[PATCH] i2c: Prevent deadlock on i2c client registration
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
ff856bad
JA
28#include <linux/interrupt.h>
29#include <linux/cpu.h>
2056a782 30#include <linux/blktrace_api.h>
1da177e4
LT
31
32/*
33 * for max sense size
34 */
35#include <scsi/scsi_cmnd.h>
36
37static void blk_unplug_work(void *data);
38static void blk_unplug_timeout(unsigned long data);
93d17d3d 39static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
40static void init_request_from_bio(struct request *req, struct bio *bio);
41static int __make_request(request_queue_t *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
46static kmem_cache_t *request_cachep;
47
48/*
49 * For queue allocation
50 */
51static kmem_cache_t *requestq_cachep;
52
53/*
54 * For io context allocations
55 */
56static kmem_cache_t *iocontext_cachep;
57
58static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 };
62
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
67
68unsigned long blk_max_low_pfn, blk_max_pfn;
69
70EXPORT_SYMBOL(blk_max_low_pfn);
71EXPORT_SYMBOL(blk_max_pfn);
72
ff856bad
JA
73static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74
1da177e4
LT
75/* Amount of time in which a process may batch requests */
76#define BLK_BATCH_TIME (HZ/50UL)
77
78/* Number of requests a "batching" process may submit */
79#define BLK_BATCH_REQ 32
80
81/*
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
85 */
86static inline int queue_congestion_on_threshold(struct request_queue *q)
87{
88 return q->nr_congestion_on;
89}
90
91/*
92 * The threshold at which a queue is considered to be uncongested
93 */
94static inline int queue_congestion_off_threshold(struct request_queue *q)
95{
96 return q->nr_congestion_off;
97}
98
99static void blk_queue_congestion_threshold(struct request_queue *q)
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
114/*
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
118 */
119static void clear_queue_congested(request_queue_t *q, int rw)
120{
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
123
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
129}
130
131/*
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
134 */
135static void set_queue_congested(request_queue_t *q, int rw)
136{
137 enum bdi_state bit;
138
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
141}
142
143/**
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
146 *
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
149 *
150 * Will return NULL if the request queue cannot be located.
151 */
152struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
153{
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
156
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
160}
161
162EXPORT_SYMBOL(blk_get_backing_dev_info);
163
164void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
165{
166 q->activity_fn = fn;
167 q->activity_data = data;
168}
169
170EXPORT_SYMBOL(blk_queue_activity_fn);
171
172/**
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
176 *
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
181 *
182 */
183void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
184{
185 q->prep_rq_fn = pfn;
186}
187
188EXPORT_SYMBOL(blk_queue_prep_rq);
189
190/**
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
194 *
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
205 */
206void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
207{
208 q->merge_bvec_fn = mbfn;
209}
210
211EXPORT_SYMBOL(blk_queue_merge_bvec);
212
ff856bad
JA
213void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
214{
215 q->softirq_done_fn = fn;
216}
217
218EXPORT_SYMBOL(blk_queue_softirq_done);
219
1da177e4
LT
220/**
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
224 *
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
235 *
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
241 **/
242void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
243{
244 /*
245 * set defaults
246 */
247 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
259
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
264
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
266
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
269
270 /*
271 * by default assume old behaviour and bounce for any highmem page
272 */
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
274
275 blk_queue_activity_fn(q, NULL, NULL);
1da177e4
LT
276}
277
278EXPORT_SYMBOL(blk_queue_make_request);
279
280static inline void rq_init(request_queue_t *q, struct request *rq)
281{
282 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 283 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
284
285 rq->errors = 0;
286 rq->rq_status = RQ_ACTIVE;
287 rq->bio = rq->biotail = NULL;
22e2c507 288 rq->ioprio = 0;
1da177e4
LT
289 rq->buffer = NULL;
290 rq->ref_count = 1;
291 rq->q = q;
292 rq->waiting = NULL;
293 rq->special = NULL;
294 rq->data_len = 0;
295 rq->data = NULL;
df46b9a4 296 rq->nr_phys_segments = 0;
1da177e4
LT
297 rq->sense = NULL;
298 rq->end_io = NULL;
299 rq->end_io_data = NULL;
ff856bad 300 rq->completion_data = NULL;
1da177e4
LT
301}
302
303/**
304 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
308 *
309 * Description:
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
314 *
315 **/
797e7dbb
TH
316int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
318{
319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
322 return -EINVAL;
323 }
324
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
333 return -EINVAL;
1da177e4 334 }
797e7dbb 335
60481b12 336 q->ordered = ordered;
797e7dbb
TH
337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
339
340 return 0;
1da177e4
LT
341}
342
343EXPORT_SYMBOL(blk_queue_ordered);
344
345/**
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
349 *
350 * Description:
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
353 *
354 **/
355void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
356{
357 q->issue_flush_fn = iff;
358}
359
360EXPORT_SYMBOL(blk_queue_issue_flush_fn);
361
362/*
363 * Cache flushing for ordered writes handling
364 */
797e7dbb 365inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 366{
797e7dbb
TH
367 if (!q->ordseq)
368 return 0;
369 return 1 << ffz(q->ordseq);
1da177e4
LT
370}
371
797e7dbb 372unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 373{
1da177e4
LT
374 request_queue_t *q = rq->q;
375
797e7dbb 376 BUG_ON(q->ordseq == 0);
8922e16c 377
797e7dbb
TH
378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 384
797e7dbb
TH
385 if ((rq->flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
387 return QUEUE_ORDSEQ_DRAIN;
388 else
389 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
390}
391
797e7dbb 392void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 393{
797e7dbb
TH
394 struct request *rq;
395 int uptodate;
1da177e4 396
797e7dbb
TH
397 if (error && !q->orderr)
398 q->orderr = error;
1da177e4 399
797e7dbb
TH
400 BUG_ON(q->ordseq & seq);
401 q->ordseq |= seq;
1da177e4 402
797e7dbb
TH
403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
404 return;
1da177e4
LT
405
406 /*
797e7dbb 407 * Okay, sequence complete.
1da177e4 408 */
797e7dbb
TH
409 rq = q->orig_bar_rq;
410 uptodate = q->orderr ? q->orderr : 1;
1da177e4 411
797e7dbb 412 q->ordseq = 0;
1da177e4 413
797e7dbb
TH
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
1da177e4
LT
416}
417
797e7dbb 418static void pre_flush_end_io(struct request *rq, int error)
1da177e4 419{
797e7dbb
TH
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
422}
1da177e4 423
797e7dbb
TH
424static void bar_end_io(struct request *rq, int error)
425{
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
428}
1da177e4 429
797e7dbb
TH
430static void post_flush_end_io(struct request *rq, int error)
431{
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
434}
1da177e4 435
797e7dbb
TH
436static void queue_flush(request_queue_t *q, unsigned which)
437{
438 struct request *rq;
439 rq_end_io_fn *end_io;
1da177e4 440
797e7dbb
TH
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
444 } else {
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
1da177e4 447 }
797e7dbb
TH
448
449 rq_init(q, rq);
450 rq->flags = REQ_HARDBARRIER;
451 rq->elevator_private = NULL;
452 rq->rq_disk = q->bar_rq.rq_disk;
453 rq->rl = NULL;
454 rq->end_io = end_io;
455 q->prepare_flush_fn(q, rq);
456
30e9656c 457 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
458}
459
797e7dbb
TH
460static inline struct request *start_ordered(request_queue_t *q,
461 struct request *rq)
1da177e4 462{
797e7dbb
TH
463 q->bi_size = 0;
464 q->orderr = 0;
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
467
468 /*
469 * Prep proxy barrier request.
470 */
471 blkdev_dequeue_request(rq);
472 q->orig_bar_rq = rq;
473 rq = &q->bar_rq;
474 rq_init(q, rq);
475 rq->flags = bio_data_dir(q->orig_bar_rq->bio);
476 rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
477 rq->elevator_private = NULL;
478 rq->rl = NULL;
479 init_request_from_bio(rq, q->orig_bar_rq->bio);
480 rq->end_io = bar_end_io;
481
482 /*
483 * Queue ordered sequence. As we stack them at the head, we
484 * need to queue in reverse order. Note that we rely on that
485 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
486 * request gets inbetween ordered sequence.
487 */
488 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
489 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
490 else
491 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
492
30e9656c 493 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
494
495 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
496 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
497 rq = &q->pre_flush_rq;
498 } else
499 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 500
797e7dbb
TH
501 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
502 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
503 else
504 rq = NULL;
505
506 return rq;
1da177e4
LT
507}
508
797e7dbb 509int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 510{
9a7a67af 511 struct request *rq = *rqp;
797e7dbb 512 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 513
797e7dbb
TH
514 if (!q->ordseq) {
515 if (!is_barrier)
516 return 1;
1da177e4 517
797e7dbb
TH
518 if (q->next_ordered != QUEUE_ORDERED_NONE) {
519 *rqp = start_ordered(q, rq);
520 return 1;
521 } else {
522 /*
523 * This can happen when the queue switches to
524 * ORDERED_NONE while this request is on it.
525 */
526 blkdev_dequeue_request(rq);
527 end_that_request_first(rq, -EOPNOTSUPP,
528 rq->hard_nr_sectors);
529 end_that_request_last(rq, -EOPNOTSUPP);
530 *rqp = NULL;
531 return 0;
532 }
533 }
1da177e4 534
9a7a67af
JA
535 /*
536 * Ordered sequence in progress
537 */
538
539 /* Special requests are not subject to ordering rules. */
540 if (!blk_fs_request(rq) &&
541 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
542 return 1;
543
797e7dbb 544 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 545 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
546 if (is_barrier && rq != &q->bar_rq)
547 *rqp = NULL;
9a7a67af
JA
548 } else {
549 /* Ordered by draining. Wait for turn. */
550 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
551 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
552 *rqp = NULL;
1da177e4
LT
553 }
554
555 return 1;
556}
557
797e7dbb 558static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 559{
797e7dbb
TH
560 request_queue_t *q = bio->bi_private;
561 struct bio_vec *bvec;
562 int i;
563
564 /*
565 * This is dry run, restore bio_sector and size. We'll finish
566 * this request again with the original bi_end_io after an
567 * error occurs or post flush is complete.
568 */
569 q->bi_size += bytes;
570
571 if (bio->bi_size)
572 return 1;
573
574 /* Rewind bvec's */
575 bio->bi_idx = 0;
576 bio_for_each_segment(bvec, bio, i) {
577 bvec->bv_len += bvec->bv_offset;
578 bvec->bv_offset = 0;
579 }
580
581 /* Reset bio */
582 set_bit(BIO_UPTODATE, &bio->bi_flags);
583 bio->bi_size = q->bi_size;
584 bio->bi_sector -= (q->bi_size >> 9);
585 q->bi_size = 0;
586
587 return 0;
1da177e4 588}
1da177e4 589
797e7dbb
TH
590static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
591 unsigned int nbytes, int error)
1da177e4 592{
797e7dbb
TH
593 request_queue_t *q = rq->q;
594 bio_end_io_t *endio;
595 void *private;
596
597 if (&q->bar_rq != rq)
598 return 0;
599
600 /*
601 * Okay, this is the barrier request in progress, dry finish it.
602 */
603 if (error && !q->orderr)
604 q->orderr = error;
605
606 endio = bio->bi_end_io;
607 private = bio->bi_private;
608 bio->bi_end_io = flush_dry_bio_endio;
609 bio->bi_private = q;
610
611 bio_endio(bio, nbytes, error);
612
613 bio->bi_end_io = endio;
614 bio->bi_private = private;
615
616 return 1;
1da177e4 617}
1da177e4
LT
618
619/**
620 * blk_queue_bounce_limit - set bounce buffer limit for queue
621 * @q: the request queue for the device
622 * @dma_addr: bus address limit
623 *
624 * Description:
625 * Different hardware can have different requirements as to what pages
626 * it can do I/O directly to. A low level driver can call
627 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 628 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
629 **/
630void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
631{
632 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
633 int dma = 0;
634
635 q->bounce_gfp = GFP_NOIO;
636#if BITS_PER_LONG == 64
637 /* Assume anything <= 4GB can be handled by IOMMU.
638 Actually some IOMMUs can handle everything, but I don't
639 know of a way to test this here. */
8269730b 640 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
641 dma = 1;
642 q->bounce_pfn = max_low_pfn;
643#else
644 if (bounce_pfn < blk_max_low_pfn)
645 dma = 1;
646 q->bounce_pfn = bounce_pfn;
647#endif
648 if (dma) {
1da177e4
LT
649 init_emergency_isa_pool();
650 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
651 q->bounce_pfn = bounce_pfn;
652 }
1da177e4
LT
653}
654
655EXPORT_SYMBOL(blk_queue_bounce_limit);
656
657/**
658 * blk_queue_max_sectors - set max sectors for a request for this queue
659 * @q: the request queue for the device
660 * @max_sectors: max sectors in the usual 512b unit
661 *
662 * Description:
663 * Enables a low level driver to set an upper limit on the size of
664 * received requests.
665 **/
2cb2e147 666void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
667{
668 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
669 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
670 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
671 }
672
defd94b7
MC
673 if (BLK_DEF_MAX_SECTORS > max_sectors)
674 q->max_hw_sectors = q->max_sectors = max_sectors;
675 else {
676 q->max_sectors = BLK_DEF_MAX_SECTORS;
677 q->max_hw_sectors = max_sectors;
678 }
1da177e4
LT
679}
680
681EXPORT_SYMBOL(blk_queue_max_sectors);
682
683/**
684 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
685 * @q: the request queue for the device
686 * @max_segments: max number of segments
687 *
688 * Description:
689 * Enables a low level driver to set an upper limit on the number of
690 * physical data segments in a request. This would be the largest sized
691 * scatter list the driver could handle.
692 **/
693void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
694{
695 if (!max_segments) {
696 max_segments = 1;
697 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
698 }
699
700 q->max_phys_segments = max_segments;
701}
702
703EXPORT_SYMBOL(blk_queue_max_phys_segments);
704
705/**
706 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
707 * @q: the request queue for the device
708 * @max_segments: max number of segments
709 *
710 * Description:
711 * Enables a low level driver to set an upper limit on the number of
712 * hw data segments in a request. This would be the largest number of
713 * address/length pairs the host adapter can actually give as once
714 * to the device.
715 **/
716void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
717{
718 if (!max_segments) {
719 max_segments = 1;
720 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
721 }
722
723 q->max_hw_segments = max_segments;
724}
725
726EXPORT_SYMBOL(blk_queue_max_hw_segments);
727
728/**
729 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
730 * @q: the request queue for the device
731 * @max_size: max size of segment in bytes
732 *
733 * Description:
734 * Enables a low level driver to set an upper limit on the size of a
735 * coalesced segment
736 **/
737void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
738{
739 if (max_size < PAGE_CACHE_SIZE) {
740 max_size = PAGE_CACHE_SIZE;
741 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
742 }
743
744 q->max_segment_size = max_size;
745}
746
747EXPORT_SYMBOL(blk_queue_max_segment_size);
748
749/**
750 * blk_queue_hardsect_size - set hardware sector size for the queue
751 * @q: the request queue for the device
752 * @size: the hardware sector size, in bytes
753 *
754 * Description:
755 * This should typically be set to the lowest possible sector size
756 * that the hardware can operate on (possible without reverting to
757 * even internal read-modify-write operations). Usually the default
758 * of 512 covers most hardware.
759 **/
760void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
761{
762 q->hardsect_size = size;
763}
764
765EXPORT_SYMBOL(blk_queue_hardsect_size);
766
767/*
768 * Returns the minimum that is _not_ zero, unless both are zero.
769 */
770#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
771
772/**
773 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
774 * @t: the stacking driver (top)
775 * @b: the underlying device (bottom)
776 **/
777void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
778{
779 /* zero is "infinity" */
defd94b7
MC
780 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
781 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
782
783 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
784 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
785 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
786 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
787 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
788 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
789}
790
791EXPORT_SYMBOL(blk_queue_stack_limits);
792
793/**
794 * blk_queue_segment_boundary - set boundary rules for segment merging
795 * @q: the request queue for the device
796 * @mask: the memory boundary mask
797 **/
798void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
799{
800 if (mask < PAGE_CACHE_SIZE - 1) {
801 mask = PAGE_CACHE_SIZE - 1;
802 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
803 }
804
805 q->seg_boundary_mask = mask;
806}
807
808EXPORT_SYMBOL(blk_queue_segment_boundary);
809
810/**
811 * blk_queue_dma_alignment - set dma length and memory alignment
812 * @q: the request queue for the device
813 * @mask: alignment mask
814 *
815 * description:
816 * set required memory and length aligment for direct dma transactions.
817 * this is used when buiding direct io requests for the queue.
818 *
819 **/
820void blk_queue_dma_alignment(request_queue_t *q, int mask)
821{
822 q->dma_alignment = mask;
823}
824
825EXPORT_SYMBOL(blk_queue_dma_alignment);
826
827/**
828 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
829 * @q: The request queue for the device
830 * @tag: The tag of the request
831 *
832 * Notes:
833 * Should be used when a device returns a tag and you want to match
834 * it with a request.
835 *
836 * no locks need be held.
837 **/
838struct request *blk_queue_find_tag(request_queue_t *q, int tag)
839{
840 struct blk_queue_tag *bqt = q->queue_tags;
841
ba025082 842 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1da177e4
LT
843 return NULL;
844
845 return bqt->tag_index[tag];
846}
847
848EXPORT_SYMBOL(blk_queue_find_tag);
849
850/**
492dfb48
JB
851 * __blk_free_tags - release a given set of tag maintenance info
852 * @bqt: the tag map to free
1da177e4 853 *
492dfb48
JB
854 * Tries to free the specified @bqt@. Returns true if it was
855 * actually freed and false if there are still references using it
856 */
857static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 858{
492dfb48 859 int retval;
1da177e4 860
492dfb48
JB
861 retval = atomic_dec_and_test(&bqt->refcnt);
862 if (retval) {
1da177e4
LT
863 BUG_ON(bqt->busy);
864 BUG_ON(!list_empty(&bqt->busy_list));
865
866 kfree(bqt->tag_index);
867 bqt->tag_index = NULL;
868
869 kfree(bqt->tag_map);
870 bqt->tag_map = NULL;
871
872 kfree(bqt);
492dfb48 873
1da177e4
LT
874 }
875
492dfb48
JB
876 return retval;
877}
878
879/**
880 * __blk_queue_free_tags - release tag maintenance info
881 * @q: the request queue for the device
882 *
883 * Notes:
884 * blk_cleanup_queue() will take care of calling this function, if tagging
885 * has been used. So there's no need to call this directly.
886 **/
887static void __blk_queue_free_tags(request_queue_t *q)
888{
889 struct blk_queue_tag *bqt = q->queue_tags;
890
891 if (!bqt)
892 return;
893
894 __blk_free_tags(bqt);
895
1da177e4
LT
896 q->queue_tags = NULL;
897 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
898}
899
492dfb48
JB
900
901/**
902 * blk_free_tags - release a given set of tag maintenance info
903 * @bqt: the tag map to free
904 *
905 * For externally managed @bqt@ frees the map. Callers of this
906 * function must guarantee to have released all the queues that
907 * might have been using this tag map.
908 */
909void blk_free_tags(struct blk_queue_tag *bqt)
910{
911 if (unlikely(!__blk_free_tags(bqt)))
912 BUG();
913}
914EXPORT_SYMBOL(blk_free_tags);
915
1da177e4
LT
916/**
917 * blk_queue_free_tags - release tag maintenance info
918 * @q: the request queue for the device
919 *
920 * Notes:
921 * This is used to disabled tagged queuing to a device, yet leave
922 * queue in function.
923 **/
924void blk_queue_free_tags(request_queue_t *q)
925{
926 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
927}
928
929EXPORT_SYMBOL(blk_queue_free_tags);
930
931static int
932init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
933{
1da177e4
LT
934 struct request **tag_index;
935 unsigned long *tag_map;
fa72b903 936 int nr_ulongs;
1da177e4 937
492dfb48 938 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
939 depth = q->nr_requests * 2;
940 printk(KERN_ERR "%s: adjusted depth to %d\n",
941 __FUNCTION__, depth);
942 }
943
f68110fc 944 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
945 if (!tag_index)
946 goto fail;
947
f7d37d02 948 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 949 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
950 if (!tag_map)
951 goto fail;
952
ba025082 953 tags->real_max_depth = depth;
1da177e4 954 tags->max_depth = depth;
1da177e4
LT
955 tags->tag_index = tag_index;
956 tags->tag_map = tag_map;
957
1da177e4
LT
958 return 0;
959fail:
960 kfree(tag_index);
961 return -ENOMEM;
962}
963
492dfb48
JB
964static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
965 int depth)
966{
967 struct blk_queue_tag *tags;
968
969 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
970 if (!tags)
971 goto fail;
972
973 if (init_tag_map(q, tags, depth))
974 goto fail;
975
976 INIT_LIST_HEAD(&tags->busy_list);
977 tags->busy = 0;
978 atomic_set(&tags->refcnt, 1);
979 return tags;
980fail:
981 kfree(tags);
982 return NULL;
983}
984
985/**
986 * blk_init_tags - initialize the tag info for an external tag map
987 * @depth: the maximum queue depth supported
988 * @tags: the tag to use
989 **/
990struct blk_queue_tag *blk_init_tags(int depth)
991{
992 return __blk_queue_init_tags(NULL, depth);
993}
994EXPORT_SYMBOL(blk_init_tags);
995
1da177e4
LT
996/**
997 * blk_queue_init_tags - initialize the queue tag info
998 * @q: the request queue for the device
999 * @depth: the maximum queue depth supported
1000 * @tags: the tag to use
1001 **/
1002int blk_queue_init_tags(request_queue_t *q, int depth,
1003 struct blk_queue_tag *tags)
1004{
1005 int rc;
1006
1007 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1008
1009 if (!tags && !q->queue_tags) {
492dfb48 1010 tags = __blk_queue_init_tags(q, depth);
1da177e4 1011
492dfb48 1012 if (!tags)
1da177e4 1013 goto fail;
1da177e4
LT
1014 } else if (q->queue_tags) {
1015 if ((rc = blk_queue_resize_tags(q, depth)))
1016 return rc;
1017 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1018 return 0;
1019 } else
1020 atomic_inc(&tags->refcnt);
1021
1022 /*
1023 * assign it, all done
1024 */
1025 q->queue_tags = tags;
1026 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1027 return 0;
1028fail:
1029 kfree(tags);
1030 return -ENOMEM;
1031}
1032
1033EXPORT_SYMBOL(blk_queue_init_tags);
1034
1035/**
1036 * blk_queue_resize_tags - change the queueing depth
1037 * @q: the request queue for the device
1038 * @new_depth: the new max command queueing depth
1039 *
1040 * Notes:
1041 * Must be called with the queue lock held.
1042 **/
1043int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1044{
1045 struct blk_queue_tag *bqt = q->queue_tags;
1046 struct request **tag_index;
1047 unsigned long *tag_map;
fa72b903 1048 int max_depth, nr_ulongs;
1da177e4
LT
1049
1050 if (!bqt)
1051 return -ENXIO;
1052
ba025082
TH
1053 /*
1054 * if we already have large enough real_max_depth. just
1055 * adjust max_depth. *NOTE* as requests with tag value
1056 * between new_depth and real_max_depth can be in-flight, tag
1057 * map can not be shrunk blindly here.
1058 */
1059 if (new_depth <= bqt->real_max_depth) {
1060 bqt->max_depth = new_depth;
1061 return 0;
1062 }
1063
492dfb48
JB
1064 /*
1065 * Currently cannot replace a shared tag map with a new
1066 * one, so error out if this is the case
1067 */
1068 if (atomic_read(&bqt->refcnt) != 1)
1069 return -EBUSY;
1070
1da177e4
LT
1071 /*
1072 * save the old state info, so we can copy it back
1073 */
1074 tag_index = bqt->tag_index;
1075 tag_map = bqt->tag_map;
ba025082 1076 max_depth = bqt->real_max_depth;
1da177e4
LT
1077
1078 if (init_tag_map(q, bqt, new_depth))
1079 return -ENOMEM;
1080
1081 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1082 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1083 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1084
1085 kfree(tag_index);
1086 kfree(tag_map);
1087 return 0;
1088}
1089
1090EXPORT_SYMBOL(blk_queue_resize_tags);
1091
1092/**
1093 * blk_queue_end_tag - end tag operations for a request
1094 * @q: the request queue for the device
1095 * @rq: the request that has completed
1096 *
1097 * Description:
1098 * Typically called when end_that_request_first() returns 0, meaning
1099 * all transfers have been done for a request. It's important to call
1100 * this function before end_that_request_last(), as that will put the
1101 * request back on the free list thus corrupting the internal tag list.
1102 *
1103 * Notes:
1104 * queue lock must be held.
1105 **/
1106void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1107{
1108 struct blk_queue_tag *bqt = q->queue_tags;
1109 int tag = rq->tag;
1110
1111 BUG_ON(tag == -1);
1112
ba025082 1113 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1114 /*
1115 * This can happen after tag depth has been reduced.
1116 * FIXME: how about a warning or info message here?
1117 */
1da177e4
LT
1118 return;
1119
1120 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1121 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1122 __FUNCTION__, tag);
1da177e4
LT
1123 return;
1124 }
1125
1126 list_del_init(&rq->queuelist);
1127 rq->flags &= ~REQ_QUEUED;
1128 rq->tag = -1;
1129
1130 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1131 printk(KERN_ERR "%s: tag %d is missing\n",
1132 __FUNCTION__, tag);
1da177e4
LT
1133
1134 bqt->tag_index[tag] = NULL;
1135 bqt->busy--;
1136}
1137
1138EXPORT_SYMBOL(blk_queue_end_tag);
1139
1140/**
1141 * blk_queue_start_tag - find a free tag and assign it
1142 * @q: the request queue for the device
1143 * @rq: the block request that needs tagging
1144 *
1145 * Description:
1146 * This can either be used as a stand-alone helper, or possibly be
1147 * assigned as the queue &prep_rq_fn (in which case &struct request
1148 * automagically gets a tag assigned). Note that this function
1149 * assumes that any type of request can be queued! if this is not
1150 * true for your device, you must check the request type before
1151 * calling this function. The request will also be removed from
1152 * the request queue, so it's the drivers responsibility to readd
1153 * it if it should need to be restarted for some reason.
1154 *
1155 * Notes:
1156 * queue lock must be held.
1157 **/
1158int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1159{
1160 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1161 int tag;
1da177e4
LT
1162
1163 if (unlikely((rq->flags & REQ_QUEUED))) {
1164 printk(KERN_ERR
040c928c
TH
1165 "%s: request %p for device [%s] already tagged %d",
1166 __FUNCTION__, rq,
1167 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1168 BUG();
1169 }
1170
2bf0fdad
TH
1171 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1172 if (tag >= bqt->max_depth)
1173 return 1;
1da177e4 1174
1da177e4
LT
1175 __set_bit(tag, bqt->tag_map);
1176
1177 rq->flags |= REQ_QUEUED;
1178 rq->tag = tag;
1179 bqt->tag_index[tag] = rq;
1180 blkdev_dequeue_request(rq);
1181 list_add(&rq->queuelist, &bqt->busy_list);
1182 bqt->busy++;
1183 return 0;
1184}
1185
1186EXPORT_SYMBOL(blk_queue_start_tag);
1187
1188/**
1189 * blk_queue_invalidate_tags - invalidate all pending tags
1190 * @q: the request queue for the device
1191 *
1192 * Description:
1193 * Hardware conditions may dictate a need to stop all pending requests.
1194 * In this case, we will safely clear the block side of the tag queue and
1195 * readd all requests to the request queue in the right order.
1196 *
1197 * Notes:
1198 * queue lock must be held.
1199 **/
1200void blk_queue_invalidate_tags(request_queue_t *q)
1201{
1202 struct blk_queue_tag *bqt = q->queue_tags;
1203 struct list_head *tmp, *n;
1204 struct request *rq;
1205
1206 list_for_each_safe(tmp, n, &bqt->busy_list) {
1207 rq = list_entry_rq(tmp);
1208
1209 if (rq->tag == -1) {
040c928c
TH
1210 printk(KERN_ERR
1211 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4
LT
1212 list_del_init(&rq->queuelist);
1213 rq->flags &= ~REQ_QUEUED;
1214 } else
1215 blk_queue_end_tag(q, rq);
1216
1217 rq->flags &= ~REQ_STARTED;
1218 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1219 }
1220}
1221
1222EXPORT_SYMBOL(blk_queue_invalidate_tags);
1223
64100099 1224static const char * const rq_flags[] = {
1da177e4
LT
1225 "REQ_RW",
1226 "REQ_FAILFAST",
8922e16c 1227 "REQ_SORTED",
1da177e4
LT
1228 "REQ_SOFTBARRIER",
1229 "REQ_HARDBARRIER",
797e7dbb 1230 "REQ_FUA",
1da177e4
LT
1231 "REQ_CMD",
1232 "REQ_NOMERGE",
1233 "REQ_STARTED",
1234 "REQ_DONTPREP",
1235 "REQ_QUEUED",
cb98fc8b 1236 "REQ_ELVPRIV",
1da177e4
LT
1237 "REQ_PC",
1238 "REQ_BLOCK_PC",
1239 "REQ_SENSE",
1240 "REQ_FAILED",
1241 "REQ_QUIET",
1242 "REQ_SPECIAL",
1243 "REQ_DRIVE_CMD",
1244 "REQ_DRIVE_TASK",
1245 "REQ_DRIVE_TASKFILE",
1246 "REQ_PREEMPT",
1247 "REQ_PM_SUSPEND",
1248 "REQ_PM_RESUME",
1249 "REQ_PM_SHUTDOWN",
797e7dbb 1250 "REQ_ORDERED_COLOR",
1da177e4
LT
1251};
1252
1253void blk_dump_rq_flags(struct request *rq, char *msg)
1254{
1255 int bit;
1256
1257 printk("%s: dev %s: flags = ", msg,
1258 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1259 bit = 0;
1260 do {
1261 if (rq->flags & (1 << bit))
1262 printk("%s ", rq_flags[bit]);
1263 bit++;
1264 } while (bit < __REQ_NR_BITS);
1265
1266 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1267 rq->nr_sectors,
1268 rq->current_nr_sectors);
1269 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1270
1271 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1272 printk("cdb: ");
1273 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1274 printk("%02x ", rq->cmd[bit]);
1275 printk("\n");
1276 }
1277}
1278
1279EXPORT_SYMBOL(blk_dump_rq_flags);
1280
1281void blk_recount_segments(request_queue_t *q, struct bio *bio)
1282{
1283 struct bio_vec *bv, *bvprv = NULL;
1284 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1285 int high, highprv = 1;
1286
1287 if (unlikely(!bio->bi_io_vec))
1288 return;
1289
1290 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1291 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1292 bio_for_each_segment(bv, bio, i) {
1293 /*
1294 * the trick here is making sure that a high page is never
1295 * considered part of another segment, since that might
1296 * change with the bounce page.
1297 */
1298 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1299 if (high || highprv)
1300 goto new_hw_segment;
1301 if (cluster) {
1302 if (seg_size + bv->bv_len > q->max_segment_size)
1303 goto new_segment;
1304 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1305 goto new_segment;
1306 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1307 goto new_segment;
1308 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1309 goto new_hw_segment;
1310
1311 seg_size += bv->bv_len;
1312 hw_seg_size += bv->bv_len;
1313 bvprv = bv;
1314 continue;
1315 }
1316new_segment:
1317 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1318 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1319 hw_seg_size += bv->bv_len;
1320 } else {
1321new_hw_segment:
1322 if (hw_seg_size > bio->bi_hw_front_size)
1323 bio->bi_hw_front_size = hw_seg_size;
1324 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1325 nr_hw_segs++;
1326 }
1327
1328 nr_phys_segs++;
1329 bvprv = bv;
1330 seg_size = bv->bv_len;
1331 highprv = high;
1332 }
1333 if (hw_seg_size > bio->bi_hw_back_size)
1334 bio->bi_hw_back_size = hw_seg_size;
1335 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1336 bio->bi_hw_front_size = hw_seg_size;
1337 bio->bi_phys_segments = nr_phys_segs;
1338 bio->bi_hw_segments = nr_hw_segs;
1339 bio->bi_flags |= (1 << BIO_SEG_VALID);
1340}
1341
1342
93d17d3d 1343static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1344 struct bio *nxt)
1345{
1346 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1347 return 0;
1348
1349 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1350 return 0;
1351 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1352 return 0;
1353
1354 /*
1355 * bio and nxt are contigous in memory, check if the queue allows
1356 * these two to be merged into one
1357 */
1358 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1359 return 1;
1360
1361 return 0;
1362}
1363
93d17d3d 1364static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1365 struct bio *nxt)
1366{
1367 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1368 blk_recount_segments(q, bio);
1369 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1370 blk_recount_segments(q, nxt);
1371 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1372 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1373 return 0;
1374 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1375 return 0;
1376
1377 return 1;
1378}
1379
1da177e4
LT
1380/*
1381 * map a request to scatterlist, return number of sg entries setup. Caller
1382 * must make sure sg can hold rq->nr_phys_segments entries
1383 */
1384int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1385{
1386 struct bio_vec *bvec, *bvprv;
1387 struct bio *bio;
1388 int nsegs, i, cluster;
1389
1390 nsegs = 0;
1391 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1392
1393 /*
1394 * for each bio in rq
1395 */
1396 bvprv = NULL;
1397 rq_for_each_bio(bio, rq) {
1398 /*
1399 * for each segment in bio
1400 */
1401 bio_for_each_segment(bvec, bio, i) {
1402 int nbytes = bvec->bv_len;
1403
1404 if (bvprv && cluster) {
1405 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1406 goto new_segment;
1407
1408 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1409 goto new_segment;
1410 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1411 goto new_segment;
1412
1413 sg[nsegs - 1].length += nbytes;
1414 } else {
1415new_segment:
1416 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1417 sg[nsegs].page = bvec->bv_page;
1418 sg[nsegs].length = nbytes;
1419 sg[nsegs].offset = bvec->bv_offset;
1420
1421 nsegs++;
1422 }
1423 bvprv = bvec;
1424 } /* segments in bio */
1425 } /* bios in rq */
1426
1427 return nsegs;
1428}
1429
1430EXPORT_SYMBOL(blk_rq_map_sg);
1431
1432/*
1433 * the standard queue merge functions, can be overridden with device
1434 * specific ones if so desired
1435 */
1436
1437static inline int ll_new_mergeable(request_queue_t *q,
1438 struct request *req,
1439 struct bio *bio)
1440{
1441 int nr_phys_segs = bio_phys_segments(q, bio);
1442
1443 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1444 req->flags |= REQ_NOMERGE;
1445 if (req == q->last_merge)
1446 q->last_merge = NULL;
1447 return 0;
1448 }
1449
1450 /*
1451 * A hw segment is just getting larger, bump just the phys
1452 * counter.
1453 */
1454 req->nr_phys_segments += nr_phys_segs;
1455 return 1;
1456}
1457
1458static inline int ll_new_hw_segment(request_queue_t *q,
1459 struct request *req,
1460 struct bio *bio)
1461{
1462 int nr_hw_segs = bio_hw_segments(q, bio);
1463 int nr_phys_segs = bio_phys_segments(q, bio);
1464
1465 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1466 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1467 req->flags |= REQ_NOMERGE;
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1471 }
1472
1473 /*
1474 * This will form the start of a new hw segment. Bump both
1475 * counters.
1476 */
1477 req->nr_hw_segments += nr_hw_segs;
1478 req->nr_phys_segments += nr_phys_segs;
1479 return 1;
1480}
1481
1482static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1483 struct bio *bio)
1484{
defd94b7 1485 unsigned short max_sectors;
1da177e4
LT
1486 int len;
1487
defd94b7
MC
1488 if (unlikely(blk_pc_request(req)))
1489 max_sectors = q->max_hw_sectors;
1490 else
1491 max_sectors = q->max_sectors;
1492
1493 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1da177e4
LT
1494 req->flags |= REQ_NOMERGE;
1495 if (req == q->last_merge)
1496 q->last_merge = NULL;
1497 return 0;
1498 }
1499 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1500 blk_recount_segments(q, req->biotail);
1501 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1502 blk_recount_segments(q, bio);
1503 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1504 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1505 !BIOVEC_VIRT_OVERSIZE(len)) {
1506 int mergeable = ll_new_mergeable(q, req, bio);
1507
1508 if (mergeable) {
1509 if (req->nr_hw_segments == 1)
1510 req->bio->bi_hw_front_size = len;
1511 if (bio->bi_hw_segments == 1)
1512 bio->bi_hw_back_size = len;
1513 }
1514 return mergeable;
1515 }
1516
1517 return ll_new_hw_segment(q, req, bio);
1518}
1519
1520static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1521 struct bio *bio)
1522{
defd94b7 1523 unsigned short max_sectors;
1da177e4
LT
1524 int len;
1525
defd94b7
MC
1526 if (unlikely(blk_pc_request(req)))
1527 max_sectors = q->max_hw_sectors;
1528 else
1529 max_sectors = q->max_sectors;
1530
1531
1532 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1da177e4
LT
1533 req->flags |= REQ_NOMERGE;
1534 if (req == q->last_merge)
1535 q->last_merge = NULL;
1536 return 0;
1537 }
1538 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1539 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1540 blk_recount_segments(q, bio);
1541 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1542 blk_recount_segments(q, req->bio);
1543 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1544 !BIOVEC_VIRT_OVERSIZE(len)) {
1545 int mergeable = ll_new_mergeable(q, req, bio);
1546
1547 if (mergeable) {
1548 if (bio->bi_hw_segments == 1)
1549 bio->bi_hw_front_size = len;
1550 if (req->nr_hw_segments == 1)
1551 req->biotail->bi_hw_back_size = len;
1552 }
1553 return mergeable;
1554 }
1555
1556 return ll_new_hw_segment(q, req, bio);
1557}
1558
1559static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1560 struct request *next)
1561{
dfa1a553
ND
1562 int total_phys_segments;
1563 int total_hw_segments;
1da177e4
LT
1564
1565 /*
1566 * First check if the either of the requests are re-queued
1567 * requests. Can't merge them if they are.
1568 */
1569 if (req->special || next->special)
1570 return 0;
1571
1572 /*
dfa1a553 1573 * Will it become too large?
1da177e4
LT
1574 */
1575 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1576 return 0;
1577
1578 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1579 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1580 total_phys_segments--;
1581
1582 if (total_phys_segments > q->max_phys_segments)
1583 return 0;
1584
1585 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1586 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1587 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1588 /*
1589 * propagate the combined length to the end of the requests
1590 */
1591 if (req->nr_hw_segments == 1)
1592 req->bio->bi_hw_front_size = len;
1593 if (next->nr_hw_segments == 1)
1594 next->biotail->bi_hw_back_size = len;
1595 total_hw_segments--;
1596 }
1597
1598 if (total_hw_segments > q->max_hw_segments)
1599 return 0;
1600
1601 /* Merge is OK... */
1602 req->nr_phys_segments = total_phys_segments;
1603 req->nr_hw_segments = total_hw_segments;
1604 return 1;
1605}
1606
1607/*
1608 * "plug" the device if there are no outstanding requests: this will
1609 * force the transfer to start only after we have put all the requests
1610 * on the list.
1611 *
1612 * This is called with interrupts off and no requests on the queue and
1613 * with the queue lock held.
1614 */
1615void blk_plug_device(request_queue_t *q)
1616{
1617 WARN_ON(!irqs_disabled());
1618
1619 /*
1620 * don't plug a stopped queue, it must be paired with blk_start_queue()
1621 * which will restart the queueing
1622 */
7daac490 1623 if (blk_queue_stopped(q))
1da177e4
LT
1624 return;
1625
2056a782 1626 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1627 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1628 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1629 }
1da177e4
LT
1630}
1631
1632EXPORT_SYMBOL(blk_plug_device);
1633
1634/*
1635 * remove the queue from the plugged list, if present. called with
1636 * queue lock held and interrupts disabled.
1637 */
1638int blk_remove_plug(request_queue_t *q)
1639{
1640 WARN_ON(!irqs_disabled());
1641
1642 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1643 return 0;
1644
1645 del_timer(&q->unplug_timer);
1646 return 1;
1647}
1648
1649EXPORT_SYMBOL(blk_remove_plug);
1650
1651/*
1652 * remove the plug and let it rip..
1653 */
1654void __generic_unplug_device(request_queue_t *q)
1655{
7daac490 1656 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1657 return;
1658
1659 if (!blk_remove_plug(q))
1660 return;
1661
22e2c507 1662 q->request_fn(q);
1da177e4
LT
1663}
1664EXPORT_SYMBOL(__generic_unplug_device);
1665
1666/**
1667 * generic_unplug_device - fire a request queue
1668 * @q: The &request_queue_t in question
1669 *
1670 * Description:
1671 * Linux uses plugging to build bigger requests queues before letting
1672 * the device have at them. If a queue is plugged, the I/O scheduler
1673 * is still adding and merging requests on the queue. Once the queue
1674 * gets unplugged, the request_fn defined for the queue is invoked and
1675 * transfers started.
1676 **/
1677void generic_unplug_device(request_queue_t *q)
1678{
1679 spin_lock_irq(q->queue_lock);
1680 __generic_unplug_device(q);
1681 spin_unlock_irq(q->queue_lock);
1682}
1683EXPORT_SYMBOL(generic_unplug_device);
1684
1685static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1686 struct page *page)
1687{
1688 request_queue_t *q = bdi->unplug_io_data;
1689
1690 /*
1691 * devices don't necessarily have an ->unplug_fn defined
1692 */
2056a782
JA
1693 if (q->unplug_fn) {
1694 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1695 q->rq.count[READ] + q->rq.count[WRITE]);
1696
1da177e4 1697 q->unplug_fn(q);
2056a782 1698 }
1da177e4
LT
1699}
1700
1701static void blk_unplug_work(void *data)
1702{
1703 request_queue_t *q = data;
1704
2056a782
JA
1705 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1706 q->rq.count[READ] + q->rq.count[WRITE]);
1707
1da177e4
LT
1708 q->unplug_fn(q);
1709}
1710
1711static void blk_unplug_timeout(unsigned long data)
1712{
1713 request_queue_t *q = (request_queue_t *)data;
1714
2056a782
JA
1715 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1716 q->rq.count[READ] + q->rq.count[WRITE]);
1717
1da177e4
LT
1718 kblockd_schedule_work(&q->unplug_work);
1719}
1720
1721/**
1722 * blk_start_queue - restart a previously stopped queue
1723 * @q: The &request_queue_t in question
1724 *
1725 * Description:
1726 * blk_start_queue() will clear the stop flag on the queue, and call
1727 * the request_fn for the queue if it was in a stopped state when
1728 * entered. Also see blk_stop_queue(). Queue lock must be held.
1729 **/
1730void blk_start_queue(request_queue_t *q)
1731{
a038e253
PBG
1732 WARN_ON(!irqs_disabled());
1733
1da177e4
LT
1734 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1735
1736 /*
1737 * one level of recursion is ok and is much faster than kicking
1738 * the unplug handling
1739 */
1740 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1741 q->request_fn(q);
1742 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1743 } else {
1744 blk_plug_device(q);
1745 kblockd_schedule_work(&q->unplug_work);
1746 }
1747}
1748
1749EXPORT_SYMBOL(blk_start_queue);
1750
1751/**
1752 * blk_stop_queue - stop a queue
1753 * @q: The &request_queue_t in question
1754 *
1755 * Description:
1756 * The Linux block layer assumes that a block driver will consume all
1757 * entries on the request queue when the request_fn strategy is called.
1758 * Often this will not happen, because of hardware limitations (queue
1759 * depth settings). If a device driver gets a 'queue full' response,
1760 * or if it simply chooses not to queue more I/O at one point, it can
1761 * call this function to prevent the request_fn from being called until
1762 * the driver has signalled it's ready to go again. This happens by calling
1763 * blk_start_queue() to restart queue operations. Queue lock must be held.
1764 **/
1765void blk_stop_queue(request_queue_t *q)
1766{
1767 blk_remove_plug(q);
1768 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1769}
1770EXPORT_SYMBOL(blk_stop_queue);
1771
1772/**
1773 * blk_sync_queue - cancel any pending callbacks on a queue
1774 * @q: the queue
1775 *
1776 * Description:
1777 * The block layer may perform asynchronous callback activity
1778 * on a queue, such as calling the unplug function after a timeout.
1779 * A block device may call blk_sync_queue to ensure that any
1780 * such activity is cancelled, thus allowing it to release resources
1781 * the the callbacks might use. The caller must already have made sure
1782 * that its ->make_request_fn will not re-add plugging prior to calling
1783 * this function.
1784 *
1785 */
1786void blk_sync_queue(struct request_queue *q)
1787{
1788 del_timer_sync(&q->unplug_timer);
1789 kblockd_flush();
1790}
1791EXPORT_SYMBOL(blk_sync_queue);
1792
1793/**
1794 * blk_run_queue - run a single device queue
1795 * @q: The queue to run
1796 */
1797void blk_run_queue(struct request_queue *q)
1798{
1799 unsigned long flags;
1800
1801 spin_lock_irqsave(q->queue_lock, flags);
1802 blk_remove_plug(q);
dac07ec1
JA
1803
1804 /*
1805 * Only recurse once to avoid overrunning the stack, let the unplug
1806 * handling reinvoke the handler shortly if we already got there.
1807 */
1808 if (!elv_queue_empty(q)) {
1809 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1810 q->request_fn(q);
1811 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1812 } else {
1813 blk_plug_device(q);
1814 kblockd_schedule_work(&q->unplug_work);
1815 }
1816 }
1817
1da177e4
LT
1818 spin_unlock_irqrestore(q->queue_lock, flags);
1819}
1820EXPORT_SYMBOL(blk_run_queue);
1821
1822/**
1823 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
a580290c 1824 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1825 *
1826 * Description:
1827 * blk_cleanup_queue is the pair to blk_init_queue() or
1828 * blk_queue_make_request(). It should be called when a request queue is
1829 * being released; typically when a block device is being de-registered.
1830 * Currently, its primary task it to free all the &struct request
1831 * structures that were allocated to the queue and the queue itself.
1832 *
1833 * Caveat:
1834 * Hopefully the low level driver will have finished any
1835 * outstanding requests first...
1836 **/
483f4afc 1837static void blk_release_queue(struct kobject *kobj)
1da177e4 1838{
483f4afc 1839 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1840 struct request_list *rl = &q->rq;
1841
1da177e4
LT
1842 blk_sync_queue(q);
1843
1844 if (rl->rq_pool)
1845 mempool_destroy(rl->rq_pool);
1846
1847 if (q->queue_tags)
1848 __blk_queue_free_tags(q);
1849
6c5c9341 1850 blk_trace_shutdown(q);
2056a782 1851
1da177e4
LT
1852 kmem_cache_free(requestq_cachep, q);
1853}
1854
483f4afc
AV
1855void blk_put_queue(request_queue_t *q)
1856{
1857 kobject_put(&q->kobj);
1858}
1859EXPORT_SYMBOL(blk_put_queue);
1860
1861void blk_cleanup_queue(request_queue_t * q)
1862{
1863 mutex_lock(&q->sysfs_lock);
1864 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1865 mutex_unlock(&q->sysfs_lock);
1866
1867 if (q->elevator)
1868 elevator_exit(q->elevator);
1869
1870 blk_put_queue(q);
1871}
1872
1da177e4
LT
1873EXPORT_SYMBOL(blk_cleanup_queue);
1874
1875static int blk_init_free_list(request_queue_t *q)
1876{
1877 struct request_list *rl = &q->rq;
1878
1879 rl->count[READ] = rl->count[WRITE] = 0;
1880 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1881 rl->elvpriv = 0;
1da177e4
LT
1882 init_waitqueue_head(&rl->wait[READ]);
1883 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1884
1946089a
CL
1885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1886 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1887
1888 if (!rl->rq_pool)
1889 return -ENOMEM;
1890
1891 return 0;
1892}
1893
8267e268 1894request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1895{
1946089a
CL
1896 return blk_alloc_queue_node(gfp_mask, -1);
1897}
1898EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1899
483f4afc
AV
1900static struct kobj_type queue_ktype;
1901
8267e268 1902request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1903{
1904 request_queue_t *q;
1905
1906 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1907 if (!q)
1908 return NULL;
1909
1910 memset(q, 0, sizeof(*q));
1911 init_timer(&q->unplug_timer);
483f4afc
AV
1912
1913 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1914 q->kobj.ktype = &queue_ktype;
1915 kobject_init(&q->kobj);
1da177e4
LT
1916
1917 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1918 q->backing_dev_info.unplug_io_data = q;
1919
483f4afc
AV
1920 mutex_init(&q->sysfs_lock);
1921
1da177e4
LT
1922 return q;
1923}
1946089a 1924EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1925
1926/**
1927 * blk_init_queue - prepare a request queue for use with a block device
1928 * @rfn: The function to be called to process requests that have been
1929 * placed on the queue.
1930 * @lock: Request queue spin lock
1931 *
1932 * Description:
1933 * If a block device wishes to use the standard request handling procedures,
1934 * which sorts requests and coalesces adjacent requests, then it must
1935 * call blk_init_queue(). The function @rfn will be called when there
1936 * are requests on the queue that need to be processed. If the device
1937 * supports plugging, then @rfn may not be called immediately when requests
1938 * are available on the queue, but may be called at some time later instead.
1939 * Plugged queues are generally unplugged when a buffer belonging to one
1940 * of the requests on the queue is needed, or due to memory pressure.
1941 *
1942 * @rfn is not required, or even expected, to remove all requests off the
1943 * queue, but only as many as it can handle at a time. If it does leave
1944 * requests on the queue, it is responsible for arranging that the requests
1945 * get dealt with eventually.
1946 *
1947 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1948 * request queue; this lock will be taken also from interrupt context, so irq
1949 * disabling is needed for it.
1da177e4
LT
1950 *
1951 * Function returns a pointer to the initialized request queue, or NULL if
1952 * it didn't succeed.
1953 *
1954 * Note:
1955 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1956 * when the block device is deactivated (such as at module unload).
1957 **/
1946089a 1958
1da177e4
LT
1959request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1960{
1946089a
CL
1961 return blk_init_queue_node(rfn, lock, -1);
1962}
1963EXPORT_SYMBOL(blk_init_queue);
1964
1965request_queue_t *
1966blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1967{
1968 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1969
1970 if (!q)
1971 return NULL;
1972
1946089a 1973 q->node = node_id;
8669aafd
AV
1974 if (blk_init_free_list(q)) {
1975 kmem_cache_free(requestq_cachep, q);
1976 return NULL;
1977 }
1da177e4 1978
152587de
JA
1979 /*
1980 * if caller didn't supply a lock, they get per-queue locking with
1981 * our embedded lock
1982 */
1983 if (!lock) {
1984 spin_lock_init(&q->__queue_lock);
1985 lock = &q->__queue_lock;
1986 }
1987
1da177e4
LT
1988 q->request_fn = rfn;
1989 q->back_merge_fn = ll_back_merge_fn;
1990 q->front_merge_fn = ll_front_merge_fn;
1991 q->merge_requests_fn = ll_merge_requests_fn;
1992 q->prep_rq_fn = NULL;
1993 q->unplug_fn = generic_unplug_device;
1994 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1995 q->queue_lock = lock;
1996
1997 blk_queue_segment_boundary(q, 0xffffffff);
1998
1999 blk_queue_make_request(q, __make_request);
2000 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
2001
2002 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
2003 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
2004
2005 /*
2006 * all done
2007 */
2008 if (!elevator_init(q, NULL)) {
2009 blk_queue_congestion_threshold(q);
2010 return q;
2011 }
2012
8669aafd 2013 blk_put_queue(q);
1da177e4
LT
2014 return NULL;
2015}
1946089a 2016EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
2017
2018int blk_get_queue(request_queue_t *q)
2019{
fde6ad22 2020 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 2021 kobject_get(&q->kobj);
1da177e4
LT
2022 return 0;
2023 }
2024
2025 return 1;
2026}
2027
2028EXPORT_SYMBOL(blk_get_queue);
2029
2030static inline void blk_free_request(request_queue_t *q, struct request *rq)
2031{
cb98fc8b
TH
2032 if (rq->flags & REQ_ELVPRIV)
2033 elv_put_request(q, rq);
1da177e4
LT
2034 mempool_free(rq, q->rq.rq_pool);
2035}
2036
22e2c507 2037static inline struct request *
cb98fc8b 2038blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
5dd96249 2039 int priv, gfp_t gfp_mask)
1da177e4
LT
2040{
2041 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2042
2043 if (!rq)
2044 return NULL;
2045
2046 /*
2047 * first three bits are identical in rq->flags and bio->bi_rw,
2048 * see bio.h and blkdev.h
2049 */
2050 rq->flags = rw;
2051
cb98fc8b
TH
2052 if (priv) {
2053 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
2054 mempool_free(rq, q->rq.rq_pool);
2055 return NULL;
2056 }
2057 rq->flags |= REQ_ELVPRIV;
2058 }
1da177e4 2059
cb98fc8b 2060 return rq;
1da177e4
LT
2061}
2062
2063/*
2064 * ioc_batching returns true if the ioc is a valid batching request and
2065 * should be given priority access to a request.
2066 */
2067static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2068{
2069 if (!ioc)
2070 return 0;
2071
2072 /*
2073 * Make sure the process is able to allocate at least 1 request
2074 * even if the batch times out, otherwise we could theoretically
2075 * lose wakeups.
2076 */
2077 return ioc->nr_batch_requests == q->nr_batching ||
2078 (ioc->nr_batch_requests > 0
2079 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2080}
2081
2082/*
2083 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2084 * will cause the process to be a "batcher" on all queues in the system. This
2085 * is the behaviour we want though - once it gets a wakeup it should be given
2086 * a nice run.
2087 */
93d17d3d 2088static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2089{
2090 if (!ioc || ioc_batching(q, ioc))
2091 return;
2092
2093 ioc->nr_batch_requests = q->nr_batching;
2094 ioc->last_waited = jiffies;
2095}
2096
2097static void __freed_request(request_queue_t *q, int rw)
2098{
2099 struct request_list *rl = &q->rq;
2100
2101 if (rl->count[rw] < queue_congestion_off_threshold(q))
2102 clear_queue_congested(q, rw);
2103
2104 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2105 if (waitqueue_active(&rl->wait[rw]))
2106 wake_up(&rl->wait[rw]);
2107
2108 blk_clear_queue_full(q, rw);
2109 }
2110}
2111
2112/*
2113 * A request has just been released. Account for it, update the full and
2114 * congestion status, wake up any waiters. Called under q->queue_lock.
2115 */
cb98fc8b 2116static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2117{
2118 struct request_list *rl = &q->rq;
2119
2120 rl->count[rw]--;
cb98fc8b
TH
2121 if (priv)
2122 rl->elvpriv--;
1da177e4
LT
2123
2124 __freed_request(q, rw);
2125
2126 if (unlikely(rl->starved[rw ^ 1]))
2127 __freed_request(q, rw ^ 1);
1da177e4
LT
2128}
2129
2130#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2131/*
d6344532
NP
2132 * Get a free request, queue_lock must be held.
2133 * Returns NULL on failure, with queue_lock held.
2134 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2135 */
22e2c507 2136static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
8267e268 2137 gfp_t gfp_mask)
1da177e4
LT
2138{
2139 struct request *rq = NULL;
2140 struct request_list *rl = &q->rq;
88ee5ef1
JA
2141 struct io_context *ioc = NULL;
2142 int may_queue, priv;
2143
2144 may_queue = elv_may_queue(q, rw, bio);
2145 if (may_queue == ELV_MQUEUE_NO)
2146 goto rq_starved;
2147
2148 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2149 if (rl->count[rw]+1 >= q->nr_requests) {
2150 ioc = current_io_context(GFP_ATOMIC);
2151 /*
2152 * The queue will fill after this allocation, so set
2153 * it as full, and mark this process as "batching".
2154 * This process will be allowed to complete a batch of
2155 * requests, others will be blocked.
2156 */
2157 if (!blk_queue_full(q, rw)) {
2158 ioc_set_batching(q, ioc);
2159 blk_set_queue_full(q, rw);
2160 } else {
2161 if (may_queue != ELV_MQUEUE_MUST
2162 && !ioc_batching(q, ioc)) {
2163 /*
2164 * The queue is full and the allocating
2165 * process is not a "batcher", and not
2166 * exempted by the IO scheduler
2167 */
2168 goto out;
2169 }
2170 }
1da177e4 2171 }
88ee5ef1 2172 set_queue_congested(q, rw);
1da177e4
LT
2173 }
2174
082cf69e
JA
2175 /*
2176 * Only allow batching queuers to allocate up to 50% over the defined
2177 * limit of requests, otherwise we could have thousands of requests
2178 * allocated with any setting of ->nr_requests
2179 */
fd782a4a 2180 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2181 goto out;
fd782a4a 2182
1da177e4
LT
2183 rl->count[rw]++;
2184 rl->starved[rw] = 0;
cb98fc8b 2185
64521d1a 2186 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2187 if (priv)
2188 rl->elvpriv++;
2189
1da177e4
LT
2190 spin_unlock_irq(q->queue_lock);
2191
cb98fc8b 2192 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
88ee5ef1 2193 if (unlikely(!rq)) {
1da177e4
LT
2194 /*
2195 * Allocation failed presumably due to memory. Undo anything
2196 * we might have messed up.
2197 *
2198 * Allocating task should really be put onto the front of the
2199 * wait queue, but this is pretty rare.
2200 */
2201 spin_lock_irq(q->queue_lock);
cb98fc8b 2202 freed_request(q, rw, priv);
1da177e4
LT
2203
2204 /*
2205 * in the very unlikely event that allocation failed and no
2206 * requests for this direction was pending, mark us starved
2207 * so that freeing of a request in the other direction will
2208 * notice us. another possible fix would be to split the
2209 * rq mempool into READ and WRITE
2210 */
2211rq_starved:
2212 if (unlikely(rl->count[rw] == 0))
2213 rl->starved[rw] = 1;
2214
1da177e4
LT
2215 goto out;
2216 }
2217
88ee5ef1
JA
2218 /*
2219 * ioc may be NULL here, and ioc_batching will be false. That's
2220 * OK, if the queue is under the request limit then requests need
2221 * not count toward the nr_batch_requests limit. There will always
2222 * be some limit enforced by BLK_BATCH_TIME.
2223 */
1da177e4
LT
2224 if (ioc_batching(q, ioc))
2225 ioc->nr_batch_requests--;
2226
2227 rq_init(q, rq);
2228 rq->rl = rl;
2056a782
JA
2229
2230 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2231out:
1da177e4
LT
2232 return rq;
2233}
2234
2235/*
2236 * No available requests for this queue, unplug the device and wait for some
2237 * requests to become available.
d6344532
NP
2238 *
2239 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2240 */
22e2c507
JA
2241static struct request *get_request_wait(request_queue_t *q, int rw,
2242 struct bio *bio)
1da177e4 2243{
1da177e4
LT
2244 struct request *rq;
2245
450991bc
NP
2246 rq = get_request(q, rw, bio, GFP_NOIO);
2247 while (!rq) {
2248 DEFINE_WAIT(wait);
1da177e4
LT
2249 struct request_list *rl = &q->rq;
2250
2251 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2252 TASK_UNINTERRUPTIBLE);
2253
22e2c507 2254 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
2255
2256 if (!rq) {
2257 struct io_context *ioc;
2258
2056a782
JA
2259 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2260
d6344532
NP
2261 __generic_unplug_device(q);
2262 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2263 io_schedule();
2264
2265 /*
2266 * After sleeping, we become a "batching" process and
2267 * will be able to allocate at least one request, and
2268 * up to a big batch of them for a small period time.
2269 * See ioc_batching, ioc_set_batching
2270 */
fb3cc432 2271 ioc = current_io_context(GFP_NOIO);
1da177e4 2272 ioc_set_batching(q, ioc);
d6344532
NP
2273
2274 spin_lock_irq(q->queue_lock);
1da177e4
LT
2275 }
2276 finish_wait(&rl->wait[rw], &wait);
450991bc 2277 }
1da177e4
LT
2278
2279 return rq;
2280}
2281
8267e268 2282struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2283{
2284 struct request *rq;
2285
2286 BUG_ON(rw != READ && rw != WRITE);
2287
d6344532
NP
2288 spin_lock_irq(q->queue_lock);
2289 if (gfp_mask & __GFP_WAIT) {
22e2c507 2290 rq = get_request_wait(q, rw, NULL);
d6344532 2291 } else {
22e2c507 2292 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2293 if (!rq)
2294 spin_unlock_irq(q->queue_lock);
2295 }
2296 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2297
2298 return rq;
2299}
1da177e4
LT
2300EXPORT_SYMBOL(blk_get_request);
2301
2302/**
2303 * blk_requeue_request - put a request back on queue
2304 * @q: request queue where request should be inserted
2305 * @rq: request to be inserted
2306 *
2307 * Description:
2308 * Drivers often keep queueing requests until the hardware cannot accept
2309 * more, when that condition happens we need to put the request back
2310 * on the queue. Must be called with queue lock held.
2311 */
2312void blk_requeue_request(request_queue_t *q, struct request *rq)
2313{
2056a782
JA
2314 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2315
1da177e4
LT
2316 if (blk_rq_tagged(rq))
2317 blk_queue_end_tag(q, rq);
2318
2319 elv_requeue_request(q, rq);
2320}
2321
2322EXPORT_SYMBOL(blk_requeue_request);
2323
2324/**
2325 * blk_insert_request - insert a special request in to a request queue
2326 * @q: request queue where request should be inserted
2327 * @rq: request to be inserted
2328 * @at_head: insert request at head or tail of queue
2329 * @data: private data
1da177e4
LT
2330 *
2331 * Description:
2332 * Many block devices need to execute commands asynchronously, so they don't
2333 * block the whole kernel from preemption during request execution. This is
2334 * accomplished normally by inserting aritficial requests tagged as
2335 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2336 * scheduled for actual execution by the request queue.
2337 *
2338 * We have the option of inserting the head or the tail of the queue.
2339 * Typically we use the tail for new ioctls and so forth. We use the head
2340 * of the queue for things like a QUEUE_FULL message from a device, or a
2341 * host that is unable to accept a particular command.
2342 */
2343void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2344 int at_head, void *data)
1da177e4 2345{
867d1191 2346 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2347 unsigned long flags;
2348
2349 /*
2350 * tell I/O scheduler that this isn't a regular read/write (ie it
2351 * must not attempt merges on this) and that it acts as a soft
2352 * barrier
2353 */
2354 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2355
2356 rq->special = data;
2357
2358 spin_lock_irqsave(q->queue_lock, flags);
2359
2360 /*
2361 * If command is tagged, release the tag
2362 */
867d1191
TH
2363 if (blk_rq_tagged(rq))
2364 blk_queue_end_tag(q, rq);
1da177e4 2365
867d1191
TH
2366 drive_stat_acct(rq, rq->nr_sectors, 1);
2367 __elv_add_request(q, rq, where, 0);
1da177e4 2368
1da177e4
LT
2369 if (blk_queue_plugged(q))
2370 __generic_unplug_device(q);
2371 else
2372 q->request_fn(q);
2373 spin_unlock_irqrestore(q->queue_lock, flags);
2374}
2375
2376EXPORT_SYMBOL(blk_insert_request);
2377
2378/**
2379 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2380 * @q: request queue where request should be inserted
73747aed 2381 * @rq: request structure to fill
1da177e4
LT
2382 * @ubuf: the user buffer
2383 * @len: length of user data
2384 *
2385 * Description:
2386 * Data will be mapped directly for zero copy io, if possible. Otherwise
2387 * a kernel bounce buffer is used.
2388 *
2389 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2390 * still in process context.
2391 *
2392 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2393 * before being submitted to the device, as pages mapped may be out of
2394 * reach. It's the callers responsibility to make sure this happens. The
2395 * original bio must be passed back in to blk_rq_unmap_user() for proper
2396 * unmapping.
2397 */
dd1cab95
JA
2398int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2399 unsigned int len)
1da177e4
LT
2400{
2401 unsigned long uaddr;
1da177e4 2402 struct bio *bio;
dd1cab95 2403 int reading;
1da177e4 2404
defd94b7 2405 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2406 return -EINVAL;
2407 if (!len || !ubuf)
2408 return -EINVAL;
1da177e4 2409
dd1cab95 2410 reading = rq_data_dir(rq) == READ;
1da177e4
LT
2411
2412 /*
2413 * if alignment requirement is satisfied, map in user pages for
2414 * direct dma. else, set up kernel bounce buffers
2415 */
2416 uaddr = (unsigned long) ubuf;
2417 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
dd1cab95 2418 bio = bio_map_user(q, NULL, uaddr, len, reading);
1da177e4 2419 else
dd1cab95 2420 bio = bio_copy_user(q, uaddr, len, reading);
1da177e4
LT
2421
2422 if (!IS_ERR(bio)) {
2423 rq->bio = rq->biotail = bio;
2424 blk_rq_bio_prep(q, rq, bio);
2425
2426 rq->buffer = rq->data = NULL;
2427 rq->data_len = len;
dd1cab95 2428 return 0;
1da177e4
LT
2429 }
2430
2431 /*
2432 * bio is the err-ptr
2433 */
dd1cab95 2434 return PTR_ERR(bio);
1da177e4
LT
2435}
2436
2437EXPORT_SYMBOL(blk_rq_map_user);
2438
f1970baf
JB
2439/**
2440 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2441 * @q: request queue where request should be inserted
2442 * @rq: request to map data to
2443 * @iov: pointer to the iovec
2444 * @iov_count: number of elements in the iovec
2445 *
2446 * Description:
2447 * Data will be mapped directly for zero copy io, if possible. Otherwise
2448 * a kernel bounce buffer is used.
2449 *
2450 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2451 * still in process context.
2452 *
2453 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2454 * before being submitted to the device, as pages mapped may be out of
2455 * reach. It's the callers responsibility to make sure this happens. The
2456 * original bio must be passed back in to blk_rq_unmap_user() for proper
2457 * unmapping.
2458 */
2459int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2460 struct sg_iovec *iov, int iov_count)
2461{
2462 struct bio *bio;
2463
2464 if (!iov || iov_count <= 0)
2465 return -EINVAL;
2466
2467 /* we don't allow misaligned data like bio_map_user() does. If the
2468 * user is using sg, they're expected to know the alignment constraints
2469 * and respect them accordingly */
2470 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2471 if (IS_ERR(bio))
2472 return PTR_ERR(bio);
2473
2474 rq->bio = rq->biotail = bio;
2475 blk_rq_bio_prep(q, rq, bio);
2476 rq->buffer = rq->data = NULL;
2477 rq->data_len = bio->bi_size;
2478 return 0;
2479}
2480
2481EXPORT_SYMBOL(blk_rq_map_user_iov);
2482
1da177e4
LT
2483/**
2484 * blk_rq_unmap_user - unmap a request with user data
73747aed 2485 * @bio: bio to be unmapped
1da177e4
LT
2486 * @ulen: length of user buffer
2487 *
2488 * Description:
73747aed 2489 * Unmap a bio previously mapped by blk_rq_map_user().
1da177e4 2490 */
dd1cab95 2491int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
1da177e4
LT
2492{
2493 int ret = 0;
2494
2495 if (bio) {
2496 if (bio_flagged(bio, BIO_USER_MAPPED))
2497 bio_unmap_user(bio);
2498 else
2499 ret = bio_uncopy_user(bio);
2500 }
2501
dd1cab95 2502 return 0;
1da177e4
LT
2503}
2504
2505EXPORT_SYMBOL(blk_rq_unmap_user);
2506
df46b9a4
MC
2507/**
2508 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2509 * @q: request queue where request should be inserted
73747aed 2510 * @rq: request to fill
df46b9a4
MC
2511 * @kbuf: the kernel buffer
2512 * @len: length of user data
73747aed 2513 * @gfp_mask: memory allocation flags
df46b9a4 2514 */
dd1cab95 2515int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2516 unsigned int len, gfp_t gfp_mask)
df46b9a4 2517{
df46b9a4
MC
2518 struct bio *bio;
2519
defd94b7 2520 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2521 return -EINVAL;
2522 if (!len || !kbuf)
2523 return -EINVAL;
df46b9a4
MC
2524
2525 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2526 if (IS_ERR(bio))
2527 return PTR_ERR(bio);
df46b9a4 2528
dd1cab95
JA
2529 if (rq_data_dir(rq) == WRITE)
2530 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2531
dd1cab95
JA
2532 rq->bio = rq->biotail = bio;
2533 blk_rq_bio_prep(q, rq, bio);
df46b9a4 2534
dd1cab95
JA
2535 rq->buffer = rq->data = NULL;
2536 rq->data_len = len;
2537 return 0;
df46b9a4
MC
2538}
2539
2540EXPORT_SYMBOL(blk_rq_map_kern);
2541
73747aed
CH
2542/**
2543 * blk_execute_rq_nowait - insert a request into queue for execution
2544 * @q: queue to insert the request in
2545 * @bd_disk: matching gendisk
2546 * @rq: request to insert
2547 * @at_head: insert request at head or tail of queue
2548 * @done: I/O completion handler
2549 *
2550 * Description:
2551 * Insert a fully prepared request at the back of the io scheduler queue
2552 * for execution. Don't wait for completion.
2553 */
f1970baf
JB
2554void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2555 struct request *rq, int at_head,
8ffdc655 2556 rq_end_io_fn *done)
f1970baf
JB
2557{
2558 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2559
2560 rq->rq_disk = bd_disk;
2561 rq->flags |= REQ_NOMERGE;
2562 rq->end_io = done;
4c5d0bbd
AM
2563 WARN_ON(irqs_disabled());
2564 spin_lock_irq(q->queue_lock);
2565 __elv_add_request(q, rq, where, 1);
2566 __generic_unplug_device(q);
2567 spin_unlock_irq(q->queue_lock);
f1970baf 2568}
6e39b69e
MC
2569EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2570
1da177e4
LT
2571/**
2572 * blk_execute_rq - insert a request into queue for execution
2573 * @q: queue to insert the request in
2574 * @bd_disk: matching gendisk
2575 * @rq: request to insert
994ca9a1 2576 * @at_head: insert request at head or tail of queue
1da177e4
LT
2577 *
2578 * Description:
2579 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2580 * for execution and wait for completion.
1da177e4
LT
2581 */
2582int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2583 struct request *rq, int at_head)
1da177e4 2584{
60be6b9a 2585 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2586 char sense[SCSI_SENSE_BUFFERSIZE];
2587 int err = 0;
2588
1da177e4
LT
2589 /*
2590 * we need an extra reference to the request, so we can look at
2591 * it after io completion
2592 */
2593 rq->ref_count++;
2594
2595 if (!rq->sense) {
2596 memset(sense, 0, sizeof(sense));
2597 rq->sense = sense;
2598 rq->sense_len = 0;
2599 }
2600
1da177e4 2601 rq->waiting = &wait;
994ca9a1 2602 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4
LT
2603 wait_for_completion(&wait);
2604 rq->waiting = NULL;
2605
2606 if (rq->errors)
2607 err = -EIO;
2608
2609 return err;
2610}
2611
2612EXPORT_SYMBOL(blk_execute_rq);
2613
2614/**
2615 * blkdev_issue_flush - queue a flush
2616 * @bdev: blockdev to issue flush for
2617 * @error_sector: error sector
2618 *
2619 * Description:
2620 * Issue a flush for the block device in question. Caller can supply
2621 * room for storing the error offset in case of a flush error, if they
2622 * wish to. Caller must run wait_for_completion() on its own.
2623 */
2624int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2625{
2626 request_queue_t *q;
2627
2628 if (bdev->bd_disk == NULL)
2629 return -ENXIO;
2630
2631 q = bdev_get_queue(bdev);
2632 if (!q)
2633 return -ENXIO;
2634 if (!q->issue_flush_fn)
2635 return -EOPNOTSUPP;
2636
2637 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2638}
2639
2640EXPORT_SYMBOL(blkdev_issue_flush);
2641
93d17d3d 2642static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2643{
2644 int rw = rq_data_dir(rq);
2645
2646 if (!blk_fs_request(rq) || !rq->rq_disk)
2647 return;
2648
d72d904a 2649 if (!new_io) {
a362357b 2650 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2651 } else {
1da177e4
LT
2652 disk_round_stats(rq->rq_disk);
2653 rq->rq_disk->in_flight++;
2654 }
2655}
2656
2657/*
2658 * add-request adds a request to the linked list.
2659 * queue lock is held and interrupts disabled, as we muck with the
2660 * request queue list.
2661 */
2662static inline void add_request(request_queue_t * q, struct request * req)
2663{
2664 drive_stat_acct(req, req->nr_sectors, 1);
2665
2666 if (q->activity_fn)
2667 q->activity_fn(q->activity_data, rq_data_dir(req));
2668
2669 /*
2670 * elevator indicated where it wants this request to be
2671 * inserted at elevator_merge time
2672 */
2673 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2674}
2675
2676/*
2677 * disk_round_stats() - Round off the performance stats on a struct
2678 * disk_stats.
2679 *
2680 * The average IO queue length and utilisation statistics are maintained
2681 * by observing the current state of the queue length and the amount of
2682 * time it has been in this state for.
2683 *
2684 * Normally, that accounting is done on IO completion, but that can result
2685 * in more than a second's worth of IO being accounted for within any one
2686 * second, leading to >100% utilisation. To deal with that, we call this
2687 * function to do a round-off before returning the results when reading
2688 * /proc/diskstats. This accounts immediately for all queue usage up to
2689 * the current jiffies and restarts the counters again.
2690 */
2691void disk_round_stats(struct gendisk *disk)
2692{
2693 unsigned long now = jiffies;
2694
b2982649
KC
2695 if (now == disk->stamp)
2696 return;
1da177e4 2697
20e5c81f
KC
2698 if (disk->in_flight) {
2699 __disk_stat_add(disk, time_in_queue,
2700 disk->in_flight * (now - disk->stamp));
2701 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2702 }
1da177e4 2703 disk->stamp = now;
1da177e4
LT
2704}
2705
3eaf840e
JNN
2706EXPORT_SYMBOL_GPL(disk_round_stats);
2707
1da177e4
LT
2708/*
2709 * queue lock must be held
2710 */
6e39b69e 2711void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4
LT
2712{
2713 struct request_list *rl = req->rl;
2714
2715 if (unlikely(!q))
2716 return;
2717 if (unlikely(--req->ref_count))
2718 return;
2719
8922e16c
TH
2720 elv_completed_request(q, req);
2721
1da177e4 2722 req->rq_status = RQ_INACTIVE;
1da177e4
LT
2723 req->rl = NULL;
2724
2725 /*
2726 * Request may not have originated from ll_rw_blk. if not,
2727 * it didn't come out of our reserved rq pools
2728 */
2729 if (rl) {
2730 int rw = rq_data_dir(req);
cb98fc8b 2731 int priv = req->flags & REQ_ELVPRIV;
1da177e4 2732
1da177e4
LT
2733 BUG_ON(!list_empty(&req->queuelist));
2734
2735 blk_free_request(q, req);
cb98fc8b 2736 freed_request(q, rw, priv);
1da177e4
LT
2737 }
2738}
2739
6e39b69e
MC
2740EXPORT_SYMBOL_GPL(__blk_put_request);
2741
1da177e4
LT
2742void blk_put_request(struct request *req)
2743{
8922e16c
TH
2744 unsigned long flags;
2745 request_queue_t *q = req->q;
2746
1da177e4 2747 /*
8922e16c
TH
2748 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2749 * following if (q) test.
1da177e4 2750 */
8922e16c 2751 if (q) {
1da177e4
LT
2752 spin_lock_irqsave(q->queue_lock, flags);
2753 __blk_put_request(q, req);
2754 spin_unlock_irqrestore(q->queue_lock, flags);
2755 }
2756}
2757
2758EXPORT_SYMBOL(blk_put_request);
2759
2760/**
2761 * blk_end_sync_rq - executes a completion event on a request
2762 * @rq: request to complete
fddfdeaf 2763 * @error: end io status of the request
1da177e4 2764 */
8ffdc655 2765void blk_end_sync_rq(struct request *rq, int error)
1da177e4
LT
2766{
2767 struct completion *waiting = rq->waiting;
2768
2769 rq->waiting = NULL;
2770 __blk_put_request(rq->q, rq);
2771
2772 /*
2773 * complete last, if this is a stack request the process (and thus
2774 * the rq pointer) could be invalid right after this complete()
2775 */
2776 complete(waiting);
2777}
2778EXPORT_SYMBOL(blk_end_sync_rq);
2779
2780/**
2781 * blk_congestion_wait - wait for a queue to become uncongested
2782 * @rw: READ or WRITE
2783 * @timeout: timeout in jiffies
2784 *
2785 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2786 * If no queues are congested then just wait for the next request to be
2787 * returned.
2788 */
2789long blk_congestion_wait(int rw, long timeout)
2790{
2791 long ret;
2792 DEFINE_WAIT(wait);
2793 wait_queue_head_t *wqh = &congestion_wqh[rw];
2794
2795 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2796 ret = io_schedule_timeout(timeout);
2797 finish_wait(wqh, &wait);
2798 return ret;
2799}
2800
2801EXPORT_SYMBOL(blk_congestion_wait);
2802
275a082f
TM
2803/**
2804 * blk_congestion_end - wake up sleepers on a congestion queue
2805 * @rw: READ or WRITE
2806 */
2807void blk_congestion_end(int rw)
2808{
2809 wait_queue_head_t *wqh = &congestion_wqh[rw];
2810
2811 if (waitqueue_active(wqh))
2812 wake_up(wqh);
2813}
2814
1da177e4
LT
2815/*
2816 * Has to be called with the request spinlock acquired
2817 */
2818static int attempt_merge(request_queue_t *q, struct request *req,
2819 struct request *next)
2820{
2821 if (!rq_mergeable(req) || !rq_mergeable(next))
2822 return 0;
2823
2824 /*
d6e05edc 2825 * not contiguous
1da177e4
LT
2826 */
2827 if (req->sector + req->nr_sectors != next->sector)
2828 return 0;
2829
2830 if (rq_data_dir(req) != rq_data_dir(next)
2831 || req->rq_disk != next->rq_disk
2832 || next->waiting || next->special)
2833 return 0;
2834
2835 /*
2836 * If we are allowed to merge, then append bio list
2837 * from next to rq and release next. merge_requests_fn
2838 * will have updated segment counts, update sector
2839 * counts here.
2840 */
2841 if (!q->merge_requests_fn(q, req, next))
2842 return 0;
2843
2844 /*
2845 * At this point we have either done a back merge
2846 * or front merge. We need the smaller start_time of
2847 * the merged requests to be the current request
2848 * for accounting purposes.
2849 */
2850 if (time_after(req->start_time, next->start_time))
2851 req->start_time = next->start_time;
2852
2853 req->biotail->bi_next = next->bio;
2854 req->biotail = next->biotail;
2855
2856 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2857
2858 elv_merge_requests(q, req, next);
2859
2860 if (req->rq_disk) {
2861 disk_round_stats(req->rq_disk);
2862 req->rq_disk->in_flight--;
2863 }
2864
22e2c507
JA
2865 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2866
1da177e4
LT
2867 __blk_put_request(q, next);
2868 return 1;
2869}
2870
2871static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2872{
2873 struct request *next = elv_latter_request(q, rq);
2874
2875 if (next)
2876 return attempt_merge(q, rq, next);
2877
2878 return 0;
2879}
2880
2881static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2882{
2883 struct request *prev = elv_former_request(q, rq);
2884
2885 if (prev)
2886 return attempt_merge(q, prev, rq);
2887
2888 return 0;
2889}
2890
52d9e675
TH
2891static void init_request_from_bio(struct request *req, struct bio *bio)
2892{
2893 req->flags |= REQ_CMD;
2894
2895 /*
2896 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2897 */
2898 if (bio_rw_ahead(bio) || bio_failfast(bio))
2899 req->flags |= REQ_FAILFAST;
2900
2901 /*
2902 * REQ_BARRIER implies no merging, but lets make it explicit
2903 */
2904 if (unlikely(bio_barrier(bio)))
2905 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2906
b31dc66a
JA
2907 if (bio_sync(bio))
2908 req->flags |= REQ_RW_SYNC;
2909
52d9e675
TH
2910 req->errors = 0;
2911 req->hard_sector = req->sector = bio->bi_sector;
2912 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2913 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2914 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2915 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2916 req->buffer = bio_data(bio); /* see ->buffer comment above */
2917 req->waiting = NULL;
2918 req->bio = req->biotail = bio;
2919 req->ioprio = bio_prio(bio);
2920 req->rq_disk = bio->bi_bdev->bd_disk;
2921 req->start_time = jiffies;
2922}
2923
1da177e4
LT
2924static int __make_request(request_queue_t *q, struct bio *bio)
2925{
450991bc 2926 struct request *req;
4a534f93 2927 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
22e2c507 2928 unsigned short prio;
1da177e4
LT
2929 sector_t sector;
2930
2931 sector = bio->bi_sector;
2932 nr_sectors = bio_sectors(bio);
2933 cur_nr_sectors = bio_cur_sectors(bio);
22e2c507 2934 prio = bio_prio(bio);
1da177e4
LT
2935
2936 rw = bio_data_dir(bio);
4a534f93 2937 sync = bio_sync(bio);
1da177e4
LT
2938
2939 /*
2940 * low level driver can indicate that it wants pages above a
2941 * certain limit bounced to low memory (ie for highmem, or even
2942 * ISA dma in theory)
2943 */
2944 blk_queue_bounce(q, &bio);
2945
2946 spin_lock_prefetch(q->queue_lock);
2947
2948 barrier = bio_barrier(bio);
797e7dbb 2949 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2950 err = -EOPNOTSUPP;
2951 goto end_io;
2952 }
2953
1da177e4
LT
2954 spin_lock_irq(q->queue_lock);
2955
450991bc 2956 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2957 goto get_rq;
2958
2959 el_ret = elv_merge(q, &req, bio);
2960 switch (el_ret) {
2961 case ELEVATOR_BACK_MERGE:
2962 BUG_ON(!rq_mergeable(req));
2963
2964 if (!q->back_merge_fn(q, req, bio))
2965 break;
2966
2056a782
JA
2967 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2968
1da177e4
LT
2969 req->biotail->bi_next = bio;
2970 req->biotail = bio;
2971 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2972 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2973 drive_stat_acct(req, nr_sectors, 0);
2974 if (!attempt_back_merge(q, req))
2975 elv_merged_request(q, req);
2976 goto out;
2977
2978 case ELEVATOR_FRONT_MERGE:
2979 BUG_ON(!rq_mergeable(req));
2980
2981 if (!q->front_merge_fn(q, req, bio))
2982 break;
2983
2056a782
JA
2984 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2985
1da177e4
LT
2986 bio->bi_next = req->bio;
2987 req->bio = bio;
2988
2989 /*
2990 * may not be valid. if the low level driver said
2991 * it didn't need a bounce buffer then it better
2992 * not touch req->buffer either...
2993 */
2994 req->buffer = bio_data(bio);
2995 req->current_nr_sectors = cur_nr_sectors;
2996 req->hard_cur_sectors = cur_nr_sectors;
2997 req->sector = req->hard_sector = sector;
2998 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2999 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3000 drive_stat_acct(req, nr_sectors, 0);
3001 if (!attempt_front_merge(q, req))
3002 elv_merged_request(q, req);
3003 goto out;
3004
450991bc 3005 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3006 default:
450991bc 3007 ;
1da177e4
LT
3008 }
3009
450991bc 3010get_rq:
1da177e4 3011 /*
450991bc 3012 * Grab a free request. This is might sleep but can not fail.
d6344532 3013 * Returns with the queue unlocked.
450991bc 3014 */
450991bc 3015 req = get_request_wait(q, rw, bio);
d6344532 3016
450991bc
NP
3017 /*
3018 * After dropping the lock and possibly sleeping here, our request
3019 * may now be mergeable after it had proven unmergeable (above).
3020 * We don't worry about that case for efficiency. It won't happen
3021 * often, and the elevators are able to handle it.
1da177e4 3022 */
52d9e675 3023 init_request_from_bio(req, bio);
1da177e4 3024
450991bc
NP
3025 spin_lock_irq(q->queue_lock);
3026 if (elv_queue_empty(q))
3027 blk_plug_device(q);
1da177e4
LT
3028 add_request(q, req);
3029out:
4a534f93 3030 if (sync)
1da177e4
LT
3031 __generic_unplug_device(q);
3032
3033 spin_unlock_irq(q->queue_lock);
3034 return 0;
3035
3036end_io:
3037 bio_endio(bio, nr_sectors << 9, err);
3038 return 0;
3039}
3040
3041/*
3042 * If bio->bi_dev is a partition, remap the location
3043 */
3044static inline void blk_partition_remap(struct bio *bio)
3045{
3046 struct block_device *bdev = bio->bi_bdev;
3047
3048 if (bdev != bdev->bd_contains) {
3049 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3050 const int rw = bio_data_dir(bio);
3051
3052 p->sectors[rw] += bio_sectors(bio);
3053 p->ios[rw]++;
1da177e4 3054
1da177e4
LT
3055 bio->bi_sector += p->start_sect;
3056 bio->bi_bdev = bdev->bd_contains;
3057 }
3058}
3059
1da177e4
LT
3060static void handle_bad_sector(struct bio *bio)
3061{
3062 char b[BDEVNAME_SIZE];
3063
3064 printk(KERN_INFO "attempt to access beyond end of device\n");
3065 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3066 bdevname(bio->bi_bdev, b),
3067 bio->bi_rw,
3068 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3069 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3070
3071 set_bit(BIO_EOF, &bio->bi_flags);
3072}
3073
3074/**
3075 * generic_make_request: hand a buffer to its device driver for I/O
3076 * @bio: The bio describing the location in memory and on the device.
3077 *
3078 * generic_make_request() is used to make I/O requests of block
3079 * devices. It is passed a &struct bio, which describes the I/O that needs
3080 * to be done.
3081 *
3082 * generic_make_request() does not return any status. The
3083 * success/failure status of the request, along with notification of
3084 * completion, is delivered asynchronously through the bio->bi_end_io
3085 * function described (one day) else where.
3086 *
3087 * The caller of generic_make_request must make sure that bi_io_vec
3088 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3089 * set to describe the device address, and the
3090 * bi_end_io and optionally bi_private are set to describe how
3091 * completion notification should be signaled.
3092 *
3093 * generic_make_request and the drivers it calls may use bi_next if this
3094 * bio happens to be merged with someone else, and may change bi_dev and
3095 * bi_sector for remaps as it sees fit. So the values of these fields
3096 * should NOT be depended on after the call to generic_make_request.
3097 */
3098void generic_make_request(struct bio *bio)
3099{
3100 request_queue_t *q;
3101 sector_t maxsector;
3102 int ret, nr_sectors = bio_sectors(bio);
2056a782 3103 dev_t old_dev;
1da177e4
LT
3104
3105 might_sleep();
3106 /* Test device or partition size, when known. */
3107 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3108 if (maxsector) {
3109 sector_t sector = bio->bi_sector;
3110
3111 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3112 /*
3113 * This may well happen - the kernel calls bread()
3114 * without checking the size of the device, e.g., when
3115 * mounting a device.
3116 */
3117 handle_bad_sector(bio);
3118 goto end_io;
3119 }
3120 }
3121
3122 /*
3123 * Resolve the mapping until finished. (drivers are
3124 * still free to implement/resolve their own stacking
3125 * by explicitly returning 0)
3126 *
3127 * NOTE: we don't repeat the blk_size check for each new device.
3128 * Stacking drivers are expected to know what they are doing.
3129 */
2056a782
JA
3130 maxsector = -1;
3131 old_dev = 0;
1da177e4
LT
3132 do {
3133 char b[BDEVNAME_SIZE];
3134
3135 q = bdev_get_queue(bio->bi_bdev);
3136 if (!q) {
3137 printk(KERN_ERR
3138 "generic_make_request: Trying to access "
3139 "nonexistent block-device %s (%Lu)\n",
3140 bdevname(bio->bi_bdev, b),
3141 (long long) bio->bi_sector);
3142end_io:
3143 bio_endio(bio, bio->bi_size, -EIO);
3144 break;
3145 }
3146
3147 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3148 printk("bio too big device %s (%u > %u)\n",
3149 bdevname(bio->bi_bdev, b),
3150 bio_sectors(bio),
3151 q->max_hw_sectors);
3152 goto end_io;
3153 }
3154
fde6ad22 3155 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3156 goto end_io;
3157
1da177e4
LT
3158 /*
3159 * If this device has partitions, remap block n
3160 * of partition p to block n+start(p) of the disk.
3161 */
3162 blk_partition_remap(bio);
3163
2056a782
JA
3164 if (maxsector != -1)
3165 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3166 maxsector);
3167
3168 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3169
3170 maxsector = bio->bi_sector;
3171 old_dev = bio->bi_bdev->bd_dev;
3172
1da177e4
LT
3173 ret = q->make_request_fn(q, bio);
3174 } while (ret);
3175}
3176
3177EXPORT_SYMBOL(generic_make_request);
3178
3179/**
3180 * submit_bio: submit a bio to the block device layer for I/O
3181 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3182 * @bio: The &struct bio which describes the I/O
3183 *
3184 * submit_bio() is very similar in purpose to generic_make_request(), and
3185 * uses that function to do most of the work. Both are fairly rough
3186 * interfaces, @bio must be presetup and ready for I/O.
3187 *
3188 */
3189void submit_bio(int rw, struct bio *bio)
3190{
3191 int count = bio_sectors(bio);
3192
3193 BIO_BUG_ON(!bio->bi_size);
3194 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3195 bio->bi_rw |= rw;
1da177e4 3196 if (rw & WRITE)
f8891e5e 3197 count_vm_events(PGPGOUT, count);
1da177e4 3198 else
f8891e5e 3199 count_vm_events(PGPGIN, count);
1da177e4
LT
3200
3201 if (unlikely(block_dump)) {
3202 char b[BDEVNAME_SIZE];
3203 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3204 current->comm, current->pid,
3205 (rw & WRITE) ? "WRITE" : "READ",
3206 (unsigned long long)bio->bi_sector,
3207 bdevname(bio->bi_bdev,b));
3208 }
3209
3210 generic_make_request(bio);
3211}
3212
3213EXPORT_SYMBOL(submit_bio);
3214
93d17d3d 3215static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3216{
3217 struct bio *bio, *prevbio = NULL;
3218 int nr_phys_segs, nr_hw_segs;
3219 unsigned int phys_size, hw_size;
3220 request_queue_t *q = rq->q;
3221
3222 if (!rq->bio)
3223 return;
3224
3225 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3226 rq_for_each_bio(bio, rq) {
3227 /* Force bio hw/phys segs to be recalculated. */
3228 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3229
3230 nr_phys_segs += bio_phys_segments(q, bio);
3231 nr_hw_segs += bio_hw_segments(q, bio);
3232 if (prevbio) {
3233 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3234 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3235
3236 if (blk_phys_contig_segment(q, prevbio, bio) &&
3237 pseg <= q->max_segment_size) {
3238 nr_phys_segs--;
3239 phys_size += prevbio->bi_size + bio->bi_size;
3240 } else
3241 phys_size = 0;
3242
3243 if (blk_hw_contig_segment(q, prevbio, bio) &&
3244 hseg <= q->max_segment_size) {
3245 nr_hw_segs--;
3246 hw_size += prevbio->bi_size + bio->bi_size;
3247 } else
3248 hw_size = 0;
3249 }
3250 prevbio = bio;
3251 }
3252
3253 rq->nr_phys_segments = nr_phys_segs;
3254 rq->nr_hw_segments = nr_hw_segs;
3255}
3256
93d17d3d 3257static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3258{
3259 if (blk_fs_request(rq)) {
3260 rq->hard_sector += nsect;
3261 rq->hard_nr_sectors -= nsect;
3262
3263 /*
3264 * Move the I/O submission pointers ahead if required.
3265 */
3266 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3267 (rq->sector <= rq->hard_sector)) {
3268 rq->sector = rq->hard_sector;
3269 rq->nr_sectors = rq->hard_nr_sectors;
3270 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3271 rq->current_nr_sectors = rq->hard_cur_sectors;
3272 rq->buffer = bio_data(rq->bio);
3273 }
3274
3275 /*
3276 * if total number of sectors is less than the first segment
3277 * size, something has gone terribly wrong
3278 */
3279 if (rq->nr_sectors < rq->current_nr_sectors) {
3280 printk("blk: request botched\n");
3281 rq->nr_sectors = rq->current_nr_sectors;
3282 }
3283 }
3284}
3285
3286static int __end_that_request_first(struct request *req, int uptodate,
3287 int nr_bytes)
3288{
3289 int total_bytes, bio_nbytes, error, next_idx = 0;
3290 struct bio *bio;
3291
2056a782
JA
3292 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3293
1da177e4
LT
3294 /*
3295 * extend uptodate bool to allow < 0 value to be direct io error
3296 */
3297 error = 0;
3298 if (end_io_error(uptodate))
3299 error = !uptodate ? -EIO : uptodate;
3300
3301 /*
3302 * for a REQ_BLOCK_PC request, we want to carry any eventual
3303 * sense key with us all the way through
3304 */
3305 if (!blk_pc_request(req))
3306 req->errors = 0;
3307
3308 if (!uptodate) {
3309 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3310 printk("end_request: I/O error, dev %s, sector %llu\n",
3311 req->rq_disk ? req->rq_disk->disk_name : "?",
3312 (unsigned long long)req->sector);
3313 }
3314
d72d904a 3315 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3316 const int rw = rq_data_dir(req);
3317
53e86061 3318 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3319 }
3320
1da177e4
LT
3321 total_bytes = bio_nbytes = 0;
3322 while ((bio = req->bio) != NULL) {
3323 int nbytes;
3324
3325 if (nr_bytes >= bio->bi_size) {
3326 req->bio = bio->bi_next;
3327 nbytes = bio->bi_size;
797e7dbb
TH
3328 if (!ordered_bio_endio(req, bio, nbytes, error))
3329 bio_endio(bio, nbytes, error);
1da177e4
LT
3330 next_idx = 0;
3331 bio_nbytes = 0;
3332 } else {
3333 int idx = bio->bi_idx + next_idx;
3334
3335 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3336 blk_dump_rq_flags(req, "__end_that");
3337 printk("%s: bio idx %d >= vcnt %d\n",
3338 __FUNCTION__,
3339 bio->bi_idx, bio->bi_vcnt);
3340 break;
3341 }
3342
3343 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3344 BIO_BUG_ON(nbytes > bio->bi_size);
3345
3346 /*
3347 * not a complete bvec done
3348 */
3349 if (unlikely(nbytes > nr_bytes)) {
3350 bio_nbytes += nr_bytes;
3351 total_bytes += nr_bytes;
3352 break;
3353 }
3354
3355 /*
3356 * advance to the next vector
3357 */
3358 next_idx++;
3359 bio_nbytes += nbytes;
3360 }
3361
3362 total_bytes += nbytes;
3363 nr_bytes -= nbytes;
3364
3365 if ((bio = req->bio)) {
3366 /*
3367 * end more in this run, or just return 'not-done'
3368 */
3369 if (unlikely(nr_bytes <= 0))
3370 break;
3371 }
3372 }
3373
3374 /*
3375 * completely done
3376 */
3377 if (!req->bio)
3378 return 0;
3379
3380 /*
3381 * if the request wasn't completed, update state
3382 */
3383 if (bio_nbytes) {
797e7dbb
TH
3384 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3385 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3386 bio->bi_idx += next_idx;
3387 bio_iovec(bio)->bv_offset += nr_bytes;
3388 bio_iovec(bio)->bv_len -= nr_bytes;
3389 }
3390
3391 blk_recalc_rq_sectors(req, total_bytes >> 9);
3392 blk_recalc_rq_segments(req);
3393 return 1;
3394}
3395
3396/**
3397 * end_that_request_first - end I/O on a request
3398 * @req: the request being processed
3399 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3400 * @nr_sectors: number of sectors to end I/O on
3401 *
3402 * Description:
3403 * Ends I/O on a number of sectors attached to @req, and sets it up
3404 * for the next range of segments (if any) in the cluster.
3405 *
3406 * Return:
3407 * 0 - we are done with this request, call end_that_request_last()
3408 * 1 - still buffers pending for this request
3409 **/
3410int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3411{
3412 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3413}
3414
3415EXPORT_SYMBOL(end_that_request_first);
3416
3417/**
3418 * end_that_request_chunk - end I/O on a request
3419 * @req: the request being processed
3420 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3421 * @nr_bytes: number of bytes to complete
3422 *
3423 * Description:
3424 * Ends I/O on a number of bytes attached to @req, and sets it up
3425 * for the next range of segments (if any). Like end_that_request_first(),
3426 * but deals with bytes instead of sectors.
3427 *
3428 * Return:
3429 * 0 - we are done with this request, call end_that_request_last()
3430 * 1 - still buffers pending for this request
3431 **/
3432int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3433{
3434 return __end_that_request_first(req, uptodate, nr_bytes);
3435}
3436
3437EXPORT_SYMBOL(end_that_request_chunk);
3438
ff856bad
JA
3439/*
3440 * splice the completion data to a local structure and hand off to
3441 * process_completion_queue() to complete the requests
3442 */
3443static void blk_done_softirq(struct softirq_action *h)
3444{
626ab0e6 3445 struct list_head *cpu_list, local_list;
ff856bad
JA
3446
3447 local_irq_disable();
3448 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3449 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3450 local_irq_enable();
3451
3452 while (!list_empty(&local_list)) {
3453 struct request *rq = list_entry(local_list.next, struct request, donelist);
3454
3455 list_del_init(&rq->donelist);
3456 rq->q->softirq_done_fn(rq);
3457 }
3458}
3459
3460#ifdef CONFIG_HOTPLUG_CPU
3461
3462static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3463 void *hcpu)
3464{
3465 /*
3466 * If a CPU goes away, splice its entries to the current CPU
3467 * and trigger a run of the softirq
3468 */
3469 if (action == CPU_DEAD) {
3470 int cpu = (unsigned long) hcpu;
3471
3472 local_irq_disable();
3473 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3474 &__get_cpu_var(blk_cpu_done));
3475 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3476 local_irq_enable();
3477 }
3478
3479 return NOTIFY_OK;
3480}
3481
3482
054cc8a2 3483static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3484 .notifier_call = blk_cpu_notify,
3485};
3486
3487#endif /* CONFIG_HOTPLUG_CPU */
3488
3489/**
3490 * blk_complete_request - end I/O on a request
3491 * @req: the request being processed
3492 *
3493 * Description:
3494 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3495 * unless the driver actually implements this in its completion callback
ff856bad
JA
3496 * through requeueing. Theh actual completion happens out-of-order,
3497 * through a softirq handler. The user must have registered a completion
3498 * callback through blk_queue_softirq_done().
3499 **/
3500
3501void blk_complete_request(struct request *req)
3502{
3503 struct list_head *cpu_list;
3504 unsigned long flags;
3505
3506 BUG_ON(!req->q->softirq_done_fn);
3507
3508 local_irq_save(flags);
3509
3510 cpu_list = &__get_cpu_var(blk_cpu_done);
3511 list_add_tail(&req->donelist, cpu_list);
3512 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3513
3514 local_irq_restore(flags);
3515}
3516
3517EXPORT_SYMBOL(blk_complete_request);
3518
1da177e4
LT
3519/*
3520 * queue lock must be held
3521 */
8ffdc655 3522void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3523{
3524 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3525 int error;
3526
3527 /*
3528 * extend uptodate bool to allow < 0 value to be direct io error
3529 */
3530 error = 0;
3531 if (end_io_error(uptodate))
3532 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3533
3534 if (unlikely(laptop_mode) && blk_fs_request(req))
3535 laptop_io_completion();
3536
fd0ff8aa
JA
3537 /*
3538 * Account IO completion. bar_rq isn't accounted as a normal
3539 * IO on queueing nor completion. Accounting the containing
3540 * request is enough.
3541 */
3542 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3543 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3544 const int rw = rq_data_dir(req);
3545
3546 __disk_stat_inc(disk, ios[rw]);
3547 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3548 disk_round_stats(disk);
3549 disk->in_flight--;
3550 }
3551 if (req->end_io)
8ffdc655 3552 req->end_io(req, error);
1da177e4
LT
3553 else
3554 __blk_put_request(req->q, req);
3555}
3556
3557EXPORT_SYMBOL(end_that_request_last);
3558
3559void end_request(struct request *req, int uptodate)
3560{
3561 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3562 add_disk_randomness(req->rq_disk);
3563 blkdev_dequeue_request(req);
8ffdc655 3564 end_that_request_last(req, uptodate);
1da177e4
LT
3565 }
3566}
3567
3568EXPORT_SYMBOL(end_request);
3569
3570void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3571{
1959d212
JA
3572 /* first two bits are identical in rq->flags and bio->bi_rw */
3573 rq->flags |= (bio->bi_rw & 3);
1da177e4
LT
3574
3575 rq->nr_phys_segments = bio_phys_segments(q, bio);
3576 rq->nr_hw_segments = bio_hw_segments(q, bio);
3577 rq->current_nr_sectors = bio_cur_sectors(bio);
3578 rq->hard_cur_sectors = rq->current_nr_sectors;
3579 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3580 rq->buffer = bio_data(bio);
3581
3582 rq->bio = rq->biotail = bio;
3583}
3584
3585EXPORT_SYMBOL(blk_rq_bio_prep);
3586
3587int kblockd_schedule_work(struct work_struct *work)
3588{
3589 return queue_work(kblockd_workqueue, work);
3590}
3591
3592EXPORT_SYMBOL(kblockd_schedule_work);
3593
3594void kblockd_flush(void)
3595{
3596 flush_workqueue(kblockd_workqueue);
3597}
3598EXPORT_SYMBOL(kblockd_flush);
3599
3600int __init blk_dev_init(void)
3601{
ff856bad
JA
3602 int i;
3603
1da177e4
LT
3604 kblockd_workqueue = create_workqueue("kblockd");
3605 if (!kblockd_workqueue)
3606 panic("Failed to create kblockd\n");
3607
3608 request_cachep = kmem_cache_create("blkdev_requests",
3609 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3610
3611 requestq_cachep = kmem_cache_create("blkdev_queue",
3612 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3613
3614 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3615 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3616
0a945022 3617 for_each_possible_cpu(i)
ff856bad
JA
3618 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3619
3620 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3621 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3622
1da177e4
LT
3623 blk_max_low_pfn = max_low_pfn;
3624 blk_max_pfn = max_pfn;
3625
3626 return 0;
3627}
3628
3629/*
3630 * IO Context helper functions
3631 */
3632void put_io_context(struct io_context *ioc)
3633{
3634 if (ioc == NULL)
3635 return;
3636
3637 BUG_ON(atomic_read(&ioc->refcount) == 0);
3638
3639 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3640 struct cfq_io_context *cic;
3641
334e94de 3642 rcu_read_lock();
1da177e4
LT
3643 if (ioc->aic && ioc->aic->dtor)
3644 ioc->aic->dtor(ioc->aic);
e2d74ac0 3645 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3646 struct rb_node *n = rb_first(&ioc->cic_root);
3647
3648 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3649 cic->dtor(ioc);
3650 }
334e94de 3651 rcu_read_unlock();
1da177e4
LT
3652
3653 kmem_cache_free(iocontext_cachep, ioc);
3654 }
3655}
3656EXPORT_SYMBOL(put_io_context);
3657
3658/* Called by the exitting task */
3659void exit_io_context(void)
3660{
3661 unsigned long flags;
3662 struct io_context *ioc;
e2d74ac0 3663 struct cfq_io_context *cic;
1da177e4
LT
3664
3665 local_irq_save(flags);
22e2c507 3666 task_lock(current);
1da177e4
LT
3667 ioc = current->io_context;
3668 current->io_context = NULL;
22e2c507
JA
3669 ioc->task = NULL;
3670 task_unlock(current);
1da177e4
LT
3671 local_irq_restore(flags);
3672
3673 if (ioc->aic && ioc->aic->exit)
3674 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3675 if (ioc->cic_root.rb_node != NULL) {
3676 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3677 cic->exit(ioc);
3678 }
3679
1da177e4
LT
3680 put_io_context(ioc);
3681}
3682
3683/*
3684 * If the current task has no IO context then create one and initialise it.
fb3cc432 3685 * Otherwise, return its existing IO context.
1da177e4 3686 *
fb3cc432
NP
3687 * This returned IO context doesn't have a specifically elevated refcount,
3688 * but since the current task itself holds a reference, the context can be
3689 * used in general code, so long as it stays within `current` context.
1da177e4 3690 */
8267e268 3691struct io_context *current_io_context(gfp_t gfp_flags)
1da177e4
LT
3692{
3693 struct task_struct *tsk = current;
1da177e4
LT
3694 struct io_context *ret;
3695
1da177e4 3696 ret = tsk->io_context;
fb3cc432
NP
3697 if (likely(ret))
3698 return ret;
1da177e4
LT
3699
3700 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3701 if (ret) {
3702 atomic_set(&ret->refcount, 1);
22e2c507
JA
3703 ret->task = current;
3704 ret->set_ioprio = NULL;
1da177e4
LT
3705 ret->last_waited = jiffies; /* doesn't matter... */
3706 ret->nr_batch_requests = 0; /* because this is 0 */
3707 ret->aic = NULL;
e2d74ac0 3708 ret->cic_root.rb_node = NULL;
9f83e45e
ON
3709 /* make sure set_task_ioprio() sees the settings above */
3710 smp_wmb();
fb3cc432
NP
3711 tsk->io_context = ret;
3712 }
1da177e4 3713
fb3cc432
NP
3714 return ret;
3715}
3716EXPORT_SYMBOL(current_io_context);
1da177e4 3717
fb3cc432
NP
3718/*
3719 * If the current task has no IO context then create one and initialise it.
3720 * If it does have a context, take a ref on it.
3721 *
3722 * This is always called in the context of the task which submitted the I/O.
3723 */
8267e268 3724struct io_context *get_io_context(gfp_t gfp_flags)
fb3cc432
NP
3725{
3726 struct io_context *ret;
3727 ret = current_io_context(gfp_flags);
3728 if (likely(ret))
1da177e4 3729 atomic_inc(&ret->refcount);
1da177e4
LT
3730 return ret;
3731}
3732EXPORT_SYMBOL(get_io_context);
3733
3734void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3735{
3736 struct io_context *src = *psrc;
3737 struct io_context *dst = *pdst;
3738
3739 if (src) {
3740 BUG_ON(atomic_read(&src->refcount) == 0);
3741 atomic_inc(&src->refcount);
3742 put_io_context(dst);
3743 *pdst = src;
3744 }
3745}
3746EXPORT_SYMBOL(copy_io_context);
3747
3748void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3749{
3750 struct io_context *temp;
3751 temp = *ioc1;
3752 *ioc1 = *ioc2;
3753 *ioc2 = temp;
3754}
3755EXPORT_SYMBOL(swap_io_context);
3756
3757/*
3758 * sysfs parts below
3759 */
3760struct queue_sysfs_entry {
3761 struct attribute attr;
3762 ssize_t (*show)(struct request_queue *, char *);
3763 ssize_t (*store)(struct request_queue *, const char *, size_t);
3764};
3765
3766static ssize_t
3767queue_var_show(unsigned int var, char *page)
3768{
3769 return sprintf(page, "%d\n", var);
3770}
3771
3772static ssize_t
3773queue_var_store(unsigned long *var, const char *page, size_t count)
3774{
3775 char *p = (char *) page;
3776
3777 *var = simple_strtoul(p, &p, 10);
3778 return count;
3779}
3780
3781static ssize_t queue_requests_show(struct request_queue *q, char *page)
3782{
3783 return queue_var_show(q->nr_requests, (page));
3784}
3785
3786static ssize_t
3787queue_requests_store(struct request_queue *q, const char *page, size_t count)
3788{
3789 struct request_list *rl = &q->rq;
c981ff9f
AV
3790 unsigned long nr;
3791 int ret = queue_var_store(&nr, page, count);
3792 if (nr < BLKDEV_MIN_RQ)
3793 nr = BLKDEV_MIN_RQ;
1da177e4 3794
c981ff9f
AV
3795 spin_lock_irq(q->queue_lock);
3796 q->nr_requests = nr;
1da177e4
LT
3797 blk_queue_congestion_threshold(q);
3798
3799 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3800 set_queue_congested(q, READ);
3801 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3802 clear_queue_congested(q, READ);
3803
3804 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3805 set_queue_congested(q, WRITE);
3806 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3807 clear_queue_congested(q, WRITE);
3808
3809 if (rl->count[READ] >= q->nr_requests) {
3810 blk_set_queue_full(q, READ);
3811 } else if (rl->count[READ]+1 <= q->nr_requests) {
3812 blk_clear_queue_full(q, READ);
3813 wake_up(&rl->wait[READ]);
3814 }
3815
3816 if (rl->count[WRITE] >= q->nr_requests) {
3817 blk_set_queue_full(q, WRITE);
3818 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3819 blk_clear_queue_full(q, WRITE);
3820 wake_up(&rl->wait[WRITE]);
3821 }
c981ff9f 3822 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3823 return ret;
3824}
3825
3826static ssize_t queue_ra_show(struct request_queue *q, char *page)
3827{
3828 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3829
3830 return queue_var_show(ra_kb, (page));
3831}
3832
3833static ssize_t
3834queue_ra_store(struct request_queue *q, const char *page, size_t count)
3835{
3836 unsigned long ra_kb;
3837 ssize_t ret = queue_var_store(&ra_kb, page, count);
3838
3839 spin_lock_irq(q->queue_lock);
3840 if (ra_kb > (q->max_sectors >> 1))
3841 ra_kb = (q->max_sectors >> 1);
3842
3843 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3844 spin_unlock_irq(q->queue_lock);
3845
3846 return ret;
3847}
3848
3849static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3850{
3851 int max_sectors_kb = q->max_sectors >> 1;
3852
3853 return queue_var_show(max_sectors_kb, (page));
3854}
3855
3856static ssize_t
3857queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3858{
3859 unsigned long max_sectors_kb,
3860 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3861 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3862 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3863 int ra_kb;
3864
3865 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3866 return -EINVAL;
3867 /*
3868 * Take the queue lock to update the readahead and max_sectors
3869 * values synchronously:
3870 */
3871 spin_lock_irq(q->queue_lock);
3872 /*
3873 * Trim readahead window as well, if necessary:
3874 */
3875 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3876 if (ra_kb > max_sectors_kb)
3877 q->backing_dev_info.ra_pages =
3878 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3879
3880 q->max_sectors = max_sectors_kb << 1;
3881 spin_unlock_irq(q->queue_lock);
3882
3883 return ret;
3884}
3885
3886static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3887{
3888 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3889
3890 return queue_var_show(max_hw_sectors_kb, (page));
3891}
3892
3893
3894static struct queue_sysfs_entry queue_requests_entry = {
3895 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3896 .show = queue_requests_show,
3897 .store = queue_requests_store,
3898};
3899
3900static struct queue_sysfs_entry queue_ra_entry = {
3901 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3902 .show = queue_ra_show,
3903 .store = queue_ra_store,
3904};
3905
3906static struct queue_sysfs_entry queue_max_sectors_entry = {
3907 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3908 .show = queue_max_sectors_show,
3909 .store = queue_max_sectors_store,
3910};
3911
3912static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3913 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3914 .show = queue_max_hw_sectors_show,
3915};
3916
3917static struct queue_sysfs_entry queue_iosched_entry = {
3918 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3919 .show = elv_iosched_show,
3920 .store = elv_iosched_store,
3921};
3922
3923static struct attribute *default_attrs[] = {
3924 &queue_requests_entry.attr,
3925 &queue_ra_entry.attr,
3926 &queue_max_hw_sectors_entry.attr,
3927 &queue_max_sectors_entry.attr,
3928 &queue_iosched_entry.attr,
3929 NULL,
3930};
3931
3932#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3933
3934static ssize_t
3935queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3936{
3937 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3938 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3939 ssize_t res;
1da177e4 3940
1da177e4 3941 if (!entry->show)
6c1852a0 3942 return -EIO;
483f4afc
AV
3943 mutex_lock(&q->sysfs_lock);
3944 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3945 mutex_unlock(&q->sysfs_lock);
3946 return -ENOENT;
3947 }
3948 res = entry->show(q, page);
3949 mutex_unlock(&q->sysfs_lock);
3950 return res;
1da177e4
LT
3951}
3952
3953static ssize_t
3954queue_attr_store(struct kobject *kobj, struct attribute *attr,
3955 const char *page, size_t length)
3956{
3957 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3958 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3959
3960 ssize_t res;
1da177e4 3961
1da177e4 3962 if (!entry->store)
6c1852a0 3963 return -EIO;
483f4afc
AV
3964 mutex_lock(&q->sysfs_lock);
3965 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3966 mutex_unlock(&q->sysfs_lock);
3967 return -ENOENT;
3968 }
3969 res = entry->store(q, page, length);
3970 mutex_unlock(&q->sysfs_lock);
3971 return res;
1da177e4
LT
3972}
3973
3974static struct sysfs_ops queue_sysfs_ops = {
3975 .show = queue_attr_show,
3976 .store = queue_attr_store,
3977};
3978
93d17d3d 3979static struct kobj_type queue_ktype = {
1da177e4
LT
3980 .sysfs_ops = &queue_sysfs_ops,
3981 .default_attrs = default_attrs,
483f4afc 3982 .release = blk_release_queue,
1da177e4
LT
3983};
3984
3985int blk_register_queue(struct gendisk *disk)
3986{
3987 int ret;
3988
3989 request_queue_t *q = disk->queue;
3990
3991 if (!q || !q->request_fn)
3992 return -ENXIO;
3993
3994 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 3995
483f4afc 3996 ret = kobject_add(&q->kobj);
1da177e4
LT
3997 if (ret < 0)
3998 return ret;
3999
483f4afc
AV
4000 kobject_uevent(&q->kobj, KOBJ_ADD);
4001
1da177e4
LT
4002 ret = elv_register_queue(q);
4003 if (ret) {
483f4afc
AV
4004 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4005 kobject_del(&q->kobj);
1da177e4
LT
4006 return ret;
4007 }
4008
4009 return 0;
4010}
4011
4012void blk_unregister_queue(struct gendisk *disk)
4013{
4014 request_queue_t *q = disk->queue;
4015
4016 if (q && q->request_fn) {
4017 elv_unregister_queue(q);
4018
483f4afc
AV
4019 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4020 kobject_del(&q->kobj);
1da177e4
LT
4021 kobject_put(&disk->kobj);
4022 }
4023}