Merge tag 'v3.10.100' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
6fa3eb70
S
30#ifdef CONFIG_MTK_EXTMEM
31extern void* extmem_malloc_page_align(size_t bytes);
32extern void extmem_free(void* mem);
33#endif
34
83f40318
VN
35static void update_pages_handler(struct work_struct *work);
36
d1b182a8
SR
37/*
38 * The ring buffer header is special. We must manually up keep it.
39 */
40int ring_buffer_print_entry_header(struct trace_seq *s)
41{
42 int ret;
43
334d4169
LJ
44 ret = trace_seq_printf(s, "# compressed entry header\n");
45 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
46 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
47 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
48 ret = trace_seq_printf(s, "\n");
49 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
50 RINGBUF_TYPE_PADDING);
51 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
52 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
53 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
54 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
55
56 return ret;
57}
58
5cc98548
SR
59/*
60 * The ring buffer is made up of a list of pages. A separate list of pages is
61 * allocated for each CPU. A writer may only write to a buffer that is
62 * associated with the CPU it is currently executing on. A reader may read
63 * from any per cpu buffer.
64 *
65 * The reader is special. For each per cpu buffer, the reader has its own
66 * reader page. When a reader has read the entire reader page, this reader
67 * page is swapped with another page in the ring buffer.
68 *
69 * Now, as long as the writer is off the reader page, the reader can do what
70 * ever it wants with that page. The writer will never write to that page
71 * again (as long as it is out of the ring buffer).
72 *
73 * Here's some silly ASCII art.
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * | |-->| |-->| |
91 * +---+ +---+ +---+
92 * ^ |
93 * | |
94 * +---------------+
95 *
96 *
97 * +------+
98 * |reader| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | |-->| |-->| |
102 * | +---+ +---+ +---+
103 * | |
104 * | |
105 * +------------------------------+
106 *
107 *
108 * +------+
109 * |buffer| RING BUFFER
110 * |page |------------------v
111 * +------+ +---+ +---+ +---+
112 * ^ | | | |-->| |
113 * | New +---+ +---+ +---+
114 * | Reader------^ |
115 * | page |
116 * +------------------------------+
117 *
118 *
119 * After we make this swap, the reader can hand this page off to the splice
120 * code and be done with it. It can even allocate a new page if it needs to
121 * and swap that into the ring buffer.
122 *
123 * We will be using cmpxchg soon to make all this lockless.
124 *
125 */
126
033601a3
SR
127/*
128 * A fast way to enable or disable all ring buffers is to
129 * call tracing_on or tracing_off. Turning off the ring buffers
130 * prevents all ring buffers from being recorded to.
131 * Turning this switch on, makes it OK to write to the
132 * ring buffer, if the ring buffer is enabled itself.
133 *
134 * There's three layers that must be on in order to write
135 * to the ring buffer.
136 *
137 * 1) This global flag must be set.
138 * 2) The ring buffer must be enabled for recording.
139 * 3) The per cpu buffer must be enabled for recording.
140 *
141 * In case of an anomaly, this global flag has a bit set that
142 * will permantly disable all ring buffers.
143 */
144
145/*
146 * Global flag to disable all recording to ring buffers
147 * This has two bits: ON, DISABLED
148 *
149 * ON DISABLED
150 * ---- ----------
151 * 0 0 : ring buffers are off
152 * 1 0 : ring buffers are on
153 * X 1 : ring buffers are permanently disabled
154 */
155
156enum {
157 RB_BUFFERS_ON_BIT = 0,
158 RB_BUFFERS_DISABLED_BIT = 1,
159};
160
161enum {
162 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
163 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
164};
165
5e39841c 166static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 167
499e5470
SR
168/* Used for individual buffers (after the counter) */
169#define RB_BUFFER_OFF (1 << 20)
a3583244 170
499e5470 171#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
172
173/**
174 * tracing_off_permanent - permanently disable ring buffers
175 *
176 * This function, once called, will disable all ring buffers
c3706f00 177 * permanently.
033601a3
SR
178 */
179void tracing_off_permanent(void)
180{
181 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
182}
183
e3d6bf0a 184#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 185#define RB_ALIGNMENT 4U
334d4169 186#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 187#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 188
649508f6 189#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
190# define RB_FORCE_8BYTE_ALIGNMENT 0
191# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
192#else
193# define RB_FORCE_8BYTE_ALIGNMENT 1
194# define RB_ARCH_ALIGNMENT 8U
195#endif
196
649508f6
JH
197#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
198
334d4169
LJ
199/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
200#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
201
202enum {
203 RB_LEN_TIME_EXTEND = 8,
204 RB_LEN_TIME_STAMP = 16,
205};
206
69d1b839
SR
207#define skip_time_extend(event) \
208 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
209
2d622719
TZ
210static inline int rb_null_event(struct ring_buffer_event *event)
211{
a1863c21 212 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
213}
214
215static void rb_event_set_padding(struct ring_buffer_event *event)
216{
a1863c21 217 /* padding has a NULL time_delta */
334d4169 218 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
219 event->time_delta = 0;
220}
221
34a148bf 222static unsigned
2d622719 223rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
224{
225 unsigned length;
226
334d4169
LJ
227 if (event->type_len)
228 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
229 else
230 length = event->array[0];
231 return length + RB_EVNT_HDR_SIZE;
232}
233
69d1b839
SR
234/*
235 * Return the length of the given event. Will return
236 * the length of the time extend if the event is a
237 * time extend.
238 */
239static inline unsigned
2d622719
TZ
240rb_event_length(struct ring_buffer_event *event)
241{
334d4169 242 switch (event->type_len) {
7a8e76a3 243 case RINGBUF_TYPE_PADDING:
2d622719
TZ
244 if (rb_null_event(event))
245 /* undefined */
246 return -1;
334d4169 247 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
248
249 case RINGBUF_TYPE_TIME_EXTEND:
250 return RB_LEN_TIME_EXTEND;
251
252 case RINGBUF_TYPE_TIME_STAMP:
253 return RB_LEN_TIME_STAMP;
254
255 case RINGBUF_TYPE_DATA:
2d622719 256 return rb_event_data_length(event);
7a8e76a3
SR
257 default:
258 BUG();
259 }
260 /* not hit */
261 return 0;
262}
263
69d1b839
SR
264/*
265 * Return total length of time extend and data,
266 * or just the event length for all other events.
267 */
268static inline unsigned
269rb_event_ts_length(struct ring_buffer_event *event)
270{
271 unsigned len = 0;
272
273 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
274 /* time extends include the data event after it */
275 len = RB_LEN_TIME_EXTEND;
276 event = skip_time_extend(event);
277 }
278 return len + rb_event_length(event);
279}
280
7a8e76a3
SR
281/**
282 * ring_buffer_event_length - return the length of the event
283 * @event: the event to get the length of
69d1b839
SR
284 *
285 * Returns the size of the data load of a data event.
286 * If the event is something other than a data event, it
287 * returns the size of the event itself. With the exception
288 * of a TIME EXTEND, where it still returns the size of the
289 * data load of the data event after it.
7a8e76a3
SR
290 */
291unsigned ring_buffer_event_length(struct ring_buffer_event *event)
292{
69d1b839
SR
293 unsigned length;
294
295 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
296 event = skip_time_extend(event);
297
298 length = rb_event_length(event);
334d4169 299 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
300 return length;
301 length -= RB_EVNT_HDR_SIZE;
302 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
303 length -= sizeof(event->array[0]);
304 return length;
7a8e76a3 305}
c4f50183 306EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
307
308/* inline for ring buffer fast paths */
34a148bf 309static void *
7a8e76a3
SR
310rb_event_data(struct ring_buffer_event *event)
311{
69d1b839
SR
312 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
313 event = skip_time_extend(event);
334d4169 314 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 315 /* If length is in len field, then array[0] has the data */
334d4169 316 if (event->type_len)
7a8e76a3
SR
317 return (void *)&event->array[0];
318 /* Otherwise length is in array[0] and array[1] has the data */
319 return (void *)&event->array[1];
320}
321
322/**
323 * ring_buffer_event_data - return the data of the event
324 * @event: the event to get the data from
325 */
326void *ring_buffer_event_data(struct ring_buffer_event *event)
327{
328 return rb_event_data(event);
329}
c4f50183 330EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
331
332#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 333 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
334
335#define TS_SHIFT 27
336#define TS_MASK ((1ULL << TS_SHIFT) - 1)
337#define TS_DELTA_TEST (~TS_MASK)
338
66a8cb95
SR
339/* Flag when events were overwritten */
340#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
341/* Missed count stored at end */
342#define RB_MISSED_STORED (1 << 30)
66a8cb95 343
abc9b56d 344struct buffer_data_page {
e4c2ce82 345 u64 time_stamp; /* page time stamp */
c3706f00 346 local_t commit; /* write committed index */
649508f6 347 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
348};
349
77ae365e
SR
350/*
351 * Note, the buffer_page list must be first. The buffer pages
352 * are allocated in cache lines, which means that each buffer
353 * page will be at the beginning of a cache line, and thus
354 * the least significant bits will be zero. We use this to
355 * add flags in the list struct pointers, to make the ring buffer
356 * lockless.
357 */
abc9b56d 358struct buffer_page {
778c55d4 359 struct list_head list; /* list of buffer pages */
abc9b56d 360 local_t write; /* index for next write */
6f807acd 361 unsigned read; /* index for next read */
778c55d4 362 local_t entries; /* entries on this page */
ff0ff84a 363 unsigned long real_end; /* real end of data */
abc9b56d 364 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
365};
366
77ae365e
SR
367/*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379#define RB_WRITE_MASK 0xfffff
380#define RB_WRITE_INTCNT (1 << 20)
381
044fa782 382static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 383{
044fa782 384 local_set(&bpage->commit, 0);
abc9b56d
SR
385}
386
474d32b6
SR
387/**
388 * ring_buffer_page_len - the size of data on the page.
389 * @page: The page to read
390 *
391 * Returns the amount of data on the page, including buffer page header.
392 */
ef7a4a16
SR
393size_t ring_buffer_page_len(void *page)
394{
474d32b6
SR
395 return local_read(&((struct buffer_data_page *)page)->commit)
396 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
397}
398
ed56829c
SR
399/*
400 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
401 * this issue out.
402 */
34a148bf 403static void free_buffer_page(struct buffer_page *bpage)
ed56829c 404{
6fa3eb70
S
405#ifdef CONFIG_MTK_EXTMEM
406 extmem_free((void*) bpage->page);
407#else
34a148bf 408 free_page((unsigned long)bpage->page);
6fa3eb70 409#endif
e4c2ce82 410 kfree(bpage);
ed56829c
SR
411}
412
7a8e76a3
SR
413/*
414 * We need to fit the time_stamp delta into 27 bits.
415 */
416static inline int test_time_stamp(u64 delta)
417{
418 if (delta & TS_DELTA_TEST)
419 return 1;
420 return 0;
421}
422
474d32b6 423#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 424
be957c44
SR
425/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
426#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
427
d1b182a8
SR
428int ring_buffer_print_page_header(struct trace_seq *s)
429{
430 struct buffer_data_page field;
431 int ret;
432
433 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
434 "offset:0;\tsize:%u;\tsigned:%u;\n",
435 (unsigned int)sizeof(field.time_stamp),
436 (unsigned int)is_signed_type(u64));
d1b182a8
SR
437
438 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 439 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 440 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
441 (unsigned int)sizeof(field.commit),
442 (unsigned int)is_signed_type(long));
d1b182a8 443
66a8cb95
SR
444 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
445 "offset:%u;\tsize:%u;\tsigned:%u;\n",
446 (unsigned int)offsetof(typeof(field), commit),
447 1,
448 (unsigned int)is_signed_type(long));
449
d1b182a8 450 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 451 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 452 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
453 (unsigned int)BUF_PAGE_SIZE,
454 (unsigned int)is_signed_type(char));
d1b182a8
SR
455
456 return ret;
457}
458
15693458
SRRH
459struct rb_irq_work {
460 struct irq_work work;
461 wait_queue_head_t waiters;
462 bool waiters_pending;
463};
464
7a8e76a3
SR
465/*
466 * head_page == tail_page && head == tail then buffer is empty.
467 */
468struct ring_buffer_per_cpu {
469 int cpu;
985023de 470 atomic_t record_disabled;
7a8e76a3 471 struct ring_buffer *buffer;
5389f6fa 472 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 473 arch_spinlock_t lock;
7a8e76a3 474 struct lock_class_key lock_key;
438ced17 475 unsigned int nr_pages;
3adc54fa 476 struct list_head *pages;
6f807acd
SR
477 struct buffer_page *head_page; /* read from head */
478 struct buffer_page *tail_page; /* write to tail */
c3706f00 479 struct buffer_page *commit_page; /* committed pages */
d769041f 480 struct buffer_page *reader_page;
66a8cb95
SR
481 unsigned long lost_events;
482 unsigned long last_overrun;
c64e148a 483 local_t entries_bytes;
e4906eff 484 local_t entries;
884bfe89
SP
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
fa743953
SR
488 local_t committing;
489 local_t commits;
77ae365e 490 unsigned long read;
c64e148a 491 unsigned long read_bytes;
7a8e76a3
SR
492 u64 write_stamp;
493 u64 read_stamp;
438ced17
VN
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 int nr_pages_to_update;
496 struct list_head new_pages; /* new pages to add */
83f40318 497 struct work_struct update_pages_work;
05fdd70d 498 struct completion update_done;
15693458
SRRH
499
500 struct rb_irq_work irq_work;
7a8e76a3
SR
501};
502
503struct ring_buffer {
7a8e76a3
SR
504 unsigned flags;
505 int cpus;
7a8e76a3 506 atomic_t record_disabled;
83f40318 507 atomic_t resize_disabled;
00f62f61 508 cpumask_var_t cpumask;
7a8e76a3 509
1f8a6a10
PZ
510 struct lock_class_key *reader_lock_key;
511
7a8e76a3
SR
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
554f786e 515
59222efe 516#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
517 struct notifier_block cpu_notify;
518#endif
37886f6a 519 u64 (*clock)(void);
15693458
SRRH
520
521 struct rb_irq_work irq_work;
7a8e76a3
SR
522};
523
524struct ring_buffer_iter {
525 struct ring_buffer_per_cpu *cpu_buffer;
526 unsigned long head;
527 struct buffer_page *head_page;
492a74f4
SR
528 struct buffer_page *cache_reader_page;
529 unsigned long cache_read;
7a8e76a3
SR
530 u64 read_stamp;
531};
532
15693458
SRRH
533/*
534 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
535 *
536 * Schedules a delayed work to wake up any task that is blocked on the
537 * ring buffer waiters queue.
538 */
539static void rb_wake_up_waiters(struct irq_work *work)
540{
541 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
542
543 wake_up_all(&rbwork->waiters);
544}
545
546/**
547 * ring_buffer_wait - wait for input to the ring buffer
548 * @buffer: buffer to wait on
549 * @cpu: the cpu buffer to wait on
550 *
551 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
552 * as data is added to any of the @buffer's cpu buffers. Otherwise
553 * it will wait for data to be added to a specific cpu buffer.
554 */
561237e4 555int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
556{
557 struct ring_buffer_per_cpu *cpu_buffer;
558 DEFINE_WAIT(wait);
559 struct rb_irq_work *work;
560
561 /*
562 * Depending on what the caller is waiting for, either any
563 * data in any cpu buffer, or a specific buffer, put the
564 * caller on the appropriate wait queue.
565 */
566 if (cpu == RING_BUFFER_ALL_CPUS)
567 work = &buffer->irq_work;
568 else {
561237e4
SRRH
569 if (!cpumask_test_cpu(cpu, buffer->cpumask))
570 return -ENODEV;
15693458
SRRH
571 cpu_buffer = buffer->buffers[cpu];
572 work = &cpu_buffer->irq_work;
573 }
574
575
576 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
577
578 /*
579 * The events can happen in critical sections where
580 * checking a work queue can cause deadlocks.
581 * After adding a task to the queue, this flag is set
582 * only to notify events to try to wake up the queue
583 * using irq_work.
584 *
585 * We don't clear it even if the buffer is no longer
586 * empty. The flag only causes the next event to run
587 * irq_work to do the work queue wake up. The worse
588 * that can happen if we race with !trace_empty() is that
589 * an event will cause an irq_work to try to wake up
590 * an empty queue.
591 *
592 * There's no reason to protect this flag either, as
593 * the work queue and irq_work logic will do the necessary
594 * synchronization for the wake ups. The only thing
595 * that is necessary is that the wake up happens after
596 * a task has been queued. It's OK for spurious wake ups.
597 */
598 work->waiters_pending = true;
599
600 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
601 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
602 schedule();
603
604 finish_wait(&work->waiters, &wait);
561237e4 605 return 0;
15693458
SRRH
606}
607
608/**
609 * ring_buffer_poll_wait - poll on buffer input
610 * @buffer: buffer to wait on
611 * @cpu: the cpu buffer to wait on
612 * @filp: the file descriptor
613 * @poll_table: The poll descriptor
614 *
615 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
616 * as data is added to any of the @buffer's cpu buffers. Otherwise
617 * it will wait for data to be added to a specific cpu buffer.
618 *
619 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
620 * zero otherwise.
621 */
622int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
623 struct file *filp, poll_table *poll_table)
624{
625 struct ring_buffer_per_cpu *cpu_buffer;
626 struct rb_irq_work *work;
627
15693458
SRRH
628 if (cpu == RING_BUFFER_ALL_CPUS)
629 work = &buffer->irq_work;
630 else {
6721cb60
SRRH
631 if (!cpumask_test_cpu(cpu, buffer->cpumask))
632 return -EINVAL;
633
15693458
SRRH
634 cpu_buffer = buffer->buffers[cpu];
635 work = &cpu_buffer->irq_work;
636 }
637
15693458 638 poll_wait(filp, &work->waiters, poll_table);
8c1bf5dc
JB
639 work->waiters_pending = true;
640 /*
641 * There's a tight race between setting the waiters_pending and
642 * checking if the ring buffer is empty. Once the waiters_pending bit
643 * is set, the next event will wake the task up, but we can get stuck
644 * if there's only a single event in.
645 *
646 * FIXME: Ideally, we need a memory barrier on the writer side as well,
647 * but adding a memory barrier to all events will cause too much of a
648 * performance hit in the fast path. We only need a memory barrier when
649 * the buffer goes from empty to having content. But as this race is
650 * extremely small, and it's not a problem if another event comes in, we
651 * will fix it later.
652 */
653 smp_mb();
15693458
SRRH
654
655 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
656 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
657 return POLLIN | POLLRDNORM;
658 return 0;
659}
660
f536aafc 661/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
662#define RB_WARN_ON(b, cond) \
663 ({ \
664 int _____ret = unlikely(cond); \
665 if (_____ret) { \
666 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
667 struct ring_buffer_per_cpu *__b = \
668 (void *)b; \
669 atomic_inc(&__b->buffer->record_disabled); \
670 } else \
671 atomic_inc(&b->record_disabled); \
672 WARN_ON(1); \
673 } \
674 _____ret; \
3e89c7bb 675 })
f536aafc 676
37886f6a
SR
677/* Up this if you want to test the TIME_EXTENTS and normalization */
678#define DEBUG_SHIFT 0
679
6d3f1e12 680static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
681{
682 /* shift to debug/test normalization and TIME_EXTENTS */
683 return buffer->clock() << DEBUG_SHIFT;
684}
685
37886f6a
SR
686u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
687{
688 u64 time;
689
690 preempt_disable_notrace();
6d3f1e12 691 time = rb_time_stamp(buffer);
37886f6a
SR
692 preempt_enable_no_resched_notrace();
693
694 return time;
695}
696EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
697
698void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
699 int cpu, u64 *ts)
700{
701 /* Just stupid testing the normalize function and deltas */
702 *ts >>= DEBUG_SHIFT;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
705
77ae365e
SR
706/*
707 * Making the ring buffer lockless makes things tricky.
708 * Although writes only happen on the CPU that they are on,
709 * and they only need to worry about interrupts. Reads can
710 * happen on any CPU.
711 *
712 * The reader page is always off the ring buffer, but when the
713 * reader finishes with a page, it needs to swap its page with
714 * a new one from the buffer. The reader needs to take from
715 * the head (writes go to the tail). But if a writer is in overwrite
716 * mode and wraps, it must push the head page forward.
717 *
718 * Here lies the problem.
719 *
720 * The reader must be careful to replace only the head page, and
721 * not another one. As described at the top of the file in the
722 * ASCII art, the reader sets its old page to point to the next
723 * page after head. It then sets the page after head to point to
724 * the old reader page. But if the writer moves the head page
725 * during this operation, the reader could end up with the tail.
726 *
727 * We use cmpxchg to help prevent this race. We also do something
728 * special with the page before head. We set the LSB to 1.
729 *
730 * When the writer must push the page forward, it will clear the
731 * bit that points to the head page, move the head, and then set
732 * the bit that points to the new head page.
733 *
734 * We also don't want an interrupt coming in and moving the head
735 * page on another writer. Thus we use the second LSB to catch
736 * that too. Thus:
737 *
738 * head->list->prev->next bit 1 bit 0
739 * ------- -------
740 * Normal page 0 0
741 * Points to head page 0 1
742 * New head page 1 0
743 *
744 * Note we can not trust the prev pointer of the head page, because:
745 *
746 * +----+ +-----+ +-----+
747 * | |------>| T |---X--->| N |
748 * | |<------| | | |
749 * +----+ +-----+ +-----+
750 * ^ ^ |
751 * | +-----+ | |
752 * +----------| R |----------+ |
753 * | |<-----------+
754 * +-----+
755 *
756 * Key: ---X--> HEAD flag set in pointer
757 * T Tail page
758 * R Reader page
759 * N Next page
760 *
761 * (see __rb_reserve_next() to see where this happens)
762 *
763 * What the above shows is that the reader just swapped out
764 * the reader page with a page in the buffer, but before it
765 * could make the new header point back to the new page added
766 * it was preempted by a writer. The writer moved forward onto
767 * the new page added by the reader and is about to move forward
768 * again.
769 *
770 * You can see, it is legitimate for the previous pointer of
771 * the head (or any page) not to point back to itself. But only
772 * temporarially.
773 */
774
775#define RB_PAGE_NORMAL 0UL
776#define RB_PAGE_HEAD 1UL
777#define RB_PAGE_UPDATE 2UL
778
779
780#define RB_FLAG_MASK 3UL
781
782/* PAGE_MOVED is not part of the mask */
783#define RB_PAGE_MOVED 4UL
784
785/*
786 * rb_list_head - remove any bit
787 */
788static struct list_head *rb_list_head(struct list_head *list)
789{
790 unsigned long val = (unsigned long)list;
791
792 return (struct list_head *)(val & ~RB_FLAG_MASK);
793}
794
795/*
6d3f1e12 796 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
797 *
798 * Because the reader may move the head_page pointer, we can
799 * not trust what the head page is (it may be pointing to
800 * the reader page). But if the next page is a header page,
801 * its flags will be non zero.
802 */
42b16b3f 803static inline int
77ae365e
SR
804rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
805 struct buffer_page *page, struct list_head *list)
806{
807 unsigned long val;
808
809 val = (unsigned long)list->next;
810
811 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
812 return RB_PAGE_MOVED;
813
814 return val & RB_FLAG_MASK;
815}
816
817/*
818 * rb_is_reader_page
819 *
820 * The unique thing about the reader page, is that, if the
821 * writer is ever on it, the previous pointer never points
822 * back to the reader page.
823 */
824static int rb_is_reader_page(struct buffer_page *page)
825{
826 struct list_head *list = page->list.prev;
827
828 return rb_list_head(list->next) != &page->list;
829}
830
831/*
832 * rb_set_list_to_head - set a list_head to be pointing to head.
833 */
834static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
835 struct list_head *list)
836{
837 unsigned long *ptr;
838
839 ptr = (unsigned long *)&list->next;
840 *ptr |= RB_PAGE_HEAD;
841 *ptr &= ~RB_PAGE_UPDATE;
842}
843
844/*
845 * rb_head_page_activate - sets up head page
846 */
847static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
848{
849 struct buffer_page *head;
850
851 head = cpu_buffer->head_page;
852 if (!head)
853 return;
854
855 /*
856 * Set the previous list pointer to have the HEAD flag.
857 */
858 rb_set_list_to_head(cpu_buffer, head->list.prev);
859}
860
861static void rb_list_head_clear(struct list_head *list)
862{
863 unsigned long *ptr = (unsigned long *)&list->next;
864
865 *ptr &= ~RB_FLAG_MASK;
866}
867
868/*
869 * rb_head_page_dactivate - clears head page ptr (for free list)
870 */
871static void
872rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
873{
874 struct list_head *hd;
875
876 /* Go through the whole list and clear any pointers found. */
877 rb_list_head_clear(cpu_buffer->pages);
878
879 list_for_each(hd, cpu_buffer->pages)
880 rb_list_head_clear(hd);
881}
882
883static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag, int new_flag)
887{
888 struct list_head *list;
889 unsigned long val = (unsigned long)&head->list;
890 unsigned long ret;
891
892 list = &prev->list;
893
894 val &= ~RB_FLAG_MASK;
895
08a40816
SR
896 ret = cmpxchg((unsigned long *)&list->next,
897 val | old_flag, val | new_flag);
77ae365e
SR
898
899 /* check if the reader took the page */
900 if ((ret & ~RB_FLAG_MASK) != val)
901 return RB_PAGE_MOVED;
902
903 return ret & RB_FLAG_MASK;
904}
905
906static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
910{
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_UPDATE);
913}
914
915static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
919{
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_HEAD);
922}
923
924static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag)
928{
929 return rb_head_page_set(cpu_buffer, head, prev,
930 old_flag, RB_PAGE_NORMAL);
931}
932
933static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
934 struct buffer_page **bpage)
935{
936 struct list_head *p = rb_list_head((*bpage)->list.next);
937
938 *bpage = list_entry(p, struct buffer_page, list);
939}
940
941static struct buffer_page *
942rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
943{
944 struct buffer_page *head;
945 struct buffer_page *page;
946 struct list_head *list;
947 int i;
948
949 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
950 return NULL;
951
952 /* sanity check */
953 list = cpu_buffer->pages;
954 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
955 return NULL;
956
957 page = head = cpu_buffer->head_page;
958 /*
959 * It is possible that the writer moves the header behind
960 * where we started, and we miss in one loop.
961 * A second loop should grab the header, but we'll do
962 * three loops just because I'm paranoid.
963 */
964 for (i = 0; i < 3; i++) {
965 do {
966 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
967 cpu_buffer->head_page = page;
968 return page;
969 }
970 rb_inc_page(cpu_buffer, &page);
971 } while (page != head);
972 }
973
974 RB_WARN_ON(cpu_buffer, 1);
975
976 return NULL;
977}
978
979static int rb_head_page_replace(struct buffer_page *old,
980 struct buffer_page *new)
981{
982 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
983 unsigned long val;
984 unsigned long ret;
985
986 val = *ptr & ~RB_FLAG_MASK;
987 val |= RB_PAGE_HEAD;
988
08a40816 989 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
990
991 return ret == val;
992}
993
994/*
995 * rb_tail_page_update - move the tail page forward
996 *
997 * Returns 1 if moved tail page, 0 if someone else did.
998 */
999static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1000 struct buffer_page *tail_page,
1001 struct buffer_page *next_page)
1002{
1003 struct buffer_page *old_tail;
1004 unsigned long old_entries;
1005 unsigned long old_write;
1006 int ret = 0;
1007
1008 /*
1009 * The tail page now needs to be moved forward.
1010 *
1011 * We need to reset the tail page, but without messing
1012 * with possible erasing of data brought in by interrupts
1013 * that have moved the tail page and are currently on it.
1014 *
1015 * We add a counter to the write field to denote this.
1016 */
1017 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1018 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1019
1020 /*
1021 * Just make sure we have seen our old_write and synchronize
1022 * with any interrupts that come in.
1023 */
1024 barrier();
1025
1026 /*
1027 * If the tail page is still the same as what we think
1028 * it is, then it is up to us to update the tail
1029 * pointer.
1030 */
1031 if (tail_page == cpu_buffer->tail_page) {
1032 /* Zero the write counter */
1033 unsigned long val = old_write & ~RB_WRITE_MASK;
1034 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1035
1036 /*
1037 * This will only succeed if an interrupt did
1038 * not come in and change it. In which case, we
1039 * do not want to modify it.
da706d8b
LJ
1040 *
1041 * We add (void) to let the compiler know that we do not care
1042 * about the return value of these functions. We use the
1043 * cmpxchg to only update if an interrupt did not already
1044 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1045 */
da706d8b
LJ
1046 (void)local_cmpxchg(&next_page->write, old_write, val);
1047 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1048
1049 /*
1050 * No need to worry about races with clearing out the commit.
1051 * it only can increment when a commit takes place. But that
1052 * only happens in the outer most nested commit.
1053 */
1054 local_set(&next_page->page->commit, 0);
1055
1056 old_tail = cmpxchg(&cpu_buffer->tail_page,
1057 tail_page, next_page);
1058
1059 if (old_tail == tail_page)
1060 ret = 1;
1061 }
1062
1063 return ret;
1064}
1065
1066static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1067 struct buffer_page *bpage)
1068{
1069 unsigned long val = (unsigned long)bpage;
1070
1071 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1072 return 1;
1073
1074 return 0;
1075}
1076
1077/**
1078 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 */
1080static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1081 struct list_head *list)
1082{
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1084 return 1;
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1086 return 1;
1087 return 0;
1088}
1089
7a8e76a3
SR
1090/**
1091 * check_pages - integrity check of buffer pages
1092 * @cpu_buffer: CPU buffer with pages to test
1093 *
c3706f00 1094 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1095 * been corrupted.
1096 */
1097static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1098{
3adc54fa 1099 struct list_head *head = cpu_buffer->pages;
044fa782 1100 struct buffer_page *bpage, *tmp;
7a8e76a3 1101
308f7eeb
SR
1102 /* Reset the head page if it exists */
1103 if (cpu_buffer->head_page)
1104 rb_set_head_page(cpu_buffer);
1105
77ae365e
SR
1106 rb_head_page_deactivate(cpu_buffer);
1107
3e89c7bb
SR
1108 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1109 return -1;
1110 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1111 return -1;
7a8e76a3 1112
77ae365e
SR
1113 if (rb_check_list(cpu_buffer, head))
1114 return -1;
1115
044fa782 1116 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1117 if (RB_WARN_ON(cpu_buffer,
044fa782 1118 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1119 return -1;
1120 if (RB_WARN_ON(cpu_buffer,
044fa782 1121 bpage->list.prev->next != &bpage->list))
3e89c7bb 1122 return -1;
77ae365e
SR
1123 if (rb_check_list(cpu_buffer, &bpage->list))
1124 return -1;
7a8e76a3
SR
1125 }
1126
77ae365e
SR
1127 rb_head_page_activate(cpu_buffer);
1128
7a8e76a3
SR
1129 return 0;
1130}
1131
438ced17 1132static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1133{
438ced17 1134 int i;
044fa782 1135 struct buffer_page *bpage, *tmp;
3adc54fa 1136
7a8e76a3 1137 for (i = 0; i < nr_pages; i++) {
6fa3eb70 1138#if !defined (CONFIG_MTK_EXTMEM)
7ea59064 1139 struct page *page;
6fa3eb70 1140#endif
d7ec4bfe
VN
1141 /*
1142 * __GFP_NORETRY flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is
1144 * not destabilized.
1145 */
044fa782 1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1147 GFP_KERNEL | __GFP_NORETRY,
438ced17 1148 cpu_to_node(cpu));
044fa782 1149 if (!bpage)
e4c2ce82 1150 goto free_pages;
77ae365e 1151
438ced17 1152 list_add(&bpage->list, pages);
77ae365e 1153
6fa3eb70
S
1154#ifdef CONFIG_MTK_EXTMEM
1155 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1156 if(bpage->page == NULL) {
1157 pr_err("%s[%s] ext memory alloc failed!!!\n", __FILE__, __FUNCTION__);
1158 goto free_pages;
1159 }
1160#else
438ced17 1161 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1162 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1163 if (!page)
7a8e76a3 1164 goto free_pages;
7ea59064 1165 bpage->page = page_address(page);
6fa3eb70 1166#endif
044fa782 1167 rb_init_page(bpage->page);
7a8e76a3
SR
1168 }
1169
438ced17
VN
1170 return 0;
1171
1172free_pages:
1173 list_for_each_entry_safe(bpage, tmp, pages, list) {
1174 list_del_init(&bpage->list);
1175 free_buffer_page(bpage);
1176 }
1177
1178 return -ENOMEM;
1179}
1180
1181static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1182 unsigned nr_pages)
1183{
1184 LIST_HEAD(pages);
1185
1186 WARN_ON(!nr_pages);
1187
1188 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1189 return -ENOMEM;
1190
3adc54fa
SR
1191 /*
1192 * The ring buffer page list is a circular list that does not
1193 * start and end with a list head. All page list items point to
1194 * other pages.
1195 */
1196 cpu_buffer->pages = pages.next;
1197 list_del(&pages);
7a8e76a3 1198
438ced17
VN
1199 cpu_buffer->nr_pages = nr_pages;
1200
7a8e76a3
SR
1201 rb_check_pages(cpu_buffer);
1202
1203 return 0;
7a8e76a3
SR
1204}
1205
1206static struct ring_buffer_per_cpu *
438ced17 1207rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1208{
1209 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1210 struct buffer_page *bpage;
6fa3eb70 1211#if !defined (CONFIG_MTK_EXTMEM)
7ea59064 1212 struct page *page;
6fa3eb70 1213#endif
7a8e76a3
SR
1214 int ret;
1215
1216 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217 GFP_KERNEL, cpu_to_node(cpu));
1218 if (!cpu_buffer)
1219 return NULL;
1220
1221 cpu_buffer->cpu = cpu;
1222 cpu_buffer->buffer = buffer;
5389f6fa 1223 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1224 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1225 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1226 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1227 init_completion(&cpu_buffer->update_done);
15693458 1228 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1229 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1230
044fa782 1231 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1232 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1233 if (!bpage)
e4c2ce82
SR
1234 goto fail_free_buffer;
1235
77ae365e
SR
1236 rb_check_bpage(cpu_buffer, bpage);
1237
044fa782 1238 cpu_buffer->reader_page = bpage;
6fa3eb70
S
1239
1240#ifdef CONFIG_MTK_EXTMEM
1241 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1242 if(bpage->page == NULL)
1243 goto fail_free_reader;
1244#else
7ea59064
VN
1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 if (!page)
e4c2ce82 1247 goto fail_free_reader;
7ea59064 1248 bpage->page = page_address(page);
6fa3eb70 1249#endif
044fa782 1250 rb_init_page(bpage->page);
e4c2ce82 1251
d769041f 1252 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1253 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1254
438ced17 1255 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1256 if (ret < 0)
d769041f 1257 goto fail_free_reader;
7a8e76a3
SR
1258
1259 cpu_buffer->head_page
3adc54fa 1260 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1261 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1262
77ae365e
SR
1263 rb_head_page_activate(cpu_buffer);
1264
7a8e76a3
SR
1265 return cpu_buffer;
1266
d769041f
SR
1267 fail_free_reader:
1268 free_buffer_page(cpu_buffer->reader_page);
1269
7a8e76a3
SR
1270 fail_free_buffer:
1271 kfree(cpu_buffer);
1272 return NULL;
1273}
1274
1275static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1276{
3adc54fa 1277 struct list_head *head = cpu_buffer->pages;
044fa782 1278 struct buffer_page *bpage, *tmp;
7a8e76a3 1279
d769041f
SR
1280 free_buffer_page(cpu_buffer->reader_page);
1281
77ae365e
SR
1282 rb_head_page_deactivate(cpu_buffer);
1283
3adc54fa
SR
1284 if (head) {
1285 list_for_each_entry_safe(bpage, tmp, head, list) {
1286 list_del_init(&bpage->list);
1287 free_buffer_page(bpage);
1288 }
1289 bpage = list_entry(head, struct buffer_page, list);
044fa782 1290 free_buffer_page(bpage);
7a8e76a3 1291 }
3adc54fa 1292
7a8e76a3
SR
1293 kfree(cpu_buffer);
1294}
1295
59222efe 1296#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1297static int rb_cpu_notify(struct notifier_block *self,
1298 unsigned long action, void *hcpu);
554f786e
SR
1299#endif
1300
7a8e76a3
SR
1301/**
1302 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1303 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1304 * @flags: attributes to set for the ring buffer.
1305 *
1306 * Currently the only flag that is available is the RB_FL_OVERWRITE
1307 * flag. This flag means that the buffer will overwrite old data
1308 * when the buffer wraps. If this flag is not set, the buffer will
1309 * drop data when the tail hits the head.
1310 */
1f8a6a10
PZ
1311struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1312 struct lock_class_key *key)
7a8e76a3
SR
1313{
1314 struct ring_buffer *buffer;
1315 int bsize;
438ced17 1316 int cpu, nr_pages;
7a8e76a3
SR
1317
1318 /* keep it in its own cache line */
1319 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer)
1322 return NULL;
1323
9e01c1b7
RR
1324 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1325 goto fail_free_buffer;
1326
438ced17 1327 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1328 buffer->flags = flags;
37886f6a 1329 buffer->clock = trace_clock_local;
1f8a6a10 1330 buffer->reader_lock_key = key;
7a8e76a3 1331
15693458 1332 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1333 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1334
7a8e76a3 1335 /* need at least two pages */
438ced17
VN
1336 if (nr_pages < 2)
1337 nr_pages = 2;
7a8e76a3 1338
3bf832ce
FW
1339 /*
1340 * In case of non-hotplug cpu, if the ring-buffer is allocated
1341 * in early initcall, it will not be notified of secondary cpus.
1342 * In that off case, we need to allocate for all possible cpus.
1343 */
1344#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1345 get_online_cpus();
1346 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1347#else
1348 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1349#endif
7a8e76a3
SR
1350 buffer->cpus = nr_cpu_ids;
1351
1352 bsize = sizeof(void *) * nr_cpu_ids;
1353 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1354 GFP_KERNEL);
1355 if (!buffer->buffers)
9e01c1b7 1356 goto fail_free_cpumask;
7a8e76a3
SR
1357
1358 for_each_buffer_cpu(buffer, cpu) {
1359 buffer->buffers[cpu] =
438ced17 1360 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1361 if (!buffer->buffers[cpu])
1362 goto fail_free_buffers;
1363 }
1364
59222efe 1365#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1366 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1367 buffer->cpu_notify.priority = 0;
1368 register_cpu_notifier(&buffer->cpu_notify);
1369#endif
1370
1371 put_online_cpus();
7a8e76a3
SR
1372 mutex_init(&buffer->mutex);
1373
1374 return buffer;
1375
1376 fail_free_buffers:
1377 for_each_buffer_cpu(buffer, cpu) {
1378 if (buffer->buffers[cpu])
1379 rb_free_cpu_buffer(buffer->buffers[cpu]);
1380 }
1381 kfree(buffer->buffers);
1382
9e01c1b7
RR
1383 fail_free_cpumask:
1384 free_cpumask_var(buffer->cpumask);
554f786e 1385 put_online_cpus();
9e01c1b7 1386
7a8e76a3
SR
1387 fail_free_buffer:
1388 kfree(buffer);
1389 return NULL;
1390}
1f8a6a10 1391EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1392
1393/**
1394 * ring_buffer_free - free a ring buffer.
1395 * @buffer: the buffer to free.
1396 */
1397void
1398ring_buffer_free(struct ring_buffer *buffer)
1399{
1400 int cpu;
1401
554f786e
SR
1402 get_online_cpus();
1403
59222efe 1404#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1405 unregister_cpu_notifier(&buffer->cpu_notify);
1406#endif
1407
7a8e76a3
SR
1408 for_each_buffer_cpu(buffer, cpu)
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
554f786e
SR
1411 put_online_cpus();
1412
bd3f0221 1413 kfree(buffer->buffers);
9e01c1b7
RR
1414 free_cpumask_var(buffer->cpumask);
1415
7a8e76a3
SR
1416 kfree(buffer);
1417}
c4f50183 1418EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1419
37886f6a
SR
1420void ring_buffer_set_clock(struct ring_buffer *buffer,
1421 u64 (*clock)(void))
1422{
1423 buffer->clock = clock;
1424}
1425
7a8e76a3
SR
1426static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427
83f40318
VN
1428static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429{
1430 return local_read(&bpage->entries) & RB_WRITE_MASK;
1431}
1432
1433static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434{
1435 return local_read(&bpage->write) & RB_WRITE_MASK;
1436}
1437
5040b4b7 1438static int
83f40318 1439rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1440{
83f40318
VN
1441 struct list_head *tail_page, *to_remove, *next_page;
1442 struct buffer_page *to_remove_page, *tmp_iter_page;
1443 struct buffer_page *last_page, *first_page;
1444 unsigned int nr_removed;
1445 unsigned long head_bit;
1446 int page_entries;
1447
1448 head_bit = 0;
7a8e76a3 1449
5389f6fa 1450 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1451 atomic_inc(&cpu_buffer->record_disabled);
1452 /*
1453 * We don't race with the readers since we have acquired the reader
1454 * lock. We also don't race with writers after disabling recording.
1455 * This makes it easy to figure out the first and the last page to be
1456 * removed from the list. We unlink all the pages in between including
1457 * the first and last pages. This is done in a busy loop so that we
1458 * lose the least number of traces.
1459 * The pages are freed after we restart recording and unlock readers.
1460 */
1461 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1462
83f40318
VN
1463 /*
1464 * tail page might be on reader page, we remove the next page
1465 * from the ring buffer
1466 */
1467 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1468 tail_page = rb_list_head(tail_page->next);
1469 to_remove = tail_page;
1470
1471 /* start of pages to remove */
1472 first_page = list_entry(rb_list_head(to_remove->next),
1473 struct buffer_page, list);
1474
1475 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1476 to_remove = rb_list_head(to_remove)->next;
1477 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1478 }
7a8e76a3 1479
83f40318 1480 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1481
83f40318
VN
1482 /*
1483 * Now we remove all pages between tail_page and next_page.
1484 * Make sure that we have head_bit value preserved for the
1485 * next page
1486 */
1487 tail_page->next = (struct list_head *)((unsigned long)next_page |
1488 head_bit);
1489 next_page = rb_list_head(next_page);
1490 next_page->prev = tail_page;
1491
1492 /* make sure pages points to a valid page in the ring buffer */
1493 cpu_buffer->pages = next_page;
1494
1495 /* update head page */
1496 if (head_bit)
1497 cpu_buffer->head_page = list_entry(next_page,
1498 struct buffer_page, list);
1499
1500 /*
1501 * change read pointer to make sure any read iterators reset
1502 * themselves
1503 */
1504 cpu_buffer->read = 0;
1505
1506 /* pages are removed, resume tracing and then free the pages */
1507 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1508 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1509
1510 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511
1512 /* last buffer page to remove */
1513 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1514 list);
1515 tmp_iter_page = first_page;
1516
1517 do {
1518 to_remove_page = tmp_iter_page;
1519 rb_inc_page(cpu_buffer, &tmp_iter_page);
1520
1521 /* update the counters */
1522 page_entries = rb_page_entries(to_remove_page);
1523 if (page_entries) {
1524 /*
1525 * If something was added to this page, it was full
1526 * since it is not the tail page. So we deduct the
1527 * bytes consumed in ring buffer from here.
48fdc72f 1528 * Increment overrun to account for the lost events.
83f40318 1529 */
48fdc72f 1530 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1531 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1532 }
1533
1534 /*
1535 * We have already removed references to this list item, just
1536 * free up the buffer_page and its page
1537 */
1538 free_buffer_page(to_remove_page);
1539 nr_removed--;
1540
1541 } while (to_remove_page != last_page);
1542
1543 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1544
1545 return nr_removed == 0;
7a8e76a3
SR
1546}
1547
5040b4b7
VN
1548static int
1549rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1550{
5040b4b7
VN
1551 struct list_head *pages = &cpu_buffer->new_pages;
1552 int retries, success;
7a8e76a3 1553
5389f6fa 1554 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1555 /*
1556 * We are holding the reader lock, so the reader page won't be swapped
1557 * in the ring buffer. Now we are racing with the writer trying to
1558 * move head page and the tail page.
1559 * We are going to adapt the reader page update process where:
1560 * 1. We first splice the start and end of list of new pages between
1561 * the head page and its previous page.
1562 * 2. We cmpxchg the prev_page->next to point from head page to the
1563 * start of new pages list.
1564 * 3. Finally, we update the head->prev to the end of new list.
1565 *
1566 * We will try this process 10 times, to make sure that we don't keep
1567 * spinning.
1568 */
1569 retries = 10;
1570 success = 0;
1571 while (retries--) {
1572 struct list_head *head_page, *prev_page, *r;
1573 struct list_head *last_page, *first_page;
1574 struct list_head *head_page_with_bit;
77ae365e 1575
5040b4b7 1576 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1577 if (!head_page)
1578 break;
5040b4b7
VN
1579 prev_page = head_page->prev;
1580
1581 first_page = pages->next;
1582 last_page = pages->prev;
1583
1584 head_page_with_bit = (struct list_head *)
1585 ((unsigned long)head_page | RB_PAGE_HEAD);
1586
1587 last_page->next = head_page_with_bit;
1588 first_page->prev = prev_page;
1589
1590 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1591
1592 if (r == head_page_with_bit) {
1593 /*
1594 * yay, we replaced the page pointer to our new list,
1595 * now, we just have to update to head page's prev
1596 * pointer to point to end of list
1597 */
1598 head_page->prev = last_page;
1599 success = 1;
1600 break;
1601 }
7a8e76a3 1602 }
7a8e76a3 1603
5040b4b7
VN
1604 if (success)
1605 INIT_LIST_HEAD(pages);
1606 /*
1607 * If we weren't successful in adding in new pages, warn and stop
1608 * tracing
1609 */
1610 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1611 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1612
1613 /* free pages if they weren't inserted */
1614 if (!success) {
1615 struct buffer_page *bpage, *tmp;
1616 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1617 list) {
1618 list_del_init(&bpage->list);
1619 free_buffer_page(bpage);
1620 }
1621 }
1622 return success;
7a8e76a3
SR
1623}
1624
83f40318 1625static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1626{
5040b4b7
VN
1627 int success;
1628
438ced17 1629 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1630 success = rb_insert_pages(cpu_buffer);
438ced17 1631 else
5040b4b7
VN
1632 success = rb_remove_pages(cpu_buffer,
1633 -cpu_buffer->nr_pages_to_update);
83f40318 1634
5040b4b7
VN
1635 if (success)
1636 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1637}
1638
1639static void update_pages_handler(struct work_struct *work)
1640{
1641 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1642 struct ring_buffer_per_cpu, update_pages_work);
1643 rb_update_pages(cpu_buffer);
05fdd70d 1644 complete(&cpu_buffer->update_done);
438ced17
VN
1645}
1646
7a8e76a3
SR
1647/**
1648 * ring_buffer_resize - resize the ring buffer
1649 * @buffer: the buffer to resize.
1650 * @size: the new size.
1651 *
7a8e76a3
SR
1652 * Minimum size is 2 * BUF_PAGE_SIZE.
1653 *
83f40318 1654 * Returns 0 on success and < 0 on failure.
7a8e76a3 1655 */
438ced17
VN
1656int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 int cpu_id)
7a8e76a3
SR
1658{
1659 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1660 unsigned nr_pages;
83f40318 1661 int cpu, err = 0;
7a8e76a3 1662
ee51a1de
IM
1663 /*
1664 * Always succeed at resizing a non-existent buffer:
1665 */
1666 if (!buffer)
1667 return size;
1668
6a31e1f1
SR
1669 /* Make sure the requested buffer exists */
1670 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 return size;
1673
7a8e76a3
SR
1674 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1676
1677 /* we need a minimum of two pages */
1678 if (size < BUF_PAGE_SIZE * 2)
1679 size = BUF_PAGE_SIZE * 2;
1680
83f40318 1681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1682
83f40318
VN
1683 /*
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1687 */
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
18421015 1690
83f40318 1691 /* prevent another thread from changing buffer sizes */
7a8e76a3 1692 mutex_lock(&buffer->mutex);
7a8e76a3 1693
438ced17
VN
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
7a8e76a3
SR
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1698
438ced17
VN
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
438ced17
VN
1701 /*
1702 * nothing more to do for removing pages or no update
1703 */
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
d7ec4bfe 1706 /*
438ced17
VN
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
d7ec4bfe 1709 */
438ced17
VN
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1712 &cpu_buffer->new_pages, cpu)) {
438ced17 1713 /* not enough memory for new pages */
83f40318
VN
1714 err = -ENOMEM;
1715 goto out_err;
1716 }
1717 }
1718
1719 get_online_cpus();
1720 /*
1721 * Fire off all the required work handlers
05fdd70d 1722 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1723 * since we can change their buffer sizes without any race.
1724 */
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1727 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1728 continue;
1729
f5eb5588
SRRH
1730 /* The update must run on the CPU that is being updated. */
1731 preempt_disable();
1732 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1733 rb_update_pages(cpu_buffer);
1734 cpu_buffer->nr_pages_to_update = 0;
1735 } else {
1736 /*
1737 * Can not disable preemption for schedule_work_on()
1738 * on PREEMPT_RT.
1739 */
1740 preempt_enable();
05fdd70d
VN
1741 schedule_work_on(cpu,
1742 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1743 preempt_disable();
1744 }
1745 preempt_enable();
7a8e76a3 1746 }
7a8e76a3 1747
438ced17
VN
1748 /* wait for all the updates to complete */
1749 for_each_buffer_cpu(buffer, cpu) {
1750 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1751 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1752 continue;
1753
05fdd70d
VN
1754 if (cpu_online(cpu))
1755 wait_for_completion(&cpu_buffer->update_done);
83f40318 1756 cpu_buffer->nr_pages_to_update = 0;
438ced17 1757 }
83f40318
VN
1758
1759 put_online_cpus();
438ced17 1760 } else {
8e49f418
VN
1761 /* Make sure this CPU has been intitialized */
1762 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1763 goto out;
1764
438ced17 1765 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1766
438ced17
VN
1767 if (nr_pages == cpu_buffer->nr_pages)
1768 goto out;
7a8e76a3 1769
438ced17
VN
1770 cpu_buffer->nr_pages_to_update = nr_pages -
1771 cpu_buffer->nr_pages;
1772
1773 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1774 if (cpu_buffer->nr_pages_to_update > 0 &&
1775 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1776 &cpu_buffer->new_pages, cpu_id)) {
1777 err = -ENOMEM;
1778 goto out_err;
1779 }
438ced17 1780
83f40318
VN
1781 get_online_cpus();
1782
f5eb5588
SRRH
1783 preempt_disable();
1784 /* The update must run on the CPU that is being updated. */
1785 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1786 rb_update_pages(cpu_buffer);
1787 else {
1788 /*
1789 * Can not disable preemption for schedule_work_on()
1790 * on PREEMPT_RT.
1791 */
1792 preempt_enable();
83f40318
VN
1793 schedule_work_on(cpu_id,
1794 &cpu_buffer->update_pages_work);
05fdd70d 1795 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1796 preempt_disable();
1797 }
1798 preempt_enable();
83f40318 1799
83f40318 1800 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1801 put_online_cpus();
438ced17 1802 }
7a8e76a3
SR
1803
1804 out:
659f451f
SR
1805 /*
1806 * The ring buffer resize can happen with the ring buffer
1807 * enabled, so that the update disturbs the tracing as little
1808 * as possible. But if the buffer is disabled, we do not need
1809 * to worry about that, and we can take the time to verify
1810 * that the buffer is not corrupt.
1811 */
1812 if (atomic_read(&buffer->record_disabled)) {
1813 atomic_inc(&buffer->record_disabled);
1814 /*
1815 * Even though the buffer was disabled, we must make sure
1816 * that it is truly disabled before calling rb_check_pages.
1817 * There could have been a race between checking
1818 * record_disable and incrementing it.
1819 */
1820 synchronize_sched();
1821 for_each_buffer_cpu(buffer, cpu) {
1822 cpu_buffer = buffer->buffers[cpu];
1823 rb_check_pages(cpu_buffer);
1824 }
1825 atomic_dec(&buffer->record_disabled);
1826 }
1827
7a8e76a3 1828 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1829 return size;
1830
83f40318 1831 out_err:
438ced17
VN
1832 for_each_buffer_cpu(buffer, cpu) {
1833 struct buffer_page *bpage, *tmp;
83f40318 1834
438ced17 1835 cpu_buffer = buffer->buffers[cpu];
438ced17 1836 cpu_buffer->nr_pages_to_update = 0;
83f40318 1837
438ced17
VN
1838 if (list_empty(&cpu_buffer->new_pages))
1839 continue;
83f40318 1840
438ced17
VN
1841 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1842 list) {
1843 list_del_init(&bpage->list);
1844 free_buffer_page(bpage);
1845 }
7a8e76a3 1846 }
641d2f63 1847 mutex_unlock(&buffer->mutex);
83f40318 1848 return err;
7a8e76a3 1849}
c4f50183 1850EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1851
750912fa
DS
1852void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1853{
1854 mutex_lock(&buffer->mutex);
1855 if (val)
1856 buffer->flags |= RB_FL_OVERWRITE;
1857 else
1858 buffer->flags &= ~RB_FL_OVERWRITE;
1859 mutex_unlock(&buffer->mutex);
1860}
1861EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1862
8789a9e7 1863static inline void *
044fa782 1864__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1865{
044fa782 1866 return bpage->data + index;
8789a9e7
SR
1867}
1868
044fa782 1869static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1870{
044fa782 1871 return bpage->page->data + index;
7a8e76a3
SR
1872}
1873
1874static inline struct ring_buffer_event *
d769041f 1875rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1876{
6f807acd
SR
1877 return __rb_page_index(cpu_buffer->reader_page,
1878 cpu_buffer->reader_page->read);
1879}
1880
7a8e76a3
SR
1881static inline struct ring_buffer_event *
1882rb_iter_head_event(struct ring_buffer_iter *iter)
1883{
6f807acd 1884 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1885}
1886
bf41a158
SR
1887static inline unsigned rb_page_commit(struct buffer_page *bpage)
1888{
abc9b56d 1889 return local_read(&bpage->page->commit);
bf41a158
SR
1890}
1891
25985edc 1892/* Size is determined by what has been committed */
bf41a158
SR
1893static inline unsigned rb_page_size(struct buffer_page *bpage)
1894{
1895 return rb_page_commit(bpage);
1896}
1897
1898static inline unsigned
1899rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1900{
1901 return rb_page_commit(cpu_buffer->commit_page);
1902}
1903
bf41a158
SR
1904static inline unsigned
1905rb_event_index(struct ring_buffer_event *event)
1906{
1907 unsigned long addr = (unsigned long)event;
1908
22f470f8 1909 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1910}
1911
0f0c85fc 1912static inline int
fa743953
SR
1913rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1914 struct ring_buffer_event *event)
bf41a158
SR
1915{
1916 unsigned long addr = (unsigned long)event;
1917 unsigned long index;
1918
1919 index = rb_event_index(event);
1920 addr &= PAGE_MASK;
1921
1922 return cpu_buffer->commit_page->page == (void *)addr &&
1923 rb_commit_index(cpu_buffer) == index;
1924}
1925
34a148bf 1926static void
bf41a158 1927rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1928{
77ae365e
SR
1929 unsigned long max_count;
1930
bf41a158
SR
1931 /*
1932 * We only race with interrupts and NMIs on this CPU.
1933 * If we own the commit event, then we can commit
1934 * all others that interrupted us, since the interruptions
1935 * are in stack format (they finish before they come
1936 * back to us). This allows us to do a simple loop to
1937 * assign the commit to the tail.
1938 */
a8ccf1d6 1939 again:
438ced17 1940 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1941
bf41a158 1942 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1943 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1944 return;
1945 if (RB_WARN_ON(cpu_buffer,
1946 rb_is_reader_page(cpu_buffer->tail_page)))
1947 return;
1948 local_set(&cpu_buffer->commit_page->page->commit,
1949 rb_page_write(cpu_buffer->commit_page));
bf41a158 1950 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1951 cpu_buffer->write_stamp =
1952 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1953 /* add barrier to keep gcc from optimizing too much */
1954 barrier();
1955 }
1956 while (rb_commit_index(cpu_buffer) !=
1957 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1958
1959 local_set(&cpu_buffer->commit_page->page->commit,
1960 rb_page_write(cpu_buffer->commit_page));
1961 RB_WARN_ON(cpu_buffer,
1962 local_read(&cpu_buffer->commit_page->page->commit) &
1963 ~RB_WRITE_MASK);
bf41a158
SR
1964 barrier();
1965 }
a8ccf1d6
SR
1966
1967 /* again, keep gcc from optimizing */
1968 barrier();
1969
1970 /*
1971 * If an interrupt came in just after the first while loop
1972 * and pushed the tail page forward, we will be left with
1973 * a dangling commit that will never go forward.
1974 */
1975 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1976 goto again;
7a8e76a3
SR
1977}
1978
34a148bf 1979static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1980{
1981 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1982
1983 /*
1984 * The iterator could be on the reader page (it starts there).
1985 * But the head could have moved, since the reader was
1986 * found. Check for this case and assign the iterator
1987 * to the head page instead of next.
1988 */
1989 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1990 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1991 else
1992 rb_inc_page(cpu_buffer, &iter->head_page);
1993
abc9b56d 1994 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1995 iter->head = 0;
1996}
1997
69d1b839
SR
1998/* Slow path, do not inline */
1999static noinline struct ring_buffer_event *
2000rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2001{
2002 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2003
2004 /* Not the first event on the page? */
2005 if (rb_event_index(event)) {
2006 event->time_delta = delta & TS_MASK;
2007 event->array[0] = delta >> TS_SHIFT;
2008 } else {
2009 /* nope, just zero it */
2010 event->time_delta = 0;
2011 event->array[0] = 0;
2012 }
2013
2014 return skip_time_extend(event);
2015}
2016
7a8e76a3 2017/**
01e3e710 2018 * rb_update_event - update event type and data
7f70b62e 2019 * @event: the event to update
7a8e76a3
SR
2020 * @type: the type of event
2021 * @length: the size of the event field in the ring buffer
2022 *
2023 * Update the type and data fields of the event. The length
2024 * is the actual size that is written to the ring buffer,
2025 * and with this, we can determine what to place into the
2026 * data field.
2027 */
34a148bf 2028static void
69d1b839
SR
2029rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2030 struct ring_buffer_event *event, unsigned length,
2031 int add_timestamp, u64 delta)
7a8e76a3 2032{
69d1b839
SR
2033 /* Only a commit updates the timestamp */
2034 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2035 delta = 0;
7a8e76a3 2036
69d1b839
SR
2037 /*
2038 * If we need to add a timestamp, then we
2039 * add it to the start of the resevered space.
2040 */
2041 if (unlikely(add_timestamp)) {
2042 event = rb_add_time_stamp(event, delta);
2043 length -= RB_LEN_TIME_EXTEND;
2044 delta = 0;
7a8e76a3 2045 }
69d1b839
SR
2046
2047 event->time_delta = delta;
2048 length -= RB_EVNT_HDR_SIZE;
2049 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2050 event->type_len = 0;
2051 event->array[0] = length;
2052 } else
2053 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2054}
2055
77ae365e
SR
2056/*
2057 * rb_handle_head_page - writer hit the head page
2058 *
2059 * Returns: +1 to retry page
2060 * 0 to continue
2061 * -1 on error
2062 */
2063static int
2064rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2065 struct buffer_page *tail_page,
2066 struct buffer_page *next_page)
2067{
2068 struct buffer_page *new_head;
2069 int entries;
2070 int type;
2071 int ret;
2072
2073 entries = rb_page_entries(next_page);
2074
2075 /*
2076 * The hard part is here. We need to move the head
2077 * forward, and protect against both readers on
2078 * other CPUs and writers coming in via interrupts.
2079 */
2080 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2081 RB_PAGE_HEAD);
2082
2083 /*
2084 * type can be one of four:
2085 * NORMAL - an interrupt already moved it for us
2086 * HEAD - we are the first to get here.
2087 * UPDATE - we are the interrupt interrupting
2088 * a current move.
2089 * MOVED - a reader on another CPU moved the next
2090 * pointer to its reader page. Give up
2091 * and try again.
2092 */
2093
2094 switch (type) {
2095 case RB_PAGE_HEAD:
2096 /*
2097 * We changed the head to UPDATE, thus
2098 * it is our responsibility to update
2099 * the counters.
2100 */
2101 local_add(entries, &cpu_buffer->overrun);
c64e148a 2102 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2103
2104 /*
2105 * The entries will be zeroed out when we move the
2106 * tail page.
2107 */
2108
2109 /* still more to do */
2110 break;
2111
2112 case RB_PAGE_UPDATE:
2113 /*
2114 * This is an interrupt that interrupt the
2115 * previous update. Still more to do.
2116 */
2117 break;
2118 case RB_PAGE_NORMAL:
2119 /*
2120 * An interrupt came in before the update
2121 * and processed this for us.
2122 * Nothing left to do.
2123 */
2124 return 1;
2125 case RB_PAGE_MOVED:
2126 /*
2127 * The reader is on another CPU and just did
2128 * a swap with our next_page.
2129 * Try again.
2130 */
2131 return 1;
2132 default:
2133 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2134 return -1;
2135 }
2136
2137 /*
2138 * Now that we are here, the old head pointer is
2139 * set to UPDATE. This will keep the reader from
2140 * swapping the head page with the reader page.
2141 * The reader (on another CPU) will spin till
2142 * we are finished.
2143 *
2144 * We just need to protect against interrupts
2145 * doing the job. We will set the next pointer
2146 * to HEAD. After that, we set the old pointer
2147 * to NORMAL, but only if it was HEAD before.
2148 * otherwise we are an interrupt, and only
2149 * want the outer most commit to reset it.
2150 */
2151 new_head = next_page;
2152 rb_inc_page(cpu_buffer, &new_head);
2153
2154 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2155 RB_PAGE_NORMAL);
2156
2157 /*
2158 * Valid returns are:
2159 * HEAD - an interrupt came in and already set it.
2160 * NORMAL - One of two things:
2161 * 1) We really set it.
2162 * 2) A bunch of interrupts came in and moved
2163 * the page forward again.
2164 */
2165 switch (ret) {
2166 case RB_PAGE_HEAD:
2167 case RB_PAGE_NORMAL:
2168 /* OK */
2169 break;
2170 default:
2171 RB_WARN_ON(cpu_buffer, 1);
2172 return -1;
2173 }
2174
2175 /*
2176 * It is possible that an interrupt came in,
2177 * set the head up, then more interrupts came in
2178 * and moved it again. When we get back here,
2179 * the page would have been set to NORMAL but we
2180 * just set it back to HEAD.
2181 *
2182 * How do you detect this? Well, if that happened
2183 * the tail page would have moved.
2184 */
2185 if (ret == RB_PAGE_NORMAL) {
2186 /*
2187 * If the tail had moved passed next, then we need
2188 * to reset the pointer.
2189 */
2190 if (cpu_buffer->tail_page != tail_page &&
2191 cpu_buffer->tail_page != next_page)
2192 rb_head_page_set_normal(cpu_buffer, new_head,
2193 next_page,
2194 RB_PAGE_HEAD);
2195 }
2196
2197 /*
2198 * If this was the outer most commit (the one that
2199 * changed the original pointer from HEAD to UPDATE),
2200 * then it is up to us to reset it to NORMAL.
2201 */
2202 if (type == RB_PAGE_HEAD) {
2203 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2204 tail_page,
2205 RB_PAGE_UPDATE);
2206 if (RB_WARN_ON(cpu_buffer,
2207 ret != RB_PAGE_UPDATE))
2208 return -1;
2209 }
2210
2211 return 0;
2212}
2213
34a148bf 2214static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2215{
2216 struct ring_buffer_event event; /* Used only for sizeof array */
2217
2218 /* zero length can cause confusions */
2219 if (!length)
2220 length = 1;
2221
2271048d 2222 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2223 length += sizeof(event.array[0]);
2224
2225 length += RB_EVNT_HDR_SIZE;
2271048d 2226 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2227
2228 return length;
2229}
2230
c7b09308
SR
2231static inline void
2232rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2233 struct buffer_page *tail_page,
2234 unsigned long tail, unsigned long length)
2235{
2236 struct ring_buffer_event *event;
2237
2238 /*
2239 * Only the event that crossed the page boundary
2240 * must fill the old tail_page with padding.
2241 */
2242 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2243 /*
2244 * If the page was filled, then we still need
2245 * to update the real_end. Reset it to zero
2246 * and the reader will ignore it.
2247 */
2248 if (tail == BUF_PAGE_SIZE)
2249 tail_page->real_end = 0;
2250
c7b09308
SR
2251 local_sub(length, &tail_page->write);
2252 return;
2253 }
2254
2255 event = __rb_page_index(tail_page, tail);
b0b7065b 2256 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2257
c64e148a
VN
2258 /* account for padding bytes */
2259 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2260
ff0ff84a
SR
2261 /*
2262 * Save the original length to the meta data.
2263 * This will be used by the reader to add lost event
2264 * counter.
2265 */
2266 tail_page->real_end = tail;
2267
c7b09308
SR
2268 /*
2269 * If this event is bigger than the minimum size, then
2270 * we need to be careful that we don't subtract the
2271 * write counter enough to allow another writer to slip
2272 * in on this page.
2273 * We put in a discarded commit instead, to make sure
2274 * that this space is not used again.
2275 *
2276 * If we are less than the minimum size, we don't need to
2277 * worry about it.
2278 */
2279 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2280 /* No room for any events */
2281
2282 /* Mark the rest of the page with padding */
2283 rb_event_set_padding(event);
2284
2285 /* Set the write back to the previous setting */
2286 local_sub(length, &tail_page->write);
2287 return;
2288 }
2289
2290 /* Put in a discarded event */
2291 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2292 event->type_len = RINGBUF_TYPE_PADDING;
2293 /* time delta must be non zero */
2294 event->time_delta = 1;
c7b09308
SR
2295
2296 /* Set write to end of buffer */
2297 length = (tail + length) - BUF_PAGE_SIZE;
2298 local_sub(length, &tail_page->write);
2299}
6634ff26 2300
747e94ae
SR
2301/*
2302 * This is the slow path, force gcc not to inline it.
2303 */
2304static noinline struct ring_buffer_event *
6634ff26
SR
2305rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2306 unsigned long length, unsigned long tail,
e8bc43e8 2307 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2308{
5a50e33c 2309 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2310 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2311 struct buffer_page *next_page;
2312 int ret;
aa20ae84
SR
2313
2314 next_page = tail_page;
2315
aa20ae84
SR
2316 rb_inc_page(cpu_buffer, &next_page);
2317
aa20ae84
SR
2318 /*
2319 * If for some reason, we had an interrupt storm that made
2320 * it all the way around the buffer, bail, and warn
2321 * about it.
2322 */
2323 if (unlikely(next_page == commit_page)) {
77ae365e 2324 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2325 goto out_reset;
2326 }
2327
77ae365e
SR
2328 /*
2329 * This is where the fun begins!
2330 *
2331 * We are fighting against races between a reader that
2332 * could be on another CPU trying to swap its reader
2333 * page with the buffer head.
2334 *
2335 * We are also fighting against interrupts coming in and
2336 * moving the head or tail on us as well.
2337 *
2338 * If the next page is the head page then we have filled
2339 * the buffer, unless the commit page is still on the
2340 * reader page.
2341 */
2342 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2343
77ae365e
SR
2344 /*
2345 * If the commit is not on the reader page, then
2346 * move the header page.
2347 */
2348 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2349 /*
2350 * If we are not in overwrite mode,
2351 * this is easy, just stop here.
2352 */
884bfe89
SP
2353 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2354 local_inc(&cpu_buffer->dropped_events);
77ae365e 2355 goto out_reset;
884bfe89 2356 }
77ae365e
SR
2357
2358 ret = rb_handle_head_page(cpu_buffer,
2359 tail_page,
2360 next_page);
2361 if (ret < 0)
2362 goto out_reset;
2363 if (ret)
2364 goto out_again;
2365 } else {
2366 /*
2367 * We need to be careful here too. The
2368 * commit page could still be on the reader
2369 * page. We could have a small buffer, and
2370 * have filled up the buffer with events
2371 * from interrupts and such, and wrapped.
2372 *
2373 * Note, if the tail page is also the on the
2374 * reader_page, we let it move out.
2375 */
2376 if (unlikely((cpu_buffer->commit_page !=
2377 cpu_buffer->tail_page) &&
2378 (cpu_buffer->commit_page ==
2379 cpu_buffer->reader_page))) {
2380 local_inc(&cpu_buffer->commit_overrun);
2381 goto out_reset;
2382 }
aa20ae84
SR
2383 }
2384 }
2385
77ae365e
SR
2386 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2387 if (ret) {
2388 /*
2389 * Nested commits always have zero deltas, so
2390 * just reread the time stamp
2391 */
e8bc43e8
SR
2392 ts = rb_time_stamp(buffer);
2393 next_page->page->time_stamp = ts;
aa20ae84
SR
2394 }
2395
77ae365e 2396 out_again:
aa20ae84 2397
77ae365e 2398 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2399
2400 /* fail and let the caller try again */
2401 return ERR_PTR(-EAGAIN);
2402
45141d46 2403 out_reset:
6f3b3440 2404 /* reset write */
c7b09308 2405 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2406
bf41a158 2407 return NULL;
7a8e76a3
SR
2408}
2409
6634ff26
SR
2410static struct ring_buffer_event *
2411__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2412 unsigned long length, u64 ts,
2413 u64 delta, int add_timestamp)
6634ff26 2414{
5a50e33c 2415 struct buffer_page *tail_page;
6634ff26
SR
2416 struct ring_buffer_event *event;
2417 unsigned long tail, write;
2418
69d1b839
SR
2419 /*
2420 * If the time delta since the last event is too big to
2421 * hold in the time field of the event, then we append a
2422 * TIME EXTEND event ahead of the data event.
2423 */
2424 if (unlikely(add_timestamp))
2425 length += RB_LEN_TIME_EXTEND;
2426
6634ff26
SR
2427 tail_page = cpu_buffer->tail_page;
2428 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2429
2430 /* set write to only the index of the write */
2431 write &= RB_WRITE_MASK;
6634ff26
SR
2432 tail = write - length;
2433
f0bf1b24
SRRH
2434 /*
2435 * If this is the first commit on the page, then it has the same
2436 * timestamp as the page itself.
2437 */
2438 if (!tail)
2439 delta = 0;
2440
6634ff26 2441 /* See if we shot pass the end of this buffer page */
747e94ae 2442 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2443 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2444 tail_page, ts);
6634ff26
SR
2445
2446 /* We reserved something on the buffer */
2447
6634ff26 2448 event = __rb_page_index(tail_page, tail);
1744a21d 2449 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2450 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2451
69d1b839 2452 local_inc(&tail_page->entries);
6634ff26
SR
2453
2454 /*
fa743953
SR
2455 * If this is the first commit on the page, then update
2456 * its timestamp.
6634ff26 2457 */
fa743953 2458 if (!tail)
e8bc43e8 2459 tail_page->page->time_stamp = ts;
6634ff26 2460
c64e148a
VN
2461 /* account for these added bytes */
2462 local_add(length, &cpu_buffer->entries_bytes);
2463
6634ff26
SR
2464 return event;
2465}
2466
edd813bf
SR
2467static inline int
2468rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2469 struct ring_buffer_event *event)
2470{
2471 unsigned long new_index, old_index;
2472 struct buffer_page *bpage;
2473 unsigned long index;
2474 unsigned long addr;
2475
2476 new_index = rb_event_index(event);
69d1b839 2477 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2478 addr = (unsigned long)event;
2479 addr &= PAGE_MASK;
2480
2481 bpage = cpu_buffer->tail_page;
2482
2483 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2484 unsigned long write_mask =
2485 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2486 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2487 /*
2488 * This is on the tail page. It is possible that
2489 * a write could come in and move the tail page
2490 * and write to the next page. That is fine
2491 * because we just shorten what is on this page.
2492 */
77ae365e
SR
2493 old_index += write_mask;
2494 new_index += write_mask;
edd813bf 2495 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2496 if (index == old_index) {
2497 /* update counters */
2498 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2499 return 1;
c64e148a 2500 }
edd813bf
SR
2501 }
2502
2503 /* could not discard */
2504 return 0;
2505}
2506
fa743953
SR
2507static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2508{
2509 local_inc(&cpu_buffer->committing);
2510 local_inc(&cpu_buffer->commits);
2511}
2512
d9abde21 2513static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2514{
2515 unsigned long commits;
2516
2517 if (RB_WARN_ON(cpu_buffer,
2518 !local_read(&cpu_buffer->committing)))
2519 return;
2520
2521 again:
2522 commits = local_read(&cpu_buffer->commits);
2523 /* synchronize with interrupts */
2524 barrier();
2525 if (local_read(&cpu_buffer->committing) == 1)
2526 rb_set_commit_to_write(cpu_buffer);
2527
2528 local_dec(&cpu_buffer->committing);
2529
2530 /* synchronize with interrupts */
2531 barrier();
2532
2533 /*
2534 * Need to account for interrupts coming in between the
2535 * updating of the commit page and the clearing of the
2536 * committing counter.
2537 */
2538 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2539 !local_read(&cpu_buffer->committing)) {
2540 local_inc(&cpu_buffer->committing);
2541 goto again;
2542 }
2543}
2544
7a8e76a3 2545static struct ring_buffer_event *
62f0b3eb
SR
2546rb_reserve_next_event(struct ring_buffer *buffer,
2547 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2548 unsigned long length)
7a8e76a3
SR
2549{
2550 struct ring_buffer_event *event;
69d1b839 2551 u64 ts, delta;
818e3dd3 2552 int nr_loops = 0;
69d1b839 2553 int add_timestamp;
140ff891 2554 u64 diff;
7a8e76a3 2555
fa743953
SR
2556 rb_start_commit(cpu_buffer);
2557
85bac32c 2558#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2559 /*
2560 * Due to the ability to swap a cpu buffer from a buffer
2561 * it is possible it was swapped before we committed.
2562 * (committing stops a swap). We check for it here and
2563 * if it happened, we have to fail the write.
2564 */
2565 barrier();
2566 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2567 local_dec(&cpu_buffer->committing);
2568 local_dec(&cpu_buffer->commits);
2569 return NULL;
2570 }
85bac32c 2571#endif
62f0b3eb 2572
be957c44 2573 length = rb_calculate_event_length(length);
bf41a158 2574 again:
69d1b839
SR
2575 add_timestamp = 0;
2576 delta = 0;
2577
818e3dd3
SR
2578 /*
2579 * We allow for interrupts to reenter here and do a trace.
2580 * If one does, it will cause this original code to loop
2581 * back here. Even with heavy interrupts happening, this
2582 * should only happen a few times in a row. If this happens
2583 * 1000 times in a row, there must be either an interrupt
2584 * storm or we have something buggy.
2585 * Bail!
2586 */
3e89c7bb 2587 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2588 goto out_fail;
818e3dd3 2589
6d3f1e12 2590 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2591 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2592
140ff891
SR
2593 /* make sure this diff is calculated here */
2594 barrier();
bf41a158 2595
140ff891
SR
2596 /* Did the write stamp get updated already? */
2597 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2598 delta = diff;
2599 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2600 int local_clock_stable = 1;
2601#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2602 local_clock_stable = sched_clock_stable;
2603#endif
69d1b839 2604 WARN_ONCE(delta > (1ULL << 59),
31274d72 2605 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2606 (unsigned long long)delta,
2607 (unsigned long long)ts,
31274d72
JO
2608 (unsigned long long)cpu_buffer->write_stamp,
2609 local_clock_stable ? "" :
2610 "If you just came from a suspend/resume,\n"
2611 "please switch to the trace global clock:\n"
2612 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2613 add_timestamp = 1;
7a8e76a3 2614 }
168b6b1d 2615 }
7a8e76a3 2616
69d1b839
SR
2617 event = __rb_reserve_next(cpu_buffer, length, ts,
2618 delta, add_timestamp);
168b6b1d 2619 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2620 goto again;
2621
fa743953
SR
2622 if (!event)
2623 goto out_fail;
7a8e76a3 2624
7a8e76a3 2625 return event;
fa743953
SR
2626
2627 out_fail:
2628 rb_end_commit(cpu_buffer);
2629 return NULL;
7a8e76a3
SR
2630}
2631
1155de47
PM
2632#ifdef CONFIG_TRACING
2633
567cd4da
SR
2634/*
2635 * The lock and unlock are done within a preempt disable section.
2636 * The current_context per_cpu variable can only be modified
2637 * by the current task between lock and unlock. But it can
2638 * be modified more than once via an interrupt. To pass this
2639 * information from the lock to the unlock without having to
2640 * access the 'in_interrupt()' functions again (which do show
2641 * a bit of overhead in something as critical as function tracing,
2642 * we use a bitmask trick.
2643 *
2644 * bit 0 = NMI context
2645 * bit 1 = IRQ context
2646 * bit 2 = SoftIRQ context
2647 * bit 3 = normal context.
2648 *
2649 * This works because this is the order of contexts that can
2650 * preempt other contexts. A SoftIRQ never preempts an IRQ
2651 * context.
2652 *
2653 * When the context is determined, the corresponding bit is
2654 * checked and set (if it was set, then a recursion of that context
2655 * happened).
2656 *
2657 * On unlock, we need to clear this bit. To do so, just subtract
2658 * 1 from the current_context and AND it to itself.
2659 *
2660 * (binary)
2661 * 101 - 1 = 100
2662 * 101 & 100 = 100 (clearing bit zero)
2663 *
2664 * 1010 - 1 = 1001
2665 * 1010 & 1001 = 1000 (clearing bit 1)
2666 *
2667 * The least significant bit can be cleared this way, and it
2668 * just so happens that it is the same bit corresponding to
2669 * the current context.
2670 */
2671static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2672
567cd4da 2673static __always_inline int trace_recursive_lock(void)
261842b7 2674{
faf8db2e 2675 unsigned int val = __this_cpu_read(current_context);
567cd4da 2676 int bit;
d9abde21 2677
567cd4da
SR
2678 if (in_interrupt()) {
2679 if (in_nmi())
2680 bit = 0;
2681 else if (in_irq())
2682 bit = 1;
2683 else
2684 bit = 2;
2685 } else
2686 bit = 3;
d9abde21 2687
567cd4da
SR
2688 if (unlikely(val & (1 << bit)))
2689 return 1;
d9abde21 2690
567cd4da 2691 val |= (1 << bit);
faf8db2e 2692 __this_cpu_write(current_context, val);
d9abde21 2693
567cd4da 2694 return 0;
261842b7
SR
2695}
2696
567cd4da 2697static __always_inline void trace_recursive_unlock(void)
261842b7 2698{
faf8db2e 2699 unsigned int val = __this_cpu_read(current_context);
261842b7 2700
faf8db2e
SR
2701 val &= val & (val - 1);
2702 __this_cpu_write(current_context, val);
261842b7
SR
2703}
2704
1155de47
PM
2705#else
2706
2707#define trace_recursive_lock() (0)
2708#define trace_recursive_unlock() do { } while (0)
2709
2710#endif
2711
7a8e76a3
SR
2712/**
2713 * ring_buffer_lock_reserve - reserve a part of the buffer
2714 * @buffer: the ring buffer to reserve from
2715 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2716 *
2717 * Returns a reseverd event on the ring buffer to copy directly to.
2718 * The user of this interface will need to get the body to write into
2719 * and can use the ring_buffer_event_data() interface.
2720 *
2721 * The length is the length of the data needed, not the event length
2722 * which also includes the event header.
2723 *
2724 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2725 * If NULL is returned, then nothing has been allocated or locked.
2726 */
2727struct ring_buffer_event *
0a987751 2728ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2729{
2730 struct ring_buffer_per_cpu *cpu_buffer;
2731 struct ring_buffer_event *event;
5168ae50 2732 int cpu;
7a8e76a3 2733
033601a3 2734 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2735 return NULL;
2736
bf41a158 2737 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2738 preempt_disable_notrace();
bf41a158 2739
52fbe9cd
LJ
2740 if (atomic_read(&buffer->record_disabled))
2741 goto out_nocheck;
2742
261842b7
SR
2743 if (trace_recursive_lock())
2744 goto out_nocheck;
2745
7a8e76a3
SR
2746 cpu = raw_smp_processor_id();
2747
9e01c1b7 2748 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2749 goto out;
7a8e76a3
SR
2750
2751 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2752
2753 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2754 goto out;
7a8e76a3 2755
be957c44 2756 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2757 goto out;
7a8e76a3 2758
62f0b3eb 2759 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2760 if (!event)
d769041f 2761 goto out;
7a8e76a3
SR
2762
2763 return event;
2764
d769041f 2765 out:
261842b7
SR
2766 trace_recursive_unlock();
2767
2768 out_nocheck:
5168ae50 2769 preempt_enable_notrace();
7a8e76a3
SR
2770 return NULL;
2771}
c4f50183 2772EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2773
a1863c21
SR
2774static void
2775rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2776 struct ring_buffer_event *event)
2777{
69d1b839
SR
2778 u64 delta;
2779
fa743953
SR
2780 /*
2781 * The event first in the commit queue updates the
2782 * time stamp.
2783 */
69d1b839
SR
2784 if (rb_event_is_commit(cpu_buffer, event)) {
2785 /*
2786 * A commit event that is first on a page
2787 * updates the write timestamp with the page stamp
2788 */
2789 if (!rb_event_index(event))
2790 cpu_buffer->write_stamp =
2791 cpu_buffer->commit_page->page->time_stamp;
2792 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2793 delta = event->array[0];
2794 delta <<= TS_SHIFT;
2795 delta += event->time_delta;
2796 cpu_buffer->write_stamp += delta;
2797 } else
2798 cpu_buffer->write_stamp += event->time_delta;
2799 }
a1863c21 2800}
bf41a158 2801
a1863c21
SR
2802static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2803 struct ring_buffer_event *event)
2804{
2805 local_inc(&cpu_buffer->entries);
2806 rb_update_write_stamp(cpu_buffer, event);
fa743953 2807 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2808}
2809
15693458
SRRH
2810static __always_inline void
2811rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2812{
2813 if (buffer->irq_work.waiters_pending) {
2814 buffer->irq_work.waiters_pending = false;
2815 /* irq_work_queue() supplies it's own memory barriers */
2816 irq_work_queue(&buffer->irq_work.work);
2817 }
2818
2819 if (cpu_buffer->irq_work.waiters_pending) {
2820 cpu_buffer->irq_work.waiters_pending = false;
2821 /* irq_work_queue() supplies it's own memory barriers */
2822 irq_work_queue(&cpu_buffer->irq_work.work);
2823 }
2824}
2825
7a8e76a3
SR
2826/**
2827 * ring_buffer_unlock_commit - commit a reserved
2828 * @buffer: The buffer to commit to
2829 * @event: The event pointer to commit.
7a8e76a3
SR
2830 *
2831 * This commits the data to the ring buffer, and releases any locks held.
2832 *
2833 * Must be paired with ring_buffer_lock_reserve.
2834 */
2835int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2836 struct ring_buffer_event *event)
7a8e76a3
SR
2837{
2838 struct ring_buffer_per_cpu *cpu_buffer;
2839 int cpu = raw_smp_processor_id();
2840
2841 cpu_buffer = buffer->buffers[cpu];
2842
7a8e76a3
SR
2843 rb_commit(cpu_buffer, event);
2844
15693458
SRRH
2845 rb_wakeups(buffer, cpu_buffer);
2846
261842b7
SR
2847 trace_recursive_unlock();
2848
5168ae50 2849 preempt_enable_notrace();
7a8e76a3
SR
2850
2851 return 0;
2852}
c4f50183 2853EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2854
f3b9aae1
FW
2855static inline void rb_event_discard(struct ring_buffer_event *event)
2856{
69d1b839
SR
2857 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2858 event = skip_time_extend(event);
2859
334d4169
LJ
2860 /* array[0] holds the actual length for the discarded event */
2861 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2862 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2863 /* time delta must be non zero */
2864 if (!event->time_delta)
2865 event->time_delta = 1;
2866}
2867
a1863c21
SR
2868/*
2869 * Decrement the entries to the page that an event is on.
2870 * The event does not even need to exist, only the pointer
2871 * to the page it is on. This may only be called before the commit
2872 * takes place.
2873 */
2874static inline void
2875rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2876 struct ring_buffer_event *event)
2877{
2878 unsigned long addr = (unsigned long)event;
2879 struct buffer_page *bpage = cpu_buffer->commit_page;
2880 struct buffer_page *start;
2881
2882 addr &= PAGE_MASK;
2883
2884 /* Do the likely case first */
2885 if (likely(bpage->page == (void *)addr)) {
2886 local_dec(&bpage->entries);
2887 return;
2888 }
2889
2890 /*
2891 * Because the commit page may be on the reader page we
2892 * start with the next page and check the end loop there.
2893 */
2894 rb_inc_page(cpu_buffer, &bpage);
2895 start = bpage;
2896 do {
2897 if (bpage->page == (void *)addr) {
2898 local_dec(&bpage->entries);
2899 return;
2900 }
2901 rb_inc_page(cpu_buffer, &bpage);
2902 } while (bpage != start);
2903
2904 /* commit not part of this buffer?? */
2905 RB_WARN_ON(cpu_buffer, 1);
2906}
2907
fa1b47dd
SR
2908/**
2909 * ring_buffer_commit_discard - discard an event that has not been committed
2910 * @buffer: the ring buffer
2911 * @event: non committed event to discard
2912 *
dc892f73
SR
2913 * Sometimes an event that is in the ring buffer needs to be ignored.
2914 * This function lets the user discard an event in the ring buffer
2915 * and then that event will not be read later.
2916 *
2917 * This function only works if it is called before the the item has been
2918 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2919 * if another event has not been added behind it.
2920 *
2921 * If another event has been added behind it, it will set the event
2922 * up as discarded, and perform the commit.
2923 *
2924 * If this function is called, do not call ring_buffer_unlock_commit on
2925 * the event.
2926 */
2927void ring_buffer_discard_commit(struct ring_buffer *buffer,
2928 struct ring_buffer_event *event)
2929{
2930 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2931 int cpu;
2932
2933 /* The event is discarded regardless */
f3b9aae1 2934 rb_event_discard(event);
fa1b47dd 2935
fa743953
SR
2936 cpu = smp_processor_id();
2937 cpu_buffer = buffer->buffers[cpu];
2938
fa1b47dd
SR
2939 /*
2940 * This must only be called if the event has not been
2941 * committed yet. Thus we can assume that preemption
2942 * is still disabled.
2943 */
fa743953 2944 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2945
a1863c21 2946 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2947 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2948 goto out;
fa1b47dd
SR
2949
2950 /*
2951 * The commit is still visible by the reader, so we
a1863c21 2952 * must still update the timestamp.
fa1b47dd 2953 */
a1863c21 2954 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2955 out:
fa743953 2956 rb_end_commit(cpu_buffer);
fa1b47dd 2957
f3b9aae1
FW
2958 trace_recursive_unlock();
2959
5168ae50 2960 preempt_enable_notrace();
fa1b47dd
SR
2961
2962}
2963EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2964
7a8e76a3
SR
2965/**
2966 * ring_buffer_write - write data to the buffer without reserving
2967 * @buffer: The ring buffer to write to.
2968 * @length: The length of the data being written (excluding the event header)
2969 * @data: The data to write to the buffer.
2970 *
2971 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2972 * one function. If you already have the data to write to the buffer, it
2973 * may be easier to simply call this function.
2974 *
2975 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2976 * and not the length of the event which would hold the header.
2977 */
2978int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2979 unsigned long length,
2980 void *data)
7a8e76a3
SR
2981{
2982 struct ring_buffer_per_cpu *cpu_buffer;
2983 struct ring_buffer_event *event;
7a8e76a3
SR
2984 void *body;
2985 int ret = -EBUSY;
5168ae50 2986 int cpu;
7a8e76a3 2987
033601a3 2988 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2989 return -EBUSY;
2990
5168ae50 2991 preempt_disable_notrace();
bf41a158 2992
52fbe9cd
LJ
2993 if (atomic_read(&buffer->record_disabled))
2994 goto out;
2995
7a8e76a3
SR
2996 cpu = raw_smp_processor_id();
2997
9e01c1b7 2998 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2999 goto out;
7a8e76a3
SR
3000
3001 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3002
3003 if (atomic_read(&cpu_buffer->record_disabled))
3004 goto out;
3005
be957c44
SR
3006 if (length > BUF_MAX_DATA_SIZE)
3007 goto out;
3008
62f0b3eb 3009 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
3010 if (!event)
3011 goto out;
3012
3013 body = rb_event_data(event);
3014
3015 memcpy(body, data, length);
3016
3017 rb_commit(cpu_buffer, event);
3018
15693458
SRRH
3019 rb_wakeups(buffer, cpu_buffer);
3020
7a8e76a3
SR
3021 ret = 0;
3022 out:
5168ae50 3023 preempt_enable_notrace();
7a8e76a3
SR
3024
3025 return ret;
3026}
c4f50183 3027EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3028
34a148bf 3029static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3030{
3031 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3032 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3033 struct buffer_page *commit = cpu_buffer->commit_page;
3034
77ae365e
SR
3035 /* In case of error, head will be NULL */
3036 if (unlikely(!head))
3037 return 1;
3038
bf41a158
SR
3039 return reader->read == rb_page_commit(reader) &&
3040 (commit == reader ||
3041 (commit == head &&
3042 head->read == rb_page_commit(commit)));
3043}
3044
7a8e76a3
SR
3045/**
3046 * ring_buffer_record_disable - stop all writes into the buffer
3047 * @buffer: The ring buffer to stop writes to.
3048 *
3049 * This prevents all writes to the buffer. Any attempt to write
3050 * to the buffer after this will fail and return NULL.
3051 *
3052 * The caller should call synchronize_sched() after this.
3053 */
3054void ring_buffer_record_disable(struct ring_buffer *buffer)
3055{
3056 atomic_inc(&buffer->record_disabled);
3057}
c4f50183 3058EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3059
3060/**
3061 * ring_buffer_record_enable - enable writes to the buffer
3062 * @buffer: The ring buffer to enable writes
3063 *
3064 * Note, multiple disables will need the same number of enables
c41b20e7 3065 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3066 */
3067void ring_buffer_record_enable(struct ring_buffer *buffer)
3068{
3069 atomic_dec(&buffer->record_disabled);
3070}
c4f50183 3071EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3072
499e5470
SR
3073/**
3074 * ring_buffer_record_off - stop all writes into the buffer
3075 * @buffer: The ring buffer to stop writes to.
3076 *
3077 * This prevents all writes to the buffer. Any attempt to write
3078 * to the buffer after this will fail and return NULL.
3079 *
3080 * This is different than ring_buffer_record_disable() as
87abb3b1 3081 * it works like an on/off switch, where as the disable() version
499e5470
SR
3082 * must be paired with a enable().
3083 */
3084void ring_buffer_record_off(struct ring_buffer *buffer)
3085{
3086 unsigned int rd;
3087 unsigned int new_rd;
3088
3089 do {
3090 rd = atomic_read(&buffer->record_disabled);
3091 new_rd = rd | RB_BUFFER_OFF;
3092 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3093}
3094EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3095
3096/**
3097 * ring_buffer_record_on - restart writes into the buffer
3098 * @buffer: The ring buffer to start writes to.
3099 *
3100 * This enables all writes to the buffer that was disabled by
3101 * ring_buffer_record_off().
3102 *
3103 * This is different than ring_buffer_record_enable() as
87abb3b1 3104 * it works like an on/off switch, where as the enable() version
499e5470
SR
3105 * must be paired with a disable().
3106 */
3107void ring_buffer_record_on(struct ring_buffer *buffer)
3108{
3109 unsigned int rd;
3110 unsigned int new_rd;
3111
3112 do {
3113 rd = atomic_read(&buffer->record_disabled);
3114 new_rd = rd & ~RB_BUFFER_OFF;
3115 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3116}
3117EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3118
3119/**
3120 * ring_buffer_record_is_on - return true if the ring buffer can write
3121 * @buffer: The ring buffer to see if write is enabled
3122 *
3123 * Returns true if the ring buffer is in a state that it accepts writes.
3124 */
3125int ring_buffer_record_is_on(struct ring_buffer *buffer)
3126{
3127 return !atomic_read(&buffer->record_disabled);
3128}
3129
7a8e76a3
SR
3130/**
3131 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3132 * @buffer: The ring buffer to stop writes to.
3133 * @cpu: The CPU buffer to stop
3134 *
3135 * This prevents all writes to the buffer. Any attempt to write
3136 * to the buffer after this will fail and return NULL.
3137 *
3138 * The caller should call synchronize_sched() after this.
3139 */
3140void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3141{
3142 struct ring_buffer_per_cpu *cpu_buffer;
3143
9e01c1b7 3144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3145 return;
7a8e76a3
SR
3146
3147 cpu_buffer = buffer->buffers[cpu];
3148 atomic_inc(&cpu_buffer->record_disabled);
3149}
c4f50183 3150EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3151
3152/**
3153 * ring_buffer_record_enable_cpu - enable writes to the buffer
3154 * @buffer: The ring buffer to enable writes
3155 * @cpu: The CPU to enable.
3156 *
3157 * Note, multiple disables will need the same number of enables
c41b20e7 3158 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3159 */
3160void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3161{
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163
9e01c1b7 3164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3165 return;
7a8e76a3
SR
3166
3167 cpu_buffer = buffer->buffers[cpu];
3168 atomic_dec(&cpu_buffer->record_disabled);
3169}
c4f50183 3170EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3171
f6195aa0
SR
3172/*
3173 * The total entries in the ring buffer is the running counter
3174 * of entries entered into the ring buffer, minus the sum of
3175 * the entries read from the ring buffer and the number of
3176 * entries that were overwritten.
3177 */
3178static inline unsigned long
3179rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3180{
3181 return local_read(&cpu_buffer->entries) -
3182 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3183}
3184
c64e148a
VN
3185/**
3186 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3187 * @buffer: The ring buffer
3188 * @cpu: The per CPU buffer to read from.
3189 */
50ecf2c3 3190u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3191{
3192 unsigned long flags;
3193 struct ring_buffer_per_cpu *cpu_buffer;
3194 struct buffer_page *bpage;
da830e58 3195 u64 ret = 0;
c64e148a
VN
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3201 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3202 /*
3203 * if the tail is on reader_page, oldest time stamp is on the reader
3204 * page
3205 */
3206 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3207 bpage = cpu_buffer->reader_page;
3208 else
3209 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3210 if (bpage)
3211 ret = bpage->page->time_stamp;
7115e3fc 3212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3213
3214 return ret;
3215}
3216EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3217
3218/**
3219 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3220 * @buffer: The ring buffer
3221 * @cpu: The per CPU buffer to read from.
3222 */
3223unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3224{
3225 struct ring_buffer_per_cpu *cpu_buffer;
3226 unsigned long ret;
3227
3228 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3229 return 0;
3230
3231 cpu_buffer = buffer->buffers[cpu];
3232 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3233
3234 return ret;
3235}
3236EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3237
7a8e76a3
SR
3238/**
3239 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3240 * @buffer: The ring buffer
3241 * @cpu: The per CPU buffer to get the entries from.
3242 */
3243unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3244{
3245 struct ring_buffer_per_cpu *cpu_buffer;
3246
9e01c1b7 3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3248 return 0;
7a8e76a3
SR
3249
3250 cpu_buffer = buffer->buffers[cpu];
554f786e 3251
f6195aa0 3252 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3253}
c4f50183 3254EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3255
3256/**
884bfe89
SP
3257 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3258 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3259 * @buffer: The ring buffer
3260 * @cpu: The per CPU buffer to get the number of overruns from
3261 */
3262unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3263{
3264 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3265 unsigned long ret;
7a8e76a3 3266
9e01c1b7 3267 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3268 return 0;
7a8e76a3
SR
3269
3270 cpu_buffer = buffer->buffers[cpu];
77ae365e 3271 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3272
3273 return ret;
7a8e76a3 3274}
c4f50183 3275EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3276
f0d2c681 3277/**
884bfe89
SP
3278 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3279 * commits failing due to the buffer wrapping around while there are uncommitted
3280 * events, such as during an interrupt storm.
f0d2c681
SR
3281 * @buffer: The ring buffer
3282 * @cpu: The per CPU buffer to get the number of overruns from
3283 */
3284unsigned long
3285ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3286{
3287 struct ring_buffer_per_cpu *cpu_buffer;
3288 unsigned long ret;
3289
3290 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 return 0;
3292
3293 cpu_buffer = buffer->buffers[cpu];
77ae365e 3294 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3295
3296 return ret;
3297}
3298EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3299
884bfe89
SP
3300/**
3301 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3302 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3303 * @buffer: The ring buffer
3304 * @cpu: The per CPU buffer to get the number of overruns from
3305 */
3306unsigned long
3307ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3308{
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 unsigned long ret;
3311
3312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313 return 0;
3314
3315 cpu_buffer = buffer->buffers[cpu];
3316 ret = local_read(&cpu_buffer->dropped_events);
3317
3318 return ret;
3319}
3320EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3321
ad964704
SRRH
3322/**
3323 * ring_buffer_read_events_cpu - get the number of events successfully read
3324 * @buffer: The ring buffer
3325 * @cpu: The per CPU buffer to get the number of events read
3326 */
3327unsigned long
3328ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3329{
3330 struct ring_buffer_per_cpu *cpu_buffer;
3331
3332 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3333 return 0;
3334
3335 cpu_buffer = buffer->buffers[cpu];
3336 return cpu_buffer->read;
3337}
3338EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3339
7a8e76a3
SR
3340/**
3341 * ring_buffer_entries - get the number of entries in a buffer
3342 * @buffer: The ring buffer
3343 *
3344 * Returns the total number of entries in the ring buffer
3345 * (all CPU entries)
3346 */
3347unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3348{
3349 struct ring_buffer_per_cpu *cpu_buffer;
3350 unsigned long entries = 0;
3351 int cpu;
3352
3353 /* if you care about this being correct, lock the buffer */
3354 for_each_buffer_cpu(buffer, cpu) {
3355 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3356 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3357 }
3358
3359 return entries;
3360}
c4f50183 3361EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3362
3363/**
67b394f7 3364 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3365 * @buffer: The ring buffer
3366 *
3367 * Returns the total number of overruns in the ring buffer
3368 * (all CPU entries)
3369 */
3370unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3371{
3372 struct ring_buffer_per_cpu *cpu_buffer;
3373 unsigned long overruns = 0;
3374 int cpu;
3375
3376 /* if you care about this being correct, lock the buffer */
3377 for_each_buffer_cpu(buffer, cpu) {
3378 cpu_buffer = buffer->buffers[cpu];
77ae365e 3379 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3380 }
3381
3382 return overruns;
3383}
c4f50183 3384EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3385
642edba5 3386static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3387{
3388 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3389
d769041f 3390 /* Iterator usage is expected to have record disabled */
814aa5ad
SRRH
3391 iter->head_page = cpu_buffer->reader_page;
3392 iter->head = cpu_buffer->reader_page->read;
3393
3394 iter->cache_reader_page = iter->head_page;
78a3db11 3395 iter->cache_read = cpu_buffer->read;
814aa5ad 3396
d769041f
SR
3397 if (iter->head)
3398 iter->read_stamp = cpu_buffer->read_stamp;
3399 else
abc9b56d 3400 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3401}
f83c9d0f 3402
642edba5
SR
3403/**
3404 * ring_buffer_iter_reset - reset an iterator
3405 * @iter: The iterator to reset
3406 *
3407 * Resets the iterator, so that it will start from the beginning
3408 * again.
3409 */
3410void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3411{
554f786e 3412 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3413 unsigned long flags;
3414
554f786e
SR
3415 if (!iter)
3416 return;
3417
3418 cpu_buffer = iter->cpu_buffer;
3419
5389f6fa 3420 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3421 rb_iter_reset(iter);
5389f6fa 3422 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3423}
c4f50183 3424EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3425
3426/**
3427 * ring_buffer_iter_empty - check if an iterator has no more to read
3428 * @iter: The iterator to check
3429 */
3430int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3431{
3432 struct ring_buffer_per_cpu *cpu_buffer;
3433
3434 cpu_buffer = iter->cpu_buffer;
3435
bf41a158
SR
3436 return iter->head_page == cpu_buffer->commit_page &&
3437 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3438}
c4f50183 3439EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3440
3441static void
3442rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3443 struct ring_buffer_event *event)
3444{
3445 u64 delta;
3446
334d4169 3447 switch (event->type_len) {
7a8e76a3
SR
3448 case RINGBUF_TYPE_PADDING:
3449 return;
3450
3451 case RINGBUF_TYPE_TIME_EXTEND:
3452 delta = event->array[0];
3453 delta <<= TS_SHIFT;
3454 delta += event->time_delta;
3455 cpu_buffer->read_stamp += delta;
3456 return;
3457
3458 case RINGBUF_TYPE_TIME_STAMP:
3459 /* FIXME: not implemented */
3460 return;
3461
3462 case RINGBUF_TYPE_DATA:
3463 cpu_buffer->read_stamp += event->time_delta;
3464 return;
3465
3466 default:
3467 BUG();
3468 }
3469 return;
3470}
3471
3472static void
3473rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3474 struct ring_buffer_event *event)
3475{
3476 u64 delta;
3477
334d4169 3478 switch (event->type_len) {
7a8e76a3
SR
3479 case RINGBUF_TYPE_PADDING:
3480 return;
3481
3482 case RINGBUF_TYPE_TIME_EXTEND:
3483 delta = event->array[0];
3484 delta <<= TS_SHIFT;
3485 delta += event->time_delta;
3486 iter->read_stamp += delta;
3487 return;
3488
3489 case RINGBUF_TYPE_TIME_STAMP:
3490 /* FIXME: not implemented */
3491 return;
3492
3493 case RINGBUF_TYPE_DATA:
3494 iter->read_stamp += event->time_delta;
3495 return;
3496
3497 default:
3498 BUG();
3499 }
3500 return;
3501}
3502
d769041f
SR
3503static struct buffer_page *
3504rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3505{
d769041f 3506 struct buffer_page *reader = NULL;
66a8cb95 3507 unsigned long overwrite;
d769041f 3508 unsigned long flags;
818e3dd3 3509 int nr_loops = 0;
77ae365e 3510 int ret;
d769041f 3511
3e03fb7f 3512 local_irq_save(flags);
0199c4e6 3513 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3514
3515 again:
818e3dd3
SR
3516 /*
3517 * This should normally only loop twice. But because the
3518 * start of the reader inserts an empty page, it causes
3519 * a case where we will loop three times. There should be no
3520 * reason to loop four times (that I know of).
3521 */
3e89c7bb 3522 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3523 reader = NULL;
3524 goto out;
3525 }
3526
d769041f
SR
3527 reader = cpu_buffer->reader_page;
3528
3529 /* If there's more to read, return this page */
bf41a158 3530 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3531 goto out;
3532
3533 /* Never should we have an index greater than the size */
3e89c7bb
SR
3534 if (RB_WARN_ON(cpu_buffer,
3535 cpu_buffer->reader_page->read > rb_page_size(reader)))
3536 goto out;
d769041f
SR
3537
3538 /* check if we caught up to the tail */
3539 reader = NULL;
bf41a158 3540 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3541 goto out;
7a8e76a3 3542
a5fb8331
SR
3543 /* Don't bother swapping if the ring buffer is empty */
3544 if (rb_num_of_entries(cpu_buffer) == 0)
3545 goto out;
3546
7a8e76a3 3547 /*
d769041f 3548 * Reset the reader page to size zero.
7a8e76a3 3549 */
77ae365e
SR
3550 local_set(&cpu_buffer->reader_page->write, 0);
3551 local_set(&cpu_buffer->reader_page->entries, 0);
3552 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3553 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3554
77ae365e
SR
3555 spin:
3556 /*
3557 * Splice the empty reader page into the list around the head.
3558 */
3559 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3560 if (!reader)
3561 goto out;
0e1ff5d7 3562 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3563 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3564
3adc54fa
SR
3565 /*
3566 * cpu_buffer->pages just needs to point to the buffer, it
3567 * has no specific buffer page to point to. Lets move it out
25985edc 3568 * of our way so we don't accidentally swap it.
3adc54fa
SR
3569 */
3570 cpu_buffer->pages = reader->list.prev;
3571
77ae365e
SR
3572 /* The reader page will be pointing to the new head */
3573 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3574
66a8cb95
SR
3575 /*
3576 * We want to make sure we read the overruns after we set up our
3577 * pointers to the next object. The writer side does a
3578 * cmpxchg to cross pages which acts as the mb on the writer
3579 * side. Note, the reader will constantly fail the swap
3580 * while the writer is updating the pointers, so this
3581 * guarantees that the overwrite recorded here is the one we
3582 * want to compare with the last_overrun.
3583 */
3584 smp_mb();
3585 overwrite = local_read(&(cpu_buffer->overrun));
3586
77ae365e
SR
3587 /*
3588 * Here's the tricky part.
3589 *
3590 * We need to move the pointer past the header page.
3591 * But we can only do that if a writer is not currently
3592 * moving it. The page before the header page has the
3593 * flag bit '1' set if it is pointing to the page we want.
3594 * but if the writer is in the process of moving it
3595 * than it will be '2' or already moved '0'.
3596 */
3597
3598 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3599
3600 /*
77ae365e 3601 * If we did not convert it, then we must try again.
7a8e76a3 3602 */
77ae365e
SR
3603 if (!ret)
3604 goto spin;
7a8e76a3 3605
77ae365e
SR
3606 /*
3607 * Yeah! We succeeded in replacing the page.
3608 *
3609 * Now make the new head point back to the reader page.
3610 */
5ded3dc6 3611 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3612 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3613
3614 /* Finally update the reader page to the new head */
3615 cpu_buffer->reader_page = reader;
6039f028 3616 cpu_buffer->reader_page->read = 0;
d769041f 3617
66a8cb95
SR
3618 if (overwrite != cpu_buffer->last_overrun) {
3619 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3620 cpu_buffer->last_overrun = overwrite;
3621 }
3622
d769041f
SR
3623 goto again;
3624
3625 out:
6039f028
SRRH
3626 /* Update the read_stamp on the first event */
3627 if (reader && reader->read == 0)
3628 cpu_buffer->read_stamp = reader->page->time_stamp;
3629
0199c4e6 3630 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3631 local_irq_restore(flags);
d769041f
SR
3632
3633 return reader;
3634}
3635
3636static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3637{
3638 struct ring_buffer_event *event;
3639 struct buffer_page *reader;
3640 unsigned length;
3641
3642 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3643
d769041f 3644 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3645 if (RB_WARN_ON(cpu_buffer, !reader))
3646 return;
7a8e76a3 3647
d769041f
SR
3648 event = rb_reader_event(cpu_buffer);
3649
a1863c21 3650 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3651 cpu_buffer->read++;
d769041f
SR
3652
3653 rb_update_read_stamp(cpu_buffer, event);
3654
3655 length = rb_event_length(event);
6f807acd 3656 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3657}
3658
3659static void rb_advance_iter(struct ring_buffer_iter *iter)
3660{
7a8e76a3
SR
3661 struct ring_buffer_per_cpu *cpu_buffer;
3662 struct ring_buffer_event *event;
3663 unsigned length;
3664
3665 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3666
3667 /*
3668 * Check if we are at the end of the buffer.
3669 */
bf41a158 3670 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3671 /* discarded commits can make the page empty */
3672 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3673 return;
d769041f 3674 rb_inc_iter(iter);
7a8e76a3
SR
3675 return;
3676 }
3677
3678 event = rb_iter_head_event(iter);
3679
3680 length = rb_event_length(event);
3681
3682 /*
3683 * This should not be called to advance the header if we are
3684 * at the tail of the buffer.
3685 */
3e89c7bb 3686 if (RB_WARN_ON(cpu_buffer,
f536aafc 3687 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3688 (iter->head + length > rb_commit_index(cpu_buffer))))
3689 return;
7a8e76a3
SR
3690
3691 rb_update_iter_read_stamp(iter, event);
3692
3693 iter->head += length;
3694
3695 /* check for end of page padding */
bf41a158
SR
3696 if ((iter->head >= rb_page_size(iter->head_page)) &&
3697 (iter->head_page != cpu_buffer->commit_page))
771e0384 3698 rb_inc_iter(iter);
7a8e76a3
SR
3699}
3700
66a8cb95
SR
3701static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3702{
3703 return cpu_buffer->lost_events;
3704}
3705
f83c9d0f 3706static struct ring_buffer_event *
66a8cb95
SR
3707rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3708 unsigned long *lost_events)
7a8e76a3 3709{
7a8e76a3 3710 struct ring_buffer_event *event;
d769041f 3711 struct buffer_page *reader;
818e3dd3 3712 int nr_loops = 0;
7a8e76a3 3713
7a8e76a3 3714 again:
818e3dd3 3715 /*
69d1b839
SR
3716 * We repeat when a time extend is encountered.
3717 * Since the time extend is always attached to a data event,
3718 * we should never loop more than once.
3719 * (We never hit the following condition more than twice).
818e3dd3 3720 */
69d1b839 3721 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3722 return NULL;
818e3dd3 3723
d769041f
SR
3724 reader = rb_get_reader_page(cpu_buffer);
3725 if (!reader)
7a8e76a3
SR
3726 return NULL;
3727
d769041f 3728 event = rb_reader_event(cpu_buffer);
7a8e76a3 3729
334d4169 3730 switch (event->type_len) {
7a8e76a3 3731 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3732 if (rb_null_event(event))
3733 RB_WARN_ON(cpu_buffer, 1);
3734 /*
3735 * Because the writer could be discarding every
3736 * event it creates (which would probably be bad)
3737 * if we were to go back to "again" then we may never
3738 * catch up, and will trigger the warn on, or lock
3739 * the box. Return the padding, and we will release
3740 * the current locks, and try again.
3741 */
2d622719 3742 return event;
7a8e76a3
SR
3743
3744 case RINGBUF_TYPE_TIME_EXTEND:
3745 /* Internal data, OK to advance */
d769041f 3746 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3747 goto again;
3748
3749 case RINGBUF_TYPE_TIME_STAMP:
3750 /* FIXME: not implemented */
d769041f 3751 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3752 goto again;
3753
3754 case RINGBUF_TYPE_DATA:
3755 if (ts) {
3756 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3757 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3758 cpu_buffer->cpu, ts);
7a8e76a3 3759 }
66a8cb95
SR
3760 if (lost_events)
3761 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3762 return event;
3763
3764 default:
3765 BUG();
3766 }
3767
3768 return NULL;
3769}
c4f50183 3770EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3771
f83c9d0f
SR
3772static struct ring_buffer_event *
3773rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3774{
3775 struct ring_buffer *buffer;
3776 struct ring_buffer_per_cpu *cpu_buffer;
3777 struct ring_buffer_event *event;
818e3dd3 3778 int nr_loops = 0;
7a8e76a3 3779
7a8e76a3
SR
3780 cpu_buffer = iter->cpu_buffer;
3781 buffer = cpu_buffer->buffer;
3782
492a74f4
SR
3783 /*
3784 * Check if someone performed a consuming read to
3785 * the buffer. A consuming read invalidates the iterator
3786 * and we need to reset the iterator in this case.
3787 */
3788 if (unlikely(iter->cache_read != cpu_buffer->read ||
3789 iter->cache_reader_page != cpu_buffer->reader_page))
3790 rb_iter_reset(iter);
3791
7a8e76a3 3792 again:
3c05d748
SR
3793 if (ring_buffer_iter_empty(iter))
3794 return NULL;
3795
818e3dd3 3796 /*
7f70b62e
SRRH
3797 * We repeat when a time extend is encountered or we hit
3798 * the end of the page. Since the time extend is always attached
3799 * to a data event, we should never loop more than three times.
3800 * Once for going to next page, once on time extend, and
3801 * finally once to get the event.
3802 * (We never hit the following condition more than thrice).
818e3dd3 3803 */
7f70b62e 3804 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3805 return NULL;
818e3dd3 3806
7a8e76a3
SR
3807 if (rb_per_cpu_empty(cpu_buffer))
3808 return NULL;
3809
3c05d748
SR
3810 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3811 rb_inc_iter(iter);
3812 goto again;
3813 }
3814
7a8e76a3
SR
3815 event = rb_iter_head_event(iter);
3816
334d4169 3817 switch (event->type_len) {
7a8e76a3 3818 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3819 if (rb_null_event(event)) {
3820 rb_inc_iter(iter);
3821 goto again;
3822 }
3823 rb_advance_iter(iter);
3824 return event;
7a8e76a3
SR
3825
3826 case RINGBUF_TYPE_TIME_EXTEND:
3827 /* Internal data, OK to advance */
3828 rb_advance_iter(iter);
3829 goto again;
3830
3831 case RINGBUF_TYPE_TIME_STAMP:
3832 /* FIXME: not implemented */
3833 rb_advance_iter(iter);
3834 goto again;
3835
3836 case RINGBUF_TYPE_DATA:
3837 if (ts) {
3838 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3839 ring_buffer_normalize_time_stamp(buffer,
3840 cpu_buffer->cpu, ts);
7a8e76a3
SR
3841 }
3842 return event;
3843
3844 default:
3845 BUG();
3846 }
3847
3848 return NULL;
3849}
c4f50183 3850EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3851
8d707e8e
SR
3852static inline int rb_ok_to_lock(void)
3853{
3854 /*
3855 * If an NMI die dumps out the content of the ring buffer
3856 * do not grab locks. We also permanently disable the ring
3857 * buffer too. A one time deal is all you get from reading
3858 * the ring buffer from an NMI.
3859 */
464e85eb 3860 if (likely(!in_nmi()))
8d707e8e
SR
3861 return 1;
3862
3863 tracing_off_permanent();
3864 return 0;
3865}
3866
f83c9d0f
SR
3867/**
3868 * ring_buffer_peek - peek at the next event to be read
3869 * @buffer: The ring buffer to read
3870 * @cpu: The cpu to peak at
3871 * @ts: The timestamp counter of this event.
66a8cb95 3872 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3873 *
3874 * This will return the event that will be read next, but does
3875 * not consume the data.
3876 */
3877struct ring_buffer_event *
66a8cb95
SR
3878ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3879 unsigned long *lost_events)
f83c9d0f
SR
3880{
3881 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3882 struct ring_buffer_event *event;
f83c9d0f 3883 unsigned long flags;
8d707e8e 3884 int dolock;
f83c9d0f 3885
554f786e 3886 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3887 return NULL;
554f786e 3888
8d707e8e 3889 dolock = rb_ok_to_lock();
2d622719 3890 again:
8d707e8e
SR
3891 local_irq_save(flags);
3892 if (dolock)
5389f6fa 3893 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3894 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 rb_advance_reader(cpu_buffer);
8d707e8e 3897 if (dolock)
5389f6fa 3898 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3899 local_irq_restore(flags);
f83c9d0f 3900
1b959e18 3901 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3902 goto again;
2d622719 3903
f83c9d0f
SR
3904 return event;
3905}
3906
3907/**
3908 * ring_buffer_iter_peek - peek at the next event to be read
3909 * @iter: The ring buffer iterator
3910 * @ts: The timestamp counter of this event.
3911 *
3912 * This will return the event that will be read next, but does
3913 * not increment the iterator.
3914 */
3915struct ring_buffer_event *
3916ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3917{
3918 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3919 struct ring_buffer_event *event;
3920 unsigned long flags;
3921
2d622719 3922 again:
5389f6fa 3923 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3924 event = rb_iter_peek(iter, ts);
5389f6fa 3925 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3926
1b959e18 3927 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3928 goto again;
2d622719 3929
f83c9d0f
SR
3930 return event;
3931}
3932
7a8e76a3
SR
3933/**
3934 * ring_buffer_consume - return an event and consume it
3935 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3936 * @cpu: the cpu to read the buffer from
3937 * @ts: a variable to store the timestamp (may be NULL)
3938 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3939 *
3940 * Returns the next event in the ring buffer, and that event is consumed.
3941 * Meaning, that sequential reads will keep returning a different event,
3942 * and eventually empty the ring buffer if the producer is slower.
3943 */
3944struct ring_buffer_event *
66a8cb95
SR
3945ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3946 unsigned long *lost_events)
7a8e76a3 3947{
554f786e
SR
3948 struct ring_buffer_per_cpu *cpu_buffer;
3949 struct ring_buffer_event *event = NULL;
f83c9d0f 3950 unsigned long flags;
8d707e8e
SR
3951 int dolock;
3952
3953 dolock = rb_ok_to_lock();
7a8e76a3 3954
2d622719 3955 again:
554f786e
SR
3956 /* might be called in atomic */
3957 preempt_disable();
3958
9e01c1b7 3959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3960 goto out;
7a8e76a3 3961
554f786e 3962 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3963 local_irq_save(flags);
3964 if (dolock)
5389f6fa 3965 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3966
66a8cb95
SR
3967 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3968 if (event) {
3969 cpu_buffer->lost_events = 0;
469535a5 3970 rb_advance_reader(cpu_buffer);
66a8cb95 3971 }
7a8e76a3 3972
8d707e8e 3973 if (dolock)
5389f6fa 3974 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3975 local_irq_restore(flags);
f83c9d0f 3976
554f786e
SR
3977 out:
3978 preempt_enable();
3979
1b959e18 3980 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3981 goto again;
2d622719 3982
7a8e76a3
SR
3983 return event;
3984}
c4f50183 3985EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3986
3987/**
72c9ddfd 3988 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3989 * @buffer: The ring buffer to read from
3990 * @cpu: The cpu buffer to iterate over
3991 *
72c9ddfd
DM
3992 * This performs the initial preparations necessary to iterate
3993 * through the buffer. Memory is allocated, buffer recording
3994 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3995 *
72c9ddfd
DM
3996 * Disabling buffer recordng prevents the reading from being
3997 * corrupted. This is not a consuming read, so a producer is not
3998 * expected.
3999 *
4000 * After a sequence of ring_buffer_read_prepare calls, the user is
4001 * expected to make at least one call to ring_buffer_prepare_sync.
4002 * Afterwards, ring_buffer_read_start is invoked to get things going
4003 * for real.
4004 *
4005 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
4006 */
4007struct ring_buffer_iter *
72c9ddfd 4008ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4009{
4010 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4011 struct ring_buffer_iter *iter;
7a8e76a3 4012
9e01c1b7 4013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4014 return NULL;
7a8e76a3
SR
4015
4016 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4017 if (!iter)
8aabee57 4018 return NULL;
7a8e76a3
SR
4019
4020 cpu_buffer = buffer->buffers[cpu];
4021
4022 iter->cpu_buffer = cpu_buffer;
4023
83f40318 4024 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4025 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4026
4027 return iter;
4028}
4029EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4030
4031/**
4032 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4033 *
4034 * All previously invoked ring_buffer_read_prepare calls to prepare
4035 * iterators will be synchronized. Afterwards, read_buffer_read_start
4036 * calls on those iterators are allowed.
4037 */
4038void
4039ring_buffer_read_prepare_sync(void)
4040{
7a8e76a3 4041 synchronize_sched();
72c9ddfd
DM
4042}
4043EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4044
4045/**
4046 * ring_buffer_read_start - start a non consuming read of the buffer
4047 * @iter: The iterator returned by ring_buffer_read_prepare
4048 *
4049 * This finalizes the startup of an iteration through the buffer.
4050 * The iterator comes from a call to ring_buffer_read_prepare and
4051 * an intervening ring_buffer_read_prepare_sync must have been
4052 * performed.
4053 *
4054 * Must be paired with ring_buffer_finish.
4055 */
4056void
4057ring_buffer_read_start(struct ring_buffer_iter *iter)
4058{
4059 struct ring_buffer_per_cpu *cpu_buffer;
4060 unsigned long flags;
4061
4062 if (!iter)
4063 return;
4064
4065 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4066
5389f6fa 4067 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4068 arch_spin_lock(&cpu_buffer->lock);
642edba5 4069 rb_iter_reset(iter);
0199c4e6 4070 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4071 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4072}
c4f50183 4073EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4074
4075/**
4076 * ring_buffer_finish - finish reading the iterator of the buffer
4077 * @iter: The iterator retrieved by ring_buffer_start
4078 *
4079 * This re-enables the recording to the buffer, and frees the
4080 * iterator.
4081 */
4082void
4083ring_buffer_read_finish(struct ring_buffer_iter *iter)
4084{
4085 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4086 unsigned long flags;
7a8e76a3 4087
659f451f
SR
4088 /*
4089 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4090 * to check the integrity of the ring buffer.
4091 * Must prevent readers from trying to read, as the check
4092 * clears the HEAD page and readers require it.
659f451f 4093 */
9366c1ba 4094 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4095 rb_check_pages(cpu_buffer);
9366c1ba 4096 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4097
7a8e76a3 4098 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4099 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4100 kfree(iter);
4101}
c4f50183 4102EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4103
4104/**
4105 * ring_buffer_read - read the next item in the ring buffer by the iterator
4106 * @iter: The ring buffer iterator
4107 * @ts: The time stamp of the event read.
4108 *
4109 * This reads the next event in the ring buffer and increments the iterator.
4110 */
4111struct ring_buffer_event *
4112ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4113{
4114 struct ring_buffer_event *event;
f83c9d0f
SR
4115 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4116 unsigned long flags;
7a8e76a3 4117
5389f6fa 4118 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4119 again:
f83c9d0f 4120 event = rb_iter_peek(iter, ts);
7a8e76a3 4121 if (!event)
f83c9d0f 4122 goto out;
7a8e76a3 4123
7e9391cf
SR
4124 if (event->type_len == RINGBUF_TYPE_PADDING)
4125 goto again;
4126
7a8e76a3 4127 rb_advance_iter(iter);
f83c9d0f 4128 out:
5389f6fa 4129 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4130
4131 return event;
4132}
c4f50183 4133EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4134
4135/**
4136 * ring_buffer_size - return the size of the ring buffer (in bytes)
4137 * @buffer: The ring buffer.
4138 */
438ced17 4139unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4140{
438ced17
VN
4141 /*
4142 * Earlier, this method returned
4143 * BUF_PAGE_SIZE * buffer->nr_pages
4144 * Since the nr_pages field is now removed, we have converted this to
4145 * return the per cpu buffer value.
4146 */
4147 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148 return 0;
4149
4150 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4151}
c4f50183 4152EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4153
4154static void
4155rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4156{
77ae365e
SR
4157 rb_head_page_deactivate(cpu_buffer);
4158
7a8e76a3 4159 cpu_buffer->head_page
3adc54fa 4160 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4161 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4162 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4163 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4164
6f807acd 4165 cpu_buffer->head_page->read = 0;
bf41a158
SR
4166
4167 cpu_buffer->tail_page = cpu_buffer->head_page;
4168 cpu_buffer->commit_page = cpu_buffer->head_page;
4169
4170 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4171 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4172 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4173 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4174 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4175 cpu_buffer->reader_page->read = 0;
7a8e76a3 4176
c64e148a 4177 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4178 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4179 local_set(&cpu_buffer->commit_overrun, 0);
4180 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4181 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4182 local_set(&cpu_buffer->committing, 0);
4183 local_set(&cpu_buffer->commits, 0);
77ae365e 4184 cpu_buffer->read = 0;
c64e148a 4185 cpu_buffer->read_bytes = 0;
69507c06
SR
4186
4187 cpu_buffer->write_stamp = 0;
4188 cpu_buffer->read_stamp = 0;
77ae365e 4189
66a8cb95
SR
4190 cpu_buffer->lost_events = 0;
4191 cpu_buffer->last_overrun = 0;
4192
77ae365e 4193 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4194}
4195
4196/**
4197 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4198 * @buffer: The ring buffer to reset a per cpu buffer of
4199 * @cpu: The CPU buffer to be reset
4200 */
4201void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4202{
4203 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4204 unsigned long flags;
4205
9e01c1b7 4206 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4207 return;
7a8e76a3 4208
83f40318 4209 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4210 atomic_inc(&cpu_buffer->record_disabled);
4211
83f40318
VN
4212 /* Make sure all commits have finished */
4213 synchronize_sched();
4214
5389f6fa 4215 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4216
41b6a95d
SR
4217 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4218 goto out;
4219
0199c4e6 4220 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4221
4222 rb_reset_cpu(cpu_buffer);
4223
0199c4e6 4224 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4225
41b6a95d 4226 out:
5389f6fa 4227 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4228
4229 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4230 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4231}
c4f50183 4232EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4233
4234/**
4235 * ring_buffer_reset - reset a ring buffer
4236 * @buffer: The ring buffer to reset all cpu buffers
4237 */
4238void ring_buffer_reset(struct ring_buffer *buffer)
4239{
7a8e76a3
SR
4240 int cpu;
4241
7a8e76a3 4242 for_each_buffer_cpu(buffer, cpu)
d769041f 4243 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4244}
c4f50183 4245EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4246
4247/**
4248 * rind_buffer_empty - is the ring buffer empty?
4249 * @buffer: The ring buffer to test
4250 */
4251int ring_buffer_empty(struct ring_buffer *buffer)
4252{
4253 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4254 unsigned long flags;
8d707e8e 4255 int dolock;
7a8e76a3 4256 int cpu;
d4788207 4257 int ret;
7a8e76a3 4258
8d707e8e 4259 dolock = rb_ok_to_lock();
7a8e76a3
SR
4260
4261 /* yes this is racy, but if you don't like the race, lock the buffer */
4262 for_each_buffer_cpu(buffer, cpu) {
4263 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4264 local_irq_save(flags);
4265 if (dolock)
5389f6fa 4266 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4267 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4268 if (dolock)
5389f6fa 4269 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4270 local_irq_restore(flags);
4271
d4788207 4272 if (!ret)
7a8e76a3
SR
4273 return 0;
4274 }
554f786e 4275
7a8e76a3
SR
4276 return 1;
4277}
c4f50183 4278EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4279
4280/**
4281 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4282 * @buffer: The ring buffer
4283 * @cpu: The CPU buffer to test
4284 */
4285int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4286{
4287 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4288 unsigned long flags;
8d707e8e 4289 int dolock;
8aabee57 4290 int ret;
7a8e76a3 4291
9e01c1b7 4292 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4293 return 1;
7a8e76a3 4294
8d707e8e
SR
4295 dolock = rb_ok_to_lock();
4296
7a8e76a3 4297 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4298 local_irq_save(flags);
4299 if (dolock)
5389f6fa 4300 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4301 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4302 if (dolock)
5389f6fa 4303 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4304 local_irq_restore(flags);
554f786e
SR
4305
4306 return ret;
7a8e76a3 4307}
c4f50183 4308EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4309
85bac32c 4310#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4311/**
4312 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4313 * @buffer_a: One buffer to swap with
4314 * @buffer_b: The other buffer to swap with
4315 *
4316 * This function is useful for tracers that want to take a "snapshot"
4317 * of a CPU buffer and has another back up buffer lying around.
4318 * it is expected that the tracer handles the cpu buffer not being
4319 * used at the moment.
4320 */
4321int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4322 struct ring_buffer *buffer_b, int cpu)
4323{
4324 struct ring_buffer_per_cpu *cpu_buffer_a;
4325 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4326 int ret = -EINVAL;
4327
9e01c1b7
RR
4328 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4329 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4330 goto out;
7a8e76a3 4331
438ced17
VN
4332 cpu_buffer_a = buffer_a->buffers[cpu];
4333 cpu_buffer_b = buffer_b->buffers[cpu];
4334
7a8e76a3 4335 /* At least make sure the two buffers are somewhat the same */
438ced17 4336 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4337 goto out;
4338
4339 ret = -EAGAIN;
7a8e76a3 4340
97b17efe 4341 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4342 goto out;
97b17efe
SR
4343
4344 if (atomic_read(&buffer_a->record_disabled))
554f786e 4345 goto out;
97b17efe
SR
4346
4347 if (atomic_read(&buffer_b->record_disabled))
554f786e 4348 goto out;
97b17efe 4349
97b17efe 4350 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4351 goto out;
97b17efe
SR
4352
4353 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4354 goto out;
97b17efe 4355
7a8e76a3
SR
4356 /*
4357 * We can't do a synchronize_sched here because this
4358 * function can be called in atomic context.
4359 * Normally this will be called from the same CPU as cpu.
4360 * If not it's up to the caller to protect this.
4361 */
4362 atomic_inc(&cpu_buffer_a->record_disabled);
4363 atomic_inc(&cpu_buffer_b->record_disabled);
4364
98277991
SR
4365 ret = -EBUSY;
4366 if (local_read(&cpu_buffer_a->committing))
4367 goto out_dec;
4368 if (local_read(&cpu_buffer_b->committing))
4369 goto out_dec;
4370
7a8e76a3
SR
4371 buffer_a->buffers[cpu] = cpu_buffer_b;
4372 buffer_b->buffers[cpu] = cpu_buffer_a;
4373
4374 cpu_buffer_b->buffer = buffer_a;
4375 cpu_buffer_a->buffer = buffer_b;
4376
98277991
SR
4377 ret = 0;
4378
4379out_dec:
7a8e76a3
SR
4380 atomic_dec(&cpu_buffer_a->record_disabled);
4381 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4382out:
554f786e 4383 return ret;
7a8e76a3 4384}
c4f50183 4385EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4386#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4387
8789a9e7
SR
4388/**
4389 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4390 * @buffer: the buffer to allocate for.
4391 *
4392 * This function is used in conjunction with ring_buffer_read_page.
4393 * When reading a full page from the ring buffer, these functions
4394 * can be used to speed up the process. The calling function should
4395 * allocate a few pages first with this function. Then when it
4396 * needs to get pages from the ring buffer, it passes the result
4397 * of this function into ring_buffer_read_page, which will swap
4398 * the page that was allocated, with the read page of the buffer.
4399 *
4400 * Returns:
4401 * The page allocated, or NULL on error.
4402 */
7ea59064 4403void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4404{
044fa782 4405 struct buffer_data_page *bpage;
7ea59064 4406 struct page *page;
8789a9e7 4407
d7ec4bfe
VN
4408 page = alloc_pages_node(cpu_to_node(cpu),
4409 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4410 if (!page)
8789a9e7
SR
4411 return NULL;
4412
7ea59064 4413 bpage = page_address(page);
8789a9e7 4414
ef7a4a16
SR
4415 rb_init_page(bpage);
4416
044fa782 4417 return bpage;
8789a9e7 4418}
d6ce96da 4419EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4420
4421/**
4422 * ring_buffer_free_read_page - free an allocated read page
4423 * @buffer: the buffer the page was allocate for
4424 * @data: the page to free
4425 *
4426 * Free a page allocated from ring_buffer_alloc_read_page.
4427 */
4428void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4429{
4430 free_page((unsigned long)data);
4431}
d6ce96da 4432EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4433
4434/**
4435 * ring_buffer_read_page - extract a page from the ring buffer
4436 * @buffer: buffer to extract from
4437 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4438 * @len: amount to extract
8789a9e7
SR
4439 * @cpu: the cpu of the buffer to extract
4440 * @full: should the extraction only happen when the page is full.
4441 *
4442 * This function will pull out a page from the ring buffer and consume it.
4443 * @data_page must be the address of the variable that was returned
4444 * from ring_buffer_alloc_read_page. This is because the page might be used
4445 * to swap with a page in the ring buffer.
4446 *
4447 * for example:
b85fa01e 4448 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4449 * if (!rpage)
4450 * return error;
ef7a4a16 4451 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4452 * if (ret >= 0)
4453 * process_page(rpage, ret);
8789a9e7
SR
4454 *
4455 * When @full is set, the function will not return true unless
4456 * the writer is off the reader page.
4457 *
4458 * Note: it is up to the calling functions to handle sleeps and wakeups.
4459 * The ring buffer can be used anywhere in the kernel and can not
4460 * blindly call wake_up. The layer that uses the ring buffer must be
4461 * responsible for that.
4462 *
4463 * Returns:
667d2412
LJ
4464 * >=0 if data has been transferred, returns the offset of consumed data.
4465 * <0 if no data has been transferred.
8789a9e7
SR
4466 */
4467int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4468 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4469{
4470 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4471 struct ring_buffer_event *event;
044fa782 4472 struct buffer_data_page *bpage;
ef7a4a16 4473 struct buffer_page *reader;
ff0ff84a 4474 unsigned long missed_events;
8789a9e7 4475 unsigned long flags;
ef7a4a16 4476 unsigned int commit;
667d2412 4477 unsigned int read;
4f3640f8 4478 u64 save_timestamp;
667d2412 4479 int ret = -1;
8789a9e7 4480
554f786e
SR
4481 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4482 goto out;
4483
474d32b6
SR
4484 /*
4485 * If len is not big enough to hold the page header, then
4486 * we can not copy anything.
4487 */
4488 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4489 goto out;
474d32b6
SR
4490
4491 len -= BUF_PAGE_HDR_SIZE;
4492
8789a9e7 4493 if (!data_page)
554f786e 4494 goto out;
8789a9e7 4495
044fa782
SR
4496 bpage = *data_page;
4497 if (!bpage)
554f786e 4498 goto out;
8789a9e7 4499
5389f6fa 4500 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4501
ef7a4a16
SR
4502 reader = rb_get_reader_page(cpu_buffer);
4503 if (!reader)
554f786e 4504 goto out_unlock;
8789a9e7 4505
ef7a4a16
SR
4506 event = rb_reader_event(cpu_buffer);
4507
4508 read = reader->read;
4509 commit = rb_page_commit(reader);
667d2412 4510
66a8cb95 4511 /* Check if any events were dropped */
ff0ff84a 4512 missed_events = cpu_buffer->lost_events;
66a8cb95 4513
8789a9e7 4514 /*
474d32b6
SR
4515 * If this page has been partially read or
4516 * if len is not big enough to read the rest of the page or
4517 * a writer is still on the page, then
4518 * we must copy the data from the page to the buffer.
4519 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4520 */
474d32b6 4521 if (read || (len < (commit - read)) ||
ef7a4a16 4522 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4523 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4524 unsigned int rpos = read;
4525 unsigned int pos = 0;
ef7a4a16 4526 unsigned int size;
8789a9e7
SR
4527
4528 if (full)
554f786e 4529 goto out_unlock;
8789a9e7 4530
ef7a4a16
SR
4531 if (len > (commit - read))
4532 len = (commit - read);
4533
69d1b839
SR
4534 /* Always keep the time extend and data together */
4535 size = rb_event_ts_length(event);
ef7a4a16
SR
4536
4537 if (len < size)
554f786e 4538 goto out_unlock;
ef7a4a16 4539
4f3640f8
SR
4540 /* save the current timestamp, since the user will need it */
4541 save_timestamp = cpu_buffer->read_stamp;
4542
ef7a4a16
SR
4543 /* Need to copy one event at a time */
4544 do {
e1e35927
DS
4545 /* We need the size of one event, because
4546 * rb_advance_reader only advances by one event,
4547 * whereas rb_event_ts_length may include the size of
4548 * one or two events.
4549 * We have already ensured there's enough space if this
4550 * is a time extend. */
4551 size = rb_event_length(event);
474d32b6 4552 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4553
4554 len -= size;
4555
4556 rb_advance_reader(cpu_buffer);
474d32b6
SR
4557 rpos = reader->read;
4558 pos += size;
ef7a4a16 4559
18fab912
HY
4560 if (rpos >= commit)
4561 break;
4562
ef7a4a16 4563 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4564 /* Always keep the time extend and data together */
4565 size = rb_event_ts_length(event);
e1e35927 4566 } while (len >= size);
667d2412
LJ
4567
4568 /* update bpage */
ef7a4a16 4569 local_set(&bpage->commit, pos);
4f3640f8 4570 bpage->time_stamp = save_timestamp;
ef7a4a16 4571
474d32b6
SR
4572 /* we copied everything to the beginning */
4573 read = 0;
8789a9e7 4574 } else {
afbab76a 4575 /* update the entry counter */
77ae365e 4576 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4577 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4578
8789a9e7 4579 /* swap the pages */
044fa782 4580 rb_init_page(bpage);
ef7a4a16
SR
4581 bpage = reader->page;
4582 reader->page = *data_page;
4583 local_set(&reader->write, 0);
778c55d4 4584 local_set(&reader->entries, 0);
ef7a4a16 4585 reader->read = 0;
044fa782 4586 *data_page = bpage;
ff0ff84a
SR
4587
4588 /*
4589 * Use the real_end for the data size,
4590 * This gives us a chance to store the lost events
4591 * on the page.
4592 */
4593 if (reader->real_end)
4594 local_set(&bpage->commit, reader->real_end);
8789a9e7 4595 }
667d2412 4596 ret = read;
8789a9e7 4597
66a8cb95 4598 cpu_buffer->lost_events = 0;
2711ca23
SR
4599
4600 commit = local_read(&bpage->commit);
66a8cb95
SR
4601 /*
4602 * Set a flag in the commit field if we lost events
4603 */
ff0ff84a 4604 if (missed_events) {
ff0ff84a
SR
4605 /* If there is room at the end of the page to save the
4606 * missed events, then record it there.
4607 */
4608 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4609 memcpy(&bpage->data[commit], &missed_events,
4610 sizeof(missed_events));
4611 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4612 commit += sizeof(missed_events);
ff0ff84a 4613 }
66a8cb95 4614 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4615 }
66a8cb95 4616
2711ca23
SR
4617 /*
4618 * This page may be off to user land. Zero it out here.
4619 */
4620 if (commit < BUF_PAGE_SIZE)
4621 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4622
554f786e 4623 out_unlock:
5389f6fa 4624 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4625
554f786e 4626 out:
8789a9e7
SR
4627 return ret;
4628}
d6ce96da 4629EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4630
59222efe 4631#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4632static int rb_cpu_notify(struct notifier_block *self,
4633 unsigned long action, void *hcpu)
554f786e
SR
4634{
4635 struct ring_buffer *buffer =
4636 container_of(self, struct ring_buffer, cpu_notify);
4637 long cpu = (long)hcpu;
438ced17
VN
4638 int cpu_i, nr_pages_same;
4639 unsigned int nr_pages;
554f786e
SR
4640
4641 switch (action) {
4642 case CPU_UP_PREPARE:
4643 case CPU_UP_PREPARE_FROZEN:
3f237a79 4644 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4645 return NOTIFY_OK;
4646
438ced17
VN
4647 nr_pages = 0;
4648 nr_pages_same = 1;
4649 /* check if all cpu sizes are same */
4650 for_each_buffer_cpu(buffer, cpu_i) {
4651 /* fill in the size from first enabled cpu */
4652 if (nr_pages == 0)
4653 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4654 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4655 nr_pages_same = 0;
4656 break;
4657 }
4658 }
4659 /* allocate minimum pages, user can later expand it */
4660 if (!nr_pages_same)
4661 nr_pages = 2;
554f786e 4662 buffer->buffers[cpu] =
438ced17 4663 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4664 if (!buffer->buffers[cpu]) {
4665 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4666 cpu);
4667 return NOTIFY_OK;
4668 }
4669 smp_wmb();
3f237a79 4670 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4671 break;
4672 case CPU_DOWN_PREPARE:
4673 case CPU_DOWN_PREPARE_FROZEN:
4674 /*
4675 * Do nothing.
4676 * If we were to free the buffer, then the user would
4677 * lose any trace that was in the buffer.
4678 */
4679 break;
4680 default:
4681 break;
4682 }
4683 return NOTIFY_OK;
4684}
4685#endif
6c43e554
SRRH
4686
4687#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4688/*
4689 * This is a basic integrity check of the ring buffer.
4690 * Late in the boot cycle this test will run when configured in.
4691 * It will kick off a thread per CPU that will go into a loop
4692 * writing to the per cpu ring buffer various sizes of data.
4693 * Some of the data will be large items, some small.
4694 *
4695 * Another thread is created that goes into a spin, sending out
4696 * IPIs to the other CPUs to also write into the ring buffer.
4697 * this is to test the nesting ability of the buffer.
4698 *
4699 * Basic stats are recorded and reported. If something in the
4700 * ring buffer should happen that's not expected, a big warning
4701 * is displayed and all ring buffers are disabled.
4702 */
4703static struct task_struct *rb_threads[NR_CPUS] __initdata;
4704
4705struct rb_test_data {
4706 struct ring_buffer *buffer;
4707 unsigned long events;
4708 unsigned long bytes_written;
4709 unsigned long bytes_alloc;
4710 unsigned long bytes_dropped;
4711 unsigned long events_nested;
4712 unsigned long bytes_written_nested;
4713 unsigned long bytes_alloc_nested;
4714 unsigned long bytes_dropped_nested;
4715 int min_size_nested;
4716 int max_size_nested;
4717 int max_size;
4718 int min_size;
4719 int cpu;
4720 int cnt;
4721};
4722
4723static struct rb_test_data rb_data[NR_CPUS] __initdata;
4724
4725/* 1 meg per cpu */
4726#define RB_TEST_BUFFER_SIZE 1048576
4727
4728static char rb_string[] __initdata =
4729 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4730 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4731 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4732
4733static bool rb_test_started __initdata;
4734
4735struct rb_item {
4736 int size;
4737 char str[];
4738};
4739
4740static __init int rb_write_something(struct rb_test_data *data, bool nested)
4741{
4742 struct ring_buffer_event *event;
4743 struct rb_item *item;
4744 bool started;
4745 int event_len;
4746 int size;
4747 int len;
4748 int cnt;
4749
4750 /* Have nested writes different that what is written */
4751 cnt = data->cnt + (nested ? 27 : 0);
4752
4753 /* Multiply cnt by ~e, to make some unique increment */
4754 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4755
4756 len = size + sizeof(struct rb_item);
4757
4758 started = rb_test_started;
4759 /* read rb_test_started before checking buffer enabled */
4760 smp_rmb();
4761
4762 event = ring_buffer_lock_reserve(data->buffer, len);
4763 if (!event) {
4764 /* Ignore dropped events before test starts. */
4765 if (started) {
4766 if (nested)
4767 data->bytes_dropped += len;
4768 else
4769 data->bytes_dropped_nested += len;
4770 }
4771 return len;
4772 }
4773
4774 event_len = ring_buffer_event_length(event);
4775
4776 if (RB_WARN_ON(data->buffer, event_len < len))
4777 goto out;
4778
4779 item = ring_buffer_event_data(event);
4780 item->size = size;
4781 memcpy(item->str, rb_string, size);
4782
4783 if (nested) {
4784 data->bytes_alloc_nested += event_len;
4785 data->bytes_written_nested += len;
4786 data->events_nested++;
4787 if (!data->min_size_nested || len < data->min_size_nested)
4788 data->min_size_nested = len;
4789 if (len > data->max_size_nested)
4790 data->max_size_nested = len;
4791 } else {
4792 data->bytes_alloc += event_len;
4793 data->bytes_written += len;
4794 data->events++;
4795 if (!data->min_size || len < data->min_size)
4796 data->max_size = len;
4797 if (len > data->max_size)
4798 data->max_size = len;
4799 }
4800
4801 out:
4802 ring_buffer_unlock_commit(data->buffer, event);
4803
4804 return 0;
4805}
4806
4807static __init int rb_test(void *arg)
4808{
4809 struct rb_test_data *data = arg;
4810
4811 while (!kthread_should_stop()) {
4812 rb_write_something(data, false);
4813 data->cnt++;
4814
4815 set_current_state(TASK_INTERRUPTIBLE);
4816 /* Now sleep between a min of 100-300us and a max of 1ms */
4817 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4818 }
4819
4820 return 0;
4821}
4822
4823static __init void rb_ipi(void *ignore)
4824{
4825 struct rb_test_data *data;
4826 int cpu = smp_processor_id();
4827
4828 data = &rb_data[cpu];
4829 rb_write_something(data, true);
4830}
4831
4832static __init int rb_hammer_test(void *arg)
4833{
4834 while (!kthread_should_stop()) {
4835
4836 /* Send an IPI to all cpus to write data! */
4837 smp_call_function(rb_ipi, NULL, 1);
4838 /* No sleep, but for non preempt, let others run */
4839 schedule();
4840 }
4841
4842 return 0;
4843}
4844
4845static __init int test_ringbuffer(void)
4846{
4847 struct task_struct *rb_hammer;
4848 struct ring_buffer *buffer;
4849 int cpu;
4850 int ret = 0;
4851
4852 pr_info("Running ring buffer tests...\n");
4853
4854 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4855 if (WARN_ON(!buffer))
4856 return 0;
4857
4858 /* Disable buffer so that threads can't write to it yet */
4859 ring_buffer_record_off(buffer);
4860
4861 for_each_online_cpu(cpu) {
4862 rb_data[cpu].buffer = buffer;
4863 rb_data[cpu].cpu = cpu;
4864 rb_data[cpu].cnt = cpu;
4865 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4866 "rbtester/%d", cpu);
4867 if (WARN_ON(!rb_threads[cpu])) {
4868 pr_cont("FAILED\n");
4869 ret = -1;
4870 goto out_free;
4871 }
4872
4873 kthread_bind(rb_threads[cpu], cpu);
4874 wake_up_process(rb_threads[cpu]);
4875 }
4876
4877 /* Now create the rb hammer! */
4878 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4879 if (WARN_ON(!rb_hammer)) {
4880 pr_cont("FAILED\n");
4881 ret = -1;
4882 goto out_free;
4883 }
4884
4885 ring_buffer_record_on(buffer);
4886 /*
4887 * Show buffer is enabled before setting rb_test_started.
4888 * Yes there's a small race window where events could be
4889 * dropped and the thread wont catch it. But when a ring
4890 * buffer gets enabled, there will always be some kind of
4891 * delay before other CPUs see it. Thus, we don't care about
4892 * those dropped events. We care about events dropped after
4893 * the threads see that the buffer is active.
4894 */
4895 smp_wmb();
4896 rb_test_started = true;
4897
4898 set_current_state(TASK_INTERRUPTIBLE);
4899 /* Just run for 10 seconds */;
4900 schedule_timeout(10 * HZ);
4901
4902 kthread_stop(rb_hammer);
4903
4904 out_free:
4905 for_each_online_cpu(cpu) {
4906 if (!rb_threads[cpu])
4907 break;
4908 kthread_stop(rb_threads[cpu]);
4909 }
4910 if (ret) {
4911 ring_buffer_free(buffer);
4912 return ret;
4913 }
4914
4915 /* Report! */
4916 pr_info("finished\n");
4917 for_each_online_cpu(cpu) {
4918 struct ring_buffer_event *event;
4919 struct rb_test_data *data = &rb_data[cpu];
4920 struct rb_item *item;
4921 unsigned long total_events;
4922 unsigned long total_dropped;
4923 unsigned long total_written;
4924 unsigned long total_alloc;
4925 unsigned long total_read = 0;
4926 unsigned long total_size = 0;
4927 unsigned long total_len = 0;
4928 unsigned long total_lost = 0;
4929 unsigned long lost;
4930 int big_event_size;
4931 int small_event_size;
4932
4933 ret = -1;
4934
4935 total_events = data->events + data->events_nested;
4936 total_written = data->bytes_written + data->bytes_written_nested;
4937 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4938 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4939
4940 big_event_size = data->max_size + data->max_size_nested;
4941 small_event_size = data->min_size + data->min_size_nested;
4942
4943 pr_info("CPU %d:\n", cpu);
4944 pr_info(" events: %ld\n", total_events);
4945 pr_info(" dropped bytes: %ld\n", total_dropped);
4946 pr_info(" alloced bytes: %ld\n", total_alloc);
4947 pr_info(" written bytes: %ld\n", total_written);
4948 pr_info(" biggest event: %d\n", big_event_size);
4949 pr_info(" smallest event: %d\n", small_event_size);
4950
4951 if (RB_WARN_ON(buffer, total_dropped))
4952 break;
4953
4954 ret = 0;
4955
4956 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4957 total_lost += lost;
4958 item = ring_buffer_event_data(event);
4959 total_len += ring_buffer_event_length(event);
4960 total_size += item->size + sizeof(struct rb_item);
4961 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4962 pr_info("FAILED!\n");
4963 pr_info("buffer had: %.*s\n", item->size, item->str);
4964 pr_info("expected: %.*s\n", item->size, rb_string);
4965 RB_WARN_ON(buffer, 1);
4966 ret = -1;
4967 break;
4968 }
4969 total_read++;
4970 }
4971 if (ret)
4972 break;
4973
4974 ret = -1;
4975
4976 pr_info(" read events: %ld\n", total_read);
4977 pr_info(" lost events: %ld\n", total_lost);
4978 pr_info(" total events: %ld\n", total_lost + total_read);
4979 pr_info(" recorded len bytes: %ld\n", total_len);
4980 pr_info(" recorded size bytes: %ld\n", total_size);
4981 if (total_lost)
4982 pr_info(" With dropped events, record len and size may not match\n"
4983 " alloced and written from above\n");
4984 if (!total_lost) {
4985 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4986 total_size != total_written))
4987 break;
4988 }
4989 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4990 break;
4991
4992 ret = 0;
4993 }
4994 if (!ret)
4995 pr_info("Ring buffer PASSED!\n");
4996
4997 ring_buffer_free(buffer);
4998 return 0;
4999}
5000
5001late_initcall(test_ringbuffer);
5002#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */