[PATCH] Remove ->rq_status from struct request
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
ff856bad
JA
28#include <linux/interrupt.h>
29#include <linux/cpu.h>
2056a782 30#include <linux/blktrace_api.h>
1da177e4
LT
31
32/*
33 * for max sense size
34 */
35#include <scsi/scsi_cmnd.h>
36
37static void blk_unplug_work(void *data);
38static void blk_unplug_timeout(unsigned long data);
93d17d3d 39static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675
TH
40static void init_request_from_bio(struct request *req, struct bio *bio);
41static int __make_request(request_queue_t *q, struct bio *bio);
1da177e4
LT
42
43/*
44 * For the allocated request tables
45 */
46static kmem_cache_t *request_cachep;
47
48/*
49 * For queue allocation
50 */
51static kmem_cache_t *requestq_cachep;
52
53/*
54 * For io context allocations
55 */
56static kmem_cache_t *iocontext_cachep;
57
58static wait_queue_head_t congestion_wqh[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
61 };
62
63/*
64 * Controlling structure to kblockd
65 */
ff856bad 66static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
67
68unsigned long blk_max_low_pfn, blk_max_pfn;
69
70EXPORT_SYMBOL(blk_max_low_pfn);
71EXPORT_SYMBOL(blk_max_pfn);
72
ff856bad
JA
73static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
74
1da177e4
LT
75/* Amount of time in which a process may batch requests */
76#define BLK_BATCH_TIME (HZ/50UL)
77
78/* Number of requests a "batching" process may submit */
79#define BLK_BATCH_REQ 32
80
81/*
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
85 */
86static inline int queue_congestion_on_threshold(struct request_queue *q)
87{
88 return q->nr_congestion_on;
89}
90
91/*
92 * The threshold at which a queue is considered to be uncongested
93 */
94static inline int queue_congestion_off_threshold(struct request_queue *q)
95{
96 return q->nr_congestion_off;
97}
98
99static void blk_queue_congestion_threshold(struct request_queue *q)
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
114/*
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
117 * put back.
118 */
119static void clear_queue_congested(request_queue_t *q, int rw)
120{
121 enum bdi_state bit;
122 wait_queue_head_t *wqh = &congestion_wqh[rw];
123
124 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
125 clear_bit(bit, &q->backing_dev_info.state);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh))
128 wake_up(wqh);
129}
130
131/*
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
134 */
135static void set_queue_congested(request_queue_t *q, int rw)
136{
137 enum bdi_state bit;
138
139 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
140 set_bit(bit, &q->backing_dev_info.state);
141}
142
143/**
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
145 * @bdev: device
146 *
147 * Locates the passed device's request queue and returns the address of its
148 * backing_dev_info
149 *
150 * Will return NULL if the request queue cannot be located.
151 */
152struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
153{
154 struct backing_dev_info *ret = NULL;
155 request_queue_t *q = bdev_get_queue(bdev);
156
157 if (q)
158 ret = &q->backing_dev_info;
159 return ret;
160}
161
162EXPORT_SYMBOL(blk_get_backing_dev_info);
163
164void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
165{
166 q->activity_fn = fn;
167 q->activity_data = data;
168}
169
170EXPORT_SYMBOL(blk_queue_activity_fn);
171
172/**
173 * blk_queue_prep_rq - set a prepare_request function for queue
174 * @q: queue
175 * @pfn: prepare_request function
176 *
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
181 *
182 */
183void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
184{
185 q->prep_rq_fn = pfn;
186}
187
188EXPORT_SYMBOL(blk_queue_prep_rq);
189
190/**
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
192 * @q: queue
193 * @mbfn: merge_bvec_fn
194 *
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
204 * honored.
205 */
206void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
207{
208 q->merge_bvec_fn = mbfn;
209}
210
211EXPORT_SYMBOL(blk_queue_merge_bvec);
212
ff856bad
JA
213void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
214{
215 q->softirq_done_fn = fn;
216}
217
218EXPORT_SYMBOL(blk_queue_softirq_done);
219
1da177e4
LT
220/**
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
224 *
225 * Description:
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
235 *
236 * Caveat:
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
241 **/
242void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
243{
244 /*
245 * set defaults
246 */
247 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
248 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
249 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
250 q->make_request_fn = mfn;
251 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
252 q->backing_dev_info.state = 0;
253 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 254 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
255 blk_queue_hardsect_size(q, 512);
256 blk_queue_dma_alignment(q, 511);
257 blk_queue_congestion_threshold(q);
258 q->nr_batching = BLK_BATCH_REQ;
259
260 q->unplug_thresh = 4; /* hmm */
261 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
262 if (q->unplug_delay == 0)
263 q->unplug_delay = 1;
264
265 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
266
267 q->unplug_timer.function = blk_unplug_timeout;
268 q->unplug_timer.data = (unsigned long)q;
269
270 /*
271 * by default assume old behaviour and bounce for any highmem page
272 */
273 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
274
275 blk_queue_activity_fn(q, NULL, NULL);
1da177e4
LT
276}
277
278EXPORT_SYMBOL(blk_queue_make_request);
279
280static inline void rq_init(request_queue_t *q, struct request *rq)
281{
282 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 283 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
284
285 rq->errors = 0;
1da177e4 286 rq->bio = rq->biotail = NULL;
2e662b65
JA
287 INIT_HLIST_NODE(&rq->hash);
288 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 289 rq->ioprio = 0;
1da177e4
LT
290 rq->buffer = NULL;
291 rq->ref_count = 1;
292 rq->q = q;
1da177e4
LT
293 rq->special = NULL;
294 rq->data_len = 0;
295 rq->data = NULL;
df46b9a4 296 rq->nr_phys_segments = 0;
1da177e4
LT
297 rq->sense = NULL;
298 rq->end_io = NULL;
299 rq->end_io_data = NULL;
ff856bad 300 rq->completion_data = NULL;
1da177e4
LT
301}
302
303/**
304 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 307 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
308 *
309 * Description:
310 * For journalled file systems, doing ordered writes on a commit
311 * block instead of explicitly doing wait_on_buffer (which is bad
312 * for performance) can be a big win. Block drivers supporting this
313 * feature should call this function and indicate so.
314 *
315 **/
797e7dbb
TH
316int blk_queue_ordered(request_queue_t *q, unsigned ordered,
317 prepare_flush_fn *prepare_flush_fn)
318{
319 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
320 prepare_flush_fn == NULL) {
321 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
322 return -EINVAL;
323 }
324
325 if (ordered != QUEUE_ORDERED_NONE &&
326 ordered != QUEUE_ORDERED_DRAIN &&
327 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
328 ordered != QUEUE_ORDERED_DRAIN_FUA &&
329 ordered != QUEUE_ORDERED_TAG &&
330 ordered != QUEUE_ORDERED_TAG_FLUSH &&
331 ordered != QUEUE_ORDERED_TAG_FUA) {
332 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
333 return -EINVAL;
1da177e4 334 }
797e7dbb 335
60481b12 336 q->ordered = ordered;
797e7dbb
TH
337 q->next_ordered = ordered;
338 q->prepare_flush_fn = prepare_flush_fn;
339
340 return 0;
1da177e4
LT
341}
342
343EXPORT_SYMBOL(blk_queue_ordered);
344
345/**
346 * blk_queue_issue_flush_fn - set function for issuing a flush
347 * @q: the request queue
348 * @iff: the function to be called issuing the flush
349 *
350 * Description:
351 * If a driver supports issuing a flush command, the support is notified
352 * to the block layer by defining it through this call.
353 *
354 **/
355void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
356{
357 q->issue_flush_fn = iff;
358}
359
360EXPORT_SYMBOL(blk_queue_issue_flush_fn);
361
362/*
363 * Cache flushing for ordered writes handling
364 */
797e7dbb 365inline unsigned blk_ordered_cur_seq(request_queue_t *q)
1da177e4 366{
797e7dbb
TH
367 if (!q->ordseq)
368 return 0;
369 return 1 << ffz(q->ordseq);
1da177e4
LT
370}
371
797e7dbb 372unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 373{
1da177e4
LT
374 request_queue_t *q = rq->q;
375
797e7dbb 376 BUG_ON(q->ordseq == 0);
8922e16c 377
797e7dbb
TH
378 if (rq == &q->pre_flush_rq)
379 return QUEUE_ORDSEQ_PREFLUSH;
380 if (rq == &q->bar_rq)
381 return QUEUE_ORDSEQ_BAR;
382 if (rq == &q->post_flush_rq)
383 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 384
4aff5e23
JA
385 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
386 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
387 return QUEUE_ORDSEQ_DRAIN;
388 else
389 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
390}
391
797e7dbb 392void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
1da177e4 393{
797e7dbb
TH
394 struct request *rq;
395 int uptodate;
1da177e4 396
797e7dbb
TH
397 if (error && !q->orderr)
398 q->orderr = error;
1da177e4 399
797e7dbb
TH
400 BUG_ON(q->ordseq & seq);
401 q->ordseq |= seq;
1da177e4 402
797e7dbb
TH
403 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
404 return;
1da177e4
LT
405
406 /*
797e7dbb 407 * Okay, sequence complete.
1da177e4 408 */
797e7dbb
TH
409 rq = q->orig_bar_rq;
410 uptodate = q->orderr ? q->orderr : 1;
1da177e4 411
797e7dbb 412 q->ordseq = 0;
1da177e4 413
797e7dbb
TH
414 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
415 end_that_request_last(rq, uptodate);
1da177e4
LT
416}
417
797e7dbb 418static void pre_flush_end_io(struct request *rq, int error)
1da177e4 419{
797e7dbb
TH
420 elv_completed_request(rq->q, rq);
421 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
422}
1da177e4 423
797e7dbb
TH
424static void bar_end_io(struct request *rq, int error)
425{
426 elv_completed_request(rq->q, rq);
427 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
428}
1da177e4 429
797e7dbb
TH
430static void post_flush_end_io(struct request *rq, int error)
431{
432 elv_completed_request(rq->q, rq);
433 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
434}
1da177e4 435
797e7dbb
TH
436static void queue_flush(request_queue_t *q, unsigned which)
437{
438 struct request *rq;
439 rq_end_io_fn *end_io;
1da177e4 440
797e7dbb
TH
441 if (which == QUEUE_ORDERED_PREFLUSH) {
442 rq = &q->pre_flush_rq;
443 end_io = pre_flush_end_io;
444 } else {
445 rq = &q->post_flush_rq;
446 end_io = post_flush_end_io;
1da177e4 447 }
797e7dbb 448
4aff5e23 449 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 450 rq_init(q, rq);
797e7dbb 451 rq->elevator_private = NULL;
c00895ab 452 rq->elevator_private2 = NULL;
797e7dbb 453 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
454 rq->end_io = end_io;
455 q->prepare_flush_fn(q, rq);
456
30e9656c 457 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
458}
459
797e7dbb
TH
460static inline struct request *start_ordered(request_queue_t *q,
461 struct request *rq)
1da177e4 462{
797e7dbb
TH
463 q->bi_size = 0;
464 q->orderr = 0;
465 q->ordered = q->next_ordered;
466 q->ordseq |= QUEUE_ORDSEQ_STARTED;
467
468 /*
469 * Prep proxy barrier request.
470 */
471 blkdev_dequeue_request(rq);
472 q->orig_bar_rq = rq;
473 rq = &q->bar_rq;
4aff5e23 474 rq->cmd_flags = 0;
797e7dbb 475 rq_init(q, rq);
4aff5e23
JA
476 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
477 rq->cmd_flags |= REQ_RW;
478 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
797e7dbb 479 rq->elevator_private = NULL;
c00895ab 480 rq->elevator_private2 = NULL;
797e7dbb
TH
481 init_request_from_bio(rq, q->orig_bar_rq->bio);
482 rq->end_io = bar_end_io;
483
484 /*
485 * Queue ordered sequence. As we stack them at the head, we
486 * need to queue in reverse order. Note that we rely on that
487 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
488 * request gets inbetween ordered sequence.
489 */
490 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
491 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
492 else
493 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
494
30e9656c 495 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
496
497 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
498 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
499 rq = &q->pre_flush_rq;
500 } else
501 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 502
797e7dbb
TH
503 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
504 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
505 else
506 rq = NULL;
507
508 return rq;
1da177e4
LT
509}
510
797e7dbb 511int blk_do_ordered(request_queue_t *q, struct request **rqp)
1da177e4 512{
9a7a67af 513 struct request *rq = *rqp;
797e7dbb 514 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 515
797e7dbb
TH
516 if (!q->ordseq) {
517 if (!is_barrier)
518 return 1;
1da177e4 519
797e7dbb
TH
520 if (q->next_ordered != QUEUE_ORDERED_NONE) {
521 *rqp = start_ordered(q, rq);
522 return 1;
523 } else {
524 /*
525 * This can happen when the queue switches to
526 * ORDERED_NONE while this request is on it.
527 */
528 blkdev_dequeue_request(rq);
529 end_that_request_first(rq, -EOPNOTSUPP,
530 rq->hard_nr_sectors);
531 end_that_request_last(rq, -EOPNOTSUPP);
532 *rqp = NULL;
533 return 0;
534 }
535 }
1da177e4 536
9a7a67af
JA
537 /*
538 * Ordered sequence in progress
539 */
540
541 /* Special requests are not subject to ordering rules. */
542 if (!blk_fs_request(rq) &&
543 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
544 return 1;
545
797e7dbb 546 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 547 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
548 if (is_barrier && rq != &q->bar_rq)
549 *rqp = NULL;
9a7a67af
JA
550 } else {
551 /* Ordered by draining. Wait for turn. */
552 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
553 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
554 *rqp = NULL;
1da177e4
LT
555 }
556
557 return 1;
558}
559
797e7dbb 560static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
1da177e4 561{
797e7dbb
TH
562 request_queue_t *q = bio->bi_private;
563 struct bio_vec *bvec;
564 int i;
565
566 /*
567 * This is dry run, restore bio_sector and size. We'll finish
568 * this request again with the original bi_end_io after an
569 * error occurs or post flush is complete.
570 */
571 q->bi_size += bytes;
572
573 if (bio->bi_size)
574 return 1;
575
576 /* Rewind bvec's */
577 bio->bi_idx = 0;
578 bio_for_each_segment(bvec, bio, i) {
579 bvec->bv_len += bvec->bv_offset;
580 bvec->bv_offset = 0;
581 }
582
583 /* Reset bio */
584 set_bit(BIO_UPTODATE, &bio->bi_flags);
585 bio->bi_size = q->bi_size;
586 bio->bi_sector -= (q->bi_size >> 9);
587 q->bi_size = 0;
588
589 return 0;
1da177e4 590}
1da177e4 591
797e7dbb
TH
592static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
593 unsigned int nbytes, int error)
1da177e4 594{
797e7dbb
TH
595 request_queue_t *q = rq->q;
596 bio_end_io_t *endio;
597 void *private;
598
599 if (&q->bar_rq != rq)
600 return 0;
601
602 /*
603 * Okay, this is the barrier request in progress, dry finish it.
604 */
605 if (error && !q->orderr)
606 q->orderr = error;
607
608 endio = bio->bi_end_io;
609 private = bio->bi_private;
610 bio->bi_end_io = flush_dry_bio_endio;
611 bio->bi_private = q;
612
613 bio_endio(bio, nbytes, error);
614
615 bio->bi_end_io = endio;
616 bio->bi_private = private;
617
618 return 1;
1da177e4 619}
1da177e4
LT
620
621/**
622 * blk_queue_bounce_limit - set bounce buffer limit for queue
623 * @q: the request queue for the device
624 * @dma_addr: bus address limit
625 *
626 * Description:
627 * Different hardware can have different requirements as to what pages
628 * it can do I/O directly to. A low level driver can call
629 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 630 * buffers for doing I/O to pages residing above @page.
1da177e4
LT
631 **/
632void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
633{
634 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
635 int dma = 0;
636
637 q->bounce_gfp = GFP_NOIO;
638#if BITS_PER_LONG == 64
639 /* Assume anything <= 4GB can be handled by IOMMU.
640 Actually some IOMMUs can handle everything, but I don't
641 know of a way to test this here. */
8269730b 642 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
643 dma = 1;
644 q->bounce_pfn = max_low_pfn;
645#else
646 if (bounce_pfn < blk_max_low_pfn)
647 dma = 1;
648 q->bounce_pfn = bounce_pfn;
649#endif
650 if (dma) {
1da177e4
LT
651 init_emergency_isa_pool();
652 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
653 q->bounce_pfn = bounce_pfn;
654 }
1da177e4
LT
655}
656
657EXPORT_SYMBOL(blk_queue_bounce_limit);
658
659/**
660 * blk_queue_max_sectors - set max sectors for a request for this queue
661 * @q: the request queue for the device
662 * @max_sectors: max sectors in the usual 512b unit
663 *
664 * Description:
665 * Enables a low level driver to set an upper limit on the size of
666 * received requests.
667 **/
2cb2e147 668void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
1da177e4
LT
669{
670 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
671 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
672 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
673 }
674
defd94b7
MC
675 if (BLK_DEF_MAX_SECTORS > max_sectors)
676 q->max_hw_sectors = q->max_sectors = max_sectors;
677 else {
678 q->max_sectors = BLK_DEF_MAX_SECTORS;
679 q->max_hw_sectors = max_sectors;
680 }
1da177e4
LT
681}
682
683EXPORT_SYMBOL(blk_queue_max_sectors);
684
685/**
686 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
687 * @q: the request queue for the device
688 * @max_segments: max number of segments
689 *
690 * Description:
691 * Enables a low level driver to set an upper limit on the number of
692 * physical data segments in a request. This would be the largest sized
693 * scatter list the driver could handle.
694 **/
695void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
696{
697 if (!max_segments) {
698 max_segments = 1;
699 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
700 }
701
702 q->max_phys_segments = max_segments;
703}
704
705EXPORT_SYMBOL(blk_queue_max_phys_segments);
706
707/**
708 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
709 * @q: the request queue for the device
710 * @max_segments: max number of segments
711 *
712 * Description:
713 * Enables a low level driver to set an upper limit on the number of
714 * hw data segments in a request. This would be the largest number of
715 * address/length pairs the host adapter can actually give as once
716 * to the device.
717 **/
718void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
719{
720 if (!max_segments) {
721 max_segments = 1;
722 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
723 }
724
725 q->max_hw_segments = max_segments;
726}
727
728EXPORT_SYMBOL(blk_queue_max_hw_segments);
729
730/**
731 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
732 * @q: the request queue for the device
733 * @max_size: max size of segment in bytes
734 *
735 * Description:
736 * Enables a low level driver to set an upper limit on the size of a
737 * coalesced segment
738 **/
739void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
740{
741 if (max_size < PAGE_CACHE_SIZE) {
742 max_size = PAGE_CACHE_SIZE;
743 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
744 }
745
746 q->max_segment_size = max_size;
747}
748
749EXPORT_SYMBOL(blk_queue_max_segment_size);
750
751/**
752 * blk_queue_hardsect_size - set hardware sector size for the queue
753 * @q: the request queue for the device
754 * @size: the hardware sector size, in bytes
755 *
756 * Description:
757 * This should typically be set to the lowest possible sector size
758 * that the hardware can operate on (possible without reverting to
759 * even internal read-modify-write operations). Usually the default
760 * of 512 covers most hardware.
761 **/
762void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
763{
764 q->hardsect_size = size;
765}
766
767EXPORT_SYMBOL(blk_queue_hardsect_size);
768
769/*
770 * Returns the minimum that is _not_ zero, unless both are zero.
771 */
772#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
773
774/**
775 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
776 * @t: the stacking driver (top)
777 * @b: the underlying device (bottom)
778 **/
779void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
780{
781 /* zero is "infinity" */
defd94b7
MC
782 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
783 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
784
785 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
786 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
787 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
788 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
789 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
790 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
791}
792
793EXPORT_SYMBOL(blk_queue_stack_limits);
794
795/**
796 * blk_queue_segment_boundary - set boundary rules for segment merging
797 * @q: the request queue for the device
798 * @mask: the memory boundary mask
799 **/
800void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
801{
802 if (mask < PAGE_CACHE_SIZE - 1) {
803 mask = PAGE_CACHE_SIZE - 1;
804 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
805 }
806
807 q->seg_boundary_mask = mask;
808}
809
810EXPORT_SYMBOL(blk_queue_segment_boundary);
811
812/**
813 * blk_queue_dma_alignment - set dma length and memory alignment
814 * @q: the request queue for the device
815 * @mask: alignment mask
816 *
817 * description:
818 * set required memory and length aligment for direct dma transactions.
819 * this is used when buiding direct io requests for the queue.
820 *
821 **/
822void blk_queue_dma_alignment(request_queue_t *q, int mask)
823{
824 q->dma_alignment = mask;
825}
826
827EXPORT_SYMBOL(blk_queue_dma_alignment);
828
829/**
830 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
831 * @q: The request queue for the device
832 * @tag: The tag of the request
833 *
834 * Notes:
835 * Should be used when a device returns a tag and you want to match
836 * it with a request.
837 *
838 * no locks need be held.
839 **/
840struct request *blk_queue_find_tag(request_queue_t *q, int tag)
841{
842 struct blk_queue_tag *bqt = q->queue_tags;
843
ba025082 844 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1da177e4
LT
845 return NULL;
846
847 return bqt->tag_index[tag];
848}
849
850EXPORT_SYMBOL(blk_queue_find_tag);
851
852/**
492dfb48
JB
853 * __blk_free_tags - release a given set of tag maintenance info
854 * @bqt: the tag map to free
1da177e4 855 *
492dfb48
JB
856 * Tries to free the specified @bqt@. Returns true if it was
857 * actually freed and false if there are still references using it
858 */
859static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 860{
492dfb48 861 int retval;
1da177e4 862
492dfb48
JB
863 retval = atomic_dec_and_test(&bqt->refcnt);
864 if (retval) {
1da177e4
LT
865 BUG_ON(bqt->busy);
866 BUG_ON(!list_empty(&bqt->busy_list));
867
868 kfree(bqt->tag_index);
869 bqt->tag_index = NULL;
870
871 kfree(bqt->tag_map);
872 bqt->tag_map = NULL;
873
874 kfree(bqt);
492dfb48 875
1da177e4
LT
876 }
877
492dfb48
JB
878 return retval;
879}
880
881/**
882 * __blk_queue_free_tags - release tag maintenance info
883 * @q: the request queue for the device
884 *
885 * Notes:
886 * blk_cleanup_queue() will take care of calling this function, if tagging
887 * has been used. So there's no need to call this directly.
888 **/
889static void __blk_queue_free_tags(request_queue_t *q)
890{
891 struct blk_queue_tag *bqt = q->queue_tags;
892
893 if (!bqt)
894 return;
895
896 __blk_free_tags(bqt);
897
1da177e4
LT
898 q->queue_tags = NULL;
899 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
900}
901
492dfb48
JB
902
903/**
904 * blk_free_tags - release a given set of tag maintenance info
905 * @bqt: the tag map to free
906 *
907 * For externally managed @bqt@ frees the map. Callers of this
908 * function must guarantee to have released all the queues that
909 * might have been using this tag map.
910 */
911void blk_free_tags(struct blk_queue_tag *bqt)
912{
913 if (unlikely(!__blk_free_tags(bqt)))
914 BUG();
915}
916EXPORT_SYMBOL(blk_free_tags);
917
1da177e4
LT
918/**
919 * blk_queue_free_tags - release tag maintenance info
920 * @q: the request queue for the device
921 *
922 * Notes:
923 * This is used to disabled tagged queuing to a device, yet leave
924 * queue in function.
925 **/
926void blk_queue_free_tags(request_queue_t *q)
927{
928 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
929}
930
931EXPORT_SYMBOL(blk_queue_free_tags);
932
933static int
934init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
935{
1da177e4
LT
936 struct request **tag_index;
937 unsigned long *tag_map;
fa72b903 938 int nr_ulongs;
1da177e4 939
492dfb48 940 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
941 depth = q->nr_requests * 2;
942 printk(KERN_ERR "%s: adjusted depth to %d\n",
943 __FUNCTION__, depth);
944 }
945
f68110fc 946 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
947 if (!tag_index)
948 goto fail;
949
f7d37d02 950 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 951 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
952 if (!tag_map)
953 goto fail;
954
ba025082 955 tags->real_max_depth = depth;
1da177e4 956 tags->max_depth = depth;
1da177e4
LT
957 tags->tag_index = tag_index;
958 tags->tag_map = tag_map;
959
1da177e4
LT
960 return 0;
961fail:
962 kfree(tag_index);
963 return -ENOMEM;
964}
965
492dfb48
JB
966static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
967 int depth)
968{
969 struct blk_queue_tag *tags;
970
971 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
972 if (!tags)
973 goto fail;
974
975 if (init_tag_map(q, tags, depth))
976 goto fail;
977
978 INIT_LIST_HEAD(&tags->busy_list);
979 tags->busy = 0;
980 atomic_set(&tags->refcnt, 1);
981 return tags;
982fail:
983 kfree(tags);
984 return NULL;
985}
986
987/**
988 * blk_init_tags - initialize the tag info for an external tag map
989 * @depth: the maximum queue depth supported
990 * @tags: the tag to use
991 **/
992struct blk_queue_tag *blk_init_tags(int depth)
993{
994 return __blk_queue_init_tags(NULL, depth);
995}
996EXPORT_SYMBOL(blk_init_tags);
997
1da177e4
LT
998/**
999 * blk_queue_init_tags - initialize the queue tag info
1000 * @q: the request queue for the device
1001 * @depth: the maximum queue depth supported
1002 * @tags: the tag to use
1003 **/
1004int blk_queue_init_tags(request_queue_t *q, int depth,
1005 struct blk_queue_tag *tags)
1006{
1007 int rc;
1008
1009 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
1010
1011 if (!tags && !q->queue_tags) {
492dfb48 1012 tags = __blk_queue_init_tags(q, depth);
1da177e4 1013
492dfb48 1014 if (!tags)
1da177e4 1015 goto fail;
1da177e4
LT
1016 } else if (q->queue_tags) {
1017 if ((rc = blk_queue_resize_tags(q, depth)))
1018 return rc;
1019 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
1020 return 0;
1021 } else
1022 atomic_inc(&tags->refcnt);
1023
1024 /*
1025 * assign it, all done
1026 */
1027 q->queue_tags = tags;
1028 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
1029 return 0;
1030fail:
1031 kfree(tags);
1032 return -ENOMEM;
1033}
1034
1035EXPORT_SYMBOL(blk_queue_init_tags);
1036
1037/**
1038 * blk_queue_resize_tags - change the queueing depth
1039 * @q: the request queue for the device
1040 * @new_depth: the new max command queueing depth
1041 *
1042 * Notes:
1043 * Must be called with the queue lock held.
1044 **/
1045int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1046{
1047 struct blk_queue_tag *bqt = q->queue_tags;
1048 struct request **tag_index;
1049 unsigned long *tag_map;
fa72b903 1050 int max_depth, nr_ulongs;
1da177e4
LT
1051
1052 if (!bqt)
1053 return -ENXIO;
1054
ba025082
TH
1055 /*
1056 * if we already have large enough real_max_depth. just
1057 * adjust max_depth. *NOTE* as requests with tag value
1058 * between new_depth and real_max_depth can be in-flight, tag
1059 * map can not be shrunk blindly here.
1060 */
1061 if (new_depth <= bqt->real_max_depth) {
1062 bqt->max_depth = new_depth;
1063 return 0;
1064 }
1065
492dfb48
JB
1066 /*
1067 * Currently cannot replace a shared tag map with a new
1068 * one, so error out if this is the case
1069 */
1070 if (atomic_read(&bqt->refcnt) != 1)
1071 return -EBUSY;
1072
1da177e4
LT
1073 /*
1074 * save the old state info, so we can copy it back
1075 */
1076 tag_index = bqt->tag_index;
1077 tag_map = bqt->tag_map;
ba025082 1078 max_depth = bqt->real_max_depth;
1da177e4
LT
1079
1080 if (init_tag_map(q, bqt, new_depth))
1081 return -ENOMEM;
1082
1083 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1084 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1085 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1086
1087 kfree(tag_index);
1088 kfree(tag_map);
1089 return 0;
1090}
1091
1092EXPORT_SYMBOL(blk_queue_resize_tags);
1093
1094/**
1095 * blk_queue_end_tag - end tag operations for a request
1096 * @q: the request queue for the device
1097 * @rq: the request that has completed
1098 *
1099 * Description:
1100 * Typically called when end_that_request_first() returns 0, meaning
1101 * all transfers have been done for a request. It's important to call
1102 * this function before end_that_request_last(), as that will put the
1103 * request back on the free list thus corrupting the internal tag list.
1104 *
1105 * Notes:
1106 * queue lock must be held.
1107 **/
1108void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1109{
1110 struct blk_queue_tag *bqt = q->queue_tags;
1111 int tag = rq->tag;
1112
1113 BUG_ON(tag == -1);
1114
ba025082 1115 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1116 /*
1117 * This can happen after tag depth has been reduced.
1118 * FIXME: how about a warning or info message here?
1119 */
1da177e4
LT
1120 return;
1121
1122 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
040c928c
TH
1123 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1124 __FUNCTION__, tag);
1da177e4
LT
1125 return;
1126 }
1127
1128 list_del_init(&rq->queuelist);
4aff5e23 1129 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1130 rq->tag = -1;
1131
1132 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1133 printk(KERN_ERR "%s: tag %d is missing\n",
1134 __FUNCTION__, tag);
1da177e4
LT
1135
1136 bqt->tag_index[tag] = NULL;
1137 bqt->busy--;
1138}
1139
1140EXPORT_SYMBOL(blk_queue_end_tag);
1141
1142/**
1143 * blk_queue_start_tag - find a free tag and assign it
1144 * @q: the request queue for the device
1145 * @rq: the block request that needs tagging
1146 *
1147 * Description:
1148 * This can either be used as a stand-alone helper, or possibly be
1149 * assigned as the queue &prep_rq_fn (in which case &struct request
1150 * automagically gets a tag assigned). Note that this function
1151 * assumes that any type of request can be queued! if this is not
1152 * true for your device, you must check the request type before
1153 * calling this function. The request will also be removed from
1154 * the request queue, so it's the drivers responsibility to readd
1155 * it if it should need to be restarted for some reason.
1156 *
1157 * Notes:
1158 * queue lock must be held.
1159 **/
1160int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1161{
1162 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1163 int tag;
1da177e4 1164
4aff5e23 1165 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1166 printk(KERN_ERR
040c928c
TH
1167 "%s: request %p for device [%s] already tagged %d",
1168 __FUNCTION__, rq,
1169 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1170 BUG();
1171 }
1172
2bf0fdad
TH
1173 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1174 if (tag >= bqt->max_depth)
1175 return 1;
1da177e4 1176
1da177e4
LT
1177 __set_bit(tag, bqt->tag_map);
1178
4aff5e23 1179 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1180 rq->tag = tag;
1181 bqt->tag_index[tag] = rq;
1182 blkdev_dequeue_request(rq);
1183 list_add(&rq->queuelist, &bqt->busy_list);
1184 bqt->busy++;
1185 return 0;
1186}
1187
1188EXPORT_SYMBOL(blk_queue_start_tag);
1189
1190/**
1191 * blk_queue_invalidate_tags - invalidate all pending tags
1192 * @q: the request queue for the device
1193 *
1194 * Description:
1195 * Hardware conditions may dictate a need to stop all pending requests.
1196 * In this case, we will safely clear the block side of the tag queue and
1197 * readd all requests to the request queue in the right order.
1198 *
1199 * Notes:
1200 * queue lock must be held.
1201 **/
1202void blk_queue_invalidate_tags(request_queue_t *q)
1203{
1204 struct blk_queue_tag *bqt = q->queue_tags;
1205 struct list_head *tmp, *n;
1206 struct request *rq;
1207
1208 list_for_each_safe(tmp, n, &bqt->busy_list) {
1209 rq = list_entry_rq(tmp);
1210
1211 if (rq->tag == -1) {
040c928c
TH
1212 printk(KERN_ERR
1213 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1214 list_del_init(&rq->queuelist);
4aff5e23 1215 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1216 } else
1217 blk_queue_end_tag(q, rq);
1218
4aff5e23 1219 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1220 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1221 }
1222}
1223
1224EXPORT_SYMBOL(blk_queue_invalidate_tags);
1225
1da177e4
LT
1226void blk_dump_rq_flags(struct request *rq, char *msg)
1227{
1228 int bit;
1229
4aff5e23
JA
1230 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1231 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1232 rq->cmd_flags);
1da177e4
LT
1233
1234 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1235 rq->nr_sectors,
1236 rq->current_nr_sectors);
1237 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1238
4aff5e23 1239 if (blk_pc_request(rq)) {
1da177e4
LT
1240 printk("cdb: ");
1241 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1242 printk("%02x ", rq->cmd[bit]);
1243 printk("\n");
1244 }
1245}
1246
1247EXPORT_SYMBOL(blk_dump_rq_flags);
1248
1249void blk_recount_segments(request_queue_t *q, struct bio *bio)
1250{
1251 struct bio_vec *bv, *bvprv = NULL;
1252 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1253 int high, highprv = 1;
1254
1255 if (unlikely(!bio->bi_io_vec))
1256 return;
1257
1258 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1259 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1260 bio_for_each_segment(bv, bio, i) {
1261 /*
1262 * the trick here is making sure that a high page is never
1263 * considered part of another segment, since that might
1264 * change with the bounce page.
1265 */
1266 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1267 if (high || highprv)
1268 goto new_hw_segment;
1269 if (cluster) {
1270 if (seg_size + bv->bv_len > q->max_segment_size)
1271 goto new_segment;
1272 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1273 goto new_segment;
1274 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1275 goto new_segment;
1276 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1277 goto new_hw_segment;
1278
1279 seg_size += bv->bv_len;
1280 hw_seg_size += bv->bv_len;
1281 bvprv = bv;
1282 continue;
1283 }
1284new_segment:
1285 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1286 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1287 hw_seg_size += bv->bv_len;
1288 } else {
1289new_hw_segment:
1290 if (hw_seg_size > bio->bi_hw_front_size)
1291 bio->bi_hw_front_size = hw_seg_size;
1292 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1293 nr_hw_segs++;
1294 }
1295
1296 nr_phys_segs++;
1297 bvprv = bv;
1298 seg_size = bv->bv_len;
1299 highprv = high;
1300 }
1301 if (hw_seg_size > bio->bi_hw_back_size)
1302 bio->bi_hw_back_size = hw_seg_size;
1303 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1304 bio->bi_hw_front_size = hw_seg_size;
1305 bio->bi_phys_segments = nr_phys_segs;
1306 bio->bi_hw_segments = nr_hw_segs;
1307 bio->bi_flags |= (1 << BIO_SEG_VALID);
1308}
1309
1310
93d17d3d 1311static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1312 struct bio *nxt)
1313{
1314 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1315 return 0;
1316
1317 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1318 return 0;
1319 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1320 return 0;
1321
1322 /*
1323 * bio and nxt are contigous in memory, check if the queue allows
1324 * these two to be merged into one
1325 */
1326 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1327 return 1;
1328
1329 return 0;
1330}
1331
93d17d3d 1332static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1da177e4
LT
1333 struct bio *nxt)
1334{
1335 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1336 blk_recount_segments(q, bio);
1337 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1338 blk_recount_segments(q, nxt);
1339 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1340 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1341 return 0;
1342 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1343 return 0;
1344
1345 return 1;
1346}
1347
1da177e4
LT
1348/*
1349 * map a request to scatterlist, return number of sg entries setup. Caller
1350 * must make sure sg can hold rq->nr_phys_segments entries
1351 */
1352int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1353{
1354 struct bio_vec *bvec, *bvprv;
1355 struct bio *bio;
1356 int nsegs, i, cluster;
1357
1358 nsegs = 0;
1359 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1360
1361 /*
1362 * for each bio in rq
1363 */
1364 bvprv = NULL;
1365 rq_for_each_bio(bio, rq) {
1366 /*
1367 * for each segment in bio
1368 */
1369 bio_for_each_segment(bvec, bio, i) {
1370 int nbytes = bvec->bv_len;
1371
1372 if (bvprv && cluster) {
1373 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1374 goto new_segment;
1375
1376 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1377 goto new_segment;
1378 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1379 goto new_segment;
1380
1381 sg[nsegs - 1].length += nbytes;
1382 } else {
1383new_segment:
1384 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1385 sg[nsegs].page = bvec->bv_page;
1386 sg[nsegs].length = nbytes;
1387 sg[nsegs].offset = bvec->bv_offset;
1388
1389 nsegs++;
1390 }
1391 bvprv = bvec;
1392 } /* segments in bio */
1393 } /* bios in rq */
1394
1395 return nsegs;
1396}
1397
1398EXPORT_SYMBOL(blk_rq_map_sg);
1399
1400/*
1401 * the standard queue merge functions, can be overridden with device
1402 * specific ones if so desired
1403 */
1404
1405static inline int ll_new_mergeable(request_queue_t *q,
1406 struct request *req,
1407 struct bio *bio)
1408{
1409 int nr_phys_segs = bio_phys_segments(q, bio);
1410
1411 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1412 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1413 if (req == q->last_merge)
1414 q->last_merge = NULL;
1415 return 0;
1416 }
1417
1418 /*
1419 * A hw segment is just getting larger, bump just the phys
1420 * counter.
1421 */
1422 req->nr_phys_segments += nr_phys_segs;
1423 return 1;
1424}
1425
1426static inline int ll_new_hw_segment(request_queue_t *q,
1427 struct request *req,
1428 struct bio *bio)
1429{
1430 int nr_hw_segs = bio_hw_segments(q, bio);
1431 int nr_phys_segs = bio_phys_segments(q, bio);
1432
1433 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1434 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1435 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1436 if (req == q->last_merge)
1437 q->last_merge = NULL;
1438 return 0;
1439 }
1440
1441 /*
1442 * This will form the start of a new hw segment. Bump both
1443 * counters.
1444 */
1445 req->nr_hw_segments += nr_hw_segs;
1446 req->nr_phys_segments += nr_phys_segs;
1447 return 1;
1448}
1449
1450static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1451 struct bio *bio)
1452{
defd94b7 1453 unsigned short max_sectors;
1da177e4
LT
1454 int len;
1455
defd94b7
MC
1456 if (unlikely(blk_pc_request(req)))
1457 max_sectors = q->max_hw_sectors;
1458 else
1459 max_sectors = q->max_sectors;
1460
1461 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1462 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1463 if (req == q->last_merge)
1464 q->last_merge = NULL;
1465 return 0;
1466 }
1467 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1468 blk_recount_segments(q, req->biotail);
1469 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1470 blk_recount_segments(q, bio);
1471 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1472 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1473 !BIOVEC_VIRT_OVERSIZE(len)) {
1474 int mergeable = ll_new_mergeable(q, req, bio);
1475
1476 if (mergeable) {
1477 if (req->nr_hw_segments == 1)
1478 req->bio->bi_hw_front_size = len;
1479 if (bio->bi_hw_segments == 1)
1480 bio->bi_hw_back_size = len;
1481 }
1482 return mergeable;
1483 }
1484
1485 return ll_new_hw_segment(q, req, bio);
1486}
1487
1488static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1489 struct bio *bio)
1490{
defd94b7 1491 unsigned short max_sectors;
1da177e4
LT
1492 int len;
1493
defd94b7
MC
1494 if (unlikely(blk_pc_request(req)))
1495 max_sectors = q->max_hw_sectors;
1496 else
1497 max_sectors = q->max_sectors;
1498
1499
1500 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1501 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1502 if (req == q->last_merge)
1503 q->last_merge = NULL;
1504 return 0;
1505 }
1506 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1507 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1508 blk_recount_segments(q, bio);
1509 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1510 blk_recount_segments(q, req->bio);
1511 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1512 !BIOVEC_VIRT_OVERSIZE(len)) {
1513 int mergeable = ll_new_mergeable(q, req, bio);
1514
1515 if (mergeable) {
1516 if (bio->bi_hw_segments == 1)
1517 bio->bi_hw_front_size = len;
1518 if (req->nr_hw_segments == 1)
1519 req->biotail->bi_hw_back_size = len;
1520 }
1521 return mergeable;
1522 }
1523
1524 return ll_new_hw_segment(q, req, bio);
1525}
1526
1527static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1528 struct request *next)
1529{
dfa1a553
ND
1530 int total_phys_segments;
1531 int total_hw_segments;
1da177e4
LT
1532
1533 /*
1534 * First check if the either of the requests are re-queued
1535 * requests. Can't merge them if they are.
1536 */
1537 if (req->special || next->special)
1538 return 0;
1539
1540 /*
dfa1a553 1541 * Will it become too large?
1da177e4
LT
1542 */
1543 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1544 return 0;
1545
1546 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1547 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1548 total_phys_segments--;
1549
1550 if (total_phys_segments > q->max_phys_segments)
1551 return 0;
1552
1553 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1554 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1555 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1556 /*
1557 * propagate the combined length to the end of the requests
1558 */
1559 if (req->nr_hw_segments == 1)
1560 req->bio->bi_hw_front_size = len;
1561 if (next->nr_hw_segments == 1)
1562 next->biotail->bi_hw_back_size = len;
1563 total_hw_segments--;
1564 }
1565
1566 if (total_hw_segments > q->max_hw_segments)
1567 return 0;
1568
1569 /* Merge is OK... */
1570 req->nr_phys_segments = total_phys_segments;
1571 req->nr_hw_segments = total_hw_segments;
1572 return 1;
1573}
1574
1575/*
1576 * "plug" the device if there are no outstanding requests: this will
1577 * force the transfer to start only after we have put all the requests
1578 * on the list.
1579 *
1580 * This is called with interrupts off and no requests on the queue and
1581 * with the queue lock held.
1582 */
1583void blk_plug_device(request_queue_t *q)
1584{
1585 WARN_ON(!irqs_disabled());
1586
1587 /*
1588 * don't plug a stopped queue, it must be paired with blk_start_queue()
1589 * which will restart the queueing
1590 */
7daac490 1591 if (blk_queue_stopped(q))
1da177e4
LT
1592 return;
1593
2056a782 1594 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1595 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1596 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1597 }
1da177e4
LT
1598}
1599
1600EXPORT_SYMBOL(blk_plug_device);
1601
1602/*
1603 * remove the queue from the plugged list, if present. called with
1604 * queue lock held and interrupts disabled.
1605 */
1606int blk_remove_plug(request_queue_t *q)
1607{
1608 WARN_ON(!irqs_disabled());
1609
1610 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1611 return 0;
1612
1613 del_timer(&q->unplug_timer);
1614 return 1;
1615}
1616
1617EXPORT_SYMBOL(blk_remove_plug);
1618
1619/*
1620 * remove the plug and let it rip..
1621 */
1622void __generic_unplug_device(request_queue_t *q)
1623{
7daac490 1624 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1625 return;
1626
1627 if (!blk_remove_plug(q))
1628 return;
1629
22e2c507 1630 q->request_fn(q);
1da177e4
LT
1631}
1632EXPORT_SYMBOL(__generic_unplug_device);
1633
1634/**
1635 * generic_unplug_device - fire a request queue
1636 * @q: The &request_queue_t in question
1637 *
1638 * Description:
1639 * Linux uses plugging to build bigger requests queues before letting
1640 * the device have at them. If a queue is plugged, the I/O scheduler
1641 * is still adding and merging requests on the queue. Once the queue
1642 * gets unplugged, the request_fn defined for the queue is invoked and
1643 * transfers started.
1644 **/
1645void generic_unplug_device(request_queue_t *q)
1646{
1647 spin_lock_irq(q->queue_lock);
1648 __generic_unplug_device(q);
1649 spin_unlock_irq(q->queue_lock);
1650}
1651EXPORT_SYMBOL(generic_unplug_device);
1652
1653static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1654 struct page *page)
1655{
1656 request_queue_t *q = bdi->unplug_io_data;
1657
1658 /*
1659 * devices don't necessarily have an ->unplug_fn defined
1660 */
2056a782
JA
1661 if (q->unplug_fn) {
1662 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1663 q->rq.count[READ] + q->rq.count[WRITE]);
1664
1da177e4 1665 q->unplug_fn(q);
2056a782 1666 }
1da177e4
LT
1667}
1668
1669static void blk_unplug_work(void *data)
1670{
1671 request_queue_t *q = data;
1672
2056a782
JA
1673 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1674 q->rq.count[READ] + q->rq.count[WRITE]);
1675
1da177e4
LT
1676 q->unplug_fn(q);
1677}
1678
1679static void blk_unplug_timeout(unsigned long data)
1680{
1681 request_queue_t *q = (request_queue_t *)data;
1682
2056a782
JA
1683 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1684 q->rq.count[READ] + q->rq.count[WRITE]);
1685
1da177e4
LT
1686 kblockd_schedule_work(&q->unplug_work);
1687}
1688
1689/**
1690 * blk_start_queue - restart a previously stopped queue
1691 * @q: The &request_queue_t in question
1692 *
1693 * Description:
1694 * blk_start_queue() will clear the stop flag on the queue, and call
1695 * the request_fn for the queue if it was in a stopped state when
1696 * entered. Also see blk_stop_queue(). Queue lock must be held.
1697 **/
1698void blk_start_queue(request_queue_t *q)
1699{
a038e253
PBG
1700 WARN_ON(!irqs_disabled());
1701
1da177e4
LT
1702 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1703
1704 /*
1705 * one level of recursion is ok and is much faster than kicking
1706 * the unplug handling
1707 */
1708 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1709 q->request_fn(q);
1710 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1711 } else {
1712 blk_plug_device(q);
1713 kblockd_schedule_work(&q->unplug_work);
1714 }
1715}
1716
1717EXPORT_SYMBOL(blk_start_queue);
1718
1719/**
1720 * blk_stop_queue - stop a queue
1721 * @q: The &request_queue_t in question
1722 *
1723 * Description:
1724 * The Linux block layer assumes that a block driver will consume all
1725 * entries on the request queue when the request_fn strategy is called.
1726 * Often this will not happen, because of hardware limitations (queue
1727 * depth settings). If a device driver gets a 'queue full' response,
1728 * or if it simply chooses not to queue more I/O at one point, it can
1729 * call this function to prevent the request_fn from being called until
1730 * the driver has signalled it's ready to go again. This happens by calling
1731 * blk_start_queue() to restart queue operations. Queue lock must be held.
1732 **/
1733void blk_stop_queue(request_queue_t *q)
1734{
1735 blk_remove_plug(q);
1736 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1737}
1738EXPORT_SYMBOL(blk_stop_queue);
1739
1740/**
1741 * blk_sync_queue - cancel any pending callbacks on a queue
1742 * @q: the queue
1743 *
1744 * Description:
1745 * The block layer may perform asynchronous callback activity
1746 * on a queue, such as calling the unplug function after a timeout.
1747 * A block device may call blk_sync_queue to ensure that any
1748 * such activity is cancelled, thus allowing it to release resources
1749 * the the callbacks might use. The caller must already have made sure
1750 * that its ->make_request_fn will not re-add plugging prior to calling
1751 * this function.
1752 *
1753 */
1754void blk_sync_queue(struct request_queue *q)
1755{
1756 del_timer_sync(&q->unplug_timer);
1757 kblockd_flush();
1758}
1759EXPORT_SYMBOL(blk_sync_queue);
1760
1761/**
1762 * blk_run_queue - run a single device queue
1763 * @q: The queue to run
1764 */
1765void blk_run_queue(struct request_queue *q)
1766{
1767 unsigned long flags;
1768
1769 spin_lock_irqsave(q->queue_lock, flags);
1770 blk_remove_plug(q);
dac07ec1
JA
1771
1772 /*
1773 * Only recurse once to avoid overrunning the stack, let the unplug
1774 * handling reinvoke the handler shortly if we already got there.
1775 */
1776 if (!elv_queue_empty(q)) {
1777 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1778 q->request_fn(q);
1779 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1780 } else {
1781 blk_plug_device(q);
1782 kblockd_schedule_work(&q->unplug_work);
1783 }
1784 }
1785
1da177e4
LT
1786 spin_unlock_irqrestore(q->queue_lock, flags);
1787}
1788EXPORT_SYMBOL(blk_run_queue);
1789
1790/**
1791 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
a580290c 1792 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1793 *
1794 * Description:
1795 * blk_cleanup_queue is the pair to blk_init_queue() or
1796 * blk_queue_make_request(). It should be called when a request queue is
1797 * being released; typically when a block device is being de-registered.
1798 * Currently, its primary task it to free all the &struct request
1799 * structures that were allocated to the queue and the queue itself.
1800 *
1801 * Caveat:
1802 * Hopefully the low level driver will have finished any
1803 * outstanding requests first...
1804 **/
483f4afc 1805static void blk_release_queue(struct kobject *kobj)
1da177e4 1806{
483f4afc 1807 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1808 struct request_list *rl = &q->rq;
1809
1da177e4
LT
1810 blk_sync_queue(q);
1811
1812 if (rl->rq_pool)
1813 mempool_destroy(rl->rq_pool);
1814
1815 if (q->queue_tags)
1816 __blk_queue_free_tags(q);
1817
6c5c9341 1818 blk_trace_shutdown(q);
2056a782 1819
1da177e4
LT
1820 kmem_cache_free(requestq_cachep, q);
1821}
1822
483f4afc
AV
1823void blk_put_queue(request_queue_t *q)
1824{
1825 kobject_put(&q->kobj);
1826}
1827EXPORT_SYMBOL(blk_put_queue);
1828
1829void blk_cleanup_queue(request_queue_t * q)
1830{
1831 mutex_lock(&q->sysfs_lock);
1832 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1833 mutex_unlock(&q->sysfs_lock);
1834
1835 if (q->elevator)
1836 elevator_exit(q->elevator);
1837
1838 blk_put_queue(q);
1839}
1840
1da177e4
LT
1841EXPORT_SYMBOL(blk_cleanup_queue);
1842
1843static int blk_init_free_list(request_queue_t *q)
1844{
1845 struct request_list *rl = &q->rq;
1846
1847 rl->count[READ] = rl->count[WRITE] = 0;
1848 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1849 rl->elvpriv = 0;
1da177e4
LT
1850 init_waitqueue_head(&rl->wait[READ]);
1851 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1852
1946089a
CL
1853 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1854 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1855
1856 if (!rl->rq_pool)
1857 return -ENOMEM;
1858
1859 return 0;
1860}
1861
8267e268 1862request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1863{
1946089a
CL
1864 return blk_alloc_queue_node(gfp_mask, -1);
1865}
1866EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1867
483f4afc
AV
1868static struct kobj_type queue_ktype;
1869
8267e268 1870request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a
CL
1871{
1872 request_queue_t *q;
1873
1874 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1da177e4
LT
1875 if (!q)
1876 return NULL;
1877
1878 memset(q, 0, sizeof(*q));
1879 init_timer(&q->unplug_timer);
483f4afc
AV
1880
1881 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1882 q->kobj.ktype = &queue_ktype;
1883 kobject_init(&q->kobj);
1da177e4
LT
1884
1885 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1886 q->backing_dev_info.unplug_io_data = q;
1887
483f4afc
AV
1888 mutex_init(&q->sysfs_lock);
1889
1da177e4
LT
1890 return q;
1891}
1946089a 1892EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1893
1894/**
1895 * blk_init_queue - prepare a request queue for use with a block device
1896 * @rfn: The function to be called to process requests that have been
1897 * placed on the queue.
1898 * @lock: Request queue spin lock
1899 *
1900 * Description:
1901 * If a block device wishes to use the standard request handling procedures,
1902 * which sorts requests and coalesces adjacent requests, then it must
1903 * call blk_init_queue(). The function @rfn will be called when there
1904 * are requests on the queue that need to be processed. If the device
1905 * supports plugging, then @rfn may not be called immediately when requests
1906 * are available on the queue, but may be called at some time later instead.
1907 * Plugged queues are generally unplugged when a buffer belonging to one
1908 * of the requests on the queue is needed, or due to memory pressure.
1909 *
1910 * @rfn is not required, or even expected, to remove all requests off the
1911 * queue, but only as many as it can handle at a time. If it does leave
1912 * requests on the queue, it is responsible for arranging that the requests
1913 * get dealt with eventually.
1914 *
1915 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1916 * request queue; this lock will be taken also from interrupt context, so irq
1917 * disabling is needed for it.
1da177e4
LT
1918 *
1919 * Function returns a pointer to the initialized request queue, or NULL if
1920 * it didn't succeed.
1921 *
1922 * Note:
1923 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1924 * when the block device is deactivated (such as at module unload).
1925 **/
1946089a 1926
1da177e4
LT
1927request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1928{
1946089a
CL
1929 return blk_init_queue_node(rfn, lock, -1);
1930}
1931EXPORT_SYMBOL(blk_init_queue);
1932
1933request_queue_t *
1934blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1935{
1936 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1937
1938 if (!q)
1939 return NULL;
1940
1946089a 1941 q->node = node_id;
8669aafd
AV
1942 if (blk_init_free_list(q)) {
1943 kmem_cache_free(requestq_cachep, q);
1944 return NULL;
1945 }
1da177e4 1946
152587de
JA
1947 /*
1948 * if caller didn't supply a lock, they get per-queue locking with
1949 * our embedded lock
1950 */
1951 if (!lock) {
1952 spin_lock_init(&q->__queue_lock);
1953 lock = &q->__queue_lock;
1954 }
1955
1da177e4
LT
1956 q->request_fn = rfn;
1957 q->back_merge_fn = ll_back_merge_fn;
1958 q->front_merge_fn = ll_front_merge_fn;
1959 q->merge_requests_fn = ll_merge_requests_fn;
1960 q->prep_rq_fn = NULL;
1961 q->unplug_fn = generic_unplug_device;
1962 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1963 q->queue_lock = lock;
1964
1965 blk_queue_segment_boundary(q, 0xffffffff);
1966
1967 blk_queue_make_request(q, __make_request);
1968 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1969
1970 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1971 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1972
1973 /*
1974 * all done
1975 */
1976 if (!elevator_init(q, NULL)) {
1977 blk_queue_congestion_threshold(q);
1978 return q;
1979 }
1980
8669aafd 1981 blk_put_queue(q);
1da177e4
LT
1982 return NULL;
1983}
1946089a 1984EXPORT_SYMBOL(blk_init_queue_node);
1da177e4
LT
1985
1986int blk_get_queue(request_queue_t *q)
1987{
fde6ad22 1988 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1989 kobject_get(&q->kobj);
1da177e4
LT
1990 return 0;
1991 }
1992
1993 return 1;
1994}
1995
1996EXPORT_SYMBOL(blk_get_queue);
1997
1998static inline void blk_free_request(request_queue_t *q, struct request *rq)
1999{
4aff5e23 2000 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 2001 elv_put_request(q, rq);
1da177e4
LT
2002 mempool_free(rq, q->rq.rq_pool);
2003}
2004
22e2c507 2005static inline struct request *
cb98fc8b 2006blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
5dd96249 2007 int priv, gfp_t gfp_mask)
1da177e4
LT
2008{
2009 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
2010
2011 if (!rq)
2012 return NULL;
2013
2014 /*
4aff5e23 2015 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2016 * see bio.h and blkdev.h
2017 */
49171e5c 2018 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2019
cb98fc8b
TH
2020 if (priv) {
2021 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
2022 mempool_free(rq, q->rq.rq_pool);
2023 return NULL;
2024 }
4aff5e23 2025 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2026 }
1da177e4 2027
cb98fc8b 2028 return rq;
1da177e4
LT
2029}
2030
2031/*
2032 * ioc_batching returns true if the ioc is a valid batching request and
2033 * should be given priority access to a request.
2034 */
2035static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2036{
2037 if (!ioc)
2038 return 0;
2039
2040 /*
2041 * Make sure the process is able to allocate at least 1 request
2042 * even if the batch times out, otherwise we could theoretically
2043 * lose wakeups.
2044 */
2045 return ioc->nr_batch_requests == q->nr_batching ||
2046 (ioc->nr_batch_requests > 0
2047 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2048}
2049
2050/*
2051 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2052 * will cause the process to be a "batcher" on all queues in the system. This
2053 * is the behaviour we want though - once it gets a wakeup it should be given
2054 * a nice run.
2055 */
93d17d3d 2056static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1da177e4
LT
2057{
2058 if (!ioc || ioc_batching(q, ioc))
2059 return;
2060
2061 ioc->nr_batch_requests = q->nr_batching;
2062 ioc->last_waited = jiffies;
2063}
2064
2065static void __freed_request(request_queue_t *q, int rw)
2066{
2067 struct request_list *rl = &q->rq;
2068
2069 if (rl->count[rw] < queue_congestion_off_threshold(q))
2070 clear_queue_congested(q, rw);
2071
2072 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2073 if (waitqueue_active(&rl->wait[rw]))
2074 wake_up(&rl->wait[rw]);
2075
2076 blk_clear_queue_full(q, rw);
2077 }
2078}
2079
2080/*
2081 * A request has just been released. Account for it, update the full and
2082 * congestion status, wake up any waiters. Called under q->queue_lock.
2083 */
cb98fc8b 2084static void freed_request(request_queue_t *q, int rw, int priv)
1da177e4
LT
2085{
2086 struct request_list *rl = &q->rq;
2087
2088 rl->count[rw]--;
cb98fc8b
TH
2089 if (priv)
2090 rl->elvpriv--;
1da177e4
LT
2091
2092 __freed_request(q, rw);
2093
2094 if (unlikely(rl->starved[rw ^ 1]))
2095 __freed_request(q, rw ^ 1);
1da177e4
LT
2096}
2097
2098#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2099/*
d6344532
NP
2100 * Get a free request, queue_lock must be held.
2101 * Returns NULL on failure, with queue_lock held.
2102 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2103 */
22e2c507 2104static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
8267e268 2105 gfp_t gfp_mask)
1da177e4
LT
2106{
2107 struct request *rq = NULL;
2108 struct request_list *rl = &q->rq;
88ee5ef1
JA
2109 struct io_context *ioc = NULL;
2110 int may_queue, priv;
2111
2112 may_queue = elv_may_queue(q, rw, bio);
2113 if (may_queue == ELV_MQUEUE_NO)
2114 goto rq_starved;
2115
2116 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2117 if (rl->count[rw]+1 >= q->nr_requests) {
2118 ioc = current_io_context(GFP_ATOMIC);
2119 /*
2120 * The queue will fill after this allocation, so set
2121 * it as full, and mark this process as "batching".
2122 * This process will be allowed to complete a batch of
2123 * requests, others will be blocked.
2124 */
2125 if (!blk_queue_full(q, rw)) {
2126 ioc_set_batching(q, ioc);
2127 blk_set_queue_full(q, rw);
2128 } else {
2129 if (may_queue != ELV_MQUEUE_MUST
2130 && !ioc_batching(q, ioc)) {
2131 /*
2132 * The queue is full and the allocating
2133 * process is not a "batcher", and not
2134 * exempted by the IO scheduler
2135 */
2136 goto out;
2137 }
2138 }
1da177e4 2139 }
88ee5ef1 2140 set_queue_congested(q, rw);
1da177e4
LT
2141 }
2142
082cf69e
JA
2143 /*
2144 * Only allow batching queuers to allocate up to 50% over the defined
2145 * limit of requests, otherwise we could have thousands of requests
2146 * allocated with any setting of ->nr_requests
2147 */
fd782a4a 2148 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2149 goto out;
fd782a4a 2150
1da177e4
LT
2151 rl->count[rw]++;
2152 rl->starved[rw] = 0;
cb98fc8b 2153
64521d1a 2154 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2155 if (priv)
2156 rl->elvpriv++;
2157
1da177e4
LT
2158 spin_unlock_irq(q->queue_lock);
2159
cb98fc8b 2160 rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
88ee5ef1 2161 if (unlikely(!rq)) {
1da177e4
LT
2162 /*
2163 * Allocation failed presumably due to memory. Undo anything
2164 * we might have messed up.
2165 *
2166 * Allocating task should really be put onto the front of the
2167 * wait queue, but this is pretty rare.
2168 */
2169 spin_lock_irq(q->queue_lock);
cb98fc8b 2170 freed_request(q, rw, priv);
1da177e4
LT
2171
2172 /*
2173 * in the very unlikely event that allocation failed and no
2174 * requests for this direction was pending, mark us starved
2175 * so that freeing of a request in the other direction will
2176 * notice us. another possible fix would be to split the
2177 * rq mempool into READ and WRITE
2178 */
2179rq_starved:
2180 if (unlikely(rl->count[rw] == 0))
2181 rl->starved[rw] = 1;
2182
1da177e4
LT
2183 goto out;
2184 }
2185
88ee5ef1
JA
2186 /*
2187 * ioc may be NULL here, and ioc_batching will be false. That's
2188 * OK, if the queue is under the request limit then requests need
2189 * not count toward the nr_batch_requests limit. There will always
2190 * be some limit enforced by BLK_BATCH_TIME.
2191 */
1da177e4
LT
2192 if (ioc_batching(q, ioc))
2193 ioc->nr_batch_requests--;
2194
2195 rq_init(q, rq);
2056a782
JA
2196
2197 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2198out:
1da177e4
LT
2199 return rq;
2200}
2201
2202/*
2203 * No available requests for this queue, unplug the device and wait for some
2204 * requests to become available.
d6344532
NP
2205 *
2206 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2207 */
22e2c507
JA
2208static struct request *get_request_wait(request_queue_t *q, int rw,
2209 struct bio *bio)
1da177e4 2210{
1da177e4
LT
2211 struct request *rq;
2212
450991bc
NP
2213 rq = get_request(q, rw, bio, GFP_NOIO);
2214 while (!rq) {
2215 DEFINE_WAIT(wait);
1da177e4
LT
2216 struct request_list *rl = &q->rq;
2217
2218 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2219 TASK_UNINTERRUPTIBLE);
2220
22e2c507 2221 rq = get_request(q, rw, bio, GFP_NOIO);
1da177e4
LT
2222
2223 if (!rq) {
2224 struct io_context *ioc;
2225
2056a782
JA
2226 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2227
d6344532
NP
2228 __generic_unplug_device(q);
2229 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2230 io_schedule();
2231
2232 /*
2233 * After sleeping, we become a "batching" process and
2234 * will be able to allocate at least one request, and
2235 * up to a big batch of them for a small period time.
2236 * See ioc_batching, ioc_set_batching
2237 */
fb3cc432 2238 ioc = current_io_context(GFP_NOIO);
1da177e4 2239 ioc_set_batching(q, ioc);
d6344532
NP
2240
2241 spin_lock_irq(q->queue_lock);
1da177e4
LT
2242 }
2243 finish_wait(&rl->wait[rw], &wait);
450991bc 2244 }
1da177e4
LT
2245
2246 return rq;
2247}
2248
8267e268 2249struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2250{
2251 struct request *rq;
2252
2253 BUG_ON(rw != READ && rw != WRITE);
2254
d6344532
NP
2255 spin_lock_irq(q->queue_lock);
2256 if (gfp_mask & __GFP_WAIT) {
22e2c507 2257 rq = get_request_wait(q, rw, NULL);
d6344532 2258 } else {
22e2c507 2259 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2260 if (!rq)
2261 spin_unlock_irq(q->queue_lock);
2262 }
2263 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2264
2265 return rq;
2266}
1da177e4
LT
2267EXPORT_SYMBOL(blk_get_request);
2268
2269/**
2270 * blk_requeue_request - put a request back on queue
2271 * @q: request queue where request should be inserted
2272 * @rq: request to be inserted
2273 *
2274 * Description:
2275 * Drivers often keep queueing requests until the hardware cannot accept
2276 * more, when that condition happens we need to put the request back
2277 * on the queue. Must be called with queue lock held.
2278 */
2279void blk_requeue_request(request_queue_t *q, struct request *rq)
2280{
2056a782
JA
2281 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2282
1da177e4
LT
2283 if (blk_rq_tagged(rq))
2284 blk_queue_end_tag(q, rq);
2285
2286 elv_requeue_request(q, rq);
2287}
2288
2289EXPORT_SYMBOL(blk_requeue_request);
2290
2291/**
2292 * blk_insert_request - insert a special request in to a request queue
2293 * @q: request queue where request should be inserted
2294 * @rq: request to be inserted
2295 * @at_head: insert request at head or tail of queue
2296 * @data: private data
1da177e4
LT
2297 *
2298 * Description:
2299 * Many block devices need to execute commands asynchronously, so they don't
2300 * block the whole kernel from preemption during request execution. This is
2301 * accomplished normally by inserting aritficial requests tagged as
2302 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2303 * scheduled for actual execution by the request queue.
2304 *
2305 * We have the option of inserting the head or the tail of the queue.
2306 * Typically we use the tail for new ioctls and so forth. We use the head
2307 * of the queue for things like a QUEUE_FULL message from a device, or a
2308 * host that is unable to accept a particular command.
2309 */
2310void blk_insert_request(request_queue_t *q, struct request *rq,
867d1191 2311 int at_head, void *data)
1da177e4 2312{
867d1191 2313 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2314 unsigned long flags;
2315
2316 /*
2317 * tell I/O scheduler that this isn't a regular read/write (ie it
2318 * must not attempt merges on this) and that it acts as a soft
2319 * barrier
2320 */
4aff5e23
JA
2321 rq->cmd_type = REQ_TYPE_SPECIAL;
2322 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2323
2324 rq->special = data;
2325
2326 spin_lock_irqsave(q->queue_lock, flags);
2327
2328 /*
2329 * If command is tagged, release the tag
2330 */
867d1191
TH
2331 if (blk_rq_tagged(rq))
2332 blk_queue_end_tag(q, rq);
1da177e4 2333
867d1191
TH
2334 drive_stat_acct(rq, rq->nr_sectors, 1);
2335 __elv_add_request(q, rq, where, 0);
1da177e4 2336
1da177e4
LT
2337 if (blk_queue_plugged(q))
2338 __generic_unplug_device(q);
2339 else
2340 q->request_fn(q);
2341 spin_unlock_irqrestore(q->queue_lock, flags);
2342}
2343
2344EXPORT_SYMBOL(blk_insert_request);
2345
2346/**
2347 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2348 * @q: request queue where request should be inserted
73747aed 2349 * @rq: request structure to fill
1da177e4
LT
2350 * @ubuf: the user buffer
2351 * @len: length of user data
2352 *
2353 * Description:
2354 * Data will be mapped directly for zero copy io, if possible. Otherwise
2355 * a kernel bounce buffer is used.
2356 *
2357 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2358 * still in process context.
2359 *
2360 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2361 * before being submitted to the device, as pages mapped may be out of
2362 * reach. It's the callers responsibility to make sure this happens. The
2363 * original bio must be passed back in to blk_rq_unmap_user() for proper
2364 * unmapping.
2365 */
dd1cab95
JA
2366int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2367 unsigned int len)
1da177e4
LT
2368{
2369 unsigned long uaddr;
1da177e4 2370 struct bio *bio;
dd1cab95 2371 int reading;
1da177e4 2372
defd94b7 2373 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2374 return -EINVAL;
2375 if (!len || !ubuf)
2376 return -EINVAL;
1da177e4 2377
dd1cab95 2378 reading = rq_data_dir(rq) == READ;
1da177e4
LT
2379
2380 /*
2381 * if alignment requirement is satisfied, map in user pages for
2382 * direct dma. else, set up kernel bounce buffers
2383 */
2384 uaddr = (unsigned long) ubuf;
2385 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
dd1cab95 2386 bio = bio_map_user(q, NULL, uaddr, len, reading);
1da177e4 2387 else
dd1cab95 2388 bio = bio_copy_user(q, uaddr, len, reading);
1da177e4
LT
2389
2390 if (!IS_ERR(bio)) {
2391 rq->bio = rq->biotail = bio;
2392 blk_rq_bio_prep(q, rq, bio);
2393
2394 rq->buffer = rq->data = NULL;
2395 rq->data_len = len;
dd1cab95 2396 return 0;
1da177e4
LT
2397 }
2398
2399 /*
2400 * bio is the err-ptr
2401 */
dd1cab95 2402 return PTR_ERR(bio);
1da177e4
LT
2403}
2404
2405EXPORT_SYMBOL(blk_rq_map_user);
2406
f1970baf
JB
2407/**
2408 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2409 * @q: request queue where request should be inserted
2410 * @rq: request to map data to
2411 * @iov: pointer to the iovec
2412 * @iov_count: number of elements in the iovec
2413 *
2414 * Description:
2415 * Data will be mapped directly for zero copy io, if possible. Otherwise
2416 * a kernel bounce buffer is used.
2417 *
2418 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2419 * still in process context.
2420 *
2421 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2422 * before being submitted to the device, as pages mapped may be out of
2423 * reach. It's the callers responsibility to make sure this happens. The
2424 * original bio must be passed back in to blk_rq_unmap_user() for proper
2425 * unmapping.
2426 */
2427int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2428 struct sg_iovec *iov, int iov_count)
2429{
2430 struct bio *bio;
2431
2432 if (!iov || iov_count <= 0)
2433 return -EINVAL;
2434
2435 /* we don't allow misaligned data like bio_map_user() does. If the
2436 * user is using sg, they're expected to know the alignment constraints
2437 * and respect them accordingly */
2438 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2439 if (IS_ERR(bio))
2440 return PTR_ERR(bio);
2441
2442 rq->bio = rq->biotail = bio;
2443 blk_rq_bio_prep(q, rq, bio);
2444 rq->buffer = rq->data = NULL;
2445 rq->data_len = bio->bi_size;
2446 return 0;
2447}
2448
2449EXPORT_SYMBOL(blk_rq_map_user_iov);
2450
1da177e4
LT
2451/**
2452 * blk_rq_unmap_user - unmap a request with user data
73747aed 2453 * @bio: bio to be unmapped
1da177e4
LT
2454 * @ulen: length of user buffer
2455 *
2456 * Description:
73747aed 2457 * Unmap a bio previously mapped by blk_rq_map_user().
1da177e4 2458 */
dd1cab95 2459int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
1da177e4
LT
2460{
2461 int ret = 0;
2462
2463 if (bio) {
2464 if (bio_flagged(bio, BIO_USER_MAPPED))
2465 bio_unmap_user(bio);
2466 else
2467 ret = bio_uncopy_user(bio);
2468 }
2469
dd1cab95 2470 return 0;
1da177e4
LT
2471}
2472
2473EXPORT_SYMBOL(blk_rq_unmap_user);
2474
df46b9a4
MC
2475/**
2476 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2477 * @q: request queue where request should be inserted
73747aed 2478 * @rq: request to fill
df46b9a4
MC
2479 * @kbuf: the kernel buffer
2480 * @len: length of user data
73747aed 2481 * @gfp_mask: memory allocation flags
df46b9a4 2482 */
dd1cab95 2483int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
8267e268 2484 unsigned int len, gfp_t gfp_mask)
df46b9a4 2485{
df46b9a4
MC
2486 struct bio *bio;
2487
defd94b7 2488 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2489 return -EINVAL;
2490 if (!len || !kbuf)
2491 return -EINVAL;
df46b9a4
MC
2492
2493 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2494 if (IS_ERR(bio))
2495 return PTR_ERR(bio);
df46b9a4 2496
dd1cab95
JA
2497 if (rq_data_dir(rq) == WRITE)
2498 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2499
dd1cab95
JA
2500 rq->bio = rq->biotail = bio;
2501 blk_rq_bio_prep(q, rq, bio);
df46b9a4 2502
dd1cab95
JA
2503 rq->buffer = rq->data = NULL;
2504 rq->data_len = len;
2505 return 0;
df46b9a4
MC
2506}
2507
2508EXPORT_SYMBOL(blk_rq_map_kern);
2509
73747aed
CH
2510/**
2511 * blk_execute_rq_nowait - insert a request into queue for execution
2512 * @q: queue to insert the request in
2513 * @bd_disk: matching gendisk
2514 * @rq: request to insert
2515 * @at_head: insert request at head or tail of queue
2516 * @done: I/O completion handler
2517 *
2518 * Description:
2519 * Insert a fully prepared request at the back of the io scheduler queue
2520 * for execution. Don't wait for completion.
2521 */
f1970baf
JB
2522void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2523 struct request *rq, int at_head,
8ffdc655 2524 rq_end_io_fn *done)
f1970baf
JB
2525{
2526 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2527
2528 rq->rq_disk = bd_disk;
4aff5e23 2529 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2530 rq->end_io = done;
4c5d0bbd
AM
2531 WARN_ON(irqs_disabled());
2532 spin_lock_irq(q->queue_lock);
2533 __elv_add_request(q, rq, where, 1);
2534 __generic_unplug_device(q);
2535 spin_unlock_irq(q->queue_lock);
f1970baf 2536}
6e39b69e
MC
2537EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2538
1da177e4
LT
2539/**
2540 * blk_execute_rq - insert a request into queue for execution
2541 * @q: queue to insert the request in
2542 * @bd_disk: matching gendisk
2543 * @rq: request to insert
994ca9a1 2544 * @at_head: insert request at head or tail of queue
1da177e4
LT
2545 *
2546 * Description:
2547 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2548 * for execution and wait for completion.
1da177e4
LT
2549 */
2550int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
994ca9a1 2551 struct request *rq, int at_head)
1da177e4 2552{
60be6b9a 2553 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2554 char sense[SCSI_SENSE_BUFFERSIZE];
2555 int err = 0;
2556
1da177e4
LT
2557 /*
2558 * we need an extra reference to the request, so we can look at
2559 * it after io completion
2560 */
2561 rq->ref_count++;
2562
2563 if (!rq->sense) {
2564 memset(sense, 0, sizeof(sense));
2565 rq->sense = sense;
2566 rq->sense_len = 0;
2567 }
2568
c00895ab 2569 rq->end_io_data = &wait;
994ca9a1 2570 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2571 wait_for_completion(&wait);
1da177e4
LT
2572
2573 if (rq->errors)
2574 err = -EIO;
2575
2576 return err;
2577}
2578
2579EXPORT_SYMBOL(blk_execute_rq);
2580
2581/**
2582 * blkdev_issue_flush - queue a flush
2583 * @bdev: blockdev to issue flush for
2584 * @error_sector: error sector
2585 *
2586 * Description:
2587 * Issue a flush for the block device in question. Caller can supply
2588 * room for storing the error offset in case of a flush error, if they
2589 * wish to. Caller must run wait_for_completion() on its own.
2590 */
2591int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2592{
2593 request_queue_t *q;
2594
2595 if (bdev->bd_disk == NULL)
2596 return -ENXIO;
2597
2598 q = bdev_get_queue(bdev);
2599 if (!q)
2600 return -ENXIO;
2601 if (!q->issue_flush_fn)
2602 return -EOPNOTSUPP;
2603
2604 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2605}
2606
2607EXPORT_SYMBOL(blkdev_issue_flush);
2608
93d17d3d 2609static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2610{
2611 int rw = rq_data_dir(rq);
2612
2613 if (!blk_fs_request(rq) || !rq->rq_disk)
2614 return;
2615
d72d904a 2616 if (!new_io) {
a362357b 2617 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2618 } else {
1da177e4
LT
2619 disk_round_stats(rq->rq_disk);
2620 rq->rq_disk->in_flight++;
2621 }
2622}
2623
2624/*
2625 * add-request adds a request to the linked list.
2626 * queue lock is held and interrupts disabled, as we muck with the
2627 * request queue list.
2628 */
2629static inline void add_request(request_queue_t * q, struct request * req)
2630{
2631 drive_stat_acct(req, req->nr_sectors, 1);
2632
2633 if (q->activity_fn)
2634 q->activity_fn(q->activity_data, rq_data_dir(req));
2635
2636 /*
2637 * elevator indicated where it wants this request to be
2638 * inserted at elevator_merge time
2639 */
2640 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2641}
2642
2643/*
2644 * disk_round_stats() - Round off the performance stats on a struct
2645 * disk_stats.
2646 *
2647 * The average IO queue length and utilisation statistics are maintained
2648 * by observing the current state of the queue length and the amount of
2649 * time it has been in this state for.
2650 *
2651 * Normally, that accounting is done on IO completion, but that can result
2652 * in more than a second's worth of IO being accounted for within any one
2653 * second, leading to >100% utilisation. To deal with that, we call this
2654 * function to do a round-off before returning the results when reading
2655 * /proc/diskstats. This accounts immediately for all queue usage up to
2656 * the current jiffies and restarts the counters again.
2657 */
2658void disk_round_stats(struct gendisk *disk)
2659{
2660 unsigned long now = jiffies;
2661
b2982649
KC
2662 if (now == disk->stamp)
2663 return;
1da177e4 2664
20e5c81f
KC
2665 if (disk->in_flight) {
2666 __disk_stat_add(disk, time_in_queue,
2667 disk->in_flight * (now - disk->stamp));
2668 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2669 }
1da177e4 2670 disk->stamp = now;
1da177e4
LT
2671}
2672
3eaf840e
JNN
2673EXPORT_SYMBOL_GPL(disk_round_stats);
2674
1da177e4
LT
2675/*
2676 * queue lock must be held
2677 */
6e39b69e 2678void __blk_put_request(request_queue_t *q, struct request *req)
1da177e4 2679{
1da177e4
LT
2680 if (unlikely(!q))
2681 return;
2682 if (unlikely(--req->ref_count))
2683 return;
2684
8922e16c
TH
2685 elv_completed_request(q, req);
2686
1da177e4
LT
2687 /*
2688 * Request may not have originated from ll_rw_blk. if not,
2689 * it didn't come out of our reserved rq pools
2690 */
49171e5c 2691 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2692 int rw = rq_data_dir(req);
4aff5e23 2693 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2694
1da177e4 2695 BUG_ON(!list_empty(&req->queuelist));
9817064b 2696 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2697
2698 blk_free_request(q, req);
cb98fc8b 2699 freed_request(q, rw, priv);
1da177e4
LT
2700 }
2701}
2702
6e39b69e
MC
2703EXPORT_SYMBOL_GPL(__blk_put_request);
2704
1da177e4
LT
2705void blk_put_request(struct request *req)
2706{
8922e16c
TH
2707 unsigned long flags;
2708 request_queue_t *q = req->q;
2709
1da177e4 2710 /*
8922e16c
TH
2711 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2712 * following if (q) test.
1da177e4 2713 */
8922e16c 2714 if (q) {
1da177e4
LT
2715 spin_lock_irqsave(q->queue_lock, flags);
2716 __blk_put_request(q, req);
2717 spin_unlock_irqrestore(q->queue_lock, flags);
2718 }
2719}
2720
2721EXPORT_SYMBOL(blk_put_request);
2722
2723/**
2724 * blk_end_sync_rq - executes a completion event on a request
2725 * @rq: request to complete
fddfdeaf 2726 * @error: end io status of the request
1da177e4 2727 */
8ffdc655 2728void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2729{
c00895ab 2730 struct completion *waiting = rq->end_io_data;
1da177e4 2731
c00895ab 2732 rq->end_io_data = NULL;
1da177e4
LT
2733 __blk_put_request(rq->q, rq);
2734
2735 /*
2736 * complete last, if this is a stack request the process (and thus
2737 * the rq pointer) could be invalid right after this complete()
2738 */
2739 complete(waiting);
2740}
2741EXPORT_SYMBOL(blk_end_sync_rq);
2742
2743/**
2744 * blk_congestion_wait - wait for a queue to become uncongested
2745 * @rw: READ or WRITE
2746 * @timeout: timeout in jiffies
2747 *
2748 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2749 * If no queues are congested then just wait for the next request to be
2750 * returned.
2751 */
2752long blk_congestion_wait(int rw, long timeout)
2753{
2754 long ret;
2755 DEFINE_WAIT(wait);
2756 wait_queue_head_t *wqh = &congestion_wqh[rw];
2757
2758 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2759 ret = io_schedule_timeout(timeout);
2760 finish_wait(wqh, &wait);
2761 return ret;
2762}
2763
2764EXPORT_SYMBOL(blk_congestion_wait);
2765
275a082f
TM
2766/**
2767 * blk_congestion_end - wake up sleepers on a congestion queue
2768 * @rw: READ or WRITE
2769 */
2770void blk_congestion_end(int rw)
2771{
2772 wait_queue_head_t *wqh = &congestion_wqh[rw];
2773
2774 if (waitqueue_active(wqh))
2775 wake_up(wqh);
2776}
2777
1da177e4
LT
2778/*
2779 * Has to be called with the request spinlock acquired
2780 */
2781static int attempt_merge(request_queue_t *q, struct request *req,
2782 struct request *next)
2783{
2784 if (!rq_mergeable(req) || !rq_mergeable(next))
2785 return 0;
2786
2787 /*
d6e05edc 2788 * not contiguous
1da177e4
LT
2789 */
2790 if (req->sector + req->nr_sectors != next->sector)
2791 return 0;
2792
2793 if (rq_data_dir(req) != rq_data_dir(next)
2794 || req->rq_disk != next->rq_disk
c00895ab 2795 || next->special)
1da177e4
LT
2796 return 0;
2797
2798 /*
2799 * If we are allowed to merge, then append bio list
2800 * from next to rq and release next. merge_requests_fn
2801 * will have updated segment counts, update sector
2802 * counts here.
2803 */
2804 if (!q->merge_requests_fn(q, req, next))
2805 return 0;
2806
2807 /*
2808 * At this point we have either done a back merge
2809 * or front merge. We need the smaller start_time of
2810 * the merged requests to be the current request
2811 * for accounting purposes.
2812 */
2813 if (time_after(req->start_time, next->start_time))
2814 req->start_time = next->start_time;
2815
2816 req->biotail->bi_next = next->bio;
2817 req->biotail = next->biotail;
2818
2819 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2820
2821 elv_merge_requests(q, req, next);
2822
2823 if (req->rq_disk) {
2824 disk_round_stats(req->rq_disk);
2825 req->rq_disk->in_flight--;
2826 }
2827
22e2c507
JA
2828 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2829
1da177e4
LT
2830 __blk_put_request(q, next);
2831 return 1;
2832}
2833
2834static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2835{
2836 struct request *next = elv_latter_request(q, rq);
2837
2838 if (next)
2839 return attempt_merge(q, rq, next);
2840
2841 return 0;
2842}
2843
2844static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2845{
2846 struct request *prev = elv_former_request(q, rq);
2847
2848 if (prev)
2849 return attempt_merge(q, prev, rq);
2850
2851 return 0;
2852}
2853
52d9e675
TH
2854static void init_request_from_bio(struct request *req, struct bio *bio)
2855{
4aff5e23 2856 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2857
2858 /*
2859 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2860 */
2861 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2862 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2863
2864 /*
2865 * REQ_BARRIER implies no merging, but lets make it explicit
2866 */
2867 if (unlikely(bio_barrier(bio)))
4aff5e23 2868 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2869
b31dc66a 2870 if (bio_sync(bio))
4aff5e23 2871 req->cmd_flags |= REQ_RW_SYNC;
b31dc66a 2872
52d9e675
TH
2873 req->errors = 0;
2874 req->hard_sector = req->sector = bio->bi_sector;
2875 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2876 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2877 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2878 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2879 req->buffer = bio_data(bio); /* see ->buffer comment above */
52d9e675
TH
2880 req->bio = req->biotail = bio;
2881 req->ioprio = bio_prio(bio);
2882 req->rq_disk = bio->bi_bdev->bd_disk;
2883 req->start_time = jiffies;
2884}
2885
1da177e4
LT
2886static int __make_request(request_queue_t *q, struct bio *bio)
2887{
450991bc 2888 struct request *req;
4a534f93 2889 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
22e2c507 2890 unsigned short prio;
1da177e4
LT
2891 sector_t sector;
2892
2893 sector = bio->bi_sector;
2894 nr_sectors = bio_sectors(bio);
2895 cur_nr_sectors = bio_cur_sectors(bio);
22e2c507 2896 prio = bio_prio(bio);
1da177e4
LT
2897
2898 rw = bio_data_dir(bio);
4a534f93 2899 sync = bio_sync(bio);
1da177e4
LT
2900
2901 /*
2902 * low level driver can indicate that it wants pages above a
2903 * certain limit bounced to low memory (ie for highmem, or even
2904 * ISA dma in theory)
2905 */
2906 blk_queue_bounce(q, &bio);
2907
2908 spin_lock_prefetch(q->queue_lock);
2909
2910 barrier = bio_barrier(bio);
797e7dbb 2911 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2912 err = -EOPNOTSUPP;
2913 goto end_io;
2914 }
2915
1da177e4
LT
2916 spin_lock_irq(q->queue_lock);
2917
450991bc 2918 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2919 goto get_rq;
2920
2921 el_ret = elv_merge(q, &req, bio);
2922 switch (el_ret) {
2923 case ELEVATOR_BACK_MERGE:
2924 BUG_ON(!rq_mergeable(req));
2925
2926 if (!q->back_merge_fn(q, req, bio))
2927 break;
2928
2056a782
JA
2929 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2930
1da177e4
LT
2931 req->biotail->bi_next = bio;
2932 req->biotail = bio;
2933 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2934 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2935 drive_stat_acct(req, nr_sectors, 0);
2936 if (!attempt_back_merge(q, req))
2e662b65 2937 elv_merged_request(q, req, el_ret);
1da177e4
LT
2938 goto out;
2939
2940 case ELEVATOR_FRONT_MERGE:
2941 BUG_ON(!rq_mergeable(req));
2942
2943 if (!q->front_merge_fn(q, req, bio))
2944 break;
2945
2056a782
JA
2946 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2947
1da177e4
LT
2948 bio->bi_next = req->bio;
2949 req->bio = bio;
2950
2951 /*
2952 * may not be valid. if the low level driver said
2953 * it didn't need a bounce buffer then it better
2954 * not touch req->buffer either...
2955 */
2956 req->buffer = bio_data(bio);
2957 req->current_nr_sectors = cur_nr_sectors;
2958 req->hard_cur_sectors = cur_nr_sectors;
2959 req->sector = req->hard_sector = sector;
2960 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 2961 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
2962 drive_stat_acct(req, nr_sectors, 0);
2963 if (!attempt_front_merge(q, req))
2e662b65 2964 elv_merged_request(q, req, el_ret);
1da177e4
LT
2965 goto out;
2966
450991bc 2967 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 2968 default:
450991bc 2969 ;
1da177e4
LT
2970 }
2971
450991bc 2972get_rq:
1da177e4 2973 /*
450991bc 2974 * Grab a free request. This is might sleep but can not fail.
d6344532 2975 * Returns with the queue unlocked.
450991bc 2976 */
450991bc 2977 req = get_request_wait(q, rw, bio);
d6344532 2978
450991bc
NP
2979 /*
2980 * After dropping the lock and possibly sleeping here, our request
2981 * may now be mergeable after it had proven unmergeable (above).
2982 * We don't worry about that case for efficiency. It won't happen
2983 * often, and the elevators are able to handle it.
1da177e4 2984 */
52d9e675 2985 init_request_from_bio(req, bio);
1da177e4 2986
450991bc
NP
2987 spin_lock_irq(q->queue_lock);
2988 if (elv_queue_empty(q))
2989 blk_plug_device(q);
1da177e4
LT
2990 add_request(q, req);
2991out:
4a534f93 2992 if (sync)
1da177e4
LT
2993 __generic_unplug_device(q);
2994
2995 spin_unlock_irq(q->queue_lock);
2996 return 0;
2997
2998end_io:
2999 bio_endio(bio, nr_sectors << 9, err);
3000 return 0;
3001}
3002
3003/*
3004 * If bio->bi_dev is a partition, remap the location
3005 */
3006static inline void blk_partition_remap(struct bio *bio)
3007{
3008 struct block_device *bdev = bio->bi_bdev;
3009
3010 if (bdev != bdev->bd_contains) {
3011 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3012 const int rw = bio_data_dir(bio);
3013
3014 p->sectors[rw] += bio_sectors(bio);
3015 p->ios[rw]++;
1da177e4 3016
1da177e4
LT
3017 bio->bi_sector += p->start_sect;
3018 bio->bi_bdev = bdev->bd_contains;
3019 }
3020}
3021
1da177e4
LT
3022static void handle_bad_sector(struct bio *bio)
3023{
3024 char b[BDEVNAME_SIZE];
3025
3026 printk(KERN_INFO "attempt to access beyond end of device\n");
3027 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3028 bdevname(bio->bi_bdev, b),
3029 bio->bi_rw,
3030 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3031 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3032
3033 set_bit(BIO_EOF, &bio->bi_flags);
3034}
3035
3036/**
3037 * generic_make_request: hand a buffer to its device driver for I/O
3038 * @bio: The bio describing the location in memory and on the device.
3039 *
3040 * generic_make_request() is used to make I/O requests of block
3041 * devices. It is passed a &struct bio, which describes the I/O that needs
3042 * to be done.
3043 *
3044 * generic_make_request() does not return any status. The
3045 * success/failure status of the request, along with notification of
3046 * completion, is delivered asynchronously through the bio->bi_end_io
3047 * function described (one day) else where.
3048 *
3049 * The caller of generic_make_request must make sure that bi_io_vec
3050 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3051 * set to describe the device address, and the
3052 * bi_end_io and optionally bi_private are set to describe how
3053 * completion notification should be signaled.
3054 *
3055 * generic_make_request and the drivers it calls may use bi_next if this
3056 * bio happens to be merged with someone else, and may change bi_dev and
3057 * bi_sector for remaps as it sees fit. So the values of these fields
3058 * should NOT be depended on after the call to generic_make_request.
3059 */
3060void generic_make_request(struct bio *bio)
3061{
3062 request_queue_t *q;
3063 sector_t maxsector;
3064 int ret, nr_sectors = bio_sectors(bio);
2056a782 3065 dev_t old_dev;
1da177e4
LT
3066
3067 might_sleep();
3068 /* Test device or partition size, when known. */
3069 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3070 if (maxsector) {
3071 sector_t sector = bio->bi_sector;
3072
3073 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3074 /*
3075 * This may well happen - the kernel calls bread()
3076 * without checking the size of the device, e.g., when
3077 * mounting a device.
3078 */
3079 handle_bad_sector(bio);
3080 goto end_io;
3081 }
3082 }
3083
3084 /*
3085 * Resolve the mapping until finished. (drivers are
3086 * still free to implement/resolve their own stacking
3087 * by explicitly returning 0)
3088 *
3089 * NOTE: we don't repeat the blk_size check for each new device.
3090 * Stacking drivers are expected to know what they are doing.
3091 */
2056a782
JA
3092 maxsector = -1;
3093 old_dev = 0;
1da177e4
LT
3094 do {
3095 char b[BDEVNAME_SIZE];
3096
3097 q = bdev_get_queue(bio->bi_bdev);
3098 if (!q) {
3099 printk(KERN_ERR
3100 "generic_make_request: Trying to access "
3101 "nonexistent block-device %s (%Lu)\n",
3102 bdevname(bio->bi_bdev, b),
3103 (long long) bio->bi_sector);
3104end_io:
3105 bio_endio(bio, bio->bi_size, -EIO);
3106 break;
3107 }
3108
3109 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3110 printk("bio too big device %s (%u > %u)\n",
3111 bdevname(bio->bi_bdev, b),
3112 bio_sectors(bio),
3113 q->max_hw_sectors);
3114 goto end_io;
3115 }
3116
fde6ad22 3117 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3118 goto end_io;
3119
1da177e4
LT
3120 /*
3121 * If this device has partitions, remap block n
3122 * of partition p to block n+start(p) of the disk.
3123 */
3124 blk_partition_remap(bio);
3125
2056a782
JA
3126 if (maxsector != -1)
3127 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3128 maxsector);
3129
3130 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3131
3132 maxsector = bio->bi_sector;
3133 old_dev = bio->bi_bdev->bd_dev;
3134
1da177e4
LT
3135 ret = q->make_request_fn(q, bio);
3136 } while (ret);
3137}
3138
3139EXPORT_SYMBOL(generic_make_request);
3140
3141/**
3142 * submit_bio: submit a bio to the block device layer for I/O
3143 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3144 * @bio: The &struct bio which describes the I/O
3145 *
3146 * submit_bio() is very similar in purpose to generic_make_request(), and
3147 * uses that function to do most of the work. Both are fairly rough
3148 * interfaces, @bio must be presetup and ready for I/O.
3149 *
3150 */
3151void submit_bio(int rw, struct bio *bio)
3152{
3153 int count = bio_sectors(bio);
3154
3155 BIO_BUG_ON(!bio->bi_size);
3156 BIO_BUG_ON(!bio->bi_io_vec);
22e2c507 3157 bio->bi_rw |= rw;
1da177e4 3158 if (rw & WRITE)
f8891e5e 3159 count_vm_events(PGPGOUT, count);
1da177e4 3160 else
f8891e5e 3161 count_vm_events(PGPGIN, count);
1da177e4
LT
3162
3163 if (unlikely(block_dump)) {
3164 char b[BDEVNAME_SIZE];
3165 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3166 current->comm, current->pid,
3167 (rw & WRITE) ? "WRITE" : "READ",
3168 (unsigned long long)bio->bi_sector,
3169 bdevname(bio->bi_bdev,b));
3170 }
3171
3172 generic_make_request(bio);
3173}
3174
3175EXPORT_SYMBOL(submit_bio);
3176
93d17d3d 3177static void blk_recalc_rq_segments(struct request *rq)
1da177e4
LT
3178{
3179 struct bio *bio, *prevbio = NULL;
3180 int nr_phys_segs, nr_hw_segs;
3181 unsigned int phys_size, hw_size;
3182 request_queue_t *q = rq->q;
3183
3184 if (!rq->bio)
3185 return;
3186
3187 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3188 rq_for_each_bio(bio, rq) {
3189 /* Force bio hw/phys segs to be recalculated. */
3190 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3191
3192 nr_phys_segs += bio_phys_segments(q, bio);
3193 nr_hw_segs += bio_hw_segments(q, bio);
3194 if (prevbio) {
3195 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3196 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3197
3198 if (blk_phys_contig_segment(q, prevbio, bio) &&
3199 pseg <= q->max_segment_size) {
3200 nr_phys_segs--;
3201 phys_size += prevbio->bi_size + bio->bi_size;
3202 } else
3203 phys_size = 0;
3204
3205 if (blk_hw_contig_segment(q, prevbio, bio) &&
3206 hseg <= q->max_segment_size) {
3207 nr_hw_segs--;
3208 hw_size += prevbio->bi_size + bio->bi_size;
3209 } else
3210 hw_size = 0;
3211 }
3212 prevbio = bio;
3213 }
3214
3215 rq->nr_phys_segments = nr_phys_segs;
3216 rq->nr_hw_segments = nr_hw_segs;
3217}
3218
93d17d3d 3219static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3220{
3221 if (blk_fs_request(rq)) {
3222 rq->hard_sector += nsect;
3223 rq->hard_nr_sectors -= nsect;
3224
3225 /*
3226 * Move the I/O submission pointers ahead if required.
3227 */
3228 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3229 (rq->sector <= rq->hard_sector)) {
3230 rq->sector = rq->hard_sector;
3231 rq->nr_sectors = rq->hard_nr_sectors;
3232 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3233 rq->current_nr_sectors = rq->hard_cur_sectors;
3234 rq->buffer = bio_data(rq->bio);
3235 }
3236
3237 /*
3238 * if total number of sectors is less than the first segment
3239 * size, something has gone terribly wrong
3240 */
3241 if (rq->nr_sectors < rq->current_nr_sectors) {
3242 printk("blk: request botched\n");
3243 rq->nr_sectors = rq->current_nr_sectors;
3244 }
3245 }
3246}
3247
3248static int __end_that_request_first(struct request *req, int uptodate,
3249 int nr_bytes)
3250{
3251 int total_bytes, bio_nbytes, error, next_idx = 0;
3252 struct bio *bio;
3253
2056a782
JA
3254 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3255
1da177e4
LT
3256 /*
3257 * extend uptodate bool to allow < 0 value to be direct io error
3258 */
3259 error = 0;
3260 if (end_io_error(uptodate))
3261 error = !uptodate ? -EIO : uptodate;
3262
3263 /*
3264 * for a REQ_BLOCK_PC request, we want to carry any eventual
3265 * sense key with us all the way through
3266 */
3267 if (!blk_pc_request(req))
3268 req->errors = 0;
3269
3270 if (!uptodate) {
4aff5e23 3271 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3272 printk("end_request: I/O error, dev %s, sector %llu\n",
3273 req->rq_disk ? req->rq_disk->disk_name : "?",
3274 (unsigned long long)req->sector);
3275 }
3276
d72d904a 3277 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3278 const int rw = rq_data_dir(req);
3279
53e86061 3280 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3281 }
3282
1da177e4
LT
3283 total_bytes = bio_nbytes = 0;
3284 while ((bio = req->bio) != NULL) {
3285 int nbytes;
3286
3287 if (nr_bytes >= bio->bi_size) {
3288 req->bio = bio->bi_next;
3289 nbytes = bio->bi_size;
797e7dbb
TH
3290 if (!ordered_bio_endio(req, bio, nbytes, error))
3291 bio_endio(bio, nbytes, error);
1da177e4
LT
3292 next_idx = 0;
3293 bio_nbytes = 0;
3294 } else {
3295 int idx = bio->bi_idx + next_idx;
3296
3297 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3298 blk_dump_rq_flags(req, "__end_that");
3299 printk("%s: bio idx %d >= vcnt %d\n",
3300 __FUNCTION__,
3301 bio->bi_idx, bio->bi_vcnt);
3302 break;
3303 }
3304
3305 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3306 BIO_BUG_ON(nbytes > bio->bi_size);
3307
3308 /*
3309 * not a complete bvec done
3310 */
3311 if (unlikely(nbytes > nr_bytes)) {
3312 bio_nbytes += nr_bytes;
3313 total_bytes += nr_bytes;
3314 break;
3315 }
3316
3317 /*
3318 * advance to the next vector
3319 */
3320 next_idx++;
3321 bio_nbytes += nbytes;
3322 }
3323
3324 total_bytes += nbytes;
3325 nr_bytes -= nbytes;
3326
3327 if ((bio = req->bio)) {
3328 /*
3329 * end more in this run, or just return 'not-done'
3330 */
3331 if (unlikely(nr_bytes <= 0))
3332 break;
3333 }
3334 }
3335
3336 /*
3337 * completely done
3338 */
3339 if (!req->bio)
3340 return 0;
3341
3342 /*
3343 * if the request wasn't completed, update state
3344 */
3345 if (bio_nbytes) {
797e7dbb
TH
3346 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3347 bio_endio(bio, bio_nbytes, error);
1da177e4
LT
3348 bio->bi_idx += next_idx;
3349 bio_iovec(bio)->bv_offset += nr_bytes;
3350 bio_iovec(bio)->bv_len -= nr_bytes;
3351 }
3352
3353 blk_recalc_rq_sectors(req, total_bytes >> 9);
3354 blk_recalc_rq_segments(req);
3355 return 1;
3356}
3357
3358/**
3359 * end_that_request_first - end I/O on a request
3360 * @req: the request being processed
3361 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3362 * @nr_sectors: number of sectors to end I/O on
3363 *
3364 * Description:
3365 * Ends I/O on a number of sectors attached to @req, and sets it up
3366 * for the next range of segments (if any) in the cluster.
3367 *
3368 * Return:
3369 * 0 - we are done with this request, call end_that_request_last()
3370 * 1 - still buffers pending for this request
3371 **/
3372int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3373{
3374 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3375}
3376
3377EXPORT_SYMBOL(end_that_request_first);
3378
3379/**
3380 * end_that_request_chunk - end I/O on a request
3381 * @req: the request being processed
3382 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3383 * @nr_bytes: number of bytes to complete
3384 *
3385 * Description:
3386 * Ends I/O on a number of bytes attached to @req, and sets it up
3387 * for the next range of segments (if any). Like end_that_request_first(),
3388 * but deals with bytes instead of sectors.
3389 *
3390 * Return:
3391 * 0 - we are done with this request, call end_that_request_last()
3392 * 1 - still buffers pending for this request
3393 **/
3394int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3395{
3396 return __end_that_request_first(req, uptodate, nr_bytes);
3397}
3398
3399EXPORT_SYMBOL(end_that_request_chunk);
3400
ff856bad
JA
3401/*
3402 * splice the completion data to a local structure and hand off to
3403 * process_completion_queue() to complete the requests
3404 */
3405static void blk_done_softirq(struct softirq_action *h)
3406{
626ab0e6 3407 struct list_head *cpu_list, local_list;
ff856bad
JA
3408
3409 local_irq_disable();
3410 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3411 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3412 local_irq_enable();
3413
3414 while (!list_empty(&local_list)) {
3415 struct request *rq = list_entry(local_list.next, struct request, donelist);
3416
3417 list_del_init(&rq->donelist);
3418 rq->q->softirq_done_fn(rq);
3419 }
3420}
3421
3422#ifdef CONFIG_HOTPLUG_CPU
3423
3424static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3425 void *hcpu)
3426{
3427 /*
3428 * If a CPU goes away, splice its entries to the current CPU
3429 * and trigger a run of the softirq
3430 */
3431 if (action == CPU_DEAD) {
3432 int cpu = (unsigned long) hcpu;
3433
3434 local_irq_disable();
3435 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3436 &__get_cpu_var(blk_cpu_done));
3437 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3438 local_irq_enable();
3439 }
3440
3441 return NOTIFY_OK;
3442}
3443
3444
054cc8a2 3445static struct notifier_block __devinitdata blk_cpu_notifier = {
ff856bad
JA
3446 .notifier_call = blk_cpu_notify,
3447};
3448
3449#endif /* CONFIG_HOTPLUG_CPU */
3450
3451/**
3452 * blk_complete_request - end I/O on a request
3453 * @req: the request being processed
3454 *
3455 * Description:
3456 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3457 * unless the driver actually implements this in its completion callback
ff856bad
JA
3458 * through requeueing. Theh actual completion happens out-of-order,
3459 * through a softirq handler. The user must have registered a completion
3460 * callback through blk_queue_softirq_done().
3461 **/
3462
3463void blk_complete_request(struct request *req)
3464{
3465 struct list_head *cpu_list;
3466 unsigned long flags;
3467
3468 BUG_ON(!req->q->softirq_done_fn);
3469
3470 local_irq_save(flags);
3471
3472 cpu_list = &__get_cpu_var(blk_cpu_done);
3473 list_add_tail(&req->donelist, cpu_list);
3474 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3475
3476 local_irq_restore(flags);
3477}
3478
3479EXPORT_SYMBOL(blk_complete_request);
3480
1da177e4
LT
3481/*
3482 * queue lock must be held
3483 */
8ffdc655 3484void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3485{
3486 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3487 int error;
3488
3489 /*
3490 * extend uptodate bool to allow < 0 value to be direct io error
3491 */
3492 error = 0;
3493 if (end_io_error(uptodate))
3494 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3495
3496 if (unlikely(laptop_mode) && blk_fs_request(req))
3497 laptop_io_completion();
3498
fd0ff8aa
JA
3499 /*
3500 * Account IO completion. bar_rq isn't accounted as a normal
3501 * IO on queueing nor completion. Accounting the containing
3502 * request is enough.
3503 */
3504 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3505 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3506 const int rw = rq_data_dir(req);
3507
3508 __disk_stat_inc(disk, ios[rw]);
3509 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3510 disk_round_stats(disk);
3511 disk->in_flight--;
3512 }
3513 if (req->end_io)
8ffdc655 3514 req->end_io(req, error);
1da177e4
LT
3515 else
3516 __blk_put_request(req->q, req);
3517}
3518
3519EXPORT_SYMBOL(end_that_request_last);
3520
3521void end_request(struct request *req, int uptodate)
3522{
3523 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3524 add_disk_randomness(req->rq_disk);
3525 blkdev_dequeue_request(req);
8ffdc655 3526 end_that_request_last(req, uptodate);
1da177e4
LT
3527 }
3528}
3529
3530EXPORT_SYMBOL(end_request);
3531
3532void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3533{
4aff5e23
JA
3534 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3535 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3536
3537 rq->nr_phys_segments = bio_phys_segments(q, bio);
3538 rq->nr_hw_segments = bio_hw_segments(q, bio);
3539 rq->current_nr_sectors = bio_cur_sectors(bio);
3540 rq->hard_cur_sectors = rq->current_nr_sectors;
3541 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3542 rq->buffer = bio_data(bio);
3543
3544 rq->bio = rq->biotail = bio;
3545}
3546
3547EXPORT_SYMBOL(blk_rq_bio_prep);
3548
3549int kblockd_schedule_work(struct work_struct *work)
3550{
3551 return queue_work(kblockd_workqueue, work);
3552}
3553
3554EXPORT_SYMBOL(kblockd_schedule_work);
3555
3556void kblockd_flush(void)
3557{
3558 flush_workqueue(kblockd_workqueue);
3559}
3560EXPORT_SYMBOL(kblockd_flush);
3561
3562int __init blk_dev_init(void)
3563{
ff856bad
JA
3564 int i;
3565
1da177e4
LT
3566 kblockd_workqueue = create_workqueue("kblockd");
3567 if (!kblockd_workqueue)
3568 panic("Failed to create kblockd\n");
3569
3570 request_cachep = kmem_cache_create("blkdev_requests",
3571 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3572
3573 requestq_cachep = kmem_cache_create("blkdev_queue",
3574 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3575
3576 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3577 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3578
0a945022 3579 for_each_possible_cpu(i)
ff856bad
JA
3580 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3581
3582 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3583 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3584
1da177e4
LT
3585 blk_max_low_pfn = max_low_pfn;
3586 blk_max_pfn = max_pfn;
3587
3588 return 0;
3589}
3590
3591/*
3592 * IO Context helper functions
3593 */
3594void put_io_context(struct io_context *ioc)
3595{
3596 if (ioc == NULL)
3597 return;
3598
3599 BUG_ON(atomic_read(&ioc->refcount) == 0);
3600
3601 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3602 struct cfq_io_context *cic;
3603
334e94de 3604 rcu_read_lock();
1da177e4
LT
3605 if (ioc->aic && ioc->aic->dtor)
3606 ioc->aic->dtor(ioc->aic);
e2d74ac0 3607 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3608 struct rb_node *n = rb_first(&ioc->cic_root);
3609
3610 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3611 cic->dtor(ioc);
3612 }
334e94de 3613 rcu_read_unlock();
1da177e4
LT
3614
3615 kmem_cache_free(iocontext_cachep, ioc);
3616 }
3617}
3618EXPORT_SYMBOL(put_io_context);
3619
3620/* Called by the exitting task */
3621void exit_io_context(void)
3622{
3623 unsigned long flags;
3624 struct io_context *ioc;
e2d74ac0 3625 struct cfq_io_context *cic;
1da177e4
LT
3626
3627 local_irq_save(flags);
22e2c507 3628 task_lock(current);
1da177e4
LT
3629 ioc = current->io_context;
3630 current->io_context = NULL;
22e2c507
JA
3631 ioc->task = NULL;
3632 task_unlock(current);
1da177e4
LT
3633 local_irq_restore(flags);
3634
3635 if (ioc->aic && ioc->aic->exit)
3636 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3637 if (ioc->cic_root.rb_node != NULL) {
3638 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3639 cic->exit(ioc);
3640 }
3641
1da177e4
LT
3642 put_io_context(ioc);
3643}
3644
3645/*
3646 * If the current task has no IO context then create one and initialise it.
fb3cc432 3647 * Otherwise, return its existing IO context.
1da177e4 3648 *
fb3cc432
NP
3649 * This returned IO context doesn't have a specifically elevated refcount,
3650 * but since the current task itself holds a reference, the context can be
3651 * used in general code, so long as it stays within `current` context.
1da177e4 3652 */
8267e268 3653struct io_context *current_io_context(gfp_t gfp_flags)
1da177e4
LT
3654{
3655 struct task_struct *tsk = current;
1da177e4
LT
3656 struct io_context *ret;
3657
1da177e4 3658 ret = tsk->io_context;
fb3cc432
NP
3659 if (likely(ret))
3660 return ret;
1da177e4
LT
3661
3662 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3663 if (ret) {
3664 atomic_set(&ret->refcount, 1);
22e2c507
JA
3665 ret->task = current;
3666 ret->set_ioprio = NULL;
1da177e4
LT
3667 ret->last_waited = jiffies; /* doesn't matter... */
3668 ret->nr_batch_requests = 0; /* because this is 0 */
3669 ret->aic = NULL;
e2d74ac0 3670 ret->cic_root.rb_node = NULL;
9f83e45e
ON
3671 /* make sure set_task_ioprio() sees the settings above */
3672 smp_wmb();
fb3cc432
NP
3673 tsk->io_context = ret;
3674 }
1da177e4 3675
fb3cc432
NP
3676 return ret;
3677}
3678EXPORT_SYMBOL(current_io_context);
1da177e4 3679
fb3cc432
NP
3680/*
3681 * If the current task has no IO context then create one and initialise it.
3682 * If it does have a context, take a ref on it.
3683 *
3684 * This is always called in the context of the task which submitted the I/O.
3685 */
8267e268 3686struct io_context *get_io_context(gfp_t gfp_flags)
fb3cc432
NP
3687{
3688 struct io_context *ret;
3689 ret = current_io_context(gfp_flags);
3690 if (likely(ret))
1da177e4 3691 atomic_inc(&ret->refcount);
1da177e4
LT
3692 return ret;
3693}
3694EXPORT_SYMBOL(get_io_context);
3695
3696void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3697{
3698 struct io_context *src = *psrc;
3699 struct io_context *dst = *pdst;
3700
3701 if (src) {
3702 BUG_ON(atomic_read(&src->refcount) == 0);
3703 atomic_inc(&src->refcount);
3704 put_io_context(dst);
3705 *pdst = src;
3706 }
3707}
3708EXPORT_SYMBOL(copy_io_context);
3709
3710void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3711{
3712 struct io_context *temp;
3713 temp = *ioc1;
3714 *ioc1 = *ioc2;
3715 *ioc2 = temp;
3716}
3717EXPORT_SYMBOL(swap_io_context);
3718
3719/*
3720 * sysfs parts below
3721 */
3722struct queue_sysfs_entry {
3723 struct attribute attr;
3724 ssize_t (*show)(struct request_queue *, char *);
3725 ssize_t (*store)(struct request_queue *, const char *, size_t);
3726};
3727
3728static ssize_t
3729queue_var_show(unsigned int var, char *page)
3730{
3731 return sprintf(page, "%d\n", var);
3732}
3733
3734static ssize_t
3735queue_var_store(unsigned long *var, const char *page, size_t count)
3736{
3737 char *p = (char *) page;
3738
3739 *var = simple_strtoul(p, &p, 10);
3740 return count;
3741}
3742
3743static ssize_t queue_requests_show(struct request_queue *q, char *page)
3744{
3745 return queue_var_show(q->nr_requests, (page));
3746}
3747
3748static ssize_t
3749queue_requests_store(struct request_queue *q, const char *page, size_t count)
3750{
3751 struct request_list *rl = &q->rq;
c981ff9f
AV
3752 unsigned long nr;
3753 int ret = queue_var_store(&nr, page, count);
3754 if (nr < BLKDEV_MIN_RQ)
3755 nr = BLKDEV_MIN_RQ;
1da177e4 3756
c981ff9f
AV
3757 spin_lock_irq(q->queue_lock);
3758 q->nr_requests = nr;
1da177e4
LT
3759 blk_queue_congestion_threshold(q);
3760
3761 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3762 set_queue_congested(q, READ);
3763 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3764 clear_queue_congested(q, READ);
3765
3766 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3767 set_queue_congested(q, WRITE);
3768 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3769 clear_queue_congested(q, WRITE);
3770
3771 if (rl->count[READ] >= q->nr_requests) {
3772 blk_set_queue_full(q, READ);
3773 } else if (rl->count[READ]+1 <= q->nr_requests) {
3774 blk_clear_queue_full(q, READ);
3775 wake_up(&rl->wait[READ]);
3776 }
3777
3778 if (rl->count[WRITE] >= q->nr_requests) {
3779 blk_set_queue_full(q, WRITE);
3780 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3781 blk_clear_queue_full(q, WRITE);
3782 wake_up(&rl->wait[WRITE]);
3783 }
c981ff9f 3784 spin_unlock_irq(q->queue_lock);
1da177e4
LT
3785 return ret;
3786}
3787
3788static ssize_t queue_ra_show(struct request_queue *q, char *page)
3789{
3790 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3791
3792 return queue_var_show(ra_kb, (page));
3793}
3794
3795static ssize_t
3796queue_ra_store(struct request_queue *q, const char *page, size_t count)
3797{
3798 unsigned long ra_kb;
3799 ssize_t ret = queue_var_store(&ra_kb, page, count);
3800
3801 spin_lock_irq(q->queue_lock);
3802 if (ra_kb > (q->max_sectors >> 1))
3803 ra_kb = (q->max_sectors >> 1);
3804
3805 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3806 spin_unlock_irq(q->queue_lock);
3807
3808 return ret;
3809}
3810
3811static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3812{
3813 int max_sectors_kb = q->max_sectors >> 1;
3814
3815 return queue_var_show(max_sectors_kb, (page));
3816}
3817
3818static ssize_t
3819queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3820{
3821 unsigned long max_sectors_kb,
3822 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3823 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3824 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3825 int ra_kb;
3826
3827 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3828 return -EINVAL;
3829 /*
3830 * Take the queue lock to update the readahead and max_sectors
3831 * values synchronously:
3832 */
3833 spin_lock_irq(q->queue_lock);
3834 /*
3835 * Trim readahead window as well, if necessary:
3836 */
3837 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3838 if (ra_kb > max_sectors_kb)
3839 q->backing_dev_info.ra_pages =
3840 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3841
3842 q->max_sectors = max_sectors_kb << 1;
3843 spin_unlock_irq(q->queue_lock);
3844
3845 return ret;
3846}
3847
3848static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3849{
3850 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3851
3852 return queue_var_show(max_hw_sectors_kb, (page));
3853}
3854
3855
3856static struct queue_sysfs_entry queue_requests_entry = {
3857 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3858 .show = queue_requests_show,
3859 .store = queue_requests_store,
3860};
3861
3862static struct queue_sysfs_entry queue_ra_entry = {
3863 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3864 .show = queue_ra_show,
3865 .store = queue_ra_store,
3866};
3867
3868static struct queue_sysfs_entry queue_max_sectors_entry = {
3869 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3870 .show = queue_max_sectors_show,
3871 .store = queue_max_sectors_store,
3872};
3873
3874static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3875 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3876 .show = queue_max_hw_sectors_show,
3877};
3878
3879static struct queue_sysfs_entry queue_iosched_entry = {
3880 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3881 .show = elv_iosched_show,
3882 .store = elv_iosched_store,
3883};
3884
3885static struct attribute *default_attrs[] = {
3886 &queue_requests_entry.attr,
3887 &queue_ra_entry.attr,
3888 &queue_max_hw_sectors_entry.attr,
3889 &queue_max_sectors_entry.attr,
3890 &queue_iosched_entry.attr,
3891 NULL,
3892};
3893
3894#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3895
3896static ssize_t
3897queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3898{
3899 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3900 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3901 ssize_t res;
1da177e4 3902
1da177e4 3903 if (!entry->show)
6c1852a0 3904 return -EIO;
483f4afc
AV
3905 mutex_lock(&q->sysfs_lock);
3906 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3907 mutex_unlock(&q->sysfs_lock);
3908 return -ENOENT;
3909 }
3910 res = entry->show(q, page);
3911 mutex_unlock(&q->sysfs_lock);
3912 return res;
1da177e4
LT
3913}
3914
3915static ssize_t
3916queue_attr_store(struct kobject *kobj, struct attribute *attr,
3917 const char *page, size_t length)
3918{
3919 struct queue_sysfs_entry *entry = to_queue(attr);
483f4afc
AV
3920 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3921
3922 ssize_t res;
1da177e4 3923
1da177e4 3924 if (!entry->store)
6c1852a0 3925 return -EIO;
483f4afc
AV
3926 mutex_lock(&q->sysfs_lock);
3927 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3928 mutex_unlock(&q->sysfs_lock);
3929 return -ENOENT;
3930 }
3931 res = entry->store(q, page, length);
3932 mutex_unlock(&q->sysfs_lock);
3933 return res;
1da177e4
LT
3934}
3935
3936static struct sysfs_ops queue_sysfs_ops = {
3937 .show = queue_attr_show,
3938 .store = queue_attr_store,
3939};
3940
93d17d3d 3941static struct kobj_type queue_ktype = {
1da177e4
LT
3942 .sysfs_ops = &queue_sysfs_ops,
3943 .default_attrs = default_attrs,
483f4afc 3944 .release = blk_release_queue,
1da177e4
LT
3945};
3946
3947int blk_register_queue(struct gendisk *disk)
3948{
3949 int ret;
3950
3951 request_queue_t *q = disk->queue;
3952
3953 if (!q || !q->request_fn)
3954 return -ENXIO;
3955
3956 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 3957
483f4afc 3958 ret = kobject_add(&q->kobj);
1da177e4
LT
3959 if (ret < 0)
3960 return ret;
3961
483f4afc
AV
3962 kobject_uevent(&q->kobj, KOBJ_ADD);
3963
1da177e4
LT
3964 ret = elv_register_queue(q);
3965 if (ret) {
483f4afc
AV
3966 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3967 kobject_del(&q->kobj);
1da177e4
LT
3968 return ret;
3969 }
3970
3971 return 0;
3972}
3973
3974void blk_unregister_queue(struct gendisk *disk)
3975{
3976 request_queue_t *q = disk->queue;
3977
3978 if (q && q->request_fn) {
3979 elv_unregister_queue(q);
3980
483f4afc
AV
3981 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3982 kobject_del(&q->kobj);
1da177e4
LT
3983 kobject_put(&disk->kobj);
3984 }
3985}