ring-buffer: do not swap buffers during a commit
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
1744a21d 13#include <linux/kmemcheck.h>
7a8e76a3
SR
14#include <linux/module.h>
15#include <linux/percpu.h>
16#include <linux/mutex.h>
7a8e76a3
SR
17#include <linux/init.h>
18#include <linux/hash.h>
19#include <linux/list.h>
554f786e 20#include <linux/cpu.h>
7a8e76a3
SR
21#include <linux/fs.h>
22
182e9f5f
SR
23#include "trace.h"
24
d1b182a8
SR
25/*
26 * The ring buffer header is special. We must manually up keep it.
27 */
28int ring_buffer_print_entry_header(struct trace_seq *s)
29{
30 int ret;
31
334d4169
LJ
32 ret = trace_seq_printf(s, "# compressed entry header\n");
33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
35 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
36 ret = trace_seq_printf(s, "\n");
37 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING);
39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
43
44 return ret;
45}
46
5cc98548
SR
47/*
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
52 *
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
56 *
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
60 *
61 * Here's some silly ASCII art.
62 *
63 * +------+
64 * |reader| RING BUFFER
65 * |page |
66 * +------+ +---+ +---+ +---+
67 * | |-->| |-->| |
68 * +---+ +---+ +---+
69 * ^ |
70 * | |
71 * +---------------+
72 *
73 *
74 * +------+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
78 * | |-->| |-->| |
79 * +---+ +---+ +---+
80 * ^ |
81 * | |
82 * +---------------+
83 *
84 *
85 * +------+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
89 * ^ | |-->| |-->| |
90 * | +---+ +---+ +---+
91 * | |
92 * | |
93 * +------------------------------+
94 *
95 *
96 * +------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
100 * ^ | | | |-->| |
101 * | New +---+ +---+ +---+
102 * | Reader------^ |
103 * | page |
104 * +------------------------------+
105 *
106 *
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
110 *
111 * We will be using cmpxchg soon to make all this lockless.
112 *
113 */
114
033601a3
SR
115/*
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
121 *
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
124 *
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
128 *
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
131 */
132
133/*
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
136 *
137 * ON DISABLED
138 * ---- ----------
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
142 */
143
144enum {
145 RB_BUFFERS_ON_BIT = 0,
146 RB_BUFFERS_DISABLED_BIT = 1,
147};
148
149enum {
150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
152};
153
5e39841c 154static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 155
474d32b6
SR
156#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157
a3583244
SR
158/**
159 * tracing_on - enable all tracing buffers
160 *
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
163 */
164void tracing_on(void)
165{
033601a3 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 167}
c4f50183 168EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
169
170/**
171 * tracing_off - turn off all tracing buffers
172 *
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
177 */
178void tracing_off(void)
179{
033601a3
SR
180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181}
c4f50183 182EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
183
184/**
185 * tracing_off_permanent - permanently disable ring buffers
186 *
187 * This function, once called, will disable all ring buffers
c3706f00 188 * permanently.
033601a3
SR
189 */
190void tracing_off_permanent(void)
191{
192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
193}
194
988ae9d6
SR
195/**
196 * tracing_is_on - show state of ring buffers enabled
197 */
198int tracing_is_on(void)
199{
200 return ring_buffer_flags == RB_BUFFERS_ON;
201}
202EXPORT_SYMBOL_GPL(tracing_is_on);
203
d06bbd66
IM
204#include "trace.h"
205
e3d6bf0a 206#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 207#define RB_ALIGNMENT 4U
334d4169 208#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 209#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169
LJ
210
211/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
213
214enum {
215 RB_LEN_TIME_EXTEND = 8,
216 RB_LEN_TIME_STAMP = 16,
217};
218
2d622719
TZ
219static inline int rb_null_event(struct ring_buffer_event *event)
220{
334d4169
LJ
221 return event->type_len == RINGBUF_TYPE_PADDING
222 && event->time_delta == 0;
2d622719
TZ
223}
224
225static inline int rb_discarded_event(struct ring_buffer_event *event)
226{
334d4169 227 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
228}
229
230static void rb_event_set_padding(struct ring_buffer_event *event)
231{
334d4169 232 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
233 event->time_delta = 0;
234}
235
34a148bf 236static unsigned
2d622719 237rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
238{
239 unsigned length;
240
334d4169
LJ
241 if (event->type_len)
242 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
243 else
244 length = event->array[0];
245 return length + RB_EVNT_HDR_SIZE;
246}
247
248/* inline for ring buffer fast paths */
249static unsigned
250rb_event_length(struct ring_buffer_event *event)
251{
334d4169 252 switch (event->type_len) {
7a8e76a3 253 case RINGBUF_TYPE_PADDING:
2d622719
TZ
254 if (rb_null_event(event))
255 /* undefined */
256 return -1;
334d4169 257 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
258
259 case RINGBUF_TYPE_TIME_EXTEND:
260 return RB_LEN_TIME_EXTEND;
261
262 case RINGBUF_TYPE_TIME_STAMP:
263 return RB_LEN_TIME_STAMP;
264
265 case RINGBUF_TYPE_DATA:
2d622719 266 return rb_event_data_length(event);
7a8e76a3
SR
267 default:
268 BUG();
269 }
270 /* not hit */
271 return 0;
272}
273
274/**
275 * ring_buffer_event_length - return the length of the event
276 * @event: the event to get the length of
277 */
278unsigned ring_buffer_event_length(struct ring_buffer_event *event)
279{
465634ad 280 unsigned length = rb_event_length(event);
334d4169 281 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
282 return length;
283 length -= RB_EVNT_HDR_SIZE;
284 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
285 length -= sizeof(event->array[0]);
286 return length;
7a8e76a3 287}
c4f50183 288EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
289
290/* inline for ring buffer fast paths */
34a148bf 291static void *
7a8e76a3
SR
292rb_event_data(struct ring_buffer_event *event)
293{
334d4169 294 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 295 /* If length is in len field, then array[0] has the data */
334d4169 296 if (event->type_len)
7a8e76a3
SR
297 return (void *)&event->array[0];
298 /* Otherwise length is in array[0] and array[1] has the data */
299 return (void *)&event->array[1];
300}
301
302/**
303 * ring_buffer_event_data - return the data of the event
304 * @event: the event to get the data from
305 */
306void *ring_buffer_event_data(struct ring_buffer_event *event)
307{
308 return rb_event_data(event);
309}
c4f50183 310EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
311
312#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 313 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
314
315#define TS_SHIFT 27
316#define TS_MASK ((1ULL << TS_SHIFT) - 1)
317#define TS_DELTA_TEST (~TS_MASK)
318
abc9b56d 319struct buffer_data_page {
e4c2ce82 320 u64 time_stamp; /* page time stamp */
c3706f00 321 local_t commit; /* write committed index */
abc9b56d
SR
322 unsigned char data[]; /* data of buffer page */
323};
324
77ae365e
SR
325/*
326 * Note, the buffer_page list must be first. The buffer pages
327 * are allocated in cache lines, which means that each buffer
328 * page will be at the beginning of a cache line, and thus
329 * the least significant bits will be zero. We use this to
330 * add flags in the list struct pointers, to make the ring buffer
331 * lockless.
332 */
abc9b56d 333struct buffer_page {
778c55d4 334 struct list_head list; /* list of buffer pages */
abc9b56d 335 local_t write; /* index for next write */
6f807acd 336 unsigned read; /* index for next read */
778c55d4 337 local_t entries; /* entries on this page */
abc9b56d 338 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
339};
340
77ae365e
SR
341/*
342 * The buffer page counters, write and entries, must be reset
343 * atomically when crossing page boundaries. To synchronize this
344 * update, two counters are inserted into the number. One is
345 * the actual counter for the write position or count on the page.
346 *
347 * The other is a counter of updaters. Before an update happens
348 * the update partition of the counter is incremented. This will
349 * allow the updater to update the counter atomically.
350 *
351 * The counter is 20 bits, and the state data is 12.
352 */
353#define RB_WRITE_MASK 0xfffff
354#define RB_WRITE_INTCNT (1 << 20)
355
044fa782 356static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 357{
044fa782 358 local_set(&bpage->commit, 0);
abc9b56d
SR
359}
360
474d32b6
SR
361/**
362 * ring_buffer_page_len - the size of data on the page.
363 * @page: The page to read
364 *
365 * Returns the amount of data on the page, including buffer page header.
366 */
ef7a4a16
SR
367size_t ring_buffer_page_len(void *page)
368{
474d32b6
SR
369 return local_read(&((struct buffer_data_page *)page)->commit)
370 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
371}
372
ed56829c
SR
373/*
374 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
375 * this issue out.
376 */
34a148bf 377static void free_buffer_page(struct buffer_page *bpage)
ed56829c 378{
34a148bf 379 free_page((unsigned long)bpage->page);
e4c2ce82 380 kfree(bpage);
ed56829c
SR
381}
382
7a8e76a3
SR
383/*
384 * We need to fit the time_stamp delta into 27 bits.
385 */
386static inline int test_time_stamp(u64 delta)
387{
388 if (delta & TS_DELTA_TEST)
389 return 1;
390 return 0;
391}
392
474d32b6 393#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 394
be957c44
SR
395/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
396#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
397
ea05b57c
SR
398/* Max number of timestamps that can fit on a page */
399#define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
400
d1b182a8
SR
401int ring_buffer_print_page_header(struct trace_seq *s)
402{
403 struct buffer_data_page field;
404 int ret;
405
406 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
407 "offset:0;\tsize:%u;\n",
408 (unsigned int)sizeof(field.time_stamp));
409
410 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
411 "offset:%u;\tsize:%u;\n",
412 (unsigned int)offsetof(typeof(field), commit),
413 (unsigned int)sizeof(field.commit));
414
415 ret = trace_seq_printf(s, "\tfield: char data;\t"
416 "offset:%u;\tsize:%u;\n",
417 (unsigned int)offsetof(typeof(field), data),
418 (unsigned int)BUF_PAGE_SIZE);
419
420 return ret;
421}
422
7a8e76a3
SR
423/*
424 * head_page == tail_page && head == tail then buffer is empty.
425 */
426struct ring_buffer_per_cpu {
427 int cpu;
428 struct ring_buffer *buffer;
77ae365e 429 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 430 raw_spinlock_t lock;
7a8e76a3 431 struct lock_class_key lock_key;
3adc54fa 432 struct list_head *pages;
6f807acd
SR
433 struct buffer_page *head_page; /* read from head */
434 struct buffer_page *tail_page; /* write to tail */
c3706f00 435 struct buffer_page *commit_page; /* committed pages */
d769041f 436 struct buffer_page *reader_page;
77ae365e
SR
437 local_t commit_overrun;
438 local_t overrun;
e4906eff 439 local_t entries;
fa743953
SR
440 local_t committing;
441 local_t commits;
77ae365e 442 unsigned long read;
7a8e76a3
SR
443 u64 write_stamp;
444 u64 read_stamp;
445 atomic_t record_disabled;
446};
447
448struct ring_buffer {
7a8e76a3
SR
449 unsigned pages;
450 unsigned flags;
451 int cpus;
7a8e76a3 452 atomic_t record_disabled;
00f62f61 453 cpumask_var_t cpumask;
7a8e76a3 454
1f8a6a10
PZ
455 struct lock_class_key *reader_lock_key;
456
7a8e76a3
SR
457 struct mutex mutex;
458
459 struct ring_buffer_per_cpu **buffers;
554f786e 460
59222efe 461#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
462 struct notifier_block cpu_notify;
463#endif
37886f6a 464 u64 (*clock)(void);
7a8e76a3
SR
465};
466
467struct ring_buffer_iter {
468 struct ring_buffer_per_cpu *cpu_buffer;
469 unsigned long head;
470 struct buffer_page *head_page;
471 u64 read_stamp;
472};
473
f536aafc 474/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 475#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
476 ({ \
477 int _____ret = unlikely(cond); \
478 if (_____ret) { \
bf41a158
SR
479 atomic_inc(&buffer->record_disabled); \
480 WARN_ON(1); \
481 } \
3e89c7bb
SR
482 _____ret; \
483 })
f536aafc 484
37886f6a
SR
485/* Up this if you want to test the TIME_EXTENTS and normalization */
486#define DEBUG_SHIFT 0
487
88eb0125
SR
488static inline u64 rb_time_stamp(struct ring_buffer *buffer, int cpu)
489{
490 /* shift to debug/test normalization and TIME_EXTENTS */
491 return buffer->clock() << DEBUG_SHIFT;
492}
493
37886f6a
SR
494u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
495{
496 u64 time;
497
498 preempt_disable_notrace();
88eb0125 499 time = rb_time_stamp(buffer, cpu);
37886f6a
SR
500 preempt_enable_no_resched_notrace();
501
502 return time;
503}
504EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
505
506void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
507 int cpu, u64 *ts)
508{
509 /* Just stupid testing the normalize function and deltas */
510 *ts >>= DEBUG_SHIFT;
511}
512EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
513
77ae365e
SR
514/*
515 * Making the ring buffer lockless makes things tricky.
516 * Although writes only happen on the CPU that they are on,
517 * and they only need to worry about interrupts. Reads can
518 * happen on any CPU.
519 *
520 * The reader page is always off the ring buffer, but when the
521 * reader finishes with a page, it needs to swap its page with
522 * a new one from the buffer. The reader needs to take from
523 * the head (writes go to the tail). But if a writer is in overwrite
524 * mode and wraps, it must push the head page forward.
525 *
526 * Here lies the problem.
527 *
528 * The reader must be careful to replace only the head page, and
529 * not another one. As described at the top of the file in the
530 * ASCII art, the reader sets its old page to point to the next
531 * page after head. It then sets the page after head to point to
532 * the old reader page. But if the writer moves the head page
533 * during this operation, the reader could end up with the tail.
534 *
535 * We use cmpxchg to help prevent this race. We also do something
536 * special with the page before head. We set the LSB to 1.
537 *
538 * When the writer must push the page forward, it will clear the
539 * bit that points to the head page, move the head, and then set
540 * the bit that points to the new head page.
541 *
542 * We also don't want an interrupt coming in and moving the head
543 * page on another writer. Thus we use the second LSB to catch
544 * that too. Thus:
545 *
546 * head->list->prev->next bit 1 bit 0
547 * ------- -------
548 * Normal page 0 0
549 * Points to head page 0 1
550 * New head page 1 0
551 *
552 * Note we can not trust the prev pointer of the head page, because:
553 *
554 * +----+ +-----+ +-----+
555 * | |------>| T |---X--->| N |
556 * | |<------| | | |
557 * +----+ +-----+ +-----+
558 * ^ ^ |
559 * | +-----+ | |
560 * +----------| R |----------+ |
561 * | |<-----------+
562 * +-----+
563 *
564 * Key: ---X--> HEAD flag set in pointer
565 * T Tail page
566 * R Reader page
567 * N Next page
568 *
569 * (see __rb_reserve_next() to see where this happens)
570 *
571 * What the above shows is that the reader just swapped out
572 * the reader page with a page in the buffer, but before it
573 * could make the new header point back to the new page added
574 * it was preempted by a writer. The writer moved forward onto
575 * the new page added by the reader and is about to move forward
576 * again.
577 *
578 * You can see, it is legitimate for the previous pointer of
579 * the head (or any page) not to point back to itself. But only
580 * temporarially.
581 */
582
583#define RB_PAGE_NORMAL 0UL
584#define RB_PAGE_HEAD 1UL
585#define RB_PAGE_UPDATE 2UL
586
587
588#define RB_FLAG_MASK 3UL
589
590/* PAGE_MOVED is not part of the mask */
591#define RB_PAGE_MOVED 4UL
592
593/*
594 * rb_list_head - remove any bit
595 */
596static struct list_head *rb_list_head(struct list_head *list)
597{
598 unsigned long val = (unsigned long)list;
599
600 return (struct list_head *)(val & ~RB_FLAG_MASK);
601}
602
603/*
604 * rb_is_head_page - test if the give page is the head page
605 *
606 * Because the reader may move the head_page pointer, we can
607 * not trust what the head page is (it may be pointing to
608 * the reader page). But if the next page is a header page,
609 * its flags will be non zero.
610 */
611static int inline
612rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
613 struct buffer_page *page, struct list_head *list)
614{
615 unsigned long val;
616
617 val = (unsigned long)list->next;
618
619 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
620 return RB_PAGE_MOVED;
621
622 return val & RB_FLAG_MASK;
623}
624
625/*
626 * rb_is_reader_page
627 *
628 * The unique thing about the reader page, is that, if the
629 * writer is ever on it, the previous pointer never points
630 * back to the reader page.
631 */
632static int rb_is_reader_page(struct buffer_page *page)
633{
634 struct list_head *list = page->list.prev;
635
636 return rb_list_head(list->next) != &page->list;
637}
638
639/*
640 * rb_set_list_to_head - set a list_head to be pointing to head.
641 */
642static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
643 struct list_head *list)
644{
645 unsigned long *ptr;
646
647 ptr = (unsigned long *)&list->next;
648 *ptr |= RB_PAGE_HEAD;
649 *ptr &= ~RB_PAGE_UPDATE;
650}
651
652/*
653 * rb_head_page_activate - sets up head page
654 */
655static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
656{
657 struct buffer_page *head;
658
659 head = cpu_buffer->head_page;
660 if (!head)
661 return;
662
663 /*
664 * Set the previous list pointer to have the HEAD flag.
665 */
666 rb_set_list_to_head(cpu_buffer, head->list.prev);
667}
668
669static void rb_list_head_clear(struct list_head *list)
670{
671 unsigned long *ptr = (unsigned long *)&list->next;
672
673 *ptr &= ~RB_FLAG_MASK;
674}
675
676/*
677 * rb_head_page_dactivate - clears head page ptr (for free list)
678 */
679static void
680rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
681{
682 struct list_head *hd;
683
684 /* Go through the whole list and clear any pointers found. */
685 rb_list_head_clear(cpu_buffer->pages);
686
687 list_for_each(hd, cpu_buffer->pages)
688 rb_list_head_clear(hd);
689}
690
691static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
692 struct buffer_page *head,
693 struct buffer_page *prev,
694 int old_flag, int new_flag)
695{
696 struct list_head *list;
697 unsigned long val = (unsigned long)&head->list;
698 unsigned long ret;
699
700 list = &prev->list;
701
702 val &= ~RB_FLAG_MASK;
703
704 ret = (unsigned long)cmpxchg(&list->next,
705 val | old_flag, val | new_flag);
706
707 /* check if the reader took the page */
708 if ((ret & ~RB_FLAG_MASK) != val)
709 return RB_PAGE_MOVED;
710
711 return ret & RB_FLAG_MASK;
712}
713
714static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
715 struct buffer_page *head,
716 struct buffer_page *prev,
717 int old_flag)
718{
719 return rb_head_page_set(cpu_buffer, head, prev,
720 old_flag, RB_PAGE_UPDATE);
721}
722
723static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
724 struct buffer_page *head,
725 struct buffer_page *prev,
726 int old_flag)
727{
728 return rb_head_page_set(cpu_buffer, head, prev,
729 old_flag, RB_PAGE_HEAD);
730}
731
732static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
733 struct buffer_page *head,
734 struct buffer_page *prev,
735 int old_flag)
736{
737 return rb_head_page_set(cpu_buffer, head, prev,
738 old_flag, RB_PAGE_NORMAL);
739}
740
741static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
742 struct buffer_page **bpage)
743{
744 struct list_head *p = rb_list_head((*bpage)->list.next);
745
746 *bpage = list_entry(p, struct buffer_page, list);
747}
748
749static struct buffer_page *
750rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
751{
752 struct buffer_page *head;
753 struct buffer_page *page;
754 struct list_head *list;
755 int i;
756
757 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
758 return NULL;
759
760 /* sanity check */
761 list = cpu_buffer->pages;
762 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
763 return NULL;
764
765 page = head = cpu_buffer->head_page;
766 /*
767 * It is possible that the writer moves the header behind
768 * where we started, and we miss in one loop.
769 * A second loop should grab the header, but we'll do
770 * three loops just because I'm paranoid.
771 */
772 for (i = 0; i < 3; i++) {
773 do {
774 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
775 cpu_buffer->head_page = page;
776 return page;
777 }
778 rb_inc_page(cpu_buffer, &page);
779 } while (page != head);
780 }
781
782 RB_WARN_ON(cpu_buffer, 1);
783
784 return NULL;
785}
786
787static int rb_head_page_replace(struct buffer_page *old,
788 struct buffer_page *new)
789{
790 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
791 unsigned long val;
792 unsigned long ret;
793
794 val = *ptr & ~RB_FLAG_MASK;
795 val |= RB_PAGE_HEAD;
796
797 ret = cmpxchg(ptr, val, &new->list);
798
799 return ret == val;
800}
801
802/*
803 * rb_tail_page_update - move the tail page forward
804 *
805 * Returns 1 if moved tail page, 0 if someone else did.
806 */
807static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
808 struct buffer_page *tail_page,
809 struct buffer_page *next_page)
810{
811 struct buffer_page *old_tail;
812 unsigned long old_entries;
813 unsigned long old_write;
814 int ret = 0;
815
816 /*
817 * The tail page now needs to be moved forward.
818 *
819 * We need to reset the tail page, but without messing
820 * with possible erasing of data brought in by interrupts
821 * that have moved the tail page and are currently on it.
822 *
823 * We add a counter to the write field to denote this.
824 */
825 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
826 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
827
828 /*
829 * Just make sure we have seen our old_write and synchronize
830 * with any interrupts that come in.
831 */
832 barrier();
833
834 /*
835 * If the tail page is still the same as what we think
836 * it is, then it is up to us to update the tail
837 * pointer.
838 */
839 if (tail_page == cpu_buffer->tail_page) {
840 /* Zero the write counter */
841 unsigned long val = old_write & ~RB_WRITE_MASK;
842 unsigned long eval = old_entries & ~RB_WRITE_MASK;
843
844 /*
845 * This will only succeed if an interrupt did
846 * not come in and change it. In which case, we
847 * do not want to modify it.
da706d8b
LJ
848 *
849 * We add (void) to let the compiler know that we do not care
850 * about the return value of these functions. We use the
851 * cmpxchg to only update if an interrupt did not already
852 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 853 */
da706d8b
LJ
854 (void)local_cmpxchg(&next_page->write, old_write, val);
855 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
856
857 /*
858 * No need to worry about races with clearing out the commit.
859 * it only can increment when a commit takes place. But that
860 * only happens in the outer most nested commit.
861 */
862 local_set(&next_page->page->commit, 0);
863
864 old_tail = cmpxchg(&cpu_buffer->tail_page,
865 tail_page, next_page);
866
867 if (old_tail == tail_page)
868 ret = 1;
869 }
870
871 return ret;
872}
873
874static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
875 struct buffer_page *bpage)
876{
877 unsigned long val = (unsigned long)bpage;
878
879 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
880 return 1;
881
882 return 0;
883}
884
885/**
886 * rb_check_list - make sure a pointer to a list has the last bits zero
887 */
888static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
889 struct list_head *list)
890{
891 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
892 return 1;
893 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
894 return 1;
895 return 0;
896}
897
7a8e76a3
SR
898/**
899 * check_pages - integrity check of buffer pages
900 * @cpu_buffer: CPU buffer with pages to test
901 *
c3706f00 902 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
903 * been corrupted.
904 */
905static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
906{
3adc54fa 907 struct list_head *head = cpu_buffer->pages;
044fa782 908 struct buffer_page *bpage, *tmp;
7a8e76a3 909
77ae365e
SR
910 rb_head_page_deactivate(cpu_buffer);
911
3e89c7bb
SR
912 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
913 return -1;
914 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
915 return -1;
7a8e76a3 916
77ae365e
SR
917 if (rb_check_list(cpu_buffer, head))
918 return -1;
919
044fa782 920 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 921 if (RB_WARN_ON(cpu_buffer,
044fa782 922 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
923 return -1;
924 if (RB_WARN_ON(cpu_buffer,
044fa782 925 bpage->list.prev->next != &bpage->list))
3e89c7bb 926 return -1;
77ae365e
SR
927 if (rb_check_list(cpu_buffer, &bpage->list))
928 return -1;
7a8e76a3
SR
929 }
930
77ae365e
SR
931 rb_head_page_activate(cpu_buffer);
932
7a8e76a3
SR
933 return 0;
934}
935
7a8e76a3
SR
936static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
937 unsigned nr_pages)
938{
044fa782 939 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
940 unsigned long addr;
941 LIST_HEAD(pages);
942 unsigned i;
943
3adc54fa
SR
944 WARN_ON(!nr_pages);
945
7a8e76a3 946 for (i = 0; i < nr_pages; i++) {
044fa782 947 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 948 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 949 if (!bpage)
e4c2ce82 950 goto free_pages;
77ae365e
SR
951
952 rb_check_bpage(cpu_buffer, bpage);
953
044fa782 954 list_add(&bpage->list, &pages);
e4c2ce82 955
7a8e76a3
SR
956 addr = __get_free_page(GFP_KERNEL);
957 if (!addr)
958 goto free_pages;
044fa782
SR
959 bpage->page = (void *)addr;
960 rb_init_page(bpage->page);
7a8e76a3
SR
961 }
962
3adc54fa
SR
963 /*
964 * The ring buffer page list is a circular list that does not
965 * start and end with a list head. All page list items point to
966 * other pages.
967 */
968 cpu_buffer->pages = pages.next;
969 list_del(&pages);
7a8e76a3
SR
970
971 rb_check_pages(cpu_buffer);
972
973 return 0;
974
975 free_pages:
044fa782
SR
976 list_for_each_entry_safe(bpage, tmp, &pages, list) {
977 list_del_init(&bpage->list);
978 free_buffer_page(bpage);
7a8e76a3
SR
979 }
980 return -ENOMEM;
981}
982
983static struct ring_buffer_per_cpu *
984rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
985{
986 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 987 struct buffer_page *bpage;
d769041f 988 unsigned long addr;
7a8e76a3
SR
989 int ret;
990
991 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
992 GFP_KERNEL, cpu_to_node(cpu));
993 if (!cpu_buffer)
994 return NULL;
995
996 cpu_buffer->cpu = cpu;
997 cpu_buffer->buffer = buffer;
f83c9d0f 998 spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 999 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
3e03fb7f 1000 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3 1001
044fa782 1002 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1003 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1004 if (!bpage)
e4c2ce82
SR
1005 goto fail_free_buffer;
1006
77ae365e
SR
1007 rb_check_bpage(cpu_buffer, bpage);
1008
044fa782 1009 cpu_buffer->reader_page = bpage;
d769041f
SR
1010 addr = __get_free_page(GFP_KERNEL);
1011 if (!addr)
e4c2ce82 1012 goto fail_free_reader;
044fa782
SR
1013 bpage->page = (void *)addr;
1014 rb_init_page(bpage->page);
e4c2ce82 1015
d769041f 1016 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 1017
7a8e76a3
SR
1018 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1019 if (ret < 0)
d769041f 1020 goto fail_free_reader;
7a8e76a3
SR
1021
1022 cpu_buffer->head_page
3adc54fa 1023 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1024 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1025
77ae365e
SR
1026 rb_head_page_activate(cpu_buffer);
1027
7a8e76a3
SR
1028 return cpu_buffer;
1029
d769041f
SR
1030 fail_free_reader:
1031 free_buffer_page(cpu_buffer->reader_page);
1032
7a8e76a3
SR
1033 fail_free_buffer:
1034 kfree(cpu_buffer);
1035 return NULL;
1036}
1037
1038static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1039{
3adc54fa 1040 struct list_head *head = cpu_buffer->pages;
044fa782 1041 struct buffer_page *bpage, *tmp;
7a8e76a3 1042
d769041f
SR
1043 free_buffer_page(cpu_buffer->reader_page);
1044
77ae365e
SR
1045 rb_head_page_deactivate(cpu_buffer);
1046
3adc54fa
SR
1047 if (head) {
1048 list_for_each_entry_safe(bpage, tmp, head, list) {
1049 list_del_init(&bpage->list);
1050 free_buffer_page(bpage);
1051 }
1052 bpage = list_entry(head, struct buffer_page, list);
044fa782 1053 free_buffer_page(bpage);
7a8e76a3 1054 }
3adc54fa 1055
7a8e76a3
SR
1056 kfree(cpu_buffer);
1057}
1058
59222efe 1059#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1060static int rb_cpu_notify(struct notifier_block *self,
1061 unsigned long action, void *hcpu);
554f786e
SR
1062#endif
1063
7a8e76a3
SR
1064/**
1065 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1066 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1067 * @flags: attributes to set for the ring buffer.
1068 *
1069 * Currently the only flag that is available is the RB_FL_OVERWRITE
1070 * flag. This flag means that the buffer will overwrite old data
1071 * when the buffer wraps. If this flag is not set, the buffer will
1072 * drop data when the tail hits the head.
1073 */
1f8a6a10
PZ
1074struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1075 struct lock_class_key *key)
7a8e76a3
SR
1076{
1077 struct ring_buffer *buffer;
1078 int bsize;
1079 int cpu;
1080
1081 /* keep it in its own cache line */
1082 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1083 GFP_KERNEL);
1084 if (!buffer)
1085 return NULL;
1086
9e01c1b7
RR
1087 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1088 goto fail_free_buffer;
1089
7a8e76a3
SR
1090 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1091 buffer->flags = flags;
37886f6a 1092 buffer->clock = trace_clock_local;
1f8a6a10 1093 buffer->reader_lock_key = key;
7a8e76a3
SR
1094
1095 /* need at least two pages */
5f78abee
SR
1096 if (buffer->pages < 2)
1097 buffer->pages = 2;
7a8e76a3 1098
3bf832ce
FW
1099 /*
1100 * In case of non-hotplug cpu, if the ring-buffer is allocated
1101 * in early initcall, it will not be notified of secondary cpus.
1102 * In that off case, we need to allocate for all possible cpus.
1103 */
1104#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1105 get_online_cpus();
1106 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1107#else
1108 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1109#endif
7a8e76a3
SR
1110 buffer->cpus = nr_cpu_ids;
1111
1112 bsize = sizeof(void *) * nr_cpu_ids;
1113 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1114 GFP_KERNEL);
1115 if (!buffer->buffers)
9e01c1b7 1116 goto fail_free_cpumask;
7a8e76a3
SR
1117
1118 for_each_buffer_cpu(buffer, cpu) {
1119 buffer->buffers[cpu] =
1120 rb_allocate_cpu_buffer(buffer, cpu);
1121 if (!buffer->buffers[cpu])
1122 goto fail_free_buffers;
1123 }
1124
59222efe 1125#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1126 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1127 buffer->cpu_notify.priority = 0;
1128 register_cpu_notifier(&buffer->cpu_notify);
1129#endif
1130
1131 put_online_cpus();
7a8e76a3
SR
1132 mutex_init(&buffer->mutex);
1133
1134 return buffer;
1135
1136 fail_free_buffers:
1137 for_each_buffer_cpu(buffer, cpu) {
1138 if (buffer->buffers[cpu])
1139 rb_free_cpu_buffer(buffer->buffers[cpu]);
1140 }
1141 kfree(buffer->buffers);
1142
9e01c1b7
RR
1143 fail_free_cpumask:
1144 free_cpumask_var(buffer->cpumask);
554f786e 1145 put_online_cpus();
9e01c1b7 1146
7a8e76a3
SR
1147 fail_free_buffer:
1148 kfree(buffer);
1149 return NULL;
1150}
1f8a6a10 1151EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1152
1153/**
1154 * ring_buffer_free - free a ring buffer.
1155 * @buffer: the buffer to free.
1156 */
1157void
1158ring_buffer_free(struct ring_buffer *buffer)
1159{
1160 int cpu;
1161
554f786e
SR
1162 get_online_cpus();
1163
59222efe 1164#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1165 unregister_cpu_notifier(&buffer->cpu_notify);
1166#endif
1167
7a8e76a3
SR
1168 for_each_buffer_cpu(buffer, cpu)
1169 rb_free_cpu_buffer(buffer->buffers[cpu]);
1170
554f786e
SR
1171 put_online_cpus();
1172
bd3f0221 1173 kfree(buffer->buffers);
9e01c1b7
RR
1174 free_cpumask_var(buffer->cpumask);
1175
7a8e76a3
SR
1176 kfree(buffer);
1177}
c4f50183 1178EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1179
37886f6a
SR
1180void ring_buffer_set_clock(struct ring_buffer *buffer,
1181 u64 (*clock)(void))
1182{
1183 buffer->clock = clock;
1184}
1185
7a8e76a3
SR
1186static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1187
1188static void
1189rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1190{
044fa782 1191 struct buffer_page *bpage;
7a8e76a3
SR
1192 struct list_head *p;
1193 unsigned i;
1194
1195 atomic_inc(&cpu_buffer->record_disabled);
1196 synchronize_sched();
1197
77ae365e
SR
1198 rb_head_page_deactivate(cpu_buffer);
1199
7a8e76a3 1200 for (i = 0; i < nr_pages; i++) {
3adc54fa 1201 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1202 return;
3adc54fa 1203 p = cpu_buffer->pages->next;
044fa782
SR
1204 bpage = list_entry(p, struct buffer_page, list);
1205 list_del_init(&bpage->list);
1206 free_buffer_page(bpage);
7a8e76a3 1207 }
3adc54fa 1208 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
3e89c7bb 1209 return;
7a8e76a3
SR
1210
1211 rb_reset_cpu(cpu_buffer);
1212
1213 rb_check_pages(cpu_buffer);
1214
1215 atomic_dec(&cpu_buffer->record_disabled);
1216
1217}
1218
1219static void
1220rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221 struct list_head *pages, unsigned nr_pages)
1222{
044fa782 1223 struct buffer_page *bpage;
7a8e76a3
SR
1224 struct list_head *p;
1225 unsigned i;
1226
1227 atomic_inc(&cpu_buffer->record_disabled);
1228 synchronize_sched();
1229
77ae365e
SR
1230 spin_lock_irq(&cpu_buffer->reader_lock);
1231 rb_head_page_deactivate(cpu_buffer);
1232
7a8e76a3 1233 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
1234 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1235 return;
7a8e76a3 1236 p = pages->next;
044fa782
SR
1237 bpage = list_entry(p, struct buffer_page, list);
1238 list_del_init(&bpage->list);
3adc54fa 1239 list_add_tail(&bpage->list, cpu_buffer->pages);
7a8e76a3
SR
1240 }
1241 rb_reset_cpu(cpu_buffer);
77ae365e 1242 spin_unlock_irq(&cpu_buffer->reader_lock);
7a8e76a3
SR
1243
1244 rb_check_pages(cpu_buffer);
1245
1246 atomic_dec(&cpu_buffer->record_disabled);
1247}
1248
1249/**
1250 * ring_buffer_resize - resize the ring buffer
1251 * @buffer: the buffer to resize.
1252 * @size: the new size.
1253 *
1254 * The tracer is responsible for making sure that the buffer is
1255 * not being used while changing the size.
1256 * Note: We may be able to change the above requirement by using
1257 * RCU synchronizations.
1258 *
1259 * Minimum size is 2 * BUF_PAGE_SIZE.
1260 *
1261 * Returns -1 on failure.
1262 */
1263int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1264{
1265 struct ring_buffer_per_cpu *cpu_buffer;
1266 unsigned nr_pages, rm_pages, new_pages;
044fa782 1267 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
1268 unsigned long buffer_size;
1269 unsigned long addr;
1270 LIST_HEAD(pages);
1271 int i, cpu;
1272
ee51a1de
IM
1273 /*
1274 * Always succeed at resizing a non-existent buffer:
1275 */
1276 if (!buffer)
1277 return size;
1278
7a8e76a3
SR
1279 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1280 size *= BUF_PAGE_SIZE;
1281 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1282
1283 /* we need a minimum of two pages */
1284 if (size < BUF_PAGE_SIZE * 2)
1285 size = BUF_PAGE_SIZE * 2;
1286
1287 if (size == buffer_size)
1288 return size;
1289
1290 mutex_lock(&buffer->mutex);
554f786e 1291 get_online_cpus();
7a8e76a3
SR
1292
1293 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1294
1295 if (size < buffer_size) {
1296
1297 /* easy case, just free pages */
554f786e
SR
1298 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1299 goto out_fail;
7a8e76a3
SR
1300
1301 rm_pages = buffer->pages - nr_pages;
1302
1303 for_each_buffer_cpu(buffer, cpu) {
1304 cpu_buffer = buffer->buffers[cpu];
1305 rb_remove_pages(cpu_buffer, rm_pages);
1306 }
1307 goto out;
1308 }
1309
1310 /*
1311 * This is a bit more difficult. We only want to add pages
1312 * when we can allocate enough for all CPUs. We do this
1313 * by allocating all the pages and storing them on a local
1314 * link list. If we succeed in our allocation, then we
1315 * add these pages to the cpu_buffers. Otherwise we just free
1316 * them all and return -ENOMEM;
1317 */
554f786e
SR
1318 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1319 goto out_fail;
f536aafc 1320
7a8e76a3
SR
1321 new_pages = nr_pages - buffer->pages;
1322
1323 for_each_buffer_cpu(buffer, cpu) {
1324 for (i = 0; i < new_pages; i++) {
044fa782 1325 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
1326 cache_line_size()),
1327 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1328 if (!bpage)
e4c2ce82 1329 goto free_pages;
044fa782 1330 list_add(&bpage->list, &pages);
7a8e76a3
SR
1331 addr = __get_free_page(GFP_KERNEL);
1332 if (!addr)
1333 goto free_pages;
044fa782
SR
1334 bpage->page = (void *)addr;
1335 rb_init_page(bpage->page);
7a8e76a3
SR
1336 }
1337 }
1338
1339 for_each_buffer_cpu(buffer, cpu) {
1340 cpu_buffer = buffer->buffers[cpu];
1341 rb_insert_pages(cpu_buffer, &pages, new_pages);
1342 }
1343
554f786e
SR
1344 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1345 goto out_fail;
7a8e76a3
SR
1346
1347 out:
1348 buffer->pages = nr_pages;
554f786e 1349 put_online_cpus();
7a8e76a3
SR
1350 mutex_unlock(&buffer->mutex);
1351
1352 return size;
1353
1354 free_pages:
044fa782
SR
1355 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1356 list_del_init(&bpage->list);
1357 free_buffer_page(bpage);
7a8e76a3 1358 }
554f786e 1359 put_online_cpus();
641d2f63 1360 mutex_unlock(&buffer->mutex);
7a8e76a3 1361 return -ENOMEM;
554f786e
SR
1362
1363 /*
1364 * Something went totally wrong, and we are too paranoid
1365 * to even clean up the mess.
1366 */
1367 out_fail:
1368 put_online_cpus();
1369 mutex_unlock(&buffer->mutex);
1370 return -1;
7a8e76a3 1371}
c4f50183 1372EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1373
8789a9e7 1374static inline void *
044fa782 1375__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1376{
044fa782 1377 return bpage->data + index;
8789a9e7
SR
1378}
1379
044fa782 1380static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1381{
044fa782 1382 return bpage->page->data + index;
7a8e76a3
SR
1383}
1384
1385static inline struct ring_buffer_event *
d769041f 1386rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1387{
6f807acd
SR
1388 return __rb_page_index(cpu_buffer->reader_page,
1389 cpu_buffer->reader_page->read);
1390}
1391
7a8e76a3
SR
1392static inline struct ring_buffer_event *
1393rb_iter_head_event(struct ring_buffer_iter *iter)
1394{
6f807acd 1395 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1396}
1397
77ae365e 1398static inline unsigned long rb_page_write(struct buffer_page *bpage)
bf41a158 1399{
77ae365e 1400 return local_read(&bpage->write) & RB_WRITE_MASK;
bf41a158
SR
1401}
1402
1403static inline unsigned rb_page_commit(struct buffer_page *bpage)
1404{
abc9b56d 1405 return local_read(&bpage->page->commit);
bf41a158
SR
1406}
1407
77ae365e
SR
1408static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1409{
1410 return local_read(&bpage->entries) & RB_WRITE_MASK;
1411}
1412
bf41a158
SR
1413/* Size is determined by what has been commited */
1414static inline unsigned rb_page_size(struct buffer_page *bpage)
1415{
1416 return rb_page_commit(bpage);
1417}
1418
1419static inline unsigned
1420rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1421{
1422 return rb_page_commit(cpu_buffer->commit_page);
1423}
1424
bf41a158
SR
1425static inline unsigned
1426rb_event_index(struct ring_buffer_event *event)
1427{
1428 unsigned long addr = (unsigned long)event;
1429
22f470f8 1430 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1431}
1432
0f0c85fc 1433static inline int
fa743953
SR
1434rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1435 struct ring_buffer_event *event)
bf41a158
SR
1436{
1437 unsigned long addr = (unsigned long)event;
1438 unsigned long index;
1439
1440 index = rb_event_index(event);
1441 addr &= PAGE_MASK;
1442
1443 return cpu_buffer->commit_page->page == (void *)addr &&
1444 rb_commit_index(cpu_buffer) == index;
1445}
1446
34a148bf 1447static void
bf41a158 1448rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1449{
77ae365e
SR
1450 unsigned long max_count;
1451
bf41a158
SR
1452 /*
1453 * We only race with interrupts and NMIs on this CPU.
1454 * If we own the commit event, then we can commit
1455 * all others that interrupted us, since the interruptions
1456 * are in stack format (they finish before they come
1457 * back to us). This allows us to do a simple loop to
1458 * assign the commit to the tail.
1459 */
a8ccf1d6 1460 again:
77ae365e
SR
1461 max_count = cpu_buffer->buffer->pages * 100;
1462
bf41a158 1463 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1464 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1465 return;
1466 if (RB_WARN_ON(cpu_buffer,
1467 rb_is_reader_page(cpu_buffer->tail_page)))
1468 return;
1469 local_set(&cpu_buffer->commit_page->page->commit,
1470 rb_page_write(cpu_buffer->commit_page));
bf41a158 1471 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1472 cpu_buffer->write_stamp =
1473 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1474 /* add barrier to keep gcc from optimizing too much */
1475 barrier();
1476 }
1477 while (rb_commit_index(cpu_buffer) !=
1478 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1479
1480 local_set(&cpu_buffer->commit_page->page->commit,
1481 rb_page_write(cpu_buffer->commit_page));
1482 RB_WARN_ON(cpu_buffer,
1483 local_read(&cpu_buffer->commit_page->page->commit) &
1484 ~RB_WRITE_MASK);
bf41a158
SR
1485 barrier();
1486 }
a8ccf1d6
SR
1487
1488 /* again, keep gcc from optimizing */
1489 barrier();
1490
1491 /*
1492 * If an interrupt came in just after the first while loop
1493 * and pushed the tail page forward, we will be left with
1494 * a dangling commit that will never go forward.
1495 */
1496 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1497 goto again;
7a8e76a3
SR
1498}
1499
d769041f 1500static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1501{
abc9b56d 1502 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1503 cpu_buffer->reader_page->read = 0;
d769041f
SR
1504}
1505
34a148bf 1506static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1507{
1508 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1509
1510 /*
1511 * The iterator could be on the reader page (it starts there).
1512 * But the head could have moved, since the reader was
1513 * found. Check for this case and assign the iterator
1514 * to the head page instead of next.
1515 */
1516 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1517 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1518 else
1519 rb_inc_page(cpu_buffer, &iter->head_page);
1520
abc9b56d 1521 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1522 iter->head = 0;
1523}
1524
1525/**
1526 * ring_buffer_update_event - update event type and data
1527 * @event: the even to update
1528 * @type: the type of event
1529 * @length: the size of the event field in the ring buffer
1530 *
1531 * Update the type and data fields of the event. The length
1532 * is the actual size that is written to the ring buffer,
1533 * and with this, we can determine what to place into the
1534 * data field.
1535 */
34a148bf 1536static void
7a8e76a3
SR
1537rb_update_event(struct ring_buffer_event *event,
1538 unsigned type, unsigned length)
1539{
334d4169 1540 event->type_len = type;
7a8e76a3
SR
1541
1542 switch (type) {
1543
1544 case RINGBUF_TYPE_PADDING:
7a8e76a3 1545 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1546 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1547 break;
1548
334d4169 1549 case 0:
7a8e76a3 1550 length -= RB_EVNT_HDR_SIZE;
334d4169 1551 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1552 event->array[0] = length;
334d4169
LJ
1553 else
1554 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1555 break;
1556 default:
1557 BUG();
1558 }
1559}
1560
77ae365e
SR
1561/*
1562 * rb_handle_head_page - writer hit the head page
1563 *
1564 * Returns: +1 to retry page
1565 * 0 to continue
1566 * -1 on error
1567 */
1568static int
1569rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1570 struct buffer_page *tail_page,
1571 struct buffer_page *next_page)
1572{
1573 struct buffer_page *new_head;
1574 int entries;
1575 int type;
1576 int ret;
1577
1578 entries = rb_page_entries(next_page);
1579
1580 /*
1581 * The hard part is here. We need to move the head
1582 * forward, and protect against both readers on
1583 * other CPUs and writers coming in via interrupts.
1584 */
1585 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1586 RB_PAGE_HEAD);
1587
1588 /*
1589 * type can be one of four:
1590 * NORMAL - an interrupt already moved it for us
1591 * HEAD - we are the first to get here.
1592 * UPDATE - we are the interrupt interrupting
1593 * a current move.
1594 * MOVED - a reader on another CPU moved the next
1595 * pointer to its reader page. Give up
1596 * and try again.
1597 */
1598
1599 switch (type) {
1600 case RB_PAGE_HEAD:
1601 /*
1602 * We changed the head to UPDATE, thus
1603 * it is our responsibility to update
1604 * the counters.
1605 */
1606 local_add(entries, &cpu_buffer->overrun);
1607
1608 /*
1609 * The entries will be zeroed out when we move the
1610 * tail page.
1611 */
1612
1613 /* still more to do */
1614 break;
1615
1616 case RB_PAGE_UPDATE:
1617 /*
1618 * This is an interrupt that interrupt the
1619 * previous update. Still more to do.
1620 */
1621 break;
1622 case RB_PAGE_NORMAL:
1623 /*
1624 * An interrupt came in before the update
1625 * and processed this for us.
1626 * Nothing left to do.
1627 */
1628 return 1;
1629 case RB_PAGE_MOVED:
1630 /*
1631 * The reader is on another CPU and just did
1632 * a swap with our next_page.
1633 * Try again.
1634 */
1635 return 1;
1636 default:
1637 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1638 return -1;
1639 }
1640
1641 /*
1642 * Now that we are here, the old head pointer is
1643 * set to UPDATE. This will keep the reader from
1644 * swapping the head page with the reader page.
1645 * The reader (on another CPU) will spin till
1646 * we are finished.
1647 *
1648 * We just need to protect against interrupts
1649 * doing the job. We will set the next pointer
1650 * to HEAD. After that, we set the old pointer
1651 * to NORMAL, but only if it was HEAD before.
1652 * otherwise we are an interrupt, and only
1653 * want the outer most commit to reset it.
1654 */
1655 new_head = next_page;
1656 rb_inc_page(cpu_buffer, &new_head);
1657
1658 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1659 RB_PAGE_NORMAL);
1660
1661 /*
1662 * Valid returns are:
1663 * HEAD - an interrupt came in and already set it.
1664 * NORMAL - One of two things:
1665 * 1) We really set it.
1666 * 2) A bunch of interrupts came in and moved
1667 * the page forward again.
1668 */
1669 switch (ret) {
1670 case RB_PAGE_HEAD:
1671 case RB_PAGE_NORMAL:
1672 /* OK */
1673 break;
1674 default:
1675 RB_WARN_ON(cpu_buffer, 1);
1676 return -1;
1677 }
1678
1679 /*
1680 * It is possible that an interrupt came in,
1681 * set the head up, then more interrupts came in
1682 * and moved it again. When we get back here,
1683 * the page would have been set to NORMAL but we
1684 * just set it back to HEAD.
1685 *
1686 * How do you detect this? Well, if that happened
1687 * the tail page would have moved.
1688 */
1689 if (ret == RB_PAGE_NORMAL) {
1690 /*
1691 * If the tail had moved passed next, then we need
1692 * to reset the pointer.
1693 */
1694 if (cpu_buffer->tail_page != tail_page &&
1695 cpu_buffer->tail_page != next_page)
1696 rb_head_page_set_normal(cpu_buffer, new_head,
1697 next_page,
1698 RB_PAGE_HEAD);
1699 }
1700
1701 /*
1702 * If this was the outer most commit (the one that
1703 * changed the original pointer from HEAD to UPDATE),
1704 * then it is up to us to reset it to NORMAL.
1705 */
1706 if (type == RB_PAGE_HEAD) {
1707 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1708 tail_page,
1709 RB_PAGE_UPDATE);
1710 if (RB_WARN_ON(cpu_buffer,
1711 ret != RB_PAGE_UPDATE))
1712 return -1;
1713 }
1714
1715 return 0;
1716}
1717
34a148bf 1718static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1719{
1720 struct ring_buffer_event event; /* Used only for sizeof array */
1721
1722 /* zero length can cause confusions */
1723 if (!length)
1724 length = 1;
1725
1726 if (length > RB_MAX_SMALL_DATA)
1727 length += sizeof(event.array[0]);
1728
1729 length += RB_EVNT_HDR_SIZE;
1730 length = ALIGN(length, RB_ALIGNMENT);
1731
1732 return length;
1733}
1734
c7b09308
SR
1735static inline void
1736rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1737 struct buffer_page *tail_page,
1738 unsigned long tail, unsigned long length)
1739{
1740 struct ring_buffer_event *event;
1741
1742 /*
1743 * Only the event that crossed the page boundary
1744 * must fill the old tail_page with padding.
1745 */
1746 if (tail >= BUF_PAGE_SIZE) {
1747 local_sub(length, &tail_page->write);
1748 return;
1749 }
1750
1751 event = __rb_page_index(tail_page, tail);
b0b7065b 1752 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308
SR
1753
1754 /*
1755 * If this event is bigger than the minimum size, then
1756 * we need to be careful that we don't subtract the
1757 * write counter enough to allow another writer to slip
1758 * in on this page.
1759 * We put in a discarded commit instead, to make sure
1760 * that this space is not used again.
1761 *
1762 * If we are less than the minimum size, we don't need to
1763 * worry about it.
1764 */
1765 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1766 /* No room for any events */
1767
1768 /* Mark the rest of the page with padding */
1769 rb_event_set_padding(event);
1770
1771 /* Set the write back to the previous setting */
1772 local_sub(length, &tail_page->write);
1773 return;
1774 }
1775
1776 /* Put in a discarded event */
1777 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1778 event->type_len = RINGBUF_TYPE_PADDING;
1779 /* time delta must be non zero */
1780 event->time_delta = 1;
1781 /* Account for this as an entry */
1782 local_inc(&tail_page->entries);
1783 local_inc(&cpu_buffer->entries);
1784
1785 /* Set write to end of buffer */
1786 length = (tail + length) - BUF_PAGE_SIZE;
1787 local_sub(length, &tail_page->write);
1788}
6634ff26 1789
7a8e76a3 1790static struct ring_buffer_event *
6634ff26
SR
1791rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1792 unsigned long length, unsigned long tail,
1793 struct buffer_page *commit_page,
1794 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1795{
7a8e76a3 1796 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
1797 struct buffer_page *next_page;
1798 int ret;
aa20ae84
SR
1799
1800 next_page = tail_page;
1801
aa20ae84
SR
1802 rb_inc_page(cpu_buffer, &next_page);
1803
aa20ae84
SR
1804 /*
1805 * If for some reason, we had an interrupt storm that made
1806 * it all the way around the buffer, bail, and warn
1807 * about it.
1808 */
1809 if (unlikely(next_page == commit_page)) {
77ae365e 1810 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
1811 goto out_reset;
1812 }
1813
77ae365e
SR
1814 /*
1815 * This is where the fun begins!
1816 *
1817 * We are fighting against races between a reader that
1818 * could be on another CPU trying to swap its reader
1819 * page with the buffer head.
1820 *
1821 * We are also fighting against interrupts coming in and
1822 * moving the head or tail on us as well.
1823 *
1824 * If the next page is the head page then we have filled
1825 * the buffer, unless the commit page is still on the
1826 * reader page.
1827 */
1828 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 1829
77ae365e
SR
1830 /*
1831 * If the commit is not on the reader page, then
1832 * move the header page.
1833 */
1834 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1835 /*
1836 * If we are not in overwrite mode,
1837 * this is easy, just stop here.
1838 */
1839 if (!(buffer->flags & RB_FL_OVERWRITE))
1840 goto out_reset;
1841
1842 ret = rb_handle_head_page(cpu_buffer,
1843 tail_page,
1844 next_page);
1845 if (ret < 0)
1846 goto out_reset;
1847 if (ret)
1848 goto out_again;
1849 } else {
1850 /*
1851 * We need to be careful here too. The
1852 * commit page could still be on the reader
1853 * page. We could have a small buffer, and
1854 * have filled up the buffer with events
1855 * from interrupts and such, and wrapped.
1856 *
1857 * Note, if the tail page is also the on the
1858 * reader_page, we let it move out.
1859 */
1860 if (unlikely((cpu_buffer->commit_page !=
1861 cpu_buffer->tail_page) &&
1862 (cpu_buffer->commit_page ==
1863 cpu_buffer->reader_page))) {
1864 local_inc(&cpu_buffer->commit_overrun);
1865 goto out_reset;
1866 }
aa20ae84
SR
1867 }
1868 }
1869
77ae365e
SR
1870 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1871 if (ret) {
1872 /*
1873 * Nested commits always have zero deltas, so
1874 * just reread the time stamp
1875 */
88eb0125 1876 *ts = rb_time_stamp(buffer, cpu_buffer->cpu);
77ae365e 1877 next_page->page->time_stamp = *ts;
aa20ae84
SR
1878 }
1879
77ae365e 1880 out_again:
aa20ae84 1881
77ae365e 1882 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
1883
1884 /* fail and let the caller try again */
1885 return ERR_PTR(-EAGAIN);
1886
45141d46 1887 out_reset:
6f3b3440 1888 /* reset write */
c7b09308 1889 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 1890
bf41a158 1891 return NULL;
7a8e76a3
SR
1892}
1893
6634ff26
SR
1894static struct ring_buffer_event *
1895__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1896 unsigned type, unsigned long length, u64 *ts)
1897{
1898 struct buffer_page *tail_page, *commit_page;
1899 struct ring_buffer_event *event;
1900 unsigned long tail, write;
1901
1902 commit_page = cpu_buffer->commit_page;
1903 /* we just need to protect against interrupts */
1904 barrier();
1905 tail_page = cpu_buffer->tail_page;
1906 write = local_add_return(length, &tail_page->write);
77ae365e
SR
1907
1908 /* set write to only the index of the write */
1909 write &= RB_WRITE_MASK;
6634ff26
SR
1910 tail = write - length;
1911
1912 /* See if we shot pass the end of this buffer page */
1913 if (write > BUF_PAGE_SIZE)
1914 return rb_move_tail(cpu_buffer, length, tail,
1915 commit_page, tail_page, ts);
1916
1917 /* We reserved something on the buffer */
1918
6634ff26 1919 event = __rb_page_index(tail_page, tail);
1744a21d 1920 kmemcheck_annotate_bitfield(event, bitfield);
6634ff26
SR
1921 rb_update_event(event, type, length);
1922
1923 /* The passed in type is zero for DATA */
1924 if (likely(!type))
1925 local_inc(&tail_page->entries);
1926
1927 /*
fa743953
SR
1928 * If this is the first commit on the page, then update
1929 * its timestamp.
6634ff26 1930 */
fa743953
SR
1931 if (!tail)
1932 tail_page->page->time_stamp = *ts;
6634ff26
SR
1933
1934 return event;
1935}
1936
edd813bf
SR
1937static inline int
1938rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1939 struct ring_buffer_event *event)
1940{
1941 unsigned long new_index, old_index;
1942 struct buffer_page *bpage;
1943 unsigned long index;
1944 unsigned long addr;
1945
1946 new_index = rb_event_index(event);
1947 old_index = new_index + rb_event_length(event);
1948 addr = (unsigned long)event;
1949 addr &= PAGE_MASK;
1950
1951 bpage = cpu_buffer->tail_page;
1952
1953 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
1954 unsigned long write_mask =
1955 local_read(&bpage->write) & ~RB_WRITE_MASK;
edd813bf
SR
1956 /*
1957 * This is on the tail page. It is possible that
1958 * a write could come in and move the tail page
1959 * and write to the next page. That is fine
1960 * because we just shorten what is on this page.
1961 */
77ae365e
SR
1962 old_index += write_mask;
1963 new_index += write_mask;
edd813bf
SR
1964 index = local_cmpxchg(&bpage->write, old_index, new_index);
1965 if (index == old_index)
1966 return 1;
1967 }
1968
1969 /* could not discard */
1970 return 0;
1971}
1972
7a8e76a3
SR
1973static int
1974rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1975 u64 *ts, u64 *delta)
1976{
1977 struct ring_buffer_event *event;
1978 static int once;
bf41a158 1979 int ret;
7a8e76a3
SR
1980
1981 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1982 printk(KERN_WARNING "Delta way too big! %llu"
1983 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1984 (unsigned long long)*delta,
1985 (unsigned long long)*ts,
1986 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1987 WARN_ON(1);
1988 }
1989
1990 /*
1991 * The delta is too big, we to add a
1992 * new timestamp.
1993 */
1994 event = __rb_reserve_next(cpu_buffer,
1995 RINGBUF_TYPE_TIME_EXTEND,
1996 RB_LEN_TIME_EXTEND,
1997 ts);
1998 if (!event)
bf41a158 1999 return -EBUSY;
7a8e76a3 2000
bf41a158
SR
2001 if (PTR_ERR(event) == -EAGAIN)
2002 return -EAGAIN;
2003
2004 /* Only a commited time event can update the write stamp */
fa743953 2005 if (rb_event_is_commit(cpu_buffer, event)) {
bf41a158 2006 /*
fa743953
SR
2007 * If this is the first on the page, then it was
2008 * updated with the page itself. Try to discard it
2009 * and if we can't just make it zero.
bf41a158
SR
2010 */
2011 if (rb_event_index(event)) {
2012 event->time_delta = *delta & TS_MASK;
2013 event->array[0] = *delta >> TS_SHIFT;
2014 } else {
ea05b57c
SR
2015 /* try to discard, since we do not need this */
2016 if (!rb_try_to_discard(cpu_buffer, event)) {
2017 /* nope, just zero it */
2018 event->time_delta = 0;
2019 event->array[0] = 0;
2020 }
bf41a158 2021 }
7a8e76a3 2022 cpu_buffer->write_stamp = *ts;
bf41a158
SR
2023 /* let the caller know this was the commit */
2024 ret = 1;
2025 } else {
edd813bf
SR
2026 /* Try to discard the event */
2027 if (!rb_try_to_discard(cpu_buffer, event)) {
2028 /* Darn, this is just wasted space */
2029 event->time_delta = 0;
2030 event->array[0] = 0;
edd813bf 2031 }
f57a8a19 2032 ret = 0;
7a8e76a3
SR
2033 }
2034
bf41a158
SR
2035 *delta = 0;
2036
2037 return ret;
7a8e76a3
SR
2038}
2039
fa743953
SR
2040static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2041{
2042 local_inc(&cpu_buffer->committing);
2043 local_inc(&cpu_buffer->commits);
2044}
2045
2046static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2047{
2048 unsigned long commits;
2049
2050 if (RB_WARN_ON(cpu_buffer,
2051 !local_read(&cpu_buffer->committing)))
2052 return;
2053
2054 again:
2055 commits = local_read(&cpu_buffer->commits);
2056 /* synchronize with interrupts */
2057 barrier();
2058 if (local_read(&cpu_buffer->committing) == 1)
2059 rb_set_commit_to_write(cpu_buffer);
2060
2061 local_dec(&cpu_buffer->committing);
2062
2063 /* synchronize with interrupts */
2064 barrier();
2065
2066 /*
2067 * Need to account for interrupts coming in between the
2068 * updating of the commit page and the clearing of the
2069 * committing counter.
2070 */
2071 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2072 !local_read(&cpu_buffer->committing)) {
2073 local_inc(&cpu_buffer->committing);
2074 goto again;
2075 }
2076}
2077
7a8e76a3
SR
2078static struct ring_buffer_event *
2079rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2080 unsigned long length)
7a8e76a3
SR
2081{
2082 struct ring_buffer_event *event;
168b6b1d 2083 u64 ts, delta = 0;
bf41a158 2084 int commit = 0;
818e3dd3 2085 int nr_loops = 0;
7a8e76a3 2086
fa743953
SR
2087 rb_start_commit(cpu_buffer);
2088
be957c44 2089 length = rb_calculate_event_length(length);
bf41a158 2090 again:
818e3dd3
SR
2091 /*
2092 * We allow for interrupts to reenter here and do a trace.
2093 * If one does, it will cause this original code to loop
2094 * back here. Even with heavy interrupts happening, this
2095 * should only happen a few times in a row. If this happens
2096 * 1000 times in a row, there must be either an interrupt
2097 * storm or we have something buggy.
2098 * Bail!
2099 */
3e89c7bb 2100 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2101 goto out_fail;
818e3dd3 2102
88eb0125 2103 ts = rb_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 2104
bf41a158
SR
2105 /*
2106 * Only the first commit can update the timestamp.
2107 * Yes there is a race here. If an interrupt comes in
2108 * just after the conditional and it traces too, then it
2109 * will also check the deltas. More than one timestamp may
2110 * also be made. But only the entry that did the actual
2111 * commit will be something other than zero.
2112 */
0f0c85fc
SR
2113 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2114 rb_page_write(cpu_buffer->tail_page) ==
2115 rb_commit_index(cpu_buffer))) {
168b6b1d 2116 u64 diff;
bf41a158 2117
168b6b1d 2118 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2119
168b6b1d 2120 /* make sure this diff is calculated here */
bf41a158
SR
2121 barrier();
2122
2123 /* Did the write stamp get updated already? */
2124 if (unlikely(ts < cpu_buffer->write_stamp))
168b6b1d 2125 goto get_event;
bf41a158 2126
168b6b1d
SR
2127 delta = diff;
2128 if (unlikely(test_time_stamp(delta))) {
7a8e76a3 2129
bf41a158 2130 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
bf41a158 2131 if (commit == -EBUSY)
fa743953 2132 goto out_fail;
bf41a158
SR
2133
2134 if (commit == -EAGAIN)
2135 goto again;
2136
2137 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 2138 }
168b6b1d 2139 }
7a8e76a3 2140
168b6b1d 2141 get_event:
1cd8d735 2142 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
168b6b1d 2143 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2144 goto again;
2145
fa743953
SR
2146 if (!event)
2147 goto out_fail;
7a8e76a3 2148
fa743953 2149 if (!rb_event_is_commit(cpu_buffer, event))
7a8e76a3
SR
2150 delta = 0;
2151
2152 event->time_delta = delta;
2153
2154 return event;
fa743953
SR
2155
2156 out_fail:
2157 rb_end_commit(cpu_buffer);
2158 return NULL;
7a8e76a3
SR
2159}
2160
1155de47
PM
2161#ifdef CONFIG_TRACING
2162
aa18efb2 2163#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
2164
2165static int trace_recursive_lock(void)
2166{
aa18efb2 2167 current->trace_recursion++;
261842b7 2168
aa18efb2
SR
2169 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2170 return 0;
e057a5e5 2171
aa18efb2
SR
2172 /* Disable all tracing before we do anything else */
2173 tracing_off_permanent();
261842b7 2174
7d7d2b80 2175 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
2176 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2177 current->trace_recursion,
2178 hardirq_count() >> HARDIRQ_SHIFT,
2179 softirq_count() >> SOFTIRQ_SHIFT,
2180 in_nmi());
261842b7 2181
aa18efb2
SR
2182 WARN_ON_ONCE(1);
2183 return -1;
261842b7
SR
2184}
2185
2186static void trace_recursive_unlock(void)
2187{
aa18efb2 2188 WARN_ON_ONCE(!current->trace_recursion);
261842b7 2189
aa18efb2 2190 current->trace_recursion--;
261842b7
SR
2191}
2192
1155de47
PM
2193#else
2194
2195#define trace_recursive_lock() (0)
2196#define trace_recursive_unlock() do { } while (0)
2197
2198#endif
2199
bf41a158
SR
2200static DEFINE_PER_CPU(int, rb_need_resched);
2201
7a8e76a3
SR
2202/**
2203 * ring_buffer_lock_reserve - reserve a part of the buffer
2204 * @buffer: the ring buffer to reserve from
2205 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2206 *
2207 * Returns a reseverd event on the ring buffer to copy directly to.
2208 * The user of this interface will need to get the body to write into
2209 * and can use the ring_buffer_event_data() interface.
2210 *
2211 * The length is the length of the data needed, not the event length
2212 * which also includes the event header.
2213 *
2214 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2215 * If NULL is returned, then nothing has been allocated or locked.
2216 */
2217struct ring_buffer_event *
0a987751 2218ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2219{
2220 struct ring_buffer_per_cpu *cpu_buffer;
2221 struct ring_buffer_event *event;
bf41a158 2222 int cpu, resched;
7a8e76a3 2223
033601a3 2224 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2225 return NULL;
2226
7a8e76a3
SR
2227 if (atomic_read(&buffer->record_disabled))
2228 return NULL;
2229
bf41a158 2230 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 2231 resched = ftrace_preempt_disable();
bf41a158 2232
261842b7
SR
2233 if (trace_recursive_lock())
2234 goto out_nocheck;
2235
7a8e76a3
SR
2236 cpu = raw_smp_processor_id();
2237
9e01c1b7 2238 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2239 goto out;
7a8e76a3
SR
2240
2241 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2242
2243 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2244 goto out;
7a8e76a3 2245
be957c44 2246 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2247 goto out;
7a8e76a3 2248
1cd8d735 2249 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 2250 if (!event)
d769041f 2251 goto out;
7a8e76a3 2252
bf41a158
SR
2253 /*
2254 * Need to store resched state on this cpu.
2255 * Only the first needs to.
2256 */
2257
2258 if (preempt_count() == 1)
2259 per_cpu(rb_need_resched, cpu) = resched;
2260
7a8e76a3
SR
2261 return event;
2262
d769041f 2263 out:
261842b7
SR
2264 trace_recursive_unlock();
2265
2266 out_nocheck:
182e9f5f 2267 ftrace_preempt_enable(resched);
7a8e76a3
SR
2268 return NULL;
2269}
c4f50183 2270EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
2271
2272static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2273 struct ring_buffer_event *event)
2274{
e4906eff 2275 local_inc(&cpu_buffer->entries);
bf41a158 2276
fa743953
SR
2277 /*
2278 * The event first in the commit queue updates the
2279 * time stamp.
2280 */
2281 if (rb_event_is_commit(cpu_buffer, event))
2282 cpu_buffer->write_stamp += event->time_delta;
bf41a158 2283
fa743953 2284 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2285}
2286
2287/**
2288 * ring_buffer_unlock_commit - commit a reserved
2289 * @buffer: The buffer to commit to
2290 * @event: The event pointer to commit.
7a8e76a3
SR
2291 *
2292 * This commits the data to the ring buffer, and releases any locks held.
2293 *
2294 * Must be paired with ring_buffer_lock_reserve.
2295 */
2296int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2297 struct ring_buffer_event *event)
7a8e76a3
SR
2298{
2299 struct ring_buffer_per_cpu *cpu_buffer;
2300 int cpu = raw_smp_processor_id();
2301
2302 cpu_buffer = buffer->buffers[cpu];
2303
7a8e76a3
SR
2304 rb_commit(cpu_buffer, event);
2305
261842b7
SR
2306 trace_recursive_unlock();
2307
bf41a158
SR
2308 /*
2309 * Only the last preempt count needs to restore preemption.
2310 */
182e9f5f
SR
2311 if (preempt_count() == 1)
2312 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2313 else
bf41a158 2314 preempt_enable_no_resched_notrace();
7a8e76a3
SR
2315
2316 return 0;
2317}
c4f50183 2318EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2319
f3b9aae1
FW
2320static inline void rb_event_discard(struct ring_buffer_event *event)
2321{
334d4169
LJ
2322 /* array[0] holds the actual length for the discarded event */
2323 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2324 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2325 /* time delta must be non zero */
2326 if (!event->time_delta)
2327 event->time_delta = 1;
2328}
2329
fa1b47dd
SR
2330/**
2331 * ring_buffer_event_discard - discard any event in the ring buffer
2332 * @event: the event to discard
2333 *
2334 * Sometimes a event that is in the ring buffer needs to be ignored.
2335 * This function lets the user discard an event in the ring buffer
2336 * and then that event will not be read later.
2337 *
2338 * Note, it is up to the user to be careful with this, and protect
2339 * against races. If the user discards an event that has been consumed
2340 * it is possible that it could corrupt the ring buffer.
2341 */
2342void ring_buffer_event_discard(struct ring_buffer_event *event)
2343{
f3b9aae1 2344 rb_event_discard(event);
fa1b47dd
SR
2345}
2346EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
2347
2348/**
2349 * ring_buffer_commit_discard - discard an event that has not been committed
2350 * @buffer: the ring buffer
2351 * @event: non committed event to discard
2352 *
2353 * This is similar to ring_buffer_event_discard but must only be
2354 * performed on an event that has not been committed yet. The difference
2355 * is that this will also try to free the event from the ring buffer
2356 * if another event has not been added behind it.
2357 *
2358 * If another event has been added behind it, it will set the event
2359 * up as discarded, and perform the commit.
2360 *
2361 * If this function is called, do not call ring_buffer_unlock_commit on
2362 * the event.
2363 */
2364void ring_buffer_discard_commit(struct ring_buffer *buffer,
2365 struct ring_buffer_event *event)
2366{
2367 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2368 int cpu;
2369
2370 /* The event is discarded regardless */
f3b9aae1 2371 rb_event_discard(event);
fa1b47dd 2372
fa743953
SR
2373 cpu = smp_processor_id();
2374 cpu_buffer = buffer->buffers[cpu];
2375
fa1b47dd
SR
2376 /*
2377 * This must only be called if the event has not been
2378 * committed yet. Thus we can assume that preemption
2379 * is still disabled.
2380 */
fa743953 2381 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2382
0f2541d2 2383 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2384 goto out;
fa1b47dd
SR
2385
2386 /*
2387 * The commit is still visible by the reader, so we
2388 * must increment entries.
2389 */
e4906eff 2390 local_inc(&cpu_buffer->entries);
fa1b47dd 2391 out:
fa743953 2392 rb_end_commit(cpu_buffer);
fa1b47dd 2393
f3b9aae1
FW
2394 trace_recursive_unlock();
2395
fa1b47dd
SR
2396 /*
2397 * Only the last preempt count needs to restore preemption.
2398 */
2399 if (preempt_count() == 1)
2400 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2401 else
2402 preempt_enable_no_resched_notrace();
2403
2404}
2405EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2406
7a8e76a3
SR
2407/**
2408 * ring_buffer_write - write data to the buffer without reserving
2409 * @buffer: The ring buffer to write to.
2410 * @length: The length of the data being written (excluding the event header)
2411 * @data: The data to write to the buffer.
2412 *
2413 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2414 * one function. If you already have the data to write to the buffer, it
2415 * may be easier to simply call this function.
2416 *
2417 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2418 * and not the length of the event which would hold the header.
2419 */
2420int ring_buffer_write(struct ring_buffer *buffer,
2421 unsigned long length,
2422 void *data)
2423{
2424 struct ring_buffer_per_cpu *cpu_buffer;
2425 struct ring_buffer_event *event;
7a8e76a3
SR
2426 void *body;
2427 int ret = -EBUSY;
bf41a158 2428 int cpu, resched;
7a8e76a3 2429
033601a3 2430 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2431 return -EBUSY;
2432
7a8e76a3
SR
2433 if (atomic_read(&buffer->record_disabled))
2434 return -EBUSY;
2435
182e9f5f 2436 resched = ftrace_preempt_disable();
bf41a158 2437
7a8e76a3
SR
2438 cpu = raw_smp_processor_id();
2439
9e01c1b7 2440 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2441 goto out;
7a8e76a3
SR
2442
2443 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2444
2445 if (atomic_read(&cpu_buffer->record_disabled))
2446 goto out;
2447
be957c44
SR
2448 if (length > BUF_MAX_DATA_SIZE)
2449 goto out;
2450
2451 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
2452 if (!event)
2453 goto out;
2454
2455 body = rb_event_data(event);
2456
2457 memcpy(body, data, length);
2458
2459 rb_commit(cpu_buffer, event);
2460
2461 ret = 0;
2462 out:
182e9f5f 2463 ftrace_preempt_enable(resched);
7a8e76a3
SR
2464
2465 return ret;
2466}
c4f50183 2467EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2468
34a148bf 2469static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2470{
2471 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2472 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2473 struct buffer_page *commit = cpu_buffer->commit_page;
2474
77ae365e
SR
2475 /* In case of error, head will be NULL */
2476 if (unlikely(!head))
2477 return 1;
2478
bf41a158
SR
2479 return reader->read == rb_page_commit(reader) &&
2480 (commit == reader ||
2481 (commit == head &&
2482 head->read == rb_page_commit(commit)));
2483}
2484
7a8e76a3
SR
2485/**
2486 * ring_buffer_record_disable - stop all writes into the buffer
2487 * @buffer: The ring buffer to stop writes to.
2488 *
2489 * This prevents all writes to the buffer. Any attempt to write
2490 * to the buffer after this will fail and return NULL.
2491 *
2492 * The caller should call synchronize_sched() after this.
2493 */
2494void ring_buffer_record_disable(struct ring_buffer *buffer)
2495{
2496 atomic_inc(&buffer->record_disabled);
2497}
c4f50183 2498EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
2499
2500/**
2501 * ring_buffer_record_enable - enable writes to the buffer
2502 * @buffer: The ring buffer to enable writes
2503 *
2504 * Note, multiple disables will need the same number of enables
2505 * to truely enable the writing (much like preempt_disable).
2506 */
2507void ring_buffer_record_enable(struct ring_buffer *buffer)
2508{
2509 atomic_dec(&buffer->record_disabled);
2510}
c4f50183 2511EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
2512
2513/**
2514 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2515 * @buffer: The ring buffer to stop writes to.
2516 * @cpu: The CPU buffer to stop
2517 *
2518 * This prevents all writes to the buffer. Any attempt to write
2519 * to the buffer after this will fail and return NULL.
2520 *
2521 * The caller should call synchronize_sched() after this.
2522 */
2523void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2524{
2525 struct ring_buffer_per_cpu *cpu_buffer;
2526
9e01c1b7 2527 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2528 return;
7a8e76a3
SR
2529
2530 cpu_buffer = buffer->buffers[cpu];
2531 atomic_inc(&cpu_buffer->record_disabled);
2532}
c4f50183 2533EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
2534
2535/**
2536 * ring_buffer_record_enable_cpu - enable writes to the buffer
2537 * @buffer: The ring buffer to enable writes
2538 * @cpu: The CPU to enable.
2539 *
2540 * Note, multiple disables will need the same number of enables
2541 * to truely enable the writing (much like preempt_disable).
2542 */
2543void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2544{
2545 struct ring_buffer_per_cpu *cpu_buffer;
2546
9e01c1b7 2547 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2548 return;
7a8e76a3
SR
2549
2550 cpu_buffer = buffer->buffers[cpu];
2551 atomic_dec(&cpu_buffer->record_disabled);
2552}
c4f50183 2553EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
2554
2555/**
2556 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2557 * @buffer: The ring buffer
2558 * @cpu: The per CPU buffer to get the entries from.
2559 */
2560unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2561{
2562 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2563 unsigned long ret;
7a8e76a3 2564
9e01c1b7 2565 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2566 return 0;
7a8e76a3
SR
2567
2568 cpu_buffer = buffer->buffers[cpu];
77ae365e 2569 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
e4906eff 2570 - cpu_buffer->read;
554f786e
SR
2571
2572 return ret;
7a8e76a3 2573}
c4f50183 2574EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
2575
2576/**
2577 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2578 * @buffer: The ring buffer
2579 * @cpu: The per CPU buffer to get the number of overruns from
2580 */
2581unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2582{
2583 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2584 unsigned long ret;
7a8e76a3 2585
9e01c1b7 2586 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2587 return 0;
7a8e76a3
SR
2588
2589 cpu_buffer = buffer->buffers[cpu];
77ae365e 2590 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
2591
2592 return ret;
7a8e76a3 2593}
c4f50183 2594EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 2595
f0d2c681
SR
2596/**
2597 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2598 * @buffer: The ring buffer
2599 * @cpu: The per CPU buffer to get the number of overruns from
2600 */
2601unsigned long
2602ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2603{
2604 struct ring_buffer_per_cpu *cpu_buffer;
2605 unsigned long ret;
2606
2607 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2608 return 0;
2609
2610 cpu_buffer = buffer->buffers[cpu];
77ae365e 2611 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
2612
2613 return ret;
2614}
2615EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2616
7a8e76a3
SR
2617/**
2618 * ring_buffer_entries - get the number of entries in a buffer
2619 * @buffer: The ring buffer
2620 *
2621 * Returns the total number of entries in the ring buffer
2622 * (all CPU entries)
2623 */
2624unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2625{
2626 struct ring_buffer_per_cpu *cpu_buffer;
2627 unsigned long entries = 0;
2628 int cpu;
2629
2630 /* if you care about this being correct, lock the buffer */
2631 for_each_buffer_cpu(buffer, cpu) {
2632 cpu_buffer = buffer->buffers[cpu];
e4906eff 2633 entries += (local_read(&cpu_buffer->entries) -
77ae365e 2634 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
7a8e76a3
SR
2635 }
2636
2637 return entries;
2638}
c4f50183 2639EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
2640
2641/**
2642 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2643 * @buffer: The ring buffer
2644 *
2645 * Returns the total number of overruns in the ring buffer
2646 * (all CPU entries)
2647 */
2648unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2649{
2650 struct ring_buffer_per_cpu *cpu_buffer;
2651 unsigned long overruns = 0;
2652 int cpu;
2653
2654 /* if you care about this being correct, lock the buffer */
2655 for_each_buffer_cpu(buffer, cpu) {
2656 cpu_buffer = buffer->buffers[cpu];
77ae365e 2657 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
2658 }
2659
2660 return overruns;
2661}
c4f50183 2662EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2663
642edba5 2664static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2665{
2666 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2667
d769041f
SR
2668 /* Iterator usage is expected to have record disabled */
2669 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
2670 iter->head_page = rb_set_head_page(cpu_buffer);
2671 if (unlikely(!iter->head_page))
2672 return;
2673 iter->head = iter->head_page->read;
d769041f
SR
2674 } else {
2675 iter->head_page = cpu_buffer->reader_page;
6f807acd 2676 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2677 }
2678 if (iter->head)
2679 iter->read_stamp = cpu_buffer->read_stamp;
2680 else
abc9b56d 2681 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2682}
f83c9d0f 2683
642edba5
SR
2684/**
2685 * ring_buffer_iter_reset - reset an iterator
2686 * @iter: The iterator to reset
2687 *
2688 * Resets the iterator, so that it will start from the beginning
2689 * again.
2690 */
2691void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2692{
554f786e 2693 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2694 unsigned long flags;
2695
554f786e
SR
2696 if (!iter)
2697 return;
2698
2699 cpu_buffer = iter->cpu_buffer;
2700
642edba5
SR
2701 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2702 rb_iter_reset(iter);
f83c9d0f 2703 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2704}
c4f50183 2705EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2706
2707/**
2708 * ring_buffer_iter_empty - check if an iterator has no more to read
2709 * @iter: The iterator to check
2710 */
2711int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2712{
2713 struct ring_buffer_per_cpu *cpu_buffer;
2714
2715 cpu_buffer = iter->cpu_buffer;
2716
bf41a158
SR
2717 return iter->head_page == cpu_buffer->commit_page &&
2718 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2719}
c4f50183 2720EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2721
2722static void
2723rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2724 struct ring_buffer_event *event)
2725{
2726 u64 delta;
2727
334d4169 2728 switch (event->type_len) {
7a8e76a3
SR
2729 case RINGBUF_TYPE_PADDING:
2730 return;
2731
2732 case RINGBUF_TYPE_TIME_EXTEND:
2733 delta = event->array[0];
2734 delta <<= TS_SHIFT;
2735 delta += event->time_delta;
2736 cpu_buffer->read_stamp += delta;
2737 return;
2738
2739 case RINGBUF_TYPE_TIME_STAMP:
2740 /* FIXME: not implemented */
2741 return;
2742
2743 case RINGBUF_TYPE_DATA:
2744 cpu_buffer->read_stamp += event->time_delta;
2745 return;
2746
2747 default:
2748 BUG();
2749 }
2750 return;
2751}
2752
2753static void
2754rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2755 struct ring_buffer_event *event)
2756{
2757 u64 delta;
2758
334d4169 2759 switch (event->type_len) {
7a8e76a3
SR
2760 case RINGBUF_TYPE_PADDING:
2761 return;
2762
2763 case RINGBUF_TYPE_TIME_EXTEND:
2764 delta = event->array[0];
2765 delta <<= TS_SHIFT;
2766 delta += event->time_delta;
2767 iter->read_stamp += delta;
2768 return;
2769
2770 case RINGBUF_TYPE_TIME_STAMP:
2771 /* FIXME: not implemented */
2772 return;
2773
2774 case RINGBUF_TYPE_DATA:
2775 iter->read_stamp += event->time_delta;
2776 return;
2777
2778 default:
2779 BUG();
2780 }
2781 return;
2782}
2783
d769041f
SR
2784static struct buffer_page *
2785rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2786{
d769041f
SR
2787 struct buffer_page *reader = NULL;
2788 unsigned long flags;
818e3dd3 2789 int nr_loops = 0;
77ae365e 2790 int ret;
d769041f 2791
3e03fb7f
SR
2792 local_irq_save(flags);
2793 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2794
2795 again:
818e3dd3
SR
2796 /*
2797 * This should normally only loop twice. But because the
2798 * start of the reader inserts an empty page, it causes
2799 * a case where we will loop three times. There should be no
2800 * reason to loop four times (that I know of).
2801 */
3e89c7bb 2802 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2803 reader = NULL;
2804 goto out;
2805 }
2806
d769041f
SR
2807 reader = cpu_buffer->reader_page;
2808
2809 /* If there's more to read, return this page */
bf41a158 2810 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2811 goto out;
2812
2813 /* Never should we have an index greater than the size */
3e89c7bb
SR
2814 if (RB_WARN_ON(cpu_buffer,
2815 cpu_buffer->reader_page->read > rb_page_size(reader)))
2816 goto out;
d769041f
SR
2817
2818 /* check if we caught up to the tail */
2819 reader = NULL;
bf41a158 2820 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2821 goto out;
7a8e76a3
SR
2822
2823 /*
d769041f 2824 * Reset the reader page to size zero.
7a8e76a3 2825 */
77ae365e
SR
2826 local_set(&cpu_buffer->reader_page->write, 0);
2827 local_set(&cpu_buffer->reader_page->entries, 0);
2828 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2829
77ae365e
SR
2830 spin:
2831 /*
2832 * Splice the empty reader page into the list around the head.
2833 */
2834 reader = rb_set_head_page(cpu_buffer);
d769041f
SR
2835 cpu_buffer->reader_page->list.next = reader->list.next;
2836 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 2837
3adc54fa
SR
2838 /*
2839 * cpu_buffer->pages just needs to point to the buffer, it
2840 * has no specific buffer page to point to. Lets move it out
2841 * of our way so we don't accidently swap it.
2842 */
2843 cpu_buffer->pages = reader->list.prev;
2844
77ae365e
SR
2845 /* The reader page will be pointing to the new head */
2846 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 2847
77ae365e
SR
2848 /*
2849 * Here's the tricky part.
2850 *
2851 * We need to move the pointer past the header page.
2852 * But we can only do that if a writer is not currently
2853 * moving it. The page before the header page has the
2854 * flag bit '1' set if it is pointing to the page we want.
2855 * but if the writer is in the process of moving it
2856 * than it will be '2' or already moved '0'.
2857 */
2858
2859 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
2860
2861 /*
77ae365e 2862 * If we did not convert it, then we must try again.
7a8e76a3 2863 */
77ae365e
SR
2864 if (!ret)
2865 goto spin;
7a8e76a3 2866
77ae365e
SR
2867 /*
2868 * Yeah! We succeeded in replacing the page.
2869 *
2870 * Now make the new head point back to the reader page.
2871 */
2872 reader->list.next->prev = &cpu_buffer->reader_page->list;
2873 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
2874
2875 /* Finally update the reader page to the new head */
2876 cpu_buffer->reader_page = reader;
2877 rb_reset_reader_page(cpu_buffer);
2878
2879 goto again;
2880
2881 out:
3e03fb7f
SR
2882 __raw_spin_unlock(&cpu_buffer->lock);
2883 local_irq_restore(flags);
d769041f
SR
2884
2885 return reader;
2886}
2887
2888static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2889{
2890 struct ring_buffer_event *event;
2891 struct buffer_page *reader;
2892 unsigned length;
2893
2894 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2895
d769041f 2896 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2897 if (RB_WARN_ON(cpu_buffer, !reader))
2898 return;
7a8e76a3 2899
d769041f
SR
2900 event = rb_reader_event(cpu_buffer);
2901
334d4169
LJ
2902 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2903 || rb_discarded_event(event))
e4906eff 2904 cpu_buffer->read++;
d769041f
SR
2905
2906 rb_update_read_stamp(cpu_buffer, event);
2907
2908 length = rb_event_length(event);
6f807acd 2909 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2910}
2911
2912static void rb_advance_iter(struct ring_buffer_iter *iter)
2913{
2914 struct ring_buffer *buffer;
2915 struct ring_buffer_per_cpu *cpu_buffer;
2916 struct ring_buffer_event *event;
2917 unsigned length;
2918
2919 cpu_buffer = iter->cpu_buffer;
2920 buffer = cpu_buffer->buffer;
2921
2922 /*
2923 * Check if we are at the end of the buffer.
2924 */
bf41a158 2925 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
2926 /* discarded commits can make the page empty */
2927 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 2928 return;
d769041f 2929 rb_inc_iter(iter);
7a8e76a3
SR
2930 return;
2931 }
2932
2933 event = rb_iter_head_event(iter);
2934
2935 length = rb_event_length(event);
2936
2937 /*
2938 * This should not be called to advance the header if we are
2939 * at the tail of the buffer.
2940 */
3e89c7bb 2941 if (RB_WARN_ON(cpu_buffer,
f536aafc 2942 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2943 (iter->head + length > rb_commit_index(cpu_buffer))))
2944 return;
7a8e76a3
SR
2945
2946 rb_update_iter_read_stamp(iter, event);
2947
2948 iter->head += length;
2949
2950 /* check for end of page padding */
bf41a158
SR
2951 if ((iter->head >= rb_page_size(iter->head_page)) &&
2952 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2953 rb_advance_iter(iter);
2954}
2955
f83c9d0f
SR
2956static struct ring_buffer_event *
2957rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2958{
2959 struct ring_buffer_per_cpu *cpu_buffer;
2960 struct ring_buffer_event *event;
d769041f 2961 struct buffer_page *reader;
818e3dd3 2962 int nr_loops = 0;
7a8e76a3 2963
7a8e76a3
SR
2964 cpu_buffer = buffer->buffers[cpu];
2965
2966 again:
818e3dd3
SR
2967 /*
2968 * We repeat when a timestamp is encountered. It is possible
2969 * to get multiple timestamps from an interrupt entering just
ea05b57c
SR
2970 * as one timestamp is about to be written, or from discarded
2971 * commits. The most that we can have is the number on a single page.
818e3dd3 2972 */
ea05b57c 2973 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 2974 return NULL;
818e3dd3 2975
d769041f
SR
2976 reader = rb_get_reader_page(cpu_buffer);
2977 if (!reader)
7a8e76a3
SR
2978 return NULL;
2979
d769041f 2980 event = rb_reader_event(cpu_buffer);
7a8e76a3 2981
334d4169 2982 switch (event->type_len) {
7a8e76a3 2983 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2984 if (rb_null_event(event))
2985 RB_WARN_ON(cpu_buffer, 1);
2986 /*
2987 * Because the writer could be discarding every
2988 * event it creates (which would probably be bad)
2989 * if we were to go back to "again" then we may never
2990 * catch up, and will trigger the warn on, or lock
2991 * the box. Return the padding, and we will release
2992 * the current locks, and try again.
2993 */
2d622719 2994 return event;
7a8e76a3
SR
2995
2996 case RINGBUF_TYPE_TIME_EXTEND:
2997 /* Internal data, OK to advance */
d769041f 2998 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2999 goto again;
3000
3001 case RINGBUF_TYPE_TIME_STAMP:
3002 /* FIXME: not implemented */
d769041f 3003 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3004 goto again;
3005
3006 case RINGBUF_TYPE_DATA:
3007 if (ts) {
3008 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
3009 ring_buffer_normalize_time_stamp(buffer,
3010 cpu_buffer->cpu, ts);
7a8e76a3
SR
3011 }
3012 return event;
3013
3014 default:
3015 BUG();
3016 }
3017
3018 return NULL;
3019}
c4f50183 3020EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3021
f83c9d0f
SR
3022static struct ring_buffer_event *
3023rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3024{
3025 struct ring_buffer *buffer;
3026 struct ring_buffer_per_cpu *cpu_buffer;
3027 struct ring_buffer_event *event;
818e3dd3 3028 int nr_loops = 0;
7a8e76a3
SR
3029
3030 if (ring_buffer_iter_empty(iter))
3031 return NULL;
3032
3033 cpu_buffer = iter->cpu_buffer;
3034 buffer = cpu_buffer->buffer;
3035
3036 again:
818e3dd3 3037 /*
ea05b57c
SR
3038 * We repeat when a timestamp is encountered.
3039 * We can get multiple timestamps by nested interrupts or also
3040 * if filtering is on (discarding commits). Since discarding
3041 * commits can be frequent we can get a lot of timestamps.
3042 * But we limit them by not adding timestamps if they begin
3043 * at the start of a page.
818e3dd3 3044 */
ea05b57c 3045 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
818e3dd3 3046 return NULL;
818e3dd3 3047
7a8e76a3
SR
3048 if (rb_per_cpu_empty(cpu_buffer))
3049 return NULL;
3050
3051 event = rb_iter_head_event(iter);
3052
334d4169 3053 switch (event->type_len) {
7a8e76a3 3054 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3055 if (rb_null_event(event)) {
3056 rb_inc_iter(iter);
3057 goto again;
3058 }
3059 rb_advance_iter(iter);
3060 return event;
7a8e76a3
SR
3061
3062 case RINGBUF_TYPE_TIME_EXTEND:
3063 /* Internal data, OK to advance */
3064 rb_advance_iter(iter);
3065 goto again;
3066
3067 case RINGBUF_TYPE_TIME_STAMP:
3068 /* FIXME: not implemented */
3069 rb_advance_iter(iter);
3070 goto again;
3071
3072 case RINGBUF_TYPE_DATA:
3073 if (ts) {
3074 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3075 ring_buffer_normalize_time_stamp(buffer,
3076 cpu_buffer->cpu, ts);
7a8e76a3
SR
3077 }
3078 return event;
3079
3080 default:
3081 BUG();
3082 }
3083
3084 return NULL;
3085}
c4f50183 3086EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3087
8d707e8e
SR
3088static inline int rb_ok_to_lock(void)
3089{
3090 /*
3091 * If an NMI die dumps out the content of the ring buffer
3092 * do not grab locks. We also permanently disable the ring
3093 * buffer too. A one time deal is all you get from reading
3094 * the ring buffer from an NMI.
3095 */
464e85eb 3096 if (likely(!in_nmi()))
8d707e8e
SR
3097 return 1;
3098
3099 tracing_off_permanent();
3100 return 0;
3101}
3102
f83c9d0f
SR
3103/**
3104 * ring_buffer_peek - peek at the next event to be read
3105 * @buffer: The ring buffer to read
3106 * @cpu: The cpu to peak at
3107 * @ts: The timestamp counter of this event.
3108 *
3109 * This will return the event that will be read next, but does
3110 * not consume the data.
3111 */
3112struct ring_buffer_event *
3113ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3114{
3115 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3116 struct ring_buffer_event *event;
f83c9d0f 3117 unsigned long flags;
8d707e8e 3118 int dolock;
f83c9d0f 3119
554f786e 3120 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3121 return NULL;
554f786e 3122
8d707e8e 3123 dolock = rb_ok_to_lock();
2d622719 3124 again:
8d707e8e
SR
3125 local_irq_save(flags);
3126 if (dolock)
3127 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3128 event = rb_buffer_peek(buffer, cpu, ts);
469535a5
RR
3129 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3130 rb_advance_reader(cpu_buffer);
8d707e8e
SR
3131 if (dolock)
3132 spin_unlock(&cpu_buffer->reader_lock);
3133 local_irq_restore(flags);
f83c9d0f 3134
334d4169 3135 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
3136 cpu_relax();
3137 goto again;
3138 }
3139
f83c9d0f
SR
3140 return event;
3141}
3142
3143/**
3144 * ring_buffer_iter_peek - peek at the next event to be read
3145 * @iter: The ring buffer iterator
3146 * @ts: The timestamp counter of this event.
3147 *
3148 * This will return the event that will be read next, but does
3149 * not increment the iterator.
3150 */
3151struct ring_buffer_event *
3152ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3153{
3154 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3155 struct ring_buffer_event *event;
3156 unsigned long flags;
3157
2d622719 3158 again:
f83c9d0f
SR
3159 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3160 event = rb_iter_peek(iter, ts);
3161 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3162
334d4169 3163 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
3164 cpu_relax();
3165 goto again;
3166 }
3167
f83c9d0f
SR
3168 return event;
3169}
3170
7a8e76a3
SR
3171/**
3172 * ring_buffer_consume - return an event and consume it
3173 * @buffer: The ring buffer to get the next event from
3174 *
3175 * Returns the next event in the ring buffer, and that event is consumed.
3176 * Meaning, that sequential reads will keep returning a different event,
3177 * and eventually empty the ring buffer if the producer is slower.
3178 */
3179struct ring_buffer_event *
3180ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3181{
554f786e
SR
3182 struct ring_buffer_per_cpu *cpu_buffer;
3183 struct ring_buffer_event *event = NULL;
f83c9d0f 3184 unsigned long flags;
8d707e8e
SR
3185 int dolock;
3186
3187 dolock = rb_ok_to_lock();
7a8e76a3 3188
2d622719 3189 again:
554f786e
SR
3190 /* might be called in atomic */
3191 preempt_disable();
3192
9e01c1b7 3193 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3194 goto out;
7a8e76a3 3195
554f786e 3196 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3197 local_irq_save(flags);
3198 if (dolock)
3199 spin_lock(&cpu_buffer->reader_lock);
f83c9d0f
SR
3200
3201 event = rb_buffer_peek(buffer, cpu, ts);
469535a5
RR
3202 if (event)
3203 rb_advance_reader(cpu_buffer);
7a8e76a3 3204
8d707e8e
SR
3205 if (dolock)
3206 spin_unlock(&cpu_buffer->reader_lock);
3207 local_irq_restore(flags);
f83c9d0f 3208
554f786e
SR
3209 out:
3210 preempt_enable();
3211
334d4169 3212 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
3213 cpu_relax();
3214 goto again;
3215 }
3216
7a8e76a3
SR
3217 return event;
3218}
c4f50183 3219EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3220
3221/**
3222 * ring_buffer_read_start - start a non consuming read of the buffer
3223 * @buffer: The ring buffer to read from
3224 * @cpu: The cpu buffer to iterate over
3225 *
3226 * This starts up an iteration through the buffer. It also disables
3227 * the recording to the buffer until the reading is finished.
3228 * This prevents the reading from being corrupted. This is not
3229 * a consuming read, so a producer is not expected.
3230 *
3231 * Must be paired with ring_buffer_finish.
3232 */
3233struct ring_buffer_iter *
3234ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3235{
3236 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3237 struct ring_buffer_iter *iter;
d769041f 3238 unsigned long flags;
7a8e76a3 3239
9e01c1b7 3240 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3241 return NULL;
7a8e76a3
SR
3242
3243 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3244 if (!iter)
8aabee57 3245 return NULL;
7a8e76a3
SR
3246
3247 cpu_buffer = buffer->buffers[cpu];
3248
3249 iter->cpu_buffer = cpu_buffer;
3250
3251 atomic_inc(&cpu_buffer->record_disabled);
3252 synchronize_sched();
3253
f83c9d0f 3254 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 3255 __raw_spin_lock(&cpu_buffer->lock);
642edba5 3256 rb_iter_reset(iter);
3e03fb7f 3257 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3258 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
3259
3260 return iter;
3261}
c4f50183 3262EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
3263
3264/**
3265 * ring_buffer_finish - finish reading the iterator of the buffer
3266 * @iter: The iterator retrieved by ring_buffer_start
3267 *
3268 * This re-enables the recording to the buffer, and frees the
3269 * iterator.
3270 */
3271void
3272ring_buffer_read_finish(struct ring_buffer_iter *iter)
3273{
3274 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3275
3276 atomic_dec(&cpu_buffer->record_disabled);
3277 kfree(iter);
3278}
c4f50183 3279EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
3280
3281/**
3282 * ring_buffer_read - read the next item in the ring buffer by the iterator
3283 * @iter: The ring buffer iterator
3284 * @ts: The time stamp of the event read.
3285 *
3286 * This reads the next event in the ring buffer and increments the iterator.
3287 */
3288struct ring_buffer_event *
3289ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3290{
3291 struct ring_buffer_event *event;
f83c9d0f
SR
3292 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3293 unsigned long flags;
7a8e76a3 3294
2d622719 3295 again:
f83c9d0f
SR
3296 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3297 event = rb_iter_peek(iter, ts);
7a8e76a3 3298 if (!event)
f83c9d0f 3299 goto out;
7a8e76a3
SR
3300
3301 rb_advance_iter(iter);
f83c9d0f
SR
3302 out:
3303 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3304
334d4169 3305 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
3306 cpu_relax();
3307 goto again;
3308 }
3309
7a8e76a3
SR
3310 return event;
3311}
c4f50183 3312EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
3313
3314/**
3315 * ring_buffer_size - return the size of the ring buffer (in bytes)
3316 * @buffer: The ring buffer.
3317 */
3318unsigned long ring_buffer_size(struct ring_buffer *buffer)
3319{
3320 return BUF_PAGE_SIZE * buffer->pages;
3321}
c4f50183 3322EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
3323
3324static void
3325rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3326{
77ae365e
SR
3327 rb_head_page_deactivate(cpu_buffer);
3328
7a8e76a3 3329 cpu_buffer->head_page
3adc54fa 3330 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 3331 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 3332 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 3333 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 3334
6f807acd 3335 cpu_buffer->head_page->read = 0;
bf41a158
SR
3336
3337 cpu_buffer->tail_page = cpu_buffer->head_page;
3338 cpu_buffer->commit_page = cpu_buffer->head_page;
3339
3340 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3341 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 3342 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 3343 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 3344 cpu_buffer->reader_page->read = 0;
7a8e76a3 3345
77ae365e
SR
3346 local_set(&cpu_buffer->commit_overrun, 0);
3347 local_set(&cpu_buffer->overrun, 0);
e4906eff 3348 local_set(&cpu_buffer->entries, 0);
fa743953
SR
3349 local_set(&cpu_buffer->committing, 0);
3350 local_set(&cpu_buffer->commits, 0);
77ae365e 3351 cpu_buffer->read = 0;
69507c06
SR
3352
3353 cpu_buffer->write_stamp = 0;
3354 cpu_buffer->read_stamp = 0;
77ae365e
SR
3355
3356 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
3357}
3358
3359/**
3360 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3361 * @buffer: The ring buffer to reset a per cpu buffer of
3362 * @cpu: The CPU buffer to be reset
3363 */
3364void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3365{
3366 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3367 unsigned long flags;
3368
9e01c1b7 3369 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3370 return;
7a8e76a3 3371
41ede23e
SR
3372 atomic_inc(&cpu_buffer->record_disabled);
3373
f83c9d0f
SR
3374 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3375
41b6a95d
SR
3376 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3377 goto out;
3378
3e03fb7f 3379 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
3380
3381 rb_reset_cpu(cpu_buffer);
3382
3e03fb7f 3383 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 3384
41b6a95d 3385 out:
f83c9d0f 3386 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
3387
3388 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 3389}
c4f50183 3390EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
3391
3392/**
3393 * ring_buffer_reset - reset a ring buffer
3394 * @buffer: The ring buffer to reset all cpu buffers
3395 */
3396void ring_buffer_reset(struct ring_buffer *buffer)
3397{
7a8e76a3
SR
3398 int cpu;
3399
7a8e76a3 3400 for_each_buffer_cpu(buffer, cpu)
d769041f 3401 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 3402}
c4f50183 3403EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
3404
3405/**
3406 * rind_buffer_empty - is the ring buffer empty?
3407 * @buffer: The ring buffer to test
3408 */
3409int ring_buffer_empty(struct ring_buffer *buffer)
3410{
3411 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3412 unsigned long flags;
8d707e8e 3413 int dolock;
7a8e76a3 3414 int cpu;
d4788207 3415 int ret;
7a8e76a3 3416
8d707e8e 3417 dolock = rb_ok_to_lock();
7a8e76a3
SR
3418
3419 /* yes this is racy, but if you don't like the race, lock the buffer */
3420 for_each_buffer_cpu(buffer, cpu) {
3421 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3422 local_irq_save(flags);
3423 if (dolock)
3424 spin_lock(&cpu_buffer->reader_lock);
d4788207 3425 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3426 if (dolock)
3427 spin_unlock(&cpu_buffer->reader_lock);
3428 local_irq_restore(flags);
3429
d4788207 3430 if (!ret)
7a8e76a3
SR
3431 return 0;
3432 }
554f786e 3433
7a8e76a3
SR
3434 return 1;
3435}
c4f50183 3436EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
3437
3438/**
3439 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3440 * @buffer: The ring buffer
3441 * @cpu: The CPU buffer to test
3442 */
3443int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3444{
3445 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 3446 unsigned long flags;
8d707e8e 3447 int dolock;
8aabee57 3448 int ret;
7a8e76a3 3449
9e01c1b7 3450 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3451 return 1;
7a8e76a3 3452
8d707e8e
SR
3453 dolock = rb_ok_to_lock();
3454
7a8e76a3 3455 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3456 local_irq_save(flags);
3457 if (dolock)
3458 spin_lock(&cpu_buffer->reader_lock);
554f786e 3459 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e
SR
3460 if (dolock)
3461 spin_unlock(&cpu_buffer->reader_lock);
3462 local_irq_restore(flags);
554f786e
SR
3463
3464 return ret;
7a8e76a3 3465}
c4f50183 3466EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
3467
3468/**
3469 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3470 * @buffer_a: One buffer to swap with
3471 * @buffer_b: The other buffer to swap with
3472 *
3473 * This function is useful for tracers that want to take a "snapshot"
3474 * of a CPU buffer and has another back up buffer lying around.
3475 * it is expected that the tracer handles the cpu buffer not being
3476 * used at the moment.
3477 */
3478int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3479 struct ring_buffer *buffer_b, int cpu)
3480{
3481 struct ring_buffer_per_cpu *cpu_buffer_a;
3482 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
3483 int ret = -EINVAL;
3484
9e01c1b7
RR
3485 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3486 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 3487 goto out;
7a8e76a3
SR
3488
3489 /* At least make sure the two buffers are somewhat the same */
6d102bc6 3490 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
3491 goto out;
3492
3493 ret = -EAGAIN;
7a8e76a3 3494
97b17efe 3495 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 3496 goto out;
97b17efe
SR
3497
3498 if (atomic_read(&buffer_a->record_disabled))
554f786e 3499 goto out;
97b17efe
SR
3500
3501 if (atomic_read(&buffer_b->record_disabled))
554f786e 3502 goto out;
97b17efe 3503
7a8e76a3
SR
3504 cpu_buffer_a = buffer_a->buffers[cpu];
3505 cpu_buffer_b = buffer_b->buffers[cpu];
3506
97b17efe 3507 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 3508 goto out;
97b17efe
SR
3509
3510 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 3511 goto out;
97b17efe 3512
7a8e76a3
SR
3513 /*
3514 * We can't do a synchronize_sched here because this
3515 * function can be called in atomic context.
3516 * Normally this will be called from the same CPU as cpu.
3517 * If not it's up to the caller to protect this.
3518 */
3519 atomic_inc(&cpu_buffer_a->record_disabled);
3520 atomic_inc(&cpu_buffer_b->record_disabled);
3521
98277991
SR
3522 ret = -EBUSY;
3523 if (local_read(&cpu_buffer_a->committing))
3524 goto out_dec;
3525 if (local_read(&cpu_buffer_b->committing))
3526 goto out_dec;
3527
7a8e76a3
SR
3528 buffer_a->buffers[cpu] = cpu_buffer_b;
3529 buffer_b->buffers[cpu] = cpu_buffer_a;
3530
3531 cpu_buffer_b->buffer = buffer_a;
3532 cpu_buffer_a->buffer = buffer_b;
3533
98277991
SR
3534 ret = 0;
3535
3536out_dec:
7a8e76a3
SR
3537 atomic_dec(&cpu_buffer_a->record_disabled);
3538 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 3539out:
554f786e 3540 return ret;
7a8e76a3 3541}
c4f50183 3542EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 3543
8789a9e7
SR
3544/**
3545 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3546 * @buffer: the buffer to allocate for.
3547 *
3548 * This function is used in conjunction with ring_buffer_read_page.
3549 * When reading a full page from the ring buffer, these functions
3550 * can be used to speed up the process. The calling function should
3551 * allocate a few pages first with this function. Then when it
3552 * needs to get pages from the ring buffer, it passes the result
3553 * of this function into ring_buffer_read_page, which will swap
3554 * the page that was allocated, with the read page of the buffer.
3555 *
3556 * Returns:
3557 * The page allocated, or NULL on error.
3558 */
3559void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3560{
044fa782 3561 struct buffer_data_page *bpage;
ef7a4a16 3562 unsigned long addr;
8789a9e7
SR
3563
3564 addr = __get_free_page(GFP_KERNEL);
3565 if (!addr)
3566 return NULL;
3567
044fa782 3568 bpage = (void *)addr;
8789a9e7 3569
ef7a4a16
SR
3570 rb_init_page(bpage);
3571
044fa782 3572 return bpage;
8789a9e7 3573}
d6ce96da 3574EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
3575
3576/**
3577 * ring_buffer_free_read_page - free an allocated read page
3578 * @buffer: the buffer the page was allocate for
3579 * @data: the page to free
3580 *
3581 * Free a page allocated from ring_buffer_alloc_read_page.
3582 */
3583void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3584{
3585 free_page((unsigned long)data);
3586}
d6ce96da 3587EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
3588
3589/**
3590 * ring_buffer_read_page - extract a page from the ring buffer
3591 * @buffer: buffer to extract from
3592 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 3593 * @len: amount to extract
8789a9e7
SR
3594 * @cpu: the cpu of the buffer to extract
3595 * @full: should the extraction only happen when the page is full.
3596 *
3597 * This function will pull out a page from the ring buffer and consume it.
3598 * @data_page must be the address of the variable that was returned
3599 * from ring_buffer_alloc_read_page. This is because the page might be used
3600 * to swap with a page in the ring buffer.
3601 *
3602 * for example:
b85fa01e 3603 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
3604 * if (!rpage)
3605 * return error;
ef7a4a16 3606 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
3607 * if (ret >= 0)
3608 * process_page(rpage, ret);
8789a9e7
SR
3609 *
3610 * When @full is set, the function will not return true unless
3611 * the writer is off the reader page.
3612 *
3613 * Note: it is up to the calling functions to handle sleeps and wakeups.
3614 * The ring buffer can be used anywhere in the kernel and can not
3615 * blindly call wake_up. The layer that uses the ring buffer must be
3616 * responsible for that.
3617 *
3618 * Returns:
667d2412
LJ
3619 * >=0 if data has been transferred, returns the offset of consumed data.
3620 * <0 if no data has been transferred.
8789a9e7
SR
3621 */
3622int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 3623 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
3624{
3625 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3626 struct ring_buffer_event *event;
044fa782 3627 struct buffer_data_page *bpage;
ef7a4a16 3628 struct buffer_page *reader;
8789a9e7 3629 unsigned long flags;
ef7a4a16 3630 unsigned int commit;
667d2412 3631 unsigned int read;
4f3640f8 3632 u64 save_timestamp;
667d2412 3633 int ret = -1;
8789a9e7 3634
554f786e
SR
3635 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3636 goto out;
3637
474d32b6
SR
3638 /*
3639 * If len is not big enough to hold the page header, then
3640 * we can not copy anything.
3641 */
3642 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 3643 goto out;
474d32b6
SR
3644
3645 len -= BUF_PAGE_HDR_SIZE;
3646
8789a9e7 3647 if (!data_page)
554f786e 3648 goto out;
8789a9e7 3649
044fa782
SR
3650 bpage = *data_page;
3651 if (!bpage)
554f786e 3652 goto out;
8789a9e7
SR
3653
3654 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3655
ef7a4a16
SR
3656 reader = rb_get_reader_page(cpu_buffer);
3657 if (!reader)
554f786e 3658 goto out_unlock;
8789a9e7 3659
ef7a4a16
SR
3660 event = rb_reader_event(cpu_buffer);
3661
3662 read = reader->read;
3663 commit = rb_page_commit(reader);
667d2412 3664
8789a9e7 3665 /*
474d32b6
SR
3666 * If this page has been partially read or
3667 * if len is not big enough to read the rest of the page or
3668 * a writer is still on the page, then
3669 * we must copy the data from the page to the buffer.
3670 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 3671 */
474d32b6 3672 if (read || (len < (commit - read)) ||
ef7a4a16 3673 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 3674 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
3675 unsigned int rpos = read;
3676 unsigned int pos = 0;
ef7a4a16 3677 unsigned int size;
8789a9e7
SR
3678
3679 if (full)
554f786e 3680 goto out_unlock;
8789a9e7 3681
ef7a4a16
SR
3682 if (len > (commit - read))
3683 len = (commit - read);
3684
3685 size = rb_event_length(event);
3686
3687 if (len < size)
554f786e 3688 goto out_unlock;
ef7a4a16 3689
4f3640f8
SR
3690 /* save the current timestamp, since the user will need it */
3691 save_timestamp = cpu_buffer->read_stamp;
3692
ef7a4a16
SR
3693 /* Need to copy one event at a time */
3694 do {
474d32b6 3695 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
3696
3697 len -= size;
3698
3699 rb_advance_reader(cpu_buffer);
474d32b6
SR
3700 rpos = reader->read;
3701 pos += size;
ef7a4a16
SR
3702
3703 event = rb_reader_event(cpu_buffer);
3704 size = rb_event_length(event);
3705 } while (len > size);
667d2412
LJ
3706
3707 /* update bpage */
ef7a4a16 3708 local_set(&bpage->commit, pos);
4f3640f8 3709 bpage->time_stamp = save_timestamp;
ef7a4a16 3710
474d32b6
SR
3711 /* we copied everything to the beginning */
3712 read = 0;
8789a9e7 3713 } else {
afbab76a 3714 /* update the entry counter */
77ae365e 3715 cpu_buffer->read += rb_page_entries(reader);
afbab76a 3716
8789a9e7 3717 /* swap the pages */
044fa782 3718 rb_init_page(bpage);
ef7a4a16
SR
3719 bpage = reader->page;
3720 reader->page = *data_page;
3721 local_set(&reader->write, 0);
778c55d4 3722 local_set(&reader->entries, 0);
ef7a4a16 3723 reader->read = 0;
044fa782 3724 *data_page = bpage;
8789a9e7 3725 }
667d2412 3726 ret = read;
8789a9e7 3727
554f786e 3728 out_unlock:
8789a9e7
SR
3729 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3730
554f786e 3731 out:
8789a9e7
SR
3732 return ret;
3733}
d6ce96da 3734EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 3735
1155de47 3736#ifdef CONFIG_TRACING
a3583244
SR
3737static ssize_t
3738rb_simple_read(struct file *filp, char __user *ubuf,
3739 size_t cnt, loff_t *ppos)
3740{
5e39841c 3741 unsigned long *p = filp->private_data;
a3583244
SR
3742 char buf[64];
3743 int r;
3744
033601a3
SR
3745 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3746 r = sprintf(buf, "permanently disabled\n");
3747 else
3748 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3749
3750 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3751}
3752
3753static ssize_t
3754rb_simple_write(struct file *filp, const char __user *ubuf,
3755 size_t cnt, loff_t *ppos)
3756{
5e39841c 3757 unsigned long *p = filp->private_data;
a3583244 3758 char buf[64];
5e39841c 3759 unsigned long val;
a3583244
SR
3760 int ret;
3761
3762 if (cnt >= sizeof(buf))
3763 return -EINVAL;
3764
3765 if (copy_from_user(&buf, ubuf, cnt))
3766 return -EFAULT;
3767
3768 buf[cnt] = 0;
3769
3770 ret = strict_strtoul(buf, 10, &val);
3771 if (ret < 0)
3772 return ret;
3773
033601a3
SR
3774 if (val)
3775 set_bit(RB_BUFFERS_ON_BIT, p);
3776 else
3777 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3778
3779 (*ppos)++;
3780
3781 return cnt;
3782}
3783
5e2336a0 3784static const struct file_operations rb_simple_fops = {
a3583244
SR
3785 .open = tracing_open_generic,
3786 .read = rb_simple_read,
3787 .write = rb_simple_write,
3788};
3789
3790
3791static __init int rb_init_debugfs(void)
3792{
3793 struct dentry *d_tracer;
a3583244
SR
3794
3795 d_tracer = tracing_init_dentry();
3796
5452af66
FW
3797 trace_create_file("tracing_on", 0644, d_tracer,
3798 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3799
3800 return 0;
3801}
3802
3803fs_initcall(rb_init_debugfs);
1155de47 3804#endif
554f786e 3805
59222efe 3806#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3807static int rb_cpu_notify(struct notifier_block *self,
3808 unsigned long action, void *hcpu)
554f786e
SR
3809{
3810 struct ring_buffer *buffer =
3811 container_of(self, struct ring_buffer, cpu_notify);
3812 long cpu = (long)hcpu;
3813
3814 switch (action) {
3815 case CPU_UP_PREPARE:
3816 case CPU_UP_PREPARE_FROZEN:
3f237a79 3817 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
3818 return NOTIFY_OK;
3819
3820 buffer->buffers[cpu] =
3821 rb_allocate_cpu_buffer(buffer, cpu);
3822 if (!buffer->buffers[cpu]) {
3823 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3824 cpu);
3825 return NOTIFY_OK;
3826 }
3827 smp_wmb();
3f237a79 3828 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
3829 break;
3830 case CPU_DOWN_PREPARE:
3831 case CPU_DOWN_PREPARE_FROZEN:
3832 /*
3833 * Do nothing.
3834 * If we were to free the buffer, then the user would
3835 * lose any trace that was in the buffer.
3836 */
3837 break;
3838 default:
3839 break;
3840 }
3841 return NOTIFY_OK;
3842}
3843#endif