ring-buffer: move calculation of event length
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
334d4169
LJ
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169
LJ
207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
211
212enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215};
216
2d622719
TZ
217static inline int rb_null_event(struct ring_buffer_event *event)
218{
334d4169
LJ
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
2d622719
TZ
221}
222
223static inline int rb_discarded_event(struct ring_buffer_event *event)
224{
334d4169 225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
226}
227
228static void rb_event_set_padding(struct ring_buffer_event *event)
229{
334d4169 230 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
231 event->time_delta = 0;
232}
233
34a148bf 234static unsigned
2d622719 235rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
236{
237 unsigned length;
238
334d4169
LJ
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
244}
245
246/* inline for ring buffer fast paths */
247static unsigned
248rb_event_length(struct ring_buffer_event *event)
249{
334d4169 250 switch (event->type_len) {
7a8e76a3 251 case RINGBUF_TYPE_PADDING:
2d622719
TZ
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
334d4169 255 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
256
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
259
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
262
263 case RINGBUF_TYPE_DATA:
2d622719 264 return rb_event_data_length(event);
7a8e76a3
SR
265 default:
266 BUG();
267 }
268 /* not hit */
269 return 0;
270}
271
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 */
276unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277{
465634ad 278 unsigned length = rb_event_length(event);
334d4169 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
7a8e76a3 285}
c4f50183 286EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
287
288/* inline for ring buffer fast paths */
34a148bf 289static void *
7a8e76a3
SR
290rb_event_data(struct ring_buffer_event *event)
291{
334d4169 292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 293 /* If length is in len field, then array[0] has the data */
334d4169 294 if (event->type_len)
7a8e76a3
SR
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
298}
299
300/**
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
303 */
304void *ring_buffer_event_data(struct ring_buffer_event *event)
305{
306 return rb_event_data(event);
307}
c4f50183 308EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
309
310#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 311 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
312
313#define TS_SHIFT 27
314#define TS_MASK ((1ULL << TS_SHIFT) - 1)
315#define TS_DELTA_TEST (~TS_MASK)
316
abc9b56d 317struct buffer_data_page {
e4c2ce82 318 u64 time_stamp; /* page time stamp */
c3706f00 319 local_t commit; /* write committed index */
abc9b56d
SR
320 unsigned char data[]; /* data of buffer page */
321};
322
323struct buffer_page {
778c55d4 324 struct list_head list; /* list of buffer pages */
abc9b56d 325 local_t write; /* index for next write */
6f807acd 326 unsigned read; /* index for next read */
778c55d4 327 local_t entries; /* entries on this page */
abc9b56d 328 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
329};
330
044fa782 331static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 332{
044fa782 333 local_set(&bpage->commit, 0);
abc9b56d
SR
334}
335
474d32b6
SR
336/**
337 * ring_buffer_page_len - the size of data on the page.
338 * @page: The page to read
339 *
340 * Returns the amount of data on the page, including buffer page header.
341 */
ef7a4a16
SR
342size_t ring_buffer_page_len(void *page)
343{
474d32b6
SR
344 return local_read(&((struct buffer_data_page *)page)->commit)
345 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
346}
347
ed56829c
SR
348/*
349 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 * this issue out.
351 */
34a148bf 352static void free_buffer_page(struct buffer_page *bpage)
ed56829c 353{
34a148bf 354 free_page((unsigned long)bpage->page);
e4c2ce82 355 kfree(bpage);
ed56829c
SR
356}
357
7a8e76a3
SR
358/*
359 * We need to fit the time_stamp delta into 27 bits.
360 */
361static inline int test_time_stamp(u64 delta)
362{
363 if (delta & TS_DELTA_TEST)
364 return 1;
365 return 0;
366}
367
474d32b6 368#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 369
be957c44
SR
370/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
371#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
372
d1b182a8
SR
373int ring_buffer_print_page_header(struct trace_seq *s)
374{
375 struct buffer_data_page field;
376 int ret;
377
378 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
379 "offset:0;\tsize:%u;\n",
380 (unsigned int)sizeof(field.time_stamp));
381
382 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
383 "offset:%u;\tsize:%u;\n",
384 (unsigned int)offsetof(typeof(field), commit),
385 (unsigned int)sizeof(field.commit));
386
387 ret = trace_seq_printf(s, "\tfield: char data;\t"
388 "offset:%u;\tsize:%u;\n",
389 (unsigned int)offsetof(typeof(field), data),
390 (unsigned int)BUF_PAGE_SIZE);
391
392 return ret;
393}
394
7a8e76a3
SR
395/*
396 * head_page == tail_page && head == tail then buffer is empty.
397 */
398struct ring_buffer_per_cpu {
399 int cpu;
400 struct ring_buffer *buffer;
f83c9d0f 401 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 402 raw_spinlock_t lock;
7a8e76a3
SR
403 struct lock_class_key lock_key;
404 struct list_head pages;
6f807acd
SR
405 struct buffer_page *head_page; /* read from head */
406 struct buffer_page *tail_page; /* write to tail */
c3706f00 407 struct buffer_page *commit_page; /* committed pages */
d769041f 408 struct buffer_page *reader_page;
f0d2c681
SR
409 unsigned long nmi_dropped;
410 unsigned long commit_overrun;
7a8e76a3 411 unsigned long overrun;
e4906eff
SR
412 unsigned long read;
413 local_t entries;
7a8e76a3
SR
414 u64 write_stamp;
415 u64 read_stamp;
416 atomic_t record_disabled;
417};
418
419struct ring_buffer {
7a8e76a3
SR
420 unsigned pages;
421 unsigned flags;
422 int cpus;
7a8e76a3 423 atomic_t record_disabled;
00f62f61 424 cpumask_var_t cpumask;
7a8e76a3
SR
425
426 struct mutex mutex;
427
428 struct ring_buffer_per_cpu **buffers;
554f786e 429
59222efe 430#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
431 struct notifier_block cpu_notify;
432#endif
37886f6a 433 u64 (*clock)(void);
7a8e76a3
SR
434};
435
436struct ring_buffer_iter {
437 struct ring_buffer_per_cpu *cpu_buffer;
438 unsigned long head;
439 struct buffer_page *head_page;
440 u64 read_stamp;
441};
442
f536aafc 443/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 444#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
445 ({ \
446 int _____ret = unlikely(cond); \
447 if (_____ret) { \
bf41a158
SR
448 atomic_inc(&buffer->record_disabled); \
449 WARN_ON(1); \
450 } \
3e89c7bb
SR
451 _____ret; \
452 })
f536aafc 453
37886f6a
SR
454/* Up this if you want to test the TIME_EXTENTS and normalization */
455#define DEBUG_SHIFT 0
456
457u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
458{
459 u64 time;
460
461 preempt_disable_notrace();
462 /* shift to debug/test normalization and TIME_EXTENTS */
463 time = buffer->clock() << DEBUG_SHIFT;
464 preempt_enable_no_resched_notrace();
465
466 return time;
467}
468EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
469
470void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
471 int cpu, u64 *ts)
472{
473 /* Just stupid testing the normalize function and deltas */
474 *ts >>= DEBUG_SHIFT;
475}
476EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
477
7a8e76a3
SR
478/**
479 * check_pages - integrity check of buffer pages
480 * @cpu_buffer: CPU buffer with pages to test
481 *
c3706f00 482 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
483 * been corrupted.
484 */
485static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
486{
487 struct list_head *head = &cpu_buffer->pages;
044fa782 488 struct buffer_page *bpage, *tmp;
7a8e76a3 489
3e89c7bb
SR
490 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
491 return -1;
492 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
493 return -1;
7a8e76a3 494
044fa782 495 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 496 if (RB_WARN_ON(cpu_buffer,
044fa782 497 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
498 return -1;
499 if (RB_WARN_ON(cpu_buffer,
044fa782 500 bpage->list.prev->next != &bpage->list))
3e89c7bb 501 return -1;
7a8e76a3
SR
502 }
503
504 return 0;
505}
506
7a8e76a3
SR
507static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
508 unsigned nr_pages)
509{
510 struct list_head *head = &cpu_buffer->pages;
044fa782 511 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
512 unsigned long addr;
513 LIST_HEAD(pages);
514 unsigned i;
515
516 for (i = 0; i < nr_pages; i++) {
044fa782 517 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 518 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 519 if (!bpage)
e4c2ce82 520 goto free_pages;
044fa782 521 list_add(&bpage->list, &pages);
e4c2ce82 522
7a8e76a3
SR
523 addr = __get_free_page(GFP_KERNEL);
524 if (!addr)
525 goto free_pages;
044fa782
SR
526 bpage->page = (void *)addr;
527 rb_init_page(bpage->page);
7a8e76a3
SR
528 }
529
530 list_splice(&pages, head);
531
532 rb_check_pages(cpu_buffer);
533
534 return 0;
535
536 free_pages:
044fa782
SR
537 list_for_each_entry_safe(bpage, tmp, &pages, list) {
538 list_del_init(&bpage->list);
539 free_buffer_page(bpage);
7a8e76a3
SR
540 }
541 return -ENOMEM;
542}
543
544static struct ring_buffer_per_cpu *
545rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
546{
547 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 548 struct buffer_page *bpage;
d769041f 549 unsigned long addr;
7a8e76a3
SR
550 int ret;
551
552 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
553 GFP_KERNEL, cpu_to_node(cpu));
554 if (!cpu_buffer)
555 return NULL;
556
557 cpu_buffer->cpu = cpu;
558 cpu_buffer->buffer = buffer;
f83c9d0f 559 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 560 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
561 INIT_LIST_HEAD(&cpu_buffer->pages);
562
044fa782 563 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 564 GFP_KERNEL, cpu_to_node(cpu));
044fa782 565 if (!bpage)
e4c2ce82
SR
566 goto fail_free_buffer;
567
044fa782 568 cpu_buffer->reader_page = bpage;
d769041f
SR
569 addr = __get_free_page(GFP_KERNEL);
570 if (!addr)
e4c2ce82 571 goto fail_free_reader;
044fa782
SR
572 bpage->page = (void *)addr;
573 rb_init_page(bpage->page);
e4c2ce82 574
d769041f 575 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 576
7a8e76a3
SR
577 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
578 if (ret < 0)
d769041f 579 goto fail_free_reader;
7a8e76a3
SR
580
581 cpu_buffer->head_page
582 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 583 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
584
585 return cpu_buffer;
586
d769041f
SR
587 fail_free_reader:
588 free_buffer_page(cpu_buffer->reader_page);
589
7a8e76a3
SR
590 fail_free_buffer:
591 kfree(cpu_buffer);
592 return NULL;
593}
594
595static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
596{
597 struct list_head *head = &cpu_buffer->pages;
044fa782 598 struct buffer_page *bpage, *tmp;
7a8e76a3 599
d769041f
SR
600 free_buffer_page(cpu_buffer->reader_page);
601
044fa782
SR
602 list_for_each_entry_safe(bpage, tmp, head, list) {
603 list_del_init(&bpage->list);
604 free_buffer_page(bpage);
7a8e76a3
SR
605 }
606 kfree(cpu_buffer);
607}
608
a7b13743
SR
609/*
610 * Causes compile errors if the struct buffer_page gets bigger
611 * than the struct page.
612 */
613extern int ring_buffer_page_too_big(void);
614
59222efe 615#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
616static int rb_cpu_notify(struct notifier_block *self,
617 unsigned long action, void *hcpu);
554f786e
SR
618#endif
619
7a8e76a3
SR
620/**
621 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 622 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
623 * @flags: attributes to set for the ring buffer.
624 *
625 * Currently the only flag that is available is the RB_FL_OVERWRITE
626 * flag. This flag means that the buffer will overwrite old data
627 * when the buffer wraps. If this flag is not set, the buffer will
628 * drop data when the tail hits the head.
629 */
630struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
631{
632 struct ring_buffer *buffer;
633 int bsize;
634 int cpu;
635
a7b13743
SR
636 /* Paranoid! Optimizes out when all is well */
637 if (sizeof(struct buffer_page) > sizeof(struct page))
638 ring_buffer_page_too_big();
639
640
7a8e76a3
SR
641 /* keep it in its own cache line */
642 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
643 GFP_KERNEL);
644 if (!buffer)
645 return NULL;
646
9e01c1b7
RR
647 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
648 goto fail_free_buffer;
649
7a8e76a3
SR
650 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
651 buffer->flags = flags;
37886f6a 652 buffer->clock = trace_clock_local;
7a8e76a3
SR
653
654 /* need at least two pages */
655 if (buffer->pages == 1)
656 buffer->pages++;
657
3bf832ce
FW
658 /*
659 * In case of non-hotplug cpu, if the ring-buffer is allocated
660 * in early initcall, it will not be notified of secondary cpus.
661 * In that off case, we need to allocate for all possible cpus.
662 */
663#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
664 get_online_cpus();
665 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
666#else
667 cpumask_copy(buffer->cpumask, cpu_possible_mask);
668#endif
7a8e76a3
SR
669 buffer->cpus = nr_cpu_ids;
670
671 bsize = sizeof(void *) * nr_cpu_ids;
672 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
673 GFP_KERNEL);
674 if (!buffer->buffers)
9e01c1b7 675 goto fail_free_cpumask;
7a8e76a3
SR
676
677 for_each_buffer_cpu(buffer, cpu) {
678 buffer->buffers[cpu] =
679 rb_allocate_cpu_buffer(buffer, cpu);
680 if (!buffer->buffers[cpu])
681 goto fail_free_buffers;
682 }
683
59222efe 684#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
685 buffer->cpu_notify.notifier_call = rb_cpu_notify;
686 buffer->cpu_notify.priority = 0;
687 register_cpu_notifier(&buffer->cpu_notify);
688#endif
689
690 put_online_cpus();
7a8e76a3
SR
691 mutex_init(&buffer->mutex);
692
693 return buffer;
694
695 fail_free_buffers:
696 for_each_buffer_cpu(buffer, cpu) {
697 if (buffer->buffers[cpu])
698 rb_free_cpu_buffer(buffer->buffers[cpu]);
699 }
700 kfree(buffer->buffers);
701
9e01c1b7
RR
702 fail_free_cpumask:
703 free_cpumask_var(buffer->cpumask);
554f786e 704 put_online_cpus();
9e01c1b7 705
7a8e76a3
SR
706 fail_free_buffer:
707 kfree(buffer);
708 return NULL;
709}
c4f50183 710EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
711
712/**
713 * ring_buffer_free - free a ring buffer.
714 * @buffer: the buffer to free.
715 */
716void
717ring_buffer_free(struct ring_buffer *buffer)
718{
719 int cpu;
720
554f786e
SR
721 get_online_cpus();
722
59222efe 723#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
724 unregister_cpu_notifier(&buffer->cpu_notify);
725#endif
726
7a8e76a3
SR
727 for_each_buffer_cpu(buffer, cpu)
728 rb_free_cpu_buffer(buffer->buffers[cpu]);
729
554f786e
SR
730 put_online_cpus();
731
9e01c1b7
RR
732 free_cpumask_var(buffer->cpumask);
733
7a8e76a3
SR
734 kfree(buffer);
735}
c4f50183 736EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 737
37886f6a
SR
738void ring_buffer_set_clock(struct ring_buffer *buffer,
739 u64 (*clock)(void))
740{
741 buffer->clock = clock;
742}
743
7a8e76a3
SR
744static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
745
746static void
747rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
748{
044fa782 749 struct buffer_page *bpage;
7a8e76a3
SR
750 struct list_head *p;
751 unsigned i;
752
753 atomic_inc(&cpu_buffer->record_disabled);
754 synchronize_sched();
755
756 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
757 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
758 return;
7a8e76a3 759 p = cpu_buffer->pages.next;
044fa782
SR
760 bpage = list_entry(p, struct buffer_page, list);
761 list_del_init(&bpage->list);
762 free_buffer_page(bpage);
7a8e76a3 763 }
3e89c7bb
SR
764 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
765 return;
7a8e76a3
SR
766
767 rb_reset_cpu(cpu_buffer);
768
769 rb_check_pages(cpu_buffer);
770
771 atomic_dec(&cpu_buffer->record_disabled);
772
773}
774
775static void
776rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
777 struct list_head *pages, unsigned nr_pages)
778{
044fa782 779 struct buffer_page *bpage;
7a8e76a3
SR
780 struct list_head *p;
781 unsigned i;
782
783 atomic_inc(&cpu_buffer->record_disabled);
784 synchronize_sched();
785
786 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
787 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
788 return;
7a8e76a3 789 p = pages->next;
044fa782
SR
790 bpage = list_entry(p, struct buffer_page, list);
791 list_del_init(&bpage->list);
792 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
793 }
794 rb_reset_cpu(cpu_buffer);
795
796 rb_check_pages(cpu_buffer);
797
798 atomic_dec(&cpu_buffer->record_disabled);
799}
800
801/**
802 * ring_buffer_resize - resize the ring buffer
803 * @buffer: the buffer to resize.
804 * @size: the new size.
805 *
806 * The tracer is responsible for making sure that the buffer is
807 * not being used while changing the size.
808 * Note: We may be able to change the above requirement by using
809 * RCU synchronizations.
810 *
811 * Minimum size is 2 * BUF_PAGE_SIZE.
812 *
813 * Returns -1 on failure.
814 */
815int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
816{
817 struct ring_buffer_per_cpu *cpu_buffer;
818 unsigned nr_pages, rm_pages, new_pages;
044fa782 819 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
820 unsigned long buffer_size;
821 unsigned long addr;
822 LIST_HEAD(pages);
823 int i, cpu;
824
ee51a1de
IM
825 /*
826 * Always succeed at resizing a non-existent buffer:
827 */
828 if (!buffer)
829 return size;
830
7a8e76a3
SR
831 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
832 size *= BUF_PAGE_SIZE;
833 buffer_size = buffer->pages * BUF_PAGE_SIZE;
834
835 /* we need a minimum of two pages */
836 if (size < BUF_PAGE_SIZE * 2)
837 size = BUF_PAGE_SIZE * 2;
838
839 if (size == buffer_size)
840 return size;
841
842 mutex_lock(&buffer->mutex);
554f786e 843 get_online_cpus();
7a8e76a3
SR
844
845 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
846
847 if (size < buffer_size) {
848
849 /* easy case, just free pages */
554f786e
SR
850 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
851 goto out_fail;
7a8e76a3
SR
852
853 rm_pages = buffer->pages - nr_pages;
854
855 for_each_buffer_cpu(buffer, cpu) {
856 cpu_buffer = buffer->buffers[cpu];
857 rb_remove_pages(cpu_buffer, rm_pages);
858 }
859 goto out;
860 }
861
862 /*
863 * This is a bit more difficult. We only want to add pages
864 * when we can allocate enough for all CPUs. We do this
865 * by allocating all the pages and storing them on a local
866 * link list. If we succeed in our allocation, then we
867 * add these pages to the cpu_buffers. Otherwise we just free
868 * them all and return -ENOMEM;
869 */
554f786e
SR
870 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
871 goto out_fail;
f536aafc 872
7a8e76a3
SR
873 new_pages = nr_pages - buffer->pages;
874
875 for_each_buffer_cpu(buffer, cpu) {
876 for (i = 0; i < new_pages; i++) {
044fa782 877 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
878 cache_line_size()),
879 GFP_KERNEL, cpu_to_node(cpu));
044fa782 880 if (!bpage)
e4c2ce82 881 goto free_pages;
044fa782 882 list_add(&bpage->list, &pages);
7a8e76a3
SR
883 addr = __get_free_page(GFP_KERNEL);
884 if (!addr)
885 goto free_pages;
044fa782
SR
886 bpage->page = (void *)addr;
887 rb_init_page(bpage->page);
7a8e76a3
SR
888 }
889 }
890
891 for_each_buffer_cpu(buffer, cpu) {
892 cpu_buffer = buffer->buffers[cpu];
893 rb_insert_pages(cpu_buffer, &pages, new_pages);
894 }
895
554f786e
SR
896 if (RB_WARN_ON(buffer, !list_empty(&pages)))
897 goto out_fail;
7a8e76a3
SR
898
899 out:
900 buffer->pages = nr_pages;
554f786e 901 put_online_cpus();
7a8e76a3
SR
902 mutex_unlock(&buffer->mutex);
903
904 return size;
905
906 free_pages:
044fa782
SR
907 list_for_each_entry_safe(bpage, tmp, &pages, list) {
908 list_del_init(&bpage->list);
909 free_buffer_page(bpage);
7a8e76a3 910 }
554f786e 911 put_online_cpus();
641d2f63 912 mutex_unlock(&buffer->mutex);
7a8e76a3 913 return -ENOMEM;
554f786e
SR
914
915 /*
916 * Something went totally wrong, and we are too paranoid
917 * to even clean up the mess.
918 */
919 out_fail:
920 put_online_cpus();
921 mutex_unlock(&buffer->mutex);
922 return -1;
7a8e76a3 923}
c4f50183 924EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 925
8789a9e7 926static inline void *
044fa782 927__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 928{
044fa782 929 return bpage->data + index;
8789a9e7
SR
930}
931
044fa782 932static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 933{
044fa782 934 return bpage->page->data + index;
7a8e76a3
SR
935}
936
937static inline struct ring_buffer_event *
d769041f 938rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 939{
6f807acd
SR
940 return __rb_page_index(cpu_buffer->reader_page,
941 cpu_buffer->reader_page->read);
942}
943
944static inline struct ring_buffer_event *
945rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
946{
947 return __rb_page_index(cpu_buffer->head_page,
948 cpu_buffer->head_page->read);
7a8e76a3
SR
949}
950
951static inline struct ring_buffer_event *
952rb_iter_head_event(struct ring_buffer_iter *iter)
953{
6f807acd 954 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
955}
956
bf41a158
SR
957static inline unsigned rb_page_write(struct buffer_page *bpage)
958{
959 return local_read(&bpage->write);
960}
961
962static inline unsigned rb_page_commit(struct buffer_page *bpage)
963{
abc9b56d 964 return local_read(&bpage->page->commit);
bf41a158
SR
965}
966
967/* Size is determined by what has been commited */
968static inline unsigned rb_page_size(struct buffer_page *bpage)
969{
970 return rb_page_commit(bpage);
971}
972
973static inline unsigned
974rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
975{
976 return rb_page_commit(cpu_buffer->commit_page);
977}
978
979static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
980{
981 return rb_page_commit(cpu_buffer->head_page);
982}
983
7a8e76a3 984static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 985 struct buffer_page **bpage)
7a8e76a3 986{
044fa782 987 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
988
989 if (p == &cpu_buffer->pages)
990 p = p->next;
991
044fa782 992 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
993}
994
bf41a158
SR
995static inline unsigned
996rb_event_index(struct ring_buffer_event *event)
997{
998 unsigned long addr = (unsigned long)event;
999
1000 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
1001}
1002
34a148bf 1003static int
bf41a158
SR
1004rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1005 struct ring_buffer_event *event)
1006{
1007 unsigned long addr = (unsigned long)event;
1008 unsigned long index;
1009
1010 index = rb_event_index(event);
1011 addr &= PAGE_MASK;
1012
1013 return cpu_buffer->commit_page->page == (void *)addr &&
1014 rb_commit_index(cpu_buffer) == index;
1015}
1016
34a148bf 1017static void
bf41a158
SR
1018rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1019 struct ring_buffer_event *event)
7a8e76a3 1020{
bf41a158
SR
1021 unsigned long addr = (unsigned long)event;
1022 unsigned long index;
1023
1024 index = rb_event_index(event);
1025 addr &= PAGE_MASK;
1026
1027 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1028 if (RB_WARN_ON(cpu_buffer,
1029 cpu_buffer->commit_page == cpu_buffer->tail_page))
1030 return;
abc9b56d 1031 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1032 cpu_buffer->commit_page->write;
1033 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1034 cpu_buffer->write_stamp =
1035 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1036 }
1037
1038 /* Now set the commit to the event's index */
abc9b56d 1039 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1040}
1041
34a148bf 1042static void
bf41a158 1043rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1044{
bf41a158
SR
1045 /*
1046 * We only race with interrupts and NMIs on this CPU.
1047 * If we own the commit event, then we can commit
1048 * all others that interrupted us, since the interruptions
1049 * are in stack format (they finish before they come
1050 * back to us). This allows us to do a simple loop to
1051 * assign the commit to the tail.
1052 */
a8ccf1d6 1053 again:
bf41a158 1054 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1055 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1056 cpu_buffer->commit_page->write;
1057 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1058 cpu_buffer->write_stamp =
1059 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1060 /* add barrier to keep gcc from optimizing too much */
1061 barrier();
1062 }
1063 while (rb_commit_index(cpu_buffer) !=
1064 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1065 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1066 cpu_buffer->commit_page->write;
1067 barrier();
1068 }
a8ccf1d6
SR
1069
1070 /* again, keep gcc from optimizing */
1071 barrier();
1072
1073 /*
1074 * If an interrupt came in just after the first while loop
1075 * and pushed the tail page forward, we will be left with
1076 * a dangling commit that will never go forward.
1077 */
1078 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1079 goto again;
7a8e76a3
SR
1080}
1081
d769041f 1082static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1083{
abc9b56d 1084 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1085 cpu_buffer->reader_page->read = 0;
d769041f
SR
1086}
1087
34a148bf 1088static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1089{
1090 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1091
1092 /*
1093 * The iterator could be on the reader page (it starts there).
1094 * But the head could have moved, since the reader was
1095 * found. Check for this case and assign the iterator
1096 * to the head page instead of next.
1097 */
1098 if (iter->head_page == cpu_buffer->reader_page)
1099 iter->head_page = cpu_buffer->head_page;
1100 else
1101 rb_inc_page(cpu_buffer, &iter->head_page);
1102
abc9b56d 1103 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1104 iter->head = 0;
1105}
1106
1107/**
1108 * ring_buffer_update_event - update event type and data
1109 * @event: the even to update
1110 * @type: the type of event
1111 * @length: the size of the event field in the ring buffer
1112 *
1113 * Update the type and data fields of the event. The length
1114 * is the actual size that is written to the ring buffer,
1115 * and with this, we can determine what to place into the
1116 * data field.
1117 */
34a148bf 1118static void
7a8e76a3
SR
1119rb_update_event(struct ring_buffer_event *event,
1120 unsigned type, unsigned length)
1121{
334d4169 1122 event->type_len = type;
7a8e76a3
SR
1123
1124 switch (type) {
1125
1126 case RINGBUF_TYPE_PADDING:
7a8e76a3 1127 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1128 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1129 break;
1130
334d4169 1131 case 0:
7a8e76a3 1132 length -= RB_EVNT_HDR_SIZE;
334d4169 1133 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1134 event->array[0] = length;
334d4169
LJ
1135 else
1136 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1137 break;
1138 default:
1139 BUG();
1140 }
1141}
1142
34a148bf 1143static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1144{
1145 struct ring_buffer_event event; /* Used only for sizeof array */
1146
1147 /* zero length can cause confusions */
1148 if (!length)
1149 length = 1;
1150
1151 if (length > RB_MAX_SMALL_DATA)
1152 length += sizeof(event.array[0]);
1153
1154 length += RB_EVNT_HDR_SIZE;
1155 length = ALIGN(length, RB_ALIGNMENT);
1156
1157 return length;
1158}
1159
6634ff26 1160
7a8e76a3 1161static struct ring_buffer_event *
6634ff26
SR
1162rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1163 unsigned long length, unsigned long tail,
1164 struct buffer_page *commit_page,
1165 struct buffer_page *tail_page, u64 *ts)
7a8e76a3 1166{
6634ff26 1167 struct buffer_page *next_page, *head_page, *reader_page;
7a8e76a3
SR
1168 struct ring_buffer *buffer = cpu_buffer->buffer;
1169 struct ring_buffer_event *event;
78d904b4 1170 bool lock_taken = false;
6634ff26 1171 unsigned long flags;
aa20ae84
SR
1172
1173 next_page = tail_page;
1174
1175 local_irq_save(flags);
1176 /*
1177 * Since the write to the buffer is still not
1178 * fully lockless, we must be careful with NMIs.
1179 * The locks in the writers are taken when a write
1180 * crosses to a new page. The locks protect against
1181 * races with the readers (this will soon be fixed
1182 * with a lockless solution).
1183 *
1184 * Because we can not protect against NMIs, and we
1185 * want to keep traces reentrant, we need to manage
1186 * what happens when we are in an NMI.
1187 *
1188 * NMIs can happen after we take the lock.
1189 * If we are in an NMI, only take the lock
1190 * if it is not already taken. Otherwise
1191 * simply fail.
1192 */
1193 if (unlikely(in_nmi())) {
1194 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1195 cpu_buffer->nmi_dropped++;
1196 goto out_reset;
1197 }
1198 } else
1199 __raw_spin_lock(&cpu_buffer->lock);
1200
1201 lock_taken = true;
1202
1203 rb_inc_page(cpu_buffer, &next_page);
1204
1205 head_page = cpu_buffer->head_page;
1206 reader_page = cpu_buffer->reader_page;
1207
1208 /* we grabbed the lock before incrementing */
1209 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1210 goto out_reset;
1211
1212 /*
1213 * If for some reason, we had an interrupt storm that made
1214 * it all the way around the buffer, bail, and warn
1215 * about it.
1216 */
1217 if (unlikely(next_page == commit_page)) {
1218 cpu_buffer->commit_overrun++;
1219 goto out_reset;
1220 }
1221
1222 if (next_page == head_page) {
1223 if (!(buffer->flags & RB_FL_OVERWRITE))
1224 goto out_reset;
1225
1226 /* tail_page has not moved yet? */
1227 if (tail_page == cpu_buffer->tail_page) {
1228 /* count overflows */
1229 cpu_buffer->overrun +=
1230 local_read(&head_page->entries);
1231
1232 rb_inc_page(cpu_buffer, &head_page);
1233 cpu_buffer->head_page = head_page;
1234 cpu_buffer->head_page->read = 0;
1235 }
1236 }
1237
1238 /*
1239 * If the tail page is still the same as what we think
1240 * it is, then it is up to us to update the tail
1241 * pointer.
1242 */
1243 if (tail_page == cpu_buffer->tail_page) {
1244 local_set(&next_page->write, 0);
1245 local_set(&next_page->entries, 0);
1246 local_set(&next_page->page->commit, 0);
1247 cpu_buffer->tail_page = next_page;
1248
1249 /* reread the time stamp */
1250 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
1251 cpu_buffer->tail_page->page->time_stamp = *ts;
1252 }
1253
1254 /*
1255 * The actual tail page has moved forward.
1256 */
1257 if (tail < BUF_PAGE_SIZE) {
1258 /* Mark the rest of the page with padding */
1259 event = __rb_page_index(tail_page, tail);
1260 rb_event_set_padding(event);
1261 }
1262
8e7abf1c
SR
1263 /* Set the write back to the previous setting */
1264 local_sub(length, &tail_page->write);
aa20ae84
SR
1265
1266 /*
1267 * If this was a commit entry that failed,
1268 * increment that too
1269 */
1270 if (tail_page == cpu_buffer->commit_page &&
1271 tail == rb_commit_index(cpu_buffer)) {
1272 rb_set_commit_to_write(cpu_buffer);
1273 }
1274
1275 __raw_spin_unlock(&cpu_buffer->lock);
1276 local_irq_restore(flags);
1277
1278 /* fail and let the caller try again */
1279 return ERR_PTR(-EAGAIN);
1280
45141d46 1281 out_reset:
6f3b3440 1282 /* reset write */
8e7abf1c 1283 local_sub(length, &tail_page->write);
6f3b3440 1284
78d904b4
SR
1285 if (likely(lock_taken))
1286 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1287 local_irq_restore(flags);
bf41a158 1288 return NULL;
7a8e76a3
SR
1289}
1290
6634ff26
SR
1291static struct ring_buffer_event *
1292__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1293 unsigned type, unsigned long length, u64 *ts)
1294{
1295 struct buffer_page *tail_page, *commit_page;
1296 struct ring_buffer_event *event;
1297 unsigned long tail, write;
1298
1299 commit_page = cpu_buffer->commit_page;
1300 /* we just need to protect against interrupts */
1301 barrier();
1302 tail_page = cpu_buffer->tail_page;
1303 write = local_add_return(length, &tail_page->write);
1304 tail = write - length;
1305
1306 /* See if we shot pass the end of this buffer page */
1307 if (write > BUF_PAGE_SIZE)
1308 return rb_move_tail(cpu_buffer, length, tail,
1309 commit_page, tail_page, ts);
1310
1311 /* We reserved something on the buffer */
1312
1313 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1314 return NULL;
1315
1316 event = __rb_page_index(tail_page, tail);
1317 rb_update_event(event, type, length);
1318
1319 /* The passed in type is zero for DATA */
1320 if (likely(!type))
1321 local_inc(&tail_page->entries);
1322
1323 /*
1324 * If this is a commit and the tail is zero, then update
1325 * this page's time stamp.
1326 */
1327 if (!tail && rb_is_commit(cpu_buffer, event))
1328 cpu_buffer->commit_page->page->time_stamp = *ts;
1329
1330 return event;
1331}
1332
7a8e76a3
SR
1333static int
1334rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1335 u64 *ts, u64 *delta)
1336{
1337 struct ring_buffer_event *event;
1338 static int once;
bf41a158 1339 int ret;
7a8e76a3
SR
1340
1341 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1342 printk(KERN_WARNING "Delta way too big! %llu"
1343 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1344 (unsigned long long)*delta,
1345 (unsigned long long)*ts,
1346 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1347 WARN_ON(1);
1348 }
1349
1350 /*
1351 * The delta is too big, we to add a
1352 * new timestamp.
1353 */
1354 event = __rb_reserve_next(cpu_buffer,
1355 RINGBUF_TYPE_TIME_EXTEND,
1356 RB_LEN_TIME_EXTEND,
1357 ts);
1358 if (!event)
bf41a158 1359 return -EBUSY;
7a8e76a3 1360
bf41a158
SR
1361 if (PTR_ERR(event) == -EAGAIN)
1362 return -EAGAIN;
1363
1364 /* Only a commited time event can update the write stamp */
1365 if (rb_is_commit(cpu_buffer, event)) {
1366 /*
1367 * If this is the first on the page, then we need to
1368 * update the page itself, and just put in a zero.
1369 */
1370 if (rb_event_index(event)) {
1371 event->time_delta = *delta & TS_MASK;
1372 event->array[0] = *delta >> TS_SHIFT;
1373 } else {
abc9b56d 1374 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1375 event->time_delta = 0;
1376 event->array[0] = 0;
1377 }
7a8e76a3 1378 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1379 /* let the caller know this was the commit */
1380 ret = 1;
1381 } else {
1382 /* Darn, this is just wasted space */
1383 event->time_delta = 0;
1384 event->array[0] = 0;
1385 ret = 0;
7a8e76a3
SR
1386 }
1387
bf41a158
SR
1388 *delta = 0;
1389
1390 return ret;
7a8e76a3
SR
1391}
1392
1393static struct ring_buffer_event *
1394rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 1395 unsigned long length)
7a8e76a3
SR
1396{
1397 struct ring_buffer_event *event;
1398 u64 ts, delta;
bf41a158 1399 int commit = 0;
818e3dd3 1400 int nr_loops = 0;
7a8e76a3 1401
be957c44 1402 length = rb_calculate_event_length(length);
bf41a158 1403 again:
818e3dd3
SR
1404 /*
1405 * We allow for interrupts to reenter here and do a trace.
1406 * If one does, it will cause this original code to loop
1407 * back here. Even with heavy interrupts happening, this
1408 * should only happen a few times in a row. If this happens
1409 * 1000 times in a row, there must be either an interrupt
1410 * storm or we have something buggy.
1411 * Bail!
1412 */
3e89c7bb 1413 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1414 return NULL;
818e3dd3 1415
37886f6a 1416 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1417
bf41a158
SR
1418 /*
1419 * Only the first commit can update the timestamp.
1420 * Yes there is a race here. If an interrupt comes in
1421 * just after the conditional and it traces too, then it
1422 * will also check the deltas. More than one timestamp may
1423 * also be made. But only the entry that did the actual
1424 * commit will be something other than zero.
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1427 rb_page_write(cpu_buffer->tail_page) ==
1428 rb_commit_index(cpu_buffer)) {
1429
7a8e76a3
SR
1430 delta = ts - cpu_buffer->write_stamp;
1431
bf41a158
SR
1432 /* make sure this delta is calculated here */
1433 barrier();
1434
1435 /* Did the write stamp get updated already? */
1436 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1437 delta = 0;
bf41a158 1438
7a8e76a3 1439 if (test_time_stamp(delta)) {
7a8e76a3 1440
bf41a158
SR
1441 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1442
1443 if (commit == -EBUSY)
7a8e76a3 1444 return NULL;
bf41a158
SR
1445
1446 if (commit == -EAGAIN)
1447 goto again;
1448
1449 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1450 }
bf41a158
SR
1451 } else
1452 /* Non commits have zero deltas */
7a8e76a3 1453 delta = 0;
7a8e76a3 1454
1cd8d735 1455 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
bf41a158
SR
1456 if (PTR_ERR(event) == -EAGAIN)
1457 goto again;
1458
1459 if (!event) {
1460 if (unlikely(commit))
1461 /*
1462 * Ouch! We needed a timestamp and it was commited. But
1463 * we didn't get our event reserved.
1464 */
1465 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1466 return NULL;
bf41a158 1467 }
7a8e76a3 1468
bf41a158
SR
1469 /*
1470 * If the timestamp was commited, make the commit our entry
1471 * now so that we will update it when needed.
1472 */
1473 if (commit)
1474 rb_set_commit_event(cpu_buffer, event);
1475 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1476 delta = 0;
1477
1478 event->time_delta = delta;
1479
1480 return event;
1481}
1482
aa18efb2 1483#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1484
1485static int trace_recursive_lock(void)
1486{
aa18efb2 1487 current->trace_recursion++;
261842b7 1488
aa18efb2
SR
1489 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1490 return 0;
e057a5e5 1491
aa18efb2
SR
1492 /* Disable all tracing before we do anything else */
1493 tracing_off_permanent();
261842b7 1494
7d7d2b80 1495 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1496 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1497 current->trace_recursion,
1498 hardirq_count() >> HARDIRQ_SHIFT,
1499 softirq_count() >> SOFTIRQ_SHIFT,
1500 in_nmi());
261842b7 1501
aa18efb2
SR
1502 WARN_ON_ONCE(1);
1503 return -1;
261842b7
SR
1504}
1505
1506static void trace_recursive_unlock(void)
1507{
aa18efb2 1508 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1509
aa18efb2 1510 current->trace_recursion--;
261842b7
SR
1511}
1512
bf41a158
SR
1513static DEFINE_PER_CPU(int, rb_need_resched);
1514
7a8e76a3
SR
1515/**
1516 * ring_buffer_lock_reserve - reserve a part of the buffer
1517 * @buffer: the ring buffer to reserve from
1518 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1519 *
1520 * Returns a reseverd event on the ring buffer to copy directly to.
1521 * The user of this interface will need to get the body to write into
1522 * and can use the ring_buffer_event_data() interface.
1523 *
1524 * The length is the length of the data needed, not the event length
1525 * which also includes the event header.
1526 *
1527 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1528 * If NULL is returned, then nothing has been allocated or locked.
1529 */
1530struct ring_buffer_event *
0a987751 1531ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1532{
1533 struct ring_buffer_per_cpu *cpu_buffer;
1534 struct ring_buffer_event *event;
bf41a158 1535 int cpu, resched;
7a8e76a3 1536
033601a3 1537 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1538 return NULL;
1539
7a8e76a3
SR
1540 if (atomic_read(&buffer->record_disabled))
1541 return NULL;
1542
bf41a158 1543 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1544 resched = ftrace_preempt_disable();
bf41a158 1545
261842b7
SR
1546 if (trace_recursive_lock())
1547 goto out_nocheck;
1548
7a8e76a3
SR
1549 cpu = raw_smp_processor_id();
1550
9e01c1b7 1551 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1552 goto out;
7a8e76a3
SR
1553
1554 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1555
1556 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1557 goto out;
7a8e76a3 1558
be957c44 1559 if (length > BUF_MAX_DATA_SIZE)
bf41a158 1560 goto out;
7a8e76a3 1561
1cd8d735 1562 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3 1563 if (!event)
d769041f 1564 goto out;
7a8e76a3 1565
bf41a158
SR
1566 /*
1567 * Need to store resched state on this cpu.
1568 * Only the first needs to.
1569 */
1570
1571 if (preempt_count() == 1)
1572 per_cpu(rb_need_resched, cpu) = resched;
1573
7a8e76a3
SR
1574 return event;
1575
d769041f 1576 out:
261842b7
SR
1577 trace_recursive_unlock();
1578
1579 out_nocheck:
182e9f5f 1580 ftrace_preempt_enable(resched);
7a8e76a3
SR
1581 return NULL;
1582}
c4f50183 1583EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1584
1585static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1586 struct ring_buffer_event *event)
1587{
e4906eff 1588 local_inc(&cpu_buffer->entries);
bf41a158
SR
1589
1590 /* Only process further if we own the commit */
1591 if (!rb_is_commit(cpu_buffer, event))
1592 return;
1593
1594 cpu_buffer->write_stamp += event->time_delta;
1595
1596 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1597}
1598
1599/**
1600 * ring_buffer_unlock_commit - commit a reserved
1601 * @buffer: The buffer to commit to
1602 * @event: The event pointer to commit.
7a8e76a3
SR
1603 *
1604 * This commits the data to the ring buffer, and releases any locks held.
1605 *
1606 * Must be paired with ring_buffer_lock_reserve.
1607 */
1608int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1609 struct ring_buffer_event *event)
7a8e76a3
SR
1610{
1611 struct ring_buffer_per_cpu *cpu_buffer;
1612 int cpu = raw_smp_processor_id();
1613
1614 cpu_buffer = buffer->buffers[cpu];
1615
7a8e76a3
SR
1616 rb_commit(cpu_buffer, event);
1617
261842b7
SR
1618 trace_recursive_unlock();
1619
bf41a158
SR
1620 /*
1621 * Only the last preempt count needs to restore preemption.
1622 */
182e9f5f
SR
1623 if (preempt_count() == 1)
1624 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1625 else
bf41a158 1626 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1627
1628 return 0;
1629}
c4f50183 1630EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1631
f3b9aae1
FW
1632static inline void rb_event_discard(struct ring_buffer_event *event)
1633{
334d4169
LJ
1634 /* array[0] holds the actual length for the discarded event */
1635 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1636 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1637 /* time delta must be non zero */
1638 if (!event->time_delta)
1639 event->time_delta = 1;
1640}
1641
fa1b47dd
SR
1642/**
1643 * ring_buffer_event_discard - discard any event in the ring buffer
1644 * @event: the event to discard
1645 *
1646 * Sometimes a event that is in the ring buffer needs to be ignored.
1647 * This function lets the user discard an event in the ring buffer
1648 * and then that event will not be read later.
1649 *
1650 * Note, it is up to the user to be careful with this, and protect
1651 * against races. If the user discards an event that has been consumed
1652 * it is possible that it could corrupt the ring buffer.
1653 */
1654void ring_buffer_event_discard(struct ring_buffer_event *event)
1655{
f3b9aae1 1656 rb_event_discard(event);
fa1b47dd
SR
1657}
1658EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1659
1660/**
1661 * ring_buffer_commit_discard - discard an event that has not been committed
1662 * @buffer: the ring buffer
1663 * @event: non committed event to discard
1664 *
1665 * This is similar to ring_buffer_event_discard but must only be
1666 * performed on an event that has not been committed yet. The difference
1667 * is that this will also try to free the event from the ring buffer
1668 * if another event has not been added behind it.
1669 *
1670 * If another event has been added behind it, it will set the event
1671 * up as discarded, and perform the commit.
1672 *
1673 * If this function is called, do not call ring_buffer_unlock_commit on
1674 * the event.
1675 */
1676void ring_buffer_discard_commit(struct ring_buffer *buffer,
1677 struct ring_buffer_event *event)
1678{
1679 struct ring_buffer_per_cpu *cpu_buffer;
1680 unsigned long new_index, old_index;
1681 struct buffer_page *bpage;
1682 unsigned long index;
1683 unsigned long addr;
1684 int cpu;
1685
1686 /* The event is discarded regardless */
f3b9aae1 1687 rb_event_discard(event);
fa1b47dd
SR
1688
1689 /*
1690 * This must only be called if the event has not been
1691 * committed yet. Thus we can assume that preemption
1692 * is still disabled.
1693 */
74f4fd21 1694 RB_WARN_ON(buffer, preemptible());
fa1b47dd
SR
1695
1696 cpu = smp_processor_id();
1697 cpu_buffer = buffer->buffers[cpu];
1698
1699 new_index = rb_event_index(event);
1700 old_index = new_index + rb_event_length(event);
1701 addr = (unsigned long)event;
1702 addr &= PAGE_MASK;
1703
1704 bpage = cpu_buffer->tail_page;
1705
1706 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1707 /*
1708 * This is on the tail page. It is possible that
1709 * a write could come in and move the tail page
1710 * and write to the next page. That is fine
1711 * because we just shorten what is on this page.
1712 */
1713 index = local_cmpxchg(&bpage->write, old_index, new_index);
1714 if (index == old_index)
1715 goto out;
1716 }
1717
1718 /*
1719 * The commit is still visible by the reader, so we
1720 * must increment entries.
1721 */
e4906eff 1722 local_inc(&cpu_buffer->entries);
fa1b47dd
SR
1723 out:
1724 /*
1725 * If a write came in and pushed the tail page
1726 * we still need to update the commit pointer
1727 * if we were the commit.
1728 */
1729 if (rb_is_commit(cpu_buffer, event))
1730 rb_set_commit_to_write(cpu_buffer);
1731
f3b9aae1
FW
1732 trace_recursive_unlock();
1733
fa1b47dd
SR
1734 /*
1735 * Only the last preempt count needs to restore preemption.
1736 */
1737 if (preempt_count() == 1)
1738 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1739 else
1740 preempt_enable_no_resched_notrace();
1741
1742}
1743EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1744
7a8e76a3
SR
1745/**
1746 * ring_buffer_write - write data to the buffer without reserving
1747 * @buffer: The ring buffer to write to.
1748 * @length: The length of the data being written (excluding the event header)
1749 * @data: The data to write to the buffer.
1750 *
1751 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1752 * one function. If you already have the data to write to the buffer, it
1753 * may be easier to simply call this function.
1754 *
1755 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1756 * and not the length of the event which would hold the header.
1757 */
1758int ring_buffer_write(struct ring_buffer *buffer,
1759 unsigned long length,
1760 void *data)
1761{
1762 struct ring_buffer_per_cpu *cpu_buffer;
1763 struct ring_buffer_event *event;
7a8e76a3
SR
1764 void *body;
1765 int ret = -EBUSY;
bf41a158 1766 int cpu, resched;
7a8e76a3 1767
033601a3 1768 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1769 return -EBUSY;
1770
7a8e76a3
SR
1771 if (atomic_read(&buffer->record_disabled))
1772 return -EBUSY;
1773
182e9f5f 1774 resched = ftrace_preempt_disable();
bf41a158 1775
7a8e76a3
SR
1776 cpu = raw_smp_processor_id();
1777
9e01c1b7 1778 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1779 goto out;
7a8e76a3
SR
1780
1781 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1782
1783 if (atomic_read(&cpu_buffer->record_disabled))
1784 goto out;
1785
be957c44
SR
1786 if (length > BUF_MAX_DATA_SIZE)
1787 goto out;
1788
1789 event = rb_reserve_next_event(cpu_buffer, length);
7a8e76a3
SR
1790 if (!event)
1791 goto out;
1792
1793 body = rb_event_data(event);
1794
1795 memcpy(body, data, length);
1796
1797 rb_commit(cpu_buffer, event);
1798
1799 ret = 0;
1800 out:
182e9f5f 1801 ftrace_preempt_enable(resched);
7a8e76a3
SR
1802
1803 return ret;
1804}
c4f50183 1805EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1806
34a148bf 1807static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1808{
1809 struct buffer_page *reader = cpu_buffer->reader_page;
1810 struct buffer_page *head = cpu_buffer->head_page;
1811 struct buffer_page *commit = cpu_buffer->commit_page;
1812
1813 return reader->read == rb_page_commit(reader) &&
1814 (commit == reader ||
1815 (commit == head &&
1816 head->read == rb_page_commit(commit)));
1817}
1818
7a8e76a3
SR
1819/**
1820 * ring_buffer_record_disable - stop all writes into the buffer
1821 * @buffer: The ring buffer to stop writes to.
1822 *
1823 * This prevents all writes to the buffer. Any attempt to write
1824 * to the buffer after this will fail and return NULL.
1825 *
1826 * The caller should call synchronize_sched() after this.
1827 */
1828void ring_buffer_record_disable(struct ring_buffer *buffer)
1829{
1830 atomic_inc(&buffer->record_disabled);
1831}
c4f50183 1832EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1833
1834/**
1835 * ring_buffer_record_enable - enable writes to the buffer
1836 * @buffer: The ring buffer to enable writes
1837 *
1838 * Note, multiple disables will need the same number of enables
1839 * to truely enable the writing (much like preempt_disable).
1840 */
1841void ring_buffer_record_enable(struct ring_buffer *buffer)
1842{
1843 atomic_dec(&buffer->record_disabled);
1844}
c4f50183 1845EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1846
1847/**
1848 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1849 * @buffer: The ring buffer to stop writes to.
1850 * @cpu: The CPU buffer to stop
1851 *
1852 * This prevents all writes to the buffer. Any attempt to write
1853 * to the buffer after this will fail and return NULL.
1854 *
1855 * The caller should call synchronize_sched() after this.
1856 */
1857void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1858{
1859 struct ring_buffer_per_cpu *cpu_buffer;
1860
9e01c1b7 1861 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1862 return;
7a8e76a3
SR
1863
1864 cpu_buffer = buffer->buffers[cpu];
1865 atomic_inc(&cpu_buffer->record_disabled);
1866}
c4f50183 1867EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1868
1869/**
1870 * ring_buffer_record_enable_cpu - enable writes to the buffer
1871 * @buffer: The ring buffer to enable writes
1872 * @cpu: The CPU to enable.
1873 *
1874 * Note, multiple disables will need the same number of enables
1875 * to truely enable the writing (much like preempt_disable).
1876 */
1877void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1878{
1879 struct ring_buffer_per_cpu *cpu_buffer;
1880
9e01c1b7 1881 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1882 return;
7a8e76a3
SR
1883
1884 cpu_buffer = buffer->buffers[cpu];
1885 atomic_dec(&cpu_buffer->record_disabled);
1886}
c4f50183 1887EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1888
1889/**
1890 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1891 * @buffer: The ring buffer
1892 * @cpu: The per CPU buffer to get the entries from.
1893 */
1894unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1895{
1896 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1897 unsigned long ret;
7a8e76a3 1898
9e01c1b7 1899 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1900 return 0;
7a8e76a3
SR
1901
1902 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1903 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1904 - cpu_buffer->read;
554f786e
SR
1905
1906 return ret;
7a8e76a3 1907}
c4f50183 1908EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1909
1910/**
1911 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1912 * @buffer: The ring buffer
1913 * @cpu: The per CPU buffer to get the number of overruns from
1914 */
1915unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1916{
1917 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1918 unsigned long ret;
7a8e76a3 1919
9e01c1b7 1920 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1921 return 0;
7a8e76a3
SR
1922
1923 cpu_buffer = buffer->buffers[cpu];
554f786e 1924 ret = cpu_buffer->overrun;
554f786e
SR
1925
1926 return ret;
7a8e76a3 1927}
c4f50183 1928EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1929
f0d2c681
SR
1930/**
1931 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1932 * @buffer: The ring buffer
1933 * @cpu: The per CPU buffer to get the number of overruns from
1934 */
1935unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1936{
1937 struct ring_buffer_per_cpu *cpu_buffer;
1938 unsigned long ret;
1939
1940 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1941 return 0;
1942
1943 cpu_buffer = buffer->buffers[cpu];
1944 ret = cpu_buffer->nmi_dropped;
1945
1946 return ret;
1947}
1948EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1949
1950/**
1951 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1952 * @buffer: The ring buffer
1953 * @cpu: The per CPU buffer to get the number of overruns from
1954 */
1955unsigned long
1956ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1957{
1958 struct ring_buffer_per_cpu *cpu_buffer;
1959 unsigned long ret;
1960
1961 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1962 return 0;
1963
1964 cpu_buffer = buffer->buffers[cpu];
1965 ret = cpu_buffer->commit_overrun;
1966
1967 return ret;
1968}
1969EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1970
7a8e76a3
SR
1971/**
1972 * ring_buffer_entries - get the number of entries in a buffer
1973 * @buffer: The ring buffer
1974 *
1975 * Returns the total number of entries in the ring buffer
1976 * (all CPU entries)
1977 */
1978unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1979{
1980 struct ring_buffer_per_cpu *cpu_buffer;
1981 unsigned long entries = 0;
1982 int cpu;
1983
1984 /* if you care about this being correct, lock the buffer */
1985 for_each_buffer_cpu(buffer, cpu) {
1986 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1987 entries += (local_read(&cpu_buffer->entries) -
1988 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
1989 }
1990
1991 return entries;
1992}
c4f50183 1993EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1994
1995/**
1996 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1997 * @buffer: The ring buffer
1998 *
1999 * Returns the total number of overruns in the ring buffer
2000 * (all CPU entries)
2001 */
2002unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2003{
2004 struct ring_buffer_per_cpu *cpu_buffer;
2005 unsigned long overruns = 0;
2006 int cpu;
2007
2008 /* if you care about this being correct, lock the buffer */
2009 for_each_buffer_cpu(buffer, cpu) {
2010 cpu_buffer = buffer->buffers[cpu];
2011 overruns += cpu_buffer->overrun;
2012 }
2013
2014 return overruns;
2015}
c4f50183 2016EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2017
642edba5 2018static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2019{
2020 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2021
d769041f
SR
2022 /* Iterator usage is expected to have record disabled */
2023 if (list_empty(&cpu_buffer->reader_page->list)) {
2024 iter->head_page = cpu_buffer->head_page;
6f807acd 2025 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2026 } else {
2027 iter->head_page = cpu_buffer->reader_page;
6f807acd 2028 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2029 }
2030 if (iter->head)
2031 iter->read_stamp = cpu_buffer->read_stamp;
2032 else
abc9b56d 2033 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2034}
f83c9d0f 2035
642edba5
SR
2036/**
2037 * ring_buffer_iter_reset - reset an iterator
2038 * @iter: The iterator to reset
2039 *
2040 * Resets the iterator, so that it will start from the beginning
2041 * again.
2042 */
2043void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2044{
554f786e 2045 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2046 unsigned long flags;
2047
554f786e
SR
2048 if (!iter)
2049 return;
2050
2051 cpu_buffer = iter->cpu_buffer;
2052
642edba5
SR
2053 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2054 rb_iter_reset(iter);
f83c9d0f 2055 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2056}
c4f50183 2057EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2058
2059/**
2060 * ring_buffer_iter_empty - check if an iterator has no more to read
2061 * @iter: The iterator to check
2062 */
2063int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2064{
2065 struct ring_buffer_per_cpu *cpu_buffer;
2066
2067 cpu_buffer = iter->cpu_buffer;
2068
bf41a158
SR
2069 return iter->head_page == cpu_buffer->commit_page &&
2070 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2071}
c4f50183 2072EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2073
2074static void
2075rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2076 struct ring_buffer_event *event)
2077{
2078 u64 delta;
2079
334d4169 2080 switch (event->type_len) {
7a8e76a3
SR
2081 case RINGBUF_TYPE_PADDING:
2082 return;
2083
2084 case RINGBUF_TYPE_TIME_EXTEND:
2085 delta = event->array[0];
2086 delta <<= TS_SHIFT;
2087 delta += event->time_delta;
2088 cpu_buffer->read_stamp += delta;
2089 return;
2090
2091 case RINGBUF_TYPE_TIME_STAMP:
2092 /* FIXME: not implemented */
2093 return;
2094
2095 case RINGBUF_TYPE_DATA:
2096 cpu_buffer->read_stamp += event->time_delta;
2097 return;
2098
2099 default:
2100 BUG();
2101 }
2102 return;
2103}
2104
2105static void
2106rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2107 struct ring_buffer_event *event)
2108{
2109 u64 delta;
2110
334d4169 2111 switch (event->type_len) {
7a8e76a3
SR
2112 case RINGBUF_TYPE_PADDING:
2113 return;
2114
2115 case RINGBUF_TYPE_TIME_EXTEND:
2116 delta = event->array[0];
2117 delta <<= TS_SHIFT;
2118 delta += event->time_delta;
2119 iter->read_stamp += delta;
2120 return;
2121
2122 case RINGBUF_TYPE_TIME_STAMP:
2123 /* FIXME: not implemented */
2124 return;
2125
2126 case RINGBUF_TYPE_DATA:
2127 iter->read_stamp += event->time_delta;
2128 return;
2129
2130 default:
2131 BUG();
2132 }
2133 return;
2134}
2135
d769041f
SR
2136static struct buffer_page *
2137rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2138{
d769041f
SR
2139 struct buffer_page *reader = NULL;
2140 unsigned long flags;
818e3dd3 2141 int nr_loops = 0;
d769041f 2142
3e03fb7f
SR
2143 local_irq_save(flags);
2144 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2145
2146 again:
818e3dd3
SR
2147 /*
2148 * This should normally only loop twice. But because the
2149 * start of the reader inserts an empty page, it causes
2150 * a case where we will loop three times. There should be no
2151 * reason to loop four times (that I know of).
2152 */
3e89c7bb 2153 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2154 reader = NULL;
2155 goto out;
2156 }
2157
d769041f
SR
2158 reader = cpu_buffer->reader_page;
2159
2160 /* If there's more to read, return this page */
bf41a158 2161 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2162 goto out;
2163
2164 /* Never should we have an index greater than the size */
3e89c7bb
SR
2165 if (RB_WARN_ON(cpu_buffer,
2166 cpu_buffer->reader_page->read > rb_page_size(reader)))
2167 goto out;
d769041f
SR
2168
2169 /* check if we caught up to the tail */
2170 reader = NULL;
bf41a158 2171 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2172 goto out;
7a8e76a3
SR
2173
2174 /*
d769041f
SR
2175 * Splice the empty reader page into the list around the head.
2176 * Reset the reader page to size zero.
7a8e76a3 2177 */
7a8e76a3 2178
d769041f
SR
2179 reader = cpu_buffer->head_page;
2180 cpu_buffer->reader_page->list.next = reader->list.next;
2181 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2182
2183 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2184 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2185 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2186
d769041f
SR
2187 /* Make the reader page now replace the head */
2188 reader->list.prev->next = &cpu_buffer->reader_page->list;
2189 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2190
2191 /*
d769041f
SR
2192 * If the tail is on the reader, then we must set the head
2193 * to the inserted page, otherwise we set it one before.
7a8e76a3 2194 */
d769041f 2195 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2196
bf41a158 2197 if (cpu_buffer->commit_page != reader)
d769041f
SR
2198 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2199
2200 /* Finally update the reader page to the new head */
2201 cpu_buffer->reader_page = reader;
2202 rb_reset_reader_page(cpu_buffer);
2203
2204 goto again;
2205
2206 out:
3e03fb7f
SR
2207 __raw_spin_unlock(&cpu_buffer->lock);
2208 local_irq_restore(flags);
d769041f
SR
2209
2210 return reader;
2211}
2212
2213static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2214{
2215 struct ring_buffer_event *event;
2216 struct buffer_page *reader;
2217 unsigned length;
2218
2219 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2220
d769041f 2221 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2222 if (RB_WARN_ON(cpu_buffer, !reader))
2223 return;
7a8e76a3 2224
d769041f
SR
2225 event = rb_reader_event(cpu_buffer);
2226
334d4169
LJ
2227 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2228 || rb_discarded_event(event))
e4906eff 2229 cpu_buffer->read++;
d769041f
SR
2230
2231 rb_update_read_stamp(cpu_buffer, event);
2232
2233 length = rb_event_length(event);
6f807acd 2234 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2235}
2236
2237static void rb_advance_iter(struct ring_buffer_iter *iter)
2238{
2239 struct ring_buffer *buffer;
2240 struct ring_buffer_per_cpu *cpu_buffer;
2241 struct ring_buffer_event *event;
2242 unsigned length;
2243
2244 cpu_buffer = iter->cpu_buffer;
2245 buffer = cpu_buffer->buffer;
2246
2247 /*
2248 * Check if we are at the end of the buffer.
2249 */
bf41a158 2250 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
2251 if (RB_WARN_ON(buffer,
2252 iter->head_page == cpu_buffer->commit_page))
2253 return;
d769041f 2254 rb_inc_iter(iter);
7a8e76a3
SR
2255 return;
2256 }
2257
2258 event = rb_iter_head_event(iter);
2259
2260 length = rb_event_length(event);
2261
2262 /*
2263 * This should not be called to advance the header if we are
2264 * at the tail of the buffer.
2265 */
3e89c7bb 2266 if (RB_WARN_ON(cpu_buffer,
f536aafc 2267 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2268 (iter->head + length > rb_commit_index(cpu_buffer))))
2269 return;
7a8e76a3
SR
2270
2271 rb_update_iter_read_stamp(iter, event);
2272
2273 iter->head += length;
2274
2275 /* check for end of page padding */
bf41a158
SR
2276 if ((iter->head >= rb_page_size(iter->head_page)) &&
2277 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2278 rb_advance_iter(iter);
2279}
2280
f83c9d0f
SR
2281static struct ring_buffer_event *
2282rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2283{
2284 struct ring_buffer_per_cpu *cpu_buffer;
2285 struct ring_buffer_event *event;
d769041f 2286 struct buffer_page *reader;
818e3dd3 2287 int nr_loops = 0;
7a8e76a3 2288
7a8e76a3
SR
2289 cpu_buffer = buffer->buffers[cpu];
2290
2291 again:
818e3dd3
SR
2292 /*
2293 * We repeat when a timestamp is encountered. It is possible
2294 * to get multiple timestamps from an interrupt entering just
2295 * as one timestamp is about to be written. The max times
2296 * that this can happen is the number of nested interrupts we
2297 * can have. Nesting 10 deep of interrupts is clearly
2298 * an anomaly.
2299 */
3e89c7bb 2300 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2301 return NULL;
818e3dd3 2302
d769041f
SR
2303 reader = rb_get_reader_page(cpu_buffer);
2304 if (!reader)
7a8e76a3
SR
2305 return NULL;
2306
d769041f 2307 event = rb_reader_event(cpu_buffer);
7a8e76a3 2308
334d4169 2309 switch (event->type_len) {
7a8e76a3 2310 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2311 if (rb_null_event(event))
2312 RB_WARN_ON(cpu_buffer, 1);
2313 /*
2314 * Because the writer could be discarding every
2315 * event it creates (which would probably be bad)
2316 * if we were to go back to "again" then we may never
2317 * catch up, and will trigger the warn on, or lock
2318 * the box. Return the padding, and we will release
2319 * the current locks, and try again.
2320 */
d769041f 2321 rb_advance_reader(cpu_buffer);
2d622719 2322 return event;
7a8e76a3
SR
2323
2324 case RINGBUF_TYPE_TIME_EXTEND:
2325 /* Internal data, OK to advance */
d769041f 2326 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2327 goto again;
2328
2329 case RINGBUF_TYPE_TIME_STAMP:
2330 /* FIXME: not implemented */
d769041f 2331 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2332 goto again;
2333
2334 case RINGBUF_TYPE_DATA:
2335 if (ts) {
2336 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2337 ring_buffer_normalize_time_stamp(buffer,
2338 cpu_buffer->cpu, ts);
7a8e76a3
SR
2339 }
2340 return event;
2341
2342 default:
2343 BUG();
2344 }
2345
2346 return NULL;
2347}
c4f50183 2348EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2349
f83c9d0f
SR
2350static struct ring_buffer_event *
2351rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2352{
2353 struct ring_buffer *buffer;
2354 struct ring_buffer_per_cpu *cpu_buffer;
2355 struct ring_buffer_event *event;
818e3dd3 2356 int nr_loops = 0;
7a8e76a3
SR
2357
2358 if (ring_buffer_iter_empty(iter))
2359 return NULL;
2360
2361 cpu_buffer = iter->cpu_buffer;
2362 buffer = cpu_buffer->buffer;
2363
2364 again:
818e3dd3
SR
2365 /*
2366 * We repeat when a timestamp is encountered. It is possible
2367 * to get multiple timestamps from an interrupt entering just
2368 * as one timestamp is about to be written. The max times
2369 * that this can happen is the number of nested interrupts we
2370 * can have. Nesting 10 deep of interrupts is clearly
2371 * an anomaly.
2372 */
3e89c7bb 2373 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2374 return NULL;
818e3dd3 2375
7a8e76a3
SR
2376 if (rb_per_cpu_empty(cpu_buffer))
2377 return NULL;
2378
2379 event = rb_iter_head_event(iter);
2380
334d4169 2381 switch (event->type_len) {
7a8e76a3 2382 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2383 if (rb_null_event(event)) {
2384 rb_inc_iter(iter);
2385 goto again;
2386 }
2387 rb_advance_iter(iter);
2388 return event;
7a8e76a3
SR
2389
2390 case RINGBUF_TYPE_TIME_EXTEND:
2391 /* Internal data, OK to advance */
2392 rb_advance_iter(iter);
2393 goto again;
2394
2395 case RINGBUF_TYPE_TIME_STAMP:
2396 /* FIXME: not implemented */
2397 rb_advance_iter(iter);
2398 goto again;
2399
2400 case RINGBUF_TYPE_DATA:
2401 if (ts) {
2402 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2403 ring_buffer_normalize_time_stamp(buffer,
2404 cpu_buffer->cpu, ts);
7a8e76a3
SR
2405 }
2406 return event;
2407
2408 default:
2409 BUG();
2410 }
2411
2412 return NULL;
2413}
c4f50183 2414EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2415
f83c9d0f
SR
2416/**
2417 * ring_buffer_peek - peek at the next event to be read
2418 * @buffer: The ring buffer to read
2419 * @cpu: The cpu to peak at
2420 * @ts: The timestamp counter of this event.
2421 *
2422 * This will return the event that will be read next, but does
2423 * not consume the data.
2424 */
2425struct ring_buffer_event *
2426ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2427{
2428 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2429 struct ring_buffer_event *event;
f83c9d0f
SR
2430 unsigned long flags;
2431
554f786e 2432 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2433 return NULL;
554f786e 2434
2d622719 2435 again:
f83c9d0f
SR
2436 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2437 event = rb_buffer_peek(buffer, cpu, ts);
2438 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2439
334d4169 2440 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2441 cpu_relax();
2442 goto again;
2443 }
2444
f83c9d0f
SR
2445 return event;
2446}
2447
2448/**
2449 * ring_buffer_iter_peek - peek at the next event to be read
2450 * @iter: The ring buffer iterator
2451 * @ts: The timestamp counter of this event.
2452 *
2453 * This will return the event that will be read next, but does
2454 * not increment the iterator.
2455 */
2456struct ring_buffer_event *
2457ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2458{
2459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2460 struct ring_buffer_event *event;
2461 unsigned long flags;
2462
2d622719 2463 again:
f83c9d0f
SR
2464 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2465 event = rb_iter_peek(iter, ts);
2466 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2467
334d4169 2468 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2469 cpu_relax();
2470 goto again;
2471 }
2472
f83c9d0f
SR
2473 return event;
2474}
2475
7a8e76a3
SR
2476/**
2477 * ring_buffer_consume - return an event and consume it
2478 * @buffer: The ring buffer to get the next event from
2479 *
2480 * Returns the next event in the ring buffer, and that event is consumed.
2481 * Meaning, that sequential reads will keep returning a different event,
2482 * and eventually empty the ring buffer if the producer is slower.
2483 */
2484struct ring_buffer_event *
2485ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2486{
554f786e
SR
2487 struct ring_buffer_per_cpu *cpu_buffer;
2488 struct ring_buffer_event *event = NULL;
f83c9d0f 2489 unsigned long flags;
7a8e76a3 2490
2d622719 2491 again:
554f786e
SR
2492 /* might be called in atomic */
2493 preempt_disable();
2494
9e01c1b7 2495 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2496 goto out;
7a8e76a3 2497
554f786e 2498 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2499 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2500
2501 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2502 if (!event)
554f786e 2503 goto out_unlock;
7a8e76a3 2504
d769041f 2505 rb_advance_reader(cpu_buffer);
7a8e76a3 2506
554f786e 2507 out_unlock:
f83c9d0f
SR
2508 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2509
554f786e
SR
2510 out:
2511 preempt_enable();
2512
334d4169 2513 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2514 cpu_relax();
2515 goto again;
2516 }
2517
7a8e76a3
SR
2518 return event;
2519}
c4f50183 2520EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2521
2522/**
2523 * ring_buffer_read_start - start a non consuming read of the buffer
2524 * @buffer: The ring buffer to read from
2525 * @cpu: The cpu buffer to iterate over
2526 *
2527 * This starts up an iteration through the buffer. It also disables
2528 * the recording to the buffer until the reading is finished.
2529 * This prevents the reading from being corrupted. This is not
2530 * a consuming read, so a producer is not expected.
2531 *
2532 * Must be paired with ring_buffer_finish.
2533 */
2534struct ring_buffer_iter *
2535ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2536{
2537 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2538 struct ring_buffer_iter *iter;
d769041f 2539 unsigned long flags;
7a8e76a3 2540
9e01c1b7 2541 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2542 return NULL;
7a8e76a3
SR
2543
2544 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2545 if (!iter)
8aabee57 2546 return NULL;
7a8e76a3
SR
2547
2548 cpu_buffer = buffer->buffers[cpu];
2549
2550 iter->cpu_buffer = cpu_buffer;
2551
2552 atomic_inc(&cpu_buffer->record_disabled);
2553 synchronize_sched();
2554
f83c9d0f 2555 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2556 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2557 rb_iter_reset(iter);
3e03fb7f 2558 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2559 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2560
2561 return iter;
2562}
c4f50183 2563EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2564
2565/**
2566 * ring_buffer_finish - finish reading the iterator of the buffer
2567 * @iter: The iterator retrieved by ring_buffer_start
2568 *
2569 * This re-enables the recording to the buffer, and frees the
2570 * iterator.
2571 */
2572void
2573ring_buffer_read_finish(struct ring_buffer_iter *iter)
2574{
2575 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2576
2577 atomic_dec(&cpu_buffer->record_disabled);
2578 kfree(iter);
2579}
c4f50183 2580EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2581
2582/**
2583 * ring_buffer_read - read the next item in the ring buffer by the iterator
2584 * @iter: The ring buffer iterator
2585 * @ts: The time stamp of the event read.
2586 *
2587 * This reads the next event in the ring buffer and increments the iterator.
2588 */
2589struct ring_buffer_event *
2590ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2591{
2592 struct ring_buffer_event *event;
f83c9d0f
SR
2593 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2594 unsigned long flags;
7a8e76a3 2595
2d622719 2596 again:
f83c9d0f
SR
2597 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2598 event = rb_iter_peek(iter, ts);
7a8e76a3 2599 if (!event)
f83c9d0f 2600 goto out;
7a8e76a3
SR
2601
2602 rb_advance_iter(iter);
f83c9d0f
SR
2603 out:
2604 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2605
334d4169 2606 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2607 cpu_relax();
2608 goto again;
2609 }
2610
7a8e76a3
SR
2611 return event;
2612}
c4f50183 2613EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2614
2615/**
2616 * ring_buffer_size - return the size of the ring buffer (in bytes)
2617 * @buffer: The ring buffer.
2618 */
2619unsigned long ring_buffer_size(struct ring_buffer *buffer)
2620{
2621 return BUF_PAGE_SIZE * buffer->pages;
2622}
c4f50183 2623EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2624
2625static void
2626rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2627{
2628 cpu_buffer->head_page
2629 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2630 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2631 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2632 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2633
6f807acd 2634 cpu_buffer->head_page->read = 0;
bf41a158
SR
2635
2636 cpu_buffer->tail_page = cpu_buffer->head_page;
2637 cpu_buffer->commit_page = cpu_buffer->head_page;
2638
2639 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2640 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2641 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2642 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2643 cpu_buffer->reader_page->read = 0;
7a8e76a3 2644
f0d2c681
SR
2645 cpu_buffer->nmi_dropped = 0;
2646 cpu_buffer->commit_overrun = 0;
7a8e76a3 2647 cpu_buffer->overrun = 0;
e4906eff
SR
2648 cpu_buffer->read = 0;
2649 local_set(&cpu_buffer->entries, 0);
69507c06
SR
2650
2651 cpu_buffer->write_stamp = 0;
2652 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2653}
2654
2655/**
2656 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2657 * @buffer: The ring buffer to reset a per cpu buffer of
2658 * @cpu: The CPU buffer to be reset
2659 */
2660void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2661{
2662 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2663 unsigned long flags;
2664
9e01c1b7 2665 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2666 return;
7a8e76a3 2667
41ede23e
SR
2668 atomic_inc(&cpu_buffer->record_disabled);
2669
f83c9d0f
SR
2670 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2671
3e03fb7f 2672 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2673
2674 rb_reset_cpu(cpu_buffer);
2675
3e03fb7f 2676 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2677
2678 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2679
2680 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2681}
c4f50183 2682EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2683
2684/**
2685 * ring_buffer_reset - reset a ring buffer
2686 * @buffer: The ring buffer to reset all cpu buffers
2687 */
2688void ring_buffer_reset(struct ring_buffer *buffer)
2689{
7a8e76a3
SR
2690 int cpu;
2691
7a8e76a3 2692 for_each_buffer_cpu(buffer, cpu)
d769041f 2693 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2694}
c4f50183 2695EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2696
2697/**
2698 * rind_buffer_empty - is the ring buffer empty?
2699 * @buffer: The ring buffer to test
2700 */
2701int ring_buffer_empty(struct ring_buffer *buffer)
2702{
2703 struct ring_buffer_per_cpu *cpu_buffer;
2704 int cpu;
2705
2706 /* yes this is racy, but if you don't like the race, lock the buffer */
2707 for_each_buffer_cpu(buffer, cpu) {
2708 cpu_buffer = buffer->buffers[cpu];
2709 if (!rb_per_cpu_empty(cpu_buffer))
2710 return 0;
2711 }
554f786e 2712
7a8e76a3
SR
2713 return 1;
2714}
c4f50183 2715EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2716
2717/**
2718 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2719 * @buffer: The ring buffer
2720 * @cpu: The CPU buffer to test
2721 */
2722int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2723{
2724 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2725 int ret;
7a8e76a3 2726
9e01c1b7 2727 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2728 return 1;
7a8e76a3
SR
2729
2730 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2731 ret = rb_per_cpu_empty(cpu_buffer);
2732
554f786e
SR
2733
2734 return ret;
7a8e76a3 2735}
c4f50183 2736EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2737
2738/**
2739 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2740 * @buffer_a: One buffer to swap with
2741 * @buffer_b: The other buffer to swap with
2742 *
2743 * This function is useful for tracers that want to take a "snapshot"
2744 * of a CPU buffer and has another back up buffer lying around.
2745 * it is expected that the tracer handles the cpu buffer not being
2746 * used at the moment.
2747 */
2748int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2749 struct ring_buffer *buffer_b, int cpu)
2750{
2751 struct ring_buffer_per_cpu *cpu_buffer_a;
2752 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2753 int ret = -EINVAL;
2754
9e01c1b7
RR
2755 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2756 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2757 goto out;
7a8e76a3
SR
2758
2759 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2760 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2761 goto out;
2762
2763 ret = -EAGAIN;
7a8e76a3 2764
97b17efe 2765 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2766 goto out;
97b17efe
SR
2767
2768 if (atomic_read(&buffer_a->record_disabled))
554f786e 2769 goto out;
97b17efe
SR
2770
2771 if (atomic_read(&buffer_b->record_disabled))
554f786e 2772 goto out;
97b17efe 2773
7a8e76a3
SR
2774 cpu_buffer_a = buffer_a->buffers[cpu];
2775 cpu_buffer_b = buffer_b->buffers[cpu];
2776
97b17efe 2777 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2778 goto out;
97b17efe
SR
2779
2780 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2781 goto out;
97b17efe 2782
7a8e76a3
SR
2783 /*
2784 * We can't do a synchronize_sched here because this
2785 * function can be called in atomic context.
2786 * Normally this will be called from the same CPU as cpu.
2787 * If not it's up to the caller to protect this.
2788 */
2789 atomic_inc(&cpu_buffer_a->record_disabled);
2790 atomic_inc(&cpu_buffer_b->record_disabled);
2791
2792 buffer_a->buffers[cpu] = cpu_buffer_b;
2793 buffer_b->buffers[cpu] = cpu_buffer_a;
2794
2795 cpu_buffer_b->buffer = buffer_a;
2796 cpu_buffer_a->buffer = buffer_b;
2797
2798 atomic_dec(&cpu_buffer_a->record_disabled);
2799 atomic_dec(&cpu_buffer_b->record_disabled);
2800
554f786e
SR
2801 ret = 0;
2802out:
554f786e 2803 return ret;
7a8e76a3 2804}
c4f50183 2805EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2806
8789a9e7
SR
2807/**
2808 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2809 * @buffer: the buffer to allocate for.
2810 *
2811 * This function is used in conjunction with ring_buffer_read_page.
2812 * When reading a full page from the ring buffer, these functions
2813 * can be used to speed up the process. The calling function should
2814 * allocate a few pages first with this function. Then when it
2815 * needs to get pages from the ring buffer, it passes the result
2816 * of this function into ring_buffer_read_page, which will swap
2817 * the page that was allocated, with the read page of the buffer.
2818 *
2819 * Returns:
2820 * The page allocated, or NULL on error.
2821 */
2822void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2823{
044fa782 2824 struct buffer_data_page *bpage;
ef7a4a16 2825 unsigned long addr;
8789a9e7
SR
2826
2827 addr = __get_free_page(GFP_KERNEL);
2828 if (!addr)
2829 return NULL;
2830
044fa782 2831 bpage = (void *)addr;
8789a9e7 2832
ef7a4a16
SR
2833 rb_init_page(bpage);
2834
044fa782 2835 return bpage;
8789a9e7 2836}
d6ce96da 2837EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2838
2839/**
2840 * ring_buffer_free_read_page - free an allocated read page
2841 * @buffer: the buffer the page was allocate for
2842 * @data: the page to free
2843 *
2844 * Free a page allocated from ring_buffer_alloc_read_page.
2845 */
2846void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2847{
2848 free_page((unsigned long)data);
2849}
d6ce96da 2850EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2851
2852/**
2853 * ring_buffer_read_page - extract a page from the ring buffer
2854 * @buffer: buffer to extract from
2855 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2856 * @len: amount to extract
8789a9e7
SR
2857 * @cpu: the cpu of the buffer to extract
2858 * @full: should the extraction only happen when the page is full.
2859 *
2860 * This function will pull out a page from the ring buffer and consume it.
2861 * @data_page must be the address of the variable that was returned
2862 * from ring_buffer_alloc_read_page. This is because the page might be used
2863 * to swap with a page in the ring buffer.
2864 *
2865 * for example:
b85fa01e 2866 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2867 * if (!rpage)
2868 * return error;
ef7a4a16 2869 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2870 * if (ret >= 0)
2871 * process_page(rpage, ret);
8789a9e7
SR
2872 *
2873 * When @full is set, the function will not return true unless
2874 * the writer is off the reader page.
2875 *
2876 * Note: it is up to the calling functions to handle sleeps and wakeups.
2877 * The ring buffer can be used anywhere in the kernel and can not
2878 * blindly call wake_up. The layer that uses the ring buffer must be
2879 * responsible for that.
2880 *
2881 * Returns:
667d2412
LJ
2882 * >=0 if data has been transferred, returns the offset of consumed data.
2883 * <0 if no data has been transferred.
8789a9e7
SR
2884 */
2885int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2886 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2887{
2888 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2889 struct ring_buffer_event *event;
044fa782 2890 struct buffer_data_page *bpage;
ef7a4a16 2891 struct buffer_page *reader;
8789a9e7 2892 unsigned long flags;
ef7a4a16 2893 unsigned int commit;
667d2412 2894 unsigned int read;
4f3640f8 2895 u64 save_timestamp;
667d2412 2896 int ret = -1;
8789a9e7 2897
554f786e
SR
2898 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2899 goto out;
2900
474d32b6
SR
2901 /*
2902 * If len is not big enough to hold the page header, then
2903 * we can not copy anything.
2904 */
2905 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2906 goto out;
474d32b6
SR
2907
2908 len -= BUF_PAGE_HDR_SIZE;
2909
8789a9e7 2910 if (!data_page)
554f786e 2911 goto out;
8789a9e7 2912
044fa782
SR
2913 bpage = *data_page;
2914 if (!bpage)
554f786e 2915 goto out;
8789a9e7
SR
2916
2917 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2918
ef7a4a16
SR
2919 reader = rb_get_reader_page(cpu_buffer);
2920 if (!reader)
554f786e 2921 goto out_unlock;
8789a9e7 2922
ef7a4a16
SR
2923 event = rb_reader_event(cpu_buffer);
2924
2925 read = reader->read;
2926 commit = rb_page_commit(reader);
667d2412 2927
8789a9e7 2928 /*
474d32b6
SR
2929 * If this page has been partially read or
2930 * if len is not big enough to read the rest of the page or
2931 * a writer is still on the page, then
2932 * we must copy the data from the page to the buffer.
2933 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2934 */
474d32b6 2935 if (read || (len < (commit - read)) ||
ef7a4a16 2936 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2937 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2938 unsigned int rpos = read;
2939 unsigned int pos = 0;
ef7a4a16 2940 unsigned int size;
8789a9e7
SR
2941
2942 if (full)
554f786e 2943 goto out_unlock;
8789a9e7 2944
ef7a4a16
SR
2945 if (len > (commit - read))
2946 len = (commit - read);
2947
2948 size = rb_event_length(event);
2949
2950 if (len < size)
554f786e 2951 goto out_unlock;
ef7a4a16 2952
4f3640f8
SR
2953 /* save the current timestamp, since the user will need it */
2954 save_timestamp = cpu_buffer->read_stamp;
2955
ef7a4a16
SR
2956 /* Need to copy one event at a time */
2957 do {
474d32b6 2958 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2959
2960 len -= size;
2961
2962 rb_advance_reader(cpu_buffer);
474d32b6
SR
2963 rpos = reader->read;
2964 pos += size;
ef7a4a16
SR
2965
2966 event = rb_reader_event(cpu_buffer);
2967 size = rb_event_length(event);
2968 } while (len > size);
667d2412
LJ
2969
2970 /* update bpage */
ef7a4a16 2971 local_set(&bpage->commit, pos);
4f3640f8 2972 bpage->time_stamp = save_timestamp;
ef7a4a16 2973
474d32b6
SR
2974 /* we copied everything to the beginning */
2975 read = 0;
8789a9e7 2976 } else {
afbab76a
SR
2977 /* update the entry counter */
2978 cpu_buffer->read += local_read(&reader->entries);
2979
8789a9e7 2980 /* swap the pages */
044fa782 2981 rb_init_page(bpage);
ef7a4a16
SR
2982 bpage = reader->page;
2983 reader->page = *data_page;
2984 local_set(&reader->write, 0);
778c55d4 2985 local_set(&reader->entries, 0);
ef7a4a16 2986 reader->read = 0;
044fa782 2987 *data_page = bpage;
8789a9e7 2988 }
667d2412 2989 ret = read;
8789a9e7 2990
554f786e 2991 out_unlock:
8789a9e7
SR
2992 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2993
554f786e 2994 out:
8789a9e7
SR
2995 return ret;
2996}
d6ce96da 2997EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 2998
a3583244
SR
2999static ssize_t
3000rb_simple_read(struct file *filp, char __user *ubuf,
3001 size_t cnt, loff_t *ppos)
3002{
5e39841c 3003 unsigned long *p = filp->private_data;
a3583244
SR
3004 char buf[64];
3005 int r;
3006
033601a3
SR
3007 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3008 r = sprintf(buf, "permanently disabled\n");
3009 else
3010 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
3011
3012 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3013}
3014
3015static ssize_t
3016rb_simple_write(struct file *filp, const char __user *ubuf,
3017 size_t cnt, loff_t *ppos)
3018{
5e39841c 3019 unsigned long *p = filp->private_data;
a3583244 3020 char buf[64];
5e39841c 3021 unsigned long val;
a3583244
SR
3022 int ret;
3023
3024 if (cnt >= sizeof(buf))
3025 return -EINVAL;
3026
3027 if (copy_from_user(&buf, ubuf, cnt))
3028 return -EFAULT;
3029
3030 buf[cnt] = 0;
3031
3032 ret = strict_strtoul(buf, 10, &val);
3033 if (ret < 0)
3034 return ret;
3035
033601a3
SR
3036 if (val)
3037 set_bit(RB_BUFFERS_ON_BIT, p);
3038 else
3039 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3040
3041 (*ppos)++;
3042
3043 return cnt;
3044}
3045
5e2336a0 3046static const struct file_operations rb_simple_fops = {
a3583244
SR
3047 .open = tracing_open_generic,
3048 .read = rb_simple_read,
3049 .write = rb_simple_write,
3050};
3051
3052
3053static __init int rb_init_debugfs(void)
3054{
3055 struct dentry *d_tracer;
a3583244
SR
3056
3057 d_tracer = tracing_init_dentry();
3058
5452af66
FW
3059 trace_create_file("tracing_on", 0644, d_tracer,
3060 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3061
3062 return 0;
3063}
3064
3065fs_initcall(rb_init_debugfs);
554f786e 3066
59222efe 3067#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3068static int rb_cpu_notify(struct notifier_block *self,
3069 unsigned long action, void *hcpu)
554f786e
SR
3070{
3071 struct ring_buffer *buffer =
3072 container_of(self, struct ring_buffer, cpu_notify);
3073 long cpu = (long)hcpu;
3074
3075 switch (action) {
3076 case CPU_UP_PREPARE:
3077 case CPU_UP_PREPARE_FROZEN:
3078 if (cpu_isset(cpu, *buffer->cpumask))
3079 return NOTIFY_OK;
3080
3081 buffer->buffers[cpu] =
3082 rb_allocate_cpu_buffer(buffer, cpu);
3083 if (!buffer->buffers[cpu]) {
3084 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3085 cpu);
3086 return NOTIFY_OK;
3087 }
3088 smp_wmb();
3089 cpu_set(cpu, *buffer->cpumask);
3090 break;
3091 case CPU_DOWN_PREPARE:
3092 case CPU_DOWN_PREPARE_FROZEN:
3093 /*
3094 * Do nothing.
3095 * If we were to free the buffer, then the user would
3096 * lose any trace that was in the buffer.
3097 */
3098 break;
3099 default:
3100 break;
3101 }
3102 return NOTIFY_OK;
3103}
3104#endif