block: fix requeue handling in blk_queue_invalidate_tags()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
b238b3d4 42static void drive_stat_acct(struct request *rq, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4 793 BUG_ON(bqt->busy);
1da177e4
LT
794
795 kfree(bqt->tag_index);
796 bqt->tag_index = NULL;
797
798 kfree(bqt->tag_map);
799 bqt->tag_map = NULL;
800
801 kfree(bqt);
492dfb48 802
1da177e4
LT
803 }
804
492dfb48
JB
805 return retval;
806}
807
808/**
809 * __blk_queue_free_tags - release tag maintenance info
810 * @q: the request queue for the device
811 *
812 * Notes:
813 * blk_cleanup_queue() will take care of calling this function, if tagging
814 * has been used. So there's no need to call this directly.
815 **/
165125e1 816static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
817{
818 struct blk_queue_tag *bqt = q->queue_tags;
819
820 if (!bqt)
821 return;
822
823 __blk_free_tags(bqt);
824
1da177e4
LT
825 q->queue_tags = NULL;
826 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
827}
828
492dfb48
JB
829
830/**
831 * blk_free_tags - release a given set of tag maintenance info
832 * @bqt: the tag map to free
833 *
834 * For externally managed @bqt@ frees the map. Callers of this
835 * function must guarantee to have released all the queues that
836 * might have been using this tag map.
837 */
838void blk_free_tags(struct blk_queue_tag *bqt)
839{
840 if (unlikely(!__blk_free_tags(bqt)))
841 BUG();
842}
843EXPORT_SYMBOL(blk_free_tags);
844
1da177e4
LT
845/**
846 * blk_queue_free_tags - release tag maintenance info
847 * @q: the request queue for the device
848 *
849 * Notes:
850 * This is used to disabled tagged queuing to a device, yet leave
851 * queue in function.
852 **/
165125e1 853void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
854{
855 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
856}
857
858EXPORT_SYMBOL(blk_queue_free_tags);
859
860static int
165125e1 861init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 862{
1da177e4
LT
863 struct request **tag_index;
864 unsigned long *tag_map;
fa72b903 865 int nr_ulongs;
1da177e4 866
492dfb48 867 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
868 depth = q->nr_requests * 2;
869 printk(KERN_ERR "%s: adjusted depth to %d\n",
870 __FUNCTION__, depth);
871 }
872
f68110fc 873 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
874 if (!tag_index)
875 goto fail;
876
f7d37d02 877 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 878 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
879 if (!tag_map)
880 goto fail;
881
ba025082 882 tags->real_max_depth = depth;
1da177e4 883 tags->max_depth = depth;
1da177e4
LT
884 tags->tag_index = tag_index;
885 tags->tag_map = tag_map;
886
1da177e4
LT
887 return 0;
888fail:
889 kfree(tag_index);
890 return -ENOMEM;
891}
892
492dfb48
JB
893static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
894 int depth)
895{
896 struct blk_queue_tag *tags;
897
898 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
899 if (!tags)
900 goto fail;
901
902 if (init_tag_map(q, tags, depth))
903 goto fail;
904
492dfb48
JB
905 tags->busy = 0;
906 atomic_set(&tags->refcnt, 1);
907 return tags;
908fail:
909 kfree(tags);
910 return NULL;
911}
912
913/**
914 * blk_init_tags - initialize the tag info for an external tag map
915 * @depth: the maximum queue depth supported
916 * @tags: the tag to use
917 **/
918struct blk_queue_tag *blk_init_tags(int depth)
919{
920 return __blk_queue_init_tags(NULL, depth);
921}
922EXPORT_SYMBOL(blk_init_tags);
923
1da177e4
LT
924/**
925 * blk_queue_init_tags - initialize the queue tag info
926 * @q: the request queue for the device
927 * @depth: the maximum queue depth supported
928 * @tags: the tag to use
929 **/
165125e1 930int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
931 struct blk_queue_tag *tags)
932{
933 int rc;
934
935 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
936
937 if (!tags && !q->queue_tags) {
492dfb48 938 tags = __blk_queue_init_tags(q, depth);
1da177e4 939
492dfb48 940 if (!tags)
1da177e4 941 goto fail;
1da177e4
LT
942 } else if (q->queue_tags) {
943 if ((rc = blk_queue_resize_tags(q, depth)))
944 return rc;
945 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
946 return 0;
947 } else
948 atomic_inc(&tags->refcnt);
949
950 /*
951 * assign it, all done
952 */
953 q->queue_tags = tags;
954 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
6eca9004 955 INIT_LIST_HEAD(&q->tag_busy_list);
1da177e4
LT
956 return 0;
957fail:
958 kfree(tags);
959 return -ENOMEM;
960}
961
962EXPORT_SYMBOL(blk_queue_init_tags);
963
964/**
965 * blk_queue_resize_tags - change the queueing depth
966 * @q: the request queue for the device
967 * @new_depth: the new max command queueing depth
968 *
969 * Notes:
970 * Must be called with the queue lock held.
971 **/
165125e1 972int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
973{
974 struct blk_queue_tag *bqt = q->queue_tags;
975 struct request **tag_index;
976 unsigned long *tag_map;
fa72b903 977 int max_depth, nr_ulongs;
1da177e4
LT
978
979 if (!bqt)
980 return -ENXIO;
981
ba025082
TH
982 /*
983 * if we already have large enough real_max_depth. just
984 * adjust max_depth. *NOTE* as requests with tag value
985 * between new_depth and real_max_depth can be in-flight, tag
986 * map can not be shrunk blindly here.
987 */
988 if (new_depth <= bqt->real_max_depth) {
989 bqt->max_depth = new_depth;
990 return 0;
991 }
992
492dfb48
JB
993 /*
994 * Currently cannot replace a shared tag map with a new
995 * one, so error out if this is the case
996 */
997 if (atomic_read(&bqt->refcnt) != 1)
998 return -EBUSY;
999
1da177e4
LT
1000 /*
1001 * save the old state info, so we can copy it back
1002 */
1003 tag_index = bqt->tag_index;
1004 tag_map = bqt->tag_map;
ba025082 1005 max_depth = bqt->real_max_depth;
1da177e4
LT
1006
1007 if (init_tag_map(q, bqt, new_depth))
1008 return -ENOMEM;
1009
1010 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1011 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1012 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1013
1014 kfree(tag_index);
1015 kfree(tag_map);
1016 return 0;
1017}
1018
1019EXPORT_SYMBOL(blk_queue_resize_tags);
1020
1021/**
1022 * blk_queue_end_tag - end tag operations for a request
1023 * @q: the request queue for the device
1024 * @rq: the request that has completed
1025 *
1026 * Description:
1027 * Typically called when end_that_request_first() returns 0, meaning
1028 * all transfers have been done for a request. It's important to call
1029 * this function before end_that_request_last(), as that will put the
1030 * request back on the free list thus corrupting the internal tag list.
1031 *
1032 * Notes:
1033 * queue lock must be held.
1034 **/
165125e1 1035void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1036{
1037 struct blk_queue_tag *bqt = q->queue_tags;
1038 int tag = rq->tag;
1039
1040 BUG_ON(tag == -1);
1041
ba025082 1042 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1043 /*
1044 * This can happen after tag depth has been reduced.
1045 * FIXME: how about a warning or info message here?
1046 */
1da177e4
LT
1047 return;
1048
1da177e4 1049 list_del_init(&rq->queuelist);
4aff5e23 1050 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1051 rq->tag = -1;
1052
1053 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1054 printk(KERN_ERR "%s: tag %d is missing\n",
1055 __FUNCTION__, tag);
1da177e4
LT
1056
1057 bqt->tag_index[tag] = NULL;
f3da54ba 1058
adb4ddbb 1059 if (unlikely(!test_bit(tag, bqt->tag_map))) {
f3da54ba
JA
1060 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1061 __FUNCTION__, tag);
1062 return;
1063 }
adb4ddbb
NP
1064 /*
1065 * The tag_map bit acts as a lock for tag_index[bit], so we need
1066 * unlock memory barrier semantics.
1067 */
1068 clear_bit_unlock(tag, bqt->tag_map);
1da177e4
LT
1069 bqt->busy--;
1070}
1071
1072EXPORT_SYMBOL(blk_queue_end_tag);
1073
1074/**
1075 * blk_queue_start_tag - find a free tag and assign it
1076 * @q: the request queue for the device
1077 * @rq: the block request that needs tagging
1078 *
1079 * Description:
1080 * This can either be used as a stand-alone helper, or possibly be
1081 * assigned as the queue &prep_rq_fn (in which case &struct request
1082 * automagically gets a tag assigned). Note that this function
1083 * assumes that any type of request can be queued! if this is not
1084 * true for your device, you must check the request type before
1085 * calling this function. The request will also be removed from
1086 * the request queue, so it's the drivers responsibility to readd
1087 * it if it should need to be restarted for some reason.
1088 *
1089 * Notes:
1090 * queue lock must be held.
1091 **/
165125e1 1092int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1093{
1094 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1095 int tag;
1da177e4 1096
4aff5e23 1097 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1098 printk(KERN_ERR
040c928c
TH
1099 "%s: request %p for device [%s] already tagged %d",
1100 __FUNCTION__, rq,
1101 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1102 BUG();
1103 }
1104
059af497
JA
1105 /*
1106 * Protect against shared tag maps, as we may not have exclusive
1107 * access to the tag map.
1108 */
1109 do {
1110 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1111 if (tag >= bqt->max_depth)
1112 return 1;
1da177e4 1113
adb4ddbb 1114 } while (test_and_set_bit_lock(tag, bqt->tag_map));
dd941252 1115 /*
adb4ddbb
NP
1116 * We need lock ordering semantics given by test_and_set_bit_lock.
1117 * See blk_queue_end_tag for details.
dd941252 1118 */
1da177e4 1119
4aff5e23 1120 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1121 rq->tag = tag;
1122 bqt->tag_index[tag] = rq;
1123 blkdev_dequeue_request(rq);
6eca9004 1124 list_add(&rq->queuelist, &q->tag_busy_list);
1da177e4
LT
1125 bqt->busy++;
1126 return 0;
1127}
1128
1129EXPORT_SYMBOL(blk_queue_start_tag);
1130
1131/**
1132 * blk_queue_invalidate_tags - invalidate all pending tags
1133 * @q: the request queue for the device
1134 *
1135 * Description:
1136 * Hardware conditions may dictate a need to stop all pending requests.
1137 * In this case, we will safely clear the block side of the tag queue and
1138 * readd all requests to the request queue in the right order.
1139 *
1140 * Notes:
1141 * queue lock must be held.
1142 **/
165125e1 1143void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4 1144{
1da177e4 1145 struct list_head *tmp, *n;
1da177e4 1146
d85532ed
JA
1147 list_for_each_safe(tmp, n, &q->tag_busy_list)
1148 blk_requeue_request(q, list_entry_rq(tmp));
1da177e4
LT
1149}
1150
1151EXPORT_SYMBOL(blk_queue_invalidate_tags);
1152
1da177e4
LT
1153void blk_dump_rq_flags(struct request *rq, char *msg)
1154{
1155 int bit;
1156
4aff5e23
JA
1157 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1158 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1159 rq->cmd_flags);
1da177e4
LT
1160
1161 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1162 rq->nr_sectors,
1163 rq->current_nr_sectors);
1164 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1165
4aff5e23 1166 if (blk_pc_request(rq)) {
1da177e4
LT
1167 printk("cdb: ");
1168 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1169 printk("%02x ", rq->cmd[bit]);
1170 printk("\n");
1171 }
1172}
1173
1174EXPORT_SYMBOL(blk_dump_rq_flags);
1175
165125e1 1176void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1177{
9dfa5283
N
1178 struct request rq;
1179 struct bio *nxt = bio->bi_next;
1180 rq.q = q;
1181 rq.bio = rq.biotail = bio;
1182 bio->bi_next = NULL;
1183 blk_recalc_rq_segments(&rq);
1184 bio->bi_next = nxt;
1185 bio->bi_phys_segments = rq.nr_phys_segments;
1186 bio->bi_hw_segments = rq.nr_hw_segments;
1187 bio->bi_flags |= (1 << BIO_SEG_VALID);
1188}
1189EXPORT_SYMBOL(blk_recount_segments);
1190
1191static void blk_recalc_rq_segments(struct request *rq)
1192{
1193 int nr_phys_segs;
1194 int nr_hw_segs;
1195 unsigned int phys_size;
1196 unsigned int hw_size;
1da177e4 1197 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1198 int seg_size;
1199 int hw_seg_size;
1200 int cluster;
5705f702 1201 struct req_iterator iter;
1da177e4 1202 int high, highprv = 1;
9dfa5283 1203 struct request_queue *q = rq->q;
1da177e4 1204
9dfa5283 1205 if (!rq->bio)
1da177e4
LT
1206 return;
1207
1208 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1209 hw_seg_size = seg_size = 0;
1210 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1211 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1212 /*
1213 * the trick here is making sure that a high page is never
1214 * considered part of another segment, since that might
1215 * change with the bounce page.
1216 */
f772b3d9 1217 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1218 if (high || highprv)
1219 goto new_hw_segment;
1220 if (cluster) {
1221 if (seg_size + bv->bv_len > q->max_segment_size)
1222 goto new_segment;
1223 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1224 goto new_segment;
1225 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1226 goto new_segment;
1227 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1228 goto new_hw_segment;
1229
1230 seg_size += bv->bv_len;
1231 hw_seg_size += bv->bv_len;
1232 bvprv = bv;
1233 continue;
1234 }
1235new_segment:
1236 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1237 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1238 hw_seg_size += bv->bv_len;
9dfa5283 1239 else {
1da177e4 1240new_hw_segment:
9dfa5283
N
1241 if (nr_hw_segs == 1 &&
1242 hw_seg_size > rq->bio->bi_hw_front_size)
1243 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1244 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1245 nr_hw_segs++;
1246 }
1247
1248 nr_phys_segs++;
1249 bvprv = bv;
1250 seg_size = bv->bv_len;
1251 highprv = high;
1252 }
9dfa5283
N
1253
1254 if (nr_hw_segs == 1 &&
1255 hw_seg_size > rq->bio->bi_hw_front_size)
1256 rq->bio->bi_hw_front_size = hw_seg_size;
1257 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1258 rq->biotail->bi_hw_back_size = hw_seg_size;
1259 rq->nr_phys_segments = nr_phys_segs;
1260 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1261}
1da177e4 1262
165125e1 1263static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1264 struct bio *nxt)
1265{
1266 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1267 return 0;
1268
1269 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1270 return 0;
1271 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1272 return 0;
1273
1274 /*
1275 * bio and nxt are contigous in memory, check if the queue allows
1276 * these two to be merged into one
1277 */
1278 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1279 return 1;
1280
1281 return 0;
1282}
1283
165125e1 1284static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1285 struct bio *nxt)
1286{
1287 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1288 blk_recount_segments(q, bio);
1289 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1290 blk_recount_segments(q, nxt);
1291 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1292 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1293 return 0;
32eef964 1294 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1295 return 0;
1296
1297 return 1;
1298}
1299
1da177e4
LT
1300/*
1301 * map a request to scatterlist, return number of sg entries setup. Caller
1302 * must make sure sg can hold rq->nr_phys_segments entries
1303 */
165125e1 1304int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1305 struct scatterlist *sglist)
1da177e4
LT
1306{
1307 struct bio_vec *bvec, *bvprv;
5705f702 1308 struct req_iterator iter;
ba951841 1309 struct scatterlist *sg;
5705f702 1310 int nsegs, cluster;
1da177e4
LT
1311
1312 nsegs = 0;
1313 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1314
1315 /*
1316 * for each bio in rq
1317 */
1318 bvprv = NULL;
ba951841 1319 sg = NULL;
5705f702 1320 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1321 int nbytes = bvec->bv_len;
1da177e4 1322
6c92e699 1323 if (bvprv && cluster) {
f565913e 1324 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1325 goto new_segment;
1da177e4 1326
6c92e699
JA
1327 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1328 goto new_segment;
1329 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1330 goto new_segment;
1da177e4 1331
f565913e 1332 sg->length += nbytes;
6c92e699 1333 } else {
1da177e4 1334new_segment:
ba951841
JA
1335 if (!sg)
1336 sg = sglist;
7aeacf98
JA
1337 else {
1338 /*
1339 * If the driver previously mapped a shorter
1340 * list, we could see a termination bit
1341 * prematurely unless it fully inits the sg
1342 * table on each mapping. We KNOW that there
1343 * must be more entries here or the driver
1344 * would be buggy, so force clear the
1345 * termination bit to avoid doing a full
1346 * sg_init_table() in drivers for each command.
1347 */
1348 sg->page_link &= ~0x02;
ba951841 1349 sg = sg_next(sg);
7aeacf98 1350 }
6c92e699 1351
642f1490 1352 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1353 nsegs++;
1354 }
1355 bvprv = bvec;
5705f702 1356 } /* segments in rq */
1da177e4 1357
9b61764b 1358 if (sg)
c46f2334 1359 sg_mark_end(sg);
9b61764b 1360
1da177e4
LT
1361 return nsegs;
1362}
1363
1364EXPORT_SYMBOL(blk_rq_map_sg);
1365
1366/*
1367 * the standard queue merge functions, can be overridden with device
1368 * specific ones if so desired
1369 */
1370
165125e1 1371static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1372 struct request *req,
1373 struct bio *bio)
1374{
1375 int nr_phys_segs = bio_phys_segments(q, bio);
1376
1377 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1378 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1379 if (req == q->last_merge)
1380 q->last_merge = NULL;
1381 return 0;
1382 }
1383
1384 /*
1385 * A hw segment is just getting larger, bump just the phys
1386 * counter.
1387 */
1388 req->nr_phys_segments += nr_phys_segs;
1389 return 1;
1390}
1391
165125e1 1392static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1393 struct request *req,
1394 struct bio *bio)
1395{
1396 int nr_hw_segs = bio_hw_segments(q, bio);
1397 int nr_phys_segs = bio_phys_segments(q, bio);
1398
1399 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1400 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1401 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1402 if (req == q->last_merge)
1403 q->last_merge = NULL;
1404 return 0;
1405 }
1406
1407 /*
1408 * This will form the start of a new hw segment. Bump both
1409 * counters.
1410 */
1411 req->nr_hw_segments += nr_hw_segs;
1412 req->nr_phys_segments += nr_phys_segs;
1413 return 1;
1414}
1415
3001ca77
N
1416static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1417 struct bio *bio)
1da177e4 1418{
defd94b7 1419 unsigned short max_sectors;
1da177e4
LT
1420 int len;
1421
defd94b7
MC
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1424 else
1425 max_sectors = q->max_sectors;
1426
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1428 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1431 return 0;
1432 }
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1441
1442 if (mergeable) {
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1447 }
1448 return mergeable;
1449 }
1450
1451 return ll_new_hw_segment(q, req, bio);
1452}
1453
165125e1 1454static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1455 struct bio *bio)
1456{
defd94b7 1457 unsigned short max_sectors;
1da177e4
LT
1458 int len;
1459
defd94b7
MC
1460 if (unlikely(blk_pc_request(req)))
1461 max_sectors = q->max_hw_sectors;
1462 else
1463 max_sectors = q->max_sectors;
1464
1465
1466 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1467 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1468 if (req == q->last_merge)
1469 q->last_merge = NULL;
1470 return 0;
1471 }
1472 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1473 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1474 blk_recount_segments(q, bio);
1475 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1476 blk_recount_segments(q, req->bio);
1477 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1478 !BIOVEC_VIRT_OVERSIZE(len)) {
1479 int mergeable = ll_new_mergeable(q, req, bio);
1480
1481 if (mergeable) {
1482 if (bio->bi_hw_segments == 1)
1483 bio->bi_hw_front_size = len;
1484 if (req->nr_hw_segments == 1)
1485 req->biotail->bi_hw_back_size = len;
1486 }
1487 return mergeable;
1488 }
1489
1490 return ll_new_hw_segment(q, req, bio);
1491}
1492
165125e1 1493static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1494 struct request *next)
1495{
dfa1a553
ND
1496 int total_phys_segments;
1497 int total_hw_segments;
1da177e4
LT
1498
1499 /*
1500 * First check if the either of the requests are re-queued
1501 * requests. Can't merge them if they are.
1502 */
1503 if (req->special || next->special)
1504 return 0;
1505
1506 /*
dfa1a553 1507 * Will it become too large?
1da177e4
LT
1508 */
1509 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1510 return 0;
1511
1512 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1513 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1514 total_phys_segments--;
1515
1516 if (total_phys_segments > q->max_phys_segments)
1517 return 0;
1518
1519 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1520 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1521 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1522 /*
1523 * propagate the combined length to the end of the requests
1524 */
1525 if (req->nr_hw_segments == 1)
1526 req->bio->bi_hw_front_size = len;
1527 if (next->nr_hw_segments == 1)
1528 next->biotail->bi_hw_back_size = len;
1529 total_hw_segments--;
1530 }
1531
1532 if (total_hw_segments > q->max_hw_segments)
1533 return 0;
1534
1535 /* Merge is OK... */
1536 req->nr_phys_segments = total_phys_segments;
1537 req->nr_hw_segments = total_hw_segments;
1538 return 1;
1539}
1540
1541/*
1542 * "plug" the device if there are no outstanding requests: this will
1543 * force the transfer to start only after we have put all the requests
1544 * on the list.
1545 *
1546 * This is called with interrupts off and no requests on the queue and
1547 * with the queue lock held.
1548 */
165125e1 1549void blk_plug_device(struct request_queue *q)
1da177e4
LT
1550{
1551 WARN_ON(!irqs_disabled());
1552
1553 /*
1554 * don't plug a stopped queue, it must be paired with blk_start_queue()
1555 * which will restart the queueing
1556 */
7daac490 1557 if (blk_queue_stopped(q))
1da177e4
LT
1558 return;
1559
2056a782 1560 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1561 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1562 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1563 }
1da177e4
LT
1564}
1565
1566EXPORT_SYMBOL(blk_plug_device);
1567
1568/*
1569 * remove the queue from the plugged list, if present. called with
1570 * queue lock held and interrupts disabled.
1571 */
165125e1 1572int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1573{
1574 WARN_ON(!irqs_disabled());
1575
1576 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1577 return 0;
1578
1579 del_timer(&q->unplug_timer);
1580 return 1;
1581}
1582
1583EXPORT_SYMBOL(blk_remove_plug);
1584
1585/*
1586 * remove the plug and let it rip..
1587 */
165125e1 1588void __generic_unplug_device(struct request_queue *q)
1da177e4 1589{
7daac490 1590 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1591 return;
1592
1593 if (!blk_remove_plug(q))
1594 return;
1595
22e2c507 1596 q->request_fn(q);
1da177e4
LT
1597}
1598EXPORT_SYMBOL(__generic_unplug_device);
1599
1600/**
1601 * generic_unplug_device - fire a request queue
165125e1 1602 * @q: The &struct request_queue in question
1da177e4
LT
1603 *
1604 * Description:
1605 * Linux uses plugging to build bigger requests queues before letting
1606 * the device have at them. If a queue is plugged, the I/O scheduler
1607 * is still adding and merging requests on the queue. Once the queue
1608 * gets unplugged, the request_fn defined for the queue is invoked and
1609 * transfers started.
1610 **/
165125e1 1611void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1612{
1613 spin_lock_irq(q->queue_lock);
1614 __generic_unplug_device(q);
1615 spin_unlock_irq(q->queue_lock);
1616}
1617EXPORT_SYMBOL(generic_unplug_device);
1618
1619static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1620 struct page *page)
1621{
165125e1 1622 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1623
1624 /*
1625 * devices don't necessarily have an ->unplug_fn defined
1626 */
2056a782
JA
1627 if (q->unplug_fn) {
1628 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1629 q->rq.count[READ] + q->rq.count[WRITE]);
1630
1da177e4 1631 q->unplug_fn(q);
2056a782 1632 }
1da177e4
LT
1633}
1634
65f27f38 1635static void blk_unplug_work(struct work_struct *work)
1da177e4 1636{
165125e1
JA
1637 struct request_queue *q =
1638 container_of(work, struct request_queue, unplug_work);
1da177e4 1639
2056a782
JA
1640 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1641 q->rq.count[READ] + q->rq.count[WRITE]);
1642
1da177e4
LT
1643 q->unplug_fn(q);
1644}
1645
1646static void blk_unplug_timeout(unsigned long data)
1647{
165125e1 1648 struct request_queue *q = (struct request_queue *)data;
1da177e4 1649
2056a782
JA
1650 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1651 q->rq.count[READ] + q->rq.count[WRITE]);
1652
1da177e4
LT
1653 kblockd_schedule_work(&q->unplug_work);
1654}
1655
1656/**
1657 * blk_start_queue - restart a previously stopped queue
165125e1 1658 * @q: The &struct request_queue in question
1da177e4
LT
1659 *
1660 * Description:
1661 * blk_start_queue() will clear the stop flag on the queue, and call
1662 * the request_fn for the queue if it was in a stopped state when
1663 * entered. Also see blk_stop_queue(). Queue lock must be held.
1664 **/
165125e1 1665void blk_start_queue(struct request_queue *q)
1da177e4 1666{
a038e253
PBG
1667 WARN_ON(!irqs_disabled());
1668
1da177e4
LT
1669 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1670
1671 /*
1672 * one level of recursion is ok and is much faster than kicking
1673 * the unplug handling
1674 */
1675 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1676 q->request_fn(q);
1677 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1678 } else {
1679 blk_plug_device(q);
1680 kblockd_schedule_work(&q->unplug_work);
1681 }
1682}
1683
1684EXPORT_SYMBOL(blk_start_queue);
1685
1686/**
1687 * blk_stop_queue - stop a queue
165125e1 1688 * @q: The &struct request_queue in question
1da177e4
LT
1689 *
1690 * Description:
1691 * The Linux block layer assumes that a block driver will consume all
1692 * entries on the request queue when the request_fn strategy is called.
1693 * Often this will not happen, because of hardware limitations (queue
1694 * depth settings). If a device driver gets a 'queue full' response,
1695 * or if it simply chooses not to queue more I/O at one point, it can
1696 * call this function to prevent the request_fn from being called until
1697 * the driver has signalled it's ready to go again. This happens by calling
1698 * blk_start_queue() to restart queue operations. Queue lock must be held.
1699 **/
165125e1 1700void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1701{
1702 blk_remove_plug(q);
1703 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1704}
1705EXPORT_SYMBOL(blk_stop_queue);
1706
1707/**
1708 * blk_sync_queue - cancel any pending callbacks on a queue
1709 * @q: the queue
1710 *
1711 * Description:
1712 * The block layer may perform asynchronous callback activity
1713 * on a queue, such as calling the unplug function after a timeout.
1714 * A block device may call blk_sync_queue to ensure that any
1715 * such activity is cancelled, thus allowing it to release resources
59c51591 1716 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1717 * that its ->make_request_fn will not re-add plugging prior to calling
1718 * this function.
1719 *
1720 */
1721void blk_sync_queue(struct request_queue *q)
1722{
1723 del_timer_sync(&q->unplug_timer);
abbeb88d 1724 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
1725}
1726EXPORT_SYMBOL(blk_sync_queue);
1727
1728/**
1729 * blk_run_queue - run a single device queue
1730 * @q: The queue to run
1731 */
1732void blk_run_queue(struct request_queue *q)
1733{
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(q->queue_lock, flags);
1737 blk_remove_plug(q);
dac07ec1
JA
1738
1739 /*
1740 * Only recurse once to avoid overrunning the stack, let the unplug
1741 * handling reinvoke the handler shortly if we already got there.
1742 */
1743 if (!elv_queue_empty(q)) {
1744 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1745 q->request_fn(q);
1746 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1747 } else {
1748 blk_plug_device(q);
1749 kblockd_schedule_work(&q->unplug_work);
1750 }
1751 }
1752
1da177e4
LT
1753 spin_unlock_irqrestore(q->queue_lock, flags);
1754}
1755EXPORT_SYMBOL(blk_run_queue);
1756
1757/**
165125e1 1758 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1759 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1760 *
1761 * Description:
1762 * blk_cleanup_queue is the pair to blk_init_queue() or
1763 * blk_queue_make_request(). It should be called when a request queue is
1764 * being released; typically when a block device is being de-registered.
1765 * Currently, its primary task it to free all the &struct request
1766 * structures that were allocated to the queue and the queue itself.
1767 *
1768 * Caveat:
1769 * Hopefully the low level driver will have finished any
1770 * outstanding requests first...
1771 **/
483f4afc 1772static void blk_release_queue(struct kobject *kobj)
1da177e4 1773{
165125e1
JA
1774 struct request_queue *q =
1775 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1776 struct request_list *rl = &q->rq;
1777
1da177e4
LT
1778 blk_sync_queue(q);
1779
1780 if (rl->rq_pool)
1781 mempool_destroy(rl->rq_pool);
1782
1783 if (q->queue_tags)
1784 __blk_queue_free_tags(q);
1785
6c5c9341 1786 blk_trace_shutdown(q);
2056a782 1787
e0bf68dd 1788 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1789 kmem_cache_free(requestq_cachep, q);
1790}
1791
165125e1 1792void blk_put_queue(struct request_queue *q)
483f4afc
AV
1793{
1794 kobject_put(&q->kobj);
1795}
1796EXPORT_SYMBOL(blk_put_queue);
1797
165125e1 1798void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1799{
1800 mutex_lock(&q->sysfs_lock);
1801 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1802 mutex_unlock(&q->sysfs_lock);
1803
1804 if (q->elevator)
1805 elevator_exit(q->elevator);
1806
1807 blk_put_queue(q);
1808}
1809
1da177e4
LT
1810EXPORT_SYMBOL(blk_cleanup_queue);
1811
165125e1 1812static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1813{
1814 struct request_list *rl = &q->rq;
1815
1816 rl->count[READ] = rl->count[WRITE] = 0;
1817 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1818 rl->elvpriv = 0;
1da177e4
LT
1819 init_waitqueue_head(&rl->wait[READ]);
1820 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1821
1946089a
CL
1822 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1823 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1824
1825 if (!rl->rq_pool)
1826 return -ENOMEM;
1827
1828 return 0;
1829}
1830
165125e1 1831struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1832{
1946089a
CL
1833 return blk_alloc_queue_node(gfp_mask, -1);
1834}
1835EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1836
483f4afc
AV
1837static struct kobj_type queue_ktype;
1838
165125e1 1839struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1840{
165125e1 1841 struct request_queue *q;
e0bf68dd 1842 int err;
1946089a 1843
94f6030c
CL
1844 q = kmem_cache_alloc_node(requestq_cachep,
1845 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1846 if (!q)
1847 return NULL;
1848
e0bf68dd
PZ
1849 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1850 q->backing_dev_info.unplug_io_data = q;
1851 err = bdi_init(&q->backing_dev_info);
1852 if (err) {
1853 kmem_cache_free(requestq_cachep, q);
1854 return NULL;
1855 }
1856
1da177e4 1857 init_timer(&q->unplug_timer);
483f4afc 1858
19c38de8 1859 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1860 q->kobj.ktype = &queue_ktype;
1861 kobject_init(&q->kobj);
1da177e4 1862
483f4afc
AV
1863 mutex_init(&q->sysfs_lock);
1864
1da177e4
LT
1865 return q;
1866}
1946089a 1867EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1868
1869/**
1870 * blk_init_queue - prepare a request queue for use with a block device
1871 * @rfn: The function to be called to process requests that have been
1872 * placed on the queue.
1873 * @lock: Request queue spin lock
1874 *
1875 * Description:
1876 * If a block device wishes to use the standard request handling procedures,
1877 * which sorts requests and coalesces adjacent requests, then it must
1878 * call blk_init_queue(). The function @rfn will be called when there
1879 * are requests on the queue that need to be processed. If the device
1880 * supports plugging, then @rfn may not be called immediately when requests
1881 * are available on the queue, but may be called at some time later instead.
1882 * Plugged queues are generally unplugged when a buffer belonging to one
1883 * of the requests on the queue is needed, or due to memory pressure.
1884 *
1885 * @rfn is not required, or even expected, to remove all requests off the
1886 * queue, but only as many as it can handle at a time. If it does leave
1887 * requests on the queue, it is responsible for arranging that the requests
1888 * get dealt with eventually.
1889 *
1890 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1891 * request queue; this lock will be taken also from interrupt context, so irq
1892 * disabling is needed for it.
1da177e4
LT
1893 *
1894 * Function returns a pointer to the initialized request queue, or NULL if
1895 * it didn't succeed.
1896 *
1897 * Note:
1898 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1899 * when the block device is deactivated (such as at module unload).
1900 **/
1946089a 1901
165125e1 1902struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1903{
1946089a
CL
1904 return blk_init_queue_node(rfn, lock, -1);
1905}
1906EXPORT_SYMBOL(blk_init_queue);
1907
165125e1 1908struct request_queue *
1946089a
CL
1909blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1910{
165125e1 1911 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1912
1913 if (!q)
1914 return NULL;
1915
1946089a 1916 q->node = node_id;
8669aafd
AV
1917 if (blk_init_free_list(q)) {
1918 kmem_cache_free(requestq_cachep, q);
1919 return NULL;
1920 }
1da177e4 1921
152587de
JA
1922 /*
1923 * if caller didn't supply a lock, they get per-queue locking with
1924 * our embedded lock
1925 */
1926 if (!lock) {
1927 spin_lock_init(&q->__queue_lock);
1928 lock = &q->__queue_lock;
1929 }
1930
1da177e4 1931 q->request_fn = rfn;
1da177e4
LT
1932 q->prep_rq_fn = NULL;
1933 q->unplug_fn = generic_unplug_device;
1934 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1935 q->queue_lock = lock;
1936
1937 blk_queue_segment_boundary(q, 0xffffffff);
1938
1939 blk_queue_make_request(q, __make_request);
1940 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1941
1942 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1943 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1944
44ec9542
AS
1945 q->sg_reserved_size = INT_MAX;
1946
1da177e4
LT
1947 /*
1948 * all done
1949 */
1950 if (!elevator_init(q, NULL)) {
1951 blk_queue_congestion_threshold(q);
1952 return q;
1953 }
1954
8669aafd 1955 blk_put_queue(q);
1da177e4
LT
1956 return NULL;
1957}
1946089a 1958EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1959
165125e1 1960int blk_get_queue(struct request_queue *q)
1da177e4 1961{
fde6ad22 1962 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1963 kobject_get(&q->kobj);
1da177e4
LT
1964 return 0;
1965 }
1966
1967 return 1;
1968}
1969
1970EXPORT_SYMBOL(blk_get_queue);
1971
165125e1 1972static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1973{
4aff5e23 1974 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1975 elv_put_request(q, rq);
1da177e4
LT
1976 mempool_free(rq, q->rq.rq_pool);
1977}
1978
1ea25ecb 1979static struct request *
165125e1 1980blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1981{
1982 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1983
1984 if (!rq)
1985 return NULL;
1986
1987 /*
4aff5e23 1988 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1989 * see bio.h and blkdev.h
1990 */
49171e5c 1991 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1992
cb98fc8b 1993 if (priv) {
cb78b285 1994 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
1995 mempool_free(rq, q->rq.rq_pool);
1996 return NULL;
1997 }
4aff5e23 1998 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 1999 }
1da177e4 2000
cb98fc8b 2001 return rq;
1da177e4
LT
2002}
2003
2004/*
2005 * ioc_batching returns true if the ioc is a valid batching request and
2006 * should be given priority access to a request.
2007 */
165125e1 2008static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2009{
2010 if (!ioc)
2011 return 0;
2012
2013 /*
2014 * Make sure the process is able to allocate at least 1 request
2015 * even if the batch times out, otherwise we could theoretically
2016 * lose wakeups.
2017 */
2018 return ioc->nr_batch_requests == q->nr_batching ||
2019 (ioc->nr_batch_requests > 0
2020 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2021}
2022
2023/*
2024 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2025 * will cause the process to be a "batcher" on all queues in the system. This
2026 * is the behaviour we want though - once it gets a wakeup it should be given
2027 * a nice run.
2028 */
165125e1 2029static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2030{
2031 if (!ioc || ioc_batching(q, ioc))
2032 return;
2033
2034 ioc->nr_batch_requests = q->nr_batching;
2035 ioc->last_waited = jiffies;
2036}
2037
165125e1 2038static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2039{
2040 struct request_list *rl = &q->rq;
2041
2042 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2043 blk_clear_queue_congested(q, rw);
1da177e4
LT
2044
2045 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2046 if (waitqueue_active(&rl->wait[rw]))
2047 wake_up(&rl->wait[rw]);
2048
2049 blk_clear_queue_full(q, rw);
2050 }
2051}
2052
2053/*
2054 * A request has just been released. Account for it, update the full and
2055 * congestion status, wake up any waiters. Called under q->queue_lock.
2056 */
165125e1 2057static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2058{
2059 struct request_list *rl = &q->rq;
2060
2061 rl->count[rw]--;
cb98fc8b
TH
2062 if (priv)
2063 rl->elvpriv--;
1da177e4
LT
2064
2065 __freed_request(q, rw);
2066
2067 if (unlikely(rl->starved[rw ^ 1]))
2068 __freed_request(q, rw ^ 1);
1da177e4
LT
2069}
2070
2071#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2072/*
d6344532
NP
2073 * Get a free request, queue_lock must be held.
2074 * Returns NULL on failure, with queue_lock held.
2075 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2076 */
165125e1 2077static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2078 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2079{
2080 struct request *rq = NULL;
2081 struct request_list *rl = &q->rq;
88ee5ef1 2082 struct io_context *ioc = NULL;
7749a8d4 2083 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2084 int may_queue, priv;
2085
7749a8d4 2086 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2087 if (may_queue == ELV_MQUEUE_NO)
2088 goto rq_starved;
2089
2090 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2091 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2092 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2093 /*
2094 * The queue will fill after this allocation, so set
2095 * it as full, and mark this process as "batching".
2096 * This process will be allowed to complete a batch of
2097 * requests, others will be blocked.
2098 */
2099 if (!blk_queue_full(q, rw)) {
2100 ioc_set_batching(q, ioc);
2101 blk_set_queue_full(q, rw);
2102 } else {
2103 if (may_queue != ELV_MQUEUE_MUST
2104 && !ioc_batching(q, ioc)) {
2105 /*
2106 * The queue is full and the allocating
2107 * process is not a "batcher", and not
2108 * exempted by the IO scheduler
2109 */
2110 goto out;
2111 }
2112 }
1da177e4 2113 }
79e2de4b 2114 blk_set_queue_congested(q, rw);
1da177e4
LT
2115 }
2116
082cf69e
JA
2117 /*
2118 * Only allow batching queuers to allocate up to 50% over the defined
2119 * limit of requests, otherwise we could have thousands of requests
2120 * allocated with any setting of ->nr_requests
2121 */
fd782a4a 2122 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2123 goto out;
fd782a4a 2124
1da177e4
LT
2125 rl->count[rw]++;
2126 rl->starved[rw] = 0;
cb98fc8b 2127
64521d1a 2128 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2129 if (priv)
2130 rl->elvpriv++;
2131
1da177e4
LT
2132 spin_unlock_irq(q->queue_lock);
2133
7749a8d4 2134 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2135 if (unlikely(!rq)) {
1da177e4
LT
2136 /*
2137 * Allocation failed presumably due to memory. Undo anything
2138 * we might have messed up.
2139 *
2140 * Allocating task should really be put onto the front of the
2141 * wait queue, but this is pretty rare.
2142 */
2143 spin_lock_irq(q->queue_lock);
cb98fc8b 2144 freed_request(q, rw, priv);
1da177e4
LT
2145
2146 /*
2147 * in the very unlikely event that allocation failed and no
2148 * requests for this direction was pending, mark us starved
2149 * so that freeing of a request in the other direction will
2150 * notice us. another possible fix would be to split the
2151 * rq mempool into READ and WRITE
2152 */
2153rq_starved:
2154 if (unlikely(rl->count[rw] == 0))
2155 rl->starved[rw] = 1;
2156
1da177e4
LT
2157 goto out;
2158 }
2159
88ee5ef1
JA
2160 /*
2161 * ioc may be NULL here, and ioc_batching will be false. That's
2162 * OK, if the queue is under the request limit then requests need
2163 * not count toward the nr_batch_requests limit. There will always
2164 * be some limit enforced by BLK_BATCH_TIME.
2165 */
1da177e4
LT
2166 if (ioc_batching(q, ioc))
2167 ioc->nr_batch_requests--;
2168
2169 rq_init(q, rq);
2056a782
JA
2170
2171 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2172out:
1da177e4
LT
2173 return rq;
2174}
2175
2176/*
2177 * No available requests for this queue, unplug the device and wait for some
2178 * requests to become available.
d6344532
NP
2179 *
2180 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2181 */
165125e1 2182static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2183 struct bio *bio)
1da177e4 2184{
7749a8d4 2185 const int rw = rw_flags & 0x01;
1da177e4
LT
2186 struct request *rq;
2187
7749a8d4 2188 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2189 while (!rq) {
2190 DEFINE_WAIT(wait);
1da177e4
LT
2191 struct request_list *rl = &q->rq;
2192
2193 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2194 TASK_UNINTERRUPTIBLE);
2195
7749a8d4 2196 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2197
2198 if (!rq) {
2199 struct io_context *ioc;
2200
2056a782
JA
2201 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2202
d6344532
NP
2203 __generic_unplug_device(q);
2204 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2205 io_schedule();
2206
2207 /*
2208 * After sleeping, we become a "batching" process and
2209 * will be able to allocate at least one request, and
2210 * up to a big batch of them for a small period time.
2211 * See ioc_batching, ioc_set_batching
2212 */
b5deef90 2213 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2214 ioc_set_batching(q, ioc);
d6344532
NP
2215
2216 spin_lock_irq(q->queue_lock);
1da177e4
LT
2217 }
2218 finish_wait(&rl->wait[rw], &wait);
450991bc 2219 }
1da177e4
LT
2220
2221 return rq;
2222}
2223
165125e1 2224struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2225{
2226 struct request *rq;
2227
2228 BUG_ON(rw != READ && rw != WRITE);
2229
d6344532
NP
2230 spin_lock_irq(q->queue_lock);
2231 if (gfp_mask & __GFP_WAIT) {
22e2c507 2232 rq = get_request_wait(q, rw, NULL);
d6344532 2233 } else {
22e2c507 2234 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2235 if (!rq)
2236 spin_unlock_irq(q->queue_lock);
2237 }
2238 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2239
2240 return rq;
2241}
1da177e4
LT
2242EXPORT_SYMBOL(blk_get_request);
2243
dc72ef4a
JA
2244/**
2245 * blk_start_queueing - initiate dispatch of requests to device
2246 * @q: request queue to kick into gear
2247 *
2248 * This is basically a helper to remove the need to know whether a queue
2249 * is plugged or not if someone just wants to initiate dispatch of requests
2250 * for this queue.
2251 *
2252 * The queue lock must be held with interrupts disabled.
2253 */
165125e1 2254void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2255{
2256 if (!blk_queue_plugged(q))
2257 q->request_fn(q);
2258 else
2259 __generic_unplug_device(q);
2260}
2261EXPORT_SYMBOL(blk_start_queueing);
2262
1da177e4
LT
2263/**
2264 * blk_requeue_request - put a request back on queue
2265 * @q: request queue where request should be inserted
2266 * @rq: request to be inserted
2267 *
2268 * Description:
2269 * Drivers often keep queueing requests until the hardware cannot accept
2270 * more, when that condition happens we need to put the request back
2271 * on the queue. Must be called with queue lock held.
2272 */
165125e1 2273void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2274{
2056a782
JA
2275 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2276
1da177e4
LT
2277 if (blk_rq_tagged(rq))
2278 blk_queue_end_tag(q, rq);
2279
2280 elv_requeue_request(q, rq);
2281}
2282
2283EXPORT_SYMBOL(blk_requeue_request);
2284
2285/**
2286 * blk_insert_request - insert a special request in to a request queue
2287 * @q: request queue where request should be inserted
2288 * @rq: request to be inserted
2289 * @at_head: insert request at head or tail of queue
2290 * @data: private data
1da177e4
LT
2291 *
2292 * Description:
2293 * Many block devices need to execute commands asynchronously, so they don't
2294 * block the whole kernel from preemption during request execution. This is
2295 * accomplished normally by inserting aritficial requests tagged as
2296 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2297 * scheduled for actual execution by the request queue.
2298 *
2299 * We have the option of inserting the head or the tail of the queue.
2300 * Typically we use the tail for new ioctls and so forth. We use the head
2301 * of the queue for things like a QUEUE_FULL message from a device, or a
2302 * host that is unable to accept a particular command.
2303 */
165125e1 2304void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2305 int at_head, void *data)
1da177e4 2306{
867d1191 2307 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2308 unsigned long flags;
2309
2310 /*
2311 * tell I/O scheduler that this isn't a regular read/write (ie it
2312 * must not attempt merges on this) and that it acts as a soft
2313 * barrier
2314 */
4aff5e23
JA
2315 rq->cmd_type = REQ_TYPE_SPECIAL;
2316 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2317
2318 rq->special = data;
2319
2320 spin_lock_irqsave(q->queue_lock, flags);
2321
2322 /*
2323 * If command is tagged, release the tag
2324 */
867d1191
TH
2325 if (blk_rq_tagged(rq))
2326 blk_queue_end_tag(q, rq);
1da177e4 2327
b238b3d4 2328 drive_stat_acct(rq, 1);
867d1191 2329 __elv_add_request(q, rq, where, 0);
dc72ef4a 2330 blk_start_queueing(q);
1da177e4
LT
2331 spin_unlock_irqrestore(q->queue_lock, flags);
2332}
2333
2334EXPORT_SYMBOL(blk_insert_request);
2335
0e75f906
MC
2336static int __blk_rq_unmap_user(struct bio *bio)
2337{
2338 int ret = 0;
2339
2340 if (bio) {
2341 if (bio_flagged(bio, BIO_USER_MAPPED))
2342 bio_unmap_user(bio);
2343 else
2344 ret = bio_uncopy_user(bio);
2345 }
2346
2347 return ret;
2348}
2349
3001ca77
N
2350int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2351 struct bio *bio)
2352{
2353 if (!rq->bio)
2354 blk_rq_bio_prep(q, rq, bio);
2355 else if (!ll_back_merge_fn(q, rq, bio))
2356 return -EINVAL;
2357 else {
2358 rq->biotail->bi_next = bio;
2359 rq->biotail = bio;
2360
2361 rq->data_len += bio->bi_size;
2362 }
2363 return 0;
2364}
2365EXPORT_SYMBOL(blk_rq_append_bio);
2366
165125e1 2367static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2368 void __user *ubuf, unsigned int len)
2369{
2370 unsigned long uaddr;
2371 struct bio *bio, *orig_bio;
2372 int reading, ret;
2373
2374 reading = rq_data_dir(rq) == READ;
2375
2376 /*
2377 * if alignment requirement is satisfied, map in user pages for
2378 * direct dma. else, set up kernel bounce buffers
2379 */
2380 uaddr = (unsigned long) ubuf;
2381 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2382 bio = bio_map_user(q, NULL, uaddr, len, reading);
2383 else
2384 bio = bio_copy_user(q, uaddr, len, reading);
2385
2985259b 2386 if (IS_ERR(bio))
0e75f906 2387 return PTR_ERR(bio);
0e75f906
MC
2388
2389 orig_bio = bio;
2390 blk_queue_bounce(q, &bio);
2985259b 2391
0e75f906
MC
2392 /*
2393 * We link the bounce buffer in and could have to traverse it
2394 * later so we have to get a ref to prevent it from being freed
2395 */
2396 bio_get(bio);
2397
3001ca77
N
2398 ret = blk_rq_append_bio(q, rq, bio);
2399 if (!ret)
2400 return bio->bi_size;
0e75f906 2401
0e75f906 2402 /* if it was boucned we must call the end io function */
6712ecf8 2403 bio_endio(bio, 0);
0e75f906
MC
2404 __blk_rq_unmap_user(orig_bio);
2405 bio_put(bio);
2406 return ret;
2407}
2408
1da177e4
LT
2409/**
2410 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2411 * @q: request queue where request should be inserted
73747aed 2412 * @rq: request structure to fill
1da177e4
LT
2413 * @ubuf: the user buffer
2414 * @len: length of user data
2415 *
2416 * Description:
2417 * Data will be mapped directly for zero copy io, if possible. Otherwise
2418 * a kernel bounce buffer is used.
2419 *
2420 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2421 * still in process context.
2422 *
2423 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2424 * before being submitted to the device, as pages mapped may be out of
2425 * reach. It's the callers responsibility to make sure this happens. The
2426 * original bio must be passed back in to blk_rq_unmap_user() for proper
2427 * unmapping.
2428 */
165125e1
JA
2429int blk_rq_map_user(struct request_queue *q, struct request *rq,
2430 void __user *ubuf, unsigned long len)
1da177e4 2431{
0e75f906 2432 unsigned long bytes_read = 0;
8e5cfc45 2433 struct bio *bio = NULL;
0e75f906 2434 int ret;
1da177e4 2435
defd94b7 2436 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2437 return -EINVAL;
2438 if (!len || !ubuf)
2439 return -EINVAL;
1da177e4 2440
0e75f906
MC
2441 while (bytes_read != len) {
2442 unsigned long map_len, end, start;
1da177e4 2443
0e75f906
MC
2444 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2445 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2446 >> PAGE_SHIFT;
2447 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2448
0e75f906
MC
2449 /*
2450 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2451 * pages. If this happens we just lower the requested
2452 * mapping len by a page so that we can fit
2453 */
2454 if (end - start > BIO_MAX_PAGES)
2455 map_len -= PAGE_SIZE;
1da177e4 2456
0e75f906
MC
2457 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2458 if (ret < 0)
2459 goto unmap_rq;
8e5cfc45
JA
2460 if (!bio)
2461 bio = rq->bio;
0e75f906
MC
2462 bytes_read += ret;
2463 ubuf += ret;
1da177e4
LT
2464 }
2465
0e75f906
MC
2466 rq->buffer = rq->data = NULL;
2467 return 0;
2468unmap_rq:
8e5cfc45 2469 blk_rq_unmap_user(bio);
0e75f906 2470 return ret;
1da177e4
LT
2471}
2472
2473EXPORT_SYMBOL(blk_rq_map_user);
2474
f1970baf
JB
2475/**
2476 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2477 * @q: request queue where request should be inserted
2478 * @rq: request to map data to
2479 * @iov: pointer to the iovec
2480 * @iov_count: number of elements in the iovec
af9997e4 2481 * @len: I/O byte count
f1970baf
JB
2482 *
2483 * Description:
2484 * Data will be mapped directly for zero copy io, if possible. Otherwise
2485 * a kernel bounce buffer is used.
2486 *
2487 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2488 * still in process context.
2489 *
2490 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2491 * before being submitted to the device, as pages mapped may be out of
2492 * reach. It's the callers responsibility to make sure this happens. The
2493 * original bio must be passed back in to blk_rq_unmap_user() for proper
2494 * unmapping.
2495 */
165125e1 2496int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2497 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2498{
2499 struct bio *bio;
2500
2501 if (!iov || iov_count <= 0)
2502 return -EINVAL;
2503
2504 /* we don't allow misaligned data like bio_map_user() does. If the
2505 * user is using sg, they're expected to know the alignment constraints
2506 * and respect them accordingly */
2507 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2508 if (IS_ERR(bio))
2509 return PTR_ERR(bio);
2510
0e75f906 2511 if (bio->bi_size != len) {
6712ecf8 2512 bio_endio(bio, 0);
0e75f906
MC
2513 bio_unmap_user(bio);
2514 return -EINVAL;
2515 }
2516
2517 bio_get(bio);
f1970baf
JB
2518 blk_rq_bio_prep(q, rq, bio);
2519 rq->buffer = rq->data = NULL;
f1970baf
JB
2520 return 0;
2521}
2522
2523EXPORT_SYMBOL(blk_rq_map_user_iov);
2524
1da177e4
LT
2525/**
2526 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2527 * @bio: start of bio list
1da177e4
LT
2528 *
2529 * Description:
8e5cfc45
JA
2530 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2531 * supply the original rq->bio from the blk_rq_map_user() return, since
2532 * the io completion may have changed rq->bio.
1da177e4 2533 */
8e5cfc45 2534int blk_rq_unmap_user(struct bio *bio)
1da177e4 2535{
8e5cfc45 2536 struct bio *mapped_bio;
48785bb9 2537 int ret = 0, ret2;
1da177e4 2538
8e5cfc45
JA
2539 while (bio) {
2540 mapped_bio = bio;
2541 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2542 mapped_bio = bio->bi_private;
1da177e4 2543
48785bb9
JA
2544 ret2 = __blk_rq_unmap_user(mapped_bio);
2545 if (ret2 && !ret)
2546 ret = ret2;
2547
8e5cfc45
JA
2548 mapped_bio = bio;
2549 bio = bio->bi_next;
2550 bio_put(mapped_bio);
0e75f906 2551 }
48785bb9
JA
2552
2553 return ret;
1da177e4
LT
2554}
2555
2556EXPORT_SYMBOL(blk_rq_unmap_user);
2557
df46b9a4
MC
2558/**
2559 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2560 * @q: request queue where request should be inserted
73747aed 2561 * @rq: request to fill
df46b9a4
MC
2562 * @kbuf: the kernel buffer
2563 * @len: length of user data
73747aed 2564 * @gfp_mask: memory allocation flags
df46b9a4 2565 */
165125e1 2566int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2567 unsigned int len, gfp_t gfp_mask)
df46b9a4 2568{
df46b9a4
MC
2569 struct bio *bio;
2570
defd94b7 2571 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2572 return -EINVAL;
2573 if (!len || !kbuf)
2574 return -EINVAL;
df46b9a4
MC
2575
2576 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2577 if (IS_ERR(bio))
2578 return PTR_ERR(bio);
df46b9a4 2579
dd1cab95
JA
2580 if (rq_data_dir(rq) == WRITE)
2581 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2582
dd1cab95 2583 blk_rq_bio_prep(q, rq, bio);
821de3a2 2584 blk_queue_bounce(q, &rq->bio);
dd1cab95 2585 rq->buffer = rq->data = NULL;
dd1cab95 2586 return 0;
df46b9a4
MC
2587}
2588
2589EXPORT_SYMBOL(blk_rq_map_kern);
2590
73747aed
CH
2591/**
2592 * blk_execute_rq_nowait - insert a request into queue for execution
2593 * @q: queue to insert the request in
2594 * @bd_disk: matching gendisk
2595 * @rq: request to insert
2596 * @at_head: insert request at head or tail of queue
2597 * @done: I/O completion handler
2598 *
2599 * Description:
2600 * Insert a fully prepared request at the back of the io scheduler queue
2601 * for execution. Don't wait for completion.
2602 */
165125e1 2603void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2604 struct request *rq, int at_head,
8ffdc655 2605 rq_end_io_fn *done)
f1970baf
JB
2606{
2607 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2608
2609 rq->rq_disk = bd_disk;
4aff5e23 2610 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2611 rq->end_io = done;
4c5d0bbd
AM
2612 WARN_ON(irqs_disabled());
2613 spin_lock_irq(q->queue_lock);
2614 __elv_add_request(q, rq, where, 1);
2615 __generic_unplug_device(q);
2616 spin_unlock_irq(q->queue_lock);
f1970baf 2617}
6e39b69e
MC
2618EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2619
1da177e4
LT
2620/**
2621 * blk_execute_rq - insert a request into queue for execution
2622 * @q: queue to insert the request in
2623 * @bd_disk: matching gendisk
2624 * @rq: request to insert
994ca9a1 2625 * @at_head: insert request at head or tail of queue
1da177e4
LT
2626 *
2627 * Description:
2628 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2629 * for execution and wait for completion.
1da177e4 2630 */
165125e1 2631int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2632 struct request *rq, int at_head)
1da177e4 2633{
60be6b9a 2634 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2635 char sense[SCSI_SENSE_BUFFERSIZE];
2636 int err = 0;
2637
1da177e4
LT
2638 /*
2639 * we need an extra reference to the request, so we can look at
2640 * it after io completion
2641 */
2642 rq->ref_count++;
2643
2644 if (!rq->sense) {
2645 memset(sense, 0, sizeof(sense));
2646 rq->sense = sense;
2647 rq->sense_len = 0;
2648 }
2649
c00895ab 2650 rq->end_io_data = &wait;
994ca9a1 2651 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2652 wait_for_completion(&wait);
1da177e4
LT
2653
2654 if (rq->errors)
2655 err = -EIO;
2656
2657 return err;
2658}
2659
2660EXPORT_SYMBOL(blk_execute_rq);
2661
fd5d8062
JA
2662static void bio_end_empty_barrier(struct bio *bio, int err)
2663{
2664 if (err)
2665 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2666
2667 complete(bio->bi_private);
2668}
2669
1da177e4
LT
2670/**
2671 * blkdev_issue_flush - queue a flush
2672 * @bdev: blockdev to issue flush for
2673 * @error_sector: error sector
2674 *
2675 * Description:
2676 * Issue a flush for the block device in question. Caller can supply
2677 * room for storing the error offset in case of a flush error, if they
2678 * wish to. Caller must run wait_for_completion() on its own.
2679 */
2680int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2681{
fd5d8062 2682 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2683 struct request_queue *q;
fd5d8062
JA
2684 struct bio *bio;
2685 int ret;
1da177e4
LT
2686
2687 if (bdev->bd_disk == NULL)
2688 return -ENXIO;
2689
2690 q = bdev_get_queue(bdev);
2691 if (!q)
2692 return -ENXIO;
1da177e4 2693
fd5d8062
JA
2694 bio = bio_alloc(GFP_KERNEL, 0);
2695 if (!bio)
2696 return -ENOMEM;
2697
2698 bio->bi_end_io = bio_end_empty_barrier;
2699 bio->bi_private = &wait;
2700 bio->bi_bdev = bdev;
2701 submit_bio(1 << BIO_RW_BARRIER, bio);
2702
2703 wait_for_completion(&wait);
2704
2705 /*
2706 * The driver must store the error location in ->bi_sector, if
2707 * it supports it. For non-stacked drivers, this should be copied
2708 * from rq->sector.
2709 */
2710 if (error_sector)
2711 *error_sector = bio->bi_sector;
2712
2713 ret = 0;
2714 if (!bio_flagged(bio, BIO_UPTODATE))
2715 ret = -EIO;
2716
2717 bio_put(bio);
2718 return ret;
1da177e4
LT
2719}
2720
2721EXPORT_SYMBOL(blkdev_issue_flush);
2722
b238b3d4 2723static void drive_stat_acct(struct request *rq, int new_io)
1da177e4
LT
2724{
2725 int rw = rq_data_dir(rq);
2726
2727 if (!blk_fs_request(rq) || !rq->rq_disk)
2728 return;
2729
d72d904a 2730 if (!new_io) {
a362357b 2731 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2732 } else {
1da177e4
LT
2733 disk_round_stats(rq->rq_disk);
2734 rq->rq_disk->in_flight++;
2735 }
2736}
2737
2738/*
2739 * add-request adds a request to the linked list.
2740 * queue lock is held and interrupts disabled, as we muck with the
2741 * request queue list.
2742 */
165125e1 2743static inline void add_request(struct request_queue * q, struct request * req)
1da177e4 2744{
b238b3d4 2745 drive_stat_acct(req, 1);
1da177e4 2746
1da177e4
LT
2747 /*
2748 * elevator indicated where it wants this request to be
2749 * inserted at elevator_merge time
2750 */
2751 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2752}
2753
2754/*
2755 * disk_round_stats() - Round off the performance stats on a struct
2756 * disk_stats.
2757 *
2758 * The average IO queue length and utilisation statistics are maintained
2759 * by observing the current state of the queue length and the amount of
2760 * time it has been in this state for.
2761 *
2762 * Normally, that accounting is done on IO completion, but that can result
2763 * in more than a second's worth of IO being accounted for within any one
2764 * second, leading to >100% utilisation. To deal with that, we call this
2765 * function to do a round-off before returning the results when reading
2766 * /proc/diskstats. This accounts immediately for all queue usage up to
2767 * the current jiffies and restarts the counters again.
2768 */
2769void disk_round_stats(struct gendisk *disk)
2770{
2771 unsigned long now = jiffies;
2772
b2982649
KC
2773 if (now == disk->stamp)
2774 return;
1da177e4 2775
20e5c81f
KC
2776 if (disk->in_flight) {
2777 __disk_stat_add(disk, time_in_queue,
2778 disk->in_flight * (now - disk->stamp));
2779 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2780 }
1da177e4 2781 disk->stamp = now;
1da177e4
LT
2782}
2783
3eaf840e
JNN
2784EXPORT_SYMBOL_GPL(disk_round_stats);
2785
1da177e4
LT
2786/*
2787 * queue lock must be held
2788 */
165125e1 2789void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2790{
1da177e4
LT
2791 if (unlikely(!q))
2792 return;
2793 if (unlikely(--req->ref_count))
2794 return;
2795
8922e16c
TH
2796 elv_completed_request(q, req);
2797
1da177e4
LT
2798 /*
2799 * Request may not have originated from ll_rw_blk. if not,
2800 * it didn't come out of our reserved rq pools
2801 */
49171e5c 2802 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2803 int rw = rq_data_dir(req);
4aff5e23 2804 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2805
1da177e4 2806 BUG_ON(!list_empty(&req->queuelist));
9817064b 2807 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2808
2809 blk_free_request(q, req);
cb98fc8b 2810 freed_request(q, rw, priv);
1da177e4
LT
2811 }
2812}
2813
6e39b69e
MC
2814EXPORT_SYMBOL_GPL(__blk_put_request);
2815
1da177e4
LT
2816void blk_put_request(struct request *req)
2817{
8922e16c 2818 unsigned long flags;
165125e1 2819 struct request_queue *q = req->q;
8922e16c 2820
1da177e4 2821 /*
8922e16c
TH
2822 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2823 * following if (q) test.
1da177e4 2824 */
8922e16c 2825 if (q) {
1da177e4
LT
2826 spin_lock_irqsave(q->queue_lock, flags);
2827 __blk_put_request(q, req);
2828 spin_unlock_irqrestore(q->queue_lock, flags);
2829 }
2830}
2831
2832EXPORT_SYMBOL(blk_put_request);
2833
2834/**
2835 * blk_end_sync_rq - executes a completion event on a request
2836 * @rq: request to complete
fddfdeaf 2837 * @error: end io status of the request
1da177e4 2838 */
8ffdc655 2839void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2840{
c00895ab 2841 struct completion *waiting = rq->end_io_data;
1da177e4 2842
c00895ab 2843 rq->end_io_data = NULL;
1da177e4
LT
2844 __blk_put_request(rq->q, rq);
2845
2846 /*
2847 * complete last, if this is a stack request the process (and thus
2848 * the rq pointer) could be invalid right after this complete()
2849 */
2850 complete(waiting);
2851}
2852EXPORT_SYMBOL(blk_end_sync_rq);
2853
1da177e4
LT
2854/*
2855 * Has to be called with the request spinlock acquired
2856 */
165125e1 2857static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2858 struct request *next)
2859{
2860 if (!rq_mergeable(req) || !rq_mergeable(next))
2861 return 0;
2862
2863 /*
d6e05edc 2864 * not contiguous
1da177e4
LT
2865 */
2866 if (req->sector + req->nr_sectors != next->sector)
2867 return 0;
2868
2869 if (rq_data_dir(req) != rq_data_dir(next)
2870 || req->rq_disk != next->rq_disk
c00895ab 2871 || next->special)
1da177e4
LT
2872 return 0;
2873
2874 /*
2875 * If we are allowed to merge, then append bio list
2876 * from next to rq and release next. merge_requests_fn
2877 * will have updated segment counts, update sector
2878 * counts here.
2879 */
1aa4f24f 2880 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2881 return 0;
2882
2883 /*
2884 * At this point we have either done a back merge
2885 * or front merge. We need the smaller start_time of
2886 * the merged requests to be the current request
2887 * for accounting purposes.
2888 */
2889 if (time_after(req->start_time, next->start_time))
2890 req->start_time = next->start_time;
2891
2892 req->biotail->bi_next = next->bio;
2893 req->biotail = next->biotail;
2894
2895 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2896
2897 elv_merge_requests(q, req, next);
2898
2899 if (req->rq_disk) {
2900 disk_round_stats(req->rq_disk);
2901 req->rq_disk->in_flight--;
2902 }
2903
22e2c507
JA
2904 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2905
1da177e4
LT
2906 __blk_put_request(q, next);
2907 return 1;
2908}
2909
165125e1
JA
2910static inline int attempt_back_merge(struct request_queue *q,
2911 struct request *rq)
1da177e4
LT
2912{
2913 struct request *next = elv_latter_request(q, rq);
2914
2915 if (next)
2916 return attempt_merge(q, rq, next);
2917
2918 return 0;
2919}
2920
165125e1
JA
2921static inline int attempt_front_merge(struct request_queue *q,
2922 struct request *rq)
1da177e4
LT
2923{
2924 struct request *prev = elv_former_request(q, rq);
2925
2926 if (prev)
2927 return attempt_merge(q, prev, rq);
2928
2929 return 0;
2930}
2931
52d9e675
TH
2932static void init_request_from_bio(struct request *req, struct bio *bio)
2933{
4aff5e23 2934 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2935
2936 /*
2937 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2938 */
2939 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2940 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2941
2942 /*
2943 * REQ_BARRIER implies no merging, but lets make it explicit
2944 */
2945 if (unlikely(bio_barrier(bio)))
4aff5e23 2946 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2947
b31dc66a 2948 if (bio_sync(bio))
4aff5e23 2949 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2950 if (bio_rw_meta(bio))
2951 req->cmd_flags |= REQ_RW_META;
b31dc66a 2952
52d9e675
TH
2953 req->errors = 0;
2954 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2955 req->ioprio = bio_prio(bio);
52d9e675 2956 req->start_time = jiffies;
bc1c56fd 2957 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2958}
2959
165125e1 2960static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2961{
450991bc 2962 struct request *req;
51da90fc
JA
2963 int el_ret, nr_sectors, barrier, err;
2964 const unsigned short prio = bio_prio(bio);
2965 const int sync = bio_sync(bio);
7749a8d4 2966 int rw_flags;
1da177e4 2967
1da177e4 2968 nr_sectors = bio_sectors(bio);
1da177e4
LT
2969
2970 /*
2971 * low level driver can indicate that it wants pages above a
2972 * certain limit bounced to low memory (ie for highmem, or even
2973 * ISA dma in theory)
2974 */
2975 blk_queue_bounce(q, &bio);
2976
1da177e4 2977 barrier = bio_barrier(bio);
797e7dbb 2978 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2979 err = -EOPNOTSUPP;
2980 goto end_io;
2981 }
2982
1da177e4
LT
2983 spin_lock_irq(q->queue_lock);
2984
450991bc 2985 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2986 goto get_rq;
2987
2988 el_ret = elv_merge(q, &req, bio);
2989 switch (el_ret) {
2990 case ELEVATOR_BACK_MERGE:
2991 BUG_ON(!rq_mergeable(req));
2992
1aa4f24f 2993 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
2994 break;
2995
2056a782
JA
2996 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2997
1da177e4
LT
2998 req->biotail->bi_next = bio;
2999 req->biotail = bio;
3000 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3001 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3002 drive_stat_acct(req, 0);
1da177e4 3003 if (!attempt_back_merge(q, req))
2e662b65 3004 elv_merged_request(q, req, el_ret);
1da177e4
LT
3005 goto out;
3006
3007 case ELEVATOR_FRONT_MERGE:
3008 BUG_ON(!rq_mergeable(req));
3009
1aa4f24f 3010 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3011 break;
3012
2056a782
JA
3013 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3014
1da177e4
LT
3015 bio->bi_next = req->bio;
3016 req->bio = bio;
3017
3018 /*
3019 * may not be valid. if the low level driver said
3020 * it didn't need a bounce buffer then it better
3021 * not touch req->buffer either...
3022 */
3023 req->buffer = bio_data(bio);
51da90fc
JA
3024 req->current_nr_sectors = bio_cur_sectors(bio);
3025 req->hard_cur_sectors = req->current_nr_sectors;
3026 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3027 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3028 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3029 drive_stat_acct(req, 0);
1da177e4 3030 if (!attempt_front_merge(q, req))
2e662b65 3031 elv_merged_request(q, req, el_ret);
1da177e4
LT
3032 goto out;
3033
450991bc 3034 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3035 default:
450991bc 3036 ;
1da177e4
LT
3037 }
3038
450991bc 3039get_rq:
7749a8d4
JA
3040 /*
3041 * This sync check and mask will be re-done in init_request_from_bio(),
3042 * but we need to set it earlier to expose the sync flag to the
3043 * rq allocator and io schedulers.
3044 */
3045 rw_flags = bio_data_dir(bio);
3046 if (sync)
3047 rw_flags |= REQ_RW_SYNC;
3048
1da177e4 3049 /*
450991bc 3050 * Grab a free request. This is might sleep but can not fail.
d6344532 3051 * Returns with the queue unlocked.
450991bc 3052 */
7749a8d4 3053 req = get_request_wait(q, rw_flags, bio);
d6344532 3054
450991bc
NP
3055 /*
3056 * After dropping the lock and possibly sleeping here, our request
3057 * may now be mergeable after it had proven unmergeable (above).
3058 * We don't worry about that case for efficiency. It won't happen
3059 * often, and the elevators are able to handle it.
1da177e4 3060 */
52d9e675 3061 init_request_from_bio(req, bio);
1da177e4 3062
450991bc
NP
3063 spin_lock_irq(q->queue_lock);
3064 if (elv_queue_empty(q))
3065 blk_plug_device(q);
1da177e4
LT
3066 add_request(q, req);
3067out:
4a534f93 3068 if (sync)
1da177e4
LT
3069 __generic_unplug_device(q);
3070
3071 spin_unlock_irq(q->queue_lock);
3072 return 0;
3073
3074end_io:
6712ecf8 3075 bio_endio(bio, err);
1da177e4
LT
3076 return 0;
3077}
3078
3079/*
3080 * If bio->bi_dev is a partition, remap the location
3081 */
3082static inline void blk_partition_remap(struct bio *bio)
3083{
3084 struct block_device *bdev = bio->bi_bdev;
3085
bf2de6f5 3086 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3087 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3088 const int rw = bio_data_dir(bio);
3089
3090 p->sectors[rw] += bio_sectors(bio);
3091 p->ios[rw]++;
1da177e4 3092
1da177e4
LT
3093 bio->bi_sector += p->start_sect;
3094 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3095
3096 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3097 bdev->bd_dev, bio->bi_sector,
3098 bio->bi_sector - p->start_sect);
1da177e4
LT
3099 }
3100}
3101
1da177e4
LT
3102static void handle_bad_sector(struct bio *bio)
3103{
3104 char b[BDEVNAME_SIZE];
3105
3106 printk(KERN_INFO "attempt to access beyond end of device\n");
3107 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3108 bdevname(bio->bi_bdev, b),
3109 bio->bi_rw,
3110 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3111 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3112
3113 set_bit(BIO_EOF, &bio->bi_flags);
3114}
3115
c17bb495
AM
3116#ifdef CONFIG_FAIL_MAKE_REQUEST
3117
3118static DECLARE_FAULT_ATTR(fail_make_request);
3119
3120static int __init setup_fail_make_request(char *str)
3121{
3122 return setup_fault_attr(&fail_make_request, str);
3123}
3124__setup("fail_make_request=", setup_fail_make_request);
3125
3126static int should_fail_request(struct bio *bio)
3127{
3128 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3129 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3130 return should_fail(&fail_make_request, bio->bi_size);
3131
3132 return 0;
3133}
3134
3135static int __init fail_make_request_debugfs(void)
3136{
3137 return init_fault_attr_dentries(&fail_make_request,
3138 "fail_make_request");
3139}
3140
3141late_initcall(fail_make_request_debugfs);
3142
3143#else /* CONFIG_FAIL_MAKE_REQUEST */
3144
3145static inline int should_fail_request(struct bio *bio)
3146{
3147 return 0;
3148}
3149
3150#endif /* CONFIG_FAIL_MAKE_REQUEST */
3151
c07e2b41
JA
3152/*
3153 * Check whether this bio extends beyond the end of the device.
3154 */
3155static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3156{
3157 sector_t maxsector;
3158
3159 if (!nr_sectors)
3160 return 0;
3161
3162 /* Test device or partition size, when known. */
3163 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3164 if (maxsector) {
3165 sector_t sector = bio->bi_sector;
3166
3167 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3168 /*
3169 * This may well happen - the kernel calls bread()
3170 * without checking the size of the device, e.g., when
3171 * mounting a device.
3172 */
3173 handle_bad_sector(bio);
3174 return 1;
3175 }
3176 }
3177
3178 return 0;
3179}
3180
1da177e4
LT
3181/**
3182 * generic_make_request: hand a buffer to its device driver for I/O
3183 * @bio: The bio describing the location in memory and on the device.
3184 *
3185 * generic_make_request() is used to make I/O requests of block
3186 * devices. It is passed a &struct bio, which describes the I/O that needs
3187 * to be done.
3188 *
3189 * generic_make_request() does not return any status. The
3190 * success/failure status of the request, along with notification of
3191 * completion, is delivered asynchronously through the bio->bi_end_io
3192 * function described (one day) else where.
3193 *
3194 * The caller of generic_make_request must make sure that bi_io_vec
3195 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3196 * set to describe the device address, and the
3197 * bi_end_io and optionally bi_private are set to describe how
3198 * completion notification should be signaled.
3199 *
3200 * generic_make_request and the drivers it calls may use bi_next if this
3201 * bio happens to be merged with someone else, and may change bi_dev and
3202 * bi_sector for remaps as it sees fit. So the values of these fields
3203 * should NOT be depended on after the call to generic_make_request.
3204 */
d89d8796 3205static inline void __generic_make_request(struct bio *bio)
1da177e4 3206{
165125e1 3207 struct request_queue *q;
5ddfe969 3208 sector_t old_sector;
1da177e4 3209 int ret, nr_sectors = bio_sectors(bio);
2056a782 3210 dev_t old_dev;
51fd77bd 3211 int err = -EIO;
1da177e4
LT
3212
3213 might_sleep();
1da177e4 3214
c07e2b41
JA
3215 if (bio_check_eod(bio, nr_sectors))
3216 goto end_io;
1da177e4
LT
3217
3218 /*
3219 * Resolve the mapping until finished. (drivers are
3220 * still free to implement/resolve their own stacking
3221 * by explicitly returning 0)
3222 *
3223 * NOTE: we don't repeat the blk_size check for each new device.
3224 * Stacking drivers are expected to know what they are doing.
3225 */
5ddfe969 3226 old_sector = -1;
2056a782 3227 old_dev = 0;
1da177e4
LT
3228 do {
3229 char b[BDEVNAME_SIZE];
3230
3231 q = bdev_get_queue(bio->bi_bdev);
3232 if (!q) {
3233 printk(KERN_ERR
3234 "generic_make_request: Trying to access "
3235 "nonexistent block-device %s (%Lu)\n",
3236 bdevname(bio->bi_bdev, b),
3237 (long long) bio->bi_sector);
3238end_io:
51fd77bd 3239 bio_endio(bio, err);
1da177e4
LT
3240 break;
3241 }
3242
4fa253f3 3243 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3244 printk("bio too big device %s (%u > %u)\n",
3245 bdevname(bio->bi_bdev, b),
3246 bio_sectors(bio),
3247 q->max_hw_sectors);
3248 goto end_io;
3249 }
3250
fde6ad22 3251 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3252 goto end_io;
3253
c17bb495
AM
3254 if (should_fail_request(bio))
3255 goto end_io;
3256
1da177e4
LT
3257 /*
3258 * If this device has partitions, remap block n
3259 * of partition p to block n+start(p) of the disk.
3260 */
3261 blk_partition_remap(bio);
3262
5ddfe969 3263 if (old_sector != -1)
4fa253f3 3264 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3265 old_sector);
2056a782
JA
3266
3267 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3268
5ddfe969 3269 old_sector = bio->bi_sector;
2056a782
JA
3270 old_dev = bio->bi_bdev->bd_dev;
3271
c07e2b41
JA
3272 if (bio_check_eod(bio, nr_sectors))
3273 goto end_io;
51fd77bd
JA
3274 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
3275 err = -EOPNOTSUPP;
3276 goto end_io;
3277 }
5ddfe969 3278
1da177e4
LT
3279 ret = q->make_request_fn(q, bio);
3280 } while (ret);
3281}
3282
d89d8796
NB
3283/*
3284 * We only want one ->make_request_fn to be active at a time,
3285 * else stack usage with stacked devices could be a problem.
3286 * So use current->bio_{list,tail} to keep a list of requests
3287 * submited by a make_request_fn function.
3288 * current->bio_tail is also used as a flag to say if
3289 * generic_make_request is currently active in this task or not.
3290 * If it is NULL, then no make_request is active. If it is non-NULL,
3291 * then a make_request is active, and new requests should be added
3292 * at the tail
3293 */
3294void generic_make_request(struct bio *bio)
3295{
3296 if (current->bio_tail) {
3297 /* make_request is active */
3298 *(current->bio_tail) = bio;
3299 bio->bi_next = NULL;
3300 current->bio_tail = &bio->bi_next;
3301 return;
3302 }
3303 /* following loop may be a bit non-obvious, and so deserves some
3304 * explanation.
3305 * Before entering the loop, bio->bi_next is NULL (as all callers
3306 * ensure that) so we have a list with a single bio.
3307 * We pretend that we have just taken it off a longer list, so
3308 * we assign bio_list to the next (which is NULL) and bio_tail
3309 * to &bio_list, thus initialising the bio_list of new bios to be
3310 * added. __generic_make_request may indeed add some more bios
3311 * through a recursive call to generic_make_request. If it
3312 * did, we find a non-NULL value in bio_list and re-enter the loop
3313 * from the top. In this case we really did just take the bio
3314 * of the top of the list (no pretending) and so fixup bio_list and
3315 * bio_tail or bi_next, and call into __generic_make_request again.
3316 *
3317 * The loop was structured like this to make only one call to
3318 * __generic_make_request (which is important as it is large and
3319 * inlined) and to keep the structure simple.
3320 */
3321 BUG_ON(bio->bi_next);
3322 do {
3323 current->bio_list = bio->bi_next;
3324 if (bio->bi_next == NULL)
3325 current->bio_tail = &current->bio_list;
3326 else
3327 bio->bi_next = NULL;
3328 __generic_make_request(bio);
3329 bio = current->bio_list;
3330 } while (bio);
3331 current->bio_tail = NULL; /* deactivate */
3332}
3333
1da177e4
LT
3334EXPORT_SYMBOL(generic_make_request);
3335
3336/**
3337 * submit_bio: submit a bio to the block device layer for I/O
3338 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3339 * @bio: The &struct bio which describes the I/O
3340 *
3341 * submit_bio() is very similar in purpose to generic_make_request(), and
3342 * uses that function to do most of the work. Both are fairly rough
3343 * interfaces, @bio must be presetup and ready for I/O.
3344 *
3345 */
3346void submit_bio(int rw, struct bio *bio)
3347{
3348 int count = bio_sectors(bio);
3349
22e2c507 3350 bio->bi_rw |= rw;
1da177e4 3351
bf2de6f5
JA
3352 /*
3353 * If it's a regular read/write or a barrier with data attached,
3354 * go through the normal accounting stuff before submission.
3355 */
3356 if (!bio_empty_barrier(bio)) {
3357
3358 BIO_BUG_ON(!bio->bi_size);
3359 BIO_BUG_ON(!bio->bi_io_vec);
3360
3361 if (rw & WRITE) {
3362 count_vm_events(PGPGOUT, count);
3363 } else {
3364 task_io_account_read(bio->bi_size);
3365 count_vm_events(PGPGIN, count);
3366 }
3367
3368 if (unlikely(block_dump)) {
3369 char b[BDEVNAME_SIZE];
3370 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3371 current->comm, task_pid_nr(current),
bf2de6f5
JA
3372 (rw & WRITE) ? "WRITE" : "READ",
3373 (unsigned long long)bio->bi_sector,
3374 bdevname(bio->bi_bdev,b));
3375 }
1da177e4
LT
3376 }
3377
3378 generic_make_request(bio);
3379}
3380
3381EXPORT_SYMBOL(submit_bio);
3382
93d17d3d 3383static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3384{
3385 if (blk_fs_request(rq)) {
3386 rq->hard_sector += nsect;
3387 rq->hard_nr_sectors -= nsect;
3388
3389 /*
3390 * Move the I/O submission pointers ahead if required.
3391 */
3392 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3393 (rq->sector <= rq->hard_sector)) {
3394 rq->sector = rq->hard_sector;
3395 rq->nr_sectors = rq->hard_nr_sectors;
3396 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3397 rq->current_nr_sectors = rq->hard_cur_sectors;
3398 rq->buffer = bio_data(rq->bio);
3399 }
3400
3401 /*
3402 * if total number of sectors is less than the first segment
3403 * size, something has gone terribly wrong
3404 */
3405 if (rq->nr_sectors < rq->current_nr_sectors) {
3406 printk("blk: request botched\n");
3407 rq->nr_sectors = rq->current_nr_sectors;
3408 }
3409 }
3410}
3411
3412static int __end_that_request_first(struct request *req, int uptodate,
3413 int nr_bytes)
3414{
3415 int total_bytes, bio_nbytes, error, next_idx = 0;
3416 struct bio *bio;
3417
2056a782
JA
3418 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3419
1da177e4
LT
3420 /*
3421 * extend uptodate bool to allow < 0 value to be direct io error
3422 */
3423 error = 0;
3424 if (end_io_error(uptodate))
3425 error = !uptodate ? -EIO : uptodate;
3426
3427 /*
3428 * for a REQ_BLOCK_PC request, we want to carry any eventual
3429 * sense key with us all the way through
3430 */
3431 if (!blk_pc_request(req))
3432 req->errors = 0;
3433
3434 if (!uptodate) {
4aff5e23 3435 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3436 printk("end_request: I/O error, dev %s, sector %llu\n",
3437 req->rq_disk ? req->rq_disk->disk_name : "?",
3438 (unsigned long long)req->sector);
3439 }
3440
d72d904a 3441 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3442 const int rw = rq_data_dir(req);
3443
53e86061 3444 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3445 }
3446
1da177e4
LT
3447 total_bytes = bio_nbytes = 0;
3448 while ((bio = req->bio) != NULL) {
3449 int nbytes;
3450
bf2de6f5
JA
3451 /*
3452 * For an empty barrier request, the low level driver must
3453 * store a potential error location in ->sector. We pass
3454 * that back up in ->bi_sector.
3455 */
3456 if (blk_empty_barrier(req))
3457 bio->bi_sector = req->sector;
3458
1da177e4
LT
3459 if (nr_bytes >= bio->bi_size) {
3460 req->bio = bio->bi_next;
3461 nbytes = bio->bi_size;
5bb23a68 3462 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3463 next_idx = 0;
3464 bio_nbytes = 0;
3465 } else {
3466 int idx = bio->bi_idx + next_idx;
3467
3468 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3469 blk_dump_rq_flags(req, "__end_that");
3470 printk("%s: bio idx %d >= vcnt %d\n",
3471 __FUNCTION__,
3472 bio->bi_idx, bio->bi_vcnt);
3473 break;
3474 }
3475
3476 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3477 BIO_BUG_ON(nbytes > bio->bi_size);
3478
3479 /*
3480 * not a complete bvec done
3481 */
3482 if (unlikely(nbytes > nr_bytes)) {
3483 bio_nbytes += nr_bytes;
3484 total_bytes += nr_bytes;
3485 break;
3486 }
3487
3488 /*
3489 * advance to the next vector
3490 */
3491 next_idx++;
3492 bio_nbytes += nbytes;
3493 }
3494
3495 total_bytes += nbytes;
3496 nr_bytes -= nbytes;
3497
3498 if ((bio = req->bio)) {
3499 /*
3500 * end more in this run, or just return 'not-done'
3501 */
3502 if (unlikely(nr_bytes <= 0))
3503 break;
3504 }
3505 }
3506
3507 /*
3508 * completely done
3509 */
3510 if (!req->bio)
3511 return 0;
3512
3513 /*
3514 * if the request wasn't completed, update state
3515 */
3516 if (bio_nbytes) {
5bb23a68 3517 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3518 bio->bi_idx += next_idx;
3519 bio_iovec(bio)->bv_offset += nr_bytes;
3520 bio_iovec(bio)->bv_len -= nr_bytes;
3521 }
3522
3523 blk_recalc_rq_sectors(req, total_bytes >> 9);
3524 blk_recalc_rq_segments(req);
3525 return 1;
3526}
3527
3528/**
3529 * end_that_request_first - end I/O on a request
3530 * @req: the request being processed
3531 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3532 * @nr_sectors: number of sectors to end I/O on
3533 *
3534 * Description:
3535 * Ends I/O on a number of sectors attached to @req, and sets it up
3536 * for the next range of segments (if any) in the cluster.
3537 *
3538 * Return:
3539 * 0 - we are done with this request, call end_that_request_last()
3540 * 1 - still buffers pending for this request
3541 **/
3542int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3543{
3544 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3545}
3546
3547EXPORT_SYMBOL(end_that_request_first);
3548
3549/**
3550 * end_that_request_chunk - end I/O on a request
3551 * @req: the request being processed
3552 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3553 * @nr_bytes: number of bytes to complete
3554 *
3555 * Description:
3556 * Ends I/O on a number of bytes attached to @req, and sets it up
3557 * for the next range of segments (if any). Like end_that_request_first(),
3558 * but deals with bytes instead of sectors.
3559 *
3560 * Return:
3561 * 0 - we are done with this request, call end_that_request_last()
3562 * 1 - still buffers pending for this request
3563 **/
3564int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3565{
3566 return __end_that_request_first(req, uptodate, nr_bytes);
3567}
3568
3569EXPORT_SYMBOL(end_that_request_chunk);
3570
ff856bad
JA
3571/*
3572 * splice the completion data to a local structure and hand off to
3573 * process_completion_queue() to complete the requests
3574 */
3575static void blk_done_softirq(struct softirq_action *h)
3576{
626ab0e6 3577 struct list_head *cpu_list, local_list;
ff856bad
JA
3578
3579 local_irq_disable();
3580 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3581 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3582 local_irq_enable();
3583
3584 while (!list_empty(&local_list)) {
3585 struct request *rq = list_entry(local_list.next, struct request, donelist);
3586
3587 list_del_init(&rq->donelist);
3588 rq->q->softirq_done_fn(rq);
3589 }
3590}
3591
db47d475 3592static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3593 void *hcpu)
3594{
3595 /*
3596 * If a CPU goes away, splice its entries to the current CPU
3597 * and trigger a run of the softirq
3598 */
8bb78442 3599 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3600 int cpu = (unsigned long) hcpu;
3601
3602 local_irq_disable();
3603 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3604 &__get_cpu_var(blk_cpu_done));
3605 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3606 local_irq_enable();
3607 }
3608
3609 return NOTIFY_OK;
3610}
3611
3612
db47d475 3613static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3614 .notifier_call = blk_cpu_notify,
3615};
3616
ff856bad
JA
3617/**
3618 * blk_complete_request - end I/O on a request
3619 * @req: the request being processed
3620 *
3621 * Description:
3622 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3623 * unless the driver actually implements this in its completion callback
4fa253f3 3624 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3625 * through a softirq handler. The user must have registered a completion
3626 * callback through blk_queue_softirq_done().
3627 **/
3628
3629void blk_complete_request(struct request *req)
3630{
3631 struct list_head *cpu_list;
3632 unsigned long flags;
3633
3634 BUG_ON(!req->q->softirq_done_fn);
3635
3636 local_irq_save(flags);
3637
3638 cpu_list = &__get_cpu_var(blk_cpu_done);
3639 list_add_tail(&req->donelist, cpu_list);
3640 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3641
3642 local_irq_restore(flags);
3643}
3644
3645EXPORT_SYMBOL(blk_complete_request);
3646
1da177e4
LT
3647/*
3648 * queue lock must be held
3649 */
8ffdc655 3650void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3651{
3652 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3653 int error;
3654
3655 /*
3656 * extend uptodate bool to allow < 0 value to be direct io error
3657 */
3658 error = 0;
3659 if (end_io_error(uptodate))
3660 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3661
3662 if (unlikely(laptop_mode) && blk_fs_request(req))
3663 laptop_io_completion();
3664
fd0ff8aa
JA
3665 /*
3666 * Account IO completion. bar_rq isn't accounted as a normal
3667 * IO on queueing nor completion. Accounting the containing
3668 * request is enough.
3669 */
3670 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3671 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3672 const int rw = rq_data_dir(req);
3673
3674 __disk_stat_inc(disk, ios[rw]);
3675 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3676 disk_round_stats(disk);
3677 disk->in_flight--;
3678 }
3679 if (req->end_io)
8ffdc655 3680 req->end_io(req, error);
1da177e4
LT
3681 else
3682 __blk_put_request(req->q, req);
3683}
3684
3685EXPORT_SYMBOL(end_that_request_last);
3686
a0cd1285
JA
3687static inline void __end_request(struct request *rq, int uptodate,
3688 unsigned int nr_bytes, int dequeue)
1da177e4 3689{
a0cd1285
JA
3690 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3691 if (dequeue)
3692 blkdev_dequeue_request(rq);
3693 add_disk_randomness(rq->rq_disk);
3694 end_that_request_last(rq, uptodate);
1da177e4
LT
3695 }
3696}
3697
a0cd1285
JA
3698static unsigned int rq_byte_size(struct request *rq)
3699{
3700 if (blk_fs_request(rq))
3701 return rq->hard_nr_sectors << 9;
3702
3703 return rq->data_len;
3704}
3705
3706/**
3707 * end_queued_request - end all I/O on a queued request
3708 * @rq: the request being processed
3709 * @uptodate: error value or 0/1 uptodate flag
3710 *
3711 * Description:
3712 * Ends all I/O on a request, and removes it from the block layer queues.
3713 * Not suitable for normal IO completion, unless the driver still has
3714 * the request attached to the block layer.
3715 *
3716 **/
3717void end_queued_request(struct request *rq, int uptodate)
3718{
3719 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3720}
3721EXPORT_SYMBOL(end_queued_request);
3722
3723/**
3724 * end_dequeued_request - end all I/O on a dequeued request
3725 * @rq: the request being processed
3726 * @uptodate: error value or 0/1 uptodate flag
3727 *
3728 * Description:
3729 * Ends all I/O on a request. The request must already have been
3730 * dequeued using blkdev_dequeue_request(), as is normally the case
3731 * for most drivers.
3732 *
3733 **/
3734void end_dequeued_request(struct request *rq, int uptodate)
3735{
3736 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3737}
3738EXPORT_SYMBOL(end_dequeued_request);
3739
3740
3741/**
3742 * end_request - end I/O on the current segment of the request
8f731f7d 3743 * @req: the request being processed
a0cd1285
JA
3744 * @uptodate: error value or 0/1 uptodate flag
3745 *
3746 * Description:
3747 * Ends I/O on the current segment of a request. If that is the only
3748 * remaining segment, the request is also completed and freed.
3749 *
3750 * This is a remnant of how older block drivers handled IO completions.
3751 * Modern drivers typically end IO on the full request in one go, unless
3752 * they have a residual value to account for. For that case this function
3753 * isn't really useful, unless the residual just happens to be the
3754 * full current segment. In other words, don't use this function in new
3755 * code. Either use end_request_completely(), or the
3756 * end_that_request_chunk() (along with end_that_request_last()) for
3757 * partial completions.
3758 *
3759 **/
3760void end_request(struct request *req, int uptodate)
3761{
3762 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3763}
1da177e4
LT
3764EXPORT_SYMBOL(end_request);
3765
66846572
N
3766static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3767 struct bio *bio)
1da177e4 3768{
4aff5e23
JA
3769 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3770 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3771
3772 rq->nr_phys_segments = bio_phys_segments(q, bio);
3773 rq->nr_hw_segments = bio_hw_segments(q, bio);
3774 rq->current_nr_sectors = bio_cur_sectors(bio);
3775 rq->hard_cur_sectors = rq->current_nr_sectors;
3776 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3777 rq->buffer = bio_data(bio);
0e75f906 3778 rq->data_len = bio->bi_size;
1da177e4
LT
3779
3780 rq->bio = rq->biotail = bio;
1da177e4 3781
66846572
N
3782 if (bio->bi_bdev)
3783 rq->rq_disk = bio->bi_bdev->bd_disk;
3784}
1da177e4
LT
3785
3786int kblockd_schedule_work(struct work_struct *work)
3787{
3788 return queue_work(kblockd_workqueue, work);
3789}
3790
3791EXPORT_SYMBOL(kblockd_schedule_work);
3792
19a75d83 3793void kblockd_flush_work(struct work_struct *work)
1da177e4 3794{
28e53bdd 3795 cancel_work_sync(work);
1da177e4 3796}
19a75d83 3797EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3798
3799int __init blk_dev_init(void)
3800{
ff856bad
JA
3801 int i;
3802
1da177e4
LT
3803 kblockd_workqueue = create_workqueue("kblockd");
3804 if (!kblockd_workqueue)
3805 panic("Failed to create kblockd\n");
3806
3807 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3808 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3809
3810 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3811 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3812
3813 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3814 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3815
0a945022 3816 for_each_possible_cpu(i)
ff856bad
JA
3817 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3818
3819 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3820 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3821
f772b3d9
VT
3822 blk_max_low_pfn = max_low_pfn - 1;
3823 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3824
3825 return 0;
3826}
3827
3828/*
3829 * IO Context helper functions
3830 */
3831void put_io_context(struct io_context *ioc)
3832{
3833 if (ioc == NULL)
3834 return;
3835
3836 BUG_ON(atomic_read(&ioc->refcount) == 0);
3837
3838 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3839 struct cfq_io_context *cic;
3840
334e94de 3841 rcu_read_lock();
1da177e4
LT
3842 if (ioc->aic && ioc->aic->dtor)
3843 ioc->aic->dtor(ioc->aic);
e2d74ac0 3844 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3845 struct rb_node *n = rb_first(&ioc->cic_root);
3846
3847 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3848 cic->dtor(ioc);
3849 }
334e94de 3850 rcu_read_unlock();
1da177e4
LT
3851
3852 kmem_cache_free(iocontext_cachep, ioc);
3853 }
3854}
3855EXPORT_SYMBOL(put_io_context);
3856
3857/* Called by the exitting task */
3858void exit_io_context(void)
3859{
1da177e4 3860 struct io_context *ioc;
e2d74ac0 3861 struct cfq_io_context *cic;
1da177e4 3862
22e2c507 3863 task_lock(current);
1da177e4
LT
3864 ioc = current->io_context;
3865 current->io_context = NULL;
22e2c507 3866 task_unlock(current);
1da177e4 3867
25034d7a 3868 ioc->task = NULL;
1da177e4
LT
3869 if (ioc->aic && ioc->aic->exit)
3870 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3871 if (ioc->cic_root.rb_node != NULL) {
3872 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3873 cic->exit(ioc);
3874 }
25034d7a 3875
1da177e4
LT
3876 put_io_context(ioc);
3877}
3878
3879/*
3880 * If the current task has no IO context then create one and initialise it.
fb3cc432 3881 * Otherwise, return its existing IO context.
1da177e4 3882 *
fb3cc432
NP
3883 * This returned IO context doesn't have a specifically elevated refcount,
3884 * but since the current task itself holds a reference, the context can be
3885 * used in general code, so long as it stays within `current` context.
1da177e4 3886 */
b5deef90 3887static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3888{
3889 struct task_struct *tsk = current;
1da177e4
LT
3890 struct io_context *ret;
3891
1da177e4 3892 ret = tsk->io_context;
fb3cc432
NP
3893 if (likely(ret))
3894 return ret;
1da177e4 3895
b5deef90 3896 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3897 if (ret) {
3898 atomic_set(&ret->refcount, 1);
22e2c507 3899 ret->task = current;
fc46379d 3900 ret->ioprio_changed = 0;
1da177e4
LT
3901 ret->last_waited = jiffies; /* doesn't matter... */
3902 ret->nr_batch_requests = 0; /* because this is 0 */
3903 ret->aic = NULL;
e2d74ac0 3904 ret->cic_root.rb_node = NULL;
4e521c27 3905 ret->ioc_data = NULL;
9f83e45e
ON
3906 /* make sure set_task_ioprio() sees the settings above */
3907 smp_wmb();
fb3cc432
NP
3908 tsk->io_context = ret;
3909 }
1da177e4 3910
fb3cc432
NP
3911 return ret;
3912}
1da177e4 3913
fb3cc432
NP
3914/*
3915 * If the current task has no IO context then create one and initialise it.
3916 * If it does have a context, take a ref on it.
3917 *
3918 * This is always called in the context of the task which submitted the I/O.
3919 */
b5deef90 3920struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3921{
3922 struct io_context *ret;
b5deef90 3923 ret = current_io_context(gfp_flags, node);
fb3cc432 3924 if (likely(ret))
1da177e4 3925 atomic_inc(&ret->refcount);
1da177e4
LT
3926 return ret;
3927}
3928EXPORT_SYMBOL(get_io_context);
3929
3930void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3931{
3932 struct io_context *src = *psrc;
3933 struct io_context *dst = *pdst;
3934
3935 if (src) {
3936 BUG_ON(atomic_read(&src->refcount) == 0);
3937 atomic_inc(&src->refcount);
3938 put_io_context(dst);
3939 *pdst = src;
3940 }
3941}
3942EXPORT_SYMBOL(copy_io_context);
3943
3944void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3945{
3946 struct io_context *temp;
3947 temp = *ioc1;
3948 *ioc1 = *ioc2;
3949 *ioc2 = temp;
3950}
3951EXPORT_SYMBOL(swap_io_context);
3952
3953/*
3954 * sysfs parts below
3955 */
3956struct queue_sysfs_entry {
3957 struct attribute attr;
3958 ssize_t (*show)(struct request_queue *, char *);
3959 ssize_t (*store)(struct request_queue *, const char *, size_t);
3960};
3961
3962static ssize_t
3963queue_var_show(unsigned int var, char *page)
3964{
3965 return sprintf(page, "%d\n", var);
3966}
3967
3968static ssize_t
3969queue_var_store(unsigned long *var, const char *page, size_t count)
3970{
3971 char *p = (char *) page;
3972
3973 *var = simple_strtoul(p, &p, 10);
3974 return count;
3975}
3976
3977static ssize_t queue_requests_show(struct request_queue *q, char *page)
3978{
3979 return queue_var_show(q->nr_requests, (page));
3980}
3981
3982static ssize_t
3983queue_requests_store(struct request_queue *q, const char *page, size_t count)
3984{
3985 struct request_list *rl = &q->rq;
c981ff9f
AV
3986 unsigned long nr;
3987 int ret = queue_var_store(&nr, page, count);
3988 if (nr < BLKDEV_MIN_RQ)
3989 nr = BLKDEV_MIN_RQ;
1da177e4 3990
c981ff9f
AV
3991 spin_lock_irq(q->queue_lock);
3992 q->nr_requests = nr;
1da177e4
LT
3993 blk_queue_congestion_threshold(q);
3994
3995 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3996 blk_set_queue_congested(q, READ);
1da177e4 3997 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3998 blk_clear_queue_congested(q, READ);
1da177e4
LT
3999
4000 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4001 blk_set_queue_congested(q, WRITE);
1da177e4 4002 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4003 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4004
4005 if (rl->count[READ] >= q->nr_requests) {
4006 blk_set_queue_full(q, READ);
4007 } else if (rl->count[READ]+1 <= q->nr_requests) {
4008 blk_clear_queue_full(q, READ);
4009 wake_up(&rl->wait[READ]);
4010 }
4011
4012 if (rl->count[WRITE] >= q->nr_requests) {
4013 blk_set_queue_full(q, WRITE);
4014 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4015 blk_clear_queue_full(q, WRITE);
4016 wake_up(&rl->wait[WRITE]);
4017 }
c981ff9f 4018 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4019 return ret;
4020}
4021
4022static ssize_t queue_ra_show(struct request_queue *q, char *page)
4023{
4024 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4025
4026 return queue_var_show(ra_kb, (page));
4027}
4028
4029static ssize_t
4030queue_ra_store(struct request_queue *q, const char *page, size_t count)
4031{
4032 unsigned long ra_kb;
4033 ssize_t ret = queue_var_store(&ra_kb, page, count);
4034
4035 spin_lock_irq(q->queue_lock);
1da177e4
LT
4036 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4037 spin_unlock_irq(q->queue_lock);
4038
4039 return ret;
4040}
4041
4042static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4043{
4044 int max_sectors_kb = q->max_sectors >> 1;
4045
4046 return queue_var_show(max_sectors_kb, (page));
4047}
4048
4049static ssize_t
4050queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4051{
4052 unsigned long max_sectors_kb,
4053 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4054 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4055 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4056
4057 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4058 return -EINVAL;
4059 /*
4060 * Take the queue lock to update the readahead and max_sectors
4061 * values synchronously:
4062 */
4063 spin_lock_irq(q->queue_lock);
1da177e4
LT
4064 q->max_sectors = max_sectors_kb << 1;
4065 spin_unlock_irq(q->queue_lock);
4066
4067 return ret;
4068}
4069
4070static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4071{
4072 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4073
4074 return queue_var_show(max_hw_sectors_kb, (page));
4075}
4076
563063a8
JA
4077static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4078{
4079 return queue_var_show(q->max_phys_segments, page);
4080}
4081
4082static ssize_t queue_max_segments_store(struct request_queue *q,
4083 const char *page, size_t count)
4084{
4085 unsigned long segments;
4086 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4087
563063a8
JA
4088 spin_lock_irq(q->queue_lock);
4089 q->max_phys_segments = segments;
4090 spin_unlock_irq(q->queue_lock);
1da177e4 4091
563063a8
JA
4092 return ret;
4093}
1da177e4
LT
4094static struct queue_sysfs_entry queue_requests_entry = {
4095 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4096 .show = queue_requests_show,
4097 .store = queue_requests_store,
4098};
4099
4100static struct queue_sysfs_entry queue_ra_entry = {
4101 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4102 .show = queue_ra_show,
4103 .store = queue_ra_store,
4104};
4105
4106static struct queue_sysfs_entry queue_max_sectors_entry = {
4107 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4108 .show = queue_max_sectors_show,
4109 .store = queue_max_sectors_store,
4110};
4111
4112static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4113 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4114 .show = queue_max_hw_sectors_show,
4115};
4116
563063a8
JA
4117static struct queue_sysfs_entry queue_max_segments_entry = {
4118 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4119 .show = queue_max_segments_show,
4120 .store = queue_max_segments_store,
4121};
4122
1da177e4
LT
4123static struct queue_sysfs_entry queue_iosched_entry = {
4124 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4125 .show = elv_iosched_show,
4126 .store = elv_iosched_store,
4127};
4128
4129static struct attribute *default_attrs[] = {
4130 &queue_requests_entry.attr,
4131 &queue_ra_entry.attr,
4132 &queue_max_hw_sectors_entry.attr,
4133 &queue_max_sectors_entry.attr,
563063a8 4134 &queue_max_segments_entry.attr,
1da177e4
LT
4135 &queue_iosched_entry.attr,
4136 NULL,
4137};
4138
4139#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4140
4141static ssize_t
4142queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4143{
4144 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4145 struct request_queue *q =
4146 container_of(kobj, struct request_queue, kobj);
483f4afc 4147 ssize_t res;
1da177e4 4148
1da177e4 4149 if (!entry->show)
6c1852a0 4150 return -EIO;
483f4afc
AV
4151 mutex_lock(&q->sysfs_lock);
4152 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4153 mutex_unlock(&q->sysfs_lock);
4154 return -ENOENT;
4155 }
4156 res = entry->show(q, page);
4157 mutex_unlock(&q->sysfs_lock);
4158 return res;
1da177e4
LT
4159}
4160
4161static ssize_t
4162queue_attr_store(struct kobject *kobj, struct attribute *attr,
4163 const char *page, size_t length)
4164{
4165 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4166 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4167
4168 ssize_t res;
1da177e4 4169
1da177e4 4170 if (!entry->store)
6c1852a0 4171 return -EIO;
483f4afc
AV
4172 mutex_lock(&q->sysfs_lock);
4173 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4174 mutex_unlock(&q->sysfs_lock);
4175 return -ENOENT;
4176 }
4177 res = entry->store(q, page, length);
4178 mutex_unlock(&q->sysfs_lock);
4179 return res;
1da177e4
LT
4180}
4181
4182static struct sysfs_ops queue_sysfs_ops = {
4183 .show = queue_attr_show,
4184 .store = queue_attr_store,
4185};
4186
93d17d3d 4187static struct kobj_type queue_ktype = {
1da177e4
LT
4188 .sysfs_ops = &queue_sysfs_ops,
4189 .default_attrs = default_attrs,
483f4afc 4190 .release = blk_release_queue,
1da177e4
LT
4191};
4192
4193int blk_register_queue(struct gendisk *disk)
4194{
4195 int ret;
4196
165125e1 4197 struct request_queue *q = disk->queue;
1da177e4
LT
4198
4199 if (!q || !q->request_fn)
4200 return -ENXIO;
4201
4202 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4203
483f4afc 4204 ret = kobject_add(&q->kobj);
1da177e4
LT
4205 if (ret < 0)
4206 return ret;
4207
483f4afc
AV
4208 kobject_uevent(&q->kobj, KOBJ_ADD);
4209
1da177e4
LT
4210 ret = elv_register_queue(q);
4211 if (ret) {
483f4afc
AV
4212 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4213 kobject_del(&q->kobj);
1da177e4
LT
4214 return ret;
4215 }
4216
4217 return 0;
4218}
4219
4220void blk_unregister_queue(struct gendisk *disk)
4221{
165125e1 4222 struct request_queue *q = disk->queue;
1da177e4
LT
4223
4224 if (q && q->request_fn) {
4225 elv_unregister_queue(q);
4226
483f4afc
AV
4227 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4228 kobject_del(&q->kobj);
1da177e4
LT
4229 kobject_put(&disk->kobj);
4230 }
4231}