powerpc/kvm: Fix magic page vs. 32-bit RTAS on ppc64
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
229456fc 30#include <linux/ftrace_event.h>
5a0e3ad6 31#include <linux/slab.h>
cafd6659 32#include <linux/tboot.h>
5fdbf976 33#include "kvm_cache_regs.h"
35920a35 34#include "x86.h"
e495606d 35
6aa8b732 36#include <asm/io.h>
3b3be0d1 37#include <asm/desc.h>
13673a90 38#include <asm/vmx.h>
6210e37b 39#include <asm/virtext.h>
a0861c02 40#include <asm/mce.h>
2acf923e
DC
41#include <asm/i387.h>
42#include <asm/xcr.h>
d7cd9796 43#include <asm/perf_event.h>
6aa8b732 44
229456fc
MT
45#include "trace.h"
46
4ecac3fd 47#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
48#define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 50
6aa8b732
AK
51MODULE_AUTHOR("Qumranet");
52MODULE_LICENSE("GPL");
53
476bc001 54static bool __read_mostly enable_vpid = 1;
736caefe 55module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 56
476bc001 57static bool __read_mostly flexpriority_enabled = 1;
736caefe 58module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 59
476bc001 60static bool __read_mostly enable_ept = 1;
736caefe 61module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 62
476bc001 63static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
64module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
66
476bc001 67static bool __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 68module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 69
476bc001 70static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
71module_param(vmm_exclusive, bool, S_IRUGO);
72
476bc001 73static bool __read_mostly fasteoi = 1;
58fbbf26
KT
74module_param(fasteoi, bool, S_IRUGO);
75
801d3424
NHE
76/*
77 * If nested=1, nested virtualization is supported, i.e., guests may use
78 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
79 * use VMX instructions.
80 */
476bc001 81static bool __read_mostly nested = 0;
801d3424
NHE
82module_param(nested, bool, S_IRUGO);
83
cdc0e244
AK
84#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
85 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
86#define KVM_GUEST_CR0_MASK \
87 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
88#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 89 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
90#define KVM_VM_CR0_ALWAYS_ON \
91 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
92#define KVM_CR4_GUEST_OWNED_BITS \
93 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
94 | X86_CR4_OSXMMEXCPT)
95
cdc0e244
AK
96#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
97#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
98
78ac8b47
AK
99#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
100
4b8d54f9
ZE
101/*
102 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
103 * ple_gap: upper bound on the amount of time between two successive
104 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 105 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
106 * ple_window: upper bound on the amount of time a guest is allowed to execute
107 * in a PAUSE loop. Tests indicate that most spinlocks are held for
108 * less than 2^12 cycles
109 * Time is measured based on a counter that runs at the same rate as the TSC,
110 * refer SDM volume 3b section 21.6.13 & 22.1.3.
111 */
00c25bce 112#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
113#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
114static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
115module_param(ple_gap, int, S_IRUGO);
116
117static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
118module_param(ple_window, int, S_IRUGO);
119
8bf00a52 120#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 121#define VMCS02_POOL_SIZE 1
61d2ef2c 122
a2fa3e9f
GH
123struct vmcs {
124 u32 revision_id;
125 u32 abort;
126 char data[0];
127};
128
d462b819
NHE
129/*
130 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132 * loaded on this CPU (so we can clear them if the CPU goes down).
133 */
134struct loaded_vmcs {
135 struct vmcs *vmcs;
136 int cpu;
137 int launched;
138 struct list_head loaded_vmcss_on_cpu_link;
139};
140
26bb0981
AK
141struct shared_msr_entry {
142 unsigned index;
143 u64 data;
d5696725 144 u64 mask;
26bb0981
AK
145};
146
a9d30f33
NHE
147/*
148 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153 * More than one of these structures may exist, if L1 runs multiple L2 guests.
154 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155 * underlying hardware which will be used to run L2.
156 * This structure is packed to ensure that its layout is identical across
157 * machines (necessary for live migration).
158 * If there are changes in this struct, VMCS12_REVISION must be changed.
159 */
22bd0358 160typedef u64 natural_width;
a9d30f33
NHE
161struct __packed vmcs12 {
162 /* According to the Intel spec, a VMCS region must start with the
163 * following two fields. Then follow implementation-specific data.
164 */
165 u32 revision_id;
166 u32 abort;
22bd0358 167
27d6c865
NHE
168 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
169 u32 padding[7]; /* room for future expansion */
170
22bd0358
NHE
171 u64 io_bitmap_a;
172 u64 io_bitmap_b;
173 u64 msr_bitmap;
174 u64 vm_exit_msr_store_addr;
175 u64 vm_exit_msr_load_addr;
176 u64 vm_entry_msr_load_addr;
177 u64 tsc_offset;
178 u64 virtual_apic_page_addr;
179 u64 apic_access_addr;
180 u64 ept_pointer;
181 u64 guest_physical_address;
182 u64 vmcs_link_pointer;
183 u64 guest_ia32_debugctl;
184 u64 guest_ia32_pat;
185 u64 guest_ia32_efer;
186 u64 guest_ia32_perf_global_ctrl;
187 u64 guest_pdptr0;
188 u64 guest_pdptr1;
189 u64 guest_pdptr2;
190 u64 guest_pdptr3;
191 u64 host_ia32_pat;
192 u64 host_ia32_efer;
193 u64 host_ia32_perf_global_ctrl;
194 u64 padding64[8]; /* room for future expansion */
195 /*
196 * To allow migration of L1 (complete with its L2 guests) between
197 * machines of different natural widths (32 or 64 bit), we cannot have
198 * unsigned long fields with no explict size. We use u64 (aliased
199 * natural_width) instead. Luckily, x86 is little-endian.
200 */
201 natural_width cr0_guest_host_mask;
202 natural_width cr4_guest_host_mask;
203 natural_width cr0_read_shadow;
204 natural_width cr4_read_shadow;
205 natural_width cr3_target_value0;
206 natural_width cr3_target_value1;
207 natural_width cr3_target_value2;
208 natural_width cr3_target_value3;
209 natural_width exit_qualification;
210 natural_width guest_linear_address;
211 natural_width guest_cr0;
212 natural_width guest_cr3;
213 natural_width guest_cr4;
214 natural_width guest_es_base;
215 natural_width guest_cs_base;
216 natural_width guest_ss_base;
217 natural_width guest_ds_base;
218 natural_width guest_fs_base;
219 natural_width guest_gs_base;
220 natural_width guest_ldtr_base;
221 natural_width guest_tr_base;
222 natural_width guest_gdtr_base;
223 natural_width guest_idtr_base;
224 natural_width guest_dr7;
225 natural_width guest_rsp;
226 natural_width guest_rip;
227 natural_width guest_rflags;
228 natural_width guest_pending_dbg_exceptions;
229 natural_width guest_sysenter_esp;
230 natural_width guest_sysenter_eip;
231 natural_width host_cr0;
232 natural_width host_cr3;
233 natural_width host_cr4;
234 natural_width host_fs_base;
235 natural_width host_gs_base;
236 natural_width host_tr_base;
237 natural_width host_gdtr_base;
238 natural_width host_idtr_base;
239 natural_width host_ia32_sysenter_esp;
240 natural_width host_ia32_sysenter_eip;
241 natural_width host_rsp;
242 natural_width host_rip;
243 natural_width paddingl[8]; /* room for future expansion */
244 u32 pin_based_vm_exec_control;
245 u32 cpu_based_vm_exec_control;
246 u32 exception_bitmap;
247 u32 page_fault_error_code_mask;
248 u32 page_fault_error_code_match;
249 u32 cr3_target_count;
250 u32 vm_exit_controls;
251 u32 vm_exit_msr_store_count;
252 u32 vm_exit_msr_load_count;
253 u32 vm_entry_controls;
254 u32 vm_entry_msr_load_count;
255 u32 vm_entry_intr_info_field;
256 u32 vm_entry_exception_error_code;
257 u32 vm_entry_instruction_len;
258 u32 tpr_threshold;
259 u32 secondary_vm_exec_control;
260 u32 vm_instruction_error;
261 u32 vm_exit_reason;
262 u32 vm_exit_intr_info;
263 u32 vm_exit_intr_error_code;
264 u32 idt_vectoring_info_field;
265 u32 idt_vectoring_error_code;
266 u32 vm_exit_instruction_len;
267 u32 vmx_instruction_info;
268 u32 guest_es_limit;
269 u32 guest_cs_limit;
270 u32 guest_ss_limit;
271 u32 guest_ds_limit;
272 u32 guest_fs_limit;
273 u32 guest_gs_limit;
274 u32 guest_ldtr_limit;
275 u32 guest_tr_limit;
276 u32 guest_gdtr_limit;
277 u32 guest_idtr_limit;
278 u32 guest_es_ar_bytes;
279 u32 guest_cs_ar_bytes;
280 u32 guest_ss_ar_bytes;
281 u32 guest_ds_ar_bytes;
282 u32 guest_fs_ar_bytes;
283 u32 guest_gs_ar_bytes;
284 u32 guest_ldtr_ar_bytes;
285 u32 guest_tr_ar_bytes;
286 u32 guest_interruptibility_info;
287 u32 guest_activity_state;
288 u32 guest_sysenter_cs;
289 u32 host_ia32_sysenter_cs;
290 u32 padding32[8]; /* room for future expansion */
291 u16 virtual_processor_id;
292 u16 guest_es_selector;
293 u16 guest_cs_selector;
294 u16 guest_ss_selector;
295 u16 guest_ds_selector;
296 u16 guest_fs_selector;
297 u16 guest_gs_selector;
298 u16 guest_ldtr_selector;
299 u16 guest_tr_selector;
300 u16 host_es_selector;
301 u16 host_cs_selector;
302 u16 host_ss_selector;
303 u16 host_ds_selector;
304 u16 host_fs_selector;
305 u16 host_gs_selector;
306 u16 host_tr_selector;
a9d30f33
NHE
307};
308
309/*
310 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
311 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
312 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
313 */
314#define VMCS12_REVISION 0x11e57ed0
315
316/*
317 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
318 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
319 * current implementation, 4K are reserved to avoid future complications.
320 */
321#define VMCS12_SIZE 0x1000
322
ff2f6fe9
NHE
323/* Used to remember the last vmcs02 used for some recently used vmcs12s */
324struct vmcs02_list {
325 struct list_head list;
326 gpa_t vmptr;
327 struct loaded_vmcs vmcs02;
328};
329
ec378aee
NHE
330/*
331 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
332 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
333 */
334struct nested_vmx {
335 /* Has the level1 guest done vmxon? */
336 bool vmxon;
a9d30f33
NHE
337
338 /* The guest-physical address of the current VMCS L1 keeps for L2 */
339 gpa_t current_vmptr;
340 /* The host-usable pointer to the above */
341 struct page *current_vmcs12_page;
342 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
343
344 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
345 struct list_head vmcs02_pool;
346 int vmcs02_num;
fe3ef05c 347 u64 vmcs01_tsc_offset;
644d711a
NHE
348 /* L2 must run next, and mustn't decide to exit to L1. */
349 bool nested_run_pending;
fe3ef05c
NHE
350 /*
351 * Guest pages referred to in vmcs02 with host-physical pointers, so
352 * we must keep them pinned while L2 runs.
353 */
354 struct page *apic_access_page;
ec378aee
NHE
355};
356
a2fa3e9f 357struct vcpu_vmx {
fb3f0f51 358 struct kvm_vcpu vcpu;
313dbd49 359 unsigned long host_rsp;
29bd8a78 360 u8 fail;
69c73028 361 u8 cpl;
9d58b931 362 bool nmi_known_unmasked;
51aa01d1 363 u32 exit_intr_info;
1155f76a 364 u32 idt_vectoring_info;
6de12732 365 ulong rflags;
26bb0981 366 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
367 int nmsrs;
368 int save_nmsrs;
a2fa3e9f 369#ifdef CONFIG_X86_64
44ea2b17
AK
370 u64 msr_host_kernel_gs_base;
371 u64 msr_guest_kernel_gs_base;
a2fa3e9f 372#endif
d462b819
NHE
373 /*
374 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
375 * non-nested (L1) guest, it always points to vmcs01. For a nested
376 * guest (L2), it points to a different VMCS.
377 */
378 struct loaded_vmcs vmcs01;
379 struct loaded_vmcs *loaded_vmcs;
380 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
381 struct msr_autoload {
382 unsigned nr;
383 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
384 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
385 } msr_autoload;
a2fa3e9f
GH
386 struct {
387 int loaded;
388 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
389 int gs_ldt_reload_needed;
390 int fs_reload_needed;
d77c26fc 391 } host_state;
9c8cba37 392 struct {
7ffd92c5 393 int vm86_active;
78ac8b47 394 ulong save_rflags;
7ffd92c5
AK
395 struct kvm_save_segment {
396 u16 selector;
397 unsigned long base;
398 u32 limit;
399 u32 ar;
400 } tr, es, ds, fs, gs;
9c8cba37 401 } rmode;
2fb92db1
AK
402 struct {
403 u32 bitmask; /* 4 bits per segment (1 bit per field) */
404 struct kvm_save_segment seg[8];
405 } segment_cache;
2384d2b3 406 int vpid;
04fa4d32 407 bool emulation_required;
3b86cd99
JK
408
409 /* Support for vnmi-less CPUs */
410 int soft_vnmi_blocked;
411 ktime_t entry_time;
412 s64 vnmi_blocked_time;
a0861c02 413 u32 exit_reason;
4e47c7a6
SY
414
415 bool rdtscp_enabled;
ec378aee
NHE
416
417 /* Support for a guest hypervisor (nested VMX) */
418 struct nested_vmx nested;
a2fa3e9f
GH
419};
420
2fb92db1
AK
421enum segment_cache_field {
422 SEG_FIELD_SEL = 0,
423 SEG_FIELD_BASE = 1,
424 SEG_FIELD_LIMIT = 2,
425 SEG_FIELD_AR = 3,
426
427 SEG_FIELD_NR = 4
428};
429
a2fa3e9f
GH
430static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
431{
fb3f0f51 432 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
433}
434
22bd0358
NHE
435#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
436#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
437#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
438 [number##_HIGH] = VMCS12_OFFSET(name)+4
439
440static unsigned short vmcs_field_to_offset_table[] = {
441 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
442 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
443 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
444 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
445 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
446 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
447 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
448 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
449 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
450 FIELD(HOST_ES_SELECTOR, host_es_selector),
451 FIELD(HOST_CS_SELECTOR, host_cs_selector),
452 FIELD(HOST_SS_SELECTOR, host_ss_selector),
453 FIELD(HOST_DS_SELECTOR, host_ds_selector),
454 FIELD(HOST_FS_SELECTOR, host_fs_selector),
455 FIELD(HOST_GS_SELECTOR, host_gs_selector),
456 FIELD(HOST_TR_SELECTOR, host_tr_selector),
457 FIELD64(IO_BITMAP_A, io_bitmap_a),
458 FIELD64(IO_BITMAP_B, io_bitmap_b),
459 FIELD64(MSR_BITMAP, msr_bitmap),
460 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
461 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
462 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
463 FIELD64(TSC_OFFSET, tsc_offset),
464 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
465 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
466 FIELD64(EPT_POINTER, ept_pointer),
467 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
468 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
469 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
470 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
471 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
472 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
473 FIELD64(GUEST_PDPTR0, guest_pdptr0),
474 FIELD64(GUEST_PDPTR1, guest_pdptr1),
475 FIELD64(GUEST_PDPTR2, guest_pdptr2),
476 FIELD64(GUEST_PDPTR3, guest_pdptr3),
477 FIELD64(HOST_IA32_PAT, host_ia32_pat),
478 FIELD64(HOST_IA32_EFER, host_ia32_efer),
479 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
480 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
481 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
482 FIELD(EXCEPTION_BITMAP, exception_bitmap),
483 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
484 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
485 FIELD(CR3_TARGET_COUNT, cr3_target_count),
486 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
487 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
488 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
489 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
490 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
491 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
492 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
493 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
494 FIELD(TPR_THRESHOLD, tpr_threshold),
495 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
496 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
497 FIELD(VM_EXIT_REASON, vm_exit_reason),
498 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
499 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
500 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
501 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
502 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
503 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
504 FIELD(GUEST_ES_LIMIT, guest_es_limit),
505 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
506 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
507 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
508 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
509 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
510 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
511 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
512 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
513 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
514 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
515 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
516 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
517 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
518 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
519 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
520 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
521 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
522 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
523 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
524 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
525 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
526 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
527 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
528 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
529 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
530 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
531 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
532 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
533 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
534 FIELD(EXIT_QUALIFICATION, exit_qualification),
535 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
536 FIELD(GUEST_CR0, guest_cr0),
537 FIELD(GUEST_CR3, guest_cr3),
538 FIELD(GUEST_CR4, guest_cr4),
539 FIELD(GUEST_ES_BASE, guest_es_base),
540 FIELD(GUEST_CS_BASE, guest_cs_base),
541 FIELD(GUEST_SS_BASE, guest_ss_base),
542 FIELD(GUEST_DS_BASE, guest_ds_base),
543 FIELD(GUEST_FS_BASE, guest_fs_base),
544 FIELD(GUEST_GS_BASE, guest_gs_base),
545 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
546 FIELD(GUEST_TR_BASE, guest_tr_base),
547 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
548 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
549 FIELD(GUEST_DR7, guest_dr7),
550 FIELD(GUEST_RSP, guest_rsp),
551 FIELD(GUEST_RIP, guest_rip),
552 FIELD(GUEST_RFLAGS, guest_rflags),
553 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
554 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
555 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
556 FIELD(HOST_CR0, host_cr0),
557 FIELD(HOST_CR3, host_cr3),
558 FIELD(HOST_CR4, host_cr4),
559 FIELD(HOST_FS_BASE, host_fs_base),
560 FIELD(HOST_GS_BASE, host_gs_base),
561 FIELD(HOST_TR_BASE, host_tr_base),
562 FIELD(HOST_GDTR_BASE, host_gdtr_base),
563 FIELD(HOST_IDTR_BASE, host_idtr_base),
564 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
565 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
566 FIELD(HOST_RSP, host_rsp),
567 FIELD(HOST_RIP, host_rip),
568};
569static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
570
571static inline short vmcs_field_to_offset(unsigned long field)
572{
573 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
574 return -1;
575 return vmcs_field_to_offset_table[field];
576}
577
a9d30f33
NHE
578static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
579{
580 return to_vmx(vcpu)->nested.current_vmcs12;
581}
582
583static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
584{
585 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
586 if (is_error_page(page)) {
587 kvm_release_page_clean(page);
588 return NULL;
589 }
590 return page;
591}
592
593static void nested_release_page(struct page *page)
594{
595 kvm_release_page_dirty(page);
596}
597
598static void nested_release_page_clean(struct page *page)
599{
600 kvm_release_page_clean(page);
601}
602
4e1096d2 603static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
604static void kvm_cpu_vmxon(u64 addr);
605static void kvm_cpu_vmxoff(void);
aff48baa 606static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 607static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 608
6aa8b732
AK
609static DEFINE_PER_CPU(struct vmcs *, vmxarea);
610static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
611/*
612 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
613 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
614 */
615static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 616static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 617
3e7c73e9
AK
618static unsigned long *vmx_io_bitmap_a;
619static unsigned long *vmx_io_bitmap_b;
5897297b
AK
620static unsigned long *vmx_msr_bitmap_legacy;
621static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 622
110312c8 623static bool cpu_has_load_ia32_efer;
8bf00a52 624static bool cpu_has_load_perf_global_ctrl;
110312c8 625
2384d2b3
SY
626static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627static DEFINE_SPINLOCK(vmx_vpid_lock);
628
1c3d14fe 629static struct vmcs_config {
6aa8b732
AK
630 int size;
631 int order;
632 u32 revision_id;
1c3d14fe
YS
633 u32 pin_based_exec_ctrl;
634 u32 cpu_based_exec_ctrl;
f78e0e2e 635 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
636 u32 vmexit_ctrl;
637 u32 vmentry_ctrl;
638} vmcs_config;
6aa8b732 639
efff9e53 640static struct vmx_capability {
d56f546d
SY
641 u32 ept;
642 u32 vpid;
643} vmx_capability;
644
6aa8b732
AK
645#define VMX_SEGMENT_FIELD(seg) \
646 [VCPU_SREG_##seg] = { \
647 .selector = GUEST_##seg##_SELECTOR, \
648 .base = GUEST_##seg##_BASE, \
649 .limit = GUEST_##seg##_LIMIT, \
650 .ar_bytes = GUEST_##seg##_AR_BYTES, \
651 }
652
653static struct kvm_vmx_segment_field {
654 unsigned selector;
655 unsigned base;
656 unsigned limit;
657 unsigned ar_bytes;
658} kvm_vmx_segment_fields[] = {
659 VMX_SEGMENT_FIELD(CS),
660 VMX_SEGMENT_FIELD(DS),
661 VMX_SEGMENT_FIELD(ES),
662 VMX_SEGMENT_FIELD(FS),
663 VMX_SEGMENT_FIELD(GS),
664 VMX_SEGMENT_FIELD(SS),
665 VMX_SEGMENT_FIELD(TR),
666 VMX_SEGMENT_FIELD(LDTR),
667};
668
26bb0981
AK
669static u64 host_efer;
670
6de4f3ad
AK
671static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
672
4d56c8a7 673/*
8c06585d 674 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
675 * away by decrementing the array size.
676 */
6aa8b732 677static const u32 vmx_msr_index[] = {
05b3e0c2 678#ifdef CONFIG_X86_64
44ea2b17 679 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 680#endif
8c06585d 681 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 682};
9d8f549d 683#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 684
31299944 685static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
686{
687 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 689 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
690}
691
31299944 692static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
693{
694 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 696 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
697}
698
31299944 699static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
700{
701 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 703 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
704}
705
31299944 706static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
707{
708 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
710}
711
31299944 712static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
713{
714 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 INTR_INFO_VALID_MASK)) ==
716 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
717}
718
31299944 719static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 720{
04547156 721 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
722}
723
31299944 724static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 725{
04547156 726 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
727}
728
31299944 729static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 730{
04547156 731 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
732}
733
31299944 734static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 735{
04547156
SY
736 return vmcs_config.cpu_based_exec_ctrl &
737 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
738}
739
774ead3a 740static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 741{
04547156
SY
742 return vmcs_config.cpu_based_2nd_exec_ctrl &
743 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
744}
745
746static inline bool cpu_has_vmx_flexpriority(void)
747{
748 return cpu_has_vmx_tpr_shadow() &&
749 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
750}
751
e799794e
MT
752static inline bool cpu_has_vmx_ept_execute_only(void)
753{
31299944 754 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
755}
756
757static inline bool cpu_has_vmx_eptp_uncacheable(void)
758{
31299944 759 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
760}
761
762static inline bool cpu_has_vmx_eptp_writeback(void)
763{
31299944 764 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
765}
766
767static inline bool cpu_has_vmx_ept_2m_page(void)
768{
31299944 769 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
770}
771
878403b7
SY
772static inline bool cpu_has_vmx_ept_1g_page(void)
773{
31299944 774 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
775}
776
4bc9b982
SY
777static inline bool cpu_has_vmx_ept_4levels(void)
778{
779 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
780}
781
31299944 782static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 783{
31299944 784 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
785}
786
31299944 787static inline bool cpu_has_vmx_invept_context(void)
d56f546d 788{
31299944 789 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
790}
791
31299944 792static inline bool cpu_has_vmx_invept_global(void)
d56f546d 793{
31299944 794 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
795}
796
518c8aee
GJ
797static inline bool cpu_has_vmx_invvpid_single(void)
798{
799 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
800}
801
b9d762fa
GJ
802static inline bool cpu_has_vmx_invvpid_global(void)
803{
804 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
805}
806
31299944 807static inline bool cpu_has_vmx_ept(void)
d56f546d 808{
04547156
SY
809 return vmcs_config.cpu_based_2nd_exec_ctrl &
810 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
811}
812
31299944 813static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
814{
815 return vmcs_config.cpu_based_2nd_exec_ctrl &
816 SECONDARY_EXEC_UNRESTRICTED_GUEST;
817}
818
31299944 819static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
820{
821 return vmcs_config.cpu_based_2nd_exec_ctrl &
822 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
823}
824
31299944 825static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 826{
6d3e435e 827 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
828}
829
31299944 830static inline bool cpu_has_vmx_vpid(void)
2384d2b3 831{
04547156
SY
832 return vmcs_config.cpu_based_2nd_exec_ctrl &
833 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
834}
835
31299944 836static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
837{
838 return vmcs_config.cpu_based_2nd_exec_ctrl &
839 SECONDARY_EXEC_RDTSCP;
840}
841
31299944 842static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
843{
844 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
845}
846
f5f48ee1
SY
847static inline bool cpu_has_vmx_wbinvd_exit(void)
848{
849 return vmcs_config.cpu_based_2nd_exec_ctrl &
850 SECONDARY_EXEC_WBINVD_EXITING;
851}
852
04547156
SY
853static inline bool report_flexpriority(void)
854{
855 return flexpriority_enabled;
856}
857
fe3ef05c
NHE
858static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
859{
860 return vmcs12->cpu_based_vm_exec_control & bit;
861}
862
863static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
864{
865 return (vmcs12->cpu_based_vm_exec_control &
866 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 (vmcs12->secondary_vm_exec_control & bit);
868}
869
644d711a
NHE
870static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 struct kvm_vcpu *vcpu)
872{
873 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
874}
875
876static inline bool is_exception(u32 intr_info)
877{
878 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
880}
881
882static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
883static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 struct vmcs12 *vmcs12,
885 u32 reason, unsigned long qualification);
886
8b9cf98c 887static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
888{
889 int i;
890
a2fa3e9f 891 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 892 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
893 return i;
894 return -1;
895}
896
2384d2b3
SY
897static inline void __invvpid(int ext, u16 vpid, gva_t gva)
898{
899 struct {
900 u64 vpid : 16;
901 u64 rsvd : 48;
902 u64 gva;
903 } operand = { vpid, 0, gva };
904
4ecac3fd 905 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
906 /* CF==1 or ZF==1 --> rc = -1 */
907 "; ja 1f ; ud2 ; 1:"
908 : : "a"(&operand), "c"(ext) : "cc", "memory");
909}
910
1439442c
SY
911static inline void __invept(int ext, u64 eptp, gpa_t gpa)
912{
913 struct {
914 u64 eptp, gpa;
915 } operand = {eptp, gpa};
916
4ecac3fd 917 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
918 /* CF==1 or ZF==1 --> rc = -1 */
919 "; ja 1f ; ud2 ; 1:\n"
920 : : "a" (&operand), "c" (ext) : "cc", "memory");
921}
922
26bb0981 923static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
924{
925 int i;
926
8b9cf98c 927 i = __find_msr_index(vmx, msr);
a75beee6 928 if (i >= 0)
a2fa3e9f 929 return &vmx->guest_msrs[i];
8b6d44c7 930 return NULL;
7725f0ba
AK
931}
932
6aa8b732
AK
933static void vmcs_clear(struct vmcs *vmcs)
934{
935 u64 phys_addr = __pa(vmcs);
936 u8 error;
937
4ecac3fd 938 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 939 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
940 : "cc", "memory");
941 if (error)
942 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
943 vmcs, phys_addr);
944}
945
d462b819
NHE
946static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
947{
948 vmcs_clear(loaded_vmcs->vmcs);
949 loaded_vmcs->cpu = -1;
950 loaded_vmcs->launched = 0;
951}
952
7725b894
DX
953static void vmcs_load(struct vmcs *vmcs)
954{
955 u64 phys_addr = __pa(vmcs);
956 u8 error;
957
958 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 959 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
960 : "cc", "memory");
961 if (error)
2844d849 962 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
963 vmcs, phys_addr);
964}
965
d462b819 966static void __loaded_vmcs_clear(void *arg)
6aa8b732 967{
d462b819 968 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 969 int cpu = raw_smp_processor_id();
6aa8b732 970
d462b819
NHE
971 if (loaded_vmcs->cpu != cpu)
972 return; /* vcpu migration can race with cpu offline */
973 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 974 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
975 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
977}
978
d462b819 979static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 980{
d462b819
NHE
981 if (loaded_vmcs->cpu != -1)
982 smp_call_function_single(
983 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
984}
985
1760dd49 986static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
987{
988 if (vmx->vpid == 0)
989 return;
990
518c8aee
GJ
991 if (cpu_has_vmx_invvpid_single())
992 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
993}
994
b9d762fa
GJ
995static inline void vpid_sync_vcpu_global(void)
996{
997 if (cpu_has_vmx_invvpid_global())
998 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
999}
1000
1001static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1002{
1003 if (cpu_has_vmx_invvpid_single())
1760dd49 1004 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1005 else
1006 vpid_sync_vcpu_global();
1007}
1008
1439442c
SY
1009static inline void ept_sync_global(void)
1010{
1011 if (cpu_has_vmx_invept_global())
1012 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1013}
1014
1015static inline void ept_sync_context(u64 eptp)
1016{
089d034e 1017 if (enable_ept) {
1439442c
SY
1018 if (cpu_has_vmx_invept_context())
1019 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1020 else
1021 ept_sync_global();
1022 }
1023}
1024
1025static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1026{
089d034e 1027 if (enable_ept) {
1439442c
SY
1028 if (cpu_has_vmx_invept_individual_addr())
1029 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1030 eptp, gpa);
1031 else
1032 ept_sync_context(eptp);
1033 }
1034}
1035
96304217 1036static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1037{
5e520e62 1038 unsigned long value;
6aa8b732 1039
5e520e62
AK
1040 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1042 return value;
1043}
1044
96304217 1045static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1046{
1047 return vmcs_readl(field);
1048}
1049
96304217 1050static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1051{
1052 return vmcs_readl(field);
1053}
1054
96304217 1055static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1056{
05b3e0c2 1057#ifdef CONFIG_X86_64
6aa8b732
AK
1058 return vmcs_readl(field);
1059#else
1060 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1061#endif
1062}
1063
e52de1b8
AK
1064static noinline void vmwrite_error(unsigned long field, unsigned long value)
1065{
1066 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1068 dump_stack();
1069}
1070
6aa8b732
AK
1071static void vmcs_writel(unsigned long field, unsigned long value)
1072{
1073 u8 error;
1074
4ecac3fd 1075 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1076 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1077 if (unlikely(error))
1078 vmwrite_error(field, value);
6aa8b732
AK
1079}
1080
1081static void vmcs_write16(unsigned long field, u16 value)
1082{
1083 vmcs_writel(field, value);
1084}
1085
1086static void vmcs_write32(unsigned long field, u32 value)
1087{
1088 vmcs_writel(field, value);
1089}
1090
1091static void vmcs_write64(unsigned long field, u64 value)
1092{
6aa8b732 1093 vmcs_writel(field, value);
7682f2d0 1094#ifndef CONFIG_X86_64
6aa8b732
AK
1095 asm volatile ("");
1096 vmcs_writel(field+1, value >> 32);
1097#endif
1098}
1099
2ab455cc
AL
1100static void vmcs_clear_bits(unsigned long field, u32 mask)
1101{
1102 vmcs_writel(field, vmcs_readl(field) & ~mask);
1103}
1104
1105static void vmcs_set_bits(unsigned long field, u32 mask)
1106{
1107 vmcs_writel(field, vmcs_readl(field) | mask);
1108}
1109
2fb92db1
AK
1110static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1111{
1112 vmx->segment_cache.bitmask = 0;
1113}
1114
1115static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1116 unsigned field)
1117{
1118 bool ret;
1119 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1120
1121 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 vmx->segment_cache.bitmask = 0;
1124 }
1125 ret = vmx->segment_cache.bitmask & mask;
1126 vmx->segment_cache.bitmask |= mask;
1127 return ret;
1128}
1129
1130static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1131{
1132 u16 *p = &vmx->segment_cache.seg[seg].selector;
1133
1134 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1136 return *p;
1137}
1138
1139static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1140{
1141 ulong *p = &vmx->segment_cache.seg[seg].base;
1142
1143 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1145 return *p;
1146}
1147
1148static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1149{
1150 u32 *p = &vmx->segment_cache.seg[seg].limit;
1151
1152 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1154 return *p;
1155}
1156
1157static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1158{
1159 u32 *p = &vmx->segment_cache.seg[seg].ar;
1160
1161 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1163 return *p;
1164}
1165
abd3f2d6
AK
1166static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1167{
1168 u32 eb;
1169
fd7373cc
JK
1170 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 if ((vcpu->guest_debug &
1173 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 eb |= 1u << BP_VECTOR;
7ffd92c5 1176 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1177 eb = ~0;
089d034e 1178 if (enable_ept)
1439442c 1179 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1180 if (vcpu->fpu_active)
1181 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1182
1183 /* When we are running a nested L2 guest and L1 specified for it a
1184 * certain exception bitmap, we must trap the same exceptions and pass
1185 * them to L1. When running L2, we will only handle the exceptions
1186 * specified above if L1 did not want them.
1187 */
1188 if (is_guest_mode(vcpu))
1189 eb |= get_vmcs12(vcpu)->exception_bitmap;
1190
abd3f2d6
AK
1191 vmcs_write32(EXCEPTION_BITMAP, eb);
1192}
1193
8bf00a52
GN
1194static void clear_atomic_switch_msr_special(unsigned long entry,
1195 unsigned long exit)
1196{
1197 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1198 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1199}
1200
61d2ef2c
AK
1201static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1202{
1203 unsigned i;
1204 struct msr_autoload *m = &vmx->msr_autoload;
1205
8bf00a52
GN
1206 switch (msr) {
1207 case MSR_EFER:
1208 if (cpu_has_load_ia32_efer) {
1209 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1210 VM_EXIT_LOAD_IA32_EFER);
1211 return;
1212 }
1213 break;
1214 case MSR_CORE_PERF_GLOBAL_CTRL:
1215 if (cpu_has_load_perf_global_ctrl) {
1216 clear_atomic_switch_msr_special(
1217 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1218 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1219 return;
1220 }
1221 break;
110312c8
AK
1222 }
1223
61d2ef2c
AK
1224 for (i = 0; i < m->nr; ++i)
1225 if (m->guest[i].index == msr)
1226 break;
1227
1228 if (i == m->nr)
1229 return;
1230 --m->nr;
1231 m->guest[i] = m->guest[m->nr];
1232 m->host[i] = m->host[m->nr];
1233 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1234 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1235}
1236
8bf00a52
GN
1237static void add_atomic_switch_msr_special(unsigned long entry,
1238 unsigned long exit, unsigned long guest_val_vmcs,
1239 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1240{
1241 vmcs_write64(guest_val_vmcs, guest_val);
1242 vmcs_write64(host_val_vmcs, host_val);
1243 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1244 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1245}
1246
61d2ef2c
AK
1247static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1248 u64 guest_val, u64 host_val)
1249{
1250 unsigned i;
1251 struct msr_autoload *m = &vmx->msr_autoload;
1252
8bf00a52
GN
1253 switch (msr) {
1254 case MSR_EFER:
1255 if (cpu_has_load_ia32_efer) {
1256 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1257 VM_EXIT_LOAD_IA32_EFER,
1258 GUEST_IA32_EFER,
1259 HOST_IA32_EFER,
1260 guest_val, host_val);
1261 return;
1262 }
1263 break;
1264 case MSR_CORE_PERF_GLOBAL_CTRL:
1265 if (cpu_has_load_perf_global_ctrl) {
1266 add_atomic_switch_msr_special(
1267 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1268 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1269 GUEST_IA32_PERF_GLOBAL_CTRL,
1270 HOST_IA32_PERF_GLOBAL_CTRL,
1271 guest_val, host_val);
1272 return;
1273 }
1274 break;
110312c8
AK
1275 }
1276
61d2ef2c
AK
1277 for (i = 0; i < m->nr; ++i)
1278 if (m->guest[i].index == msr)
1279 break;
1280
e7fc6f93
GN
1281 if (i == NR_AUTOLOAD_MSRS) {
1282 printk_once(KERN_WARNING"Not enough mst switch entries. "
1283 "Can't add msr %x\n", msr);
1284 return;
1285 } else if (i == m->nr) {
61d2ef2c
AK
1286 ++m->nr;
1287 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1288 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1289 }
1290
1291 m->guest[i].index = msr;
1292 m->guest[i].value = guest_val;
1293 m->host[i].index = msr;
1294 m->host[i].value = host_val;
1295}
1296
33ed6329
AK
1297static void reload_tss(void)
1298{
33ed6329
AK
1299 /*
1300 * VT restores TR but not its size. Useless.
1301 */
d359192f 1302 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1303 struct desc_struct *descs;
33ed6329 1304
d359192f 1305 descs = (void *)gdt->address;
33ed6329
AK
1306 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1307 load_TR_desc();
33ed6329
AK
1308}
1309
92c0d900 1310static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1311{
3a34a881 1312 u64 guest_efer;
51c6cf66
AK
1313 u64 ignore_bits;
1314
f6801dff 1315 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1316
51c6cf66
AK
1317 /*
1318 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1319 * outside long mode
1320 */
1321 ignore_bits = EFER_NX | EFER_SCE;
1322#ifdef CONFIG_X86_64
1323 ignore_bits |= EFER_LMA | EFER_LME;
1324 /* SCE is meaningful only in long mode on Intel */
1325 if (guest_efer & EFER_LMA)
1326 ignore_bits &= ~(u64)EFER_SCE;
1327#endif
51c6cf66
AK
1328 guest_efer &= ~ignore_bits;
1329 guest_efer |= host_efer & ignore_bits;
26bb0981 1330 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1331 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1332
1333 clear_atomic_switch_msr(vmx, MSR_EFER);
1334 /* On ept, can't emulate nx, and must switch nx atomically */
1335 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1336 guest_efer = vmx->vcpu.arch.efer;
1337 if (!(guest_efer & EFER_LMA))
1338 guest_efer &= ~EFER_LME;
1339 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1340 return false;
1341 }
1342
26bb0981 1343 return true;
51c6cf66
AK
1344}
1345
2d49ec72
GN
1346static unsigned long segment_base(u16 selector)
1347{
d359192f 1348 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1349 struct desc_struct *d;
1350 unsigned long table_base;
1351 unsigned long v;
1352
1353 if (!(selector & ~3))
1354 return 0;
1355
d359192f 1356 table_base = gdt->address;
2d49ec72
GN
1357
1358 if (selector & 4) { /* from ldt */
1359 u16 ldt_selector = kvm_read_ldt();
1360
1361 if (!(ldt_selector & ~3))
1362 return 0;
1363
1364 table_base = segment_base(ldt_selector);
1365 }
1366 d = (struct desc_struct *)(table_base + (selector & ~7));
1367 v = get_desc_base(d);
1368#ifdef CONFIG_X86_64
1369 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1370 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1371#endif
1372 return v;
1373}
1374
1375static inline unsigned long kvm_read_tr_base(void)
1376{
1377 u16 tr;
1378 asm("str %0" : "=g"(tr));
1379 return segment_base(tr);
1380}
1381
04d2cc77 1382static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1383{
04d2cc77 1384 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1385 int i;
04d2cc77 1386
a2fa3e9f 1387 if (vmx->host_state.loaded)
33ed6329
AK
1388 return;
1389
a2fa3e9f 1390 vmx->host_state.loaded = 1;
33ed6329
AK
1391 /*
1392 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1393 * allow segment selectors with cpl > 0 or ti == 1.
1394 */
d6e88aec 1395 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1396 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1397 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1398 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1399 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1400 vmx->host_state.fs_reload_needed = 0;
1401 } else {
33ed6329 1402 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1403 vmx->host_state.fs_reload_needed = 1;
33ed6329 1404 }
9581d442 1405 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1406 if (!(vmx->host_state.gs_sel & 7))
1407 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1408 else {
1409 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1410 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1411 }
1412
1413#ifdef CONFIG_X86_64
1414 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1415 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1416#else
a2fa3e9f
GH
1417 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1418 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1419#endif
707c0874
AK
1420
1421#ifdef CONFIG_X86_64
c8770e7b
AK
1422 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1423 if (is_long_mode(&vmx->vcpu))
44ea2b17 1424 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1425#endif
26bb0981
AK
1426 for (i = 0; i < vmx->save_nmsrs; ++i)
1427 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1428 vmx->guest_msrs[i].data,
1429 vmx->guest_msrs[i].mask);
33ed6329
AK
1430}
1431
a9b21b62 1432static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1433{
a2fa3e9f 1434 if (!vmx->host_state.loaded)
33ed6329
AK
1435 return;
1436
e1beb1d3 1437 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1438 vmx->host_state.loaded = 0;
c8770e7b
AK
1439#ifdef CONFIG_X86_64
1440 if (is_long_mode(&vmx->vcpu))
1441 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1442#endif
152d3f2f 1443 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1444 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1445#ifdef CONFIG_X86_64
9581d442 1446 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1447#else
1448 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1449#endif
33ed6329 1450 }
0a77fe4c
AK
1451 if (vmx->host_state.fs_reload_needed)
1452 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1453 reload_tss();
44ea2b17 1454#ifdef CONFIG_X86_64
c8770e7b 1455 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1456#endif
1361b83a 1457 if (user_has_fpu())
1c11e713 1458 clts();
3444d7da 1459 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1460}
1461
a9b21b62
AK
1462static void vmx_load_host_state(struct vcpu_vmx *vmx)
1463{
1464 preempt_disable();
1465 __vmx_load_host_state(vmx);
1466 preempt_enable();
1467}
1468
6aa8b732
AK
1469/*
1470 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1471 * vcpu mutex is already taken.
1472 */
15ad7146 1473static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1474{
a2fa3e9f 1475 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1476 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1477
4610c9cc
DX
1478 if (!vmm_exclusive)
1479 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1480 else if (vmx->loaded_vmcs->cpu != cpu)
1481 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1482
d462b819
NHE
1483 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1484 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1485 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1486 }
1487
d462b819 1488 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1489 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1490 unsigned long sysenter_esp;
1491
a8eeb04a 1492 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1493 local_irq_disable();
d462b819
NHE
1494 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1495 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1496 local_irq_enable();
1497
6aa8b732
AK
1498 /*
1499 * Linux uses per-cpu TSS and GDT, so set these when switching
1500 * processors.
1501 */
d6e88aec 1502 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1503 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1504
1505 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1506 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1507 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1508 }
6aa8b732
AK
1509}
1510
1511static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1512{
a9b21b62 1513 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1514 if (!vmm_exclusive) {
d462b819
NHE
1515 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1516 vcpu->cpu = -1;
4610c9cc
DX
1517 kvm_cpu_vmxoff();
1518 }
6aa8b732
AK
1519}
1520
5fd86fcf
AK
1521static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1522{
81231c69
AK
1523 ulong cr0;
1524
5fd86fcf
AK
1525 if (vcpu->fpu_active)
1526 return;
1527 vcpu->fpu_active = 1;
81231c69
AK
1528 cr0 = vmcs_readl(GUEST_CR0);
1529 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1530 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1531 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1532 update_exception_bitmap(vcpu);
edcafe3c 1533 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1534 if (is_guest_mode(vcpu))
1535 vcpu->arch.cr0_guest_owned_bits &=
1536 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1537 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1538}
1539
edcafe3c
AK
1540static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1541
fe3ef05c
NHE
1542/*
1543 * Return the cr0 value that a nested guest would read. This is a combination
1544 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1545 * its hypervisor (cr0_read_shadow).
1546 */
1547static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1548{
1549 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1550 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1551}
1552static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1553{
1554 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1555 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1556}
1557
5fd86fcf
AK
1558static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1559{
36cf24e0
NHE
1560 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1561 * set this *before* calling this function.
1562 */
edcafe3c 1563 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1564 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1565 update_exception_bitmap(vcpu);
edcafe3c
AK
1566 vcpu->arch.cr0_guest_owned_bits = 0;
1567 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1568 if (is_guest_mode(vcpu)) {
1569 /*
1570 * L1's specified read shadow might not contain the TS bit,
1571 * so now that we turned on shadowing of this bit, we need to
1572 * set this bit of the shadow. Like in nested_vmx_run we need
1573 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1574 * up-to-date here because we just decached cr0.TS (and we'll
1575 * only update vmcs12->guest_cr0 on nested exit).
1576 */
1577 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1579 (vcpu->arch.cr0 & X86_CR0_TS);
1580 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1581 } else
1582 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1583}
1584
6aa8b732
AK
1585static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1586{
78ac8b47 1587 unsigned long rflags, save_rflags;
345dcaa8 1588
6de12732
AK
1589 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1590 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1591 rflags = vmcs_readl(GUEST_RFLAGS);
1592 if (to_vmx(vcpu)->rmode.vm86_active) {
1593 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1594 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1595 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1596 }
1597 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1598 }
6de12732 1599 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1600}
1601
1602static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1603{
6de12732 1604 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1605 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1606 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1607 if (to_vmx(vcpu)->rmode.vm86_active) {
1608 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1609 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1610 }
6aa8b732
AK
1611 vmcs_writel(GUEST_RFLAGS, rflags);
1612}
1613
2809f5d2
GC
1614static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1615{
1616 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1617 int ret = 0;
1618
1619 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1620 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1621 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1622 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1623
1624 return ret & mask;
1625}
1626
1627static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1628{
1629 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1630 u32 interruptibility = interruptibility_old;
1631
1632 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1633
48005f64 1634 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1635 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1636 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1637 interruptibility |= GUEST_INTR_STATE_STI;
1638
1639 if ((interruptibility != interruptibility_old))
1640 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1641}
1642
6aa8b732
AK
1643static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1644{
1645 unsigned long rip;
6aa8b732 1646
5fdbf976 1647 rip = kvm_rip_read(vcpu);
6aa8b732 1648 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1649 kvm_rip_write(vcpu, rip);
6aa8b732 1650
2809f5d2
GC
1651 /* skipping an emulated instruction also counts */
1652 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1653}
1654
0b6ac343
NHE
1655/*
1656 * KVM wants to inject page-faults which it got to the guest. This function
1657 * checks whether in a nested guest, we need to inject them to L1 or L2.
1658 * This function assumes it is called with the exit reason in vmcs02 being
1659 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1660 * is running).
1661 */
1662static int nested_pf_handled(struct kvm_vcpu *vcpu)
1663{
1664 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1665
1666 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1667 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1668 return 0;
1669
1670 nested_vmx_vmexit(vcpu);
1671 return 1;
1672}
1673
298101da 1674static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1675 bool has_error_code, u32 error_code,
1676 bool reinject)
298101da 1677{
77ab6db0 1678 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1679 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1680
0b6ac343
NHE
1681 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1682 nested_pf_handled(vcpu))
1683 return;
1684
8ab2d2e2 1685 if (has_error_code) {
77ab6db0 1686 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1687 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1688 }
77ab6db0 1689
7ffd92c5 1690 if (vmx->rmode.vm86_active) {
71f9833b
SH
1691 int inc_eip = 0;
1692 if (kvm_exception_is_soft(nr))
1693 inc_eip = vcpu->arch.event_exit_inst_len;
1694 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1695 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1696 return;
1697 }
1698
66fd3f7f
GN
1699 if (kvm_exception_is_soft(nr)) {
1700 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1701 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1702 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1703 } else
1704 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1705
1706 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1707}
1708
4e47c7a6
SY
1709static bool vmx_rdtscp_supported(void)
1710{
1711 return cpu_has_vmx_rdtscp();
1712}
1713
a75beee6
ED
1714/*
1715 * Swap MSR entry in host/guest MSR entry array.
1716 */
8b9cf98c 1717static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1718{
26bb0981 1719 struct shared_msr_entry tmp;
a2fa3e9f
GH
1720
1721 tmp = vmx->guest_msrs[to];
1722 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1723 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1724}
1725
e38aea3e
AK
1726/*
1727 * Set up the vmcs to automatically save and restore system
1728 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1729 * mode, as fiddling with msrs is very expensive.
1730 */
8b9cf98c 1731static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1732{
26bb0981 1733 int save_nmsrs, index;
5897297b 1734 unsigned long *msr_bitmap;
e38aea3e 1735
a75beee6
ED
1736 save_nmsrs = 0;
1737#ifdef CONFIG_X86_64
8b9cf98c 1738 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1739 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1740 if (index >= 0)
8b9cf98c
RR
1741 move_msr_up(vmx, index, save_nmsrs++);
1742 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1743 if (index >= 0)
8b9cf98c
RR
1744 move_msr_up(vmx, index, save_nmsrs++);
1745 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1746 if (index >= 0)
8b9cf98c 1747 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1748 index = __find_msr_index(vmx, MSR_TSC_AUX);
1749 if (index >= 0 && vmx->rdtscp_enabled)
1750 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1751 /*
8c06585d 1752 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1753 * if efer.sce is enabled.
1754 */
8c06585d 1755 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1756 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1757 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1758 }
1759#endif
92c0d900
AK
1760 index = __find_msr_index(vmx, MSR_EFER);
1761 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1762 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1763
26bb0981 1764 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1765
1766 if (cpu_has_vmx_msr_bitmap()) {
1767 if (is_long_mode(&vmx->vcpu))
1768 msr_bitmap = vmx_msr_bitmap_longmode;
1769 else
1770 msr_bitmap = vmx_msr_bitmap_legacy;
1771
1772 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1773 }
e38aea3e
AK
1774}
1775
6aa8b732
AK
1776/*
1777 * reads and returns guest's timestamp counter "register"
1778 * guest_tsc = host_tsc + tsc_offset -- 21.3
1779 */
1780static u64 guest_read_tsc(void)
1781{
1782 u64 host_tsc, tsc_offset;
1783
1784 rdtscll(host_tsc);
1785 tsc_offset = vmcs_read64(TSC_OFFSET);
1786 return host_tsc + tsc_offset;
1787}
1788
d5c1785d
NHE
1789/*
1790 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1791 * counter, even if a nested guest (L2) is currently running.
1792 */
1793u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1794{
1795 u64 host_tsc, tsc_offset;
1796
1797 rdtscll(host_tsc);
1798 tsc_offset = is_guest_mode(vcpu) ?
1799 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1800 vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1802}
1803
4051b188 1804/*
cc578287
ZA
1805 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1806 * software catchup for faster rates on slower CPUs.
4051b188 1807 */
cc578287 1808static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1809{
cc578287
ZA
1810 if (!scale)
1811 return;
1812
1813 if (user_tsc_khz > tsc_khz) {
1814 vcpu->arch.tsc_catchup = 1;
1815 vcpu->arch.tsc_always_catchup = 1;
1816 } else
1817 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1818}
1819
6aa8b732 1820/*
99e3e30a 1821 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1822 */
99e3e30a 1823static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1824{
27fc51b2 1825 if (is_guest_mode(vcpu)) {
7991825b 1826 /*
27fc51b2
NHE
1827 * We're here if L1 chose not to trap WRMSR to TSC. According
1828 * to the spec, this should set L1's TSC; The offset that L1
1829 * set for L2 remains unchanged, and still needs to be added
1830 * to the newly set TSC to get L2's TSC.
7991825b 1831 */
27fc51b2
NHE
1832 struct vmcs12 *vmcs12;
1833 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1834 /* recalculate vmcs02.TSC_OFFSET: */
1835 vmcs12 = get_vmcs12(vcpu);
1836 vmcs_write64(TSC_OFFSET, offset +
1837 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1838 vmcs12->tsc_offset : 0));
1839 } else {
1840 vmcs_write64(TSC_OFFSET, offset);
1841 }
6aa8b732
AK
1842}
1843
f1e2b260 1844static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1845{
1846 u64 offset = vmcs_read64(TSC_OFFSET);
1847 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1848 if (is_guest_mode(vcpu)) {
1849 /* Even when running L2, the adjustment needs to apply to L1 */
1850 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1851 }
e48672fa
ZA
1852}
1853
857e4099
JR
1854static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1855{
1856 return target_tsc - native_read_tsc();
1857}
1858
801d3424
NHE
1859static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1860{
1861 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1862 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1863}
1864
1865/*
1866 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1867 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1868 * all guests if the "nested" module option is off, and can also be disabled
1869 * for a single guest by disabling its VMX cpuid bit.
1870 */
1871static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1872{
1873 return nested && guest_cpuid_has_vmx(vcpu);
1874}
1875
b87a51ae
NHE
1876/*
1877 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1878 * returned for the various VMX controls MSRs when nested VMX is enabled.
1879 * The same values should also be used to verify that vmcs12 control fields are
1880 * valid during nested entry from L1 to L2.
1881 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1882 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1883 * bit in the high half is on if the corresponding bit in the control field
1884 * may be on. See also vmx_control_verify().
1885 * TODO: allow these variables to be modified (downgraded) by module options
1886 * or other means.
1887 */
1888static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1889static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1890static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1891static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1892static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1893static __init void nested_vmx_setup_ctls_msrs(void)
1894{
1895 /*
1896 * Note that as a general rule, the high half of the MSRs (bits in
1897 * the control fields which may be 1) should be initialized by the
1898 * intersection of the underlying hardware's MSR (i.e., features which
1899 * can be supported) and the list of features we want to expose -
1900 * because they are known to be properly supported in our code.
1901 * Also, usually, the low half of the MSRs (bits which must be 1) can
1902 * be set to 0, meaning that L1 may turn off any of these bits. The
1903 * reason is that if one of these bits is necessary, it will appear
1904 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1905 * fields of vmcs01 and vmcs02, will turn these bits off - and
1906 * nested_vmx_exit_handled() will not pass related exits to L1.
1907 * These rules have exceptions below.
1908 */
1909
1910 /* pin-based controls */
1911 /*
1912 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1913 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1914 */
1915 nested_vmx_pinbased_ctls_low = 0x16 ;
1916 nested_vmx_pinbased_ctls_high = 0x16 |
1917 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1918 PIN_BASED_VIRTUAL_NMIS;
1919
1920 /* exit controls */
1921 nested_vmx_exit_ctls_low = 0;
b6f1250e 1922 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1923#ifdef CONFIG_X86_64
1924 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1925#else
1926 nested_vmx_exit_ctls_high = 0;
1927#endif
1928
1929 /* entry controls */
1930 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1931 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1932 nested_vmx_entry_ctls_low = 0;
1933 nested_vmx_entry_ctls_high &=
1934 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1935
1936 /* cpu-based controls */
1937 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1938 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1939 nested_vmx_procbased_ctls_low = 0;
1940 nested_vmx_procbased_ctls_high &=
1941 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1942 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1943 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1944 CPU_BASED_CR3_STORE_EXITING |
1945#ifdef CONFIG_X86_64
1946 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1947#endif
1948 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1949 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
fee84b07 1950 CPU_BASED_RDPMC_EXITING |
b87a51ae
NHE
1951 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1952 /*
1953 * We can allow some features even when not supported by the
1954 * hardware. For example, L1 can specify an MSR bitmap - and we
1955 * can use it to avoid exits to L1 - even when L0 runs L2
1956 * without MSR bitmaps.
1957 */
1958 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1959
1960 /* secondary cpu-based controls */
1961 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1962 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1963 nested_vmx_secondary_ctls_low = 0;
1964 nested_vmx_secondary_ctls_high &=
1965 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1966}
1967
1968static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1969{
1970 /*
1971 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1972 */
1973 return ((control & high) | low) == control;
1974}
1975
1976static inline u64 vmx_control_msr(u32 low, u32 high)
1977{
1978 return low | ((u64)high << 32);
1979}
1980
1981/*
1982 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1983 * also let it use VMX-specific MSRs.
1984 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1985 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1986 * like all other MSRs).
1987 */
1988static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1989{
1990 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1991 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1992 /*
1993 * According to the spec, processors which do not support VMX
1994 * should throw a #GP(0) when VMX capability MSRs are read.
1995 */
1996 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1997 return 1;
1998 }
1999
2000 switch (msr_index) {
2001 case MSR_IA32_FEATURE_CONTROL:
2002 *pdata = 0;
2003 break;
2004 case MSR_IA32_VMX_BASIC:
2005 /*
2006 * This MSR reports some information about VMX support. We
2007 * should return information about the VMX we emulate for the
2008 * guest, and the VMCS structure we give it - not about the
2009 * VMX support of the underlying hardware.
2010 */
2011 *pdata = VMCS12_REVISION |
2012 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2013 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2014 break;
2015 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2016 case MSR_IA32_VMX_PINBASED_CTLS:
2017 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2018 nested_vmx_pinbased_ctls_high);
2019 break;
2020 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2021 case MSR_IA32_VMX_PROCBASED_CTLS:
2022 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2023 nested_vmx_procbased_ctls_high);
2024 break;
2025 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2026 case MSR_IA32_VMX_EXIT_CTLS:
2027 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2028 nested_vmx_exit_ctls_high);
2029 break;
2030 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2031 case MSR_IA32_VMX_ENTRY_CTLS:
2032 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2033 nested_vmx_entry_ctls_high);
2034 break;
2035 case MSR_IA32_VMX_MISC:
2036 *pdata = 0;
2037 break;
2038 /*
2039 * These MSRs specify bits which the guest must keep fixed (on or off)
2040 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2041 * We picked the standard core2 setting.
2042 */
2043#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2044#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2045 case MSR_IA32_VMX_CR0_FIXED0:
2046 *pdata = VMXON_CR0_ALWAYSON;
2047 break;
2048 case MSR_IA32_VMX_CR0_FIXED1:
2049 *pdata = -1ULL;
2050 break;
2051 case MSR_IA32_VMX_CR4_FIXED0:
2052 *pdata = VMXON_CR4_ALWAYSON;
2053 break;
2054 case MSR_IA32_VMX_CR4_FIXED1:
2055 *pdata = -1ULL;
2056 break;
2057 case MSR_IA32_VMX_VMCS_ENUM:
2058 *pdata = 0x1f;
2059 break;
2060 case MSR_IA32_VMX_PROCBASED_CTLS2:
2061 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2062 nested_vmx_secondary_ctls_high);
2063 break;
2064 case MSR_IA32_VMX_EPT_VPID_CAP:
2065 /* Currently, no nested ept or nested vpid */
2066 *pdata = 0;
2067 break;
2068 default:
2069 return 0;
2070 }
2071
2072 return 1;
2073}
2074
2075static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2076{
2077 if (!nested_vmx_allowed(vcpu))
2078 return 0;
2079
2080 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2081 /* TODO: the right thing. */
2082 return 1;
2083 /*
2084 * No need to treat VMX capability MSRs specially: If we don't handle
2085 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2086 */
2087 return 0;
2088}
2089
6aa8b732
AK
2090/*
2091 * Reads an msr value (of 'msr_index') into 'pdata'.
2092 * Returns 0 on success, non-0 otherwise.
2093 * Assumes vcpu_load() was already called.
2094 */
2095static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2096{
2097 u64 data;
26bb0981 2098 struct shared_msr_entry *msr;
6aa8b732
AK
2099
2100 if (!pdata) {
2101 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2102 return -EINVAL;
2103 }
2104
2105 switch (msr_index) {
05b3e0c2 2106#ifdef CONFIG_X86_64
6aa8b732
AK
2107 case MSR_FS_BASE:
2108 data = vmcs_readl(GUEST_FS_BASE);
2109 break;
2110 case MSR_GS_BASE:
2111 data = vmcs_readl(GUEST_GS_BASE);
2112 break;
44ea2b17
AK
2113 case MSR_KERNEL_GS_BASE:
2114 vmx_load_host_state(to_vmx(vcpu));
2115 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2116 break;
26bb0981 2117#endif
6aa8b732 2118 case MSR_EFER:
3bab1f5d 2119 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2120 case MSR_IA32_TSC:
6aa8b732
AK
2121 data = guest_read_tsc();
2122 break;
2123 case MSR_IA32_SYSENTER_CS:
2124 data = vmcs_read32(GUEST_SYSENTER_CS);
2125 break;
2126 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2127 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2128 break;
2129 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2130 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2131 break;
4e47c7a6
SY
2132 case MSR_TSC_AUX:
2133 if (!to_vmx(vcpu)->rdtscp_enabled)
2134 return 1;
2135 /* Otherwise falls through */
6aa8b732 2136 default:
b87a51ae
NHE
2137 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2138 return 0;
8b9cf98c 2139 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2140 if (msr) {
2141 data = msr->data;
2142 break;
6aa8b732 2143 }
3bab1f5d 2144 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2145 }
2146
2147 *pdata = data;
2148 return 0;
2149}
2150
2151/*
2152 * Writes msr value into into the appropriate "register".
2153 * Returns 0 on success, non-0 otherwise.
2154 * Assumes vcpu_load() was already called.
2155 */
2156static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2157{
a2fa3e9f 2158 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2159 struct shared_msr_entry *msr;
2cc51560
ED
2160 int ret = 0;
2161
6aa8b732 2162 switch (msr_index) {
3bab1f5d 2163 case MSR_EFER:
2cc51560 2164 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2165 break;
16175a79 2166#ifdef CONFIG_X86_64
6aa8b732 2167 case MSR_FS_BASE:
2fb92db1 2168 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2169 vmcs_writel(GUEST_FS_BASE, data);
2170 break;
2171 case MSR_GS_BASE:
2fb92db1 2172 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2173 vmcs_writel(GUEST_GS_BASE, data);
2174 break;
44ea2b17
AK
2175 case MSR_KERNEL_GS_BASE:
2176 vmx_load_host_state(vmx);
2177 vmx->msr_guest_kernel_gs_base = data;
2178 break;
6aa8b732
AK
2179#endif
2180 case MSR_IA32_SYSENTER_CS:
2181 vmcs_write32(GUEST_SYSENTER_CS, data);
2182 break;
2183 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2184 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2185 break;
2186 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2187 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2188 break;
af24a4e4 2189 case MSR_IA32_TSC:
99e3e30a 2190 kvm_write_tsc(vcpu, data);
6aa8b732 2191 break;
468d472f
SY
2192 case MSR_IA32_CR_PAT:
2193 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2194 vmcs_write64(GUEST_IA32_PAT, data);
2195 vcpu->arch.pat = data;
2196 break;
2197 }
4e47c7a6
SY
2198 ret = kvm_set_msr_common(vcpu, msr_index, data);
2199 break;
2200 case MSR_TSC_AUX:
2201 if (!vmx->rdtscp_enabled)
2202 return 1;
2203 /* Check reserved bit, higher 32 bits should be zero */
2204 if ((data >> 32) != 0)
2205 return 1;
2206 /* Otherwise falls through */
6aa8b732 2207 default:
b87a51ae
NHE
2208 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2209 break;
8b9cf98c 2210 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2211 if (msr) {
2212 msr->data = data;
9ee73970
AK
2213 if (msr - vmx->guest_msrs < vmx->save_nmsrs)
2214 kvm_set_shared_msr(msr->index, msr->data,
2215 msr->mask);
3bab1f5d 2216 break;
6aa8b732 2217 }
2cc51560 2218 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2219 }
2220
2cc51560 2221 return ret;
6aa8b732
AK
2222}
2223
5fdbf976 2224static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2225{
5fdbf976
MT
2226 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2227 switch (reg) {
2228 case VCPU_REGS_RSP:
2229 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2230 break;
2231 case VCPU_REGS_RIP:
2232 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2233 break;
6de4f3ad
AK
2234 case VCPU_EXREG_PDPTR:
2235 if (enable_ept)
2236 ept_save_pdptrs(vcpu);
2237 break;
5fdbf976
MT
2238 default:
2239 break;
2240 }
6aa8b732
AK
2241}
2242
355be0b9 2243static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2244{
ae675ef0
JK
2245 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2246 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2247 else
2248 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2249
abd3f2d6 2250 update_exception_bitmap(vcpu);
6aa8b732
AK
2251}
2252
2253static __init int cpu_has_kvm_support(void)
2254{
6210e37b 2255 return cpu_has_vmx();
6aa8b732
AK
2256}
2257
2258static __init int vmx_disabled_by_bios(void)
2259{
2260 u64 msr;
2261
2262 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2263 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2264 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2265 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2266 && tboot_enabled())
2267 return 1;
23f3e991 2268 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2269 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2270 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2271 && !tboot_enabled()) {
2272 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2273 "activate TXT before enabling KVM\n");
cafd6659 2274 return 1;
f9335afe 2275 }
23f3e991
JC
2276 /* launched w/o TXT and VMX disabled */
2277 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2278 && !tboot_enabled())
2279 return 1;
cafd6659
SW
2280 }
2281
2282 return 0;
6aa8b732
AK
2283}
2284
7725b894
DX
2285static void kvm_cpu_vmxon(u64 addr)
2286{
2287 asm volatile (ASM_VMX_VMXON_RAX
2288 : : "a"(&addr), "m"(addr)
2289 : "memory", "cc");
2290}
2291
10474ae8 2292static int hardware_enable(void *garbage)
6aa8b732
AK
2293{
2294 int cpu = raw_smp_processor_id();
2295 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2296 u64 old, test_bits;
6aa8b732 2297
10474ae8
AG
2298 if (read_cr4() & X86_CR4_VMXE)
2299 return -EBUSY;
2300
d462b819 2301 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2302 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2303
2304 test_bits = FEATURE_CONTROL_LOCKED;
2305 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2306 if (tboot_enabled())
2307 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2308
2309 if ((old & test_bits) != test_bits) {
6aa8b732 2310 /* enable and lock */
cafd6659
SW
2311 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2312 }
66aee91a 2313 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2314
4610c9cc
DX
2315 if (vmm_exclusive) {
2316 kvm_cpu_vmxon(phys_addr);
2317 ept_sync_global();
2318 }
10474ae8 2319
3444d7da
AK
2320 store_gdt(&__get_cpu_var(host_gdt));
2321
10474ae8 2322 return 0;
6aa8b732
AK
2323}
2324
d462b819 2325static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2326{
2327 int cpu = raw_smp_processor_id();
d462b819 2328 struct loaded_vmcs *v, *n;
543e4243 2329
d462b819
NHE
2330 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2331 loaded_vmcss_on_cpu_link)
2332 __loaded_vmcs_clear(v);
543e4243
AK
2333}
2334
710ff4a8
EH
2335
2336/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2337 * tricks.
2338 */
2339static void kvm_cpu_vmxoff(void)
6aa8b732 2340{
4ecac3fd 2341 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2342}
2343
710ff4a8
EH
2344static void hardware_disable(void *garbage)
2345{
4610c9cc 2346 if (vmm_exclusive) {
d462b819 2347 vmclear_local_loaded_vmcss();
4610c9cc
DX
2348 kvm_cpu_vmxoff();
2349 }
7725b894 2350 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2351}
2352
1c3d14fe 2353static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2354 u32 msr, u32 *result)
1c3d14fe
YS
2355{
2356 u32 vmx_msr_low, vmx_msr_high;
2357 u32 ctl = ctl_min | ctl_opt;
2358
2359 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2360
2361 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2362 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2363
2364 /* Ensure minimum (required) set of control bits are supported. */
2365 if (ctl_min & ~ctl)
002c7f7c 2366 return -EIO;
1c3d14fe
YS
2367
2368 *result = ctl;
2369 return 0;
2370}
2371
110312c8
AK
2372static __init bool allow_1_setting(u32 msr, u32 ctl)
2373{
2374 u32 vmx_msr_low, vmx_msr_high;
2375
2376 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2377 return vmx_msr_high & ctl;
2378}
2379
002c7f7c 2380static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2381{
2382 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2383 u32 min, opt, min2, opt2;
1c3d14fe
YS
2384 u32 _pin_based_exec_control = 0;
2385 u32 _cpu_based_exec_control = 0;
f78e0e2e 2386 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2387 u32 _vmexit_control = 0;
2388 u32 _vmentry_control = 0;
2389
2390 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2391 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2392 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2393 &_pin_based_exec_control) < 0)
002c7f7c 2394 return -EIO;
1c3d14fe 2395
10166744 2396 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2397#ifdef CONFIG_X86_64
2398 CPU_BASED_CR8_LOAD_EXITING |
2399 CPU_BASED_CR8_STORE_EXITING |
2400#endif
d56f546d
SY
2401 CPU_BASED_CR3_LOAD_EXITING |
2402 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2403 CPU_BASED_USE_IO_BITMAPS |
2404 CPU_BASED_MOV_DR_EXITING |
a7052897 2405 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2406 CPU_BASED_MWAIT_EXITING |
2407 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2408 CPU_BASED_INVLPG_EXITING |
2409 CPU_BASED_RDPMC_EXITING;
443381a8 2410
f78e0e2e 2411 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2412 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2413 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2414 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2415 &_cpu_based_exec_control) < 0)
002c7f7c 2416 return -EIO;
6e5d865c
YS
2417#ifdef CONFIG_X86_64
2418 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2419 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2420 ~CPU_BASED_CR8_STORE_EXITING;
2421#endif
f78e0e2e 2422 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2423 min2 = 0;
2424 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2425 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2426 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2427 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2428 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2429 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2430 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2431 if (adjust_vmx_controls(min2, opt2,
2432 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2433 &_cpu_based_2nd_exec_control) < 0)
2434 return -EIO;
2435 }
2436#ifndef CONFIG_X86_64
2437 if (!(_cpu_based_2nd_exec_control &
2438 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2439 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2440#endif
d56f546d 2441 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2442 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2443 enabled */
5fff7d27
GN
2444 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2445 CPU_BASED_CR3_STORE_EXITING |
2446 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2447 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2448 vmx_capability.ept, vmx_capability.vpid);
2449 }
1c3d14fe
YS
2450
2451 min = 0;
2452#ifdef CONFIG_X86_64
2453 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2454#endif
468d472f 2455 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2456 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2457 &_vmexit_control) < 0)
002c7f7c 2458 return -EIO;
1c3d14fe 2459
468d472f
SY
2460 min = 0;
2461 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2462 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2463 &_vmentry_control) < 0)
002c7f7c 2464 return -EIO;
6aa8b732 2465
c68876fd 2466 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2467
2468 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2469 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2470 return -EIO;
1c3d14fe
YS
2471
2472#ifdef CONFIG_X86_64
2473 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2474 if (vmx_msr_high & (1u<<16))
002c7f7c 2475 return -EIO;
1c3d14fe
YS
2476#endif
2477
2478 /* Require Write-Back (WB) memory type for VMCS accesses. */
2479 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2480 return -EIO;
1c3d14fe 2481
002c7f7c
YS
2482 vmcs_conf->size = vmx_msr_high & 0x1fff;
2483 vmcs_conf->order = get_order(vmcs_config.size);
2484 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2485
002c7f7c
YS
2486 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2487 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2488 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2489 vmcs_conf->vmexit_ctrl = _vmexit_control;
2490 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2491
110312c8
AK
2492 cpu_has_load_ia32_efer =
2493 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2494 VM_ENTRY_LOAD_IA32_EFER)
2495 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2496 VM_EXIT_LOAD_IA32_EFER);
2497
8bf00a52
GN
2498 cpu_has_load_perf_global_ctrl =
2499 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2500 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2501 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2502 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2503
2504 /*
2505 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2506 * but due to arrata below it can't be used. Workaround is to use
2507 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2508 *
2509 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2510 *
2511 * AAK155 (model 26)
2512 * AAP115 (model 30)
2513 * AAT100 (model 37)
2514 * BC86,AAY89,BD102 (model 44)
2515 * BA97 (model 46)
2516 *
2517 */
2518 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2519 switch (boot_cpu_data.x86_model) {
2520 case 26:
2521 case 30:
2522 case 37:
2523 case 44:
2524 case 46:
2525 cpu_has_load_perf_global_ctrl = false;
2526 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527 "does not work properly. Using workaround\n");
2528 break;
2529 default:
2530 break;
2531 }
2532 }
2533
1c3d14fe 2534 return 0;
c68876fd 2535}
6aa8b732
AK
2536
2537static struct vmcs *alloc_vmcs_cpu(int cpu)
2538{
2539 int node = cpu_to_node(cpu);
2540 struct page *pages;
2541 struct vmcs *vmcs;
2542
6484eb3e 2543 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2544 if (!pages)
2545 return NULL;
2546 vmcs = page_address(pages);
1c3d14fe
YS
2547 memset(vmcs, 0, vmcs_config.size);
2548 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2549 return vmcs;
2550}
2551
2552static struct vmcs *alloc_vmcs(void)
2553{
d3b2c338 2554 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2555}
2556
2557static void free_vmcs(struct vmcs *vmcs)
2558{
1c3d14fe 2559 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2560}
2561
d462b819
NHE
2562/*
2563 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2564 */
2565static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2566{
2567 if (!loaded_vmcs->vmcs)
2568 return;
2569 loaded_vmcs_clear(loaded_vmcs);
2570 free_vmcs(loaded_vmcs->vmcs);
2571 loaded_vmcs->vmcs = NULL;
2572}
2573
39959588 2574static void free_kvm_area(void)
6aa8b732
AK
2575{
2576 int cpu;
2577
3230bb47 2578 for_each_possible_cpu(cpu) {
6aa8b732 2579 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2580 per_cpu(vmxarea, cpu) = NULL;
2581 }
6aa8b732
AK
2582}
2583
6aa8b732
AK
2584static __init int alloc_kvm_area(void)
2585{
2586 int cpu;
2587
3230bb47 2588 for_each_possible_cpu(cpu) {
6aa8b732
AK
2589 struct vmcs *vmcs;
2590
2591 vmcs = alloc_vmcs_cpu(cpu);
2592 if (!vmcs) {
2593 free_kvm_area();
2594 return -ENOMEM;
2595 }
2596
2597 per_cpu(vmxarea, cpu) = vmcs;
2598 }
2599 return 0;
2600}
2601
2602static __init int hardware_setup(void)
2603{
002c7f7c
YS
2604 if (setup_vmcs_config(&vmcs_config) < 0)
2605 return -EIO;
50a37eb4
JR
2606
2607 if (boot_cpu_has(X86_FEATURE_NX))
2608 kvm_enable_efer_bits(EFER_NX);
2609
93ba03c2
SY
2610 if (!cpu_has_vmx_vpid())
2611 enable_vpid = 0;
2612
4bc9b982
SY
2613 if (!cpu_has_vmx_ept() ||
2614 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2615 enable_ept = 0;
3a624e29
NK
2616 enable_unrestricted_guest = 0;
2617 }
2618
2619 if (!cpu_has_vmx_unrestricted_guest())
2620 enable_unrestricted_guest = 0;
93ba03c2
SY
2621
2622 if (!cpu_has_vmx_flexpriority())
2623 flexpriority_enabled = 0;
2624
95ba8273
GN
2625 if (!cpu_has_vmx_tpr_shadow())
2626 kvm_x86_ops->update_cr8_intercept = NULL;
2627
54dee993
MT
2628 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2629 kvm_disable_largepages();
2630
4b8d54f9
ZE
2631 if (!cpu_has_vmx_ple())
2632 ple_gap = 0;
2633
b87a51ae
NHE
2634 if (nested)
2635 nested_vmx_setup_ctls_msrs();
2636
6aa8b732
AK
2637 return alloc_kvm_area();
2638}
2639
2640static __exit void hardware_unsetup(void)
2641{
2642 free_kvm_area();
2643}
2644
6aa8b732
AK
2645static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2646{
2647 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2648
6af11b9e 2649 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2650 vmcs_write16(sf->selector, save->selector);
2651 vmcs_writel(sf->base, save->base);
2652 vmcs_write32(sf->limit, save->limit);
2653 vmcs_write32(sf->ar_bytes, save->ar);
2654 } else {
2655 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2656 << AR_DPL_SHIFT;
2657 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2658 }
2659}
2660
2661static void enter_pmode(struct kvm_vcpu *vcpu)
2662{
2663 unsigned long flags;
a89a8fb9 2664 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2665
a89a8fb9 2666 vmx->emulation_required = 1;
7ffd92c5 2667 vmx->rmode.vm86_active = 0;
6aa8b732 2668
2fb92db1
AK
2669 vmx_segment_cache_clear(vmx);
2670
d0ba64f9 2671 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2672 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2673 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2674 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2675
2676 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2677 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2678 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2679 vmcs_writel(GUEST_RFLAGS, flags);
2680
66aee91a
RR
2681 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2682 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2683
2684 update_exception_bitmap(vcpu);
2685
a89a8fb9
MG
2686 if (emulate_invalid_guest_state)
2687 return;
2688
7ffd92c5
AK
2689 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2690 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2691 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2692 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2693
2fb92db1
AK
2694 vmx_segment_cache_clear(vmx);
2695
6aa8b732
AK
2696 vmcs_write16(GUEST_SS_SELECTOR, 0);
2697 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2698
2699 vmcs_write16(GUEST_CS_SELECTOR,
2700 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2701 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2702}
2703
d77c26fc 2704static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2705{
bfc6d222 2706 if (!kvm->arch.tss_addr) {
bc6678a3 2707 struct kvm_memslots *slots;
28a37544 2708 struct kvm_memory_slot *slot;
bc6678a3
MT
2709 gfn_t base_gfn;
2710
90d83dc3 2711 slots = kvm_memslots(kvm);
28a37544
XG
2712 slot = id_to_memslot(slots, 0);
2713 base_gfn = slot->base_gfn + slot->npages - 3;
2714
cbc94022
IE
2715 return base_gfn << PAGE_SHIFT;
2716 }
bfc6d222 2717 return kvm->arch.tss_addr;
6aa8b732
AK
2718}
2719
2720static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2721{
2722 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2723
2724 save->selector = vmcs_read16(sf->selector);
2725 save->base = vmcs_readl(sf->base);
2726 save->limit = vmcs_read32(sf->limit);
2727 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2728 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2729 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2730 vmcs_write32(sf->limit, 0xffff);
2731 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2732 if (save->base & 0xf)
2733 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2734 " aligned when entering protected mode (seg=%d)",
2735 seg);
6aa8b732
AK
2736}
2737
2738static void enter_rmode(struct kvm_vcpu *vcpu)
2739{
2740 unsigned long flags;
a89a8fb9 2741 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2742
3a624e29
NK
2743 if (enable_unrestricted_guest)
2744 return;
2745
a89a8fb9 2746 vmx->emulation_required = 1;
7ffd92c5 2747 vmx->rmode.vm86_active = 1;
6aa8b732 2748
776e58ea
GN
2749 /*
2750 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2751 * vcpu. Call it here with phys address pointing 16M below 4G.
2752 */
2753 if (!vcpu->kvm->arch.tss_addr) {
2754 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2755 "called before entering vcpu\n");
2756 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2757 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2758 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2759 }
2760
2fb92db1
AK
2761 vmx_segment_cache_clear(vmx);
2762
d0ba64f9 2763 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2764 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2765 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2766
7ffd92c5 2767 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2768 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2769
7ffd92c5 2770 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2771 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2772
2773 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2774 vmx->rmode.save_rflags = flags;
6aa8b732 2775
053de044 2776 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2777
2778 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2779 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2780 update_exception_bitmap(vcpu);
2781
a89a8fb9
MG
2782 if (emulate_invalid_guest_state)
2783 goto continue_rmode;
2784
6aa8b732
AK
2785 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2786 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2787 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2788
2789 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2790 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2791 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2792 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2793 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2794
7ffd92c5
AK
2795 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2796 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2797 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2798 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2799
a89a8fb9 2800continue_rmode:
8668a3c4 2801 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2802}
2803
401d10de
AS
2804static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2805{
2806 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2807 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2808
2809 if (!msr)
2810 return;
401d10de 2811
44ea2b17
AK
2812 /*
2813 * Force kernel_gs_base reloading before EFER changes, as control
2814 * of this msr depends on is_long_mode().
2815 */
2816 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2817 vcpu->arch.efer = efer;
401d10de
AS
2818 if (efer & EFER_LMA) {
2819 vmcs_write32(VM_ENTRY_CONTROLS,
2820 vmcs_read32(VM_ENTRY_CONTROLS) |
2821 VM_ENTRY_IA32E_MODE);
2822 msr->data = efer;
2823 } else {
2824 vmcs_write32(VM_ENTRY_CONTROLS,
2825 vmcs_read32(VM_ENTRY_CONTROLS) &
2826 ~VM_ENTRY_IA32E_MODE);
2827
2828 msr->data = efer & ~EFER_LME;
2829 }
2830 setup_msrs(vmx);
2831}
2832
05b3e0c2 2833#ifdef CONFIG_X86_64
6aa8b732
AK
2834
2835static void enter_lmode(struct kvm_vcpu *vcpu)
2836{
2837 u32 guest_tr_ar;
2838
2fb92db1
AK
2839 vmx_segment_cache_clear(to_vmx(vcpu));
2840
6aa8b732
AK
2841 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2842 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2843 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2844 __func__);
6aa8b732
AK
2845 vmcs_write32(GUEST_TR_AR_BYTES,
2846 (guest_tr_ar & ~AR_TYPE_MASK)
2847 | AR_TYPE_BUSY_64_TSS);
2848 }
da38f438 2849 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2850}
2851
2852static void exit_lmode(struct kvm_vcpu *vcpu)
2853{
6aa8b732
AK
2854 vmcs_write32(VM_ENTRY_CONTROLS,
2855 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2856 & ~VM_ENTRY_IA32E_MODE);
da38f438 2857 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2858}
2859
2860#endif
2861
2384d2b3
SY
2862static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2863{
b9d762fa 2864 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2865 if (enable_ept) {
2866 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2867 return;
4e1096d2 2868 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2869 }
2384d2b3
SY
2870}
2871
e8467fda
AK
2872static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2873{
2874 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2875
2876 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2877 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2878}
2879
aff48baa
AK
2880static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2881{
2882 if (enable_ept && is_paging(vcpu))
2883 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2884 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2885}
2886
25c4c276 2887static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2888{
fc78f519
AK
2889 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2890
2891 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2892 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2893}
2894
1439442c
SY
2895static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2896{
6de4f3ad
AK
2897 if (!test_bit(VCPU_EXREG_PDPTR,
2898 (unsigned long *)&vcpu->arch.regs_dirty))
2899 return;
2900
1439442c 2901 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2902 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2903 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2904 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2905 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2906 }
2907}
2908
8f5d549f
AK
2909static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2910{
2911 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2912 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2913 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2914 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2915 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2916 }
6de4f3ad
AK
2917
2918 __set_bit(VCPU_EXREG_PDPTR,
2919 (unsigned long *)&vcpu->arch.regs_avail);
2920 __set_bit(VCPU_EXREG_PDPTR,
2921 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2922}
2923
5e1746d6 2924static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2925
2926static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2927 unsigned long cr0,
2928 struct kvm_vcpu *vcpu)
2929{
5233dd51
MT
2930 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2931 vmx_decache_cr3(vcpu);
1439442c
SY
2932 if (!(cr0 & X86_CR0_PG)) {
2933 /* From paging/starting to nonpaging */
2934 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2935 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2936 (CPU_BASED_CR3_LOAD_EXITING |
2937 CPU_BASED_CR3_STORE_EXITING));
2938 vcpu->arch.cr0 = cr0;
fc78f519 2939 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2940 } else if (!is_paging(vcpu)) {
2941 /* From nonpaging to paging */
2942 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2943 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2944 ~(CPU_BASED_CR3_LOAD_EXITING |
2945 CPU_BASED_CR3_STORE_EXITING));
2946 vcpu->arch.cr0 = cr0;
fc78f519 2947 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2948 }
95eb84a7
SY
2949
2950 if (!(cr0 & X86_CR0_WP))
2951 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2952}
2953
6aa8b732
AK
2954static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2955{
7ffd92c5 2956 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2957 unsigned long hw_cr0;
2958
2959 if (enable_unrestricted_guest)
2960 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2961 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2962 else
2963 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2964
7ffd92c5 2965 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2966 enter_pmode(vcpu);
2967
7ffd92c5 2968 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2969 enter_rmode(vcpu);
2970
05b3e0c2 2971#ifdef CONFIG_X86_64
f6801dff 2972 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2973 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2974 enter_lmode(vcpu);
707d92fa 2975 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2976 exit_lmode(vcpu);
2977 }
2978#endif
2979
089d034e 2980 if (enable_ept)
1439442c
SY
2981 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2982
02daab21 2983 if (!vcpu->fpu_active)
81231c69 2984 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 2985
6aa8b732 2986 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 2987 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 2988 vcpu->arch.cr0 = cr0;
69c73028 2989 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
2990}
2991
1439442c
SY
2992static u64 construct_eptp(unsigned long root_hpa)
2993{
2994 u64 eptp;
2995
2996 /* TODO write the value reading from MSR */
2997 eptp = VMX_EPT_DEFAULT_MT |
2998 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
2999 eptp |= (root_hpa & PAGE_MASK);
3000
3001 return eptp;
3002}
3003
6aa8b732
AK
3004static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3005{
1439442c
SY
3006 unsigned long guest_cr3;
3007 u64 eptp;
3008
3009 guest_cr3 = cr3;
089d034e 3010 if (enable_ept) {
1439442c
SY
3011 eptp = construct_eptp(cr3);
3012 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3013 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3014 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3015 ept_load_pdptrs(vcpu);
1439442c
SY
3016 }
3017
2384d2b3 3018 vmx_flush_tlb(vcpu);
1439442c 3019 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3020}
3021
5e1746d6 3022static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3023{
7ffd92c5 3024 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3025 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3026
5e1746d6
NHE
3027 if (cr4 & X86_CR4_VMXE) {
3028 /*
3029 * To use VMXON (and later other VMX instructions), a guest
3030 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3031 * So basically the check on whether to allow nested VMX
3032 * is here.
3033 */
3034 if (!nested_vmx_allowed(vcpu))
3035 return 1;
3036 } else if (to_vmx(vcpu)->nested.vmxon)
3037 return 1;
3038
ad312c7c 3039 vcpu->arch.cr4 = cr4;
bc23008b
AK
3040 if (enable_ept) {
3041 if (!is_paging(vcpu)) {
3042 hw_cr4 &= ~X86_CR4_PAE;
3043 hw_cr4 |= X86_CR4_PSE;
3044 } else if (!(cr4 & X86_CR4_PAE)) {
3045 hw_cr4 &= ~X86_CR4_PAE;
3046 }
3047 }
1439442c
SY
3048
3049 vmcs_writel(CR4_READ_SHADOW, cr4);
3050 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3051 return 0;
6aa8b732
AK
3052}
3053
6aa8b732
AK
3054static void vmx_get_segment(struct kvm_vcpu *vcpu,
3055 struct kvm_segment *var, int seg)
3056{
a9179499 3057 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3058 struct kvm_save_segment *save;
6aa8b732
AK
3059 u32 ar;
3060
a9179499
AK
3061 if (vmx->rmode.vm86_active
3062 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3063 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3064 || seg == VCPU_SREG_GS)
3065 && !emulate_invalid_guest_state) {
3066 switch (seg) {
3067 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3068 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3069 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3070 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3071 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3072 default: BUG();
3073 }
3074 var->selector = save->selector;
3075 var->base = save->base;
3076 var->limit = save->limit;
3077 ar = save->ar;
3078 if (seg == VCPU_SREG_TR
2fb92db1 3079 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3080 goto use_saved_rmode_seg;
3081 }
2fb92db1
AK
3082 var->base = vmx_read_guest_seg_base(vmx, seg);
3083 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3084 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3085 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3086use_saved_rmode_seg:
9fd4a3b7 3087 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3088 ar = 0;
3089 var->type = ar & 15;
3090 var->s = (ar >> 4) & 1;
3091 var->dpl = (ar >> 5) & 3;
3092 var->present = (ar >> 7) & 1;
3093 var->avl = (ar >> 12) & 1;
3094 var->l = (ar >> 13) & 1;
3095 var->db = (ar >> 14) & 1;
3096 var->g = (ar >> 15) & 1;
3097 var->unusable = (ar >> 16) & 1;
3098}
3099
a9179499
AK
3100static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3101{
a9179499
AK
3102 struct kvm_segment s;
3103
3104 if (to_vmx(vcpu)->rmode.vm86_active) {
3105 vmx_get_segment(vcpu, &s, seg);
3106 return s.base;
3107 }
2fb92db1 3108 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3109}
3110
69c73028 3111static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3112{
3eeb3288 3113 if (!is_protmode(vcpu))
2e4d2653
IE
3114 return 0;
3115
f4c63e5d
AK
3116 if (!is_long_mode(vcpu)
3117 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3118 return 3;
3119
2fb92db1 3120 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3121}
3122
69c73028
AK
3123static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3124{
3125 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3126 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3127 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3128 }
3129 return to_vmx(vcpu)->cpl;
3130}
3131
3132
653e3108 3133static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3134{
6aa8b732
AK
3135 u32 ar;
3136
653e3108 3137 if (var->unusable)
6aa8b732
AK
3138 ar = 1 << 16;
3139 else {
3140 ar = var->type & 15;
3141 ar |= (var->s & 1) << 4;
3142 ar |= (var->dpl & 3) << 5;
3143 ar |= (var->present & 1) << 7;
3144 ar |= (var->avl & 1) << 12;
3145 ar |= (var->l & 1) << 13;
3146 ar |= (var->db & 1) << 14;
3147 ar |= (var->g & 1) << 15;
3148 }
f7fbf1fd
UL
3149 if (ar == 0) /* a 0 value means unusable */
3150 ar = AR_UNUSABLE_MASK;
653e3108
AK
3151
3152 return ar;
3153}
3154
3155static void vmx_set_segment(struct kvm_vcpu *vcpu,
3156 struct kvm_segment *var, int seg)
3157{
7ffd92c5 3158 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3159 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3160 u32 ar;
3161
2fb92db1
AK
3162 vmx_segment_cache_clear(vmx);
3163
7ffd92c5 3164 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3165 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3166 vmx->rmode.tr.selector = var->selector;
3167 vmx->rmode.tr.base = var->base;
3168 vmx->rmode.tr.limit = var->limit;
3169 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3170 return;
3171 }
3172 vmcs_writel(sf->base, var->base);
3173 vmcs_write32(sf->limit, var->limit);
3174 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3175 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3176 /*
3177 * Hack real-mode segments into vm86 compatibility.
3178 */
3179 if (var->base == 0xffff0000 && var->selector == 0xf000)
3180 vmcs_writel(sf->base, 0xf0000);
3181 ar = 0xf3;
3182 } else
3183 ar = vmx_segment_access_rights(var);
3a624e29
NK
3184
3185 /*
3186 * Fix the "Accessed" bit in AR field of segment registers for older
3187 * qemu binaries.
3188 * IA32 arch specifies that at the time of processor reset the
3189 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3190 * is setting it to 0 in the usedland code. This causes invalid guest
3191 * state vmexit when "unrestricted guest" mode is turned on.
3192 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3193 * tree. Newer qemu binaries with that qemu fix would not need this
3194 * kvm hack.
3195 */
3196 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3197 ar |= 0x1; /* Accessed */
3198
6aa8b732 3199 vmcs_write32(sf->ar_bytes, ar);
69c73028 3200 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3201}
3202
6aa8b732
AK
3203static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3204{
2fb92db1 3205 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3206
3207 *db = (ar >> 14) & 1;
3208 *l = (ar >> 13) & 1;
3209}
3210
89a27f4d 3211static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3212{
89a27f4d
GN
3213 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3214 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3215}
3216
89a27f4d 3217static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3218{
89a27f4d
GN
3219 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3220 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3221}
3222
89a27f4d 3223static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3224{
89a27f4d
GN
3225 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3226 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3227}
3228
89a27f4d 3229static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3230{
89a27f4d
GN
3231 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3232 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3233}
3234
648dfaa7
MG
3235static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3236{
3237 struct kvm_segment var;
3238 u32 ar;
3239
3240 vmx_get_segment(vcpu, &var, seg);
3241 ar = vmx_segment_access_rights(&var);
3242
3243 if (var.base != (var.selector << 4))
3244 return false;
3245 if (var.limit != 0xffff)
3246 return false;
3247 if (ar != 0xf3)
3248 return false;
3249
3250 return true;
3251}
3252
3253static bool code_segment_valid(struct kvm_vcpu *vcpu)
3254{
3255 struct kvm_segment cs;
3256 unsigned int cs_rpl;
3257
3258 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3259 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3260
1872a3f4
AK
3261 if (cs.unusable)
3262 return false;
648dfaa7
MG
3263 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3264 return false;
3265 if (!cs.s)
3266 return false;
1872a3f4 3267 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3268 if (cs.dpl > cs_rpl)
3269 return false;
1872a3f4 3270 } else {
648dfaa7
MG
3271 if (cs.dpl != cs_rpl)
3272 return false;
3273 }
3274 if (!cs.present)
3275 return false;
3276
3277 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3278 return true;
3279}
3280
3281static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3282{
3283 struct kvm_segment ss;
3284 unsigned int ss_rpl;
3285
3286 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3287 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3288
1872a3f4
AK
3289 if (ss.unusable)
3290 return true;
3291 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3292 return false;
3293 if (!ss.s)
3294 return false;
3295 if (ss.dpl != ss_rpl) /* DPL != RPL */
3296 return false;
3297 if (!ss.present)
3298 return false;
3299
3300 return true;
3301}
3302
3303static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3304{
3305 struct kvm_segment var;
3306 unsigned int rpl;
3307
3308 vmx_get_segment(vcpu, &var, seg);
3309 rpl = var.selector & SELECTOR_RPL_MASK;
3310
1872a3f4
AK
3311 if (var.unusable)
3312 return true;
648dfaa7
MG
3313 if (!var.s)
3314 return false;
3315 if (!var.present)
3316 return false;
3317 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3318 if (var.dpl < rpl) /* DPL < RPL */
3319 return false;
3320 }
3321
3322 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3323 * rights flags
3324 */
3325 return true;
3326}
3327
3328static bool tr_valid(struct kvm_vcpu *vcpu)
3329{
3330 struct kvm_segment tr;
3331
3332 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3333
1872a3f4
AK
3334 if (tr.unusable)
3335 return false;
648dfaa7
MG
3336 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3337 return false;
1872a3f4 3338 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3339 return false;
3340 if (!tr.present)
3341 return false;
3342
3343 return true;
3344}
3345
3346static bool ldtr_valid(struct kvm_vcpu *vcpu)
3347{
3348 struct kvm_segment ldtr;
3349
3350 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3351
1872a3f4
AK
3352 if (ldtr.unusable)
3353 return true;
648dfaa7
MG
3354 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3355 return false;
3356 if (ldtr.type != 2)
3357 return false;
3358 if (!ldtr.present)
3359 return false;
3360
3361 return true;
3362}
3363
3364static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3365{
3366 struct kvm_segment cs, ss;
3367
3368 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3369 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3370
3371 return ((cs.selector & SELECTOR_RPL_MASK) ==
3372 (ss.selector & SELECTOR_RPL_MASK));
3373}
3374
3375/*
3376 * Check if guest state is valid. Returns true if valid, false if
3377 * not.
3378 * We assume that registers are always usable
3379 */
3380static bool guest_state_valid(struct kvm_vcpu *vcpu)
3381{
3382 /* real mode guest state checks */
3eeb3288 3383 if (!is_protmode(vcpu)) {
648dfaa7
MG
3384 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3385 return false;
3386 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3387 return false;
3388 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3389 return false;
3390 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3391 return false;
3392 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3393 return false;
3394 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3395 return false;
3396 } else {
3397 /* protected mode guest state checks */
3398 if (!cs_ss_rpl_check(vcpu))
3399 return false;
3400 if (!code_segment_valid(vcpu))
3401 return false;
3402 if (!stack_segment_valid(vcpu))
3403 return false;
3404 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3405 return false;
3406 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3407 return false;
3408 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3409 return false;
3410 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3411 return false;
3412 if (!tr_valid(vcpu))
3413 return false;
3414 if (!ldtr_valid(vcpu))
3415 return false;
3416 }
3417 /* TODO:
3418 * - Add checks on RIP
3419 * - Add checks on RFLAGS
3420 */
3421
3422 return true;
3423}
3424
d77c26fc 3425static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3426{
40dcaa9f 3427 gfn_t fn;
195aefde 3428 u16 data = 0;
40dcaa9f 3429 int r, idx, ret = 0;
6aa8b732 3430
40dcaa9f
XG
3431 idx = srcu_read_lock(&kvm->srcu);
3432 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3433 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3434 if (r < 0)
10589a46 3435 goto out;
195aefde 3436 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3437 r = kvm_write_guest_page(kvm, fn++, &data,
3438 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3439 if (r < 0)
10589a46 3440 goto out;
195aefde
IE
3441 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3442 if (r < 0)
10589a46 3443 goto out;
195aefde
IE
3444 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3445 if (r < 0)
10589a46 3446 goto out;
195aefde 3447 data = ~0;
10589a46
MT
3448 r = kvm_write_guest_page(kvm, fn, &data,
3449 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3450 sizeof(u8));
195aefde 3451 if (r < 0)
10589a46
MT
3452 goto out;
3453
3454 ret = 1;
3455out:
40dcaa9f 3456 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3457 return ret;
6aa8b732
AK
3458}
3459
b7ebfb05
SY
3460static int init_rmode_identity_map(struct kvm *kvm)
3461{
40dcaa9f 3462 int i, idx, r, ret;
b7ebfb05
SY
3463 pfn_t identity_map_pfn;
3464 u32 tmp;
3465
089d034e 3466 if (!enable_ept)
b7ebfb05
SY
3467 return 1;
3468 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3469 printk(KERN_ERR "EPT: identity-mapping pagetable "
3470 "haven't been allocated!\n");
3471 return 0;
3472 }
3473 if (likely(kvm->arch.ept_identity_pagetable_done))
3474 return 1;
3475 ret = 0;
b927a3ce 3476 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3477 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3478 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3479 if (r < 0)
3480 goto out;
3481 /* Set up identity-mapping pagetable for EPT in real mode */
3482 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3483 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3484 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3485 r = kvm_write_guest_page(kvm, identity_map_pfn,
3486 &tmp, i * sizeof(tmp), sizeof(tmp));
3487 if (r < 0)
3488 goto out;
3489 }
3490 kvm->arch.ept_identity_pagetable_done = true;
3491 ret = 1;
3492out:
40dcaa9f 3493 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3494 return ret;
3495}
3496
6aa8b732
AK
3497static void seg_setup(int seg)
3498{
3499 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3500 unsigned int ar;
6aa8b732
AK
3501
3502 vmcs_write16(sf->selector, 0);
3503 vmcs_writel(sf->base, 0);
3504 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3505 if (enable_unrestricted_guest) {
3506 ar = 0x93;
3507 if (seg == VCPU_SREG_CS)
3508 ar |= 0x08; /* code segment */
3509 } else
3510 ar = 0xf3;
3511
3512 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3513}
3514
f78e0e2e
SY
3515static int alloc_apic_access_page(struct kvm *kvm)
3516{
3517 struct kvm_userspace_memory_region kvm_userspace_mem;
3518 int r = 0;
3519
79fac95e 3520 mutex_lock(&kvm->slots_lock);
bfc6d222 3521 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3522 goto out;
3523 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3524 kvm_userspace_mem.flags = 0;
3525 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3526 kvm_userspace_mem.memory_size = PAGE_SIZE;
3527 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3528 if (r)
3529 goto out;
72dc67a6 3530
bfc6d222 3531 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3532out:
79fac95e 3533 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3534 return r;
3535}
3536
b7ebfb05
SY
3537static int alloc_identity_pagetable(struct kvm *kvm)
3538{
3539 struct kvm_userspace_memory_region kvm_userspace_mem;
3540 int r = 0;
3541
79fac95e 3542 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3543 if (kvm->arch.ept_identity_pagetable)
3544 goto out;
3545 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3546 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3547 kvm_userspace_mem.guest_phys_addr =
3548 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3549 kvm_userspace_mem.memory_size = PAGE_SIZE;
3550 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3551 if (r)
3552 goto out;
3553
b7ebfb05 3554 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3555 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3556out:
79fac95e 3557 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3558 return r;
3559}
3560
2384d2b3
SY
3561static void allocate_vpid(struct vcpu_vmx *vmx)
3562{
3563 int vpid;
3564
3565 vmx->vpid = 0;
919818ab 3566 if (!enable_vpid)
2384d2b3
SY
3567 return;
3568 spin_lock(&vmx_vpid_lock);
3569 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3570 if (vpid < VMX_NR_VPIDS) {
3571 vmx->vpid = vpid;
3572 __set_bit(vpid, vmx_vpid_bitmap);
3573 }
3574 spin_unlock(&vmx_vpid_lock);
3575}
3576
cdbecfc3
LJ
3577static void free_vpid(struct vcpu_vmx *vmx)
3578{
3579 if (!enable_vpid)
3580 return;
3581 spin_lock(&vmx_vpid_lock);
3582 if (vmx->vpid != 0)
3583 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3584 spin_unlock(&vmx_vpid_lock);
3585}
3586
5897297b 3587static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3588{
3e7c73e9 3589 int f = sizeof(unsigned long);
25c5f225
SY
3590
3591 if (!cpu_has_vmx_msr_bitmap())
3592 return;
3593
3594 /*
3595 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3596 * have the write-low and read-high bitmap offsets the wrong way round.
3597 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3598 */
25c5f225 3599 if (msr <= 0x1fff) {
3e7c73e9
AK
3600 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3601 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3602 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3603 msr &= 0x1fff;
3e7c73e9
AK
3604 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3605 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3606 }
25c5f225
SY
3607}
3608
5897297b
AK
3609static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3610{
3611 if (!longmode_only)
3612 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3613 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3614}
3615
a3a8ff8e
NHE
3616/*
3617 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3618 * will not change in the lifetime of the guest.
3619 * Note that host-state that does change is set elsewhere. E.g., host-state
3620 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3621 */
3622static void vmx_set_constant_host_state(void)
3623{
3624 u32 low32, high32;
3625 unsigned long tmpl;
3626 struct desc_ptr dt;
3627
3628 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3629 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3630 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3631
3632 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3633 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3634 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3635 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3636 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3637
3638 native_store_idt(&dt);
3639 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3640
3641 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3642 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3643
3644 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3645 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3646 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3647 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3648
3649 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3650 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3651 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3652 }
3653}
3654
bf8179a0
NHE
3655static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3656{
3657 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3658 if (enable_ept)
3659 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3660 if (is_guest_mode(&vmx->vcpu))
3661 vmx->vcpu.arch.cr4_guest_owned_bits &=
3662 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3663 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3664}
3665
3666static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3667{
3668 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3669 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3670 exec_control &= ~CPU_BASED_TPR_SHADOW;
3671#ifdef CONFIG_X86_64
3672 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3673 CPU_BASED_CR8_LOAD_EXITING;
3674#endif
3675 }
3676 if (!enable_ept)
3677 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3678 CPU_BASED_CR3_LOAD_EXITING |
3679 CPU_BASED_INVLPG_EXITING;
3680 return exec_control;
3681}
3682
3683static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3684{
3685 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3686 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3687 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3688 if (vmx->vpid == 0)
3689 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3690 if (!enable_ept) {
3691 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3692 enable_unrestricted_guest = 0;
3693 }
3694 if (!enable_unrestricted_guest)
3695 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3696 if (!ple_gap)
3697 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3698 return exec_control;
3699}
3700
ce88decf
XG
3701static void ept_set_mmio_spte_mask(void)
3702{
3703 /*
3704 * EPT Misconfigurations can be generated if the value of bits 2:0
3705 * of an EPT paging-structure entry is 110b (write/execute).
3706 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3707 * spte.
3708 */
3709 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3710}
3711
6aa8b732
AK
3712/*
3713 * Sets up the vmcs for emulated real mode.
3714 */
8b9cf98c 3715static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3716{
2e4ce7f5 3717#ifdef CONFIG_X86_64
6aa8b732 3718 unsigned long a;
2e4ce7f5 3719#endif
6aa8b732 3720 int i;
6aa8b732 3721
6aa8b732 3722 /* I/O */
3e7c73e9
AK
3723 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3724 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3725
25c5f225 3726 if (cpu_has_vmx_msr_bitmap())
5897297b 3727 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3728
6aa8b732
AK
3729 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3730
6aa8b732 3731 /* Control */
1c3d14fe
YS
3732 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3733 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3734
bf8179a0 3735 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3736
83ff3b9d 3737 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3738 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3739 vmx_secondary_exec_control(vmx));
83ff3b9d 3740 }
f78e0e2e 3741
4b8d54f9
ZE
3742 if (ple_gap) {
3743 vmcs_write32(PLE_GAP, ple_gap);
3744 vmcs_write32(PLE_WINDOW, ple_window);
3745 }
3746
c3707958
XG
3747 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3748 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3749 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3750
9581d442
AK
3751 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3752 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3753 vmx_set_constant_host_state();
05b3e0c2 3754#ifdef CONFIG_X86_64
6aa8b732
AK
3755 rdmsrl(MSR_FS_BASE, a);
3756 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3757 rdmsrl(MSR_GS_BASE, a);
3758 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3759#else
3760 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3761 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3762#endif
3763
2cc51560
ED
3764 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3765 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3766 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3767 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3768 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3769
468d472f 3770 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3771 u32 msr_low, msr_high;
3772 u64 host_pat;
468d472f
SY
3773 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3774 host_pat = msr_low | ((u64) msr_high << 32);
3775 /* Write the default value follow host pat */
3776 vmcs_write64(GUEST_IA32_PAT, host_pat);
3777 /* Keep arch.pat sync with GUEST_IA32_PAT */
3778 vmx->vcpu.arch.pat = host_pat;
3779 }
3780
6aa8b732
AK
3781 for (i = 0; i < NR_VMX_MSR; ++i) {
3782 u32 index = vmx_msr_index[i];
3783 u32 data_low, data_high;
a2fa3e9f 3784 int j = vmx->nmsrs;
6aa8b732
AK
3785
3786 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3787 continue;
432bd6cb
AK
3788 if (wrmsr_safe(index, data_low, data_high) < 0)
3789 continue;
26bb0981
AK
3790 vmx->guest_msrs[j].index = i;
3791 vmx->guest_msrs[j].data = 0;
d5696725 3792 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3793 ++vmx->nmsrs;
6aa8b732 3794 }
6aa8b732 3795
1c3d14fe 3796 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3797
3798 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3799 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3800
e00c8cf2 3801 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3802 set_cr4_guest_host_mask(vmx);
e00c8cf2 3803
99e3e30a 3804 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3805
e00c8cf2
AK
3806 return 0;
3807}
3808
3809static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3810{
3811 struct vcpu_vmx *vmx = to_vmx(vcpu);
3812 u64 msr;
4b9d3a04 3813 int ret;
e00c8cf2 3814
5fdbf976 3815 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3816
7ffd92c5 3817 vmx->rmode.vm86_active = 0;
e00c8cf2 3818
3b86cd99
JK
3819 vmx->soft_vnmi_blocked = 0;
3820
ad312c7c 3821 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3822 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3823 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3824 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3825 msr |= MSR_IA32_APICBASE_BSP;
3826 kvm_set_apic_base(&vmx->vcpu, msr);
3827
10ab25cd
JK
3828 ret = fx_init(&vmx->vcpu);
3829 if (ret != 0)
3830 goto out;
e00c8cf2 3831
2fb92db1
AK
3832 vmx_segment_cache_clear(vmx);
3833
5706be0d 3834 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3835 /*
3836 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3837 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3838 */
c5af89b6 3839 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3840 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3841 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3842 } else {
ad312c7c
ZX
3843 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3844 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3845 }
e00c8cf2
AK
3846
3847 seg_setup(VCPU_SREG_DS);
3848 seg_setup(VCPU_SREG_ES);
3849 seg_setup(VCPU_SREG_FS);
3850 seg_setup(VCPU_SREG_GS);
3851 seg_setup(VCPU_SREG_SS);
3852
3853 vmcs_write16(GUEST_TR_SELECTOR, 0);
3854 vmcs_writel(GUEST_TR_BASE, 0);
3855 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3856 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3857
3858 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3859 vmcs_writel(GUEST_LDTR_BASE, 0);
3860 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3861 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3862
3863 vmcs_write32(GUEST_SYSENTER_CS, 0);
3864 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3865 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3866
3867 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3868 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3869 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3870 else
5fdbf976
MT
3871 kvm_rip_write(vcpu, 0);
3872 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3873
e00c8cf2
AK
3874 vmcs_writel(GUEST_DR7, 0x400);
3875
3876 vmcs_writel(GUEST_GDTR_BASE, 0);
3877 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3878
3879 vmcs_writel(GUEST_IDTR_BASE, 0);
3880 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3881
443381a8 3882 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3883 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3884 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3885
e00c8cf2
AK
3886 /* Special registers */
3887 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3888
3889 setup_msrs(vmx);
3890
6aa8b732
AK
3891 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3892
f78e0e2e
SY
3893 if (cpu_has_vmx_tpr_shadow()) {
3894 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3895 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3896 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3897 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3898 vmcs_write32(TPR_THRESHOLD, 0);
3899 }
3900
3901 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3902 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3903 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3904
2384d2b3
SY
3905 if (vmx->vpid != 0)
3906 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3907
fa40052c 3908 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
7a4f5ad0 3909 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4d4ec087 3910 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
7a4f5ad0 3911 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8b9cf98c 3912 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3913 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3914 vmx_fpu_activate(&vmx->vcpu);
3915 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3916
b9d762fa 3917 vpid_sync_context(vmx);
2384d2b3 3918
3200f405 3919 ret = 0;
6aa8b732 3920
a89a8fb9
MG
3921 /* HACK: Don't enable emulation on guest boot/reset */
3922 vmx->emulation_required = 0;
3923
6aa8b732
AK
3924out:
3925 return ret;
3926}
3927
b6f1250e
NHE
3928/*
3929 * In nested virtualization, check if L1 asked to exit on external interrupts.
3930 * For most existing hypervisors, this will always return true.
3931 */
3932static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3933{
3934 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3935 PIN_BASED_EXT_INTR_MASK;
3936}
3937
3b86cd99
JK
3938static void enable_irq_window(struct kvm_vcpu *vcpu)
3939{
3940 u32 cpu_based_vm_exec_control;
d6185f20
NHE
3941 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3942 /*
3943 * We get here if vmx_interrupt_allowed() said we can't
3944 * inject to L1 now because L2 must run. Ask L2 to exit
3945 * right after entry, so we can inject to L1 more promptly.
b6f1250e 3946 */
d6185f20 3947 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 3948 return;
d6185f20 3949 }
3b86cd99
JK
3950
3951 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3952 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3953 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3954}
3955
3956static void enable_nmi_window(struct kvm_vcpu *vcpu)
3957{
3958 u32 cpu_based_vm_exec_control;
3959
3960 if (!cpu_has_virtual_nmis()) {
3961 enable_irq_window(vcpu);
3962 return;
3963 }
3964
30bd0c4c
AK
3965 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3966 enable_irq_window(vcpu);
3967 return;
3968 }
3b86cd99
JK
3969 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3970 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3971 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3972}
3973
66fd3f7f 3974static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3975{
9c8cba37 3976 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3977 uint32_t intr;
3978 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3979
229456fc 3980 trace_kvm_inj_virq(irq);
2714d1d3 3981
fa89a817 3982 ++vcpu->stat.irq_injections;
7ffd92c5 3983 if (vmx->rmode.vm86_active) {
71f9833b
SH
3984 int inc_eip = 0;
3985 if (vcpu->arch.interrupt.soft)
3986 inc_eip = vcpu->arch.event_exit_inst_len;
3987 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 3988 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
3989 return;
3990 }
66fd3f7f
GN
3991 intr = irq | INTR_INFO_VALID_MASK;
3992 if (vcpu->arch.interrupt.soft) {
3993 intr |= INTR_TYPE_SOFT_INTR;
3994 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3995 vmx->vcpu.arch.event_exit_inst_len);
3996 } else
3997 intr |= INTR_TYPE_EXT_INTR;
3998 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
3999}
4000
f08864b4
SY
4001static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4002{
66a5a347
JK
4003 struct vcpu_vmx *vmx = to_vmx(vcpu);
4004
0b6ac343
NHE
4005 if (is_guest_mode(vcpu))
4006 return;
4007
3b86cd99
JK
4008 if (!cpu_has_virtual_nmis()) {
4009 /*
4010 * Tracking the NMI-blocked state in software is built upon
4011 * finding the next open IRQ window. This, in turn, depends on
4012 * well-behaving guests: They have to keep IRQs disabled at
4013 * least as long as the NMI handler runs. Otherwise we may
4014 * cause NMI nesting, maybe breaking the guest. But as this is
4015 * highly unlikely, we can live with the residual risk.
4016 */
4017 vmx->soft_vnmi_blocked = 1;
4018 vmx->vnmi_blocked_time = 0;
4019 }
4020
487b391d 4021 ++vcpu->stat.nmi_injections;
9d58b931 4022 vmx->nmi_known_unmasked = false;
7ffd92c5 4023 if (vmx->rmode.vm86_active) {
71f9833b 4024 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4025 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4026 return;
4027 }
f08864b4
SY
4028 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4029 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4030}
4031
c4282df9 4032static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4033{
3b86cd99 4034 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4035 return 0;
33f089ca 4036
c4282df9 4037 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4038 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4039 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4040}
4041
3cfc3092
JK
4042static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4043{
4044 if (!cpu_has_virtual_nmis())
4045 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4046 if (to_vmx(vcpu)->nmi_known_unmasked)
4047 return false;
c332c83a 4048 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4049}
4050
4051static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4052{
4053 struct vcpu_vmx *vmx = to_vmx(vcpu);
4054
4055 if (!cpu_has_virtual_nmis()) {
4056 if (vmx->soft_vnmi_blocked != masked) {
4057 vmx->soft_vnmi_blocked = masked;
4058 vmx->vnmi_blocked_time = 0;
4059 }
4060 } else {
9d58b931 4061 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4062 if (masked)
4063 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4064 GUEST_INTR_STATE_NMI);
4065 else
4066 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4067 GUEST_INTR_STATE_NMI);
4068 }
4069}
4070
78646121
GN
4071static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4072{
b6f1250e 4073 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4074 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4075 if (to_vmx(vcpu)->nested.nested_run_pending ||
4076 (vmcs12->idt_vectoring_info_field &
4077 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4078 return 0;
4079 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4080 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4081 vmcs12->vm_exit_intr_info = 0;
4082 /* fall through to normal code, but now in L1, not L2 */
4083 }
4084
c4282df9
GN
4085 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4086 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4087 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4088}
4089
cbc94022
IE
4090static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4091{
4092 int ret;
4093 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4094 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4095 .guest_phys_addr = addr,
4096 .memory_size = PAGE_SIZE * 3,
4097 .flags = 0,
4098 };
4099
4100 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4101 if (ret)
4102 return ret;
bfc6d222 4103 kvm->arch.tss_addr = addr;
93ea5388
GN
4104 if (!init_rmode_tss(kvm))
4105 return -ENOMEM;
4106
cbc94022
IE
4107 return 0;
4108}
4109
6aa8b732
AK
4110static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4111 int vec, u32 err_code)
4112{
b3f37707
NK
4113 /*
4114 * Instruction with address size override prefix opcode 0x67
4115 * Cause the #SS fault with 0 error code in VM86 mode.
4116 */
4117 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4118 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4119 return 1;
77ab6db0
JK
4120 /*
4121 * Forward all other exceptions that are valid in real mode.
4122 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4123 * the required debugging infrastructure rework.
4124 */
4125 switch (vec) {
77ab6db0 4126 case DB_VECTOR:
d0bfb940
JK
4127 if (vcpu->guest_debug &
4128 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4129 return 0;
4130 kvm_queue_exception(vcpu, vec);
4131 return 1;
77ab6db0 4132 case BP_VECTOR:
c573cd22
JK
4133 /*
4134 * Update instruction length as we may reinject the exception
4135 * from user space while in guest debugging mode.
4136 */
4137 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4138 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4139 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4140 return 0;
4141 /* fall through */
4142 case DE_VECTOR:
77ab6db0
JK
4143 case OF_VECTOR:
4144 case BR_VECTOR:
4145 case UD_VECTOR:
4146 case DF_VECTOR:
4147 case SS_VECTOR:
4148 case GP_VECTOR:
4149 case MF_VECTOR:
4150 kvm_queue_exception(vcpu, vec);
4151 return 1;
4152 }
6aa8b732
AK
4153 return 0;
4154}
4155
a0861c02
AK
4156/*
4157 * Trigger machine check on the host. We assume all the MSRs are already set up
4158 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4159 * We pass a fake environment to the machine check handler because we want
4160 * the guest to be always treated like user space, no matter what context
4161 * it used internally.
4162 */
4163static void kvm_machine_check(void)
4164{
4165#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4166 struct pt_regs regs = {
4167 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4168 .flags = X86_EFLAGS_IF,
4169 };
4170
4171 do_machine_check(&regs, 0);
4172#endif
4173}
4174
851ba692 4175static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4176{
4177 /* already handled by vcpu_run */
4178 return 1;
4179}
4180
851ba692 4181static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4182{
1155f76a 4183 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4184 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4185 u32 intr_info, ex_no, error_code;
42dbaa5a 4186 unsigned long cr2, rip, dr6;
6aa8b732
AK
4187 u32 vect_info;
4188 enum emulation_result er;
4189
1155f76a 4190 vect_info = vmx->idt_vectoring_info;
88786475 4191 intr_info = vmx->exit_intr_info;
6aa8b732 4192
a0861c02 4193 if (is_machine_check(intr_info))
851ba692 4194 return handle_machine_check(vcpu);
a0861c02 4195
6aa8b732 4196 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4197 !is_page_fault(intr_info)) {
4198 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4199 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4200 vcpu->run->internal.ndata = 2;
4201 vcpu->run->internal.data[0] = vect_info;
4202 vcpu->run->internal.data[1] = intr_info;
4203 return 0;
4204 }
6aa8b732 4205
e4a41889 4206 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4207 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4208
4209 if (is_no_device(intr_info)) {
5fd86fcf 4210 vmx_fpu_activate(vcpu);
2ab455cc
AL
4211 return 1;
4212 }
4213
7aa81cc0 4214 if (is_invalid_opcode(intr_info)) {
51d8b661 4215 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4216 if (er != EMULATE_DONE)
7ee5d940 4217 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4218 return 1;
4219 }
4220
6aa8b732 4221 error_code = 0;
2e11384c 4222 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4223 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4224 if (is_page_fault(intr_info)) {
1439442c 4225 /* EPT won't cause page fault directly */
cf3ace79 4226 BUG_ON(enable_ept);
6aa8b732 4227 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4228 trace_kvm_page_fault(cr2, error_code);
4229
3298b75c 4230 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4231 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4232 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4233 }
4234
7ffd92c5 4235 if (vmx->rmode.vm86_active &&
6aa8b732 4236 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4237 error_code)) {
ad312c7c
ZX
4238 if (vcpu->arch.halt_request) {
4239 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4240 return kvm_emulate_halt(vcpu);
4241 }
6aa8b732 4242 return 1;
72d6e5a0 4243 }
6aa8b732 4244
d0bfb940 4245 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4246 switch (ex_no) {
4247 case DB_VECTOR:
4248 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4249 if (!(vcpu->guest_debug &
4250 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4251 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4252 kvm_queue_exception(vcpu, DB_VECTOR);
4253 return 1;
4254 }
4255 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4256 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4257 /* fall through */
4258 case BP_VECTOR:
c573cd22
JK
4259 /*
4260 * Update instruction length as we may reinject #BP from
4261 * user space while in guest debugging mode. Reading it for
4262 * #DB as well causes no harm, it is not used in that case.
4263 */
4264 vmx->vcpu.arch.event_exit_inst_len =
4265 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4266 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4267 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4268 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4269 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4270 break;
4271 default:
d0bfb940
JK
4272 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4273 kvm_run->ex.exception = ex_no;
4274 kvm_run->ex.error_code = error_code;
42dbaa5a 4275 break;
6aa8b732 4276 }
6aa8b732
AK
4277 return 0;
4278}
4279
851ba692 4280static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4281{
1165f5fe 4282 ++vcpu->stat.irq_exits;
6aa8b732
AK
4283 return 1;
4284}
4285
851ba692 4286static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4287{
851ba692 4288 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4289 return 0;
4290}
6aa8b732 4291
851ba692 4292static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4293{
bfdaab09 4294 unsigned long exit_qualification;
34c33d16 4295 int size, in, string;
039576c0 4296 unsigned port;
6aa8b732 4297
bfdaab09 4298 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4299 string = (exit_qualification & 16) != 0;
cf8f70bf 4300 in = (exit_qualification & 8) != 0;
e70669ab 4301
cf8f70bf 4302 ++vcpu->stat.io_exits;
e70669ab 4303
cf8f70bf 4304 if (string || in)
51d8b661 4305 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4306
cf8f70bf
GN
4307 port = exit_qualification >> 16;
4308 size = (exit_qualification & 7) + 1;
e93f36bc 4309 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4310
4311 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4312}
4313
102d8325
IM
4314static void
4315vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4316{
4317 /*
4318 * Patch in the VMCALL instruction:
4319 */
4320 hypercall[0] = 0x0f;
4321 hypercall[1] = 0x01;
4322 hypercall[2] = 0xc1;
102d8325
IM
4323}
4324
eeadf9e7
NHE
4325/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4326static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4327{
4328 if (to_vmx(vcpu)->nested.vmxon &&
4329 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4330 return 1;
4331
4332 if (is_guest_mode(vcpu)) {
4333 /*
4334 * We get here when L2 changed cr0 in a way that did not change
4335 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4336 * but did change L0 shadowed bits. This can currently happen
4337 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4338 * loading) while pretending to allow the guest to change it.
4339 */
4340 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4341 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4342 return 1;
4343 vmcs_writel(CR0_READ_SHADOW, val);
4344 return 0;
4345 } else
4346 return kvm_set_cr0(vcpu, val);
4347}
4348
4349static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4350{
4351 if (is_guest_mode(vcpu)) {
4352 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4353 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4354 return 1;
4355 vmcs_writel(CR4_READ_SHADOW, val);
4356 return 0;
4357 } else
4358 return kvm_set_cr4(vcpu, val);
4359}
4360
4361/* called to set cr0 as approriate for clts instruction exit. */
4362static void handle_clts(struct kvm_vcpu *vcpu)
4363{
4364 if (is_guest_mode(vcpu)) {
4365 /*
4366 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4367 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4368 * just pretend it's off (also in arch.cr0 for fpu_activate).
4369 */
4370 vmcs_writel(CR0_READ_SHADOW,
4371 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4372 vcpu->arch.cr0 &= ~X86_CR0_TS;
4373 } else
4374 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4375}
4376
851ba692 4377static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4378{
229456fc 4379 unsigned long exit_qualification, val;
6aa8b732
AK
4380 int cr;
4381 int reg;
49a9b07e 4382 int err;
6aa8b732 4383
bfdaab09 4384 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4385 cr = exit_qualification & 15;
4386 reg = (exit_qualification >> 8) & 15;
4387 switch ((exit_qualification >> 4) & 3) {
4388 case 0: /* mov to cr */
229456fc
MT
4389 val = kvm_register_read(vcpu, reg);
4390 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4391 switch (cr) {
4392 case 0:
eeadf9e7 4393 err = handle_set_cr0(vcpu, val);
db8fcefa 4394 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4395 return 1;
4396 case 3:
2390218b 4397 err = kvm_set_cr3(vcpu, val);
db8fcefa 4398 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4399 return 1;
4400 case 4:
eeadf9e7 4401 err = handle_set_cr4(vcpu, val);
db8fcefa 4402 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4403 return 1;
0a5fff19
GN
4404 case 8: {
4405 u8 cr8_prev = kvm_get_cr8(vcpu);
4406 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4407 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4408 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4409 if (irqchip_in_kernel(vcpu->kvm))
4410 return 1;
4411 if (cr8_prev <= cr8)
4412 return 1;
851ba692 4413 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4414 return 0;
4415 }
6aa8b732
AK
4416 };
4417 break;
25c4c276 4418 case 2: /* clts */
eeadf9e7 4419 handle_clts(vcpu);
4d4ec087 4420 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4421 skip_emulated_instruction(vcpu);
6b52d186 4422 vmx_fpu_activate(vcpu);
25c4c276 4423 return 1;
6aa8b732
AK
4424 case 1: /*mov from cr*/
4425 switch (cr) {
4426 case 3:
9f8fe504
AK
4427 val = kvm_read_cr3(vcpu);
4428 kvm_register_write(vcpu, reg, val);
4429 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4430 skip_emulated_instruction(vcpu);
4431 return 1;
4432 case 8:
229456fc
MT
4433 val = kvm_get_cr8(vcpu);
4434 kvm_register_write(vcpu, reg, val);
4435 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4436 skip_emulated_instruction(vcpu);
4437 return 1;
4438 }
4439 break;
4440 case 3: /* lmsw */
a1f83a74 4441 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4442 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4443 kvm_lmsw(vcpu, val);
6aa8b732
AK
4444
4445 skip_emulated_instruction(vcpu);
4446 return 1;
4447 default:
4448 break;
4449 }
851ba692 4450 vcpu->run->exit_reason = 0;
f0242478 4451 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4452 (int)(exit_qualification >> 4) & 3, cr);
4453 return 0;
4454}
4455
851ba692 4456static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4457{
bfdaab09 4458 unsigned long exit_qualification;
6aa8b732
AK
4459 int dr, reg;
4460
f2483415 4461 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4462 if (!kvm_require_cpl(vcpu, 0))
4463 return 1;
42dbaa5a
JK
4464 dr = vmcs_readl(GUEST_DR7);
4465 if (dr & DR7_GD) {
4466 /*
4467 * As the vm-exit takes precedence over the debug trap, we
4468 * need to emulate the latter, either for the host or the
4469 * guest debugging itself.
4470 */
4471 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4472 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4473 vcpu->run->debug.arch.dr7 = dr;
4474 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4475 vmcs_readl(GUEST_CS_BASE) +
4476 vmcs_readl(GUEST_RIP);
851ba692
AK
4477 vcpu->run->debug.arch.exception = DB_VECTOR;
4478 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4479 return 0;
4480 } else {
4481 vcpu->arch.dr7 &= ~DR7_GD;
4482 vcpu->arch.dr6 |= DR6_BD;
4483 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4484 kvm_queue_exception(vcpu, DB_VECTOR);
4485 return 1;
4486 }
4487 }
4488
bfdaab09 4489 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4490 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4491 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4492 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4493 unsigned long val;
4494 if (!kvm_get_dr(vcpu, dr, &val))
4495 kvm_register_write(vcpu, reg, val);
4496 } else
4497 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4498 skip_emulated_instruction(vcpu);
4499 return 1;
4500}
4501
020df079
GN
4502static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4503{
4504 vmcs_writel(GUEST_DR7, val);
4505}
4506
851ba692 4507static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4508{
06465c5a
AK
4509 kvm_emulate_cpuid(vcpu);
4510 return 1;
6aa8b732
AK
4511}
4512
851ba692 4513static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4514{
ad312c7c 4515 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4516 u64 data;
4517
4518 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4519 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4520 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4521 return 1;
4522 }
4523
229456fc 4524 trace_kvm_msr_read(ecx, data);
2714d1d3 4525
6aa8b732 4526 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4527 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4528 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4529 skip_emulated_instruction(vcpu);
4530 return 1;
4531}
4532
851ba692 4533static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4534{
ad312c7c
ZX
4535 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4536 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4537 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4538
4539 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4540 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4541 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4542 return 1;
4543 }
4544
59200273 4545 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4546 skip_emulated_instruction(vcpu);
4547 return 1;
4548}
4549
851ba692 4550static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4551{
3842d135 4552 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4553 return 1;
4554}
4555
851ba692 4556static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4557{
85f455f7
ED
4558 u32 cpu_based_vm_exec_control;
4559
4560 /* clear pending irq */
4561 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4562 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4563 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4564
3842d135
AK
4565 kvm_make_request(KVM_REQ_EVENT, vcpu);
4566
a26bf12a 4567 ++vcpu->stat.irq_window_exits;
2714d1d3 4568
c1150d8c
DL
4569 /*
4570 * If the user space waits to inject interrupts, exit as soon as
4571 * possible
4572 */
8061823a 4573 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4574 vcpu->run->request_interrupt_window &&
8061823a 4575 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4576 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4577 return 0;
4578 }
6aa8b732
AK
4579 return 1;
4580}
4581
851ba692 4582static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4583{
4584 skip_emulated_instruction(vcpu);
d3bef15f 4585 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4586}
4587
851ba692 4588static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4589{
510043da 4590 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4591 kvm_emulate_hypercall(vcpu);
4592 return 1;
c21415e8
IM
4593}
4594
ec25d5e6
GN
4595static int handle_invd(struct kvm_vcpu *vcpu)
4596{
51d8b661 4597 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4598}
4599
851ba692 4600static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4601{
f9c617f6 4602 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4603
4604 kvm_mmu_invlpg(vcpu, exit_qualification);
4605 skip_emulated_instruction(vcpu);
4606 return 1;
4607}
4608
fee84b07
AK
4609static int handle_rdpmc(struct kvm_vcpu *vcpu)
4610{
4611 int err;
4612
4613 err = kvm_rdpmc(vcpu);
4614 kvm_complete_insn_gp(vcpu, err);
4615
4616 return 1;
4617}
4618
851ba692 4619static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4620{
4621 skip_emulated_instruction(vcpu);
f5f48ee1 4622 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4623 return 1;
4624}
4625
2acf923e
DC
4626static int handle_xsetbv(struct kvm_vcpu *vcpu)
4627{
4628 u64 new_bv = kvm_read_edx_eax(vcpu);
4629 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4630
4631 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4632 skip_emulated_instruction(vcpu);
4633 return 1;
4634}
4635
851ba692 4636static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4637{
58fbbf26
KT
4638 if (likely(fasteoi)) {
4639 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4640 int access_type, offset;
4641
4642 access_type = exit_qualification & APIC_ACCESS_TYPE;
4643 offset = exit_qualification & APIC_ACCESS_OFFSET;
4644 /*
4645 * Sane guest uses MOV to write EOI, with written value
4646 * not cared. So make a short-circuit here by avoiding
4647 * heavy instruction emulation.
4648 */
4649 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4650 (offset == APIC_EOI)) {
4651 kvm_lapic_set_eoi(vcpu);
4652 skip_emulated_instruction(vcpu);
4653 return 1;
4654 }
4655 }
51d8b661 4656 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4657}
4658
851ba692 4659static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4660{
60637aac 4661 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4662 unsigned long exit_qualification;
e269fb21
JK
4663 bool has_error_code = false;
4664 u32 error_code = 0;
37817f29 4665 u16 tss_selector;
7f3d35fd 4666 int reason, type, idt_v, idt_index;
64a7ec06
GN
4667
4668 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 4669 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 4670 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4671
4672 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4673
4674 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4675 if (reason == TASK_SWITCH_GATE && idt_v) {
4676 switch (type) {
4677 case INTR_TYPE_NMI_INTR:
4678 vcpu->arch.nmi_injected = false;
654f06fc 4679 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4680 break;
4681 case INTR_TYPE_EXT_INTR:
66fd3f7f 4682 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4683 kvm_clear_interrupt_queue(vcpu);
4684 break;
4685 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4686 if (vmx->idt_vectoring_info &
4687 VECTORING_INFO_DELIVER_CODE_MASK) {
4688 has_error_code = true;
4689 error_code =
4690 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4691 }
4692 /* fall through */
64a7ec06
GN
4693 case INTR_TYPE_SOFT_EXCEPTION:
4694 kvm_clear_exception_queue(vcpu);
4695 break;
4696 default:
4697 break;
4698 }
60637aac 4699 }
37817f29
IE
4700 tss_selector = exit_qualification;
4701
64a7ec06
GN
4702 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4703 type != INTR_TYPE_EXT_INTR &&
4704 type != INTR_TYPE_NMI_INTR))
4705 skip_emulated_instruction(vcpu);
4706
7f3d35fd
KW
4707 if (kvm_task_switch(vcpu, tss_selector,
4708 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4709 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
4710 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4711 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4712 vcpu->run->internal.ndata = 0;
42dbaa5a 4713 return 0;
acb54517 4714 }
42dbaa5a
JK
4715
4716 /* clear all local breakpoint enable flags */
4717 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4718
4719 /*
4720 * TODO: What about debug traps on tss switch?
4721 * Are we supposed to inject them and update dr6?
4722 */
4723
4724 return 1;
37817f29
IE
4725}
4726
851ba692 4727static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4728{
f9c617f6 4729 unsigned long exit_qualification;
1439442c 4730 gpa_t gpa;
1439442c 4731 int gla_validity;
1439442c 4732
f9c617f6 4733 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4734
4735 if (exit_qualification & (1 << 6)) {
4736 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4737 return -EINVAL;
1439442c
SY
4738 }
4739
4740 gla_validity = (exit_qualification >> 7) & 0x3;
4741 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4742 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4743 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4744 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4745 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4746 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4747 (long unsigned int)exit_qualification);
851ba692
AK
4748 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4749 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4750 return 0;
1439442c
SY
4751 }
4752
4753 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4754 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4755 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4756}
4757
68f89400
MT
4758static u64 ept_rsvd_mask(u64 spte, int level)
4759{
4760 int i;
4761 u64 mask = 0;
4762
4763 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4764 mask |= (1ULL << i);
4765
4766 if (level > 2)
4767 /* bits 7:3 reserved */
4768 mask |= 0xf8;
4769 else if (level == 2) {
4770 if (spte & (1ULL << 7))
4771 /* 2MB ref, bits 20:12 reserved */
4772 mask |= 0x1ff000;
4773 else
4774 /* bits 6:3 reserved */
4775 mask |= 0x78;
4776 }
4777
4778 return mask;
4779}
4780
4781static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4782 int level)
4783{
4784 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4785
4786 /* 010b (write-only) */
4787 WARN_ON((spte & 0x7) == 0x2);
4788
4789 /* 110b (write/execute) */
4790 WARN_ON((spte & 0x7) == 0x6);
4791
4792 /* 100b (execute-only) and value not supported by logical processor */
4793 if (!cpu_has_vmx_ept_execute_only())
4794 WARN_ON((spte & 0x7) == 0x4);
4795
4796 /* not 000b */
4797 if ((spte & 0x7)) {
4798 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4799
4800 if (rsvd_bits != 0) {
4801 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4802 __func__, rsvd_bits);
4803 WARN_ON(1);
4804 }
4805
4806 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4807 u64 ept_mem_type = (spte & 0x38) >> 3;
4808
4809 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4810 ept_mem_type == 7) {
4811 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4812 __func__, ept_mem_type);
4813 WARN_ON(1);
4814 }
4815 }
4816 }
4817}
4818
851ba692 4819static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4820{
4821 u64 sptes[4];
ce88decf 4822 int nr_sptes, i, ret;
68f89400
MT
4823 gpa_t gpa;
4824
4825 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4826
ce88decf
XG
4827 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4828 if (likely(ret == 1))
4829 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4830 EMULATE_DONE;
4831 if (unlikely(!ret))
4832 return 1;
4833
4834 /* It is the real ept misconfig */
68f89400
MT
4835 printk(KERN_ERR "EPT: Misconfiguration.\n");
4836 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4837
4838 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4839
4840 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4841 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4842
851ba692
AK
4843 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4844 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4845
4846 return 0;
4847}
4848
851ba692 4849static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4850{
4851 u32 cpu_based_vm_exec_control;
4852
4853 /* clear pending NMI */
4854 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4855 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4856 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4857 ++vcpu->stat.nmi_window_exits;
3842d135 4858 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4859
4860 return 1;
4861}
4862
80ced186 4863static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4864{
8b3079a5
AK
4865 struct vcpu_vmx *vmx = to_vmx(vcpu);
4866 enum emulation_result err = EMULATE_DONE;
80ced186 4867 int ret = 1;
49e9d557
AK
4868 u32 cpu_exec_ctrl;
4869 bool intr_window_requested;
4870
4871 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4872 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4873
4874 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4875 if (intr_window_requested
4876 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4877 return handle_interrupt_window(&vmx->vcpu);
4878
51d8b661 4879 err = emulate_instruction(vcpu, 0);
ea953ef0 4880
80ced186
MG
4881 if (err == EMULATE_DO_MMIO) {
4882 ret = 0;
4883 goto out;
4884 }
1d5a4d9b 4885
6d77dbfc
GN
4886 if (err != EMULATE_DONE)
4887 return 0;
ea953ef0
MG
4888
4889 if (signal_pending(current))
80ced186 4890 goto out;
ea953ef0
MG
4891 if (need_resched())
4892 schedule();
4893 }
4894
80ced186
MG
4895 vmx->emulation_required = 0;
4896out:
4897 return ret;
ea953ef0
MG
4898}
4899
4b8d54f9
ZE
4900/*
4901 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4902 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4903 */
9fb41ba8 4904static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4905{
4906 skip_emulated_instruction(vcpu);
4907 kvm_vcpu_on_spin(vcpu);
4908
4909 return 1;
4910}
4911
59708670
SY
4912static int handle_invalid_op(struct kvm_vcpu *vcpu)
4913{
4914 kvm_queue_exception(vcpu, UD_VECTOR);
4915 return 1;
4916}
4917
ff2f6fe9
NHE
4918/*
4919 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4920 * We could reuse a single VMCS for all the L2 guests, but we also want the
4921 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4922 * allows keeping them loaded on the processor, and in the future will allow
4923 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4924 * every entry if they never change.
4925 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4926 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4927 *
4928 * The following functions allocate and free a vmcs02 in this pool.
4929 */
4930
4931/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4932static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4933{
4934 struct vmcs02_list *item;
4935 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4936 if (item->vmptr == vmx->nested.current_vmptr) {
4937 list_move(&item->list, &vmx->nested.vmcs02_pool);
4938 return &item->vmcs02;
4939 }
4940
4941 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4942 /* Recycle the least recently used VMCS. */
4943 item = list_entry(vmx->nested.vmcs02_pool.prev,
4944 struct vmcs02_list, list);
4945 item->vmptr = vmx->nested.current_vmptr;
4946 list_move(&item->list, &vmx->nested.vmcs02_pool);
4947 return &item->vmcs02;
4948 }
4949
4950 /* Create a new VMCS */
4951 item = (struct vmcs02_list *)
4952 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4953 if (!item)
4954 return NULL;
4955 item->vmcs02.vmcs = alloc_vmcs();
4956 if (!item->vmcs02.vmcs) {
4957 kfree(item);
4958 return NULL;
4959 }
4960 loaded_vmcs_init(&item->vmcs02);
4961 item->vmptr = vmx->nested.current_vmptr;
4962 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4963 vmx->nested.vmcs02_num++;
4964 return &item->vmcs02;
4965}
4966
4967/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4968static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4969{
4970 struct vmcs02_list *item;
4971 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4972 if (item->vmptr == vmptr) {
4973 free_loaded_vmcs(&item->vmcs02);
4974 list_del(&item->list);
4975 kfree(item);
4976 vmx->nested.vmcs02_num--;
4977 return;
4978 }
4979}
4980
4981/*
4982 * Free all VMCSs saved for this vcpu, except the one pointed by
4983 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4984 * currently used, if running L2), and vmcs01 when running L2.
4985 */
4986static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4987{
4988 struct vmcs02_list *item, *n;
4989 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4990 if (vmx->loaded_vmcs != &item->vmcs02)
4991 free_loaded_vmcs(&item->vmcs02);
4992 list_del(&item->list);
4993 kfree(item);
4994 }
4995 vmx->nested.vmcs02_num = 0;
4996
4997 if (vmx->loaded_vmcs != &vmx->vmcs01)
4998 free_loaded_vmcs(&vmx->vmcs01);
4999}
5000
ec378aee
NHE
5001/*
5002 * Emulate the VMXON instruction.
5003 * Currently, we just remember that VMX is active, and do not save or even
5004 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5005 * do not currently need to store anything in that guest-allocated memory
5006 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5007 * argument is different from the VMXON pointer (which the spec says they do).
5008 */
5009static int handle_vmon(struct kvm_vcpu *vcpu)
5010{
5011 struct kvm_segment cs;
5012 struct vcpu_vmx *vmx = to_vmx(vcpu);
5013
5014 /* The Intel VMX Instruction Reference lists a bunch of bits that
5015 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5016 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5017 * Otherwise, we should fail with #UD. We test these now:
5018 */
5019 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5020 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5021 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5022 kvm_queue_exception(vcpu, UD_VECTOR);
5023 return 1;
5024 }
5025
5026 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5027 if (is_long_mode(vcpu) && !cs.l) {
5028 kvm_queue_exception(vcpu, UD_VECTOR);
5029 return 1;
5030 }
5031
5032 if (vmx_get_cpl(vcpu)) {
5033 kvm_inject_gp(vcpu, 0);
5034 return 1;
5035 }
5036
ff2f6fe9
NHE
5037 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5038 vmx->nested.vmcs02_num = 0;
5039
ec378aee
NHE
5040 vmx->nested.vmxon = true;
5041
5042 skip_emulated_instruction(vcpu);
5043 return 1;
5044}
5045
5046/*
5047 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5048 * for running VMX instructions (except VMXON, whose prerequisites are
5049 * slightly different). It also specifies what exception to inject otherwise.
5050 */
5051static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5052{
5053 struct kvm_segment cs;
5054 struct vcpu_vmx *vmx = to_vmx(vcpu);
5055
5056 if (!vmx->nested.vmxon) {
5057 kvm_queue_exception(vcpu, UD_VECTOR);
5058 return 0;
5059 }
5060
5061 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5062 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5063 (is_long_mode(vcpu) && !cs.l)) {
5064 kvm_queue_exception(vcpu, UD_VECTOR);
5065 return 0;
5066 }
5067
5068 if (vmx_get_cpl(vcpu)) {
5069 kvm_inject_gp(vcpu, 0);
5070 return 0;
5071 }
5072
5073 return 1;
5074}
5075
5076/*
5077 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5078 * just stops using VMX.
5079 */
5080static void free_nested(struct vcpu_vmx *vmx)
5081{
5082 if (!vmx->nested.vmxon)
5083 return;
5084 vmx->nested.vmxon = false;
a9d30f33
NHE
5085 if (vmx->nested.current_vmptr != -1ull) {
5086 kunmap(vmx->nested.current_vmcs12_page);
5087 nested_release_page(vmx->nested.current_vmcs12_page);
5088 vmx->nested.current_vmptr = -1ull;
5089 vmx->nested.current_vmcs12 = NULL;
5090 }
fe3ef05c
NHE
5091 /* Unpin physical memory we referred to in current vmcs02 */
5092 if (vmx->nested.apic_access_page) {
5093 nested_release_page(vmx->nested.apic_access_page);
5094 vmx->nested.apic_access_page = 0;
5095 }
ff2f6fe9
NHE
5096
5097 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5098}
5099
5100/* Emulate the VMXOFF instruction */
5101static int handle_vmoff(struct kvm_vcpu *vcpu)
5102{
5103 if (!nested_vmx_check_permission(vcpu))
5104 return 1;
5105 free_nested(to_vmx(vcpu));
5106 skip_emulated_instruction(vcpu);
5107 return 1;
5108}
5109
064aea77
NHE
5110/*
5111 * Decode the memory-address operand of a vmx instruction, as recorded on an
5112 * exit caused by such an instruction (run by a guest hypervisor).
5113 * On success, returns 0. When the operand is invalid, returns 1 and throws
5114 * #UD or #GP.
5115 */
5116static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5117 unsigned long exit_qualification,
5118 u32 vmx_instruction_info, gva_t *ret)
5119{
5120 /*
5121 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5122 * Execution", on an exit, vmx_instruction_info holds most of the
5123 * addressing components of the operand. Only the displacement part
5124 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5125 * For how an actual address is calculated from all these components,
5126 * refer to Vol. 1, "Operand Addressing".
5127 */
5128 int scaling = vmx_instruction_info & 3;
5129 int addr_size = (vmx_instruction_info >> 7) & 7;
5130 bool is_reg = vmx_instruction_info & (1u << 10);
5131 int seg_reg = (vmx_instruction_info >> 15) & 7;
5132 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5133 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5134 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5135 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5136
5137 if (is_reg) {
5138 kvm_queue_exception(vcpu, UD_VECTOR);
5139 return 1;
5140 }
5141
5142 /* Addr = segment_base + offset */
5143 /* offset = base + [index * scale] + displacement */
5144 *ret = vmx_get_segment_base(vcpu, seg_reg);
5145 if (base_is_valid)
5146 *ret += kvm_register_read(vcpu, base_reg);
5147 if (index_is_valid)
5148 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5149 *ret += exit_qualification; /* holds the displacement */
5150
5151 if (addr_size == 1) /* 32 bit */
5152 *ret &= 0xffffffff;
5153
5154 /*
5155 * TODO: throw #GP (and return 1) in various cases that the VM*
5156 * instructions require it - e.g., offset beyond segment limit,
5157 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5158 * address, and so on. Currently these are not checked.
5159 */
5160 return 0;
5161}
5162
0140caea
NHE
5163/*
5164 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5165 * set the success or error code of an emulated VMX instruction, as specified
5166 * by Vol 2B, VMX Instruction Reference, "Conventions".
5167 */
5168static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5169{
5170 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5171 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5172 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5173}
5174
5175static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5176{
5177 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5178 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5179 X86_EFLAGS_SF | X86_EFLAGS_OF))
5180 | X86_EFLAGS_CF);
5181}
5182
5183static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5184 u32 vm_instruction_error)
5185{
5186 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5187 /*
5188 * failValid writes the error number to the current VMCS, which
5189 * can't be done there isn't a current VMCS.
5190 */
5191 nested_vmx_failInvalid(vcpu);
5192 return;
5193 }
5194 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5195 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5196 X86_EFLAGS_SF | X86_EFLAGS_OF))
5197 | X86_EFLAGS_ZF);
5198 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5199}
5200
27d6c865
NHE
5201/* Emulate the VMCLEAR instruction */
5202static int handle_vmclear(struct kvm_vcpu *vcpu)
5203{
5204 struct vcpu_vmx *vmx = to_vmx(vcpu);
5205 gva_t gva;
5206 gpa_t vmptr;
5207 struct vmcs12 *vmcs12;
5208 struct page *page;
5209 struct x86_exception e;
5210
5211 if (!nested_vmx_check_permission(vcpu))
5212 return 1;
5213
5214 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5215 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5216 return 1;
5217
5218 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5219 sizeof(vmptr), &e)) {
5220 kvm_inject_page_fault(vcpu, &e);
5221 return 1;
5222 }
5223
5224 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5225 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5226 skip_emulated_instruction(vcpu);
5227 return 1;
5228 }
5229
5230 if (vmptr == vmx->nested.current_vmptr) {
5231 kunmap(vmx->nested.current_vmcs12_page);
5232 nested_release_page(vmx->nested.current_vmcs12_page);
5233 vmx->nested.current_vmptr = -1ull;
5234 vmx->nested.current_vmcs12 = NULL;
5235 }
5236
5237 page = nested_get_page(vcpu, vmptr);
5238 if (page == NULL) {
5239 /*
5240 * For accurate processor emulation, VMCLEAR beyond available
5241 * physical memory should do nothing at all. However, it is
5242 * possible that a nested vmx bug, not a guest hypervisor bug,
5243 * resulted in this case, so let's shut down before doing any
5244 * more damage:
5245 */
5246 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5247 return 1;
5248 }
5249 vmcs12 = kmap(page);
5250 vmcs12->launch_state = 0;
5251 kunmap(page);
5252 nested_release_page(page);
5253
5254 nested_free_vmcs02(vmx, vmptr);
5255
5256 skip_emulated_instruction(vcpu);
5257 nested_vmx_succeed(vcpu);
5258 return 1;
5259}
5260
cd232ad0
NHE
5261static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5262
5263/* Emulate the VMLAUNCH instruction */
5264static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5265{
5266 return nested_vmx_run(vcpu, true);
5267}
5268
5269/* Emulate the VMRESUME instruction */
5270static int handle_vmresume(struct kvm_vcpu *vcpu)
5271{
5272
5273 return nested_vmx_run(vcpu, false);
5274}
5275
49f705c5
NHE
5276enum vmcs_field_type {
5277 VMCS_FIELD_TYPE_U16 = 0,
5278 VMCS_FIELD_TYPE_U64 = 1,
5279 VMCS_FIELD_TYPE_U32 = 2,
5280 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5281};
5282
5283static inline int vmcs_field_type(unsigned long field)
5284{
5285 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5286 return VMCS_FIELD_TYPE_U32;
5287 return (field >> 13) & 0x3 ;
5288}
5289
5290static inline int vmcs_field_readonly(unsigned long field)
5291{
5292 return (((field >> 10) & 0x3) == 1);
5293}
5294
5295/*
5296 * Read a vmcs12 field. Since these can have varying lengths and we return
5297 * one type, we chose the biggest type (u64) and zero-extend the return value
5298 * to that size. Note that the caller, handle_vmread, might need to use only
5299 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5300 * 64-bit fields are to be returned).
5301 */
5302static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5303 unsigned long field, u64 *ret)
5304{
5305 short offset = vmcs_field_to_offset(field);
5306 char *p;
5307
5308 if (offset < 0)
5309 return 0;
5310
5311 p = ((char *)(get_vmcs12(vcpu))) + offset;
5312
5313 switch (vmcs_field_type(field)) {
5314 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5315 *ret = *((natural_width *)p);
5316 return 1;
5317 case VMCS_FIELD_TYPE_U16:
5318 *ret = *((u16 *)p);
5319 return 1;
5320 case VMCS_FIELD_TYPE_U32:
5321 *ret = *((u32 *)p);
5322 return 1;
5323 case VMCS_FIELD_TYPE_U64:
5324 *ret = *((u64 *)p);
5325 return 1;
5326 default:
5327 return 0; /* can never happen. */
5328 }
5329}
5330
5331/*
5332 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5333 * used before) all generate the same failure when it is missing.
5334 */
5335static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5336{
5337 struct vcpu_vmx *vmx = to_vmx(vcpu);
5338 if (vmx->nested.current_vmptr == -1ull) {
5339 nested_vmx_failInvalid(vcpu);
5340 skip_emulated_instruction(vcpu);
5341 return 0;
5342 }
5343 return 1;
5344}
5345
5346static int handle_vmread(struct kvm_vcpu *vcpu)
5347{
5348 unsigned long field;
5349 u64 field_value;
5350 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5351 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5352 gva_t gva = 0;
5353
5354 if (!nested_vmx_check_permission(vcpu) ||
5355 !nested_vmx_check_vmcs12(vcpu))
5356 return 1;
5357
5358 /* Decode instruction info and find the field to read */
5359 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5360 /* Read the field, zero-extended to a u64 field_value */
5361 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5362 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5363 skip_emulated_instruction(vcpu);
5364 return 1;
5365 }
5366 /*
5367 * Now copy part of this value to register or memory, as requested.
5368 * Note that the number of bits actually copied is 32 or 64 depending
5369 * on the guest's mode (32 or 64 bit), not on the given field's length.
5370 */
5371 if (vmx_instruction_info & (1u << 10)) {
5372 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5373 field_value);
5374 } else {
5375 if (get_vmx_mem_address(vcpu, exit_qualification,
5376 vmx_instruction_info, &gva))
5377 return 1;
5378 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5379 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5380 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5381 }
5382
5383 nested_vmx_succeed(vcpu);
5384 skip_emulated_instruction(vcpu);
5385 return 1;
5386}
5387
5388
5389static int handle_vmwrite(struct kvm_vcpu *vcpu)
5390{
5391 unsigned long field;
5392 gva_t gva;
5393 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5394 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5395 char *p;
5396 short offset;
5397 /* The value to write might be 32 or 64 bits, depending on L1's long
5398 * mode, and eventually we need to write that into a field of several
5399 * possible lengths. The code below first zero-extends the value to 64
5400 * bit (field_value), and then copies only the approriate number of
5401 * bits into the vmcs12 field.
5402 */
5403 u64 field_value = 0;
5404 struct x86_exception e;
5405
5406 if (!nested_vmx_check_permission(vcpu) ||
5407 !nested_vmx_check_vmcs12(vcpu))
5408 return 1;
5409
5410 if (vmx_instruction_info & (1u << 10))
5411 field_value = kvm_register_read(vcpu,
5412 (((vmx_instruction_info) >> 3) & 0xf));
5413 else {
5414 if (get_vmx_mem_address(vcpu, exit_qualification,
5415 vmx_instruction_info, &gva))
5416 return 1;
5417 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5418 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5419 kvm_inject_page_fault(vcpu, &e);
5420 return 1;
5421 }
5422 }
5423
5424
5425 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5426 if (vmcs_field_readonly(field)) {
5427 nested_vmx_failValid(vcpu,
5428 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5429 skip_emulated_instruction(vcpu);
5430 return 1;
5431 }
5432
5433 offset = vmcs_field_to_offset(field);
5434 if (offset < 0) {
5435 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5436 skip_emulated_instruction(vcpu);
5437 return 1;
5438 }
5439 p = ((char *) get_vmcs12(vcpu)) + offset;
5440
5441 switch (vmcs_field_type(field)) {
5442 case VMCS_FIELD_TYPE_U16:
5443 *(u16 *)p = field_value;
5444 break;
5445 case VMCS_FIELD_TYPE_U32:
5446 *(u32 *)p = field_value;
5447 break;
5448 case VMCS_FIELD_TYPE_U64:
5449 *(u64 *)p = field_value;
5450 break;
5451 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5452 *(natural_width *)p = field_value;
5453 break;
5454 default:
5455 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5456 skip_emulated_instruction(vcpu);
5457 return 1;
5458 }
5459
5460 nested_vmx_succeed(vcpu);
5461 skip_emulated_instruction(vcpu);
5462 return 1;
5463}
5464
63846663
NHE
5465/* Emulate the VMPTRLD instruction */
5466static int handle_vmptrld(struct kvm_vcpu *vcpu)
5467{
5468 struct vcpu_vmx *vmx = to_vmx(vcpu);
5469 gva_t gva;
5470 gpa_t vmptr;
5471 struct x86_exception e;
5472
5473 if (!nested_vmx_check_permission(vcpu))
5474 return 1;
5475
5476 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5477 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5478 return 1;
5479
5480 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5481 sizeof(vmptr), &e)) {
5482 kvm_inject_page_fault(vcpu, &e);
5483 return 1;
5484 }
5485
5486 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5487 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5488 skip_emulated_instruction(vcpu);
5489 return 1;
5490 }
5491
5492 if (vmx->nested.current_vmptr != vmptr) {
5493 struct vmcs12 *new_vmcs12;
5494 struct page *page;
5495 page = nested_get_page(vcpu, vmptr);
5496 if (page == NULL) {
5497 nested_vmx_failInvalid(vcpu);
5498 skip_emulated_instruction(vcpu);
5499 return 1;
5500 }
5501 new_vmcs12 = kmap(page);
5502 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5503 kunmap(page);
5504 nested_release_page_clean(page);
5505 nested_vmx_failValid(vcpu,
5506 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5507 skip_emulated_instruction(vcpu);
5508 return 1;
5509 }
5510 if (vmx->nested.current_vmptr != -1ull) {
5511 kunmap(vmx->nested.current_vmcs12_page);
5512 nested_release_page(vmx->nested.current_vmcs12_page);
5513 }
5514
5515 vmx->nested.current_vmptr = vmptr;
5516 vmx->nested.current_vmcs12 = new_vmcs12;
5517 vmx->nested.current_vmcs12_page = page;
5518 }
5519
5520 nested_vmx_succeed(vcpu);
5521 skip_emulated_instruction(vcpu);
5522 return 1;
5523}
5524
6a4d7550
NHE
5525/* Emulate the VMPTRST instruction */
5526static int handle_vmptrst(struct kvm_vcpu *vcpu)
5527{
5528 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5529 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5530 gva_t vmcs_gva;
5531 struct x86_exception e;
5532
5533 if (!nested_vmx_check_permission(vcpu))
5534 return 1;
5535
5536 if (get_vmx_mem_address(vcpu, exit_qualification,
5537 vmx_instruction_info, &vmcs_gva))
5538 return 1;
5539 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5540 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5541 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5542 sizeof(u64), &e)) {
5543 kvm_inject_page_fault(vcpu, &e);
5544 return 1;
5545 }
5546 nested_vmx_succeed(vcpu);
5547 skip_emulated_instruction(vcpu);
5548 return 1;
5549}
5550
6aa8b732
AK
5551/*
5552 * The exit handlers return 1 if the exit was handled fully and guest execution
5553 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5554 * to be done to userspace and return 0.
5555 */
851ba692 5556static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5557 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5558 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5559 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5560 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5561 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5562 [EXIT_REASON_CR_ACCESS] = handle_cr,
5563 [EXIT_REASON_DR_ACCESS] = handle_dr,
5564 [EXIT_REASON_CPUID] = handle_cpuid,
5565 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5566 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5567 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5568 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5569 [EXIT_REASON_INVD] = handle_invd,
a7052897 5570 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5571 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5572 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5573 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5574 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5575 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5576 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5577 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5578 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5579 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5580 [EXIT_REASON_VMOFF] = handle_vmoff,
5581 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5582 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5583 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5584 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5585 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5586 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5587 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5588 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5589 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5590 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5591 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5592 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5593};
5594
5595static const int kvm_vmx_max_exit_handlers =
50a3485c 5596 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5597
644d711a
NHE
5598/*
5599 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5600 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5601 * disinterest in the current event (read or write a specific MSR) by using an
5602 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5603 */
5604static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5605 struct vmcs12 *vmcs12, u32 exit_reason)
5606{
5607 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5608 gpa_t bitmap;
5609
5610 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5611 return 1;
5612
5613 /*
5614 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5615 * for the four combinations of read/write and low/high MSR numbers.
5616 * First we need to figure out which of the four to use:
5617 */
5618 bitmap = vmcs12->msr_bitmap;
5619 if (exit_reason == EXIT_REASON_MSR_WRITE)
5620 bitmap += 2048;
5621 if (msr_index >= 0xc0000000) {
5622 msr_index -= 0xc0000000;
5623 bitmap += 1024;
5624 }
5625
5626 /* Then read the msr_index'th bit from this bitmap: */
5627 if (msr_index < 1024*8) {
5628 unsigned char b;
5629 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5630 return 1 & (b >> (msr_index & 7));
5631 } else
5632 return 1; /* let L1 handle the wrong parameter */
5633}
5634
5635/*
5636 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5637 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5638 * intercept (via guest_host_mask etc.) the current event.
5639 */
5640static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5641 struct vmcs12 *vmcs12)
5642{
5643 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5644 int cr = exit_qualification & 15;
5645 int reg = (exit_qualification >> 8) & 15;
5646 unsigned long val = kvm_register_read(vcpu, reg);
5647
5648 switch ((exit_qualification >> 4) & 3) {
5649 case 0: /* mov to cr */
5650 switch (cr) {
5651 case 0:
5652 if (vmcs12->cr0_guest_host_mask &
5653 (val ^ vmcs12->cr0_read_shadow))
5654 return 1;
5655 break;
5656 case 3:
5657 if ((vmcs12->cr3_target_count >= 1 &&
5658 vmcs12->cr3_target_value0 == val) ||
5659 (vmcs12->cr3_target_count >= 2 &&
5660 vmcs12->cr3_target_value1 == val) ||
5661 (vmcs12->cr3_target_count >= 3 &&
5662 vmcs12->cr3_target_value2 == val) ||
5663 (vmcs12->cr3_target_count >= 4 &&
5664 vmcs12->cr3_target_value3 == val))
5665 return 0;
5666 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5667 return 1;
5668 break;
5669 case 4:
5670 if (vmcs12->cr4_guest_host_mask &
5671 (vmcs12->cr4_read_shadow ^ val))
5672 return 1;
5673 break;
5674 case 8:
5675 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5676 return 1;
5677 break;
5678 }
5679 break;
5680 case 2: /* clts */
5681 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5682 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5683 return 1;
5684 break;
5685 case 1: /* mov from cr */
5686 switch (cr) {
5687 case 3:
5688 if (vmcs12->cpu_based_vm_exec_control &
5689 CPU_BASED_CR3_STORE_EXITING)
5690 return 1;
5691 break;
5692 case 8:
5693 if (vmcs12->cpu_based_vm_exec_control &
5694 CPU_BASED_CR8_STORE_EXITING)
5695 return 1;
5696 break;
5697 }
5698 break;
5699 case 3: /* lmsw */
5700 /*
5701 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5702 * cr0. Other attempted changes are ignored, with no exit.
5703 */
5704 if (vmcs12->cr0_guest_host_mask & 0xe &
5705 (val ^ vmcs12->cr0_read_shadow))
5706 return 1;
5707 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5708 !(vmcs12->cr0_read_shadow & 0x1) &&
5709 (val & 0x1))
5710 return 1;
5711 break;
5712 }
5713 return 0;
5714}
5715
5716/*
5717 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5718 * should handle it ourselves in L0 (and then continue L2). Only call this
5719 * when in is_guest_mode (L2).
5720 */
5721static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5722{
5723 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5724 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5725 struct vcpu_vmx *vmx = to_vmx(vcpu);
5726 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5727
5728 if (vmx->nested.nested_run_pending)
5729 return 0;
5730
5731 if (unlikely(vmx->fail)) {
bd80158a
JK
5732 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5733 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5734 return 1;
5735 }
5736
5737 switch (exit_reason) {
5738 case EXIT_REASON_EXCEPTION_NMI:
5739 if (!is_exception(intr_info))
5740 return 0;
5741 else if (is_page_fault(intr_info))
5742 return enable_ept;
5743 return vmcs12->exception_bitmap &
5744 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5745 case EXIT_REASON_EXTERNAL_INTERRUPT:
5746 return 0;
5747 case EXIT_REASON_TRIPLE_FAULT:
5748 return 1;
5749 case EXIT_REASON_PENDING_INTERRUPT:
5750 case EXIT_REASON_NMI_WINDOW:
5751 /*
5752 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5753 * (aka Interrupt Window Exiting) only when L1 turned it on,
5754 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5755 * Same for NMI Window Exiting.
5756 */
5757 return 1;
5758 case EXIT_REASON_TASK_SWITCH:
5759 return 1;
5760 case EXIT_REASON_CPUID:
5761 return 1;
5762 case EXIT_REASON_HLT:
5763 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5764 case EXIT_REASON_INVD:
5765 return 1;
5766 case EXIT_REASON_INVLPG:
5767 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5768 case EXIT_REASON_RDPMC:
5769 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5770 case EXIT_REASON_RDTSC:
5771 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5772 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5773 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5774 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5775 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5776 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5777 /*
5778 * VMX instructions trap unconditionally. This allows L1 to
5779 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5780 */
5781 return 1;
5782 case EXIT_REASON_CR_ACCESS:
5783 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5784 case EXIT_REASON_DR_ACCESS:
5785 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5786 case EXIT_REASON_IO_INSTRUCTION:
5787 /* TODO: support IO bitmaps */
5788 return 1;
5789 case EXIT_REASON_MSR_READ:
5790 case EXIT_REASON_MSR_WRITE:
5791 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5792 case EXIT_REASON_INVALID_STATE:
5793 return 1;
5794 case EXIT_REASON_MWAIT_INSTRUCTION:
5795 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5796 case EXIT_REASON_MONITOR_INSTRUCTION:
5797 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5798 case EXIT_REASON_PAUSE_INSTRUCTION:
5799 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5800 nested_cpu_has2(vmcs12,
5801 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5802 case EXIT_REASON_MCE_DURING_VMENTRY:
5803 return 0;
5804 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5805 return 1;
5806 case EXIT_REASON_APIC_ACCESS:
5807 return nested_cpu_has2(vmcs12,
5808 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5809 case EXIT_REASON_EPT_VIOLATION:
5810 case EXIT_REASON_EPT_MISCONFIG:
5811 return 0;
5812 case EXIT_REASON_WBINVD:
5813 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5814 case EXIT_REASON_XSETBV:
5815 return 1;
5816 default:
5817 return 1;
5818 }
5819}
5820
586f9607
AK
5821static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5822{
5823 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5824 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5825}
5826
6aa8b732
AK
5827/*
5828 * The guest has exited. See if we can fix it or if we need userspace
5829 * assistance.
5830 */
851ba692 5831static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5832{
29bd8a78 5833 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5834 u32 exit_reason = vmx->exit_reason;
1155f76a 5835 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5836
80ced186
MG
5837 /* If guest state is invalid, start emulating */
5838 if (vmx->emulation_required && emulate_invalid_guest_state)
5839 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5840
b6f1250e
NHE
5841 /*
5842 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5843 * we did not inject a still-pending event to L1 now because of
5844 * nested_run_pending, we need to re-enable this bit.
5845 */
5846 if (vmx->nested.nested_run_pending)
5847 kvm_make_request(KVM_REQ_EVENT, vcpu);
5848
509c75ea
NHE
5849 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5850 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5851 vmx->nested.nested_run_pending = 1;
5852 else
5853 vmx->nested.nested_run_pending = 0;
5854
5855 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5856 nested_vmx_vmexit(vcpu);
5857 return 1;
5858 }
5859
5120702e
MG
5860 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5861 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5862 vcpu->run->fail_entry.hardware_entry_failure_reason
5863 = exit_reason;
5864 return 0;
5865 }
5866
29bd8a78 5867 if (unlikely(vmx->fail)) {
851ba692
AK
5868 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5869 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5870 = vmcs_read32(VM_INSTRUCTION_ERROR);
5871 return 0;
5872 }
6aa8b732 5873
d77c26fc 5874 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5875 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5876 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5877 exit_reason != EXIT_REASON_TASK_SWITCH))
5878 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5879 "(0x%x) and exit reason is 0x%x\n",
5880 __func__, vectoring_info, exit_reason);
3b86cd99 5881
644d711a
NHE
5882 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5883 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5884 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5885 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5886 vmx->soft_vnmi_blocked = 0;
3b86cd99 5887 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5888 vcpu->arch.nmi_pending) {
3b86cd99
JK
5889 /*
5890 * This CPU don't support us in finding the end of an
5891 * NMI-blocked window if the guest runs with IRQs
5892 * disabled. So we pull the trigger after 1 s of
5893 * futile waiting, but inform the user about this.
5894 */
5895 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5896 "state on VCPU %d after 1 s timeout\n",
5897 __func__, vcpu->vcpu_id);
5898 vmx->soft_vnmi_blocked = 0;
3b86cd99 5899 }
3b86cd99
JK
5900 }
5901
6aa8b732
AK
5902 if (exit_reason < kvm_vmx_max_exit_handlers
5903 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5904 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5905 else {
851ba692
AK
5906 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5907 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5908 }
5909 return 0;
5910}
5911
95ba8273 5912static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5913{
95ba8273 5914 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5915 vmcs_write32(TPR_THRESHOLD, 0);
5916 return;
5917 }
5918
95ba8273 5919 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5920}
5921
51aa01d1 5922static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5923{
00eba012
AK
5924 u32 exit_intr_info;
5925
5926 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5927 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5928 return;
5929
c5ca8e57 5930 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5931 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5932
5933 /* Handle machine checks before interrupts are enabled */
00eba012 5934 if (is_machine_check(exit_intr_info))
a0861c02
AK
5935 kvm_machine_check();
5936
20f65983 5937 /* We need to handle NMIs before interrupts are enabled */
00eba012 5938 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5939 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5940 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5941 asm("int $2");
ff9d07a0
ZY
5942 kvm_after_handle_nmi(&vmx->vcpu);
5943 }
51aa01d1 5944}
20f65983 5945
51aa01d1
AK
5946static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5947{
c5ca8e57 5948 u32 exit_intr_info;
51aa01d1
AK
5949 bool unblock_nmi;
5950 u8 vector;
5951 bool idtv_info_valid;
5952
5953 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5954
cf393f75 5955 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5956 if (vmx->nmi_known_unmasked)
5957 return;
c5ca8e57
AK
5958 /*
5959 * Can't use vmx->exit_intr_info since we're not sure what
5960 * the exit reason is.
5961 */
5962 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5963 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5964 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5965 /*
7b4a25cb 5966 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5967 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5968 * a guest IRET fault.
7b4a25cb
GN
5969 * SDM 3: 23.2.2 (September 2008)
5970 * Bit 12 is undefined in any of the following cases:
5971 * If the VM exit sets the valid bit in the IDT-vectoring
5972 * information field.
5973 * If the VM exit is due to a double fault.
cf393f75 5974 */
7b4a25cb
GN
5975 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5976 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5977 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5978 GUEST_INTR_STATE_NMI);
9d58b931
AK
5979 else
5980 vmx->nmi_known_unmasked =
5981 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5982 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5983 } else if (unlikely(vmx->soft_vnmi_blocked))
5984 vmx->vnmi_blocked_time +=
5985 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5986}
5987
83422e17
AK
5988static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5989 u32 idt_vectoring_info,
5990 int instr_len_field,
5991 int error_code_field)
51aa01d1 5992{
51aa01d1
AK
5993 u8 vector;
5994 int type;
5995 bool idtv_info_valid;
5996
5997 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 5998
37b96e98
GN
5999 vmx->vcpu.arch.nmi_injected = false;
6000 kvm_clear_exception_queue(&vmx->vcpu);
6001 kvm_clear_interrupt_queue(&vmx->vcpu);
6002
6003 if (!idtv_info_valid)
6004 return;
6005
3842d135
AK
6006 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6007
668f612f
AK
6008 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6009 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6010
64a7ec06 6011 switch (type) {
37b96e98
GN
6012 case INTR_TYPE_NMI_INTR:
6013 vmx->vcpu.arch.nmi_injected = true;
668f612f 6014 /*
7b4a25cb 6015 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6016 * Clear bit "block by NMI" before VM entry if a NMI
6017 * delivery faulted.
668f612f 6018 */
654f06fc 6019 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6020 break;
37b96e98 6021 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6022 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6023 vmcs_read32(instr_len_field);
66fd3f7f
GN
6024 /* fall through */
6025 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6026 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6027 u32 err = vmcs_read32(error_code_field);
37b96e98 6028 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6029 } else
6030 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6031 break;
66fd3f7f
GN
6032 case INTR_TYPE_SOFT_INTR:
6033 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6034 vmcs_read32(instr_len_field);
66fd3f7f 6035 /* fall through */
37b96e98 6036 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6037 kvm_queue_interrupt(&vmx->vcpu, vector,
6038 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6039 break;
6040 default:
6041 break;
f7d9238f 6042 }
cf393f75
AK
6043}
6044
83422e17
AK
6045static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6046{
66c78ae4
NHE
6047 if (is_guest_mode(&vmx->vcpu))
6048 return;
83422e17
AK
6049 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6050 VM_EXIT_INSTRUCTION_LEN,
6051 IDT_VECTORING_ERROR_CODE);
6052}
6053
b463a6f7
AK
6054static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6055{
66c78ae4
NHE
6056 if (is_guest_mode(vcpu))
6057 return;
b463a6f7
AK
6058 __vmx_complete_interrupts(to_vmx(vcpu),
6059 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6060 VM_ENTRY_INSTRUCTION_LEN,
6061 VM_ENTRY_EXCEPTION_ERROR_CODE);
6062
6063 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6064}
6065
d7cd9796
GN
6066static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6067{
6068 int i, nr_msrs;
6069 struct perf_guest_switch_msr *msrs;
6070
6071 msrs = perf_guest_get_msrs(&nr_msrs);
6072
6073 if (!msrs)
6074 return;
6075
6076 for (i = 0; i < nr_msrs; i++)
6077 if (msrs[i].host == msrs[i].guest)
6078 clear_atomic_switch_msr(vmx, msrs[i].msr);
6079 else
6080 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6081 msrs[i].host);
6082}
6083
c801949d
AK
6084#ifdef CONFIG_X86_64
6085#define R "r"
6086#define Q "q"
6087#else
6088#define R "e"
6089#define Q "l"
6090#endif
6091
a3b5ba49 6092static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6093{
a2fa3e9f 6094 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6095
66c78ae4
NHE
6096 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6097 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6098 if (vmcs12->idt_vectoring_info_field &
6099 VECTORING_INFO_VALID_MASK) {
6100 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6101 vmcs12->idt_vectoring_info_field);
6102 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6103 vmcs12->vm_exit_instruction_len);
6104 if (vmcs12->idt_vectoring_info_field &
6105 VECTORING_INFO_DELIVER_CODE_MASK)
6106 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6107 vmcs12->idt_vectoring_error_code);
6108 }
6109 }
6110
104f226b
AK
6111 /* Record the guest's net vcpu time for enforced NMI injections. */
6112 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6113 vmx->entry_time = ktime_get();
6114
6115 /* Don't enter VMX if guest state is invalid, let the exit handler
6116 start emulation until we arrive back to a valid state */
6117 if (vmx->emulation_required && emulate_invalid_guest_state)
6118 return;
6119
6120 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6121 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6122 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6123 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6124
6125 /* When single-stepping over STI and MOV SS, we must clear the
6126 * corresponding interruptibility bits in the guest state. Otherwise
6127 * vmentry fails as it then expects bit 14 (BS) in pending debug
6128 * exceptions being set, but that's not correct for the guest debugging
6129 * case. */
6130 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6131 vmx_set_interrupt_shadow(vcpu, 0);
6132
d7cd9796
GN
6133 atomic_switch_perf_msrs(vmx);
6134
d462b819 6135 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6136 asm(
6aa8b732 6137 /* Store host registers */
c801949d 6138 "push %%"R"dx; push %%"R"bp;"
40712fae 6139 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6140 "push %%"R"cx \n\t"
313dbd49
AK
6141 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6142 "je 1f \n\t"
6143 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6144 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6145 "1: \n\t"
d3edefc0
AK
6146 /* Reload cr2 if changed */
6147 "mov %c[cr2](%0), %%"R"ax \n\t"
6148 "mov %%cr2, %%"R"dx \n\t"
6149 "cmp %%"R"ax, %%"R"dx \n\t"
6150 "je 2f \n\t"
6151 "mov %%"R"ax, %%cr2 \n\t"
6152 "2: \n\t"
6aa8b732 6153 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6154 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6155 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6156 "mov %c[rax](%0), %%"R"ax \n\t"
6157 "mov %c[rbx](%0), %%"R"bx \n\t"
6158 "mov %c[rdx](%0), %%"R"dx \n\t"
6159 "mov %c[rsi](%0), %%"R"si \n\t"
6160 "mov %c[rdi](%0), %%"R"di \n\t"
6161 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6162#ifdef CONFIG_X86_64
e08aa78a
AK
6163 "mov %c[r8](%0), %%r8 \n\t"
6164 "mov %c[r9](%0), %%r9 \n\t"
6165 "mov %c[r10](%0), %%r10 \n\t"
6166 "mov %c[r11](%0), %%r11 \n\t"
6167 "mov %c[r12](%0), %%r12 \n\t"
6168 "mov %c[r13](%0), %%r13 \n\t"
6169 "mov %c[r14](%0), %%r14 \n\t"
6170 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6171#endif
c801949d
AK
6172 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6173
6aa8b732 6174 /* Enter guest mode */
cd2276a7 6175 "jne .Llaunched \n\t"
4ecac3fd 6176 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6177 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6178 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6179 ".Lkvm_vmx_return: "
6aa8b732 6180 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6181 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6182 "pop %0 \n\t"
c801949d
AK
6183 "mov %%"R"ax, %c[rax](%0) \n\t"
6184 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6185 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6186 "mov %%"R"dx, %c[rdx](%0) \n\t"
6187 "mov %%"R"si, %c[rsi](%0) \n\t"
6188 "mov %%"R"di, %c[rdi](%0) \n\t"
6189 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6190#ifdef CONFIG_X86_64
e08aa78a
AK
6191 "mov %%r8, %c[r8](%0) \n\t"
6192 "mov %%r9, %c[r9](%0) \n\t"
6193 "mov %%r10, %c[r10](%0) \n\t"
6194 "mov %%r11, %c[r11](%0) \n\t"
6195 "mov %%r12, %c[r12](%0) \n\t"
6196 "mov %%r13, %c[r13](%0) \n\t"
6197 "mov %%r14, %c[r14](%0) \n\t"
6198 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6199#endif
c801949d
AK
6200 "mov %%cr2, %%"R"ax \n\t"
6201 "mov %%"R"ax, %c[cr2](%0) \n\t"
6202
1c696d0e 6203 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6204 "setbe %c[fail](%0) \n\t"
6205 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6206 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6207 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6208 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6209 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6210 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6211 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6212 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6213 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6214 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6215 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6216#ifdef CONFIG_X86_64
ad312c7c
ZX
6217 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6218 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6219 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6220 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6221 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6222 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6223 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6224 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6225#endif
40712fae
AK
6226 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6227 [wordsize]"i"(sizeof(ulong))
c2036300 6228 : "cc", "memory"
07d6f555 6229 , R"ax", R"bx", R"di", R"si"
c2036300 6230#ifdef CONFIG_X86_64
c2036300
LV
6231 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6232#endif
6233 );
6aa8b732 6234
6de4f3ad 6235 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6236 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6237 | (1 << VCPU_EXREG_CPL)
aff48baa 6238 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6239 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6240 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6241 vcpu->arch.regs_dirty = 0;
6242
1155f76a
AK
6243 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6244
66c78ae4
NHE
6245 if (is_guest_mode(vcpu)) {
6246 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6247 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6248 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6249 vmcs12->idt_vectoring_error_code =
6250 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6251 vmcs12->vm_exit_instruction_len =
6252 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6253 }
6254 }
6255
d77c26fc 6256 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6257 vmx->loaded_vmcs->launched = 1;
1b6269db 6258
51aa01d1 6259 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6260 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6261
6262 vmx_complete_atomic_exit(vmx);
6263 vmx_recover_nmi_blocking(vmx);
cf393f75 6264 vmx_complete_interrupts(vmx);
6aa8b732
AK
6265}
6266
c801949d
AK
6267#undef R
6268#undef Q
6269
6aa8b732
AK
6270static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6271{
fb3f0f51
RR
6272 struct vcpu_vmx *vmx = to_vmx(vcpu);
6273
cdbecfc3 6274 free_vpid(vmx);
ec378aee 6275 free_nested(vmx);
d462b819 6276 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6277 kfree(vmx->guest_msrs);
6278 kvm_vcpu_uninit(vcpu);
a4770347 6279 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6280}
6281
fb3f0f51 6282static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6283{
fb3f0f51 6284 int err;
c16f862d 6285 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6286 int cpu;
6aa8b732 6287
a2fa3e9f 6288 if (!vmx)
fb3f0f51
RR
6289 return ERR_PTR(-ENOMEM);
6290
2384d2b3
SY
6291 allocate_vpid(vmx);
6292
fb3f0f51
RR
6293 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6294 if (err)
6295 goto free_vcpu;
965b58a5 6296
a2fa3e9f 6297 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6298 err = -ENOMEM;
fb3f0f51 6299 if (!vmx->guest_msrs) {
fb3f0f51
RR
6300 goto uninit_vcpu;
6301 }
965b58a5 6302
d462b819
NHE
6303 vmx->loaded_vmcs = &vmx->vmcs01;
6304 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6305 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6306 goto free_msrs;
d462b819
NHE
6307 if (!vmm_exclusive)
6308 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6309 loaded_vmcs_init(vmx->loaded_vmcs);
6310 if (!vmm_exclusive)
6311 kvm_cpu_vmxoff();
a2fa3e9f 6312
15ad7146
AK
6313 cpu = get_cpu();
6314 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6315 vmx->vcpu.cpu = cpu;
8b9cf98c 6316 err = vmx_vcpu_setup(vmx);
fb3f0f51 6317 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6318 put_cpu();
fb3f0f51
RR
6319 if (err)
6320 goto free_vmcs;
5e4a0b3c 6321 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6322 err = alloc_apic_access_page(kvm);
6323 if (err)
5e4a0b3c 6324 goto free_vmcs;
fb3f0f51 6325
b927a3ce
SY
6326 if (enable_ept) {
6327 if (!kvm->arch.ept_identity_map_addr)
6328 kvm->arch.ept_identity_map_addr =
6329 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6330 err = -ENOMEM;
b7ebfb05
SY
6331 if (alloc_identity_pagetable(kvm) != 0)
6332 goto free_vmcs;
93ea5388
GN
6333 if (!init_rmode_identity_map(kvm))
6334 goto free_vmcs;
b927a3ce 6335 }
b7ebfb05 6336
a9d30f33
NHE
6337 vmx->nested.current_vmptr = -1ull;
6338 vmx->nested.current_vmcs12 = NULL;
6339
fb3f0f51
RR
6340 return &vmx->vcpu;
6341
6342free_vmcs:
d462b819 6343 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6344free_msrs:
fb3f0f51
RR
6345 kfree(vmx->guest_msrs);
6346uninit_vcpu:
6347 kvm_vcpu_uninit(&vmx->vcpu);
6348free_vcpu:
cdbecfc3 6349 free_vpid(vmx);
a4770347 6350 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6351 return ERR_PTR(err);
6aa8b732
AK
6352}
6353
002c7f7c
YS
6354static void __init vmx_check_processor_compat(void *rtn)
6355{
6356 struct vmcs_config vmcs_conf;
6357
6358 *(int *)rtn = 0;
6359 if (setup_vmcs_config(&vmcs_conf) < 0)
6360 *(int *)rtn = -EIO;
6361 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6362 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6363 smp_processor_id());
6364 *(int *)rtn = -EIO;
6365 }
6366}
6367
67253af5
SY
6368static int get_ept_level(void)
6369{
6370 return VMX_EPT_DEFAULT_GAW + 1;
6371}
6372
4b12f0de 6373static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6374{
4b12f0de
SY
6375 u64 ret;
6376
522c68c4
SY
6377 /* For VT-d and EPT combination
6378 * 1. MMIO: always map as UC
6379 * 2. EPT with VT-d:
6380 * a. VT-d without snooping control feature: can't guarantee the
6381 * result, try to trust guest.
6382 * b. VT-d with snooping control feature: snooping control feature of
6383 * VT-d engine can guarantee the cache correctness. Just set it
6384 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6385 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6386 * consistent with host MTRR
6387 */
4b12f0de
SY
6388 if (is_mmio)
6389 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6390 else if (vcpu->kvm->arch.iommu_domain &&
6391 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6392 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6393 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6394 else
522c68c4 6395 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6396 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6397
6398 return ret;
64d4d521
SY
6399}
6400
17cc3935 6401static int vmx_get_lpage_level(void)
344f414f 6402{
878403b7
SY
6403 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6404 return PT_DIRECTORY_LEVEL;
6405 else
6406 /* For shadow and EPT supported 1GB page */
6407 return PT_PDPE_LEVEL;
344f414f
JR
6408}
6409
0e851880
SY
6410static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6411{
4e47c7a6
SY
6412 struct kvm_cpuid_entry2 *best;
6413 struct vcpu_vmx *vmx = to_vmx(vcpu);
6414 u32 exec_control;
6415
6416 vmx->rdtscp_enabled = false;
6417 if (vmx_rdtscp_supported()) {
6418 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6419 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6420 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6421 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6422 vmx->rdtscp_enabled = true;
6423 else {
6424 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6425 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6426 exec_control);
6427 }
6428 }
6429 }
0e851880
SY
6430}
6431
d4330ef2
JR
6432static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6433{
7b8050f5
NHE
6434 if (func == 1 && nested)
6435 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6436}
6437
fe3ef05c
NHE
6438/*
6439 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6440 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6441 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6442 * guest in a way that will both be appropriate to L1's requests, and our
6443 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6444 * function also has additional necessary side-effects, like setting various
6445 * vcpu->arch fields.
6446 */
6447static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6448{
6449 struct vcpu_vmx *vmx = to_vmx(vcpu);
6450 u32 exec_control;
6451
6452 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6453 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6454 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6455 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6456 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6457 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6458 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6459 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6460 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6461 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6462 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6463 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6464 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6465 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6466 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6467 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6468 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6469 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6470 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6471 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6472 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6473 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6474 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6475 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6476 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6477 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6478 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6479 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6480 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6481 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6482 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6483 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6484 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6485 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6486 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6487 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6488
6489 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6490 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6491 vmcs12->vm_entry_intr_info_field);
6492 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6493 vmcs12->vm_entry_exception_error_code);
6494 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6495 vmcs12->vm_entry_instruction_len);
6496 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6497 vmcs12->guest_interruptibility_info);
6498 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6499 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6500 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6501 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6502 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6503 vmcs12->guest_pending_dbg_exceptions);
6504 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6505 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6506
6507 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6508
6509 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6510 (vmcs_config.pin_based_exec_ctrl |
6511 vmcs12->pin_based_vm_exec_control));
6512
6513 /*
6514 * Whether page-faults are trapped is determined by a combination of
6515 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6516 * If enable_ept, L0 doesn't care about page faults and we should
6517 * set all of these to L1's desires. However, if !enable_ept, L0 does
6518 * care about (at least some) page faults, and because it is not easy
6519 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6520 * to exit on each and every L2 page fault. This is done by setting
6521 * MASK=MATCH=0 and (see below) EB.PF=1.
6522 * Note that below we don't need special code to set EB.PF beyond the
6523 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6524 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6525 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6526 *
6527 * A problem with this approach (when !enable_ept) is that L1 may be
6528 * injected with more page faults than it asked for. This could have
6529 * caused problems, but in practice existing hypervisors don't care.
6530 * To fix this, we will need to emulate the PFEC checking (on the L1
6531 * page tables), using walk_addr(), when injecting PFs to L1.
6532 */
6533 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6534 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6535 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6536 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6537
6538 if (cpu_has_secondary_exec_ctrls()) {
6539 u32 exec_control = vmx_secondary_exec_control(vmx);
6540 if (!vmx->rdtscp_enabled)
6541 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6542 /* Take the following fields only from vmcs12 */
6543 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6544 if (nested_cpu_has(vmcs12,
6545 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6546 exec_control |= vmcs12->secondary_vm_exec_control;
6547
6548 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6549 /*
6550 * Translate L1 physical address to host physical
6551 * address for vmcs02. Keep the page pinned, so this
6552 * physical address remains valid. We keep a reference
6553 * to it so we can release it later.
6554 */
6555 if (vmx->nested.apic_access_page) /* shouldn't happen */
6556 nested_release_page(vmx->nested.apic_access_page);
6557 vmx->nested.apic_access_page =
6558 nested_get_page(vcpu, vmcs12->apic_access_addr);
6559 /*
6560 * If translation failed, no matter: This feature asks
6561 * to exit when accessing the given address, and if it
6562 * can never be accessed, this feature won't do
6563 * anything anyway.
6564 */
6565 if (!vmx->nested.apic_access_page)
6566 exec_control &=
6567 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6568 else
6569 vmcs_write64(APIC_ACCESS_ADDR,
6570 page_to_phys(vmx->nested.apic_access_page));
6571 }
6572
6573 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6574 }
6575
6576
6577 /*
6578 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6579 * Some constant fields are set here by vmx_set_constant_host_state().
6580 * Other fields are different per CPU, and will be set later when
6581 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6582 */
6583 vmx_set_constant_host_state();
6584
6585 /*
6586 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6587 * entry, but only if the current (host) sp changed from the value
6588 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6589 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6590 * here we just force the write to happen on entry.
6591 */
6592 vmx->host_rsp = 0;
6593
6594 exec_control = vmx_exec_control(vmx); /* L0's desires */
6595 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6596 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6597 exec_control &= ~CPU_BASED_TPR_SHADOW;
6598 exec_control |= vmcs12->cpu_based_vm_exec_control;
6599 /*
6600 * Merging of IO and MSR bitmaps not currently supported.
6601 * Rather, exit every time.
6602 */
6603 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6604 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6605 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6606
6607 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6608
6609 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6610 * bitwise-or of what L1 wants to trap for L2, and what we want to
6611 * trap. Note that CR0.TS also needs updating - we do this later.
6612 */
6613 update_exception_bitmap(vcpu);
6614 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6615 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6616
6617 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6618 vmcs_write32(VM_EXIT_CONTROLS,
6619 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6620 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6621 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6622
6623 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6624 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6625 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6626 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6627
6628
6629 set_cr4_guest_host_mask(vmx);
6630
27fc51b2
NHE
6631 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6632 vmcs_write64(TSC_OFFSET,
6633 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6634 else
6635 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6636
6637 if (enable_vpid) {
6638 /*
6639 * Trivially support vpid by letting L2s share their parent
6640 * L1's vpid. TODO: move to a more elaborate solution, giving
6641 * each L2 its own vpid and exposing the vpid feature to L1.
6642 */
6643 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6644 vmx_flush_tlb(vcpu);
6645 }
6646
6647 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6648 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6649 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6650 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6651 else
6652 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6653 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6654 vmx_set_efer(vcpu, vcpu->arch.efer);
6655
6656 /*
6657 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6658 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6659 * The CR0_READ_SHADOW is what L2 should have expected to read given
6660 * the specifications by L1; It's not enough to take
6661 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6662 * have more bits than L1 expected.
6663 */
6664 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6665 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6666
6667 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6668 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6669
6670 /* shadow page tables on either EPT or shadow page tables */
6671 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6672 kvm_mmu_reset_context(vcpu);
6673
6674 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6675 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6676}
6677
cd232ad0
NHE
6678/*
6679 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6680 * for running an L2 nested guest.
6681 */
6682static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6683{
6684 struct vmcs12 *vmcs12;
6685 struct vcpu_vmx *vmx = to_vmx(vcpu);
6686 int cpu;
6687 struct loaded_vmcs *vmcs02;
6688
6689 if (!nested_vmx_check_permission(vcpu) ||
6690 !nested_vmx_check_vmcs12(vcpu))
6691 return 1;
6692
6693 skip_emulated_instruction(vcpu);
6694 vmcs12 = get_vmcs12(vcpu);
6695
7c177938
NHE
6696 /*
6697 * The nested entry process starts with enforcing various prerequisites
6698 * on vmcs12 as required by the Intel SDM, and act appropriately when
6699 * they fail: As the SDM explains, some conditions should cause the
6700 * instruction to fail, while others will cause the instruction to seem
6701 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6702 * To speed up the normal (success) code path, we should avoid checking
6703 * for misconfigurations which will anyway be caught by the processor
6704 * when using the merged vmcs02.
6705 */
6706 if (vmcs12->launch_state == launch) {
6707 nested_vmx_failValid(vcpu,
6708 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6709 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6710 return 1;
6711 }
6712
6713 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6714 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6715 /*TODO: Also verify bits beyond physical address width are 0*/
6716 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6717 return 1;
6718 }
6719
6720 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6721 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6722 /*TODO: Also verify bits beyond physical address width are 0*/
6723 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6724 return 1;
6725 }
6726
6727 if (vmcs12->vm_entry_msr_load_count > 0 ||
6728 vmcs12->vm_exit_msr_load_count > 0 ||
6729 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6730 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6731 __func__);
7c177938
NHE
6732 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6733 return 1;
6734 }
6735
6736 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6737 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6738 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6739 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6740 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6741 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6742 !vmx_control_verify(vmcs12->vm_exit_controls,
6743 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6744 !vmx_control_verify(vmcs12->vm_entry_controls,
6745 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6746 {
6747 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6748 return 1;
6749 }
6750
6751 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6752 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6753 nested_vmx_failValid(vcpu,
6754 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6755 return 1;
6756 }
6757
6758 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6759 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6760 nested_vmx_entry_failure(vcpu, vmcs12,
6761 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6762 return 1;
6763 }
6764 if (vmcs12->vmcs_link_pointer != -1ull) {
6765 nested_vmx_entry_failure(vcpu, vmcs12,
6766 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6767 return 1;
6768 }
6769
6770 /*
6771 * We're finally done with prerequisite checking, and can start with
6772 * the nested entry.
6773 */
6774
cd232ad0
NHE
6775 vmcs02 = nested_get_current_vmcs02(vmx);
6776 if (!vmcs02)
6777 return -ENOMEM;
6778
6779 enter_guest_mode(vcpu);
6780
6781 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6782
6783 cpu = get_cpu();
6784 vmx->loaded_vmcs = vmcs02;
6785 vmx_vcpu_put(vcpu);
6786 vmx_vcpu_load(vcpu, cpu);
6787 vcpu->cpu = cpu;
6788 put_cpu();
6789
6790 vmcs12->launch_state = 1;
6791
6792 prepare_vmcs02(vcpu, vmcs12);
6793
6794 /*
6795 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6796 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6797 * returned as far as L1 is concerned. It will only return (and set
6798 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6799 */
6800 return 1;
6801}
6802
4704d0be
NHE
6803/*
6804 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6805 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6806 * This function returns the new value we should put in vmcs12.guest_cr0.
6807 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6808 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6809 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6810 * didn't trap the bit, because if L1 did, so would L0).
6811 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6812 * been modified by L2, and L1 knows it. So just leave the old value of
6813 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6814 * isn't relevant, because if L0 traps this bit it can set it to anything.
6815 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6816 * changed these bits, and therefore they need to be updated, but L0
6817 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6818 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6819 */
6820static inline unsigned long
6821vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6822{
6823 return
6824 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6825 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6826 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6827 vcpu->arch.cr0_guest_owned_bits));
6828}
6829
6830static inline unsigned long
6831vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6832{
6833 return
6834 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6835 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6836 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6837 vcpu->arch.cr4_guest_owned_bits));
6838}
6839
6840/*
6841 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6842 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6843 * and this function updates it to reflect the changes to the guest state while
6844 * L2 was running (and perhaps made some exits which were handled directly by L0
6845 * without going back to L1), and to reflect the exit reason.
6846 * Note that we do not have to copy here all VMCS fields, just those that
6847 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6848 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6849 * which already writes to vmcs12 directly.
6850 */
6851void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6852{
6853 /* update guest state fields: */
6854 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6855 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6856
6857 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6858 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6859 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6860 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6861
6862 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6863 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6864 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6865 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6866 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6867 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6868 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6869 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6870 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6871 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6872 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6873 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6874 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6875 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6876 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6877 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6878 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6879 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6880 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6881 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6882 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6883 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6884 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6885 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6886 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6887 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6888 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6889 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6890 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6891 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6892 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6893 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6894 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6895 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6896 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6897 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6898
6899 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6900 vmcs12->guest_interruptibility_info =
6901 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6902 vmcs12->guest_pending_dbg_exceptions =
6903 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6904
6905 /* TODO: These cannot have changed unless we have MSR bitmaps and
6906 * the relevant bit asks not to trap the change */
6907 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6908 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6909 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6910 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6911 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6912 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6913
6914 /* update exit information fields: */
6915
6916 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6917 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6918
6919 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6920 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6921 vmcs12->idt_vectoring_info_field =
6922 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6923 vmcs12->idt_vectoring_error_code =
6924 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6925 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6926 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6927
6928 /* clear vm-entry fields which are to be cleared on exit */
6929 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6930 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6931}
6932
6933/*
6934 * A part of what we need to when the nested L2 guest exits and we want to
6935 * run its L1 parent, is to reset L1's guest state to the host state specified
6936 * in vmcs12.
6937 * This function is to be called not only on normal nested exit, but also on
6938 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6939 * Failures During or After Loading Guest State").
6940 * This function should be called when the active VMCS is L1's (vmcs01).
6941 */
6942void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6943{
6944 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6945 vcpu->arch.efer = vmcs12->host_ia32_efer;
6946 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6947 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6948 else
6949 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6950 vmx_set_efer(vcpu, vcpu->arch.efer);
6951
6952 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6953 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6954 /*
6955 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6956 * actually changed, because it depends on the current state of
6957 * fpu_active (which may have changed).
6958 * Note that vmx_set_cr0 refers to efer set above.
6959 */
6960 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6961 /*
6962 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6963 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6964 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6965 */
6966 update_exception_bitmap(vcpu);
6967 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6968 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6969
6970 /*
6971 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6972 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6973 */
6974 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6975 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6976
6977 /* shadow page tables on either EPT or shadow page tables */
6978 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6979 kvm_mmu_reset_context(vcpu);
6980
6981 if (enable_vpid) {
6982 /*
6983 * Trivially support vpid by letting L2s share their parent
6984 * L1's vpid. TODO: move to a more elaborate solution, giving
6985 * each L2 its own vpid and exposing the vpid feature to L1.
6986 */
6987 vmx_flush_tlb(vcpu);
6988 }
6989
6990
6991 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6992 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6993 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6994 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6995 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6996 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6997 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6998 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6999 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7000 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7001 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7002 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7003 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7004 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7005 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7006
7007 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7008 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7009 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7010 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7011 vmcs12->host_ia32_perf_global_ctrl);
7012}
7013
7014/*
7015 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7016 * and modify vmcs12 to make it see what it would expect to see there if
7017 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7018 */
7019static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7020{
7021 struct vcpu_vmx *vmx = to_vmx(vcpu);
7022 int cpu;
7023 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7024
7025 leave_guest_mode(vcpu);
7026 prepare_vmcs12(vcpu, vmcs12);
7027
7028 cpu = get_cpu();
7029 vmx->loaded_vmcs = &vmx->vmcs01;
7030 vmx_vcpu_put(vcpu);
7031 vmx_vcpu_load(vcpu, cpu);
7032 vcpu->cpu = cpu;
7033 put_cpu();
7034
7035 /* if no vmcs02 cache requested, remove the one we used */
7036 if (VMCS02_POOL_SIZE == 0)
7037 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7038
7039 load_vmcs12_host_state(vcpu, vmcs12);
7040
27fc51b2 7041 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7042 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7043
7044 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7045 vmx->host_rsp = 0;
7046
7047 /* Unpin physical memory we referred to in vmcs02 */
7048 if (vmx->nested.apic_access_page) {
7049 nested_release_page(vmx->nested.apic_access_page);
7050 vmx->nested.apic_access_page = 0;
7051 }
7052
7053 /*
7054 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7055 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7056 * success or failure flag accordingly.
7057 */
7058 if (unlikely(vmx->fail)) {
7059 vmx->fail = 0;
7060 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7061 } else
7062 nested_vmx_succeed(vcpu);
7063}
7064
7c177938
NHE
7065/*
7066 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7067 * 23.7 "VM-entry failures during or after loading guest state" (this also
7068 * lists the acceptable exit-reason and exit-qualification parameters).
7069 * It should only be called before L2 actually succeeded to run, and when
7070 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7071 */
7072static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7073 struct vmcs12 *vmcs12,
7074 u32 reason, unsigned long qualification)
7075{
7076 load_vmcs12_host_state(vcpu, vmcs12);
7077 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7078 vmcs12->exit_qualification = qualification;
7079 nested_vmx_succeed(vcpu);
7080}
7081
8a76d7f2
JR
7082static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7083 struct x86_instruction_info *info,
7084 enum x86_intercept_stage stage)
7085{
7086 return X86EMUL_CONTINUE;
7087}
7088
cbdd1bea 7089static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7090 .cpu_has_kvm_support = cpu_has_kvm_support,
7091 .disabled_by_bios = vmx_disabled_by_bios,
7092 .hardware_setup = hardware_setup,
7093 .hardware_unsetup = hardware_unsetup,
002c7f7c 7094 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7095 .hardware_enable = hardware_enable,
7096 .hardware_disable = hardware_disable,
04547156 7097 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7098
7099 .vcpu_create = vmx_create_vcpu,
7100 .vcpu_free = vmx_free_vcpu,
04d2cc77 7101 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7102
04d2cc77 7103 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7104 .vcpu_load = vmx_vcpu_load,
7105 .vcpu_put = vmx_vcpu_put,
7106
7107 .set_guest_debug = set_guest_debug,
7108 .get_msr = vmx_get_msr,
7109 .set_msr = vmx_set_msr,
7110 .get_segment_base = vmx_get_segment_base,
7111 .get_segment = vmx_get_segment,
7112 .set_segment = vmx_set_segment,
2e4d2653 7113 .get_cpl = vmx_get_cpl,
6aa8b732 7114 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7115 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7116 .decache_cr3 = vmx_decache_cr3,
25c4c276 7117 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7118 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7119 .set_cr3 = vmx_set_cr3,
7120 .set_cr4 = vmx_set_cr4,
6aa8b732 7121 .set_efer = vmx_set_efer,
6aa8b732
AK
7122 .get_idt = vmx_get_idt,
7123 .set_idt = vmx_set_idt,
7124 .get_gdt = vmx_get_gdt,
7125 .set_gdt = vmx_set_gdt,
020df079 7126 .set_dr7 = vmx_set_dr7,
5fdbf976 7127 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7128 .get_rflags = vmx_get_rflags,
7129 .set_rflags = vmx_set_rflags,
ebcbab4c 7130 .fpu_activate = vmx_fpu_activate,
02daab21 7131 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7132
7133 .tlb_flush = vmx_flush_tlb,
6aa8b732 7134
6aa8b732 7135 .run = vmx_vcpu_run,
6062d012 7136 .handle_exit = vmx_handle_exit,
6aa8b732 7137 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7138 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7139 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7140 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7141 .set_irq = vmx_inject_irq,
95ba8273 7142 .set_nmi = vmx_inject_nmi,
298101da 7143 .queue_exception = vmx_queue_exception,
b463a6f7 7144 .cancel_injection = vmx_cancel_injection,
78646121 7145 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7146 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7147 .get_nmi_mask = vmx_get_nmi_mask,
7148 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7149 .enable_nmi_window = enable_nmi_window,
7150 .enable_irq_window = enable_irq_window,
7151 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7152
cbc94022 7153 .set_tss_addr = vmx_set_tss_addr,
67253af5 7154 .get_tdp_level = get_ept_level,
4b12f0de 7155 .get_mt_mask = vmx_get_mt_mask,
229456fc 7156
586f9607 7157 .get_exit_info = vmx_get_exit_info,
586f9607 7158
17cc3935 7159 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7160
7161 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7162
7163 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7164
7165 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7166
7167 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7168
4051b188 7169 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7170 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7171 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7172 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7173 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7174
7175 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7176
7177 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7178};
7179
7180static int __init vmx_init(void)
7181{
26bb0981
AK
7182 int r, i;
7183
7184 rdmsrl_safe(MSR_EFER, &host_efer);
7185
7186 for (i = 0; i < NR_VMX_MSR; ++i)
7187 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7188
3e7c73e9 7189 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7190 if (!vmx_io_bitmap_a)
7191 return -ENOMEM;
7192
3e7c73e9 7193 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7194 if (!vmx_io_bitmap_b) {
7195 r = -ENOMEM;
7196 goto out;
7197 }
7198
5897297b
AK
7199 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7200 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7201 r = -ENOMEM;
7202 goto out1;
7203 }
7204
5897297b
AK
7205 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7206 if (!vmx_msr_bitmap_longmode) {
7207 r = -ENOMEM;
7208 goto out2;
7209 }
7210
fdef3ad1
HQ
7211 /*
7212 * Allow direct access to the PC debug port (it is often used for I/O
7213 * delays, but the vmexits simply slow things down).
7214 */
3e7c73e9
AK
7215 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7216 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7217
3e7c73e9 7218 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7219
5897297b
AK
7220 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7221 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7222
2384d2b3
SY
7223 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7224
0ee75bea
AK
7225 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7226 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7227 if (r)
5897297b 7228 goto out3;
25c5f225 7229
5897297b
AK
7230 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7231 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7232 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7233 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7234 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7235 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7236
089d034e 7237 if (enable_ept) {
534e38b4 7238 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7239 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7240 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7241 kvm_enable_tdp();
7242 } else
7243 kvm_disable_tdp();
1439442c 7244
fdef3ad1
HQ
7245 return 0;
7246
5897297b
AK
7247out3:
7248 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7249out2:
5897297b 7250 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7251out1:
3e7c73e9 7252 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7253out:
3e7c73e9 7254 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7255 return r;
6aa8b732
AK
7256}
7257
7258static void __exit vmx_exit(void)
7259{
5897297b
AK
7260 free_page((unsigned long)vmx_msr_bitmap_legacy);
7261 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7262 free_page((unsigned long)vmx_io_bitmap_b);
7263 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7264
cb498ea2 7265 kvm_exit();
6aa8b732
AK
7266}
7267
7268module_init(vmx_init)
7269module_exit(vmx_exit)