately for all queue usage up to
2430 * the current jiffies and restarts the counters again.
2431 */
2432void disk_round_stats(struct gendisk *disk)
2433{
2434 unsigned long now = jiffies;
2435
2436 __disk_stat_add(disk, time_in_queue,
2437 disk->in_flight * (now - disk->stamp));
2438 disk->stamp = now;
2439
2440 if (disk->in_flight)
2441 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2442 disk->stamp_idle = now;
2443}
2444
2445/*
2446 * queue lock must be held
2447 */
2448static void __blk_put_request(request_queue_t *q, struct request *req)
2449{
2450 struct request_list *rl = req->rl;
2451
2452 if (unlikely(!q))
2453 return;
2454 if (unlikely(--req->ref_count))
2455 return;
2456
2457 req->rq_status = RQ_INACTIVE;
2458 req->q = NULL;
2459 req->rl = NULL;
2460
2461 /*
2462 * Request may not have originated from ll_rw_blk. if not,
2463 * it didn't come out of our reserved rq pools
2464 */
2465 if (rl) {
2466 int rw = rq_data_dir(req);
2467
2468 elv_completed_request(q, req);
2469
2470 BUG_ON(!list_empty(&req->queuelist));
2471
2472 blk_free_request(q, req);
2473 freed_request(q, rw);
2474 }
2475}
2476
2477void blk_put_request(struct request *req)
2478{
2479 /*
2480 * if req->rl isn't set, this request didnt originate from the
2481 * block layer, so it's safe to just disregard it
2482 */
2483 if (req->rl) {
2484 unsigned long flags;
2485 request_queue_t *q = req->q;
2486
2487 spin_lock_irqsave(q->queue_lock, flags);
2488 __blk_put_request(q, req);
2489 spin_unlock_irqrestore(q->queue_lock, flags);
2490 }
2491}
2492
2493EXPORT_SYMBOL(blk_put_request);
2494
2495/**
2496 * blk_end_sync_rq - executes a completion event on a request
2497 * @rq: request to complete
2498 */
2499void blk_end_sync_rq(struct request *rq)
2500{
2501 struct completion *waiting = rq->waiting;
2502
2503 rq->waiting = NULL;
2504 __blk_put_request(rq->q, rq);
2505
2506 /*
2507 * complete last, if this is a stack request the process (and thus
2508 * the rq pointer) could be invalid right after this complete()
2509 */
2510 complete(waiting);
2511}
2512EXPORT_SYMBOL(blk_end_sync_rq);
2513
2514/**
2515 * blk_congestion_wait - wait for a queue to become uncongested
2516 * @rw: READ or WRITE
2517 * @timeout: timeout in jiffies
2518 *
2519 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2520 * If no queues are congested then just wait for the next request to be
2521 * returned.
2522 */
2523long blk_congestion_wait(int rw, long timeout)
2524{
2525 long ret;
2526 DEFINE_WAIT(wait);
2527 wait_queue_head_t *wqh = &congestion_wqh[rw];
2528
2529 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2530 ret = io_schedule_timeout(timeout);
2531 finish_wait(wqh, &wait);
2532 return ret;
2533}
2534
2535EXPORT_SYMBOL(blk_congestion_wait);
2536
2537/*
2538 * Has to be called with the request spinlock acquired
2539 */
2540static int attempt_merge(request_queue_t *q, struct request *req,
2541 struct request *next)
2542{
2543 if (!rq_mergeable(req) || !rq_mergeable(next))
2544 return 0;
2545
2546 /*
2547 * not contigious
2548 */
2549 if (req->sector + req->nr_sectors != next->sector)
2550 return 0;
2551
2552 if (rq_data_dir(req) != rq_data_dir(next)
2553 || req->rq_disk != next->rq_disk
2554 || next->waiting || next->special)
2555 return 0;
2556
2557 /*
2558 * If we are allowed to merge, then append bio list
2559 * from next to rq and release next. merge_requests_fn
2560 * will have updated segment counts, update sector
2561 * counts here.
2562 */
2563 if (!q->merge_requests_fn(q, req, next))
2564 return 0;
2565
2566 /*
2567 * At this point we have either done a back merge
2568 * or front merge. We need the smaller start_time of
2569 * the merged requests to be the current request
2570 * for accounting purposes.
2571 */
2572 if (time_after(req->start_time, next->start_time))
2573 req->start_time = next->start_time;
2574
2575 req->biotail->bi_next = next->bio;
2576 req->biotail = next->biotail;
2577
2578 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2579
2580 elv_merge_requests(q, req, next);
2581
2582 if (req->rq_disk) {
2583 disk_round_stats(req->rq_disk);
2584 req->rq_disk->in_flight--;
2585 }
2586
2587 __blk_put_request(q, next);
2588 return 1;
2589}
2590
2591static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2592{
2593 struct request *next = elv_latter_request(q, rq);
2594
2595 if (next)
2596 return attempt_merge(q, rq, next);
2597
2598 return 0;
2599}
2600
2601static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2602{
2603 struct request *prev = elv_former_request(q, rq);
2604
2605 if (prev)
2606 return attempt_merge(q, prev, rq);
2607
2608 return 0;
2609}
2610
2611/**
2612 * blk_attempt_remerge - attempt to remerge active head with next request
2613 * @q: The &request_queue_t belonging to the device
2614 * @rq: The head request (usually)
2615 *
2616 * Description:
2617 * For head-active devices, the queue can easily be unplugged so quickly
2618 * that proper merging is not done on the front request. This may hurt
2619 * performance greatly for some devices. The block layer cannot safely
2620 * do merging on that first request for these queues, but the driver can
2621 * call this function and make it happen any way. Only the driver knows
2622 * when it is safe to do so.
2623 **/
2624void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2625{
2626 unsigned long flags;
2627
2628 spin_lock_irqsave(q->queue_lock, flags);
2629 attempt_back_merge(q, rq);
2630 spin_unlock_irqrestore(q->queue_lock, flags);
2631}
2632
2633EXPORT_SYMBOL(blk_attempt_remerge);
2634
2635/*
2636 * Non-locking blk_attempt_remerge variant.
2637 */
2638void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2639{
2640 attempt_back_merge(q, rq);
2641}
2642
2643EXPORT_SYMBOL(__blk_attempt_remerge);
2644
2645static int __make_request(request_queue_t *q, struct bio *bio)
2646{
2647 struct request *req, *freereq = NULL;
4a534f93 2648 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
1da177e4
LT
2649 sector_t sector;
2650
2651 sector = bio->bi_sector;
2652 nr_sectors = bio_sectors(bio);
2653 cur_nr_sectors = bio_cur_sectors(bio);
2654
2655 rw = bio_data_dir(bio);
4a534f93 2656 sync = bio_sync(bio);
1da177e4
LT
2657
2658 /*
2659 * low level driver can indicate that it wants pages above a
2660 * certain limit bounced to low memory (ie for highmem, or even
2661 * ISA dma in theory)
2662 */
2663 blk_queue_bounce(q, &bio);
2664
2665 spin_lock_prefetch(q->queue_lock);
2666
2667 barrier = bio_barrier(bio);
2668 if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2669 err = -EOPNOTSUPP;
2670 goto end_io;
2671 }
2672
2673again:
2674 spin_lock_irq(q->queue_lock);
2675
2676 if (elv_queue_empty(q)) {
2677 blk_plug_device(q);
2678 goto get_rq;
2679 }
2680 if (barrier)
2681 goto get_rq;
2682
2683 el_ret = elv_merge(q, &req, bio);
2684 switch (el_ret) {
2685 case ELEVATOR_BACK_MERGE:
2686 BUG_ON(!rq_mergeable(req));
2687
2688 if (!q->back_merge_fn(q, req, bio))
2689 break;
2690
2691 req->biotail->bi_next = bio;
2692 req->biotail = bio;
2693 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2694 drive_stat_acct(req, nr_sectors, 0);
2695 if (!attempt_back_merge(q, req))
2696 elv_merged_request(q, req);
2697 goto out;
2698
2699 case ELEVATOR_FRONT_MERGE:
2700 BUG_ON(!rq_mergeable(req));
2701
2702 if (!q->front_merge_fn(q, req, bio))
2703 break;
2704
2705 bio->bi_next = req->bio;
2706 req->bio = bio;
2707
2708 /*
2709 * may not be valid. if the low level driver said
2710 * it didn't need a bounce buffer then it better
2711 * not touch req->buffer either...
2712 */
2713 req->buffer = bio_data(bio);
2714 req->current_nr_sectors = cur_nr_sectors;
2715 req->hard_cur_sectors = cur_nr_sectors;
2716 req->sector = req->hard_sector = sector;
2717 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2718 drive_stat_acct(req, nr_sectors, 0);
2719 if (!attempt_front_merge(q, req))
2720 elv_merged_request(q, req);
2721 goto out;
2722
2723 /*
2724 * elevator says don't/can't merge. get new request
2725 */
2726 case ELEVATOR_NO_MERGE:
2727 break;
2728
2729 default:
2730 printk("elevator returned crap (%d)\n", el_ret);
2731 BUG();
2732 }
2733
2734 /*
2735 * Grab a free request from the freelist - if that is empty, check
2736 * if we are doing read ahead and abort instead of blocking for
2737 * a free slot.
2738 */
2739get_rq:
2740 if (freereq) {
2741 req = freereq;
2742 freereq = NULL;
2743 } else {
2744 spin_unlock_irq(q->queue_lock);
2745 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2746 /*
2747 * READA bit set
2748 */
2749 err = -EWOULDBLOCK;
2750 if (bio_rw_ahead(bio))
2751 goto end_io;
2752
2753 freereq = get_request_wait(q, rw);
2754 }
2755 goto again;
2756 }
2757
2758 req->flags |= REQ_CMD;
2759
2760 /*
2761 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2762 */
2763 if (bio_rw_ahead(bio) || bio_failfast(bio))
2764 req->flags |= REQ_FAILFAST;
2765
2766 /*
2767 * REQ_BARRIER implies no merging, but lets make it explicit
2768 */
2769 if (barrier)
2770 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2771
2772 req->errors = 0;
2773 req->hard_sector = req->sector = sector;
2774 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2775 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2776 req->nr_phys_segments = bio_phys_segments(q, bio);
2777 req->nr_hw_segments = bio_hw_segments(q, bio);
2778 req->buffer = bio_data(bio); /* see ->buffer comment above */
2779 req->waiting = NULL;
2780 req->bio = req->biotail = bio;
2781 req->rq_disk = bio->bi_bdev->bd_disk;
2782 req->start_time = jiffies;
2783
2784 add_request(q, req);
2785out:
2786 if (freereq)
2787 __blk_put_request(q, freereq);
4a534f93 2788 if (sync)
1da177e4
LT
2789 __generic_unplug_device(q);
2790
2791 spin_unlock_irq(q->queue_lock);
2792 return 0;
2793
2794end_io:
2795 bio_endio(bio, nr_sectors << 9, err);
2796 return 0;
2797}
2798
2799/*
2800 * If bio->bi_dev is a partition, remap the location
2801 */
2802static inline void blk_partition_remap(struct bio *bio)
2803{
2804 struct block_device *bdev = bio->bi_bdev;
2805
2806 if (bdev != bdev->bd_contains) {
2807 struct hd_struct *p = bdev->bd_part;
2808
2809 switch (bio->bi_rw) {
2810 case READ:
2811 p->read_sectors += bio_sectors(bio);
2812 p->reads++;
2813 break;
2814 case WRITE:
2815 p->write_sectors += bio_sectors(bio);
2816 p->writes++;
2817 break;
2818 }
2819 bio->bi_sector += p->start_sect;
2820 bio->bi_bdev = bdev->bd_contains;
2821 }
2822}
2823
2824void blk_finish_queue_drain(request_queue_t *q)
2825{
2826 struct request_list *rl = &q->rq;
2827 struct request *rq;
2828
2829 spin_lock_irq(q->queue_lock);
2830 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2831
2832 while (!list_empty(&q->drain_list)) {
2833 rq = list_entry_rq(q->drain_list.next);
2834
2835 list_del_init(&rq->queuelist);
2836 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2837 }
2838
2839 spin_unlock_irq(q->queue_lock);
2840
2841 wake_up(&rl->wait[0]);
2842 wake_up(&rl->wait[1]);
2843 wake_up(&rl->drain);
2844}
2845
2846static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2847{
2848 int wait = rl->count[READ] + rl->count[WRITE];
2849
2850 if (dispatch)
2851 wait += !list_empty(&q->queue_head);
2852
2853 return wait;
2854}
2855
2856/*
2857 * We rely on the fact that only requests allocated through blk_alloc_request()
2858 * have io scheduler private data structures associated with them. Any other
2859 * type of request (allocated on stack or through kmalloc()) should not go
2860 * to the io scheduler core, but be attached to the queue head instead.
2861 */
2862void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2863{
2864 struct request_list *rl = &q->rq;
2865 DEFINE_WAIT(wait);
2866
2867 spin_lock_irq(q->queue_lock);
2868 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2869
2870 while (wait_drain(q, rl, wait_dispatch)) {
2871 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2872
2873 if (wait_drain(q, rl, wait_dispatch)) {
2874 __generic_unplug_device(q);
2875 spin_unlock_irq(q->queue_lock);
2876 io_schedule();
2877 spin_lock_irq(q->queue_lock);
2878 }
2879
2880 finish_wait(&rl->drain, &wait);
2881 }
2882
2883 spin_unlock_irq(q->queue_lock);
2884}
2885
2886/*
2887 * block waiting for the io scheduler being started again.
2888 */
2889static inline void block_wait_queue_running(request_queue_t *q)
2890{
2891 DEFINE_WAIT(wait);
2892
2893 while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2894 struct request_list *rl = &q->rq;
2895
2896 prepare_to_wait_exclusive(&rl->drain, &wait,
2897 TASK_UNINTERRUPTIBLE);
2898
2899 /*
2900 * re-check the condition. avoids using prepare_to_wait()
2901 * in the fast path (queue is running)
2902 */
2903 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2904 io_schedule();
2905
2906 finish_wait(&rl->drain, &wait);
2907 }
2908}
2909
2910static void handle_bad_sector(struct bio *bio)
2911{
2912 char b[BDEVNAME_SIZE];
2913
2914 printk(KERN_INFO "attempt to access beyond end of device\n");
2915 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2916 bdevname(bio->bi_bdev, b),
2917 bio->bi_rw,
2918 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2919 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2920
2921 set_bit(BIO_EOF, &bio->bi_flags);
2922}
2923
2924/**
2925 * generic_make_request: hand a buffer to its device driver for I/O
2926 * @bio: The bio describing the location in memory and on the device.
2927 *
2928 * generic_make_request() is used to make I/O requests of block
2929 * devices. It is passed a &struct bio, which describes the I/O that needs
2930 * to be done.
2931 *
2932 * generic_make_request() does not return any status. The
2933 * success/failure status of the request, along with notification of
2934 * completion, is delivered asynchronously through the bio->bi_end_io
2935 * function described (one day) else where.
2936 *
2937 * The caller of generic_make_request must make sure that bi_io_vec
2938 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2939 * set to describe the device address, and the
2940 * bi_end_io and optionally bi_private are set to describe how
2941 * completion notification should be signaled.
2942 *
2943 * generic_make_request and the drivers it calls may use bi_next if this
2944 * bio happens to be merged with someone else, and may change bi_dev and
2945 * bi_sector for remaps as it sees fit. So the values of these fields
2946 * should NOT be depended on after the call to generic_make_request.
2947 */
2948void generic_make_request(struct bio *bio)
2949{
2950 request_queue_t *q;
2951 sector_t maxsector;
2952 int ret, nr_sectors = bio_sectors(bio);
2953
2954 might_sleep();
2955 /* Test device or partition size, when known. */
2956 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2957 if (maxsector) {
2958 sector_t sector = bio->bi_sector;
2959
2960 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2961 /*
2962 * This may well happen - the kernel calls bread()
2963 * without checking the size of the device, e.g., when
2964 * mounting a device.
2965 */
2966 handle_bad_sector(bio);
2967 goto end_io;
2968 }
2969 }
2970
2971 /*
2972 * Resolve the mapping until finished. (drivers are
2973 * still free to implement/resolve their own stacking
2974 * by explicitly returning 0)
2975 *
2976 * NOTE: we don't repeat the blk_size check for each new device.
2977 * Stacking drivers are expected to know what they are doing.
2978 */
2979 do {
2980 char b[BDEVNAME_SIZE];
2981
2982 q = bdev_get_queue(bio->bi_bdev);
2983 if (!q) {
2984 printk(KERN_ERR
2985 "generic_make_request: Trying to access "
2986 "nonexistent block-device %s (%Lu)\n",
2987 bdevname(bio->bi_bdev, b),
2988 (long long) bio->bi_sector);
2989end_io:
2990 bio_endio(bio, bio->bi_size, -EIO);
2991 break;
2992 }
2993
2994 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2995 printk("bio too big device %s (%u > %u)\n",
2996 bdevname(bio->bi_bdev, b),
2997 bio_sectors(bio),
2998 q->max_hw_sectors);
2999 goto end_io;
3000 }
3001
3002 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
3003 goto end_io;
3004
3005 block_wait_queue_running(q);
3006
3007 /*
3008 * If this device has partitions, remap block n
3009 * of partition p to block n+start(p) of the disk.
3010 */
3011 blk_partition_remap(bio);
3012
3013 ret = q->make_request_fn(q, bio);
3014 } while (ret);
3015}
3016
3017EXPORT_SYMBOL(generic_make_request);
3018
3019/**
3020 * submit_bio: submit a bio to the block device layer for I/O
3021 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3022 * @bio: The &struct bio which describes the I/O
3023 *
3024 * submit_bio() is very similar in purpose to generic_make_request(), and
3025 * uses that function to do most of the work. Both are fairly rough
3026 * interfaces, @bio must be presetup and ready for I/O.
3027 *
3028 */
3029void submit_bio(int rw, struct bio *bio)
3030{
3031 int count = bio_sectors(bio);
3032
3033 BIO_BUG_ON(!bio->bi_size);
3034 BIO_BUG_ON(!bio->bi_io_vec);
3035 bio->bi_rw = rw;
3036 if (rw & WRITE)
3037 mod_page_state(pgpgout, count);
3038 else
3039 mod_page_state(pgpgin, count);
3040
3041 if (unlikely(block_dump)) {
3042 char b[BDEVNAME_SIZE];
3043 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3044 current->comm, current->pid,
3045 (rw & WRITE) ? "WRITE" : "READ",
3046 (unsigned long long)bio->bi_sector,
3047 bdevname(bio->bi_bdev,b));
3048 }
3049
3050 generic_make_request(bio);
3051}
3052
3053EXPORT_SYMBOL(submit_bio);
3054
3055void blk_recalc_rq_segments(struct request *rq)
3056{
3057 struct bio *bio, *prevbio = NULL;
3058 int nr_phys_segs, nr_hw_segs;
3059 unsigned int phys_size, hw_size;
3060 request_queue_t *q = rq->q;
3061
3062 if (!rq->bio)
3063 return;
3064
3065 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3066 rq_for_each_bio(bio, rq) {
3067 /* Force bio hw/phys segs to be recalculated. */
3068 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3069
3070 nr_phys_segs += bio_phys_segments(q, bio);
3071 nr_hw_segs += bio_hw_segments(q, bio);
3072 if (prevbio) {
3073 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3074 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3075
3076 if (blk_phys_contig_segment(q, prevbio, bio) &&
3077 pseg <= q->max_segment_size) {
3078 nr_phys_segs--;
3079 phys_size += prevbio->bi_size + bio->bi_size;
3080 } else
3081 phys_size = 0;
3082
3083 if (blk_hw_contig_segment(q, prevbio, bio) &&
3084 hseg <= q->max_segment_size) {
3085 nr_hw_segs--;
3086 hw_size += prevbio->bi_size + bio->bi_size;
3087 } else
3088 hw_size = 0;
3089 }
3090 prevbio = bio;
3091 }
3092
3093 rq->nr_phys_segments = nr_phys_segs;
3094 rq->nr_hw_segments = nr_hw_segs;
3095}
3096
3097void blk_recalc_rq_sectors(struct request *rq, int nsect)
3098{
3099 if (blk_fs_request(rq)) {
3100 rq->hard_sector += nsect;
3101 rq->hard_nr_sectors -= nsect;
3102
3103 /*
3104 * Move the I/O submission pointers ahead if required.
3105 */
3106 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3107 (rq->sector <= rq->hard_sector)) {
3108 rq->sector = rq->hard_sector;
3109 rq->nr_sectors = rq->hard_nr_sectors;
3110 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3111 rq->current_nr_sectors = rq->hard_cur_sectors;
3112 rq->buffer = bio_data(rq->bio);
3113 }
3114
3115 /*
3116 * if total number of sectors is less than the first segment
3117 * size, something has gone terribly wrong
3118 */
3119 if (rq->nr_sectors < rq->current_nr_sectors) {
3120 printk("blk: request botched\n");
3121 rq->nr_sectors = rq->current_nr_sectors;
3122 }
3123 }
3124}
3125
3126static int __end_that_request_first(struct request *req, int uptodate,
3127 int nr_bytes)
3128{
3129 int total_bytes, bio_nbytes, error, next_idx = 0;
3130 struct bio *bio;
3131
3132 /*
3133 * extend uptodate bool to allow < 0 value to be direct io error
3134 */
3135 error = 0;
3136 if (end_io_error(uptodate))
3137 error = !uptodate ? -EIO : uptodate;
3138
3139 /*
3140 * for a REQ_BLOCK_PC request, we want to carry any eventual
3141 * sense key with us all the way through
3142 */
3143 if (!blk_pc_request(req))
3144 req->errors = 0;
3145
3146 if (!uptodate) {
3147 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3148 printk("end_request: I/O error, dev %s, sector %llu\n",
3149 req->rq_disk ? req->rq_disk->disk_name : "?",
3150 (unsigned long long)req->sector);
3151 }
3152
3153 total_bytes = bio_nbytes = 0;
3154 while ((bio = req->bio) != NULL) {
3155 int nbytes;
3156
3157 if (nr_bytes >= bio->bi_size) {
3158 req->bio = bio->bi_next;
3159 nbytes = bio->bi_size;
3160 bio_endio(bio, nbytes, error);
3161 next_idx = 0;
3162 bio_nbytes = 0;
3163 } else {
3164 int idx = bio->bi_idx + next_idx;
3165
3166 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3167 blk_dump_rq_flags(req, "__end_that");
3168 printk("%s: bio idx %d >= vcnt %d\n",
3169 __FUNCTION__,
3170 bio->bi_idx, bio->bi_vcnt);
3171 break;
3172 }
3173
3174 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3175 BIO_BUG_ON(nbytes > bio->bi_size);
3176
3177 /*
3178 * not a complete bvec done
3179 */
3180 if (unlikely(nbytes > nr_bytes)) {
3181 bio_nbytes += nr_bytes;
3182 total_bytes += nr_bytes;
3183 break;
3184 }
3185
3186 /*
3187 * advance to the next vector
3188 */
3189 next_idx++;
3190 bio_nbytes += nbytes;
3191 }
3192
3193 total_bytes += nbytes;
3194 nr_bytes -= nbytes;
3195
3196 if ((bio = req->bio)) {
3197 /*
3198 * end more in this run, or just return 'not-done'
3199 */
3200 if (unlikely(nr_bytes <= 0))
3201 break;
3202 }
3203 }
3204
3205 /*
3206 * completely done
3207 */
3208 if (!req->bio)
3209 return 0;
3210
3211 /*
3212 * if the request wasn't completed, update state
3213 */
3214 if (bio_nbytes) {
3215 bio_endio(bio, bio_nbytes, error);
3216 bio->bi_idx += next_idx;
3217 bio_iovec(bio)->bv_offset += nr_bytes;
3218 bio_iovec(bio)->bv_len -= nr_bytes;
3219 }
3220
3221 blk_recalc_rq_sectors(req, total_bytes >> 9);
3222 blk_recalc_rq_segments(req);
3223 return 1;
3224}
3225
3226/**
3227 * end_that_request_first - end I/O on a request
3228 * @req: the request being processed
3229 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3230 * @nr_sectors: number of sectors to end I/O on
3231 *
3232 * Description:
3233 * Ends I/O on a number of sectors attached to @req, and sets it up
3234 * for the next range of segments (if any) in the cluster.
3235 *
3236 * Return:
3237 * 0 - we are done with this request, call end_that_request_last()
3238 * 1 - still buffers pending for this request
3239 **/
3240int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3241{
3242 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3243}
3244
3245EXPORT_SYMBOL(end_that_request_first);
3246
3247/**
3248 * end_that_request_chunk - end I/O on a request
3249 * @req: the request being processed
3250 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3251 * @nr_bytes: number of bytes to complete
3252 *
3253 * Description:
3254 * Ends I/O on a number of bytes attached to @req, and sets it up
3255 * for the next range of segments (if any). Like end_that_request_first(),
3256 * but deals with bytes instead of sectors.
3257 *
3258 * Return:
3259 * 0 - we are done with this request, call end_that_request_last()
3260 * 1 - still buffers pending for this request
3261 **/
3262int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3263{
3264 return __end_that_request_first(req, uptodate, nr_bytes);
3265}
3266
3267EXPORT_SYMBOL(end_that_request_chunk);
3268
3269/*
3270 * queue lock must be held
3271 */
3272void end_that_request_last(struct request *req)
3273{
3274 struct gendisk *disk = req->rq_disk;
3275
3276 if (unlikely(laptop_mode) && blk_fs_request(req))
3277 laptop_io_completion();
3278
3279 if (disk && blk_fs_request(req)) {
3280 unsigned long duration = jiffies - req->start_time;
3281 switch (rq_data_dir(req)) {
3282 case WRITE:
3283 __disk_stat_inc(disk, writes);
3284 __disk_stat_add(disk, write_ticks, duration);
3285 break;
3286 case READ:
3287 __disk_stat_inc(disk, reads);
3288 __disk_stat_add(disk, read_ticks, duration);
3289 break;
3290 }
3291 disk_round_stats(disk);
3292 disk->in_flight--;
3293 }
3294 if (req->end_io)
3295 req->end_io(req);
3296 else
3297 __blk_put_request(req->q, req);
3298}
3299
3300EXPORT_SYMBOL(end_that_request_last);
3301
3302void end_request(struct request *req, int uptodate)
3303{
3304 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3305 add_disk_randomness(req->rq_disk);
3306 blkdev_dequeue_request(req);
3307 end_that_request_last(req);
3308 }
3309}
3310
3311EXPORT_SYMBOL(end_request);
3312
3313void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3314{
3315 /* first three bits are identical in rq->flags and bio->bi_rw */
3316 rq->flags |= (bio->bi_rw & 7);
3317
3318 rq->nr_phys_segments = bio_phys_segments(q, bio);
3319 rq->nr_hw_segments = bio_hw_segments(q, bio);
3320 rq->current_nr_sectors = bio_cur_sectors(bio);
3321 rq->hard_cur_sectors = rq->current_nr_sectors;
3322 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3323 rq->buffer = bio_data(bio);
3324
3325 rq->bio = rq->biotail = bio;
3326}
3327
3328EXPORT_SYMBOL(blk_rq_bio_prep);
3329
3330int kblockd_schedule_work(struct work_struct *work)
3331{
3332 return queue_work(kblockd_workqueue, work);
3333}
3334
3335EXPORT_SYMBOL(kblockd_schedule_work);
3336
3337void kblockd_flush(void)
3338{
3339 flush_workqueue(kblockd_workqueue);
3340}
3341EXPORT_SYMBOL(kblockd_flush);
3342
3343int __init blk_dev_init(void)
3344{
3345 kblockd_workqueue = create_workqueue("kblockd");
3346 if (!kblockd_workqueue)
3347 panic("Failed to create kblockd\n");
3348
3349 request_cachep = kmem_cache_create("blkdev_requests",
3350 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3351
3352 requestq_cachep = kmem_cache_create("blkdev_queue",
3353 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3354
3355 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3356 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3357
3358 blk_max_low_pfn = max_low_pfn;
3359 blk_max_pfn = max_pfn;
3360
3361 return 0;
3362}
3363
3364/*
3365 * IO Context helper functions
3366 */
3367void put_io_context(struct io_context *ioc)
3368{
3369 if (ioc == NULL)
3370 return;
3371
3372 BUG_ON(atomic_read(&ioc->refcount) == 0);
3373
3374 if (atomic_dec_and_test(&ioc->refcount)) {
3375 if (ioc->aic && ioc->aic->dtor)
3376 ioc->aic->dtor(ioc->aic);
3377 if (ioc->cic && ioc->cic->dtor)
3378 ioc->cic->dtor(ioc->cic);
3379
3380 kmem_cache_free(iocontext_cachep, ioc);
3381 }
3382}
3383EXPORT_SYMBOL(put_io_context);
3384
3385/* Called by the exitting task */
3386void exit_io_context(void)
3387{
3388 unsigned long flags;
3389 struct io_context *ioc;
3390
3391 local_irq_save(flags);
3392 ioc = current->io_context;
3393 current->io_context = NULL;
3394 local_irq_restore(flags);
3395
3396 if (ioc->aic && ioc->aic->exit)
3397 ioc->aic->exit(ioc->aic);
3398 if (ioc->cic && ioc->cic->exit)
3399 ioc->cic->exit(ioc->cic);
3400
3401 put_io_context(ioc);
3402}
3403
3404/*
3405 * If the current task has no IO context then create one and initialise it.
3406 * If it does have a context, take a ref on it.
3407 *
3408 * This is always called in the context of the task which submitted the I/O.
3409 * But weird things happen, so we disable local interrupts to ensure exclusive
3410 * access to *current.
3411 */
3412struct io_context *get_io_context(int gfp_flags)
3413{
3414 struct task_struct *tsk = current;
3415 unsigned long flags;
3416 struct io_context *ret;
3417
3418 local_irq_save(flags);
3419 ret = tsk->io_context;
3420 if (ret)
3421 goto out;
3422
3423 local_irq_restore(flags);
3424
3425 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3426 if (ret) {
3427 atomic_set(&ret->refcount, 1);
3428 ret->pid = tsk->pid;
3429 ret->last_waited = jiffies; /* doesn't matter... */
3430 ret->nr_batch_requests = 0; /* because this is 0 */
3431 ret->aic = NULL;
3432 ret->cic = NULL;
3433 spin_lock_init(&ret->lock);
3434
3435 local_irq_save(flags);
3436
3437 /*
3438 * very unlikely, someone raced with us in setting up the task
3439 * io context. free new context and just grab a reference.
3440 */
3441 if (!tsk->io_context)
3442 tsk->io_context = ret;
3443 else {
3444 kmem_cache_free(iocontext_cachep, ret);
3445 ret = tsk->io_context;
3446 }
3447
3448out:
3449 atomic_inc(&ret->refcount);
3450 local_irq_restore(flags);
3451 }
3452
3453 return ret;
3454}
3455EXPORT_SYMBOL(get_io_context);
3456
3457void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3458{
3459 struct io_context *src = *psrc;
3460 struct io_context *dst = *pdst;
3461
3462 if (src) {
3463 BUG_ON(atomic_read(&src->refcount) == 0);
3464 atomic_inc(&src->refcount);
3465 put_io_context(dst);
3466 *pdst = src;
3467 }
3468}
3469EXPORT_SYMBOL(copy_io_context);
3470
3471void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3472{
3473 struct io_context *temp;
3474 temp = *ioc1;
3475 *ioc1 = *ioc2;
3476 *ioc2 = temp;
3477}
3478EXPORT_SYMBOL(swap_io_context);
3479
3480/*
3481 * sysfs parts below
3482 */
3483struct queue_sysfs_entry {
3484 struct attribute attr;
3485 ssize_t (*show)(struct request_queue *, char *);
3486 ssize_t (*store)(struct request_queue *, const char *, size_t);
3487};
3488
3489static ssize_t
3490queue_var_show(unsigned int var, char *page)
3491{
3492 return sprintf(page, "%d\n", var);
3493}
3494
3495static ssize_t
3496queue_var_store(unsigned long *var, const char *page, size_t count)
3497{
3498 char *p = (char *) page;
3499
3500 *var = simple_strtoul(p, &p, 10);
3501 return count;
3502}
3503
3504static ssize_t queue_requests_show(struct request_queue *q, char *page)
3505{
3506 return queue_var_show(q->nr_requests, (page));
3507}
3508
3509static ssize_t
3510queue_requests_store(struct request_queue *q, const char *page, size_t count)
3511{
3512 struct request_list *rl = &q->rq;
3513
3514 int ret = queue_var_store(&q->nr_requests, page, count);
3515 if (q->nr_requests < BLKDEV_MIN_RQ)
3516 q->nr_requests = BLKDEV_MIN_RQ;
3517 blk_queue_congestion_threshold(q);
3518
3519 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3520 set_queue_congested(q, READ);
3521 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3522 clear_queue_congested(q, READ);
3523
3524 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3525 set_queue_congested(q, WRITE);
3526 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3527 clear_queue_congested(q, WRITE);
3528
3529 if (rl->count[READ] >= q->nr_requests) {
3530 blk_set_queue_full(q, READ);
3531 } else if (rl->count[READ]+1 <= q->nr_requests) {
3532 blk_clear_queue_full(q, READ);
3533 wake_up(&rl->wait[READ]);
3534 }
3535
3536 if (rl->count[WRITE] >= q->nr_requests) {
3537 blk_set_queue_full(q, WRITE);
3538 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3539 blk_clear_queue_full(q, WRITE);
3540 wake_up(&rl->wait[WRITE]);
3541 }
3542 return ret;
3543}
3544
3545static ssize_t queue_ra_show(struct request_queue *q, char *page)
3546{
3547 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3548
3549 return queue_var_show(ra_kb, (page));
3550}
3551
3552static ssize_t
3553queue_ra_store(struct request_queue *q, const char *page, size_t count)
3554{
3555 unsigned long ra_kb;
3556 ssize_t ret = queue_var_store(&ra_kb, page, count);
3557
3558 spin_lock_irq(q->queue_lock);
3559 if (ra_kb > (q->max_sectors >> 1))
3560 ra_kb = (q->max_sectors >> 1);
3561
3562 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3563 spin_unlock_irq(q->queue_lock);
3564
3565 return ret;
3566}
3567
3568static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3569{
3570 int max_sectors_kb = q->max_sectors >> 1;
3571
3572 return queue_var_show(max_sectors_kb, (page));
3573}
3574
3575static ssize_t
3576queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3577{
3578 unsigned long max_sectors_kb,
3579 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3580 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3581 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3582 int ra_kb;
3583
3584 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3585 return -EINVAL;
3586 /*
3587 * Take the queue lock to update the readahead and max_sectors
3588 * values synchronously:
3589 */
3590 spin_lock_irq(q->queue_lock);
3591 /*
3592 * Trim readahead window as well, if necessary:
3593 */
3594 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3595 if (ra_kb > max_sectors_kb)
3596 q->backing_dev_info.ra_pages =
3597 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3598
3599 q->max_sectors = max_sectors_kb << 1;
3600 spin_unlock_irq(q->queue_lock);
3601
3602 return ret;
3603}
3604
3605static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3606{
3607 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3608
3609 return queue_var_show(max_hw_sectors_kb, (page));
3610}
3611
3612
3613static struct queue_sysfs_entry queue_requests_entry = {
3614 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3615 .show = queue_requests_show,
3616 .store = queue_requests_store,
3617};
3618
3619static struct queue_sysfs_entry queue_ra_entry = {
3620 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3621 .show = queue_ra_show,
3622 .store = queue_ra_store,
3623};
3624
3625static struct queue_sysfs_entry queue_max_sectors_entry = {
3626 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3627 .show = queue_max_sectors_show,
3628 .store = queue_max_sectors_store,
3629};
3630
3631static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3632 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3633 .show = queue_max_hw_sectors_show,
3634};
3635
3636static struct queue_sysfs_entry queue_iosched_entry = {
3637 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3638 .show = elv_iosched_show,
3639 .store = elv_iosched_store,
3640};
3641
3642static struct attribute *default_attrs[] = {
3643 &queue_requests_entry.attr,
3644 &queue_ra_entry.attr,
3645 &queue_max_hw_sectors_entry.attr,
3646 &queue_max_sectors_entry.attr,
3647 &queue_iosched_entry.attr,
3648 NULL,
3649};
3650
3651#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3652
3653static ssize_t
3654queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3655{
3656 struct queue_sysfs_entry *entry = to_queue(attr);
3657 struct request_queue *q;
3658
3659 q = container_of(kobj, struct request_queue, kobj);
3660 if (!entry->show)
3661 return 0;
3662
3663 return entry->show(q, page);
3664}
3665
3666static ssize_t
3667queue_attr_store(struct kobject *kobj, struct attribute *attr,
3668 const char *page, size_t length)
3669{
3670 struct queue_sysfs_entry *entry = to_queue(attr);
3671 struct request_queue *q;
3672
3673 q = container_of(kobj, struct request_queue, kobj);
3674 if (!entry->store)
3675 return -EINVAL;
3676
3677 return entry->store(q, page, length);
3678}
3679
3680static struct sysfs_ops queue_sysfs_ops = {
3681 .show = queue_attr_show,
3682 .store = queue_attr_store,
3683};
3684
3685struct kobj_type queue_ktype = {
3686 .sysfs_ops = &queue_sysfs_ops,
3687 .default_attrs = default_attrs,
3688};
3689
3690int blk_register_queue(struct gendisk *disk)
3691{
3692 int ret;
3693
3694 request_queue_t *q = disk->queue;
3695
3696 if (!q || !q->request_fn)
3697 return -ENXIO;
3698
3699 q->kobj.parent = kobject_get(&disk->kobj);
3700 if (!q->kobj.parent)
3701 return -EBUSY;
3702
3703 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3704 q->kobj.ktype = &queue_ktype;
3705
3706 ret = kobject_register(&q->kobj);
3707 if (ret < 0)
3708 return ret;
3709
3710 ret = elv_register_queue(q);
3711 if (ret) {
3712 kobject_unregister(&q->kobj);
3713 return ret;
3714 }
3715
3716 return 0;
3717}
3718
3719void blk_unregister_queue(struct gendisk *disk)
3720{
3721 request_queue_t *q = disk->queue;
3722
3723 if (q && q->request_fn) {
3724 elv_unregister_queue(q);
3725
3726 kobject_unregister(&q->kobj);
3727 kobject_put(&disk->kobj);
3728 }
3729}