lib: percpu_counter_init_irq
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
93d17d3d 42static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
dd941252
NP
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
f3da54ba
JA
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1da177e4
LT
1072 bqt->busy--;
1073}
1074
1075EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077/**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
165125e1 1095int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1096{
1097 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1098 int tag;
1da177e4 1099
4aff5e23 1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1101 printk(KERN_ERR
040c928c
TH
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1105 BUG();
1106 }
1107
059af497
JA
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1da177e4 1116
059af497 1117 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1da177e4 1122
4aff5e23 1123 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130}
1131
1132EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134/**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
165125e1 1146void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1147{
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
040c928c
TH
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1158 list_del_init(&rq->queuelist);
4aff5e23 1159 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
4aff5e23 1163 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166}
1167
1168EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1da177e4
LT
1170void blk_dump_rq_flags(struct request *rq, char *msg)
1171{
1172 int bit;
1173
4aff5e23
JA
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1da177e4
LT
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
4aff5e23 1183 if (blk_pc_request(rq)) {
1da177e4
LT
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189}
1190
1191EXPORT_SYMBOL(blk_dump_rq_flags);
1192
165125e1 1193void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1194{
9dfa5283
N
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205}
1206EXPORT_SYMBOL(blk_recount_segments);
1207
1208static void blk_recalc_rq_segments(struct request *rq)
1209{
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1da177e4 1214 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
5705f702 1218 struct req_iterator iter;
1da177e4 1219 int high, highprv = 1;
9dfa5283 1220 struct request_queue *q = rq->q;
1da177e4 1221
9dfa5283 1222 if (!rq->bio)
1da177e4
LT
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1228 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
f772b3d9 1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1255 hw_seg_size += bv->bv_len;
9dfa5283 1256 else {
1da177e4 1257new_hw_segment:
9dfa5283
N
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
9dfa5283
N
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1278}
1da177e4 1279
165125e1 1280static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1281 struct bio *nxt)
1282{
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299}
1300
165125e1 1301static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1302 struct bio *nxt)
1303{
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1310 return 0;
32eef964 1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1312 return 0;
1313
1314 return 1;
1315}
1316
1da177e4
LT
1317/*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
165125e1 1321int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1322 struct scatterlist *sglist)
1da177e4
LT
1323{
1324 struct bio_vec *bvec, *bvprv;
f565913e 1325 struct scatterlist *next_sg, *sg;
5705f702
N
1326 struct req_iterator iter;
1327 int nsegs, cluster;
1da177e4
LT
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
f565913e 1336 sg = next_sg = &sglist[0];
5705f702 1337 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1338 int nbytes = bvec->bv_len;
1da177e4 1339
6c92e699 1340 if (bvprv && cluster) {
f565913e 1341 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1342 goto new_segment;
1da177e4 1343
6c92e699
JA
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1da177e4 1348
f565913e 1349 sg->length += nbytes;
6c92e699 1350 } else {
1da177e4 1351new_segment:
f565913e
JA
1352 sg = next_sg;
1353 next_sg = sg_next(sg);
6c92e699 1354
f565913e
JA
1355 sg->page = bvec->bv_page;
1356 sg->length = nbytes;
1357 sg->offset = bvec->bv_offset;
6c92e699
JA
1358 nsegs++;
1359 }
1360 bvprv = bvec;
5705f702 1361 } /* segments in rq */
1da177e4
LT
1362
1363 return nsegs;
1364}
1365
1366EXPORT_SYMBOL(blk_rq_map_sg);
1367
1368/*
1369 * the standard queue merge functions, can be overridden with device
1370 * specific ones if so desired
1371 */
1372
165125e1 1373static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1374 struct request *req,
1375 struct bio *bio)
1376{
1377 int nr_phys_segs = bio_phys_segments(q, bio);
1378
1379 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1380 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1381 if (req == q->last_merge)
1382 q->last_merge = NULL;
1383 return 0;
1384 }
1385
1386 /*
1387 * A hw segment is just getting larger, bump just the phys
1388 * counter.
1389 */
1390 req->nr_phys_segments += nr_phys_segs;
1391 return 1;
1392}
1393
165125e1 1394static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1395 struct request *req,
1396 struct bio *bio)
1397{
1398 int nr_hw_segs = bio_hw_segments(q, bio);
1399 int nr_phys_segs = bio_phys_segments(q, bio);
1400
1401 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1402 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1403 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1404 if (req == q->last_merge)
1405 q->last_merge = NULL;
1406 return 0;
1407 }
1408
1409 /*
1410 * This will form the start of a new hw segment. Bump both
1411 * counters.
1412 */
1413 req->nr_hw_segments += nr_hw_segs;
1414 req->nr_phys_segments += nr_phys_segs;
1415 return 1;
1416}
1417
3001ca77
N
1418static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1419 struct bio *bio)
1da177e4 1420{
defd94b7 1421 unsigned short max_sectors;
1da177e4
LT
1422 int len;
1423
defd94b7
MC
1424 if (unlikely(blk_pc_request(req)))
1425 max_sectors = q->max_hw_sectors;
1426 else
1427 max_sectors = q->max_sectors;
1428
1429 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1430 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1431 if (req == q->last_merge)
1432 q->last_merge = NULL;
1433 return 0;
1434 }
1435 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1436 blk_recount_segments(q, req->biotail);
1437 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1438 blk_recount_segments(q, bio);
1439 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1440 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1441 !BIOVEC_VIRT_OVERSIZE(len)) {
1442 int mergeable = ll_new_mergeable(q, req, bio);
1443
1444 if (mergeable) {
1445 if (req->nr_hw_segments == 1)
1446 req->bio->bi_hw_front_size = len;
1447 if (bio->bi_hw_segments == 1)
1448 bio->bi_hw_back_size = len;
1449 }
1450 return mergeable;
1451 }
1452
1453 return ll_new_hw_segment(q, req, bio);
1454}
1455
165125e1 1456static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1457 struct bio *bio)
1458{
defd94b7 1459 unsigned short max_sectors;
1da177e4
LT
1460 int len;
1461
defd94b7
MC
1462 if (unlikely(blk_pc_request(req)))
1463 max_sectors = q->max_hw_sectors;
1464 else
1465 max_sectors = q->max_sectors;
1466
1467
1468 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1469 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1470 if (req == q->last_merge)
1471 q->last_merge = NULL;
1472 return 0;
1473 }
1474 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1475 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, bio);
1477 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1478 blk_recount_segments(q, req->bio);
1479 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1480 !BIOVEC_VIRT_OVERSIZE(len)) {
1481 int mergeable = ll_new_mergeable(q, req, bio);
1482
1483 if (mergeable) {
1484 if (bio->bi_hw_segments == 1)
1485 bio->bi_hw_front_size = len;
1486 if (req->nr_hw_segments == 1)
1487 req->biotail->bi_hw_back_size = len;
1488 }
1489 return mergeable;
1490 }
1491
1492 return ll_new_hw_segment(q, req, bio);
1493}
1494
165125e1 1495static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1496 struct request *next)
1497{
dfa1a553
ND
1498 int total_phys_segments;
1499 int total_hw_segments;
1da177e4
LT
1500
1501 /*
1502 * First check if the either of the requests are re-queued
1503 * requests. Can't merge them if they are.
1504 */
1505 if (req->special || next->special)
1506 return 0;
1507
1508 /*
dfa1a553 1509 * Will it become too large?
1da177e4
LT
1510 */
1511 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1512 return 0;
1513
1514 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1515 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1516 total_phys_segments--;
1517
1518 if (total_phys_segments > q->max_phys_segments)
1519 return 0;
1520
1521 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1522 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1523 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1524 /*
1525 * propagate the combined length to the end of the requests
1526 */
1527 if (req->nr_hw_segments == 1)
1528 req->bio->bi_hw_front_size = len;
1529 if (next->nr_hw_segments == 1)
1530 next->biotail->bi_hw_back_size = len;
1531 total_hw_segments--;
1532 }
1533
1534 if (total_hw_segments > q->max_hw_segments)
1535 return 0;
1536
1537 /* Merge is OK... */
1538 req->nr_phys_segments = total_phys_segments;
1539 req->nr_hw_segments = total_hw_segments;
1540 return 1;
1541}
1542
1543/*
1544 * "plug" the device if there are no outstanding requests: this will
1545 * force the transfer to start only after we have put all the requests
1546 * on the list.
1547 *
1548 * This is called with interrupts off and no requests on the queue and
1549 * with the queue lock held.
1550 */
165125e1 1551void blk_plug_device(struct request_queue *q)
1da177e4
LT
1552{
1553 WARN_ON(!irqs_disabled());
1554
1555 /*
1556 * don't plug a stopped queue, it must be paired with blk_start_queue()
1557 * which will restart the queueing
1558 */
7daac490 1559 if (blk_queue_stopped(q))
1da177e4
LT
1560 return;
1561
2056a782 1562 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1563 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1564 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1565 }
1da177e4
LT
1566}
1567
1568EXPORT_SYMBOL(blk_plug_device);
1569
1570/*
1571 * remove the queue from the plugged list, if present. called with
1572 * queue lock held and interrupts disabled.
1573 */
165125e1 1574int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1575{
1576 WARN_ON(!irqs_disabled());
1577
1578 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1579 return 0;
1580
1581 del_timer(&q->unplug_timer);
1582 return 1;
1583}
1584
1585EXPORT_SYMBOL(blk_remove_plug);
1586
1587/*
1588 * remove the plug and let it rip..
1589 */
165125e1 1590void __generic_unplug_device(struct request_queue *q)
1da177e4 1591{
7daac490 1592 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1593 return;
1594
1595 if (!blk_remove_plug(q))
1596 return;
1597
22e2c507 1598 q->request_fn(q);
1da177e4
LT
1599}
1600EXPORT_SYMBOL(__generic_unplug_device);
1601
1602/**
1603 * generic_unplug_device - fire a request queue
165125e1 1604 * @q: The &struct request_queue in question
1da177e4
LT
1605 *
1606 * Description:
1607 * Linux uses plugging to build bigger requests queues before letting
1608 * the device have at them. If a queue is plugged, the I/O scheduler
1609 * is still adding and merging requests on the queue. Once the queue
1610 * gets unplugged, the request_fn defined for the queue is invoked and
1611 * transfers started.
1612 **/
165125e1 1613void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1614{
1615 spin_lock_irq(q->queue_lock);
1616 __generic_unplug_device(q);
1617 spin_unlock_irq(q->queue_lock);
1618}
1619EXPORT_SYMBOL(generic_unplug_device);
1620
1621static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1622 struct page *page)
1623{
165125e1 1624 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1625
1626 /*
1627 * devices don't necessarily have an ->unplug_fn defined
1628 */
2056a782
JA
1629 if (q->unplug_fn) {
1630 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1631 q->rq.count[READ] + q->rq.count[WRITE]);
1632
1da177e4 1633 q->unplug_fn(q);
2056a782 1634 }
1da177e4
LT
1635}
1636
65f27f38 1637static void blk_unplug_work(struct work_struct *work)
1da177e4 1638{
165125e1
JA
1639 struct request_queue *q =
1640 container_of(work, struct request_queue, unplug_work);
1da177e4 1641
2056a782
JA
1642 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1643 q->rq.count[READ] + q->rq.count[WRITE]);
1644
1da177e4
LT
1645 q->unplug_fn(q);
1646}
1647
1648static void blk_unplug_timeout(unsigned long data)
1649{
165125e1 1650 struct request_queue *q = (struct request_queue *)data;
1da177e4 1651
2056a782
JA
1652 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1653 q->rq.count[READ] + q->rq.count[WRITE]);
1654
1da177e4
LT
1655 kblockd_schedule_work(&q->unplug_work);
1656}
1657
1658/**
1659 * blk_start_queue - restart a previously stopped queue
165125e1 1660 * @q: The &struct request_queue in question
1da177e4
LT
1661 *
1662 * Description:
1663 * blk_start_queue() will clear the stop flag on the queue, and call
1664 * the request_fn for the queue if it was in a stopped state when
1665 * entered. Also see blk_stop_queue(). Queue lock must be held.
1666 **/
165125e1 1667void blk_start_queue(struct request_queue *q)
1da177e4 1668{
a038e253
PBG
1669 WARN_ON(!irqs_disabled());
1670
1da177e4
LT
1671 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1672
1673 /*
1674 * one level of recursion is ok and is much faster than kicking
1675 * the unplug handling
1676 */
1677 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1678 q->request_fn(q);
1679 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1680 } else {
1681 blk_plug_device(q);
1682 kblockd_schedule_work(&q->unplug_work);
1683 }
1684}
1685
1686EXPORT_SYMBOL(blk_start_queue);
1687
1688/**
1689 * blk_stop_queue - stop a queue
165125e1 1690 * @q: The &struct request_queue in question
1da177e4
LT
1691 *
1692 * Description:
1693 * The Linux block layer assumes that a block driver will consume all
1694 * entries on the request queue when the request_fn strategy is called.
1695 * Often this will not happen, because of hardware limitations (queue
1696 * depth settings). If a device driver gets a 'queue full' response,
1697 * or if it simply chooses not to queue more I/O at one point, it can
1698 * call this function to prevent the request_fn from being called until
1699 * the driver has signalled it's ready to go again. This happens by calling
1700 * blk_start_queue() to restart queue operations. Queue lock must be held.
1701 **/
165125e1 1702void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1703{
1704 blk_remove_plug(q);
1705 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1706}
1707EXPORT_SYMBOL(blk_stop_queue);
1708
1709/**
1710 * blk_sync_queue - cancel any pending callbacks on a queue
1711 * @q: the queue
1712 *
1713 * Description:
1714 * The block layer may perform asynchronous callback activity
1715 * on a queue, such as calling the unplug function after a timeout.
1716 * A block device may call blk_sync_queue to ensure that any
1717 * such activity is cancelled, thus allowing it to release resources
59c51591 1718 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1719 * that its ->make_request_fn will not re-add plugging prior to calling
1720 * this function.
1721 *
1722 */
1723void blk_sync_queue(struct request_queue *q)
1724{
1725 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1726}
1727EXPORT_SYMBOL(blk_sync_queue);
1728
1729/**
1730 * blk_run_queue - run a single device queue
1731 * @q: The queue to run
1732 */
1733void blk_run_queue(struct request_queue *q)
1734{
1735 unsigned long flags;
1736
1737 spin_lock_irqsave(q->queue_lock, flags);
1738 blk_remove_plug(q);
dac07ec1
JA
1739
1740 /*
1741 * Only recurse once to avoid overrunning the stack, let the unplug
1742 * handling reinvoke the handler shortly if we already got there.
1743 */
1744 if (!elv_queue_empty(q)) {
1745 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1746 q->request_fn(q);
1747 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1748 } else {
1749 blk_plug_device(q);
1750 kblockd_schedule_work(&q->unplug_work);
1751 }
1752 }
1753
1da177e4
LT
1754 spin_unlock_irqrestore(q->queue_lock, flags);
1755}
1756EXPORT_SYMBOL(blk_run_queue);
1757
1758/**
165125e1 1759 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1760 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1761 *
1762 * Description:
1763 * blk_cleanup_queue is the pair to blk_init_queue() or
1764 * blk_queue_make_request(). It should be called when a request queue is
1765 * being released; typically when a block device is being de-registered.
1766 * Currently, its primary task it to free all the &struct request
1767 * structures that were allocated to the queue and the queue itself.
1768 *
1769 * Caveat:
1770 * Hopefully the low level driver will have finished any
1771 * outstanding requests first...
1772 **/
483f4afc 1773static void blk_release_queue(struct kobject *kobj)
1da177e4 1774{
165125e1
JA
1775 struct request_queue *q =
1776 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1777 struct request_list *rl = &q->rq;
1778
1da177e4
LT
1779 blk_sync_queue(q);
1780
1781 if (rl->rq_pool)
1782 mempool_destroy(rl->rq_pool);
1783
1784 if (q->queue_tags)
1785 __blk_queue_free_tags(q);
1786
6c5c9341 1787 blk_trace_shutdown(q);
2056a782 1788
1da177e4
LT
1789 kmem_cache_free(requestq_cachep, q);
1790}
1791
165125e1 1792void blk_put_queue(struct request_queue *q)
483f4afc
AV
1793{
1794 kobject_put(&q->kobj);
1795}
1796EXPORT_SYMBOL(blk_put_queue);
1797
165125e1 1798void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1799{
1800 mutex_lock(&q->sysfs_lock);
1801 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1802 mutex_unlock(&q->sysfs_lock);
1803
1804 if (q->elevator)
1805 elevator_exit(q->elevator);
1806
1807 blk_put_queue(q);
1808}
1809
1da177e4
LT
1810EXPORT_SYMBOL(blk_cleanup_queue);
1811
165125e1 1812static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1813{
1814 struct request_list *rl = &q->rq;
1815
1816 rl->count[READ] = rl->count[WRITE] = 0;
1817 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1818 rl->elvpriv = 0;
1da177e4
LT
1819 init_waitqueue_head(&rl->wait[READ]);
1820 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1821
1946089a
CL
1822 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1823 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1824
1825 if (!rl->rq_pool)
1826 return -ENOMEM;
1827
1828 return 0;
1829}
1830
165125e1 1831struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1832{
1946089a
CL
1833 return blk_alloc_queue_node(gfp_mask, -1);
1834}
1835EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1836
483f4afc
AV
1837static struct kobj_type queue_ktype;
1838
165125e1 1839struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1840{
165125e1 1841 struct request_queue *q;
1946089a 1842
94f6030c
CL
1843 q = kmem_cache_alloc_node(requestq_cachep,
1844 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1845 if (!q)
1846 return NULL;
1847
1da177e4 1848 init_timer(&q->unplug_timer);
483f4afc 1849
19c38de8 1850 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1851 q->kobj.ktype = &queue_ktype;
1852 kobject_init(&q->kobj);
1da177e4
LT
1853
1854 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1855 q->backing_dev_info.unplug_io_data = q;
1856
483f4afc
AV
1857 mutex_init(&q->sysfs_lock);
1858
1da177e4
LT
1859 return q;
1860}
1946089a 1861EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1862
1863/**
1864 * blk_init_queue - prepare a request queue for use with a block device
1865 * @rfn: The function to be called to process requests that have been
1866 * placed on the queue.
1867 * @lock: Request queue spin lock
1868 *
1869 * Description:
1870 * If a block device wishes to use the standard request handling procedures,
1871 * which sorts requests and coalesces adjacent requests, then it must
1872 * call blk_init_queue(). The function @rfn will be called when there
1873 * are requests on the queue that need to be processed. If the device
1874 * supports plugging, then @rfn may not be called immediately when requests
1875 * are available on the queue, but may be called at some time later instead.
1876 * Plugged queues are generally unplugged when a buffer belonging to one
1877 * of the requests on the queue is needed, or due to memory pressure.
1878 *
1879 * @rfn is not required, or even expected, to remove all requests off the
1880 * queue, but only as many as it can handle at a time. If it does leave
1881 * requests on the queue, it is responsible for arranging that the requests
1882 * get dealt with eventually.
1883 *
1884 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1885 * request queue; this lock will be taken also from interrupt context, so irq
1886 * disabling is needed for it.
1da177e4
LT
1887 *
1888 * Function returns a pointer to the initialized request queue, or NULL if
1889 * it didn't succeed.
1890 *
1891 * Note:
1892 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1893 * when the block device is deactivated (such as at module unload).
1894 **/
1946089a 1895
165125e1 1896struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1897{
1946089a
CL
1898 return blk_init_queue_node(rfn, lock, -1);
1899}
1900EXPORT_SYMBOL(blk_init_queue);
1901
165125e1 1902struct request_queue *
1946089a
CL
1903blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1904{
165125e1 1905 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1906
1907 if (!q)
1908 return NULL;
1909
1946089a 1910 q->node = node_id;
8669aafd
AV
1911 if (blk_init_free_list(q)) {
1912 kmem_cache_free(requestq_cachep, q);
1913 return NULL;
1914 }
1da177e4 1915
152587de
JA
1916 /*
1917 * if caller didn't supply a lock, they get per-queue locking with
1918 * our embedded lock
1919 */
1920 if (!lock) {
1921 spin_lock_init(&q->__queue_lock);
1922 lock = &q->__queue_lock;
1923 }
1924
1da177e4 1925 q->request_fn = rfn;
1da177e4
LT
1926 q->prep_rq_fn = NULL;
1927 q->unplug_fn = generic_unplug_device;
1928 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1929 q->queue_lock = lock;
1930
1931 blk_queue_segment_boundary(q, 0xffffffff);
1932
1933 blk_queue_make_request(q, __make_request);
1934 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1935
1936 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1937 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1938
44ec9542
AS
1939 q->sg_reserved_size = INT_MAX;
1940
1da177e4
LT
1941 /*
1942 * all done
1943 */
1944 if (!elevator_init(q, NULL)) {
1945 blk_queue_congestion_threshold(q);
1946 return q;
1947 }
1948
8669aafd 1949 blk_put_queue(q);
1da177e4
LT
1950 return NULL;
1951}
1946089a 1952EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1953
165125e1 1954int blk_get_queue(struct request_queue *q)
1da177e4 1955{
fde6ad22 1956 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1957 kobject_get(&q->kobj);
1da177e4
LT
1958 return 0;
1959 }
1960
1961 return 1;
1962}
1963
1964EXPORT_SYMBOL(blk_get_queue);
1965
165125e1 1966static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1967{
4aff5e23 1968 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1969 elv_put_request(q, rq);
1da177e4
LT
1970 mempool_free(rq, q->rq.rq_pool);
1971}
1972
1ea25ecb 1973static struct request *
165125e1 1974blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1975{
1976 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1977
1978 if (!rq)
1979 return NULL;
1980
1981 /*
4aff5e23 1982 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1983 * see bio.h and blkdev.h
1984 */
49171e5c 1985 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1986
cb98fc8b 1987 if (priv) {
cb78b285 1988 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1989 mempool_free(rq, q->rq.rq_pool);
1990 return NULL;
1991 }
4aff5e23 1992 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 1993 }
1da177e4 1994
cb98fc8b 1995 return rq;
1da177e4
LT
1996}
1997
1998/*
1999 * ioc_batching returns true if the ioc is a valid batching request and
2000 * should be given priority access to a request.
2001 */
165125e1 2002static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2003{
2004 if (!ioc)
2005 return 0;
2006
2007 /*
2008 * Make sure the process is able to allocate at least 1 request
2009 * even if the batch times out, otherwise we could theoretically
2010 * lose wakeups.
2011 */
2012 return ioc->nr_batch_requests == q->nr_batching ||
2013 (ioc->nr_batch_requests > 0
2014 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2015}
2016
2017/*
2018 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2019 * will cause the process to be a "batcher" on all queues in the system. This
2020 * is the behaviour we want though - once it gets a wakeup it should be given
2021 * a nice run.
2022 */
165125e1 2023static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2024{
2025 if (!ioc || ioc_batching(q, ioc))
2026 return;
2027
2028 ioc->nr_batch_requests = q->nr_batching;
2029 ioc->last_waited = jiffies;
2030}
2031
165125e1 2032static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2033{
2034 struct request_list *rl = &q->rq;
2035
2036 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2037 blk_clear_queue_congested(q, rw);
1da177e4
LT
2038
2039 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2040 if (waitqueue_active(&rl->wait[rw]))
2041 wake_up(&rl->wait[rw]);
2042
2043 blk_clear_queue_full(q, rw);
2044 }
2045}
2046
2047/*
2048 * A request has just been released. Account for it, update the full and
2049 * congestion status, wake up any waiters. Called under q->queue_lock.
2050 */
165125e1 2051static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2052{
2053 struct request_list *rl = &q->rq;
2054
2055 rl->count[rw]--;
cb98fc8b
TH
2056 if (priv)
2057 rl->elvpriv--;
1da177e4
LT
2058
2059 __freed_request(q, rw);
2060
2061 if (unlikely(rl->starved[rw ^ 1]))
2062 __freed_request(q, rw ^ 1);
1da177e4
LT
2063}
2064
2065#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2066/*
d6344532
NP
2067 * Get a free request, queue_lock must be held.
2068 * Returns NULL on failure, with queue_lock held.
2069 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2070 */
165125e1 2071static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2072 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2073{
2074 struct request *rq = NULL;
2075 struct request_list *rl = &q->rq;
88ee5ef1 2076 struct io_context *ioc = NULL;
7749a8d4 2077 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2078 int may_queue, priv;
2079
7749a8d4 2080 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2081 if (may_queue == ELV_MQUEUE_NO)
2082 goto rq_starved;
2083
2084 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2085 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2086 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2087 /*
2088 * The queue will fill after this allocation, so set
2089 * it as full, and mark this process as "batching".
2090 * This process will be allowed to complete a batch of
2091 * requests, others will be blocked.
2092 */
2093 if (!blk_queue_full(q, rw)) {
2094 ioc_set_batching(q, ioc);
2095 blk_set_queue_full(q, rw);
2096 } else {
2097 if (may_queue != ELV_MQUEUE_MUST
2098 && !ioc_batching(q, ioc)) {
2099 /*
2100 * The queue is full and the allocating
2101 * process is not a "batcher", and not
2102 * exempted by the IO scheduler
2103 */
2104 goto out;
2105 }
2106 }
1da177e4 2107 }
79e2de4b 2108 blk_set_queue_congested(q, rw);
1da177e4
LT
2109 }
2110
082cf69e
JA
2111 /*
2112 * Only allow batching queuers to allocate up to 50% over the defined
2113 * limit of requests, otherwise we could have thousands of requests
2114 * allocated with any setting of ->nr_requests
2115 */
fd782a4a 2116 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2117 goto out;
fd782a4a 2118
1da177e4
LT
2119 rl->count[rw]++;
2120 rl->starved[rw] = 0;
cb98fc8b 2121
64521d1a 2122 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2123 if (priv)
2124 rl->elvpriv++;
2125
1da177e4
LT
2126 spin_unlock_irq(q->queue_lock);
2127
7749a8d4 2128 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2129 if (unlikely(!rq)) {
1da177e4
LT
2130 /*
2131 * Allocation failed presumably due to memory. Undo anything
2132 * we might have messed up.
2133 *
2134 * Allocating task should really be put onto the front of the
2135 * wait queue, but this is pretty rare.
2136 */
2137 spin_lock_irq(q->queue_lock);
cb98fc8b 2138 freed_request(q, rw, priv);
1da177e4
LT
2139
2140 /*
2141 * in the very unlikely event that allocation failed and no
2142 * requests for this direction was pending, mark us starved
2143 * so that freeing of a request in the other direction will
2144 * notice us. another possible fix would be to split the
2145 * rq mempool into READ and WRITE
2146 */
2147rq_starved:
2148 if (unlikely(rl->count[rw] == 0))
2149 rl->starved[rw] = 1;
2150
1da177e4
LT
2151 goto out;
2152 }
2153
88ee5ef1
JA
2154 /*
2155 * ioc may be NULL here, and ioc_batching will be false. That's
2156 * OK, if the queue is under the request limit then requests need
2157 * not count toward the nr_batch_requests limit. There will always
2158 * be some limit enforced by BLK_BATCH_TIME.
2159 */
1da177e4
LT
2160 if (ioc_batching(q, ioc))
2161 ioc->nr_batch_requests--;
2162
2163 rq_init(q, rq);
2056a782
JA
2164
2165 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2166out:
1da177e4
LT
2167 return rq;
2168}
2169
2170/*
2171 * No available requests for this queue, unplug the device and wait for some
2172 * requests to become available.
d6344532
NP
2173 *
2174 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2175 */
165125e1 2176static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2177 struct bio *bio)
1da177e4 2178{
7749a8d4 2179 const int rw = rw_flags & 0x01;
1da177e4
LT
2180 struct request *rq;
2181
7749a8d4 2182 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2183 while (!rq) {
2184 DEFINE_WAIT(wait);
1da177e4
LT
2185 struct request_list *rl = &q->rq;
2186
2187 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2188 TASK_UNINTERRUPTIBLE);
2189
7749a8d4 2190 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2191
2192 if (!rq) {
2193 struct io_context *ioc;
2194
2056a782
JA
2195 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2196
d6344532
NP
2197 __generic_unplug_device(q);
2198 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2199 io_schedule();
2200
2201 /*
2202 * After sleeping, we become a "batching" process and
2203 * will be able to allocate at least one request, and
2204 * up to a big batch of them for a small period time.
2205 * See ioc_batching, ioc_set_batching
2206 */
b5deef90 2207 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2208 ioc_set_batching(q, ioc);
d6344532
NP
2209
2210 spin_lock_irq(q->queue_lock);
1da177e4
LT
2211 }
2212 finish_wait(&rl->wait[rw], &wait);
450991bc 2213 }
1da177e4
LT
2214
2215 return rq;
2216}
2217
165125e1 2218struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2219{
2220 struct request *rq;
2221
2222 BUG_ON(rw != READ && rw != WRITE);
2223
d6344532
NP
2224 spin_lock_irq(q->queue_lock);
2225 if (gfp_mask & __GFP_WAIT) {
22e2c507 2226 rq = get_request_wait(q, rw, NULL);
d6344532 2227 } else {
22e2c507 2228 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2229 if (!rq)
2230 spin_unlock_irq(q->queue_lock);
2231 }
2232 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2233
2234 return rq;
2235}
1da177e4
LT
2236EXPORT_SYMBOL(blk_get_request);
2237
dc72ef4a
JA
2238/**
2239 * blk_start_queueing - initiate dispatch of requests to device
2240 * @q: request queue to kick into gear
2241 *
2242 * This is basically a helper to remove the need to know whether a queue
2243 * is plugged or not if someone just wants to initiate dispatch of requests
2244 * for this queue.
2245 *
2246 * The queue lock must be held with interrupts disabled.
2247 */
165125e1 2248void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2249{
2250 if (!blk_queue_plugged(q))
2251 q->request_fn(q);
2252 else
2253 __generic_unplug_device(q);
2254}
2255EXPORT_SYMBOL(blk_start_queueing);
2256
1da177e4
LT
2257/**
2258 * blk_requeue_request - put a request back on queue
2259 * @q: request queue where request should be inserted
2260 * @rq: request to be inserted
2261 *
2262 * Description:
2263 * Drivers often keep queueing requests until the hardware cannot accept
2264 * more, when that condition happens we need to put the request back
2265 * on the queue. Must be called with queue lock held.
2266 */
165125e1 2267void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2268{
2056a782
JA
2269 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2270
1da177e4
LT
2271 if (blk_rq_tagged(rq))
2272 blk_queue_end_tag(q, rq);
2273
2274 elv_requeue_request(q, rq);
2275}
2276
2277EXPORT_SYMBOL(blk_requeue_request);
2278
2279/**
2280 * blk_insert_request - insert a special request in to a request queue
2281 * @q: request queue where request should be inserted
2282 * @rq: request to be inserted
2283 * @at_head: insert request at head or tail of queue
2284 * @data: private data
1da177e4
LT
2285 *
2286 * Description:
2287 * Many block devices need to execute commands asynchronously, so they don't
2288 * block the whole kernel from preemption during request execution. This is
2289 * accomplished normally by inserting aritficial requests tagged as
2290 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2291 * scheduled for actual execution by the request queue.
2292 *
2293 * We have the option of inserting the head or the tail of the queue.
2294 * Typically we use the tail for new ioctls and so forth. We use the head
2295 * of the queue for things like a QUEUE_FULL message from a device, or a
2296 * host that is unable to accept a particular command.
2297 */
165125e1 2298void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2299 int at_head, void *data)
1da177e4 2300{
867d1191 2301 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2302 unsigned long flags;
2303
2304 /*
2305 * tell I/O scheduler that this isn't a regular read/write (ie it
2306 * must not attempt merges on this) and that it acts as a soft
2307 * barrier
2308 */
4aff5e23
JA
2309 rq->cmd_type = REQ_TYPE_SPECIAL;
2310 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2311
2312 rq->special = data;
2313
2314 spin_lock_irqsave(q->queue_lock, flags);
2315
2316 /*
2317 * If command is tagged, release the tag
2318 */
867d1191
TH
2319 if (blk_rq_tagged(rq))
2320 blk_queue_end_tag(q, rq);
1da177e4 2321
867d1191
TH
2322 drive_stat_acct(rq, rq->nr_sectors, 1);
2323 __elv_add_request(q, rq, where, 0);
dc72ef4a 2324 blk_start_queueing(q);
1da177e4
LT
2325 spin_unlock_irqrestore(q->queue_lock, flags);
2326}
2327
2328EXPORT_SYMBOL(blk_insert_request);
2329
0e75f906
MC
2330static int __blk_rq_unmap_user(struct bio *bio)
2331{
2332 int ret = 0;
2333
2334 if (bio) {
2335 if (bio_flagged(bio, BIO_USER_MAPPED))
2336 bio_unmap_user(bio);
2337 else
2338 ret = bio_uncopy_user(bio);
2339 }
2340
2341 return ret;
2342}
2343
3001ca77
N
2344int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2345 struct bio *bio)
2346{
2347 if (!rq->bio)
2348 blk_rq_bio_prep(q, rq, bio);
2349 else if (!ll_back_merge_fn(q, rq, bio))
2350 return -EINVAL;
2351 else {
2352 rq->biotail->bi_next = bio;
2353 rq->biotail = bio;
2354
2355 rq->data_len += bio->bi_size;
2356 }
2357 return 0;
2358}
2359EXPORT_SYMBOL(blk_rq_append_bio);
2360
165125e1 2361static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2362 void __user *ubuf, unsigned int len)
2363{
2364 unsigned long uaddr;
2365 struct bio *bio, *orig_bio;
2366 int reading, ret;
2367
2368 reading = rq_data_dir(rq) == READ;
2369
2370 /*
2371 * if alignment requirement is satisfied, map in user pages for
2372 * direct dma. else, set up kernel bounce buffers
2373 */
2374 uaddr = (unsigned long) ubuf;
2375 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2376 bio = bio_map_user(q, NULL, uaddr, len, reading);
2377 else
2378 bio = bio_copy_user(q, uaddr, len, reading);
2379
2985259b 2380 if (IS_ERR(bio))
0e75f906 2381 return PTR_ERR(bio);
0e75f906
MC
2382
2383 orig_bio = bio;
2384 blk_queue_bounce(q, &bio);
2985259b 2385
0e75f906
MC
2386 /*
2387 * We link the bounce buffer in and could have to traverse it
2388 * later so we have to get a ref to prevent it from being freed
2389 */
2390 bio_get(bio);
2391
3001ca77
N
2392 ret = blk_rq_append_bio(q, rq, bio);
2393 if (!ret)
2394 return bio->bi_size;
0e75f906 2395
0e75f906 2396 /* if it was boucned we must call the end io function */
6712ecf8 2397 bio_endio(bio, 0);
0e75f906
MC
2398 __blk_rq_unmap_user(orig_bio);
2399 bio_put(bio);
2400 return ret;
2401}
2402
1da177e4
LT
2403/**
2404 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2405 * @q: request queue where request should be inserted
73747aed 2406 * @rq: request structure to fill
1da177e4
LT
2407 * @ubuf: the user buffer
2408 * @len: length of user data
2409 *
2410 * Description:
2411 * Data will be mapped directly for zero copy io, if possible. Otherwise
2412 * a kernel bounce buffer is used.
2413 *
2414 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2415 * still in process context.
2416 *
2417 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2418 * before being submitted to the device, as pages mapped may be out of
2419 * reach. It's the callers responsibility to make sure this happens. The
2420 * original bio must be passed back in to blk_rq_unmap_user() for proper
2421 * unmapping.
2422 */
165125e1
JA
2423int blk_rq_map_user(struct request_queue *q, struct request *rq,
2424 void __user *ubuf, unsigned long len)
1da177e4 2425{
0e75f906 2426 unsigned long bytes_read = 0;
8e5cfc45 2427 struct bio *bio = NULL;
0e75f906 2428 int ret;
1da177e4 2429
defd94b7 2430 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2431 return -EINVAL;
2432 if (!len || !ubuf)
2433 return -EINVAL;
1da177e4 2434
0e75f906
MC
2435 while (bytes_read != len) {
2436 unsigned long map_len, end, start;
1da177e4 2437
0e75f906
MC
2438 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2439 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2440 >> PAGE_SHIFT;
2441 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2442
0e75f906
MC
2443 /*
2444 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2445 * pages. If this happens we just lower the requested
2446 * mapping len by a page so that we can fit
2447 */
2448 if (end - start > BIO_MAX_PAGES)
2449 map_len -= PAGE_SIZE;
1da177e4 2450
0e75f906
MC
2451 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2452 if (ret < 0)
2453 goto unmap_rq;
8e5cfc45
JA
2454 if (!bio)
2455 bio = rq->bio;
0e75f906
MC
2456 bytes_read += ret;
2457 ubuf += ret;
1da177e4
LT
2458 }
2459
0e75f906
MC
2460 rq->buffer = rq->data = NULL;
2461 return 0;
2462unmap_rq:
8e5cfc45 2463 blk_rq_unmap_user(bio);
0e75f906 2464 return ret;
1da177e4
LT
2465}
2466
2467EXPORT_SYMBOL(blk_rq_map_user);
2468
f1970baf
JB
2469/**
2470 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2471 * @q: request queue where request should be inserted
2472 * @rq: request to map data to
2473 * @iov: pointer to the iovec
2474 * @iov_count: number of elements in the iovec
af9997e4 2475 * @len: I/O byte count
f1970baf
JB
2476 *
2477 * Description:
2478 * Data will be mapped directly for zero copy io, if possible. Otherwise
2479 * a kernel bounce buffer is used.
2480 *
2481 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2482 * still in process context.
2483 *
2484 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2485 * before being submitted to the device, as pages mapped may be out of
2486 * reach. It's the callers responsibility to make sure this happens. The
2487 * original bio must be passed back in to blk_rq_unmap_user() for proper
2488 * unmapping.
2489 */
165125e1 2490int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2491 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2492{
2493 struct bio *bio;
2494
2495 if (!iov || iov_count <= 0)
2496 return -EINVAL;
2497
2498 /* we don't allow misaligned data like bio_map_user() does. If the
2499 * user is using sg, they're expected to know the alignment constraints
2500 * and respect them accordingly */
2501 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2502 if (IS_ERR(bio))
2503 return PTR_ERR(bio);
2504
0e75f906 2505 if (bio->bi_size != len) {
6712ecf8 2506 bio_endio(bio, 0);
0e75f906
MC
2507 bio_unmap_user(bio);
2508 return -EINVAL;
2509 }
2510
2511 bio_get(bio);
f1970baf
JB
2512 blk_rq_bio_prep(q, rq, bio);
2513 rq->buffer = rq->data = NULL;
f1970baf
JB
2514 return 0;
2515}
2516
2517EXPORT_SYMBOL(blk_rq_map_user_iov);
2518
1da177e4
LT
2519/**
2520 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2521 * @bio: start of bio list
1da177e4
LT
2522 *
2523 * Description:
8e5cfc45
JA
2524 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2525 * supply the original rq->bio from the blk_rq_map_user() return, since
2526 * the io completion may have changed rq->bio.
1da177e4 2527 */
8e5cfc45 2528int blk_rq_unmap_user(struct bio *bio)
1da177e4 2529{
8e5cfc45 2530 struct bio *mapped_bio;
48785bb9 2531 int ret = 0, ret2;
1da177e4 2532
8e5cfc45
JA
2533 while (bio) {
2534 mapped_bio = bio;
2535 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2536 mapped_bio = bio->bi_private;
1da177e4 2537
48785bb9
JA
2538 ret2 = __blk_rq_unmap_user(mapped_bio);
2539 if (ret2 && !ret)
2540 ret = ret2;
2541
8e5cfc45
JA
2542 mapped_bio = bio;
2543 bio = bio->bi_next;
2544 bio_put(mapped_bio);
0e75f906 2545 }
48785bb9
JA
2546
2547 return ret;
1da177e4
LT
2548}
2549
2550EXPORT_SYMBOL(blk_rq_unmap_user);
2551
df46b9a4
MC
2552/**
2553 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2554 * @q: request queue where request should be inserted
73747aed 2555 * @rq: request to fill
df46b9a4
MC
2556 * @kbuf: the kernel buffer
2557 * @len: length of user data
73747aed 2558 * @gfp_mask: memory allocation flags
df46b9a4 2559 */
165125e1 2560int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2561 unsigned int len, gfp_t gfp_mask)
df46b9a4 2562{
df46b9a4
MC
2563 struct bio *bio;
2564
defd94b7 2565 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2566 return -EINVAL;
2567 if (!len || !kbuf)
2568 return -EINVAL;
df46b9a4
MC
2569
2570 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2571 if (IS_ERR(bio))
2572 return PTR_ERR(bio);
df46b9a4 2573
dd1cab95
JA
2574 if (rq_data_dir(rq) == WRITE)
2575 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2576
dd1cab95 2577 blk_rq_bio_prep(q, rq, bio);
821de3a2 2578 blk_queue_bounce(q, &rq->bio);
dd1cab95 2579 rq->buffer = rq->data = NULL;
dd1cab95 2580 return 0;
df46b9a4
MC
2581}
2582
2583EXPORT_SYMBOL(blk_rq_map_kern);
2584
73747aed
CH
2585/**
2586 * blk_execute_rq_nowait - insert a request into queue for execution
2587 * @q: queue to insert the request in
2588 * @bd_disk: matching gendisk
2589 * @rq: request to insert
2590 * @at_head: insert request at head or tail of queue
2591 * @done: I/O completion handler
2592 *
2593 * Description:
2594 * Insert a fully prepared request at the back of the io scheduler queue
2595 * for execution. Don't wait for completion.
2596 */
165125e1 2597void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2598 struct request *rq, int at_head,
8ffdc655 2599 rq_end_io_fn *done)
f1970baf
JB
2600{
2601 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2602
2603 rq->rq_disk = bd_disk;
4aff5e23 2604 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2605 rq->end_io = done;
4c5d0bbd
AM
2606 WARN_ON(irqs_disabled());
2607 spin_lock_irq(q->queue_lock);
2608 __elv_add_request(q, rq, where, 1);
2609 __generic_unplug_device(q);
2610 spin_unlock_irq(q->queue_lock);
f1970baf 2611}
6e39b69e
MC
2612EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2613
1da177e4
LT
2614/**
2615 * blk_execute_rq - insert a request into queue for execution
2616 * @q: queue to insert the request in
2617 * @bd_disk: matching gendisk
2618 * @rq: request to insert
994ca9a1 2619 * @at_head: insert request at head or tail of queue
1da177e4
LT
2620 *
2621 * Description:
2622 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2623 * for execution and wait for completion.
1da177e4 2624 */
165125e1 2625int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2626 struct request *rq, int at_head)
1da177e4 2627{
60be6b9a 2628 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2629 char sense[SCSI_SENSE_BUFFERSIZE];
2630 int err = 0;
2631
1da177e4
LT
2632 /*
2633 * we need an extra reference to the request, so we can look at
2634 * it after io completion
2635 */
2636 rq->ref_count++;
2637
2638 if (!rq->sense) {
2639 memset(sense, 0, sizeof(sense));
2640 rq->sense = sense;
2641 rq->sense_len = 0;
2642 }
2643
c00895ab 2644 rq->end_io_data = &wait;
994ca9a1 2645 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2646 wait_for_completion(&wait);
1da177e4
LT
2647
2648 if (rq->errors)
2649 err = -EIO;
2650
2651 return err;
2652}
2653
2654EXPORT_SYMBOL(blk_execute_rq);
2655
fd5d8062
JA
2656static void bio_end_empty_barrier(struct bio *bio, int err)
2657{
2658 if (err)
2659 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2660
2661 complete(bio->bi_private);
2662}
2663
1da177e4
LT
2664/**
2665 * blkdev_issue_flush - queue a flush
2666 * @bdev: blockdev to issue flush for
2667 * @error_sector: error sector
2668 *
2669 * Description:
2670 * Issue a flush for the block device in question. Caller can supply
2671 * room for storing the error offset in case of a flush error, if they
2672 * wish to. Caller must run wait_for_completion() on its own.
2673 */
2674int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2675{
fd5d8062 2676 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2677 struct request_queue *q;
fd5d8062
JA
2678 struct bio *bio;
2679 int ret;
1da177e4
LT
2680
2681 if (bdev->bd_disk == NULL)
2682 return -ENXIO;
2683
2684 q = bdev_get_queue(bdev);
2685 if (!q)
2686 return -ENXIO;
1da177e4 2687
fd5d8062
JA
2688 bio = bio_alloc(GFP_KERNEL, 0);
2689 if (!bio)
2690 return -ENOMEM;
2691
2692 bio->bi_end_io = bio_end_empty_barrier;
2693 bio->bi_private = &wait;
2694 bio->bi_bdev = bdev;
2695 submit_bio(1 << BIO_RW_BARRIER, bio);
2696
2697 wait_for_completion(&wait);
2698
2699 /*
2700 * The driver must store the error location in ->bi_sector, if
2701 * it supports it. For non-stacked drivers, this should be copied
2702 * from rq->sector.
2703 */
2704 if (error_sector)
2705 *error_sector = bio->bi_sector;
2706
2707 ret = 0;
2708 if (!bio_flagged(bio, BIO_UPTODATE))
2709 ret = -EIO;
2710
2711 bio_put(bio);
2712 return ret;
1da177e4
LT
2713}
2714
2715EXPORT_SYMBOL(blkdev_issue_flush);
2716
93d17d3d 2717static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2718{
2719 int rw = rq_data_dir(rq);
2720
2721 if (!blk_fs_request(rq) || !rq->rq_disk)
2722 return;
2723
d72d904a 2724 if (!new_io) {
a362357b 2725 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2726 } else {
1da177e4
LT
2727 disk_round_stats(rq->rq_disk);
2728 rq->rq_disk->in_flight++;
2729 }
2730}
2731
2732/*
2733 * add-request adds a request to the linked list.
2734 * queue lock is held and interrupts disabled, as we muck with the
2735 * request queue list.
2736 */
165125e1 2737static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2738{
2739 drive_stat_acct(req, req->nr_sectors, 1);
2740
1da177e4
LT
2741 /*
2742 * elevator indicated where it wants this request to be
2743 * inserted at elevator_merge time
2744 */
2745 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2746}
2747
2748/*
2749 * disk_round_stats() - Round off the performance stats on a struct
2750 * disk_stats.
2751 *
2752 * The average IO queue length and utilisation statistics are maintained
2753 * by observing the current state of the queue length and the amount of
2754 * time it has been in this state for.
2755 *
2756 * Normally, that accounting is done on IO completion, but that can result
2757 * in more than a second's worth of IO being accounted for within any one
2758 * second, leading to >100% utilisation. To deal with that, we call this
2759 * function to do a round-off before returning the results when reading
2760 * /proc/diskstats. This accounts immediately for all queue usage up to
2761 * the current jiffies and restarts the counters again.
2762 */
2763void disk_round_stats(struct gendisk *disk)
2764{
2765 unsigned long now = jiffies;
2766
b2982649
KC
2767 if (now == disk->stamp)
2768 return;
1da177e4 2769
20e5c81f
KC
2770 if (disk->in_flight) {
2771 __disk_stat_add(disk, time_in_queue,
2772 disk->in_flight * (now - disk->stamp));
2773 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2774 }
1da177e4 2775 disk->stamp = now;
1da177e4
LT
2776}
2777
3eaf840e
JNN
2778EXPORT_SYMBOL_GPL(disk_round_stats);
2779
1da177e4
LT
2780/*
2781 * queue lock must be held
2782 */
165125e1 2783void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2784{
1da177e4
LT
2785 if (unlikely(!q))
2786 return;
2787 if (unlikely(--req->ref_count))
2788 return;
2789
8922e16c
TH
2790 elv_completed_request(q, req);
2791
1da177e4
LT
2792 /*
2793 * Request may not have originated from ll_rw_blk. if not,
2794 * it didn't come out of our reserved rq pools
2795 */
49171e5c 2796 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2797 int rw = rq_data_dir(req);
4aff5e23 2798 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2799
1da177e4 2800 BUG_ON(!list_empty(&req->queuelist));
9817064b 2801 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2802
2803 blk_free_request(q, req);
cb98fc8b 2804 freed_request(q, rw, priv);
1da177e4
LT
2805 }
2806}
2807
6e39b69e
MC
2808EXPORT_SYMBOL_GPL(__blk_put_request);
2809
1da177e4
LT
2810void blk_put_request(struct request *req)
2811{
8922e16c 2812 unsigned long flags;
165125e1 2813 struct request_queue *q = req->q;
8922e16c 2814
1da177e4 2815 /*
8922e16c
TH
2816 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2817 * following if (q) test.
1da177e4 2818 */
8922e16c 2819 if (q) {
1da177e4
LT
2820 spin_lock_irqsave(q->queue_lock, flags);
2821 __blk_put_request(q, req);
2822 spin_unlock_irqrestore(q->queue_lock, flags);
2823 }
2824}
2825
2826EXPORT_SYMBOL(blk_put_request);
2827
2828/**
2829 * blk_end_sync_rq - executes a completion event on a request
2830 * @rq: request to complete
fddfdeaf 2831 * @error: end io status of the request
1da177e4 2832 */
8ffdc655 2833void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2834{
c00895ab 2835 struct completion *waiting = rq->end_io_data;
1da177e4 2836
c00895ab 2837 rq->end_io_data = NULL;
1da177e4
LT
2838 __blk_put_request(rq->q, rq);
2839
2840 /*
2841 * complete last, if this is a stack request the process (and thus
2842 * the rq pointer) could be invalid right after this complete()
2843 */
2844 complete(waiting);
2845}
2846EXPORT_SYMBOL(blk_end_sync_rq);
2847
1da177e4
LT
2848/*
2849 * Has to be called with the request spinlock acquired
2850 */
165125e1 2851static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2852 struct request *next)
2853{
2854 if (!rq_mergeable(req) || !rq_mergeable(next))
2855 return 0;
2856
2857 /*
d6e05edc 2858 * not contiguous
1da177e4
LT
2859 */
2860 if (req->sector + req->nr_sectors != next->sector)
2861 return 0;
2862
2863 if (rq_data_dir(req) != rq_data_dir(next)
2864 || req->rq_disk != next->rq_disk
c00895ab 2865 || next->special)
1da177e4
LT
2866 return 0;
2867
2868 /*
2869 * If we are allowed to merge, then append bio list
2870 * from next to rq and release next. merge_requests_fn
2871 * will have updated segment counts, update sector
2872 * counts here.
2873 */
1aa4f24f 2874 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2875 return 0;
2876
2877 /*
2878 * At this point we have either done a back merge
2879 * or front merge. We need the smaller start_time of
2880 * the merged requests to be the current request
2881 * for accounting purposes.
2882 */
2883 if (time_after(req->start_time, next->start_time))
2884 req->start_time = next->start_time;
2885
2886 req->biotail->bi_next = next->bio;
2887 req->biotail = next->biotail;
2888
2889 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2890
2891 elv_merge_requests(q, req, next);
2892
2893 if (req->rq_disk) {
2894 disk_round_stats(req->rq_disk);
2895 req->rq_disk->in_flight--;
2896 }
2897
22e2c507
JA
2898 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2899
1da177e4
LT
2900 __blk_put_request(q, next);
2901 return 1;
2902}
2903
165125e1
JA
2904static inline int attempt_back_merge(struct request_queue *q,
2905 struct request *rq)
1da177e4
LT
2906{
2907 struct request *next = elv_latter_request(q, rq);
2908
2909 if (next)
2910 return attempt_merge(q, rq, next);
2911
2912 return 0;
2913}
2914
165125e1
JA
2915static inline int attempt_front_merge(struct request_queue *q,
2916 struct request *rq)
1da177e4
LT
2917{
2918 struct request *prev = elv_former_request(q, rq);
2919
2920 if (prev)
2921 return attempt_merge(q, prev, rq);
2922
2923 return 0;
2924}
2925
52d9e675
TH
2926static void init_request_from_bio(struct request *req, struct bio *bio)
2927{
4aff5e23 2928 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2929
2930 /*
2931 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2932 */
2933 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2934 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2935
2936 /*
2937 * REQ_BARRIER implies no merging, but lets make it explicit
2938 */
2939 if (unlikely(bio_barrier(bio)))
4aff5e23 2940 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2941
b31dc66a 2942 if (bio_sync(bio))
4aff5e23 2943 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2944 if (bio_rw_meta(bio))
2945 req->cmd_flags |= REQ_RW_META;
b31dc66a 2946
52d9e675
TH
2947 req->errors = 0;
2948 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2949 req->ioprio = bio_prio(bio);
52d9e675 2950 req->start_time = jiffies;
bc1c56fd 2951 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2952}
2953
165125e1 2954static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2955{
450991bc 2956 struct request *req;
51da90fc
JA
2957 int el_ret, nr_sectors, barrier, err;
2958 const unsigned short prio = bio_prio(bio);
2959 const int sync = bio_sync(bio);
7749a8d4 2960 int rw_flags;
1da177e4 2961
1da177e4 2962 nr_sectors = bio_sectors(bio);
1da177e4
LT
2963
2964 /*
2965 * low level driver can indicate that it wants pages above a
2966 * certain limit bounced to low memory (ie for highmem, or even
2967 * ISA dma in theory)
2968 */
2969 blk_queue_bounce(q, &bio);
2970
1da177e4 2971 barrier = bio_barrier(bio);
797e7dbb 2972 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2973 err = -EOPNOTSUPP;
2974 goto end_io;
2975 }
2976
1da177e4
LT
2977 spin_lock_irq(q->queue_lock);
2978
450991bc 2979 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2980 goto get_rq;
2981
2982 el_ret = elv_merge(q, &req, bio);
2983 switch (el_ret) {
2984 case ELEVATOR_BACK_MERGE:
2985 BUG_ON(!rq_mergeable(req));
2986
1aa4f24f 2987 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2988 break;
2989
2056a782
JA
2990 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2991
1da177e4
LT
2992 req->biotail->bi_next = bio;
2993 req->biotail = bio;
2994 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2995 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2996 drive_stat_acct(req, nr_sectors, 0);
2997 if (!attempt_back_merge(q, req))
2e662b65 2998 elv_merged_request(q, req, el_ret);
1da177e4
LT
2999 goto out;
3000
3001 case ELEVATOR_FRONT_MERGE:
3002 BUG_ON(!rq_mergeable(req));
3003
1aa4f24f 3004 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3005 break;
3006
2056a782
JA
3007 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3008
1da177e4
LT
3009 bio->bi_next = req->bio;
3010 req->bio = bio;
3011
3012 /*
3013 * may not be valid. if the low level driver said
3014 * it didn't need a bounce buffer then it better
3015 * not touch req->buffer either...
3016 */
3017 req->buffer = bio_data(bio);
51da90fc
JA
3018 req->current_nr_sectors = bio_cur_sectors(bio);
3019 req->hard_cur_sectors = req->current_nr_sectors;
3020 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3021 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3022 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3023 drive_stat_acct(req, nr_sectors, 0);
3024 if (!attempt_front_merge(q, req))
2e662b65 3025 elv_merged_request(q, req, el_ret);
1da177e4
LT
3026 goto out;
3027
450991bc 3028 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3029 default:
450991bc 3030 ;
1da177e4
LT
3031 }
3032
450991bc 3033get_rq:
7749a8d4
JA
3034 /*
3035 * This sync check and mask will be re-done in init_request_from_bio(),
3036 * but we need to set it earlier to expose the sync flag to the
3037 * rq allocator and io schedulers.
3038 */
3039 rw_flags = bio_data_dir(bio);
3040 if (sync)
3041 rw_flags |= REQ_RW_SYNC;
3042
1da177e4 3043 /*
450991bc 3044 * Grab a free request. This is might sleep but can not fail.
d6344532 3045 * Returns with the queue unlocked.
450991bc 3046 */
7749a8d4 3047 req = get_request_wait(q, rw_flags, bio);
d6344532 3048
450991bc
NP
3049 /*
3050 * After dropping the lock and possibly sleeping here, our request
3051 * may now be mergeable after it had proven unmergeable (above).
3052 * We don't worry about that case for efficiency. It won't happen
3053 * often, and the elevators are able to handle it.
1da177e4 3054 */
52d9e675 3055 init_request_from_bio(req, bio);
1da177e4 3056
450991bc
NP
3057 spin_lock_irq(q->queue_lock);
3058 if (elv_queue_empty(q))
3059 blk_plug_device(q);
1da177e4
LT
3060 add_request(q, req);
3061out:
4a534f93 3062 if (sync)
1da177e4
LT
3063 __generic_unplug_device(q);
3064
3065 spin_unlock_irq(q->queue_lock);
3066 return 0;
3067
3068end_io:
6712ecf8 3069 bio_endio(bio, err);
1da177e4
LT
3070 return 0;
3071}
3072
3073/*
3074 * If bio->bi_dev is a partition, remap the location
3075 */
3076static inline void blk_partition_remap(struct bio *bio)
3077{
3078 struct block_device *bdev = bio->bi_bdev;
3079
bf2de6f5 3080 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3081 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3082 const int rw = bio_data_dir(bio);
3083
3084 p->sectors[rw] += bio_sectors(bio);
3085 p->ios[rw]++;
1da177e4 3086
1da177e4
LT
3087 bio->bi_sector += p->start_sect;
3088 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3089
3090 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3091 bdev->bd_dev, bio->bi_sector,
3092 bio->bi_sector - p->start_sect);
1da177e4
LT
3093 }
3094}
3095
1da177e4
LT
3096static void handle_bad_sector(struct bio *bio)
3097{
3098 char b[BDEVNAME_SIZE];
3099
3100 printk(KERN_INFO "attempt to access beyond end of device\n");
3101 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3102 bdevname(bio->bi_bdev, b),
3103 bio->bi_rw,
3104 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3105 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3106
3107 set_bit(BIO_EOF, &bio->bi_flags);
3108}
3109
c17bb495
AM
3110#ifdef CONFIG_FAIL_MAKE_REQUEST
3111
3112static DECLARE_FAULT_ATTR(fail_make_request);
3113
3114static int __init setup_fail_make_request(char *str)
3115{
3116 return setup_fault_attr(&fail_make_request, str);
3117}
3118__setup("fail_make_request=", setup_fail_make_request);
3119
3120static int should_fail_request(struct bio *bio)
3121{
3122 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3123 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3124 return should_fail(&fail_make_request, bio->bi_size);
3125
3126 return 0;
3127}
3128
3129static int __init fail_make_request_debugfs(void)
3130{
3131 return init_fault_attr_dentries(&fail_make_request,
3132 "fail_make_request");
3133}
3134
3135late_initcall(fail_make_request_debugfs);
3136
3137#else /* CONFIG_FAIL_MAKE_REQUEST */
3138
3139static inline int should_fail_request(struct bio *bio)
3140{
3141 return 0;
3142}
3143
3144#endif /* CONFIG_FAIL_MAKE_REQUEST */
3145
c07e2b41
JA
3146/*
3147 * Check whether this bio extends beyond the end of the device.
3148 */
3149static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3150{
3151 sector_t maxsector;
3152
3153 if (!nr_sectors)
3154 return 0;
3155
3156 /* Test device or partition size, when known. */
3157 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3158 if (maxsector) {
3159 sector_t sector = bio->bi_sector;
3160
3161 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3162 /*
3163 * This may well happen - the kernel calls bread()
3164 * without checking the size of the device, e.g., when
3165 * mounting a device.
3166 */
3167 handle_bad_sector(bio);
3168 return 1;
3169 }
3170 }
3171
3172 return 0;
3173}
3174
1da177e4
LT
3175/**
3176 * generic_make_request: hand a buffer to its device driver for I/O
3177 * @bio: The bio describing the location in memory and on the device.
3178 *
3179 * generic_make_request() is used to make I/O requests of block
3180 * devices. It is passed a &struct bio, which describes the I/O that needs
3181 * to be done.
3182 *
3183 * generic_make_request() does not return any status. The
3184 * success/failure status of the request, along with notification of
3185 * completion, is delivered asynchronously through the bio->bi_end_io
3186 * function described (one day) else where.
3187 *
3188 * The caller of generic_make_request must make sure that bi_io_vec
3189 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3190 * set to describe the device address, and the
3191 * bi_end_io and optionally bi_private are set to describe how
3192 * completion notification should be signaled.
3193 *
3194 * generic_make_request and the drivers it calls may use bi_next if this
3195 * bio happens to be merged with someone else, and may change bi_dev and
3196 * bi_sector for remaps as it sees fit. So the values of these fields
3197 * should NOT be depended on after the call to generic_make_request.
3198 */
d89d8796 3199static inline void __generic_make_request(struct bio *bio)
1da177e4 3200{
165125e1 3201 struct request_queue *q;
5ddfe969 3202 sector_t old_sector;
1da177e4 3203 int ret, nr_sectors = bio_sectors(bio);
2056a782 3204 dev_t old_dev;
1da177e4
LT
3205
3206 might_sleep();
1da177e4 3207
c07e2b41
JA
3208 if (bio_check_eod(bio, nr_sectors))
3209 goto end_io;
1da177e4
LT
3210
3211 /*
3212 * Resolve the mapping until finished. (drivers are
3213 * still free to implement/resolve their own stacking
3214 * by explicitly returning 0)
3215 *
3216 * NOTE: we don't repeat the blk_size check for each new device.
3217 * Stacking drivers are expected to know what they are doing.
3218 */
5ddfe969 3219 old_sector = -1;
2056a782 3220 old_dev = 0;
1da177e4
LT
3221 do {
3222 char b[BDEVNAME_SIZE];
3223
3224 q = bdev_get_queue(bio->bi_bdev);
3225 if (!q) {
3226 printk(KERN_ERR
3227 "generic_make_request: Trying to access "
3228 "nonexistent block-device %s (%Lu)\n",
3229 bdevname(bio->bi_bdev, b),
3230 (long long) bio->bi_sector);
3231end_io:
6712ecf8 3232 bio_endio(bio, -EIO);
1da177e4
LT
3233 break;
3234 }
3235
4fa253f3 3236 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3237 printk("bio too big device %s (%u > %u)\n",
3238 bdevname(bio->bi_bdev, b),
3239 bio_sectors(bio),
3240 q->max_hw_sectors);
3241 goto end_io;
3242 }
3243
fde6ad22 3244 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3245 goto end_io;
3246
c17bb495
AM
3247 if (should_fail_request(bio))
3248 goto end_io;
3249
1da177e4
LT
3250 /*
3251 * If this device has partitions, remap block n
3252 * of partition p to block n+start(p) of the disk.
3253 */
3254 blk_partition_remap(bio);
3255
5ddfe969 3256 if (old_sector != -1)
4fa253f3 3257 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3258 old_sector);
2056a782
JA
3259
3260 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3261
5ddfe969 3262 old_sector = bio->bi_sector;
2056a782
JA
3263 old_dev = bio->bi_bdev->bd_dev;
3264
c07e2b41
JA
3265 if (bio_check_eod(bio, nr_sectors))
3266 goto end_io;
5ddfe969 3267
1da177e4
LT
3268 ret = q->make_request_fn(q, bio);
3269 } while (ret);
3270}
3271
d89d8796
NB
3272/*
3273 * We only want one ->make_request_fn to be active at a time,
3274 * else stack usage with stacked devices could be a problem.
3275 * So use current->bio_{list,tail} to keep a list of requests
3276 * submited by a make_request_fn function.
3277 * current->bio_tail is also used as a flag to say if
3278 * generic_make_request is currently active in this task or not.
3279 * If it is NULL, then no make_request is active. If it is non-NULL,
3280 * then a make_request is active, and new requests should be added
3281 * at the tail
3282 */
3283void generic_make_request(struct bio *bio)
3284{
3285 if (current->bio_tail) {
3286 /* make_request is active */
3287 *(current->bio_tail) = bio;
3288 bio->bi_next = NULL;
3289 current->bio_tail = &bio->bi_next;
3290 return;
3291 }
3292 /* following loop may be a bit non-obvious, and so deserves some
3293 * explanation.
3294 * Before entering the loop, bio->bi_next is NULL (as all callers
3295 * ensure that) so we have a list with a single bio.
3296 * We pretend that we have just taken it off a longer list, so
3297 * we assign bio_list to the next (which is NULL) and bio_tail
3298 * to &bio_list, thus initialising the bio_list of new bios to be
3299 * added. __generic_make_request may indeed add some more bios
3300 * through a recursive call to generic_make_request. If it
3301 * did, we find a non-NULL value in bio_list and re-enter the loop
3302 * from the top. In this case we really did just take the bio
3303 * of the top of the list (no pretending) and so fixup bio_list and
3304 * bio_tail or bi_next, and call into __generic_make_request again.
3305 *
3306 * The loop was structured like this to make only one call to
3307 * __generic_make_request (which is important as it is large and
3308 * inlined) and to keep the structure simple.
3309 */
3310 BUG_ON(bio->bi_next);
3311 do {
3312 current->bio_list = bio->bi_next;
3313 if (bio->bi_next == NULL)
3314 current->bio_tail = &current->bio_list;
3315 else
3316 bio->bi_next = NULL;
3317 __generic_make_request(bio);
3318 bio = current->bio_list;
3319 } while (bio);
3320 current->bio_tail = NULL; /* deactivate */
3321}
3322
1da177e4
LT
3323EXPORT_SYMBOL(generic_make_request);
3324
3325/**
3326 * submit_bio: submit a bio to the block device layer for I/O
3327 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3328 * @bio: The &struct bio which describes the I/O
3329 *
3330 * submit_bio() is very similar in purpose to generic_make_request(), and
3331 * uses that function to do most of the work. Both are fairly rough
3332 * interfaces, @bio must be presetup and ready for I/O.
3333 *
3334 */
3335void submit_bio(int rw, struct bio *bio)
3336{
3337 int count = bio_sectors(bio);
3338
22e2c507 3339 bio->bi_rw |= rw;
1da177e4 3340
bf2de6f5
JA
3341 /*
3342 * If it's a regular read/write or a barrier with data attached,
3343 * go through the normal accounting stuff before submission.
3344 */
3345 if (!bio_empty_barrier(bio)) {
3346
3347 BIO_BUG_ON(!bio->bi_size);
3348 BIO_BUG_ON(!bio->bi_io_vec);
3349
3350 if (rw & WRITE) {
3351 count_vm_events(PGPGOUT, count);
3352 } else {
3353 task_io_account_read(bio->bi_size);
3354 count_vm_events(PGPGIN, count);
3355 }
3356
3357 if (unlikely(block_dump)) {
3358 char b[BDEVNAME_SIZE];
3359 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3360 current->comm, current->pid,
3361 (rw & WRITE) ? "WRITE" : "READ",
3362 (unsigned long long)bio->bi_sector,
3363 bdevname(bio->bi_bdev,b));
3364 }
1da177e4
LT
3365 }
3366
3367 generic_make_request(bio);
3368}
3369
3370EXPORT_SYMBOL(submit_bio);
3371
93d17d3d 3372static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3373{
3374 if (blk_fs_request(rq)) {
3375 rq->hard_sector += nsect;
3376 rq->hard_nr_sectors -= nsect;
3377
3378 /*
3379 * Move the I/O submission pointers ahead if required.
3380 */
3381 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3382 (rq->sector <= rq->hard_sector)) {
3383 rq->sector = rq->hard_sector;
3384 rq->nr_sectors = rq->hard_nr_sectors;
3385 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3386 rq->current_nr_sectors = rq->hard_cur_sectors;
3387 rq->buffer = bio_data(rq->bio);
3388 }
3389
3390 /*
3391 * if total number of sectors is less than the first segment
3392 * size, something has gone terribly wrong
3393 */
3394 if (rq->nr_sectors < rq->current_nr_sectors) {
3395 printk("blk: request botched\n");
3396 rq->nr_sectors = rq->current_nr_sectors;
3397 }
3398 }
3399}
3400
3401static int __end_that_request_first(struct request *req, int uptodate,
3402 int nr_bytes)
3403{
3404 int total_bytes, bio_nbytes, error, next_idx = 0;
3405 struct bio *bio;
3406
2056a782
JA
3407 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3408
1da177e4
LT
3409 /*
3410 * extend uptodate bool to allow < 0 value to be direct io error
3411 */
3412 error = 0;
3413 if (end_io_error(uptodate))
3414 error = !uptodate ? -EIO : uptodate;
3415
3416 /*
3417 * for a REQ_BLOCK_PC request, we want to carry any eventual
3418 * sense key with us all the way through
3419 */
3420 if (!blk_pc_request(req))
3421 req->errors = 0;
3422
3423 if (!uptodate) {
4aff5e23 3424 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3425 printk("end_request: I/O error, dev %s, sector %llu\n",
3426 req->rq_disk ? req->rq_disk->disk_name : "?",
3427 (unsigned long long)req->sector);
3428 }
3429
d72d904a 3430 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3431 const int rw = rq_data_dir(req);
3432
53e86061 3433 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3434 }
3435
1da177e4
LT
3436 total_bytes = bio_nbytes = 0;
3437 while ((bio = req->bio) != NULL) {
3438 int nbytes;
3439
bf2de6f5
JA
3440 /*
3441 * For an empty barrier request, the low level driver must
3442 * store a potential error location in ->sector. We pass
3443 * that back up in ->bi_sector.
3444 */
3445 if (blk_empty_barrier(req))
3446 bio->bi_sector = req->sector;
3447
1da177e4
LT
3448 if (nr_bytes >= bio->bi_size) {
3449 req->bio = bio->bi_next;
3450 nbytes = bio->bi_size;
5bb23a68 3451 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3452 next_idx = 0;
3453 bio_nbytes = 0;
3454 } else {
3455 int idx = bio->bi_idx + next_idx;
3456
3457 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3458 blk_dump_rq_flags(req, "__end_that");
3459 printk("%s: bio idx %d >= vcnt %d\n",
3460 __FUNCTION__,
3461 bio->bi_idx, bio->bi_vcnt);
3462 break;
3463 }
3464
3465 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3466 BIO_BUG_ON(nbytes > bio->bi_size);
3467
3468 /*
3469 * not a complete bvec done
3470 */
3471 if (unlikely(nbytes > nr_bytes)) {
3472 bio_nbytes += nr_bytes;
3473 total_bytes += nr_bytes;
3474 break;
3475 }
3476
3477 /*
3478 * advance to the next vector
3479 */
3480 next_idx++;
3481 bio_nbytes += nbytes;
3482 }
3483
3484 total_bytes += nbytes;
3485 nr_bytes -= nbytes;
3486
3487 if ((bio = req->bio)) {
3488 /*
3489 * end more in this run, or just return 'not-done'
3490 */
3491 if (unlikely(nr_bytes <= 0))
3492 break;
3493 }
3494 }
3495
3496 /*
3497 * completely done
3498 */
3499 if (!req->bio)
3500 return 0;
3501
3502 /*
3503 * if the request wasn't completed, update state
3504 */
3505 if (bio_nbytes) {
5bb23a68 3506 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3507 bio->bi_idx += next_idx;
3508 bio_iovec(bio)->bv_offset += nr_bytes;
3509 bio_iovec(bio)->bv_len -= nr_bytes;
3510 }
3511
3512 blk_recalc_rq_sectors(req, total_bytes >> 9);
3513 blk_recalc_rq_segments(req);
3514 return 1;
3515}
3516
3517/**
3518 * end_that_request_first - end I/O on a request
3519 * @req: the request being processed
3520 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3521 * @nr_sectors: number of sectors to end I/O on
3522 *
3523 * Description:
3524 * Ends I/O on a number of sectors attached to @req, and sets it up
3525 * for the next range of segments (if any) in the cluster.
3526 *
3527 * Return:
3528 * 0 - we are done with this request, call end_that_request_last()
3529 * 1 - still buffers pending for this request
3530 **/
3531int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3532{
3533 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3534}
3535
3536EXPORT_SYMBOL(end_that_request_first);
3537
3538/**
3539 * end_that_request_chunk - end I/O on a request
3540 * @req: the request being processed
3541 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3542 * @nr_bytes: number of bytes to complete
3543 *
3544 * Description:
3545 * Ends I/O on a number of bytes attached to @req, and sets it up
3546 * for the next range of segments (if any). Like end_that_request_first(),
3547 * but deals with bytes instead of sectors.
3548 *
3549 * Return:
3550 * 0 - we are done with this request, call end_that_request_last()
3551 * 1 - still buffers pending for this request
3552 **/
3553int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3554{
3555 return __end_that_request_first(req, uptodate, nr_bytes);
3556}
3557
3558EXPORT_SYMBOL(end_that_request_chunk);
3559
ff856bad
JA
3560/*
3561 * splice the completion data to a local structure and hand off to
3562 * process_completion_queue() to complete the requests
3563 */
3564static void blk_done_softirq(struct softirq_action *h)
3565{
626ab0e6 3566 struct list_head *cpu_list, local_list;
ff856bad
JA
3567
3568 local_irq_disable();
3569 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3570 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3571 local_irq_enable();
3572
3573 while (!list_empty(&local_list)) {
3574 struct request *rq = list_entry(local_list.next, struct request, donelist);
3575
3576 list_del_init(&rq->donelist);
3577 rq->q->softirq_done_fn(rq);
3578 }
3579}
3580
db47d475 3581static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3582 void *hcpu)
3583{
3584 /*
3585 * If a CPU goes away, splice its entries to the current CPU
3586 * and trigger a run of the softirq
3587 */
8bb78442 3588 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3589 int cpu = (unsigned long) hcpu;
3590
3591 local_irq_disable();
3592 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3593 &__get_cpu_var(blk_cpu_done));
3594 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3595 local_irq_enable();
3596 }
3597
3598 return NOTIFY_OK;
3599}
3600
3601
db47d475 3602static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3603 .notifier_call = blk_cpu_notify,
3604};
3605
ff856bad
JA
3606/**
3607 * blk_complete_request - end I/O on a request
3608 * @req: the request being processed
3609 *
3610 * Description:
3611 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3612 * unless the driver actually implements this in its completion callback
4fa253f3 3613 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3614 * through a softirq handler. The user must have registered a completion
3615 * callback through blk_queue_softirq_done().
3616 **/
3617
3618void blk_complete_request(struct request *req)
3619{
3620 struct list_head *cpu_list;
3621 unsigned long flags;
3622
3623 BUG_ON(!req->q->softirq_done_fn);
3624
3625 local_irq_save(flags);
3626
3627 cpu_list = &__get_cpu_var(blk_cpu_done);
3628 list_add_tail(&req->donelist, cpu_list);
3629 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3630
3631 local_irq_restore(flags);
3632}
3633
3634EXPORT_SYMBOL(blk_complete_request);
3635
1da177e4
LT
3636/*
3637 * queue lock must be held
3638 */
8ffdc655 3639void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3640{
3641 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3642 int error;
3643
3644 /*
3645 * extend uptodate bool to allow < 0 value to be direct io error
3646 */
3647 error = 0;
3648 if (end_io_error(uptodate))
3649 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3650
3651 if (unlikely(laptop_mode) && blk_fs_request(req))
3652 laptop_io_completion();
3653
fd0ff8aa
JA
3654 /*
3655 * Account IO completion. bar_rq isn't accounted as a normal
3656 * IO on queueing nor completion. Accounting the containing
3657 * request is enough.
3658 */
3659 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3660 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3661 const int rw = rq_data_dir(req);
3662
3663 __disk_stat_inc(disk, ios[rw]);
3664 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3665 disk_round_stats(disk);
3666 disk->in_flight--;
3667 }
3668 if (req->end_io)
8ffdc655 3669 req->end_io(req, error);
1da177e4
LT
3670 else
3671 __blk_put_request(req->q, req);
3672}
3673
3674EXPORT_SYMBOL(end_that_request_last);
3675
a0cd1285
JA
3676static inline void __end_request(struct request *rq, int uptodate,
3677 unsigned int nr_bytes, int dequeue)
1da177e4 3678{
a0cd1285
JA
3679 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3680 if (dequeue)
3681 blkdev_dequeue_request(rq);
3682 add_disk_randomness(rq->rq_disk);
3683 end_that_request_last(rq, uptodate);
1da177e4
LT
3684 }
3685}
3686
a0cd1285
JA
3687static unsigned int rq_byte_size(struct request *rq)
3688{
3689 if (blk_fs_request(rq))
3690 return rq->hard_nr_sectors << 9;
3691
3692 return rq->data_len;
3693}
3694
3695/**
3696 * end_queued_request - end all I/O on a queued request
3697 * @rq: the request being processed
3698 * @uptodate: error value or 0/1 uptodate flag
3699 *
3700 * Description:
3701 * Ends all I/O on a request, and removes it from the block layer queues.
3702 * Not suitable for normal IO completion, unless the driver still has
3703 * the request attached to the block layer.
3704 *
3705 **/
3706void end_queued_request(struct request *rq, int uptodate)
3707{
3708 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3709}
3710EXPORT_SYMBOL(end_queued_request);
3711
3712/**
3713 * end_dequeued_request - end all I/O on a dequeued request
3714 * @rq: the request being processed
3715 * @uptodate: error value or 0/1 uptodate flag
3716 *
3717 * Description:
3718 * Ends all I/O on a request. The request must already have been
3719 * dequeued using blkdev_dequeue_request(), as is normally the case
3720 * for most drivers.
3721 *
3722 **/
3723void end_dequeued_request(struct request *rq, int uptodate)
3724{
3725 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3726}
3727EXPORT_SYMBOL(end_dequeued_request);
3728
3729
3730/**
3731 * end_request - end I/O on the current segment of the request
3732 * @rq: the request being processed
3733 * @uptodate: error value or 0/1 uptodate flag
3734 *
3735 * Description:
3736 * Ends I/O on the current segment of a request. If that is the only
3737 * remaining segment, the request is also completed and freed.
3738 *
3739 * This is a remnant of how older block drivers handled IO completions.
3740 * Modern drivers typically end IO on the full request in one go, unless
3741 * they have a residual value to account for. For that case this function
3742 * isn't really useful, unless the residual just happens to be the
3743 * full current segment. In other words, don't use this function in new
3744 * code. Either use end_request_completely(), or the
3745 * end_that_request_chunk() (along with end_that_request_last()) for
3746 * partial completions.
3747 *
3748 **/
3749void end_request(struct request *req, int uptodate)
3750{
3751 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3752}
1da177e4
LT
3753EXPORT_SYMBOL(end_request);
3754
66846572
N
3755static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3756 struct bio *bio)
1da177e4 3757{
4aff5e23
JA
3758 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3759 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3760
3761 rq->nr_phys_segments = bio_phys_segments(q, bio);
3762 rq->nr_hw_segments = bio_hw_segments(q, bio);
3763 rq->current_nr_sectors = bio_cur_sectors(bio);
3764 rq->hard_cur_sectors = rq->current_nr_sectors;
3765 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3766 rq->buffer = bio_data(bio);
0e75f906 3767 rq->data_len = bio->bi_size;
1da177e4
LT
3768
3769 rq->bio = rq->biotail = bio;
1da177e4 3770
66846572
N
3771 if (bio->bi_bdev)
3772 rq->rq_disk = bio->bi_bdev->bd_disk;
3773}
1da177e4
LT
3774
3775int kblockd_schedule_work(struct work_struct *work)
3776{
3777 return queue_work(kblockd_workqueue, work);
3778}
3779
3780EXPORT_SYMBOL(kblockd_schedule_work);
3781
19a75d83 3782void kblockd_flush_work(struct work_struct *work)
1da177e4 3783{
28e53bdd 3784 cancel_work_sync(work);
1da177e4 3785}
19a75d83 3786EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3787
3788int __init blk_dev_init(void)
3789{
ff856bad
JA
3790 int i;
3791
1da177e4
LT
3792 kblockd_workqueue = create_workqueue("kblockd");
3793 if (!kblockd_workqueue)
3794 panic("Failed to create kblockd\n");
3795
3796 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3797 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3798
3799 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3800 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3801
3802 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3803 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3804
0a945022 3805 for_each_possible_cpu(i)
ff856bad
JA
3806 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3807
3808 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3809 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3810
f772b3d9
VT
3811 blk_max_low_pfn = max_low_pfn - 1;
3812 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3813
3814 return 0;
3815}
3816
3817/*
3818 * IO Context helper functions
3819 */
3820void put_io_context(struct io_context *ioc)
3821{
3822 if (ioc == NULL)
3823 return;
3824
3825 BUG_ON(atomic_read(&ioc->refcount) == 0);
3826
3827 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3828 struct cfq_io_context *cic;
3829
334e94de 3830 rcu_read_lock();
1da177e4
LT
3831 if (ioc->aic && ioc->aic->dtor)
3832 ioc->aic->dtor(ioc->aic);
e2d74ac0 3833 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3834 struct rb_node *n = rb_first(&ioc->cic_root);
3835
3836 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3837 cic->dtor(ioc);
3838 }
334e94de 3839 rcu_read_unlock();
1da177e4
LT
3840
3841 kmem_cache_free(iocontext_cachep, ioc);
3842 }
3843}
3844EXPORT_SYMBOL(put_io_context);
3845
3846/* Called by the exitting task */
3847void exit_io_context(void)
3848{
1da177e4 3849 struct io_context *ioc;
e2d74ac0 3850 struct cfq_io_context *cic;
1da177e4 3851
22e2c507 3852 task_lock(current);
1da177e4
LT
3853 ioc = current->io_context;
3854 current->io_context = NULL;
22e2c507 3855 task_unlock(current);
1da177e4 3856
25034d7a 3857 ioc->task = NULL;
1da177e4
LT
3858 if (ioc->aic && ioc->aic->exit)
3859 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3860 if (ioc->cic_root.rb_node != NULL) {
3861 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3862 cic->exit(ioc);
3863 }
25034d7a 3864
1da177e4
LT
3865 put_io_context(ioc);
3866}
3867
3868/*
3869 * If the current task has no IO context then create one and initialise it.
fb3cc432 3870 * Otherwise, return its existing IO context.
1da177e4 3871 *
fb3cc432
NP
3872 * This returned IO context doesn't have a specifically elevated refcount,
3873 * but since the current task itself holds a reference, the context can be
3874 * used in general code, so long as it stays within `current` context.
1da177e4 3875 */
b5deef90 3876static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3877{
3878 struct task_struct *tsk = current;
1da177e4
LT
3879 struct io_context *ret;
3880
1da177e4 3881 ret = tsk->io_context;
fb3cc432
NP
3882 if (likely(ret))
3883 return ret;
1da177e4 3884
b5deef90 3885 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3886 if (ret) {
3887 atomic_set(&ret->refcount, 1);
22e2c507 3888 ret->task = current;
fc46379d 3889 ret->ioprio_changed = 0;
1da177e4
LT
3890 ret->last_waited = jiffies; /* doesn't matter... */
3891 ret->nr_batch_requests = 0; /* because this is 0 */
3892 ret->aic = NULL;
e2d74ac0 3893 ret->cic_root.rb_node = NULL;
4e521c27 3894 ret->ioc_data = NULL;
9f83e45e
ON
3895 /* make sure set_task_ioprio() sees the settings above */
3896 smp_wmb();
fb3cc432
NP
3897 tsk->io_context = ret;
3898 }
1da177e4 3899
fb3cc432
NP
3900 return ret;
3901}
1da177e4 3902
fb3cc432
NP
3903/*
3904 * If the current task has no IO context then create one and initialise it.
3905 * If it does have a context, take a ref on it.
3906 *
3907 * This is always called in the context of the task which submitted the I/O.
3908 */
b5deef90 3909struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3910{
3911 struct io_context *ret;
b5deef90 3912 ret = current_io_context(gfp_flags, node);
fb3cc432 3913 if (likely(ret))
1da177e4 3914 atomic_inc(&ret->refcount);
1da177e4
LT
3915 return ret;
3916}
3917EXPORT_SYMBOL(get_io_context);
3918
3919void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3920{
3921 struct io_context *src = *psrc;
3922 struct io_context *dst = *pdst;
3923
3924 if (src) {
3925 BUG_ON(atomic_read(&src->refcount) == 0);
3926 atomic_inc(&src->refcount);
3927 put_io_context(dst);
3928 *pdst = src;
3929 }
3930}
3931EXPORT_SYMBOL(copy_io_context);
3932
3933void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3934{
3935 struct io_context *temp;
3936 temp = *ioc1;
3937 *ioc1 = *ioc2;
3938 *ioc2 = temp;
3939}
3940EXPORT_SYMBOL(swap_io_context);
3941
3942/*
3943 * sysfs parts below
3944 */
3945struct queue_sysfs_entry {
3946 struct attribute attr;
3947 ssize_t (*show)(struct request_queue *, char *);
3948 ssize_t (*store)(struct request_queue *, const char *, size_t);
3949};
3950
3951static ssize_t
3952queue_var_show(unsigned int var, char *page)
3953{
3954 return sprintf(page, "%d\n", var);
3955}
3956
3957static ssize_t
3958queue_var_store(unsigned long *var, const char *page, size_t count)
3959{
3960 char *p = (char *) page;
3961
3962 *var = simple_strtoul(p, &p, 10);
3963 return count;
3964}
3965
3966static ssize_t queue_requests_show(struct request_queue *q, char *page)
3967{
3968 return queue_var_show(q->nr_requests, (page));
3969}
3970
3971static ssize_t
3972queue_requests_store(struct request_queue *q, const char *page, size_t count)
3973{
3974 struct request_list *rl = &q->rq;
c981ff9f
AV
3975 unsigned long nr;
3976 int ret = queue_var_store(&nr, page, count);
3977 if (nr < BLKDEV_MIN_RQ)
3978 nr = BLKDEV_MIN_RQ;
1da177e4 3979
c981ff9f
AV
3980 spin_lock_irq(q->queue_lock);
3981 q->nr_requests = nr;
1da177e4
LT
3982 blk_queue_congestion_threshold(q);
3983
3984 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3985 blk_set_queue_congested(q, READ);
1da177e4 3986 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3987 blk_clear_queue_congested(q, READ);
1da177e4
LT
3988
3989 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 3990 blk_set_queue_congested(q, WRITE);
1da177e4 3991 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 3992 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
3993
3994 if (rl->count[READ] >= q->nr_requests) {
3995 blk_set_queue_full(q, READ);
3996 } else if (rl->count[READ]+1 <= q->nr_requests) {
3997 blk_clear_queue_full(q, READ);
3998 wake_up(&rl->wait[READ]);
3999 }
4000
4001 if (rl->count[WRITE] >= q->nr_requests) {
4002 blk_set_queue_full(q, WRITE);
4003 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4004 blk_clear_queue_full(q, WRITE);
4005 wake_up(&rl->wait[WRITE]);
4006 }
c981ff9f 4007 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4008 return ret;
4009}
4010
4011static ssize_t queue_ra_show(struct request_queue *q, char *page)
4012{
4013 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4014
4015 return queue_var_show(ra_kb, (page));
4016}
4017
4018static ssize_t
4019queue_ra_store(struct request_queue *q, const char *page, size_t count)
4020{
4021 unsigned long ra_kb;
4022 ssize_t ret = queue_var_store(&ra_kb, page, count);
4023
4024 spin_lock_irq(q->queue_lock);
1da177e4
LT
4025 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4026 spin_unlock_irq(q->queue_lock);
4027
4028 return ret;
4029}
4030
4031static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4032{
4033 int max_sectors_kb = q->max_sectors >> 1;
4034
4035 return queue_var_show(max_sectors_kb, (page));
4036}
4037
4038static ssize_t
4039queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4040{
4041 unsigned long max_sectors_kb,
4042 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4043 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4044 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4045
4046 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4047 return -EINVAL;
4048 /*
4049 * Take the queue lock to update the readahead and max_sectors
4050 * values synchronously:
4051 */
4052 spin_lock_irq(q->queue_lock);
1da177e4
LT
4053 q->max_sectors = max_sectors_kb << 1;
4054 spin_unlock_irq(q->queue_lock);
4055
4056 return ret;
4057}
4058
4059static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4060{
4061 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4062
4063 return queue_var_show(max_hw_sectors_kb, (page));
4064}
4065
563063a8
JA
4066static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4067{
4068 return queue_var_show(q->max_phys_segments, page);
4069}
4070
4071static ssize_t queue_max_segments_store(struct request_queue *q,
4072 const char *page, size_t count)
4073{
4074 unsigned long segments;
4075 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4076
563063a8
JA
4077 spin_lock_irq(q->queue_lock);
4078 q->max_phys_segments = segments;
4079 spin_unlock_irq(q->queue_lock);
1da177e4 4080
563063a8
JA
4081 return ret;
4082}
1da177e4
LT
4083static struct queue_sysfs_entry queue_requests_entry = {
4084 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4085 .show = queue_requests_show,
4086 .store = queue_requests_store,
4087};
4088
4089static struct queue_sysfs_entry queue_ra_entry = {
4090 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4091 .show = queue_ra_show,
4092 .store = queue_ra_store,
4093};
4094
4095static struct queue_sysfs_entry queue_max_sectors_entry = {
4096 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4097 .show = queue_max_sectors_show,
4098 .store = queue_max_sectors_store,
4099};
4100
4101static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4102 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4103 .show = queue_max_hw_sectors_show,
4104};
4105
563063a8
JA
4106static struct queue_sysfs_entry queue_max_segments_entry = {
4107 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4108 .show = queue_max_segments_show,
4109 .store = queue_max_segments_store,
4110};
4111
1da177e4
LT
4112static struct queue_sysfs_entry queue_iosched_entry = {
4113 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4114 .show = elv_iosched_show,
4115 .store = elv_iosched_store,
4116};
4117
4118static struct attribute *default_attrs[] = {
4119 &queue_requests_entry.attr,
4120 &queue_ra_entry.attr,
4121 &queue_max_hw_sectors_entry.attr,
4122 &queue_max_sectors_entry.attr,
563063a8 4123 &queue_max_segments_entry.attr,
1da177e4
LT
4124 &queue_iosched_entry.attr,
4125 NULL,
4126};
4127
4128#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4129
4130static ssize_t
4131queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4132{
4133 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4134 struct request_queue *q =
4135 container_of(kobj, struct request_queue, kobj);
483f4afc 4136 ssize_t res;
1da177e4 4137
1da177e4 4138 if (!entry->show)
6c1852a0 4139 return -EIO;
483f4afc
AV
4140 mutex_lock(&q->sysfs_lock);
4141 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4142 mutex_unlock(&q->sysfs_lock);
4143 return -ENOENT;
4144 }
4145 res = entry->show(q, page);
4146 mutex_unlock(&q->sysfs_lock);
4147 return res;
1da177e4
LT
4148}
4149
4150static ssize_t
4151queue_attr_store(struct kobject *kobj, struct attribute *attr,
4152 const char *page, size_t length)
4153{
4154 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4155 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4156
4157 ssize_t res;
1da177e4 4158
1da177e4 4159 if (!entry->store)
6c1852a0 4160 return -EIO;
483f4afc
AV
4161 mutex_lock(&q->sysfs_lock);
4162 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4163 mutex_unlock(&q->sysfs_lock);
4164 return -ENOENT;
4165 }
4166 res = entry->store(q, page, length);
4167 mutex_unlock(&q->sysfs_lock);
4168 return res;
1da177e4
LT
4169}
4170
4171static struct sysfs_ops queue_sysfs_ops = {
4172 .show = queue_attr_show,
4173 .store = queue_attr_store,
4174};
4175
93d17d3d 4176static struct kobj_type queue_ktype = {
1da177e4
LT
4177 .sysfs_ops = &queue_sysfs_ops,
4178 .default_attrs = default_attrs,
483f4afc 4179 .release = blk_release_queue,
1da177e4
LT
4180};
4181
4182int blk_register_queue(struct gendisk *disk)
4183{
4184 int ret;
4185
165125e1 4186 struct request_queue *q = disk->queue;
1da177e4
LT
4187
4188 if (!q || !q->request_fn)
4189 return -ENXIO;
4190
4191 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4192
483f4afc 4193 ret = kobject_add(&q->kobj);
1da177e4
LT
4194 if (ret < 0)
4195 return ret;
4196
483f4afc
AV
4197 kobject_uevent(&q->kobj, KOBJ_ADD);
4198
1da177e4
LT
4199 ret = elv_register_queue(q);
4200 if (ret) {
483f4afc
AV
4201 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4202 kobject_del(&q->kobj);
1da177e4
LT
4203 return ret;
4204 }
4205
4206 return 0;
4207}
4208
4209void blk_unregister_queue(struct gendisk *disk)
4210{
165125e1 4211 struct request_queue *q = disk->queue;
1da177e4
LT
4212
4213 if (q && q->request_fn) {
4214 elv_unregister_queue(q);
4215
483f4afc
AV
4216 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4217 kobject_del(&q->kobj);
1da177e4
LT
4218 kobject_put(&disk->kobj);
4219 }
4220}