ring-buffer: export symbols
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
334d4169
LJ
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169
LJ
207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
211
212enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215};
216
2d622719
TZ
217static inline int rb_null_event(struct ring_buffer_event *event)
218{
334d4169
LJ
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
2d622719
TZ
221}
222
223static inline int rb_discarded_event(struct ring_buffer_event *event)
224{
334d4169 225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
226}
227
228static void rb_event_set_padding(struct ring_buffer_event *event)
229{
334d4169 230 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
231 event->time_delta = 0;
232}
233
34a148bf 234static unsigned
2d622719 235rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
236{
237 unsigned length;
238
334d4169
LJ
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
244}
245
246/* inline for ring buffer fast paths */
247static unsigned
248rb_event_length(struct ring_buffer_event *event)
249{
334d4169 250 switch (event->type_len) {
7a8e76a3 251 case RINGBUF_TYPE_PADDING:
2d622719
TZ
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
334d4169 255 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
256
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
259
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
262
263 case RINGBUF_TYPE_DATA:
2d622719 264 return rb_event_data_length(event);
7a8e76a3
SR
265 default:
266 BUG();
267 }
268 /* not hit */
269 return 0;
270}
271
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 */
276unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277{
465634ad 278 unsigned length = rb_event_length(event);
334d4169 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
7a8e76a3 285}
c4f50183 286EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
287
288/* inline for ring buffer fast paths */
34a148bf 289static void *
7a8e76a3
SR
290rb_event_data(struct ring_buffer_event *event)
291{
334d4169 292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 293 /* If length is in len field, then array[0] has the data */
334d4169 294 if (event->type_len)
7a8e76a3
SR
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
298}
299
300/**
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
303 */
304void *ring_buffer_event_data(struct ring_buffer_event *event)
305{
306 return rb_event_data(event);
307}
c4f50183 308EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
309
310#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 311 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
312
313#define TS_SHIFT 27
314#define TS_MASK ((1ULL << TS_SHIFT) - 1)
315#define TS_DELTA_TEST (~TS_MASK)
316
abc9b56d 317struct buffer_data_page {
e4c2ce82 318 u64 time_stamp; /* page time stamp */
c3706f00 319 local_t commit; /* write committed index */
abc9b56d
SR
320 unsigned char data[]; /* data of buffer page */
321};
322
323struct buffer_page {
324 local_t write; /* index for next write */
6f807acd 325 unsigned read; /* index for next read */
e4c2ce82 326 struct list_head list; /* list of free pages */
abc9b56d 327 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
328};
329
044fa782 330static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 331{
044fa782 332 local_set(&bpage->commit, 0);
abc9b56d
SR
333}
334
474d32b6
SR
335/**
336 * ring_buffer_page_len - the size of data on the page.
337 * @page: The page to read
338 *
339 * Returns the amount of data on the page, including buffer page header.
340 */
ef7a4a16
SR
341size_t ring_buffer_page_len(void *page)
342{
474d32b6
SR
343 return local_read(&((struct buffer_data_page *)page)->commit)
344 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
345}
346
ed56829c
SR
347/*
348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
349 * this issue out.
350 */
34a148bf 351static void free_buffer_page(struct buffer_page *bpage)
ed56829c 352{
34a148bf 353 free_page((unsigned long)bpage->page);
e4c2ce82 354 kfree(bpage);
ed56829c
SR
355}
356
7a8e76a3
SR
357/*
358 * We need to fit the time_stamp delta into 27 bits.
359 */
360static inline int test_time_stamp(u64 delta)
361{
362 if (delta & TS_DELTA_TEST)
363 return 1;
364 return 0;
365}
366
474d32b6 367#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 368
d1b182a8
SR
369int ring_buffer_print_page_header(struct trace_seq *s)
370{
371 struct buffer_data_page field;
372 int ret;
373
374 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
375 "offset:0;\tsize:%u;\n",
376 (unsigned int)sizeof(field.time_stamp));
377
378 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
379 "offset:%u;\tsize:%u;\n",
380 (unsigned int)offsetof(typeof(field), commit),
381 (unsigned int)sizeof(field.commit));
382
383 ret = trace_seq_printf(s, "\tfield: char data;\t"
384 "offset:%u;\tsize:%u;\n",
385 (unsigned int)offsetof(typeof(field), data),
386 (unsigned int)BUF_PAGE_SIZE);
387
388 return ret;
389}
390
7a8e76a3
SR
391/*
392 * head_page == tail_page && head == tail then buffer is empty.
393 */
394struct ring_buffer_per_cpu {
395 int cpu;
396 struct ring_buffer *buffer;
f83c9d0f 397 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 398 raw_spinlock_t lock;
7a8e76a3
SR
399 struct lock_class_key lock_key;
400 struct list_head pages;
6f807acd
SR
401 struct buffer_page *head_page; /* read from head */
402 struct buffer_page *tail_page; /* write to tail */
c3706f00 403 struct buffer_page *commit_page; /* committed pages */
d769041f 404 struct buffer_page *reader_page;
7a8e76a3
SR
405 unsigned long overrun;
406 unsigned long entries;
407 u64 write_stamp;
408 u64 read_stamp;
409 atomic_t record_disabled;
410};
411
412struct ring_buffer {
7a8e76a3
SR
413 unsigned pages;
414 unsigned flags;
415 int cpus;
7a8e76a3 416 atomic_t record_disabled;
00f62f61 417 cpumask_var_t cpumask;
7a8e76a3
SR
418
419 struct mutex mutex;
420
421 struct ring_buffer_per_cpu **buffers;
554f786e 422
59222efe 423#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
424 struct notifier_block cpu_notify;
425#endif
37886f6a 426 u64 (*clock)(void);
7a8e76a3
SR
427};
428
429struct ring_buffer_iter {
430 struct ring_buffer_per_cpu *cpu_buffer;
431 unsigned long head;
432 struct buffer_page *head_page;
433 u64 read_stamp;
434};
435
f536aafc 436/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 437#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
438 ({ \
439 int _____ret = unlikely(cond); \
440 if (_____ret) { \
bf41a158
SR
441 atomic_inc(&buffer->record_disabled); \
442 WARN_ON(1); \
443 } \
3e89c7bb
SR
444 _____ret; \
445 })
f536aafc 446
37886f6a
SR
447/* Up this if you want to test the TIME_EXTENTS and normalization */
448#define DEBUG_SHIFT 0
449
450u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
451{
452 u64 time;
453
454 preempt_disable_notrace();
455 /* shift to debug/test normalization and TIME_EXTENTS */
456 time = buffer->clock() << DEBUG_SHIFT;
457 preempt_enable_no_resched_notrace();
458
459 return time;
460}
461EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
462
463void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
464 int cpu, u64 *ts)
465{
466 /* Just stupid testing the normalize function and deltas */
467 *ts >>= DEBUG_SHIFT;
468}
469EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
470
7a8e76a3
SR
471/**
472 * check_pages - integrity check of buffer pages
473 * @cpu_buffer: CPU buffer with pages to test
474 *
c3706f00 475 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
476 * been corrupted.
477 */
478static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
479{
480 struct list_head *head = &cpu_buffer->pages;
044fa782 481 struct buffer_page *bpage, *tmp;
7a8e76a3 482
3e89c7bb
SR
483 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
484 return -1;
485 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
486 return -1;
7a8e76a3 487
044fa782 488 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 489 if (RB_WARN_ON(cpu_buffer,
044fa782 490 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
491 return -1;
492 if (RB_WARN_ON(cpu_buffer,
044fa782 493 bpage->list.prev->next != &bpage->list))
3e89c7bb 494 return -1;
7a8e76a3
SR
495 }
496
497 return 0;
498}
499
7a8e76a3
SR
500static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
501 unsigned nr_pages)
502{
503 struct list_head *head = &cpu_buffer->pages;
044fa782 504 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
505 unsigned long addr;
506 LIST_HEAD(pages);
507 unsigned i;
508
509 for (i = 0; i < nr_pages; i++) {
044fa782 510 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 511 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 512 if (!bpage)
e4c2ce82 513 goto free_pages;
044fa782 514 list_add(&bpage->list, &pages);
e4c2ce82 515
7a8e76a3
SR
516 addr = __get_free_page(GFP_KERNEL);
517 if (!addr)
518 goto free_pages;
044fa782
SR
519 bpage->page = (void *)addr;
520 rb_init_page(bpage->page);
7a8e76a3
SR
521 }
522
523 list_splice(&pages, head);
524
525 rb_check_pages(cpu_buffer);
526
527 return 0;
528
529 free_pages:
044fa782
SR
530 list_for_each_entry_safe(bpage, tmp, &pages, list) {
531 list_del_init(&bpage->list);
532 free_buffer_page(bpage);
7a8e76a3
SR
533 }
534 return -ENOMEM;
535}
536
537static struct ring_buffer_per_cpu *
538rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
539{
540 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 541 struct buffer_page *bpage;
d769041f 542 unsigned long addr;
7a8e76a3
SR
543 int ret;
544
545 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
546 GFP_KERNEL, cpu_to_node(cpu));
547 if (!cpu_buffer)
548 return NULL;
549
550 cpu_buffer->cpu = cpu;
551 cpu_buffer->buffer = buffer;
f83c9d0f 552 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 553 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
554 INIT_LIST_HEAD(&cpu_buffer->pages);
555
044fa782 556 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 557 GFP_KERNEL, cpu_to_node(cpu));
044fa782 558 if (!bpage)
e4c2ce82
SR
559 goto fail_free_buffer;
560
044fa782 561 cpu_buffer->reader_page = bpage;
d769041f
SR
562 addr = __get_free_page(GFP_KERNEL);
563 if (!addr)
e4c2ce82 564 goto fail_free_reader;
044fa782
SR
565 bpage->page = (void *)addr;
566 rb_init_page(bpage->page);
e4c2ce82 567
d769041f 568 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 569
7a8e76a3
SR
570 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
571 if (ret < 0)
d769041f 572 goto fail_free_reader;
7a8e76a3
SR
573
574 cpu_buffer->head_page
575 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 576 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
577
578 return cpu_buffer;
579
d769041f
SR
580 fail_free_reader:
581 free_buffer_page(cpu_buffer->reader_page);
582
7a8e76a3
SR
583 fail_free_buffer:
584 kfree(cpu_buffer);
585 return NULL;
586}
587
588static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
589{
590 struct list_head *head = &cpu_buffer->pages;
044fa782 591 struct buffer_page *bpage, *tmp;
7a8e76a3 592
d769041f
SR
593 free_buffer_page(cpu_buffer->reader_page);
594
044fa782
SR
595 list_for_each_entry_safe(bpage, tmp, head, list) {
596 list_del_init(&bpage->list);
597 free_buffer_page(bpage);
7a8e76a3
SR
598 }
599 kfree(cpu_buffer);
600}
601
a7b13743
SR
602/*
603 * Causes compile errors if the struct buffer_page gets bigger
604 * than the struct page.
605 */
606extern int ring_buffer_page_too_big(void);
607
59222efe 608#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
609static int rb_cpu_notify(struct notifier_block *self,
610 unsigned long action, void *hcpu);
554f786e
SR
611#endif
612
7a8e76a3
SR
613/**
614 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 615 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
616 * @flags: attributes to set for the ring buffer.
617 *
618 * Currently the only flag that is available is the RB_FL_OVERWRITE
619 * flag. This flag means that the buffer will overwrite old data
620 * when the buffer wraps. If this flag is not set, the buffer will
621 * drop data when the tail hits the head.
622 */
623struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
624{
625 struct ring_buffer *buffer;
626 int bsize;
627 int cpu;
628
a7b13743
SR
629 /* Paranoid! Optimizes out when all is well */
630 if (sizeof(struct buffer_page) > sizeof(struct page))
631 ring_buffer_page_too_big();
632
633
7a8e76a3
SR
634 /* keep it in its own cache line */
635 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
636 GFP_KERNEL);
637 if (!buffer)
638 return NULL;
639
9e01c1b7
RR
640 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
641 goto fail_free_buffer;
642
7a8e76a3
SR
643 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
644 buffer->flags = flags;
37886f6a 645 buffer->clock = trace_clock_local;
7a8e76a3
SR
646
647 /* need at least two pages */
648 if (buffer->pages == 1)
649 buffer->pages++;
650
3bf832ce
FW
651 /*
652 * In case of non-hotplug cpu, if the ring-buffer is allocated
653 * in early initcall, it will not be notified of secondary cpus.
654 * In that off case, we need to allocate for all possible cpus.
655 */
656#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
657 get_online_cpus();
658 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
659#else
660 cpumask_copy(buffer->cpumask, cpu_possible_mask);
661#endif
7a8e76a3
SR
662 buffer->cpus = nr_cpu_ids;
663
664 bsize = sizeof(void *) * nr_cpu_ids;
665 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
666 GFP_KERNEL);
667 if (!buffer->buffers)
9e01c1b7 668 goto fail_free_cpumask;
7a8e76a3
SR
669
670 for_each_buffer_cpu(buffer, cpu) {
671 buffer->buffers[cpu] =
672 rb_allocate_cpu_buffer(buffer, cpu);
673 if (!buffer->buffers[cpu])
674 goto fail_free_buffers;
675 }
676
59222efe 677#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
678 buffer->cpu_notify.notifier_call = rb_cpu_notify;
679 buffer->cpu_notify.priority = 0;
680 register_cpu_notifier(&buffer->cpu_notify);
681#endif
682
683 put_online_cpus();
7a8e76a3
SR
684 mutex_init(&buffer->mutex);
685
686 return buffer;
687
688 fail_free_buffers:
689 for_each_buffer_cpu(buffer, cpu) {
690 if (buffer->buffers[cpu])
691 rb_free_cpu_buffer(buffer->buffers[cpu]);
692 }
693 kfree(buffer->buffers);
694
9e01c1b7
RR
695 fail_free_cpumask:
696 free_cpumask_var(buffer->cpumask);
554f786e 697 put_online_cpus();
9e01c1b7 698
7a8e76a3
SR
699 fail_free_buffer:
700 kfree(buffer);
701 return NULL;
702}
c4f50183 703EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
704
705/**
706 * ring_buffer_free - free a ring buffer.
707 * @buffer: the buffer to free.
708 */
709void
710ring_buffer_free(struct ring_buffer *buffer)
711{
712 int cpu;
713
554f786e
SR
714 get_online_cpus();
715
59222efe 716#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
717 unregister_cpu_notifier(&buffer->cpu_notify);
718#endif
719
7a8e76a3
SR
720 for_each_buffer_cpu(buffer, cpu)
721 rb_free_cpu_buffer(buffer->buffers[cpu]);
722
554f786e
SR
723 put_online_cpus();
724
9e01c1b7
RR
725 free_cpumask_var(buffer->cpumask);
726
7a8e76a3
SR
727 kfree(buffer);
728}
c4f50183 729EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 730
37886f6a
SR
731void ring_buffer_set_clock(struct ring_buffer *buffer,
732 u64 (*clock)(void))
733{
734 buffer->clock = clock;
735}
736
7a8e76a3
SR
737static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
738
739static void
740rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
741{
044fa782 742 struct buffer_page *bpage;
7a8e76a3
SR
743 struct list_head *p;
744 unsigned i;
745
746 atomic_inc(&cpu_buffer->record_disabled);
747 synchronize_sched();
748
749 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
750 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
751 return;
7a8e76a3 752 p = cpu_buffer->pages.next;
044fa782
SR
753 bpage = list_entry(p, struct buffer_page, list);
754 list_del_init(&bpage->list);
755 free_buffer_page(bpage);
7a8e76a3 756 }
3e89c7bb
SR
757 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
758 return;
7a8e76a3
SR
759
760 rb_reset_cpu(cpu_buffer);
761
762 rb_check_pages(cpu_buffer);
763
764 atomic_dec(&cpu_buffer->record_disabled);
765
766}
767
768static void
769rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
770 struct list_head *pages, unsigned nr_pages)
771{
044fa782 772 struct buffer_page *bpage;
7a8e76a3
SR
773 struct list_head *p;
774 unsigned i;
775
776 atomic_inc(&cpu_buffer->record_disabled);
777 synchronize_sched();
778
779 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
780 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
781 return;
7a8e76a3 782 p = pages->next;
044fa782
SR
783 bpage = list_entry(p, struct buffer_page, list);
784 list_del_init(&bpage->list);
785 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
786 }
787 rb_reset_cpu(cpu_buffer);
788
789 rb_check_pages(cpu_buffer);
790
791 atomic_dec(&cpu_buffer->record_disabled);
792}
793
794/**
795 * ring_buffer_resize - resize the ring buffer
796 * @buffer: the buffer to resize.
797 * @size: the new size.
798 *
799 * The tracer is responsible for making sure that the buffer is
800 * not being used while changing the size.
801 * Note: We may be able to change the above requirement by using
802 * RCU synchronizations.
803 *
804 * Minimum size is 2 * BUF_PAGE_SIZE.
805 *
806 * Returns -1 on failure.
807 */
808int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
809{
810 struct ring_buffer_per_cpu *cpu_buffer;
811 unsigned nr_pages, rm_pages, new_pages;
044fa782 812 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
813 unsigned long buffer_size;
814 unsigned long addr;
815 LIST_HEAD(pages);
816 int i, cpu;
817
ee51a1de
IM
818 /*
819 * Always succeed at resizing a non-existent buffer:
820 */
821 if (!buffer)
822 return size;
823
7a8e76a3
SR
824 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
825 size *= BUF_PAGE_SIZE;
826 buffer_size = buffer->pages * BUF_PAGE_SIZE;
827
828 /* we need a minimum of two pages */
829 if (size < BUF_PAGE_SIZE * 2)
830 size = BUF_PAGE_SIZE * 2;
831
832 if (size == buffer_size)
833 return size;
834
835 mutex_lock(&buffer->mutex);
554f786e 836 get_online_cpus();
7a8e76a3
SR
837
838 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
839
840 if (size < buffer_size) {
841
842 /* easy case, just free pages */
554f786e
SR
843 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
844 goto out_fail;
7a8e76a3
SR
845
846 rm_pages = buffer->pages - nr_pages;
847
848 for_each_buffer_cpu(buffer, cpu) {
849 cpu_buffer = buffer->buffers[cpu];
850 rb_remove_pages(cpu_buffer, rm_pages);
851 }
852 goto out;
853 }
854
855 /*
856 * This is a bit more difficult. We only want to add pages
857 * when we can allocate enough for all CPUs. We do this
858 * by allocating all the pages and storing them on a local
859 * link list. If we succeed in our allocation, then we
860 * add these pages to the cpu_buffers. Otherwise we just free
861 * them all and return -ENOMEM;
862 */
554f786e
SR
863 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
864 goto out_fail;
f536aafc 865
7a8e76a3
SR
866 new_pages = nr_pages - buffer->pages;
867
868 for_each_buffer_cpu(buffer, cpu) {
869 for (i = 0; i < new_pages; i++) {
044fa782 870 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
871 cache_line_size()),
872 GFP_KERNEL, cpu_to_node(cpu));
044fa782 873 if (!bpage)
e4c2ce82 874 goto free_pages;
044fa782 875 list_add(&bpage->list, &pages);
7a8e76a3
SR
876 addr = __get_free_page(GFP_KERNEL);
877 if (!addr)
878 goto free_pages;
044fa782
SR
879 bpage->page = (void *)addr;
880 rb_init_page(bpage->page);
7a8e76a3
SR
881 }
882 }
883
884 for_each_buffer_cpu(buffer, cpu) {
885 cpu_buffer = buffer->buffers[cpu];
886 rb_insert_pages(cpu_buffer, &pages, new_pages);
887 }
888
554f786e
SR
889 if (RB_WARN_ON(buffer, !list_empty(&pages)))
890 goto out_fail;
7a8e76a3
SR
891
892 out:
893 buffer->pages = nr_pages;
554f786e 894 put_online_cpus();
7a8e76a3
SR
895 mutex_unlock(&buffer->mutex);
896
897 return size;
898
899 free_pages:
044fa782
SR
900 list_for_each_entry_safe(bpage, tmp, &pages, list) {
901 list_del_init(&bpage->list);
902 free_buffer_page(bpage);
7a8e76a3 903 }
554f786e 904 put_online_cpus();
641d2f63 905 mutex_unlock(&buffer->mutex);
7a8e76a3 906 return -ENOMEM;
554f786e
SR
907
908 /*
909 * Something went totally wrong, and we are too paranoid
910 * to even clean up the mess.
911 */
912 out_fail:
913 put_online_cpus();
914 mutex_unlock(&buffer->mutex);
915 return -1;
7a8e76a3 916}
c4f50183 917EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 918
8789a9e7 919static inline void *
044fa782 920__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 921{
044fa782 922 return bpage->data + index;
8789a9e7
SR
923}
924
044fa782 925static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 926{
044fa782 927 return bpage->page->data + index;
7a8e76a3
SR
928}
929
930static inline struct ring_buffer_event *
d769041f 931rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 932{
6f807acd
SR
933 return __rb_page_index(cpu_buffer->reader_page,
934 cpu_buffer->reader_page->read);
935}
936
937static inline struct ring_buffer_event *
938rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
939{
940 return __rb_page_index(cpu_buffer->head_page,
941 cpu_buffer->head_page->read);
7a8e76a3
SR
942}
943
944static inline struct ring_buffer_event *
945rb_iter_head_event(struct ring_buffer_iter *iter)
946{
6f807acd 947 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
948}
949
bf41a158
SR
950static inline unsigned rb_page_write(struct buffer_page *bpage)
951{
952 return local_read(&bpage->write);
953}
954
955static inline unsigned rb_page_commit(struct buffer_page *bpage)
956{
abc9b56d 957 return local_read(&bpage->page->commit);
bf41a158
SR
958}
959
960/* Size is determined by what has been commited */
961static inline unsigned rb_page_size(struct buffer_page *bpage)
962{
963 return rb_page_commit(bpage);
964}
965
966static inline unsigned
967rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
968{
969 return rb_page_commit(cpu_buffer->commit_page);
970}
971
972static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
973{
974 return rb_page_commit(cpu_buffer->head_page);
975}
976
7a8e76a3
SR
977/*
978 * When the tail hits the head and the buffer is in overwrite mode,
979 * the head jumps to the next page and all content on the previous
980 * page is discarded. But before doing so, we update the overrun
981 * variable of the buffer.
982 */
983static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
984{
985 struct ring_buffer_event *event;
986 unsigned long head;
987
988 for (head = 0; head < rb_head_size(cpu_buffer);
989 head += rb_event_length(event)) {
990
6f807acd 991 event = __rb_page_index(cpu_buffer->head_page, head);
3e89c7bb
SR
992 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
993 return;
7a8e76a3 994 /* Only count data entries */
334d4169 995 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
7a8e76a3
SR
996 continue;
997 cpu_buffer->overrun++;
998 cpu_buffer->entries--;
999 }
1000}
1001
1002static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 1003 struct buffer_page **bpage)
7a8e76a3 1004{
044fa782 1005 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
1006
1007 if (p == &cpu_buffer->pages)
1008 p = p->next;
1009
044fa782 1010 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
1011}
1012
bf41a158
SR
1013static inline unsigned
1014rb_event_index(struct ring_buffer_event *event)
1015{
1016 unsigned long addr = (unsigned long)event;
1017
1018 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1019}
1020
34a148bf 1021static int
bf41a158
SR
1022rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1023 struct ring_buffer_event *event)
1024{
1025 unsigned long addr = (unsigned long)event;
1026 unsigned long index;
1027
1028 index = rb_event_index(event);
1029 addr &= PAGE_MASK;
1030
1031 return cpu_buffer->commit_page->page == (void *)addr &&
1032 rb_commit_index(cpu_buffer) == index;
1033}
1034
34a148bf 1035static void
bf41a158
SR
1036rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1037 struct ring_buffer_event *event)
7a8e76a3 1038{
bf41a158
SR
1039 unsigned long addr = (unsigned long)event;
1040 unsigned long index;
1041
1042 index = rb_event_index(event);
1043 addr &= PAGE_MASK;
1044
1045 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1046 if (RB_WARN_ON(cpu_buffer,
1047 cpu_buffer->commit_page == cpu_buffer->tail_page))
1048 return;
abc9b56d 1049 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1050 cpu_buffer->commit_page->write;
1051 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1052 cpu_buffer->write_stamp =
1053 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1054 }
1055
1056 /* Now set the commit to the event's index */
abc9b56d 1057 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1058}
1059
34a148bf 1060static void
bf41a158 1061rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1062{
bf41a158
SR
1063 /*
1064 * We only race with interrupts and NMIs on this CPU.
1065 * If we own the commit event, then we can commit
1066 * all others that interrupted us, since the interruptions
1067 * are in stack format (they finish before they come
1068 * back to us). This allows us to do a simple loop to
1069 * assign the commit to the tail.
1070 */
a8ccf1d6 1071 again:
bf41a158 1072 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1073 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1074 cpu_buffer->commit_page->write;
1075 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1076 cpu_buffer->write_stamp =
1077 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1078 /* add barrier to keep gcc from optimizing too much */
1079 barrier();
1080 }
1081 while (rb_commit_index(cpu_buffer) !=
1082 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1083 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1084 cpu_buffer->commit_page->write;
1085 barrier();
1086 }
a8ccf1d6
SR
1087
1088 /* again, keep gcc from optimizing */
1089 barrier();
1090
1091 /*
1092 * If an interrupt came in just after the first while loop
1093 * and pushed the tail page forward, we will be left with
1094 * a dangling commit that will never go forward.
1095 */
1096 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1097 goto again;
7a8e76a3
SR
1098}
1099
d769041f 1100static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1101{
abc9b56d 1102 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1103 cpu_buffer->reader_page->read = 0;
d769041f
SR
1104}
1105
34a148bf 1106static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1107{
1108 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1109
1110 /*
1111 * The iterator could be on the reader page (it starts there).
1112 * But the head could have moved, since the reader was
1113 * found. Check for this case and assign the iterator
1114 * to the head page instead of next.
1115 */
1116 if (iter->head_page == cpu_buffer->reader_page)
1117 iter->head_page = cpu_buffer->head_page;
1118 else
1119 rb_inc_page(cpu_buffer, &iter->head_page);
1120
abc9b56d 1121 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1122 iter->head = 0;
1123}
1124
1125/**
1126 * ring_buffer_update_event - update event type and data
1127 * @event: the even to update
1128 * @type: the type of event
1129 * @length: the size of the event field in the ring buffer
1130 *
1131 * Update the type and data fields of the event. The length
1132 * is the actual size that is written to the ring buffer,
1133 * and with this, we can determine what to place into the
1134 * data field.
1135 */
34a148bf 1136static void
7a8e76a3
SR
1137rb_update_event(struct ring_buffer_event *event,
1138 unsigned type, unsigned length)
1139{
334d4169 1140 event->type_len = type;
7a8e76a3
SR
1141
1142 switch (type) {
1143
1144 case RINGBUF_TYPE_PADDING:
7a8e76a3 1145 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1146 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1147 break;
1148
334d4169 1149 case 0:
7a8e76a3 1150 length -= RB_EVNT_HDR_SIZE;
334d4169 1151 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1152 event->array[0] = length;
334d4169
LJ
1153 else
1154 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1155 break;
1156 default:
1157 BUG();
1158 }
1159}
1160
34a148bf 1161static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1162{
1163 struct ring_buffer_event event; /* Used only for sizeof array */
1164
1165 /* zero length can cause confusions */
1166 if (!length)
1167 length = 1;
1168
1169 if (length > RB_MAX_SMALL_DATA)
1170 length += sizeof(event.array[0]);
1171
1172 length += RB_EVNT_HDR_SIZE;
1173 length = ALIGN(length, RB_ALIGNMENT);
1174
1175 return length;
1176}
1177
1178static struct ring_buffer_event *
1179__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1180 unsigned type, unsigned long length, u64 *ts)
1181{
98db8df7 1182 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1183 unsigned long tail, write;
7a8e76a3
SR
1184 struct ring_buffer *buffer = cpu_buffer->buffer;
1185 struct ring_buffer_event *event;
bf41a158 1186 unsigned long flags;
78d904b4 1187 bool lock_taken = false;
7a8e76a3 1188
98db8df7
SR
1189 commit_page = cpu_buffer->commit_page;
1190 /* we just need to protect against interrupts */
1191 barrier();
7a8e76a3 1192 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1193 write = local_add_return(length, &tail_page->write);
1194 tail = write - length;
7a8e76a3 1195
bf41a158
SR
1196 /* See if we shot pass the end of this buffer page */
1197 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1198 struct buffer_page *next_page = tail_page;
1199
3e03fb7f 1200 local_irq_save(flags);
78d904b4 1201 /*
a81bd80a
SR
1202 * Since the write to the buffer is still not
1203 * fully lockless, we must be careful with NMIs.
1204 * The locks in the writers are taken when a write
1205 * crosses to a new page. The locks protect against
1206 * races with the readers (this will soon be fixed
1207 * with a lockless solution).
1208 *
1209 * Because we can not protect against NMIs, and we
1210 * want to keep traces reentrant, we need to manage
1211 * what happens when we are in an NMI.
1212 *
78d904b4
SR
1213 * NMIs can happen after we take the lock.
1214 * If we are in an NMI, only take the lock
1215 * if it is not already taken. Otherwise
1216 * simply fail.
1217 */
a81bd80a 1218 if (unlikely(in_nmi())) {
78d904b4 1219 if (!__raw_spin_trylock(&cpu_buffer->lock))
45141d46 1220 goto out_reset;
78d904b4
SR
1221 } else
1222 __raw_spin_lock(&cpu_buffer->lock);
1223
1224 lock_taken = true;
bf41a158 1225
7a8e76a3
SR
1226 rb_inc_page(cpu_buffer, &next_page);
1227
d769041f
SR
1228 head_page = cpu_buffer->head_page;
1229 reader_page = cpu_buffer->reader_page;
1230
1231 /* we grabbed the lock before incrementing */
3e89c7bb 1232 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1233 goto out_reset;
bf41a158
SR
1234
1235 /*
1236 * If for some reason, we had an interrupt storm that made
1237 * it all the way around the buffer, bail, and warn
1238 * about it.
1239 */
98db8df7 1240 if (unlikely(next_page == commit_page)) {
3554228d
SR
1241 /* This can easily happen on small ring buffers */
1242 WARN_ON_ONCE(buffer->pages > 2);
45141d46 1243 goto out_reset;
bf41a158 1244 }
d769041f 1245
7a8e76a3 1246 if (next_page == head_page) {
6f3b3440 1247 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1248 goto out_reset;
7a8e76a3 1249
bf41a158
SR
1250 /* tail_page has not moved yet? */
1251 if (tail_page == cpu_buffer->tail_page) {
1252 /* count overflows */
1253 rb_update_overflow(cpu_buffer);
1254
1255 rb_inc_page(cpu_buffer, &head_page);
1256 cpu_buffer->head_page = head_page;
1257 cpu_buffer->head_page->read = 0;
1258 }
1259 }
7a8e76a3 1260
bf41a158
SR
1261 /*
1262 * If the tail page is still the same as what we think
1263 * it is, then it is up to us to update the tail
1264 * pointer.
1265 */
1266 if (tail_page == cpu_buffer->tail_page) {
1267 local_set(&next_page->write, 0);
abc9b56d 1268 local_set(&next_page->page->commit, 0);
bf41a158
SR
1269 cpu_buffer->tail_page = next_page;
1270
1271 /* reread the time stamp */
37886f6a 1272 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
abc9b56d 1273 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1274 }
1275
bf41a158
SR
1276 /*
1277 * The actual tail page has moved forward.
1278 */
1279 if (tail < BUF_PAGE_SIZE) {
1280 /* Mark the rest of the page with padding */
6f807acd 1281 event = __rb_page_index(tail_page, tail);
2d622719 1282 rb_event_set_padding(event);
7a8e76a3
SR
1283 }
1284
bf41a158
SR
1285 if (tail <= BUF_PAGE_SIZE)
1286 /* Set the write back to the previous setting */
1287 local_set(&tail_page->write, tail);
1288
1289 /*
1290 * If this was a commit entry that failed,
1291 * increment that too
1292 */
1293 if (tail_page == cpu_buffer->commit_page &&
1294 tail == rb_commit_index(cpu_buffer)) {
1295 rb_set_commit_to_write(cpu_buffer);
1296 }
1297
3e03fb7f
SR
1298 __raw_spin_unlock(&cpu_buffer->lock);
1299 local_irq_restore(flags);
bf41a158
SR
1300
1301 /* fail and let the caller try again */
1302 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1303 }
1304
bf41a158
SR
1305 /* We reserved something on the buffer */
1306
3e89c7bb
SR
1307 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1308 return NULL;
7a8e76a3 1309
6f807acd 1310 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1311 rb_update_event(event, type, length);
1312
bf41a158
SR
1313 /*
1314 * If this is a commit and the tail is zero, then update
1315 * this page's time stamp.
1316 */
1317 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1318 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1319
7a8e76a3 1320 return event;
bf41a158 1321
45141d46 1322 out_reset:
6f3b3440
LJ
1323 /* reset write */
1324 if (tail <= BUF_PAGE_SIZE)
1325 local_set(&tail_page->write, tail);
1326
78d904b4
SR
1327 if (likely(lock_taken))
1328 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1329 local_irq_restore(flags);
bf41a158 1330 return NULL;
7a8e76a3
SR
1331}
1332
1333static int
1334rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1335 u64 *ts, u64 *delta)
1336{
1337 struct ring_buffer_event *event;
1338 static int once;
bf41a158 1339 int ret;
7a8e76a3
SR
1340
1341 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1342 printk(KERN_WARNING "Delta way too big! %llu"
1343 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1344 (unsigned long long)*delta,
1345 (unsigned long long)*ts,
1346 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1347 WARN_ON(1);
1348 }
1349
1350 /*
1351 * The delta is too big, we to add a
1352 * new timestamp.
1353 */
1354 event = __rb_reserve_next(cpu_buffer,
1355 RINGBUF_TYPE_TIME_EXTEND,
1356 RB_LEN_TIME_EXTEND,
1357 ts);
1358 if (!event)
bf41a158 1359 return -EBUSY;
7a8e76a3 1360
bf41a158
SR
1361 if (PTR_ERR(event) == -EAGAIN)
1362 return -EAGAIN;
1363
1364 /* Only a commited time event can update the write stamp */
1365 if (rb_is_commit(cpu_buffer, event)) {
1366 /*
1367 * If this is the first on the page, then we need to
1368 * update the page itself, and just put in a zero.
1369 */
1370 if (rb_event_index(event)) {
1371 event->time_delta = *delta & TS_MASK;
1372 event->array[0] = *delta >> TS_SHIFT;
1373 } else {
abc9b56d 1374 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1375 event->time_delta = 0;
1376 event->array[0] = 0;
1377 }
7a8e76a3 1378 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1379 /* let the caller know this was the commit */
1380 ret = 1;
1381 } else {
1382 /* Darn, this is just wasted space */
1383 event->time_delta = 0;
1384 event->array[0] = 0;
1385 ret = 0;
7a8e76a3
SR
1386 }
1387
bf41a158
SR
1388 *delta = 0;
1389
1390 return ret;
7a8e76a3
SR
1391}
1392
1393static struct ring_buffer_event *
1394rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1395 unsigned type, unsigned long length)
1396{
1397 struct ring_buffer_event *event;
1398 u64 ts, delta;
bf41a158 1399 int commit = 0;
818e3dd3 1400 int nr_loops = 0;
7a8e76a3 1401
bf41a158 1402 again:
818e3dd3
SR
1403 /*
1404 * We allow for interrupts to reenter here and do a trace.
1405 * If one does, it will cause this original code to loop
1406 * back here. Even with heavy interrupts happening, this
1407 * should only happen a few times in a row. If this happens
1408 * 1000 times in a row, there must be either an interrupt
1409 * storm or we have something buggy.
1410 * Bail!
1411 */
3e89c7bb 1412 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1413 return NULL;
818e3dd3 1414
37886f6a 1415 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1416
bf41a158
SR
1417 /*
1418 * Only the first commit can update the timestamp.
1419 * Yes there is a race here. If an interrupt comes in
1420 * just after the conditional and it traces too, then it
1421 * will also check the deltas. More than one timestamp may
1422 * also be made. But only the entry that did the actual
1423 * commit will be something other than zero.
1424 */
1425 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1426 rb_page_write(cpu_buffer->tail_page) ==
1427 rb_commit_index(cpu_buffer)) {
1428
7a8e76a3
SR
1429 delta = ts - cpu_buffer->write_stamp;
1430
bf41a158
SR
1431 /* make sure this delta is calculated here */
1432 barrier();
1433
1434 /* Did the write stamp get updated already? */
1435 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1436 delta = 0;
bf41a158 1437
7a8e76a3 1438 if (test_time_stamp(delta)) {
7a8e76a3 1439
bf41a158
SR
1440 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1441
1442 if (commit == -EBUSY)
7a8e76a3 1443 return NULL;
bf41a158
SR
1444
1445 if (commit == -EAGAIN)
1446 goto again;
1447
1448 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1449 }
bf41a158
SR
1450 } else
1451 /* Non commits have zero deltas */
7a8e76a3 1452 delta = 0;
7a8e76a3
SR
1453
1454 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1455 if (PTR_ERR(event) == -EAGAIN)
1456 goto again;
1457
1458 if (!event) {
1459 if (unlikely(commit))
1460 /*
1461 * Ouch! We needed a timestamp and it was commited. But
1462 * we didn't get our event reserved.
1463 */
1464 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1465 return NULL;
bf41a158 1466 }
7a8e76a3 1467
bf41a158
SR
1468 /*
1469 * If the timestamp was commited, make the commit our entry
1470 * now so that we will update it when needed.
1471 */
1472 if (commit)
1473 rb_set_commit_event(cpu_buffer, event);
1474 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1475 delta = 0;
1476
1477 event->time_delta = delta;
1478
1479 return event;
1480}
1481
aa18efb2 1482#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1483
1484static int trace_recursive_lock(void)
1485{
aa18efb2 1486 current->trace_recursion++;
261842b7 1487
aa18efb2
SR
1488 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1489 return 0;
e057a5e5 1490
aa18efb2
SR
1491 /* Disable all tracing before we do anything else */
1492 tracing_off_permanent();
261842b7 1493
7d7d2b80 1494 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1495 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1496 current->trace_recursion,
1497 hardirq_count() >> HARDIRQ_SHIFT,
1498 softirq_count() >> SOFTIRQ_SHIFT,
1499 in_nmi());
261842b7 1500
aa18efb2
SR
1501 WARN_ON_ONCE(1);
1502 return -1;
261842b7
SR
1503}
1504
1505static void trace_recursive_unlock(void)
1506{
aa18efb2 1507 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1508
aa18efb2 1509 current->trace_recursion--;
261842b7
SR
1510}
1511
bf41a158
SR
1512static DEFINE_PER_CPU(int, rb_need_resched);
1513
7a8e76a3
SR
1514/**
1515 * ring_buffer_lock_reserve - reserve a part of the buffer
1516 * @buffer: the ring buffer to reserve from
1517 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1518 *
1519 * Returns a reseverd event on the ring buffer to copy directly to.
1520 * The user of this interface will need to get the body to write into
1521 * and can use the ring_buffer_event_data() interface.
1522 *
1523 * The length is the length of the data needed, not the event length
1524 * which also includes the event header.
1525 *
1526 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1527 * If NULL is returned, then nothing has been allocated or locked.
1528 */
1529struct ring_buffer_event *
0a987751 1530ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1531{
1532 struct ring_buffer_per_cpu *cpu_buffer;
1533 struct ring_buffer_event *event;
bf41a158 1534 int cpu, resched;
7a8e76a3 1535
033601a3 1536 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1537 return NULL;
1538
7a8e76a3
SR
1539 if (atomic_read(&buffer->record_disabled))
1540 return NULL;
1541
bf41a158 1542 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1543 resched = ftrace_preempt_disable();
bf41a158 1544
261842b7
SR
1545 if (trace_recursive_lock())
1546 goto out_nocheck;
1547
7a8e76a3
SR
1548 cpu = raw_smp_processor_id();
1549
9e01c1b7 1550 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1551 goto out;
7a8e76a3
SR
1552
1553 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1554
1555 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1556 goto out;
7a8e76a3
SR
1557
1558 length = rb_calculate_event_length(length);
1559 if (length > BUF_PAGE_SIZE)
bf41a158 1560 goto out;
7a8e76a3 1561
334d4169 1562 event = rb_reserve_next_event(cpu_buffer, 0, length);
7a8e76a3 1563 if (!event)
d769041f 1564 goto out;
7a8e76a3 1565
bf41a158
SR
1566 /*
1567 * Need to store resched state on this cpu.
1568 * Only the first needs to.
1569 */
1570
1571 if (preempt_count() == 1)
1572 per_cpu(rb_need_resched, cpu) = resched;
1573
7a8e76a3
SR
1574 return event;
1575
d769041f 1576 out:
261842b7
SR
1577 trace_recursive_unlock();
1578
1579 out_nocheck:
182e9f5f 1580 ftrace_preempt_enable(resched);
7a8e76a3
SR
1581 return NULL;
1582}
c4f50183 1583EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1584
1585static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1586 struct ring_buffer_event *event)
1587{
7a8e76a3 1588 cpu_buffer->entries++;
bf41a158
SR
1589
1590 /* Only process further if we own the commit */
1591 if (!rb_is_commit(cpu_buffer, event))
1592 return;
1593
1594 cpu_buffer->write_stamp += event->time_delta;
1595
1596 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1597}
1598
1599/**
1600 * ring_buffer_unlock_commit - commit a reserved
1601 * @buffer: The buffer to commit to
1602 * @event: The event pointer to commit.
7a8e76a3
SR
1603 *
1604 * This commits the data to the ring buffer, and releases any locks held.
1605 *
1606 * Must be paired with ring_buffer_lock_reserve.
1607 */
1608int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1609 struct ring_buffer_event *event)
7a8e76a3
SR
1610{
1611 struct ring_buffer_per_cpu *cpu_buffer;
1612 int cpu = raw_smp_processor_id();
1613
1614 cpu_buffer = buffer->buffers[cpu];
1615
7a8e76a3
SR
1616 rb_commit(cpu_buffer, event);
1617
261842b7
SR
1618 trace_recursive_unlock();
1619
bf41a158
SR
1620 /*
1621 * Only the last preempt count needs to restore preemption.
1622 */
182e9f5f
SR
1623 if (preempt_count() == 1)
1624 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1625 else
bf41a158 1626 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1627
1628 return 0;
1629}
c4f50183 1630EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1631
f3b9aae1
FW
1632static inline void rb_event_discard(struct ring_buffer_event *event)
1633{
334d4169
LJ
1634 /* array[0] holds the actual length for the discarded event */
1635 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1636 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1637 /* time delta must be non zero */
1638 if (!event->time_delta)
1639 event->time_delta = 1;
1640}
1641
fa1b47dd
SR
1642/**
1643 * ring_buffer_event_discard - discard any event in the ring buffer
1644 * @event: the event to discard
1645 *
1646 * Sometimes a event that is in the ring buffer needs to be ignored.
1647 * This function lets the user discard an event in the ring buffer
1648 * and then that event will not be read later.
1649 *
1650 * Note, it is up to the user to be careful with this, and protect
1651 * against races. If the user discards an event that has been consumed
1652 * it is possible that it could corrupt the ring buffer.
1653 */
1654void ring_buffer_event_discard(struct ring_buffer_event *event)
1655{
f3b9aae1 1656 rb_event_discard(event);
fa1b47dd
SR
1657}
1658EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1659
1660/**
1661 * ring_buffer_commit_discard - discard an event that has not been committed
1662 * @buffer: the ring buffer
1663 * @event: non committed event to discard
1664 *
1665 * This is similar to ring_buffer_event_discard but must only be
1666 * performed on an event that has not been committed yet. The difference
1667 * is that this will also try to free the event from the ring buffer
1668 * if another event has not been added behind it.
1669 *
1670 * If another event has been added behind it, it will set the event
1671 * up as discarded, and perform the commit.
1672 *
1673 * If this function is called, do not call ring_buffer_unlock_commit on
1674 * the event.
1675 */
1676void ring_buffer_discard_commit(struct ring_buffer *buffer,
1677 struct ring_buffer_event *event)
1678{
1679 struct ring_buffer_per_cpu *cpu_buffer;
1680 unsigned long new_index, old_index;
1681 struct buffer_page *bpage;
1682 unsigned long index;
1683 unsigned long addr;
1684 int cpu;
1685
1686 /* The event is discarded regardless */
f3b9aae1 1687 rb_event_discard(event);
fa1b47dd
SR
1688
1689 /*
1690 * This must only be called if the event has not been
1691 * committed yet. Thus we can assume that preemption
1692 * is still disabled.
1693 */
1694 RB_WARN_ON(buffer, !preempt_count());
1695
1696 cpu = smp_processor_id();
1697 cpu_buffer = buffer->buffers[cpu];
1698
1699 new_index = rb_event_index(event);
1700 old_index = new_index + rb_event_length(event);
1701 addr = (unsigned long)event;
1702 addr &= PAGE_MASK;
1703
1704 bpage = cpu_buffer->tail_page;
1705
1706 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1707 /*
1708 * This is on the tail page. It is possible that
1709 * a write could come in and move the tail page
1710 * and write to the next page. That is fine
1711 * because we just shorten what is on this page.
1712 */
1713 index = local_cmpxchg(&bpage->write, old_index, new_index);
1714 if (index == old_index)
1715 goto out;
1716 }
1717
1718 /*
1719 * The commit is still visible by the reader, so we
1720 * must increment entries.
1721 */
1722 cpu_buffer->entries++;
1723 out:
1724 /*
1725 * If a write came in and pushed the tail page
1726 * we still need to update the commit pointer
1727 * if we were the commit.
1728 */
1729 if (rb_is_commit(cpu_buffer, event))
1730 rb_set_commit_to_write(cpu_buffer);
1731
f3b9aae1
FW
1732 trace_recursive_unlock();
1733
fa1b47dd
SR
1734 /*
1735 * Only the last preempt count needs to restore preemption.
1736 */
1737 if (preempt_count() == 1)
1738 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1739 else
1740 preempt_enable_no_resched_notrace();
1741
1742}
1743EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1744
7a8e76a3
SR
1745/**
1746 * ring_buffer_write - write data to the buffer without reserving
1747 * @buffer: The ring buffer to write to.
1748 * @length: The length of the data being written (excluding the event header)
1749 * @data: The data to write to the buffer.
1750 *
1751 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1752 * one function. If you already have the data to write to the buffer, it
1753 * may be easier to simply call this function.
1754 *
1755 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1756 * and not the length of the event which would hold the header.
1757 */
1758int ring_buffer_write(struct ring_buffer *buffer,
1759 unsigned long length,
1760 void *data)
1761{
1762 struct ring_buffer_per_cpu *cpu_buffer;
1763 struct ring_buffer_event *event;
bf41a158 1764 unsigned long event_length;
7a8e76a3
SR
1765 void *body;
1766 int ret = -EBUSY;
bf41a158 1767 int cpu, resched;
7a8e76a3 1768
033601a3 1769 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1770 return -EBUSY;
1771
7a8e76a3
SR
1772 if (atomic_read(&buffer->record_disabled))
1773 return -EBUSY;
1774
182e9f5f 1775 resched = ftrace_preempt_disable();
bf41a158 1776
7a8e76a3
SR
1777 cpu = raw_smp_processor_id();
1778
9e01c1b7 1779 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1780 goto out;
7a8e76a3
SR
1781
1782 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1783
1784 if (atomic_read(&cpu_buffer->record_disabled))
1785 goto out;
1786
1787 event_length = rb_calculate_event_length(length);
334d4169 1788 event = rb_reserve_next_event(cpu_buffer, 0, event_length);
7a8e76a3
SR
1789 if (!event)
1790 goto out;
1791
1792 body = rb_event_data(event);
1793
1794 memcpy(body, data, length);
1795
1796 rb_commit(cpu_buffer, event);
1797
1798 ret = 0;
1799 out:
182e9f5f 1800 ftrace_preempt_enable(resched);
7a8e76a3
SR
1801
1802 return ret;
1803}
c4f50183 1804EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1805
34a148bf 1806static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1807{
1808 struct buffer_page *reader = cpu_buffer->reader_page;
1809 struct buffer_page *head = cpu_buffer->head_page;
1810 struct buffer_page *commit = cpu_buffer->commit_page;
1811
1812 return reader->read == rb_page_commit(reader) &&
1813 (commit == reader ||
1814 (commit == head &&
1815 head->read == rb_page_commit(commit)));
1816}
1817
7a8e76a3
SR
1818/**
1819 * ring_buffer_record_disable - stop all writes into the buffer
1820 * @buffer: The ring buffer to stop writes to.
1821 *
1822 * This prevents all writes to the buffer. Any attempt to write
1823 * to the buffer after this will fail and return NULL.
1824 *
1825 * The caller should call synchronize_sched() after this.
1826 */
1827void ring_buffer_record_disable(struct ring_buffer *buffer)
1828{
1829 atomic_inc(&buffer->record_disabled);
1830}
c4f50183 1831EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1832
1833/**
1834 * ring_buffer_record_enable - enable writes to the buffer
1835 * @buffer: The ring buffer to enable writes
1836 *
1837 * Note, multiple disables will need the same number of enables
1838 * to truely enable the writing (much like preempt_disable).
1839 */
1840void ring_buffer_record_enable(struct ring_buffer *buffer)
1841{
1842 atomic_dec(&buffer->record_disabled);
1843}
c4f50183 1844EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1845
1846/**
1847 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1848 * @buffer: The ring buffer to stop writes to.
1849 * @cpu: The CPU buffer to stop
1850 *
1851 * This prevents all writes to the buffer. Any attempt to write
1852 * to the buffer after this will fail and return NULL.
1853 *
1854 * The caller should call synchronize_sched() after this.
1855 */
1856void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1857{
1858 struct ring_buffer_per_cpu *cpu_buffer;
1859
9e01c1b7 1860 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1861 return;
7a8e76a3
SR
1862
1863 cpu_buffer = buffer->buffers[cpu];
1864 atomic_inc(&cpu_buffer->record_disabled);
1865}
c4f50183 1866EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1867
1868/**
1869 * ring_buffer_record_enable_cpu - enable writes to the buffer
1870 * @buffer: The ring buffer to enable writes
1871 * @cpu: The CPU to enable.
1872 *
1873 * Note, multiple disables will need the same number of enables
1874 * to truely enable the writing (much like preempt_disable).
1875 */
1876void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1877{
1878 struct ring_buffer_per_cpu *cpu_buffer;
1879
9e01c1b7 1880 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1881 return;
7a8e76a3
SR
1882
1883 cpu_buffer = buffer->buffers[cpu];
1884 atomic_dec(&cpu_buffer->record_disabled);
1885}
c4f50183 1886EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1887
1888/**
1889 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1890 * @buffer: The ring buffer
1891 * @cpu: The per CPU buffer to get the entries from.
1892 */
1893unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1894{
1895 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1896 unsigned long ret;
7a8e76a3 1897
9e01c1b7 1898 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1899 return 0;
7a8e76a3
SR
1900
1901 cpu_buffer = buffer->buffers[cpu];
554f786e 1902 ret = cpu_buffer->entries;
554f786e
SR
1903
1904 return ret;
7a8e76a3 1905}
c4f50183 1906EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1907
1908/**
1909 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1910 * @buffer: The ring buffer
1911 * @cpu: The per CPU buffer to get the number of overruns from
1912 */
1913unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1914{
1915 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1916 unsigned long ret;
7a8e76a3 1917
9e01c1b7 1918 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1919 return 0;
7a8e76a3
SR
1920
1921 cpu_buffer = buffer->buffers[cpu];
554f786e 1922 ret = cpu_buffer->overrun;
554f786e
SR
1923
1924 return ret;
7a8e76a3 1925}
c4f50183 1926EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3
SR
1927
1928/**
1929 * ring_buffer_entries - get the number of entries in a buffer
1930 * @buffer: The ring buffer
1931 *
1932 * Returns the total number of entries in the ring buffer
1933 * (all CPU entries)
1934 */
1935unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1936{
1937 struct ring_buffer_per_cpu *cpu_buffer;
1938 unsigned long entries = 0;
1939 int cpu;
1940
1941 /* if you care about this being correct, lock the buffer */
1942 for_each_buffer_cpu(buffer, cpu) {
1943 cpu_buffer = buffer->buffers[cpu];
1944 entries += cpu_buffer->entries;
1945 }
1946
1947 return entries;
1948}
c4f50183 1949EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1950
1951/**
1952 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1953 * @buffer: The ring buffer
1954 *
1955 * Returns the total number of overruns in the ring buffer
1956 * (all CPU entries)
1957 */
1958unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1959{
1960 struct ring_buffer_per_cpu *cpu_buffer;
1961 unsigned long overruns = 0;
1962 int cpu;
1963
1964 /* if you care about this being correct, lock the buffer */
1965 for_each_buffer_cpu(buffer, cpu) {
1966 cpu_buffer = buffer->buffers[cpu];
1967 overruns += cpu_buffer->overrun;
1968 }
1969
1970 return overruns;
1971}
c4f50183 1972EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 1973
642edba5 1974static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
1975{
1976 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1977
d769041f
SR
1978 /* Iterator usage is expected to have record disabled */
1979 if (list_empty(&cpu_buffer->reader_page->list)) {
1980 iter->head_page = cpu_buffer->head_page;
6f807acd 1981 iter->head = cpu_buffer->head_page->read;
d769041f
SR
1982 } else {
1983 iter->head_page = cpu_buffer->reader_page;
6f807acd 1984 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
1985 }
1986 if (iter->head)
1987 iter->read_stamp = cpu_buffer->read_stamp;
1988 else
abc9b56d 1989 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 1990}
f83c9d0f 1991
642edba5
SR
1992/**
1993 * ring_buffer_iter_reset - reset an iterator
1994 * @iter: The iterator to reset
1995 *
1996 * Resets the iterator, so that it will start from the beginning
1997 * again.
1998 */
1999void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2000{
554f786e 2001 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2002 unsigned long flags;
2003
554f786e
SR
2004 if (!iter)
2005 return;
2006
2007 cpu_buffer = iter->cpu_buffer;
2008
642edba5
SR
2009 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2010 rb_iter_reset(iter);
f83c9d0f 2011 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2012}
c4f50183 2013EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2014
2015/**
2016 * ring_buffer_iter_empty - check if an iterator has no more to read
2017 * @iter: The iterator to check
2018 */
2019int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2020{
2021 struct ring_buffer_per_cpu *cpu_buffer;
2022
2023 cpu_buffer = iter->cpu_buffer;
2024
bf41a158
SR
2025 return iter->head_page == cpu_buffer->commit_page &&
2026 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2027}
c4f50183 2028EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2029
2030static void
2031rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2032 struct ring_buffer_event *event)
2033{
2034 u64 delta;
2035
334d4169 2036 switch (event->type_len) {
7a8e76a3
SR
2037 case RINGBUF_TYPE_PADDING:
2038 return;
2039
2040 case RINGBUF_TYPE_TIME_EXTEND:
2041 delta = event->array[0];
2042 delta <<= TS_SHIFT;
2043 delta += event->time_delta;
2044 cpu_buffer->read_stamp += delta;
2045 return;
2046
2047 case RINGBUF_TYPE_TIME_STAMP:
2048 /* FIXME: not implemented */
2049 return;
2050
2051 case RINGBUF_TYPE_DATA:
2052 cpu_buffer->read_stamp += event->time_delta;
2053 return;
2054
2055 default:
2056 BUG();
2057 }
2058 return;
2059}
2060
2061static void
2062rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2063 struct ring_buffer_event *event)
2064{
2065 u64 delta;
2066
334d4169 2067 switch (event->type_len) {
7a8e76a3
SR
2068 case RINGBUF_TYPE_PADDING:
2069 return;
2070
2071 case RINGBUF_TYPE_TIME_EXTEND:
2072 delta = event->array[0];
2073 delta <<= TS_SHIFT;
2074 delta += event->time_delta;
2075 iter->read_stamp += delta;
2076 return;
2077
2078 case RINGBUF_TYPE_TIME_STAMP:
2079 /* FIXME: not implemented */
2080 return;
2081
2082 case RINGBUF_TYPE_DATA:
2083 iter->read_stamp += event->time_delta;
2084 return;
2085
2086 default:
2087 BUG();
2088 }
2089 return;
2090}
2091
d769041f
SR
2092static struct buffer_page *
2093rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2094{
d769041f
SR
2095 struct buffer_page *reader = NULL;
2096 unsigned long flags;
818e3dd3 2097 int nr_loops = 0;
d769041f 2098
3e03fb7f
SR
2099 local_irq_save(flags);
2100 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2101
2102 again:
818e3dd3
SR
2103 /*
2104 * This should normally only loop twice. But because the
2105 * start of the reader inserts an empty page, it causes
2106 * a case where we will loop three times. There should be no
2107 * reason to loop four times (that I know of).
2108 */
3e89c7bb 2109 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2110 reader = NULL;
2111 goto out;
2112 }
2113
d769041f
SR
2114 reader = cpu_buffer->reader_page;
2115
2116 /* If there's more to read, return this page */
bf41a158 2117 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2118 goto out;
2119
2120 /* Never should we have an index greater than the size */
3e89c7bb
SR
2121 if (RB_WARN_ON(cpu_buffer,
2122 cpu_buffer->reader_page->read > rb_page_size(reader)))
2123 goto out;
d769041f
SR
2124
2125 /* check if we caught up to the tail */
2126 reader = NULL;
bf41a158 2127 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2128 goto out;
7a8e76a3
SR
2129
2130 /*
d769041f
SR
2131 * Splice the empty reader page into the list around the head.
2132 * Reset the reader page to size zero.
7a8e76a3 2133 */
7a8e76a3 2134
d769041f
SR
2135 reader = cpu_buffer->head_page;
2136 cpu_buffer->reader_page->list.next = reader->list.next;
2137 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2138
2139 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2140 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2141
d769041f
SR
2142 /* Make the reader page now replace the head */
2143 reader->list.prev->next = &cpu_buffer->reader_page->list;
2144 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2145
2146 /*
d769041f
SR
2147 * If the tail is on the reader, then we must set the head
2148 * to the inserted page, otherwise we set it one before.
7a8e76a3 2149 */
d769041f 2150 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2151
bf41a158 2152 if (cpu_buffer->commit_page != reader)
d769041f
SR
2153 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2154
2155 /* Finally update the reader page to the new head */
2156 cpu_buffer->reader_page = reader;
2157 rb_reset_reader_page(cpu_buffer);
2158
2159 goto again;
2160
2161 out:
3e03fb7f
SR
2162 __raw_spin_unlock(&cpu_buffer->lock);
2163 local_irq_restore(flags);
d769041f
SR
2164
2165 return reader;
2166}
2167
2168static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2169{
2170 struct ring_buffer_event *event;
2171 struct buffer_page *reader;
2172 unsigned length;
2173
2174 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2175
d769041f 2176 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2177 if (RB_WARN_ON(cpu_buffer, !reader))
2178 return;
7a8e76a3 2179
d769041f
SR
2180 event = rb_reader_event(cpu_buffer);
2181
334d4169
LJ
2182 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2183 || rb_discarded_event(event))
d769041f
SR
2184 cpu_buffer->entries--;
2185
2186 rb_update_read_stamp(cpu_buffer, event);
2187
2188 length = rb_event_length(event);
6f807acd 2189 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2190}
2191
2192static void rb_advance_iter(struct ring_buffer_iter *iter)
2193{
2194 struct ring_buffer *buffer;
2195 struct ring_buffer_per_cpu *cpu_buffer;
2196 struct ring_buffer_event *event;
2197 unsigned length;
2198
2199 cpu_buffer = iter->cpu_buffer;
2200 buffer = cpu_buffer->buffer;
2201
2202 /*
2203 * Check if we are at the end of the buffer.
2204 */
bf41a158 2205 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
2206 if (RB_WARN_ON(buffer,
2207 iter->head_page == cpu_buffer->commit_page))
2208 return;
d769041f 2209 rb_inc_iter(iter);
7a8e76a3
SR
2210 return;
2211 }
2212
2213 event = rb_iter_head_event(iter);
2214
2215 length = rb_event_length(event);
2216
2217 /*
2218 * This should not be called to advance the header if we are
2219 * at the tail of the buffer.
2220 */
3e89c7bb 2221 if (RB_WARN_ON(cpu_buffer,
f536aafc 2222 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2223 (iter->head + length > rb_commit_index(cpu_buffer))))
2224 return;
7a8e76a3
SR
2225
2226 rb_update_iter_read_stamp(iter, event);
2227
2228 iter->head += length;
2229
2230 /* check for end of page padding */
bf41a158
SR
2231 if ((iter->head >= rb_page_size(iter->head_page)) &&
2232 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2233 rb_advance_iter(iter);
2234}
2235
f83c9d0f
SR
2236static struct ring_buffer_event *
2237rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2238{
2239 struct ring_buffer_per_cpu *cpu_buffer;
2240 struct ring_buffer_event *event;
d769041f 2241 struct buffer_page *reader;
818e3dd3 2242 int nr_loops = 0;
7a8e76a3 2243
7a8e76a3
SR
2244 cpu_buffer = buffer->buffers[cpu];
2245
2246 again:
818e3dd3
SR
2247 /*
2248 * We repeat when a timestamp is encountered. It is possible
2249 * to get multiple timestamps from an interrupt entering just
2250 * as one timestamp is about to be written. The max times
2251 * that this can happen is the number of nested interrupts we
2252 * can have. Nesting 10 deep of interrupts is clearly
2253 * an anomaly.
2254 */
3e89c7bb 2255 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2256 return NULL;
818e3dd3 2257
d769041f
SR
2258 reader = rb_get_reader_page(cpu_buffer);
2259 if (!reader)
7a8e76a3
SR
2260 return NULL;
2261
d769041f 2262 event = rb_reader_event(cpu_buffer);
7a8e76a3 2263
334d4169 2264 switch (event->type_len) {
7a8e76a3 2265 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2266 if (rb_null_event(event))
2267 RB_WARN_ON(cpu_buffer, 1);
2268 /*
2269 * Because the writer could be discarding every
2270 * event it creates (which would probably be bad)
2271 * if we were to go back to "again" then we may never
2272 * catch up, and will trigger the warn on, or lock
2273 * the box. Return the padding, and we will release
2274 * the current locks, and try again.
2275 */
d769041f 2276 rb_advance_reader(cpu_buffer);
2d622719 2277 return event;
7a8e76a3
SR
2278
2279 case RINGBUF_TYPE_TIME_EXTEND:
2280 /* Internal data, OK to advance */
d769041f 2281 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2282 goto again;
2283
2284 case RINGBUF_TYPE_TIME_STAMP:
2285 /* FIXME: not implemented */
d769041f 2286 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2287 goto again;
2288
2289 case RINGBUF_TYPE_DATA:
2290 if (ts) {
2291 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2292 ring_buffer_normalize_time_stamp(buffer,
2293 cpu_buffer->cpu, ts);
7a8e76a3
SR
2294 }
2295 return event;
2296
2297 default:
2298 BUG();
2299 }
2300
2301 return NULL;
2302}
c4f50183 2303EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2304
f83c9d0f
SR
2305static struct ring_buffer_event *
2306rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2307{
2308 struct ring_buffer *buffer;
2309 struct ring_buffer_per_cpu *cpu_buffer;
2310 struct ring_buffer_event *event;
818e3dd3 2311 int nr_loops = 0;
7a8e76a3
SR
2312
2313 if (ring_buffer_iter_empty(iter))
2314 return NULL;
2315
2316 cpu_buffer = iter->cpu_buffer;
2317 buffer = cpu_buffer->buffer;
2318
2319 again:
818e3dd3
SR
2320 /*
2321 * We repeat when a timestamp is encountered. It is possible
2322 * to get multiple timestamps from an interrupt entering just
2323 * as one timestamp is about to be written. The max times
2324 * that this can happen is the number of nested interrupts we
2325 * can have. Nesting 10 deep of interrupts is clearly
2326 * an anomaly.
2327 */
3e89c7bb 2328 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2329 return NULL;
818e3dd3 2330
7a8e76a3
SR
2331 if (rb_per_cpu_empty(cpu_buffer))
2332 return NULL;
2333
2334 event = rb_iter_head_event(iter);
2335
334d4169 2336 switch (event->type_len) {
7a8e76a3 2337 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2338 if (rb_null_event(event)) {
2339 rb_inc_iter(iter);
2340 goto again;
2341 }
2342 rb_advance_iter(iter);
2343 return event;
7a8e76a3
SR
2344
2345 case RINGBUF_TYPE_TIME_EXTEND:
2346 /* Internal data, OK to advance */
2347 rb_advance_iter(iter);
2348 goto again;
2349
2350 case RINGBUF_TYPE_TIME_STAMP:
2351 /* FIXME: not implemented */
2352 rb_advance_iter(iter);
2353 goto again;
2354
2355 case RINGBUF_TYPE_DATA:
2356 if (ts) {
2357 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2358 ring_buffer_normalize_time_stamp(buffer,
2359 cpu_buffer->cpu, ts);
7a8e76a3
SR
2360 }
2361 return event;
2362
2363 default:
2364 BUG();
2365 }
2366
2367 return NULL;
2368}
c4f50183 2369EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2370
f83c9d0f
SR
2371/**
2372 * ring_buffer_peek - peek at the next event to be read
2373 * @buffer: The ring buffer to read
2374 * @cpu: The cpu to peak at
2375 * @ts: The timestamp counter of this event.
2376 *
2377 * This will return the event that will be read next, but does
2378 * not consume the data.
2379 */
2380struct ring_buffer_event *
2381ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2382{
2383 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2384 struct ring_buffer_event *event;
f83c9d0f
SR
2385 unsigned long flags;
2386
554f786e 2387 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2388 return NULL;
554f786e 2389
2d622719 2390 again:
f83c9d0f
SR
2391 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2392 event = rb_buffer_peek(buffer, cpu, ts);
2393 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2394
334d4169 2395 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2396 cpu_relax();
2397 goto again;
2398 }
2399
f83c9d0f
SR
2400 return event;
2401}
2402
2403/**
2404 * ring_buffer_iter_peek - peek at the next event to be read
2405 * @iter: The ring buffer iterator
2406 * @ts: The timestamp counter of this event.
2407 *
2408 * This will return the event that will be read next, but does
2409 * not increment the iterator.
2410 */
2411struct ring_buffer_event *
2412ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2413{
2414 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2415 struct ring_buffer_event *event;
2416 unsigned long flags;
2417
2d622719 2418 again:
f83c9d0f
SR
2419 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2420 event = rb_iter_peek(iter, ts);
2421 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2422
334d4169 2423 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2424 cpu_relax();
2425 goto again;
2426 }
2427
f83c9d0f
SR
2428 return event;
2429}
2430
7a8e76a3
SR
2431/**
2432 * ring_buffer_consume - return an event and consume it
2433 * @buffer: The ring buffer to get the next event from
2434 *
2435 * Returns the next event in the ring buffer, and that event is consumed.
2436 * Meaning, that sequential reads will keep returning a different event,
2437 * and eventually empty the ring buffer if the producer is slower.
2438 */
2439struct ring_buffer_event *
2440ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2441{
554f786e
SR
2442 struct ring_buffer_per_cpu *cpu_buffer;
2443 struct ring_buffer_event *event = NULL;
f83c9d0f 2444 unsigned long flags;
7a8e76a3 2445
2d622719 2446 again:
554f786e
SR
2447 /* might be called in atomic */
2448 preempt_disable();
2449
9e01c1b7 2450 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2451 goto out;
7a8e76a3 2452
554f786e 2453 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2454 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2455
2456 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2457 if (!event)
554f786e 2458 goto out_unlock;
7a8e76a3 2459
d769041f 2460 rb_advance_reader(cpu_buffer);
7a8e76a3 2461
554f786e 2462 out_unlock:
f83c9d0f
SR
2463 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2464
554f786e
SR
2465 out:
2466 preempt_enable();
2467
334d4169 2468 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2469 cpu_relax();
2470 goto again;
2471 }
2472
7a8e76a3
SR
2473 return event;
2474}
c4f50183 2475EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2476
2477/**
2478 * ring_buffer_read_start - start a non consuming read of the buffer
2479 * @buffer: The ring buffer to read from
2480 * @cpu: The cpu buffer to iterate over
2481 *
2482 * This starts up an iteration through the buffer. It also disables
2483 * the recording to the buffer until the reading is finished.
2484 * This prevents the reading from being corrupted. This is not
2485 * a consuming read, so a producer is not expected.
2486 *
2487 * Must be paired with ring_buffer_finish.
2488 */
2489struct ring_buffer_iter *
2490ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2491{
2492 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2493 struct ring_buffer_iter *iter;
d769041f 2494 unsigned long flags;
7a8e76a3 2495
9e01c1b7 2496 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2497 return NULL;
7a8e76a3
SR
2498
2499 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2500 if (!iter)
8aabee57 2501 return NULL;
7a8e76a3
SR
2502
2503 cpu_buffer = buffer->buffers[cpu];
2504
2505 iter->cpu_buffer = cpu_buffer;
2506
2507 atomic_inc(&cpu_buffer->record_disabled);
2508 synchronize_sched();
2509
f83c9d0f 2510 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2511 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2512 rb_iter_reset(iter);
3e03fb7f 2513 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2514 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2515
2516 return iter;
2517}
c4f50183 2518EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2519
2520/**
2521 * ring_buffer_finish - finish reading the iterator of the buffer
2522 * @iter: The iterator retrieved by ring_buffer_start
2523 *
2524 * This re-enables the recording to the buffer, and frees the
2525 * iterator.
2526 */
2527void
2528ring_buffer_read_finish(struct ring_buffer_iter *iter)
2529{
2530 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2531
2532 atomic_dec(&cpu_buffer->record_disabled);
2533 kfree(iter);
2534}
c4f50183 2535EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2536
2537/**
2538 * ring_buffer_read - read the next item in the ring buffer by the iterator
2539 * @iter: The ring buffer iterator
2540 * @ts: The time stamp of the event read.
2541 *
2542 * This reads the next event in the ring buffer and increments the iterator.
2543 */
2544struct ring_buffer_event *
2545ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2546{
2547 struct ring_buffer_event *event;
f83c9d0f
SR
2548 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2549 unsigned long flags;
7a8e76a3 2550
2d622719 2551 again:
f83c9d0f
SR
2552 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2553 event = rb_iter_peek(iter, ts);
7a8e76a3 2554 if (!event)
f83c9d0f 2555 goto out;
7a8e76a3
SR
2556
2557 rb_advance_iter(iter);
f83c9d0f
SR
2558 out:
2559 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2560
334d4169 2561 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2562 cpu_relax();
2563 goto again;
2564 }
2565
7a8e76a3
SR
2566 return event;
2567}
c4f50183 2568EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2569
2570/**
2571 * ring_buffer_size - return the size of the ring buffer (in bytes)
2572 * @buffer: The ring buffer.
2573 */
2574unsigned long ring_buffer_size(struct ring_buffer *buffer)
2575{
2576 return BUF_PAGE_SIZE * buffer->pages;
2577}
c4f50183 2578EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2579
2580static void
2581rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2582{
2583 cpu_buffer->head_page
2584 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2585 local_set(&cpu_buffer->head_page->write, 0);
abc9b56d 2586 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2587
6f807acd 2588 cpu_buffer->head_page->read = 0;
bf41a158
SR
2589
2590 cpu_buffer->tail_page = cpu_buffer->head_page;
2591 cpu_buffer->commit_page = cpu_buffer->head_page;
2592
2593 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2594 local_set(&cpu_buffer->reader_page->write, 0);
abc9b56d 2595 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2596 cpu_buffer->reader_page->read = 0;
7a8e76a3 2597
7a8e76a3
SR
2598 cpu_buffer->overrun = 0;
2599 cpu_buffer->entries = 0;
69507c06
SR
2600
2601 cpu_buffer->write_stamp = 0;
2602 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2603}
2604
2605/**
2606 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2607 * @buffer: The ring buffer to reset a per cpu buffer of
2608 * @cpu: The CPU buffer to be reset
2609 */
2610void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2611{
2612 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2613 unsigned long flags;
2614
9e01c1b7 2615 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2616 return;
7a8e76a3 2617
f83c9d0f
SR
2618 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2619
3e03fb7f 2620 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2621
2622 rb_reset_cpu(cpu_buffer);
2623
3e03fb7f 2624 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2625
2626 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2627}
c4f50183 2628EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2629
2630/**
2631 * ring_buffer_reset - reset a ring buffer
2632 * @buffer: The ring buffer to reset all cpu buffers
2633 */
2634void ring_buffer_reset(struct ring_buffer *buffer)
2635{
7a8e76a3
SR
2636 int cpu;
2637
7a8e76a3 2638 for_each_buffer_cpu(buffer, cpu)
d769041f 2639 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2640}
c4f50183 2641EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2642
2643/**
2644 * rind_buffer_empty - is the ring buffer empty?
2645 * @buffer: The ring buffer to test
2646 */
2647int ring_buffer_empty(struct ring_buffer *buffer)
2648{
2649 struct ring_buffer_per_cpu *cpu_buffer;
2650 int cpu;
2651
2652 /* yes this is racy, but if you don't like the race, lock the buffer */
2653 for_each_buffer_cpu(buffer, cpu) {
2654 cpu_buffer = buffer->buffers[cpu];
2655 if (!rb_per_cpu_empty(cpu_buffer))
2656 return 0;
2657 }
554f786e 2658
7a8e76a3
SR
2659 return 1;
2660}
c4f50183 2661EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2662
2663/**
2664 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2665 * @buffer: The ring buffer
2666 * @cpu: The CPU buffer to test
2667 */
2668int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2669{
2670 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2671 int ret;
7a8e76a3 2672
9e01c1b7 2673 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2674 return 1;
7a8e76a3
SR
2675
2676 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2677 ret = rb_per_cpu_empty(cpu_buffer);
2678
554f786e
SR
2679
2680 return ret;
7a8e76a3 2681}
c4f50183 2682EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2683
2684/**
2685 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2686 * @buffer_a: One buffer to swap with
2687 * @buffer_b: The other buffer to swap with
2688 *
2689 * This function is useful for tracers that want to take a "snapshot"
2690 * of a CPU buffer and has another back up buffer lying around.
2691 * it is expected that the tracer handles the cpu buffer not being
2692 * used at the moment.
2693 */
2694int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2695 struct ring_buffer *buffer_b, int cpu)
2696{
2697 struct ring_buffer_per_cpu *cpu_buffer_a;
2698 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2699 int ret = -EINVAL;
2700
9e01c1b7
RR
2701 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2702 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2703 goto out;
7a8e76a3
SR
2704
2705 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2706 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2707 goto out;
2708
2709 ret = -EAGAIN;
7a8e76a3 2710
97b17efe 2711 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2712 goto out;
97b17efe
SR
2713
2714 if (atomic_read(&buffer_a->record_disabled))
554f786e 2715 goto out;
97b17efe
SR
2716
2717 if (atomic_read(&buffer_b->record_disabled))
554f786e 2718 goto out;
97b17efe 2719
7a8e76a3
SR
2720 cpu_buffer_a = buffer_a->buffers[cpu];
2721 cpu_buffer_b = buffer_b->buffers[cpu];
2722
97b17efe 2723 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2724 goto out;
97b17efe
SR
2725
2726 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2727 goto out;
97b17efe 2728
7a8e76a3
SR
2729 /*
2730 * We can't do a synchronize_sched here because this
2731 * function can be called in atomic context.
2732 * Normally this will be called from the same CPU as cpu.
2733 * If not it's up to the caller to protect this.
2734 */
2735 atomic_inc(&cpu_buffer_a->record_disabled);
2736 atomic_inc(&cpu_buffer_b->record_disabled);
2737
2738 buffer_a->buffers[cpu] = cpu_buffer_b;
2739 buffer_b->buffers[cpu] = cpu_buffer_a;
2740
2741 cpu_buffer_b->buffer = buffer_a;
2742 cpu_buffer_a->buffer = buffer_b;
2743
2744 atomic_dec(&cpu_buffer_a->record_disabled);
2745 atomic_dec(&cpu_buffer_b->record_disabled);
2746
554f786e
SR
2747 ret = 0;
2748out:
554f786e 2749 return ret;
7a8e76a3 2750}
c4f50183 2751EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2752
8789a9e7 2753static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
667d2412
LJ
2754 struct buffer_data_page *bpage,
2755 unsigned int offset)
8789a9e7
SR
2756{
2757 struct ring_buffer_event *event;
2758 unsigned long head;
2759
2760 __raw_spin_lock(&cpu_buffer->lock);
667d2412 2761 for (head = offset; head < local_read(&bpage->commit);
8789a9e7
SR
2762 head += rb_event_length(event)) {
2763
044fa782 2764 event = __rb_data_page_index(bpage, head);
8789a9e7
SR
2765 if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2766 return;
2767 /* Only count data entries */
334d4169 2768 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
8789a9e7
SR
2769 continue;
2770 cpu_buffer->entries--;
2771 }
2772 __raw_spin_unlock(&cpu_buffer->lock);
2773}
2774
2775/**
2776 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2777 * @buffer: the buffer to allocate for.
2778 *
2779 * This function is used in conjunction with ring_buffer_read_page.
2780 * When reading a full page from the ring buffer, these functions
2781 * can be used to speed up the process. The calling function should
2782 * allocate a few pages first with this function. Then when it
2783 * needs to get pages from the ring buffer, it passes the result
2784 * of this function into ring_buffer_read_page, which will swap
2785 * the page that was allocated, with the read page of the buffer.
2786 *
2787 * Returns:
2788 * The page allocated, or NULL on error.
2789 */
2790void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2791{
044fa782 2792 struct buffer_data_page *bpage;
ef7a4a16 2793 unsigned long addr;
8789a9e7
SR
2794
2795 addr = __get_free_page(GFP_KERNEL);
2796 if (!addr)
2797 return NULL;
2798
044fa782 2799 bpage = (void *)addr;
8789a9e7 2800
ef7a4a16
SR
2801 rb_init_page(bpage);
2802
044fa782 2803 return bpage;
8789a9e7 2804}
d6ce96da 2805EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2806
2807/**
2808 * ring_buffer_free_read_page - free an allocated read page
2809 * @buffer: the buffer the page was allocate for
2810 * @data: the page to free
2811 *
2812 * Free a page allocated from ring_buffer_alloc_read_page.
2813 */
2814void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2815{
2816 free_page((unsigned long)data);
2817}
d6ce96da 2818EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2819
2820/**
2821 * ring_buffer_read_page - extract a page from the ring buffer
2822 * @buffer: buffer to extract from
2823 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2824 * @len: amount to extract
8789a9e7
SR
2825 * @cpu: the cpu of the buffer to extract
2826 * @full: should the extraction only happen when the page is full.
2827 *
2828 * This function will pull out a page from the ring buffer and consume it.
2829 * @data_page must be the address of the variable that was returned
2830 * from ring_buffer_alloc_read_page. This is because the page might be used
2831 * to swap with a page in the ring buffer.
2832 *
2833 * for example:
b85fa01e 2834 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2835 * if (!rpage)
2836 * return error;
ef7a4a16 2837 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2838 * if (ret >= 0)
2839 * process_page(rpage, ret);
8789a9e7
SR
2840 *
2841 * When @full is set, the function will not return true unless
2842 * the writer is off the reader page.
2843 *
2844 * Note: it is up to the calling functions to handle sleeps and wakeups.
2845 * The ring buffer can be used anywhere in the kernel and can not
2846 * blindly call wake_up. The layer that uses the ring buffer must be
2847 * responsible for that.
2848 *
2849 * Returns:
667d2412
LJ
2850 * >=0 if data has been transferred, returns the offset of consumed data.
2851 * <0 if no data has been transferred.
8789a9e7
SR
2852 */
2853int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2854 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2855{
2856 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2857 struct ring_buffer_event *event;
044fa782 2858 struct buffer_data_page *bpage;
ef7a4a16 2859 struct buffer_page *reader;
8789a9e7 2860 unsigned long flags;
ef7a4a16 2861 unsigned int commit;
667d2412 2862 unsigned int read;
4f3640f8 2863 u64 save_timestamp;
667d2412 2864 int ret = -1;
8789a9e7 2865
554f786e
SR
2866 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2867 goto out;
2868
474d32b6
SR
2869 /*
2870 * If len is not big enough to hold the page header, then
2871 * we can not copy anything.
2872 */
2873 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2874 goto out;
474d32b6
SR
2875
2876 len -= BUF_PAGE_HDR_SIZE;
2877
8789a9e7 2878 if (!data_page)
554f786e 2879 goto out;
8789a9e7 2880
044fa782
SR
2881 bpage = *data_page;
2882 if (!bpage)
554f786e 2883 goto out;
8789a9e7
SR
2884
2885 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2886
ef7a4a16
SR
2887 reader = rb_get_reader_page(cpu_buffer);
2888 if (!reader)
554f786e 2889 goto out_unlock;
8789a9e7 2890
ef7a4a16
SR
2891 event = rb_reader_event(cpu_buffer);
2892
2893 read = reader->read;
2894 commit = rb_page_commit(reader);
667d2412 2895
8789a9e7 2896 /*
474d32b6
SR
2897 * If this page has been partially read or
2898 * if len is not big enough to read the rest of the page or
2899 * a writer is still on the page, then
2900 * we must copy the data from the page to the buffer.
2901 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2902 */
474d32b6 2903 if (read || (len < (commit - read)) ||
ef7a4a16 2904 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2905 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2906 unsigned int rpos = read;
2907 unsigned int pos = 0;
ef7a4a16 2908 unsigned int size;
8789a9e7
SR
2909
2910 if (full)
554f786e 2911 goto out_unlock;
8789a9e7 2912
ef7a4a16
SR
2913 if (len > (commit - read))
2914 len = (commit - read);
2915
2916 size = rb_event_length(event);
2917
2918 if (len < size)
554f786e 2919 goto out_unlock;
ef7a4a16 2920
4f3640f8
SR
2921 /* save the current timestamp, since the user will need it */
2922 save_timestamp = cpu_buffer->read_stamp;
2923
ef7a4a16
SR
2924 /* Need to copy one event at a time */
2925 do {
474d32b6 2926 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2927
2928 len -= size;
2929
2930 rb_advance_reader(cpu_buffer);
474d32b6
SR
2931 rpos = reader->read;
2932 pos += size;
ef7a4a16
SR
2933
2934 event = rb_reader_event(cpu_buffer);
2935 size = rb_event_length(event);
2936 } while (len > size);
667d2412
LJ
2937
2938 /* update bpage */
ef7a4a16 2939 local_set(&bpage->commit, pos);
4f3640f8 2940 bpage->time_stamp = save_timestamp;
ef7a4a16 2941
474d32b6
SR
2942 /* we copied everything to the beginning */
2943 read = 0;
8789a9e7
SR
2944 } else {
2945 /* swap the pages */
044fa782 2946 rb_init_page(bpage);
ef7a4a16
SR
2947 bpage = reader->page;
2948 reader->page = *data_page;
2949 local_set(&reader->write, 0);
2950 reader->read = 0;
044fa782 2951 *data_page = bpage;
ef7a4a16
SR
2952
2953 /* update the entry counter */
2954 rb_remove_entries(cpu_buffer, bpage, read);
8789a9e7 2955 }
667d2412 2956 ret = read;
8789a9e7 2957
554f786e 2958 out_unlock:
8789a9e7
SR
2959 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2960
554f786e 2961 out:
8789a9e7
SR
2962 return ret;
2963}
d6ce96da 2964EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 2965
a3583244
SR
2966static ssize_t
2967rb_simple_read(struct file *filp, char __user *ubuf,
2968 size_t cnt, loff_t *ppos)
2969{
5e39841c 2970 unsigned long *p = filp->private_data;
a3583244
SR
2971 char buf[64];
2972 int r;
2973
033601a3
SR
2974 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2975 r = sprintf(buf, "permanently disabled\n");
2976 else
2977 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2978
2979 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2980}
2981
2982static ssize_t
2983rb_simple_write(struct file *filp, const char __user *ubuf,
2984 size_t cnt, loff_t *ppos)
2985{
5e39841c 2986 unsigned long *p = filp->private_data;
a3583244 2987 char buf[64];
5e39841c 2988 unsigned long val;
a3583244
SR
2989 int ret;
2990
2991 if (cnt >= sizeof(buf))
2992 return -EINVAL;
2993
2994 if (copy_from_user(&buf, ubuf, cnt))
2995 return -EFAULT;
2996
2997 buf[cnt] = 0;
2998
2999 ret = strict_strtoul(buf, 10, &val);
3000 if (ret < 0)
3001 return ret;
3002
033601a3
SR
3003 if (val)
3004 set_bit(RB_BUFFERS_ON_BIT, p);
3005 else
3006 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3007
3008 (*ppos)++;
3009
3010 return cnt;
3011}
3012
5e2336a0 3013static const struct file_operations rb_simple_fops = {
a3583244
SR
3014 .open = tracing_open_generic,
3015 .read = rb_simple_read,
3016 .write = rb_simple_write,
3017};
3018
3019
3020static __init int rb_init_debugfs(void)
3021{
3022 struct dentry *d_tracer;
a3583244
SR
3023
3024 d_tracer = tracing_init_dentry();
3025
5452af66
FW
3026 trace_create_file("tracing_on", 0644, d_tracer,
3027 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3028
3029 return 0;
3030}
3031
3032fs_initcall(rb_init_debugfs);
554f786e 3033
59222efe 3034#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3035static int rb_cpu_notify(struct notifier_block *self,
3036 unsigned long action, void *hcpu)
554f786e
SR
3037{
3038 struct ring_buffer *buffer =
3039 container_of(self, struct ring_buffer, cpu_notify);
3040 long cpu = (long)hcpu;
3041
3042 switch (action) {
3043 case CPU_UP_PREPARE:
3044 case CPU_UP_PREPARE_FROZEN:
3045 if (cpu_isset(cpu, *buffer->cpumask))
3046 return NOTIFY_OK;
3047
3048 buffer->buffers[cpu] =
3049 rb_allocate_cpu_buffer(buffer, cpu);
3050 if (!buffer->buffers[cpu]) {
3051 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3052 cpu);
3053 return NOTIFY_OK;
3054 }
3055 smp_wmb();
3056 cpu_set(cpu, *buffer->cpumask);
3057 break;
3058 case CPU_DOWN_PREPARE:
3059 case CPU_DOWN_PREPARE_FROZEN:
3060 /*
3061 * Do nothing.
3062 * If we were to free the buffer, then the user would
3063 * lose any trace that was in the buffer.
3064 */
3065 break;
3066 default:
3067 break;
3068 }
3069 return NOTIFY_OK;
3070}
3071#endif