tracing: use proper export symbol for tracing api
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6#include <linux/ring_buffer.h>
14131f2f 7#include <linux/trace_clock.h>
78d904b4 8#include <linux/ftrace_irq.h>
7a8e76a3
SR
9#include <linux/spinlock.h>
10#include <linux/debugfs.h>
11#include <linux/uaccess.h>
a81bd80a 12#include <linux/hardirq.h>
7a8e76a3
SR
13#include <linux/module.h>
14#include <linux/percpu.h>
15#include <linux/mutex.h>
7a8e76a3
SR
16#include <linux/init.h>
17#include <linux/hash.h>
18#include <linux/list.h>
554f786e 19#include <linux/cpu.h>
7a8e76a3
SR
20#include <linux/fs.h>
21
182e9f5f
SR
22#include "trace.h"
23
d1b182a8
SR
24/*
25 * The ring buffer header is special. We must manually up keep it.
26 */
27int ring_buffer_print_entry_header(struct trace_seq *s)
28{
29 int ret;
30
334d4169
LJ
31 ret = trace_seq_printf(s, "# compressed entry header\n");
32 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
33 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
34 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
35 ret = trace_seq_printf(s, "\n");
36 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
37 RINGBUF_TYPE_PADDING);
38 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
39 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
40 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
41 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
42
43 return ret;
44}
45
5cc98548
SR
46/*
47 * The ring buffer is made up of a list of pages. A separate list of pages is
48 * allocated for each CPU. A writer may only write to a buffer that is
49 * associated with the CPU it is currently executing on. A reader may read
50 * from any per cpu buffer.
51 *
52 * The reader is special. For each per cpu buffer, the reader has its own
53 * reader page. When a reader has read the entire reader page, this reader
54 * page is swapped with another page in the ring buffer.
55 *
56 * Now, as long as the writer is off the reader page, the reader can do what
57 * ever it wants with that page. The writer will never write to that page
58 * again (as long as it is out of the ring buffer).
59 *
60 * Here's some silly ASCII art.
61 *
62 * +------+
63 * |reader| RING BUFFER
64 * |page |
65 * +------+ +---+ +---+ +---+
66 * | |-->| |-->| |
67 * +---+ +---+ +---+
68 * ^ |
69 * | |
70 * +---------------+
71 *
72 *
73 * +------+
74 * |reader| RING BUFFER
75 * |page |------------------v
76 * +------+ +---+ +---+ +---+
77 * | |-->| |-->| |
78 * +---+ +---+ +---+
79 * ^ |
80 * | |
81 * +---------------+
82 *
83 *
84 * +------+
85 * |reader| RING BUFFER
86 * |page |------------------v
87 * +------+ +---+ +---+ +---+
88 * ^ | |-->| |-->| |
89 * | +---+ +---+ +---+
90 * | |
91 * | |
92 * +------------------------------+
93 *
94 *
95 * +------+
96 * |buffer| RING BUFFER
97 * |page |------------------v
98 * +------+ +---+ +---+ +---+
99 * ^ | | | |-->| |
100 * | New +---+ +---+ +---+
101 * | Reader------^ |
102 * | page |
103 * +------------------------------+
104 *
105 *
106 * After we make this swap, the reader can hand this page off to the splice
107 * code and be done with it. It can even allocate a new page if it needs to
108 * and swap that into the ring buffer.
109 *
110 * We will be using cmpxchg soon to make all this lockless.
111 *
112 */
113
033601a3
SR
114/*
115 * A fast way to enable or disable all ring buffers is to
116 * call tracing_on or tracing_off. Turning off the ring buffers
117 * prevents all ring buffers from being recorded to.
118 * Turning this switch on, makes it OK to write to the
119 * ring buffer, if the ring buffer is enabled itself.
120 *
121 * There's three layers that must be on in order to write
122 * to the ring buffer.
123 *
124 * 1) This global flag must be set.
125 * 2) The ring buffer must be enabled for recording.
126 * 3) The per cpu buffer must be enabled for recording.
127 *
128 * In case of an anomaly, this global flag has a bit set that
129 * will permantly disable all ring buffers.
130 */
131
132/*
133 * Global flag to disable all recording to ring buffers
134 * This has two bits: ON, DISABLED
135 *
136 * ON DISABLED
137 * ---- ----------
138 * 0 0 : ring buffers are off
139 * 1 0 : ring buffers are on
140 * X 1 : ring buffers are permanently disabled
141 */
142
143enum {
144 RB_BUFFERS_ON_BIT = 0,
145 RB_BUFFERS_DISABLED_BIT = 1,
146};
147
148enum {
149 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
150 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
151};
152
5e39841c 153static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 154
474d32b6
SR
155#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156
a3583244
SR
157/**
158 * tracing_on - enable all tracing buffers
159 *
160 * This function enables all tracing buffers that may have been
161 * disabled with tracing_off.
162 */
163void tracing_on(void)
164{
033601a3 165 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
a3583244 166}
c4f50183 167EXPORT_SYMBOL_GPL(tracing_on);
a3583244
SR
168
169/**
170 * tracing_off - turn off all tracing buffers
171 *
172 * This function stops all tracing buffers from recording data.
173 * It does not disable any overhead the tracers themselves may
174 * be causing. This function simply causes all recording to
175 * the ring buffers to fail.
176 */
177void tracing_off(void)
178{
033601a3
SR
179 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
180}
c4f50183 181EXPORT_SYMBOL_GPL(tracing_off);
033601a3
SR
182
183/**
184 * tracing_off_permanent - permanently disable ring buffers
185 *
186 * This function, once called, will disable all ring buffers
c3706f00 187 * permanently.
033601a3
SR
188 */
189void tracing_off_permanent(void)
190{
191 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
192}
193
988ae9d6
SR
194/**
195 * tracing_is_on - show state of ring buffers enabled
196 */
197int tracing_is_on(void)
198{
199 return ring_buffer_flags == RB_BUFFERS_ON;
200}
201EXPORT_SYMBOL_GPL(tracing_is_on);
202
d06bbd66
IM
203#include "trace.h"
204
e3d6bf0a 205#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 206#define RB_ALIGNMENT 4U
334d4169
LJ
207#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208
209/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
211
212enum {
213 RB_LEN_TIME_EXTEND = 8,
214 RB_LEN_TIME_STAMP = 16,
215};
216
2d622719
TZ
217static inline int rb_null_event(struct ring_buffer_event *event)
218{
334d4169
LJ
219 return event->type_len == RINGBUF_TYPE_PADDING
220 && event->time_delta == 0;
2d622719
TZ
221}
222
223static inline int rb_discarded_event(struct ring_buffer_event *event)
224{
334d4169 225 return event->type_len == RINGBUF_TYPE_PADDING && event->time_delta;
2d622719
TZ
226}
227
228static void rb_event_set_padding(struct ring_buffer_event *event)
229{
334d4169 230 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
231 event->time_delta = 0;
232}
233
34a148bf 234static unsigned
2d622719 235rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
236{
237 unsigned length;
238
334d4169
LJ
239 if (event->type_len)
240 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
241 else
242 length = event->array[0];
243 return length + RB_EVNT_HDR_SIZE;
244}
245
246/* inline for ring buffer fast paths */
247static unsigned
248rb_event_length(struct ring_buffer_event *event)
249{
334d4169 250 switch (event->type_len) {
7a8e76a3 251 case RINGBUF_TYPE_PADDING:
2d622719
TZ
252 if (rb_null_event(event))
253 /* undefined */
254 return -1;
334d4169 255 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
256
257 case RINGBUF_TYPE_TIME_EXTEND:
258 return RB_LEN_TIME_EXTEND;
259
260 case RINGBUF_TYPE_TIME_STAMP:
261 return RB_LEN_TIME_STAMP;
262
263 case RINGBUF_TYPE_DATA:
2d622719 264 return rb_event_data_length(event);
7a8e76a3
SR
265 default:
266 BUG();
267 }
268 /* not hit */
269 return 0;
270}
271
272/**
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
275 */
276unsigned ring_buffer_event_length(struct ring_buffer_event *event)
277{
465634ad 278 unsigned length = rb_event_length(event);
334d4169 279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
7a8e76a3 285}
c4f50183 286EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
287
288/* inline for ring buffer fast paths */
34a148bf 289static void *
7a8e76a3
SR
290rb_event_data(struct ring_buffer_event *event)
291{
334d4169 292 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 293 /* If length is in len field, then array[0] has the data */
334d4169 294 if (event->type_len)
7a8e76a3
SR
295 return (void *)&event->array[0];
296 /* Otherwise length is in array[0] and array[1] has the data */
297 return (void *)&event->array[1];
298}
299
300/**
301 * ring_buffer_event_data - return the data of the event
302 * @event: the event to get the data from
303 */
304void *ring_buffer_event_data(struct ring_buffer_event *event)
305{
306 return rb_event_data(event);
307}
c4f50183 308EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
309
310#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 311 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
312
313#define TS_SHIFT 27
314#define TS_MASK ((1ULL << TS_SHIFT) - 1)
315#define TS_DELTA_TEST (~TS_MASK)
316
abc9b56d 317struct buffer_data_page {
e4c2ce82 318 u64 time_stamp; /* page time stamp */
c3706f00 319 local_t commit; /* write committed index */
abc9b56d
SR
320 unsigned char data[]; /* data of buffer page */
321};
322
323struct buffer_page {
778c55d4 324 struct list_head list; /* list of buffer pages */
abc9b56d 325 local_t write; /* index for next write */
6f807acd 326 unsigned read; /* index for next read */
778c55d4 327 local_t entries; /* entries on this page */
abc9b56d 328 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
329};
330
044fa782 331static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 332{
044fa782 333 local_set(&bpage->commit, 0);
abc9b56d
SR
334}
335
474d32b6
SR
336/**
337 * ring_buffer_page_len - the size of data on the page.
338 * @page: The page to read
339 *
340 * Returns the amount of data on the page, including buffer page header.
341 */
ef7a4a16
SR
342size_t ring_buffer_page_len(void *page)
343{
474d32b6
SR
344 return local_read(&((struct buffer_data_page *)page)->commit)
345 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
346}
347
ed56829c
SR
348/*
349 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 * this issue out.
351 */
34a148bf 352static void free_buffer_page(struct buffer_page *bpage)
ed56829c 353{
34a148bf 354 free_page((unsigned long)bpage->page);
e4c2ce82 355 kfree(bpage);
ed56829c
SR
356}
357
7a8e76a3
SR
358/*
359 * We need to fit the time_stamp delta into 27 bits.
360 */
361static inline int test_time_stamp(u64 delta)
362{
363 if (delta & TS_DELTA_TEST)
364 return 1;
365 return 0;
366}
367
474d32b6 368#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 369
d1b182a8
SR
370int ring_buffer_print_page_header(struct trace_seq *s)
371{
372 struct buffer_data_page field;
373 int ret;
374
375 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\n",
377 (unsigned int)sizeof(field.time_stamp));
378
379 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
380 "offset:%u;\tsize:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 (unsigned int)sizeof(field.commit));
383
384 ret = trace_seq_printf(s, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\n",
386 (unsigned int)offsetof(typeof(field), data),
387 (unsigned int)BUF_PAGE_SIZE);
388
389 return ret;
390}
391
7a8e76a3
SR
392/*
393 * head_page == tail_page && head == tail then buffer is empty.
394 */
395struct ring_buffer_per_cpu {
396 int cpu;
397 struct ring_buffer *buffer;
f83c9d0f 398 spinlock_t reader_lock; /* serialize readers */
3e03fb7f 399 raw_spinlock_t lock;
7a8e76a3
SR
400 struct lock_class_key lock_key;
401 struct list_head pages;
6f807acd
SR
402 struct buffer_page *head_page; /* read from head */
403 struct buffer_page *tail_page; /* write to tail */
c3706f00 404 struct buffer_page *commit_page; /* committed pages */
d769041f 405 struct buffer_page *reader_page;
f0d2c681
SR
406 unsigned long nmi_dropped;
407 unsigned long commit_overrun;
7a8e76a3 408 unsigned long overrun;
e4906eff
SR
409 unsigned long read;
410 local_t entries;
7a8e76a3
SR
411 u64 write_stamp;
412 u64 read_stamp;
413 atomic_t record_disabled;
414};
415
416struct ring_buffer {
7a8e76a3
SR
417 unsigned pages;
418 unsigned flags;
419 int cpus;
7a8e76a3 420 atomic_t record_disabled;
00f62f61 421 cpumask_var_t cpumask;
7a8e76a3
SR
422
423 struct mutex mutex;
424
425 struct ring_buffer_per_cpu **buffers;
554f786e 426
59222efe 427#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
428 struct notifier_block cpu_notify;
429#endif
37886f6a 430 u64 (*clock)(void);
7a8e76a3
SR
431};
432
433struct ring_buffer_iter {
434 struct ring_buffer_per_cpu *cpu_buffer;
435 unsigned long head;
436 struct buffer_page *head_page;
437 u64 read_stamp;
438};
439
f536aafc 440/* buffer may be either ring_buffer or ring_buffer_per_cpu */
bf41a158 441#define RB_WARN_ON(buffer, cond) \
3e89c7bb
SR
442 ({ \
443 int _____ret = unlikely(cond); \
444 if (_____ret) { \
bf41a158
SR
445 atomic_inc(&buffer->record_disabled); \
446 WARN_ON(1); \
447 } \
3e89c7bb
SR
448 _____ret; \
449 })
f536aafc 450
37886f6a
SR
451/* Up this if you want to test the TIME_EXTENTS and normalization */
452#define DEBUG_SHIFT 0
453
454u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
455{
456 u64 time;
457
458 preempt_disable_notrace();
459 /* shift to debug/test normalization and TIME_EXTENTS */
460 time = buffer->clock() << DEBUG_SHIFT;
461 preempt_enable_no_resched_notrace();
462
463 return time;
464}
465EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
466
467void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
468 int cpu, u64 *ts)
469{
470 /* Just stupid testing the normalize function and deltas */
471 *ts >>= DEBUG_SHIFT;
472}
473EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
474
7a8e76a3
SR
475/**
476 * check_pages - integrity check of buffer pages
477 * @cpu_buffer: CPU buffer with pages to test
478 *
c3706f00 479 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
480 * been corrupted.
481 */
482static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
483{
484 struct list_head *head = &cpu_buffer->pages;
044fa782 485 struct buffer_page *bpage, *tmp;
7a8e76a3 486
3e89c7bb
SR
487 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
488 return -1;
489 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
490 return -1;
7a8e76a3 491
044fa782 492 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 493 if (RB_WARN_ON(cpu_buffer,
044fa782 494 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
495 return -1;
496 if (RB_WARN_ON(cpu_buffer,
044fa782 497 bpage->list.prev->next != &bpage->list))
3e89c7bb 498 return -1;
7a8e76a3
SR
499 }
500
501 return 0;
502}
503
7a8e76a3
SR
504static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
505 unsigned nr_pages)
506{
507 struct list_head *head = &cpu_buffer->pages;
044fa782 508 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
509 unsigned long addr;
510 LIST_HEAD(pages);
511 unsigned i;
512
513 for (i = 0; i < nr_pages; i++) {
044fa782 514 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
aa1e0e3b 515 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
044fa782 516 if (!bpage)
e4c2ce82 517 goto free_pages;
044fa782 518 list_add(&bpage->list, &pages);
e4c2ce82 519
7a8e76a3
SR
520 addr = __get_free_page(GFP_KERNEL);
521 if (!addr)
522 goto free_pages;
044fa782
SR
523 bpage->page = (void *)addr;
524 rb_init_page(bpage->page);
7a8e76a3
SR
525 }
526
527 list_splice(&pages, head);
528
529 rb_check_pages(cpu_buffer);
530
531 return 0;
532
533 free_pages:
044fa782
SR
534 list_for_each_entry_safe(bpage, tmp, &pages, list) {
535 list_del_init(&bpage->list);
536 free_buffer_page(bpage);
7a8e76a3
SR
537 }
538 return -ENOMEM;
539}
540
541static struct ring_buffer_per_cpu *
542rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
543{
544 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 545 struct buffer_page *bpage;
d769041f 546 unsigned long addr;
7a8e76a3
SR
547 int ret;
548
549 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
550 GFP_KERNEL, cpu_to_node(cpu));
551 if (!cpu_buffer)
552 return NULL;
553
554 cpu_buffer->cpu = cpu;
555 cpu_buffer->buffer = buffer;
f83c9d0f 556 spin_lock_init(&cpu_buffer->reader_lock);
3e03fb7f 557 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
7a8e76a3
SR
558 INIT_LIST_HEAD(&cpu_buffer->pages);
559
044fa782 560 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 561 GFP_KERNEL, cpu_to_node(cpu));
044fa782 562 if (!bpage)
e4c2ce82
SR
563 goto fail_free_buffer;
564
044fa782 565 cpu_buffer->reader_page = bpage;
d769041f
SR
566 addr = __get_free_page(GFP_KERNEL);
567 if (!addr)
e4c2ce82 568 goto fail_free_reader;
044fa782
SR
569 bpage->page = (void *)addr;
570 rb_init_page(bpage->page);
e4c2ce82 571
d769041f 572 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
d769041f 573
7a8e76a3
SR
574 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
575 if (ret < 0)
d769041f 576 goto fail_free_reader;
7a8e76a3
SR
577
578 cpu_buffer->head_page
579 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 580 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3
SR
581
582 return cpu_buffer;
583
d769041f
SR
584 fail_free_reader:
585 free_buffer_page(cpu_buffer->reader_page);
586
7a8e76a3
SR
587 fail_free_buffer:
588 kfree(cpu_buffer);
589 return NULL;
590}
591
592static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
593{
594 struct list_head *head = &cpu_buffer->pages;
044fa782 595 struct buffer_page *bpage, *tmp;
7a8e76a3 596
d769041f
SR
597 free_buffer_page(cpu_buffer->reader_page);
598
044fa782
SR
599 list_for_each_entry_safe(bpage, tmp, head, list) {
600 list_del_init(&bpage->list);
601 free_buffer_page(bpage);
7a8e76a3
SR
602 }
603 kfree(cpu_buffer);
604}
605
a7b13743
SR
606/*
607 * Causes compile errors if the struct buffer_page gets bigger
608 * than the struct page.
609 */
610extern int ring_buffer_page_too_big(void);
611
59222efe 612#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
613static int rb_cpu_notify(struct notifier_block *self,
614 unsigned long action, void *hcpu);
554f786e
SR
615#endif
616
7a8e76a3
SR
617/**
618 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 619 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
620 * @flags: attributes to set for the ring buffer.
621 *
622 * Currently the only flag that is available is the RB_FL_OVERWRITE
623 * flag. This flag means that the buffer will overwrite old data
624 * when the buffer wraps. If this flag is not set, the buffer will
625 * drop data when the tail hits the head.
626 */
627struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
628{
629 struct ring_buffer *buffer;
630 int bsize;
631 int cpu;
632
a7b13743
SR
633 /* Paranoid! Optimizes out when all is well */
634 if (sizeof(struct buffer_page) > sizeof(struct page))
635 ring_buffer_page_too_big();
636
637
7a8e76a3
SR
638 /* keep it in its own cache line */
639 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
640 GFP_KERNEL);
641 if (!buffer)
642 return NULL;
643
9e01c1b7
RR
644 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
645 goto fail_free_buffer;
646
7a8e76a3
SR
647 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
648 buffer->flags = flags;
37886f6a 649 buffer->clock = trace_clock_local;
7a8e76a3
SR
650
651 /* need at least two pages */
652 if (buffer->pages == 1)
653 buffer->pages++;
654
3bf832ce
FW
655 /*
656 * In case of non-hotplug cpu, if the ring-buffer is allocated
657 * in early initcall, it will not be notified of secondary cpus.
658 * In that off case, we need to allocate for all possible cpus.
659 */
660#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
661 get_online_cpus();
662 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
663#else
664 cpumask_copy(buffer->cpumask, cpu_possible_mask);
665#endif
7a8e76a3
SR
666 buffer->cpus = nr_cpu_ids;
667
668 bsize = sizeof(void *) * nr_cpu_ids;
669 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
670 GFP_KERNEL);
671 if (!buffer->buffers)
9e01c1b7 672 goto fail_free_cpumask;
7a8e76a3
SR
673
674 for_each_buffer_cpu(buffer, cpu) {
675 buffer->buffers[cpu] =
676 rb_allocate_cpu_buffer(buffer, cpu);
677 if (!buffer->buffers[cpu])
678 goto fail_free_buffers;
679 }
680
59222efe 681#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
682 buffer->cpu_notify.notifier_call = rb_cpu_notify;
683 buffer->cpu_notify.priority = 0;
684 register_cpu_notifier(&buffer->cpu_notify);
685#endif
686
687 put_online_cpus();
7a8e76a3
SR
688 mutex_init(&buffer->mutex);
689
690 return buffer;
691
692 fail_free_buffers:
693 for_each_buffer_cpu(buffer, cpu) {
694 if (buffer->buffers[cpu])
695 rb_free_cpu_buffer(buffer->buffers[cpu]);
696 }
697 kfree(buffer->buffers);
698
9e01c1b7
RR
699 fail_free_cpumask:
700 free_cpumask_var(buffer->cpumask);
554f786e 701 put_online_cpus();
9e01c1b7 702
7a8e76a3
SR
703 fail_free_buffer:
704 kfree(buffer);
705 return NULL;
706}
c4f50183 707EXPORT_SYMBOL_GPL(ring_buffer_alloc);
7a8e76a3
SR
708
709/**
710 * ring_buffer_free - free a ring buffer.
711 * @buffer: the buffer to free.
712 */
713void
714ring_buffer_free(struct ring_buffer *buffer)
715{
716 int cpu;
717
554f786e
SR
718 get_online_cpus();
719
59222efe 720#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
721 unregister_cpu_notifier(&buffer->cpu_notify);
722#endif
723
7a8e76a3
SR
724 for_each_buffer_cpu(buffer, cpu)
725 rb_free_cpu_buffer(buffer->buffers[cpu]);
726
554f786e
SR
727 put_online_cpus();
728
9e01c1b7
RR
729 free_cpumask_var(buffer->cpumask);
730
7a8e76a3
SR
731 kfree(buffer);
732}
c4f50183 733EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 734
37886f6a
SR
735void ring_buffer_set_clock(struct ring_buffer *buffer,
736 u64 (*clock)(void))
737{
738 buffer->clock = clock;
739}
740
7a8e76a3
SR
741static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
742
743static void
744rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
745{
044fa782 746 struct buffer_page *bpage;
7a8e76a3
SR
747 struct list_head *p;
748 unsigned i;
749
750 atomic_inc(&cpu_buffer->record_disabled);
751 synchronize_sched();
752
753 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
754 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
755 return;
7a8e76a3 756 p = cpu_buffer->pages.next;
044fa782
SR
757 bpage = list_entry(p, struct buffer_page, list);
758 list_del_init(&bpage->list);
759 free_buffer_page(bpage);
7a8e76a3 760 }
3e89c7bb
SR
761 if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
762 return;
7a8e76a3
SR
763
764 rb_reset_cpu(cpu_buffer);
765
766 rb_check_pages(cpu_buffer);
767
768 atomic_dec(&cpu_buffer->record_disabled);
769
770}
771
772static void
773rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
774 struct list_head *pages, unsigned nr_pages)
775{
044fa782 776 struct buffer_page *bpage;
7a8e76a3
SR
777 struct list_head *p;
778 unsigned i;
779
780 atomic_inc(&cpu_buffer->record_disabled);
781 synchronize_sched();
782
783 for (i = 0; i < nr_pages; i++) {
3e89c7bb
SR
784 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
785 return;
7a8e76a3 786 p = pages->next;
044fa782
SR
787 bpage = list_entry(p, struct buffer_page, list);
788 list_del_init(&bpage->list);
789 list_add_tail(&bpage->list, &cpu_buffer->pages);
7a8e76a3
SR
790 }
791 rb_reset_cpu(cpu_buffer);
792
793 rb_check_pages(cpu_buffer);
794
795 atomic_dec(&cpu_buffer->record_disabled);
796}
797
798/**
799 * ring_buffer_resize - resize the ring buffer
800 * @buffer: the buffer to resize.
801 * @size: the new size.
802 *
803 * The tracer is responsible for making sure that the buffer is
804 * not being used while changing the size.
805 * Note: We may be able to change the above requirement by using
806 * RCU synchronizations.
807 *
808 * Minimum size is 2 * BUF_PAGE_SIZE.
809 *
810 * Returns -1 on failure.
811 */
812int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
813{
814 struct ring_buffer_per_cpu *cpu_buffer;
815 unsigned nr_pages, rm_pages, new_pages;
044fa782 816 struct buffer_page *bpage, *tmp;
7a8e76a3
SR
817 unsigned long buffer_size;
818 unsigned long addr;
819 LIST_HEAD(pages);
820 int i, cpu;
821
ee51a1de
IM
822 /*
823 * Always succeed at resizing a non-existent buffer:
824 */
825 if (!buffer)
826 return size;
827
7a8e76a3
SR
828 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
829 size *= BUF_PAGE_SIZE;
830 buffer_size = buffer->pages * BUF_PAGE_SIZE;
831
832 /* we need a minimum of two pages */
833 if (size < BUF_PAGE_SIZE * 2)
834 size = BUF_PAGE_SIZE * 2;
835
836 if (size == buffer_size)
837 return size;
838
839 mutex_lock(&buffer->mutex);
554f786e 840 get_online_cpus();
7a8e76a3
SR
841
842 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
843
844 if (size < buffer_size) {
845
846 /* easy case, just free pages */
554f786e
SR
847 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
848 goto out_fail;
7a8e76a3
SR
849
850 rm_pages = buffer->pages - nr_pages;
851
852 for_each_buffer_cpu(buffer, cpu) {
853 cpu_buffer = buffer->buffers[cpu];
854 rb_remove_pages(cpu_buffer, rm_pages);
855 }
856 goto out;
857 }
858
859 /*
860 * This is a bit more difficult. We only want to add pages
861 * when we can allocate enough for all CPUs. We do this
862 * by allocating all the pages and storing them on a local
863 * link list. If we succeed in our allocation, then we
864 * add these pages to the cpu_buffers. Otherwise we just free
865 * them all and return -ENOMEM;
866 */
554f786e
SR
867 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
868 goto out_fail;
f536aafc 869
7a8e76a3
SR
870 new_pages = nr_pages - buffer->pages;
871
872 for_each_buffer_cpu(buffer, cpu) {
873 for (i = 0; i < new_pages; i++) {
044fa782 874 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
e4c2ce82
SR
875 cache_line_size()),
876 GFP_KERNEL, cpu_to_node(cpu));
044fa782 877 if (!bpage)
e4c2ce82 878 goto free_pages;
044fa782 879 list_add(&bpage->list, &pages);
7a8e76a3
SR
880 addr = __get_free_page(GFP_KERNEL);
881 if (!addr)
882 goto free_pages;
044fa782
SR
883 bpage->page = (void *)addr;
884 rb_init_page(bpage->page);
7a8e76a3
SR
885 }
886 }
887
888 for_each_buffer_cpu(buffer, cpu) {
889 cpu_buffer = buffer->buffers[cpu];
890 rb_insert_pages(cpu_buffer, &pages, new_pages);
891 }
892
554f786e
SR
893 if (RB_WARN_ON(buffer, !list_empty(&pages)))
894 goto out_fail;
7a8e76a3
SR
895
896 out:
897 buffer->pages = nr_pages;
554f786e 898 put_online_cpus();
7a8e76a3
SR
899 mutex_unlock(&buffer->mutex);
900
901 return size;
902
903 free_pages:
044fa782
SR
904 list_for_each_entry_safe(bpage, tmp, &pages, list) {
905 list_del_init(&bpage->list);
906 free_buffer_page(bpage);
7a8e76a3 907 }
554f786e 908 put_online_cpus();
641d2f63 909 mutex_unlock(&buffer->mutex);
7a8e76a3 910 return -ENOMEM;
554f786e
SR
911
912 /*
913 * Something went totally wrong, and we are too paranoid
914 * to even clean up the mess.
915 */
916 out_fail:
917 put_online_cpus();
918 mutex_unlock(&buffer->mutex);
919 return -1;
7a8e76a3 920}
c4f50183 921EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 922
8789a9e7 923static inline void *
044fa782 924__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 925{
044fa782 926 return bpage->data + index;
8789a9e7
SR
927}
928
044fa782 929static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 930{
044fa782 931 return bpage->page->data + index;
7a8e76a3
SR
932}
933
934static inline struct ring_buffer_event *
d769041f 935rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 936{
6f807acd
SR
937 return __rb_page_index(cpu_buffer->reader_page,
938 cpu_buffer->reader_page->read);
939}
940
941static inline struct ring_buffer_event *
942rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
943{
944 return __rb_page_index(cpu_buffer->head_page,
945 cpu_buffer->head_page->read);
7a8e76a3
SR
946}
947
948static inline struct ring_buffer_event *
949rb_iter_head_event(struct ring_buffer_iter *iter)
950{
6f807acd 951 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
952}
953
bf41a158
SR
954static inline unsigned rb_page_write(struct buffer_page *bpage)
955{
956 return local_read(&bpage->write);
957}
958
959static inline unsigned rb_page_commit(struct buffer_page *bpage)
960{
abc9b56d 961 return local_read(&bpage->page->commit);
bf41a158
SR
962}
963
964/* Size is determined by what has been commited */
965static inline unsigned rb_page_size(struct buffer_page *bpage)
966{
967 return rb_page_commit(bpage);
968}
969
970static inline unsigned
971rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
972{
973 return rb_page_commit(cpu_buffer->commit_page);
974}
975
976static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
977{
978 return rb_page_commit(cpu_buffer->head_page);
979}
980
7a8e76a3 981static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
044fa782 982 struct buffer_page **bpage)
7a8e76a3 983{
044fa782 984 struct list_head *p = (*bpage)->list.next;
7a8e76a3
SR
985
986 if (p == &cpu_buffer->pages)
987 p = p->next;
988
044fa782 989 *bpage = list_entry(p, struct buffer_page, list);
7a8e76a3
SR
990}
991
bf41a158
SR
992static inline unsigned
993rb_event_index(struct ring_buffer_event *event)
994{
995 unsigned long addr = (unsigned long)event;
996
997 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
998}
999
34a148bf 1000static int
bf41a158
SR
1001rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1002 struct ring_buffer_event *event)
1003{
1004 unsigned long addr = (unsigned long)event;
1005 unsigned long index;
1006
1007 index = rb_event_index(event);
1008 addr &= PAGE_MASK;
1009
1010 return cpu_buffer->commit_page->page == (void *)addr &&
1011 rb_commit_index(cpu_buffer) == index;
1012}
1013
34a148bf 1014static void
bf41a158
SR
1015rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
1016 struct ring_buffer_event *event)
7a8e76a3 1017{
bf41a158
SR
1018 unsigned long addr = (unsigned long)event;
1019 unsigned long index;
1020
1021 index = rb_event_index(event);
1022 addr &= PAGE_MASK;
1023
1024 while (cpu_buffer->commit_page->page != (void *)addr) {
3e89c7bb
SR
1025 if (RB_WARN_ON(cpu_buffer,
1026 cpu_buffer->commit_page == cpu_buffer->tail_page))
1027 return;
abc9b56d 1028 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1029 cpu_buffer->commit_page->write;
1030 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1031 cpu_buffer->write_stamp =
1032 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1033 }
1034
1035 /* Now set the commit to the event's index */
abc9b56d 1036 local_set(&cpu_buffer->commit_page->page->commit, index);
7a8e76a3
SR
1037}
1038
34a148bf 1039static void
bf41a158 1040rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1041{
bf41a158
SR
1042 /*
1043 * We only race with interrupts and NMIs on this CPU.
1044 * If we own the commit event, then we can commit
1045 * all others that interrupted us, since the interruptions
1046 * are in stack format (they finish before they come
1047 * back to us). This allows us to do a simple loop to
1048 * assign the commit to the tail.
1049 */
a8ccf1d6 1050 again:
bf41a158 1051 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
abc9b56d 1052 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1053 cpu_buffer->commit_page->write;
1054 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1055 cpu_buffer->write_stamp =
1056 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1057 /* add barrier to keep gcc from optimizing too much */
1058 barrier();
1059 }
1060 while (rb_commit_index(cpu_buffer) !=
1061 rb_page_write(cpu_buffer->commit_page)) {
abc9b56d 1062 cpu_buffer->commit_page->page->commit =
bf41a158
SR
1063 cpu_buffer->commit_page->write;
1064 barrier();
1065 }
a8ccf1d6
SR
1066
1067 /* again, keep gcc from optimizing */
1068 barrier();
1069
1070 /*
1071 * If an interrupt came in just after the first while loop
1072 * and pushed the tail page forward, we will be left with
1073 * a dangling commit that will never go forward.
1074 */
1075 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1076 goto again;
7a8e76a3
SR
1077}
1078
d769041f 1079static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1080{
abc9b56d 1081 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1082 cpu_buffer->reader_page->read = 0;
d769041f
SR
1083}
1084
34a148bf 1085static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1086{
1087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1088
1089 /*
1090 * The iterator could be on the reader page (it starts there).
1091 * But the head could have moved, since the reader was
1092 * found. Check for this case and assign the iterator
1093 * to the head page instead of next.
1094 */
1095 if (iter->head_page == cpu_buffer->reader_page)
1096 iter->head_page = cpu_buffer->head_page;
1097 else
1098 rb_inc_page(cpu_buffer, &iter->head_page);
1099
abc9b56d 1100 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1101 iter->head = 0;
1102}
1103
1104/**
1105 * ring_buffer_update_event - update event type and data
1106 * @event: the even to update
1107 * @type: the type of event
1108 * @length: the size of the event field in the ring buffer
1109 *
1110 * Update the type and data fields of the event. The length
1111 * is the actual size that is written to the ring buffer,
1112 * and with this, we can determine what to place into the
1113 * data field.
1114 */
34a148bf 1115static void
7a8e76a3
SR
1116rb_update_event(struct ring_buffer_event *event,
1117 unsigned type, unsigned length)
1118{
334d4169 1119 event->type_len = type;
7a8e76a3
SR
1120
1121 switch (type) {
1122
1123 case RINGBUF_TYPE_PADDING:
7a8e76a3 1124 case RINGBUF_TYPE_TIME_EXTEND:
7a8e76a3 1125 case RINGBUF_TYPE_TIME_STAMP:
7a8e76a3
SR
1126 break;
1127
334d4169 1128 case 0:
7a8e76a3 1129 length -= RB_EVNT_HDR_SIZE;
334d4169 1130 if (length > RB_MAX_SMALL_DATA)
7a8e76a3 1131 event->array[0] = length;
334d4169
LJ
1132 else
1133 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
1134 break;
1135 default:
1136 BUG();
1137 }
1138}
1139
34a148bf 1140static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
1141{
1142 struct ring_buffer_event event; /* Used only for sizeof array */
1143
1144 /* zero length can cause confusions */
1145 if (!length)
1146 length = 1;
1147
1148 if (length > RB_MAX_SMALL_DATA)
1149 length += sizeof(event.array[0]);
1150
1151 length += RB_EVNT_HDR_SIZE;
1152 length = ALIGN(length, RB_ALIGNMENT);
1153
1154 return length;
1155}
1156
1157static struct ring_buffer_event *
1158__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1159 unsigned type, unsigned long length, u64 *ts)
1160{
98db8df7 1161 struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
bf41a158 1162 unsigned long tail, write;
7a8e76a3
SR
1163 struct ring_buffer *buffer = cpu_buffer->buffer;
1164 struct ring_buffer_event *event;
bf41a158 1165 unsigned long flags;
78d904b4 1166 bool lock_taken = false;
7a8e76a3 1167
98db8df7
SR
1168 commit_page = cpu_buffer->commit_page;
1169 /* we just need to protect against interrupts */
1170 barrier();
7a8e76a3 1171 tail_page = cpu_buffer->tail_page;
bf41a158
SR
1172 write = local_add_return(length, &tail_page->write);
1173 tail = write - length;
7a8e76a3 1174
bf41a158
SR
1175 /* See if we shot pass the end of this buffer page */
1176 if (write > BUF_PAGE_SIZE) {
7a8e76a3
SR
1177 struct buffer_page *next_page = tail_page;
1178
3e03fb7f 1179 local_irq_save(flags);
78d904b4 1180 /*
a81bd80a
SR
1181 * Since the write to the buffer is still not
1182 * fully lockless, we must be careful with NMIs.
1183 * The locks in the writers are taken when a write
1184 * crosses to a new page. The locks protect against
1185 * races with the readers (this will soon be fixed
1186 * with a lockless solution).
1187 *
1188 * Because we can not protect against NMIs, and we
1189 * want to keep traces reentrant, we need to manage
1190 * what happens when we are in an NMI.
1191 *
78d904b4
SR
1192 * NMIs can happen after we take the lock.
1193 * If we are in an NMI, only take the lock
1194 * if it is not already taken. Otherwise
1195 * simply fail.
1196 */
a81bd80a 1197 if (unlikely(in_nmi())) {
f0d2c681
SR
1198 if (!__raw_spin_trylock(&cpu_buffer->lock)) {
1199 cpu_buffer->nmi_dropped++;
45141d46 1200 goto out_reset;
f0d2c681 1201 }
78d904b4
SR
1202 } else
1203 __raw_spin_lock(&cpu_buffer->lock);
1204
1205 lock_taken = true;
bf41a158 1206
7a8e76a3
SR
1207 rb_inc_page(cpu_buffer, &next_page);
1208
d769041f
SR
1209 head_page = cpu_buffer->head_page;
1210 reader_page = cpu_buffer->reader_page;
1211
1212 /* we grabbed the lock before incrementing */
3e89c7bb 1213 if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
45141d46 1214 goto out_reset;
bf41a158
SR
1215
1216 /*
1217 * If for some reason, we had an interrupt storm that made
1218 * it all the way around the buffer, bail, and warn
1219 * about it.
1220 */
98db8df7 1221 if (unlikely(next_page == commit_page)) {
f0d2c681 1222 cpu_buffer->commit_overrun++;
45141d46 1223 goto out_reset;
bf41a158 1224 }
d769041f 1225
7a8e76a3 1226 if (next_page == head_page) {
6f3b3440 1227 if (!(buffer->flags & RB_FL_OVERWRITE))
45141d46 1228 goto out_reset;
7a8e76a3 1229
bf41a158
SR
1230 /* tail_page has not moved yet? */
1231 if (tail_page == cpu_buffer->tail_page) {
1232 /* count overflows */
778c55d4
SR
1233 cpu_buffer->overrun +=
1234 local_read(&head_page->entries);
bf41a158
SR
1235
1236 rb_inc_page(cpu_buffer, &head_page);
1237 cpu_buffer->head_page = head_page;
1238 cpu_buffer->head_page->read = 0;
1239 }
1240 }
7a8e76a3 1241
bf41a158
SR
1242 /*
1243 * If the tail page is still the same as what we think
1244 * it is, then it is up to us to update the tail
1245 * pointer.
1246 */
1247 if (tail_page == cpu_buffer->tail_page) {
1248 local_set(&next_page->write, 0);
778c55d4 1249 local_set(&next_page->entries, 0);
abc9b56d 1250 local_set(&next_page->page->commit, 0);
bf41a158
SR
1251 cpu_buffer->tail_page = next_page;
1252
1253 /* reread the time stamp */
37886f6a 1254 *ts = ring_buffer_time_stamp(buffer, cpu_buffer->cpu);
abc9b56d 1255 cpu_buffer->tail_page->page->time_stamp = *ts;
7a8e76a3
SR
1256 }
1257
bf41a158
SR
1258 /*
1259 * The actual tail page has moved forward.
1260 */
1261 if (tail < BUF_PAGE_SIZE) {
1262 /* Mark the rest of the page with padding */
6f807acd 1263 event = __rb_page_index(tail_page, tail);
2d622719 1264 rb_event_set_padding(event);
7a8e76a3
SR
1265 }
1266
bf41a158
SR
1267 if (tail <= BUF_PAGE_SIZE)
1268 /* Set the write back to the previous setting */
1269 local_set(&tail_page->write, tail);
1270
1271 /*
1272 * If this was a commit entry that failed,
1273 * increment that too
1274 */
1275 if (tail_page == cpu_buffer->commit_page &&
1276 tail == rb_commit_index(cpu_buffer)) {
1277 rb_set_commit_to_write(cpu_buffer);
1278 }
1279
3e03fb7f
SR
1280 __raw_spin_unlock(&cpu_buffer->lock);
1281 local_irq_restore(flags);
bf41a158
SR
1282
1283 /* fail and let the caller try again */
1284 return ERR_PTR(-EAGAIN);
7a8e76a3
SR
1285 }
1286
bf41a158
SR
1287 /* We reserved something on the buffer */
1288
3e89c7bb
SR
1289 if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1290 return NULL;
7a8e76a3 1291
6f807acd 1292 event = __rb_page_index(tail_page, tail);
7a8e76a3
SR
1293 rb_update_event(event, type, length);
1294
778c55d4
SR
1295 /* The passed in type is zero for DATA */
1296 if (likely(!type))
1297 local_inc(&tail_page->entries);
1298
bf41a158
SR
1299 /*
1300 * If this is a commit and the tail is zero, then update
1301 * this page's time stamp.
1302 */
1303 if (!tail && rb_is_commit(cpu_buffer, event))
abc9b56d 1304 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158 1305
7a8e76a3 1306 return event;
bf41a158 1307
45141d46 1308 out_reset:
6f3b3440
LJ
1309 /* reset write */
1310 if (tail <= BUF_PAGE_SIZE)
1311 local_set(&tail_page->write, tail);
1312
78d904b4
SR
1313 if (likely(lock_taken))
1314 __raw_spin_unlock(&cpu_buffer->lock);
3e03fb7f 1315 local_irq_restore(flags);
bf41a158 1316 return NULL;
7a8e76a3
SR
1317}
1318
1319static int
1320rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1321 u64 *ts, u64 *delta)
1322{
1323 struct ring_buffer_event *event;
1324 static int once;
bf41a158 1325 int ret;
7a8e76a3
SR
1326
1327 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1328 printk(KERN_WARNING "Delta way too big! %llu"
1329 " ts=%llu write stamp = %llu\n",
e2862c94
SR
1330 (unsigned long long)*delta,
1331 (unsigned long long)*ts,
1332 (unsigned long long)cpu_buffer->write_stamp);
7a8e76a3
SR
1333 WARN_ON(1);
1334 }
1335
1336 /*
1337 * The delta is too big, we to add a
1338 * new timestamp.
1339 */
1340 event = __rb_reserve_next(cpu_buffer,
1341 RINGBUF_TYPE_TIME_EXTEND,
1342 RB_LEN_TIME_EXTEND,
1343 ts);
1344 if (!event)
bf41a158 1345 return -EBUSY;
7a8e76a3 1346
bf41a158
SR
1347 if (PTR_ERR(event) == -EAGAIN)
1348 return -EAGAIN;
1349
1350 /* Only a commited time event can update the write stamp */
1351 if (rb_is_commit(cpu_buffer, event)) {
1352 /*
1353 * If this is the first on the page, then we need to
1354 * update the page itself, and just put in a zero.
1355 */
1356 if (rb_event_index(event)) {
1357 event->time_delta = *delta & TS_MASK;
1358 event->array[0] = *delta >> TS_SHIFT;
1359 } else {
abc9b56d 1360 cpu_buffer->commit_page->page->time_stamp = *ts;
bf41a158
SR
1361 event->time_delta = 0;
1362 event->array[0] = 0;
1363 }
7a8e76a3 1364 cpu_buffer->write_stamp = *ts;
bf41a158
SR
1365 /* let the caller know this was the commit */
1366 ret = 1;
1367 } else {
1368 /* Darn, this is just wasted space */
1369 event->time_delta = 0;
1370 event->array[0] = 0;
1371 ret = 0;
7a8e76a3
SR
1372 }
1373
bf41a158
SR
1374 *delta = 0;
1375
1376 return ret;
7a8e76a3
SR
1377}
1378
1379static struct ring_buffer_event *
1380rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1381 unsigned type, unsigned long length)
1382{
1383 struct ring_buffer_event *event;
1384 u64 ts, delta;
bf41a158 1385 int commit = 0;
818e3dd3 1386 int nr_loops = 0;
7a8e76a3 1387
bf41a158 1388 again:
818e3dd3
SR
1389 /*
1390 * We allow for interrupts to reenter here and do a trace.
1391 * If one does, it will cause this original code to loop
1392 * back here. Even with heavy interrupts happening, this
1393 * should only happen a few times in a row. If this happens
1394 * 1000 times in a row, there must be either an interrupt
1395 * storm or we have something buggy.
1396 * Bail!
1397 */
3e89c7bb 1398 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
818e3dd3 1399 return NULL;
818e3dd3 1400
37886f6a 1401 ts = ring_buffer_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu);
7a8e76a3 1402
bf41a158
SR
1403 /*
1404 * Only the first commit can update the timestamp.
1405 * Yes there is a race here. If an interrupt comes in
1406 * just after the conditional and it traces too, then it
1407 * will also check the deltas. More than one timestamp may
1408 * also be made. But only the entry that did the actual
1409 * commit will be something other than zero.
1410 */
1411 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1412 rb_page_write(cpu_buffer->tail_page) ==
1413 rb_commit_index(cpu_buffer)) {
1414
7a8e76a3
SR
1415 delta = ts - cpu_buffer->write_stamp;
1416
bf41a158
SR
1417 /* make sure this delta is calculated here */
1418 barrier();
1419
1420 /* Did the write stamp get updated already? */
1421 if (unlikely(ts < cpu_buffer->write_stamp))
4143c5cb 1422 delta = 0;
bf41a158 1423
7a8e76a3 1424 if (test_time_stamp(delta)) {
7a8e76a3 1425
bf41a158
SR
1426 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1427
1428 if (commit == -EBUSY)
7a8e76a3 1429 return NULL;
bf41a158
SR
1430
1431 if (commit == -EAGAIN)
1432 goto again;
1433
1434 RB_WARN_ON(cpu_buffer, commit < 0);
7a8e76a3 1435 }
bf41a158
SR
1436 } else
1437 /* Non commits have zero deltas */
7a8e76a3 1438 delta = 0;
7a8e76a3
SR
1439
1440 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
bf41a158
SR
1441 if (PTR_ERR(event) == -EAGAIN)
1442 goto again;
1443
1444 if (!event) {
1445 if (unlikely(commit))
1446 /*
1447 * Ouch! We needed a timestamp and it was commited. But
1448 * we didn't get our event reserved.
1449 */
1450 rb_set_commit_to_write(cpu_buffer);
7a8e76a3 1451 return NULL;
bf41a158 1452 }
7a8e76a3 1453
bf41a158
SR
1454 /*
1455 * If the timestamp was commited, make the commit our entry
1456 * now so that we will update it when needed.
1457 */
1458 if (commit)
1459 rb_set_commit_event(cpu_buffer, event);
1460 else if (!rb_is_commit(cpu_buffer, event))
7a8e76a3
SR
1461 delta = 0;
1462
1463 event->time_delta = delta;
1464
1465 return event;
1466}
1467
aa18efb2 1468#define TRACE_RECURSIVE_DEPTH 16
261842b7
SR
1469
1470static int trace_recursive_lock(void)
1471{
aa18efb2 1472 current->trace_recursion++;
261842b7 1473
aa18efb2
SR
1474 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
1475 return 0;
e057a5e5 1476
aa18efb2
SR
1477 /* Disable all tracing before we do anything else */
1478 tracing_off_permanent();
261842b7 1479
7d7d2b80 1480 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
aa18efb2
SR
1481 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1482 current->trace_recursion,
1483 hardirq_count() >> HARDIRQ_SHIFT,
1484 softirq_count() >> SOFTIRQ_SHIFT,
1485 in_nmi());
261842b7 1486
aa18efb2
SR
1487 WARN_ON_ONCE(1);
1488 return -1;
261842b7
SR
1489}
1490
1491static void trace_recursive_unlock(void)
1492{
aa18efb2 1493 WARN_ON_ONCE(!current->trace_recursion);
261842b7 1494
aa18efb2 1495 current->trace_recursion--;
261842b7
SR
1496}
1497
bf41a158
SR
1498static DEFINE_PER_CPU(int, rb_need_resched);
1499
7a8e76a3
SR
1500/**
1501 * ring_buffer_lock_reserve - reserve a part of the buffer
1502 * @buffer: the ring buffer to reserve from
1503 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
1504 *
1505 * Returns a reseverd event on the ring buffer to copy directly to.
1506 * The user of this interface will need to get the body to write into
1507 * and can use the ring_buffer_event_data() interface.
1508 *
1509 * The length is the length of the data needed, not the event length
1510 * which also includes the event header.
1511 *
1512 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1513 * If NULL is returned, then nothing has been allocated or locked.
1514 */
1515struct ring_buffer_event *
0a987751 1516ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
1517{
1518 struct ring_buffer_per_cpu *cpu_buffer;
1519 struct ring_buffer_event *event;
bf41a158 1520 int cpu, resched;
7a8e76a3 1521
033601a3 1522 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1523 return NULL;
1524
7a8e76a3
SR
1525 if (atomic_read(&buffer->record_disabled))
1526 return NULL;
1527
bf41a158 1528 /* If we are tracing schedule, we don't want to recurse */
182e9f5f 1529 resched = ftrace_preempt_disable();
bf41a158 1530
261842b7
SR
1531 if (trace_recursive_lock())
1532 goto out_nocheck;
1533
7a8e76a3
SR
1534 cpu = raw_smp_processor_id();
1535
9e01c1b7 1536 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1537 goto out;
7a8e76a3
SR
1538
1539 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1540
1541 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 1542 goto out;
7a8e76a3
SR
1543
1544 length = rb_calculate_event_length(length);
1545 if (length > BUF_PAGE_SIZE)
bf41a158 1546 goto out;
7a8e76a3 1547
334d4169 1548 event = rb_reserve_next_event(cpu_buffer, 0, length);
7a8e76a3 1549 if (!event)
d769041f 1550 goto out;
7a8e76a3 1551
bf41a158
SR
1552 /*
1553 * Need to store resched state on this cpu.
1554 * Only the first needs to.
1555 */
1556
1557 if (preempt_count() == 1)
1558 per_cpu(rb_need_resched, cpu) = resched;
1559
7a8e76a3
SR
1560 return event;
1561
d769041f 1562 out:
261842b7
SR
1563 trace_recursive_unlock();
1564
1565 out_nocheck:
182e9f5f 1566 ftrace_preempt_enable(resched);
7a8e76a3
SR
1567 return NULL;
1568}
c4f50183 1569EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3
SR
1570
1571static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1572 struct ring_buffer_event *event)
1573{
e4906eff 1574 local_inc(&cpu_buffer->entries);
bf41a158
SR
1575
1576 /* Only process further if we own the commit */
1577 if (!rb_is_commit(cpu_buffer, event))
1578 return;
1579
1580 cpu_buffer->write_stamp += event->time_delta;
1581
1582 rb_set_commit_to_write(cpu_buffer);
7a8e76a3
SR
1583}
1584
1585/**
1586 * ring_buffer_unlock_commit - commit a reserved
1587 * @buffer: The buffer to commit to
1588 * @event: The event pointer to commit.
7a8e76a3
SR
1589 *
1590 * This commits the data to the ring buffer, and releases any locks held.
1591 *
1592 * Must be paired with ring_buffer_lock_reserve.
1593 */
1594int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 1595 struct ring_buffer_event *event)
7a8e76a3
SR
1596{
1597 struct ring_buffer_per_cpu *cpu_buffer;
1598 int cpu = raw_smp_processor_id();
1599
1600 cpu_buffer = buffer->buffers[cpu];
1601
7a8e76a3
SR
1602 rb_commit(cpu_buffer, event);
1603
261842b7
SR
1604 trace_recursive_unlock();
1605
bf41a158
SR
1606 /*
1607 * Only the last preempt count needs to restore preemption.
1608 */
182e9f5f
SR
1609 if (preempt_count() == 1)
1610 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1611 else
bf41a158 1612 preempt_enable_no_resched_notrace();
7a8e76a3
SR
1613
1614 return 0;
1615}
c4f50183 1616EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 1617
f3b9aae1
FW
1618static inline void rb_event_discard(struct ring_buffer_event *event)
1619{
334d4169
LJ
1620 /* array[0] holds the actual length for the discarded event */
1621 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
1622 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
1623 /* time delta must be non zero */
1624 if (!event->time_delta)
1625 event->time_delta = 1;
1626}
1627
fa1b47dd
SR
1628/**
1629 * ring_buffer_event_discard - discard any event in the ring buffer
1630 * @event: the event to discard
1631 *
1632 * Sometimes a event that is in the ring buffer needs to be ignored.
1633 * This function lets the user discard an event in the ring buffer
1634 * and then that event will not be read later.
1635 *
1636 * Note, it is up to the user to be careful with this, and protect
1637 * against races. If the user discards an event that has been consumed
1638 * it is possible that it could corrupt the ring buffer.
1639 */
1640void ring_buffer_event_discard(struct ring_buffer_event *event)
1641{
f3b9aae1 1642 rb_event_discard(event);
fa1b47dd
SR
1643}
1644EXPORT_SYMBOL_GPL(ring_buffer_event_discard);
1645
1646/**
1647 * ring_buffer_commit_discard - discard an event that has not been committed
1648 * @buffer: the ring buffer
1649 * @event: non committed event to discard
1650 *
1651 * This is similar to ring_buffer_event_discard but must only be
1652 * performed on an event that has not been committed yet. The difference
1653 * is that this will also try to free the event from the ring buffer
1654 * if another event has not been added behind it.
1655 *
1656 * If another event has been added behind it, it will set the event
1657 * up as discarded, and perform the commit.
1658 *
1659 * If this function is called, do not call ring_buffer_unlock_commit on
1660 * the event.
1661 */
1662void ring_buffer_discard_commit(struct ring_buffer *buffer,
1663 struct ring_buffer_event *event)
1664{
1665 struct ring_buffer_per_cpu *cpu_buffer;
1666 unsigned long new_index, old_index;
1667 struct buffer_page *bpage;
1668 unsigned long index;
1669 unsigned long addr;
1670 int cpu;
1671
1672 /* The event is discarded regardless */
f3b9aae1 1673 rb_event_discard(event);
fa1b47dd
SR
1674
1675 /*
1676 * This must only be called if the event has not been
1677 * committed yet. Thus we can assume that preemption
1678 * is still disabled.
1679 */
1680 RB_WARN_ON(buffer, !preempt_count());
1681
1682 cpu = smp_processor_id();
1683 cpu_buffer = buffer->buffers[cpu];
1684
1685 new_index = rb_event_index(event);
1686 old_index = new_index + rb_event_length(event);
1687 addr = (unsigned long)event;
1688 addr &= PAGE_MASK;
1689
1690 bpage = cpu_buffer->tail_page;
1691
1692 if (bpage == (void *)addr && rb_page_write(bpage) == old_index) {
1693 /*
1694 * This is on the tail page. It is possible that
1695 * a write could come in and move the tail page
1696 * and write to the next page. That is fine
1697 * because we just shorten what is on this page.
1698 */
1699 index = local_cmpxchg(&bpage->write, old_index, new_index);
1700 if (index == old_index)
1701 goto out;
1702 }
1703
1704 /*
1705 * The commit is still visible by the reader, so we
1706 * must increment entries.
1707 */
e4906eff 1708 local_inc(&cpu_buffer->entries);
fa1b47dd
SR
1709 out:
1710 /*
1711 * If a write came in and pushed the tail page
1712 * we still need to update the commit pointer
1713 * if we were the commit.
1714 */
1715 if (rb_is_commit(cpu_buffer, event))
1716 rb_set_commit_to_write(cpu_buffer);
1717
f3b9aae1
FW
1718 trace_recursive_unlock();
1719
fa1b47dd
SR
1720 /*
1721 * Only the last preempt count needs to restore preemption.
1722 */
1723 if (preempt_count() == 1)
1724 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1725 else
1726 preempt_enable_no_resched_notrace();
1727
1728}
1729EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
1730
7a8e76a3
SR
1731/**
1732 * ring_buffer_write - write data to the buffer without reserving
1733 * @buffer: The ring buffer to write to.
1734 * @length: The length of the data being written (excluding the event header)
1735 * @data: The data to write to the buffer.
1736 *
1737 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1738 * one function. If you already have the data to write to the buffer, it
1739 * may be easier to simply call this function.
1740 *
1741 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1742 * and not the length of the event which would hold the header.
1743 */
1744int ring_buffer_write(struct ring_buffer *buffer,
1745 unsigned long length,
1746 void *data)
1747{
1748 struct ring_buffer_per_cpu *cpu_buffer;
1749 struct ring_buffer_event *event;
bf41a158 1750 unsigned long event_length;
7a8e76a3
SR
1751 void *body;
1752 int ret = -EBUSY;
bf41a158 1753 int cpu, resched;
7a8e76a3 1754
033601a3 1755 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
1756 return -EBUSY;
1757
7a8e76a3
SR
1758 if (atomic_read(&buffer->record_disabled))
1759 return -EBUSY;
1760
182e9f5f 1761 resched = ftrace_preempt_disable();
bf41a158 1762
7a8e76a3
SR
1763 cpu = raw_smp_processor_id();
1764
9e01c1b7 1765 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 1766 goto out;
7a8e76a3
SR
1767
1768 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
1769
1770 if (atomic_read(&cpu_buffer->record_disabled))
1771 goto out;
1772
1773 event_length = rb_calculate_event_length(length);
334d4169 1774 event = rb_reserve_next_event(cpu_buffer, 0, event_length);
7a8e76a3
SR
1775 if (!event)
1776 goto out;
1777
1778 body = rb_event_data(event);
1779
1780 memcpy(body, data, length);
1781
1782 rb_commit(cpu_buffer, event);
1783
1784 ret = 0;
1785 out:
182e9f5f 1786 ftrace_preempt_enable(resched);
7a8e76a3
SR
1787
1788 return ret;
1789}
c4f50183 1790EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 1791
34a148bf 1792static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
1793{
1794 struct buffer_page *reader = cpu_buffer->reader_page;
1795 struct buffer_page *head = cpu_buffer->head_page;
1796 struct buffer_page *commit = cpu_buffer->commit_page;
1797
1798 return reader->read == rb_page_commit(reader) &&
1799 (commit == reader ||
1800 (commit == head &&
1801 head->read == rb_page_commit(commit)));
1802}
1803
7a8e76a3
SR
1804/**
1805 * ring_buffer_record_disable - stop all writes into the buffer
1806 * @buffer: The ring buffer to stop writes to.
1807 *
1808 * This prevents all writes to the buffer. Any attempt to write
1809 * to the buffer after this will fail and return NULL.
1810 *
1811 * The caller should call synchronize_sched() after this.
1812 */
1813void ring_buffer_record_disable(struct ring_buffer *buffer)
1814{
1815 atomic_inc(&buffer->record_disabled);
1816}
c4f50183 1817EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
1818
1819/**
1820 * ring_buffer_record_enable - enable writes to the buffer
1821 * @buffer: The ring buffer to enable writes
1822 *
1823 * Note, multiple disables will need the same number of enables
1824 * to truely enable the writing (much like preempt_disable).
1825 */
1826void ring_buffer_record_enable(struct ring_buffer *buffer)
1827{
1828 atomic_dec(&buffer->record_disabled);
1829}
c4f50183 1830EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3
SR
1831
1832/**
1833 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1834 * @buffer: The ring buffer to stop writes to.
1835 * @cpu: The CPU buffer to stop
1836 *
1837 * This prevents all writes to the buffer. Any attempt to write
1838 * to the buffer after this will fail and return NULL.
1839 *
1840 * The caller should call synchronize_sched() after this.
1841 */
1842void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1843{
1844 struct ring_buffer_per_cpu *cpu_buffer;
1845
9e01c1b7 1846 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1847 return;
7a8e76a3
SR
1848
1849 cpu_buffer = buffer->buffers[cpu];
1850 atomic_inc(&cpu_buffer->record_disabled);
1851}
c4f50183 1852EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
1853
1854/**
1855 * ring_buffer_record_enable_cpu - enable writes to the buffer
1856 * @buffer: The ring buffer to enable writes
1857 * @cpu: The CPU to enable.
1858 *
1859 * Note, multiple disables will need the same number of enables
1860 * to truely enable the writing (much like preempt_disable).
1861 */
1862void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1863{
1864 struct ring_buffer_per_cpu *cpu_buffer;
1865
9e01c1b7 1866 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1867 return;
7a8e76a3
SR
1868
1869 cpu_buffer = buffer->buffers[cpu];
1870 atomic_dec(&cpu_buffer->record_disabled);
1871}
c4f50183 1872EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3
SR
1873
1874/**
1875 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1876 * @buffer: The ring buffer
1877 * @cpu: The per CPU buffer to get the entries from.
1878 */
1879unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1880{
1881 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1882 unsigned long ret;
7a8e76a3 1883
9e01c1b7 1884 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1885 return 0;
7a8e76a3
SR
1886
1887 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1888 ret = (local_read(&cpu_buffer->entries) - cpu_buffer->overrun)
1889 - cpu_buffer->read;
554f786e
SR
1890
1891 return ret;
7a8e76a3 1892}
c4f50183 1893EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
1894
1895/**
1896 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1897 * @buffer: The ring buffer
1898 * @cpu: The per CPU buffer to get the number of overruns from
1899 */
1900unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1901{
1902 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 1903 unsigned long ret;
7a8e76a3 1904
9e01c1b7 1905 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 1906 return 0;
7a8e76a3
SR
1907
1908 cpu_buffer = buffer->buffers[cpu];
554f786e 1909 ret = cpu_buffer->overrun;
554f786e
SR
1910
1911 return ret;
7a8e76a3 1912}
c4f50183 1913EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 1914
f0d2c681
SR
1915/**
1916 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
1917 * @buffer: The ring buffer
1918 * @cpu: The per CPU buffer to get the number of overruns from
1919 */
1920unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer *buffer, int cpu)
1921{
1922 struct ring_buffer_per_cpu *cpu_buffer;
1923 unsigned long ret;
1924
1925 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1926 return 0;
1927
1928 cpu_buffer = buffer->buffers[cpu];
1929 ret = cpu_buffer->nmi_dropped;
1930
1931 return ret;
1932}
1933EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu);
1934
1935/**
1936 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
1937 * @buffer: The ring buffer
1938 * @cpu: The per CPU buffer to get the number of overruns from
1939 */
1940unsigned long
1941ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
1942{
1943 struct ring_buffer_per_cpu *cpu_buffer;
1944 unsigned long ret;
1945
1946 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1947 return 0;
1948
1949 cpu_buffer = buffer->buffers[cpu];
1950 ret = cpu_buffer->commit_overrun;
1951
1952 return ret;
1953}
1954EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
1955
7a8e76a3
SR
1956/**
1957 * ring_buffer_entries - get the number of entries in a buffer
1958 * @buffer: The ring buffer
1959 *
1960 * Returns the total number of entries in the ring buffer
1961 * (all CPU entries)
1962 */
1963unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1964{
1965 struct ring_buffer_per_cpu *cpu_buffer;
1966 unsigned long entries = 0;
1967 int cpu;
1968
1969 /* if you care about this being correct, lock the buffer */
1970 for_each_buffer_cpu(buffer, cpu) {
1971 cpu_buffer = buffer->buffers[cpu];
e4906eff
SR
1972 entries += (local_read(&cpu_buffer->entries) -
1973 cpu_buffer->overrun) - cpu_buffer->read;
7a8e76a3
SR
1974 }
1975
1976 return entries;
1977}
c4f50183 1978EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
1979
1980/**
1981 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1982 * @buffer: The ring buffer
1983 *
1984 * Returns the total number of overruns in the ring buffer
1985 * (all CPU entries)
1986 */
1987unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1988{
1989 struct ring_buffer_per_cpu *cpu_buffer;
1990 unsigned long overruns = 0;
1991 int cpu;
1992
1993 /* if you care about this being correct, lock the buffer */
1994 for_each_buffer_cpu(buffer, cpu) {
1995 cpu_buffer = buffer->buffers[cpu];
1996 overruns += cpu_buffer->overrun;
1997 }
1998
1999 return overruns;
2000}
c4f50183 2001EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 2002
642edba5 2003static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
2004{
2005 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2006
d769041f
SR
2007 /* Iterator usage is expected to have record disabled */
2008 if (list_empty(&cpu_buffer->reader_page->list)) {
2009 iter->head_page = cpu_buffer->head_page;
6f807acd 2010 iter->head = cpu_buffer->head_page->read;
d769041f
SR
2011 } else {
2012 iter->head_page = cpu_buffer->reader_page;
6f807acd 2013 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
2014 }
2015 if (iter->head)
2016 iter->read_stamp = cpu_buffer->read_stamp;
2017 else
abc9b56d 2018 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 2019}
f83c9d0f 2020
642edba5
SR
2021/**
2022 * ring_buffer_iter_reset - reset an iterator
2023 * @iter: The iterator to reset
2024 *
2025 * Resets the iterator, so that it will start from the beginning
2026 * again.
2027 */
2028void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2029{
554f786e 2030 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
2031 unsigned long flags;
2032
554f786e
SR
2033 if (!iter)
2034 return;
2035
2036 cpu_buffer = iter->cpu_buffer;
2037
642edba5
SR
2038 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2039 rb_iter_reset(iter);
f83c9d0f 2040 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2041}
c4f50183 2042EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
2043
2044/**
2045 * ring_buffer_iter_empty - check if an iterator has no more to read
2046 * @iter: The iterator to check
2047 */
2048int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2049{
2050 struct ring_buffer_per_cpu *cpu_buffer;
2051
2052 cpu_buffer = iter->cpu_buffer;
2053
bf41a158
SR
2054 return iter->head_page == cpu_buffer->commit_page &&
2055 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 2056}
c4f50183 2057EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
2058
2059static void
2060rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2061 struct ring_buffer_event *event)
2062{
2063 u64 delta;
2064
334d4169 2065 switch (event->type_len) {
7a8e76a3
SR
2066 case RINGBUF_TYPE_PADDING:
2067 return;
2068
2069 case RINGBUF_TYPE_TIME_EXTEND:
2070 delta = event->array[0];
2071 delta <<= TS_SHIFT;
2072 delta += event->time_delta;
2073 cpu_buffer->read_stamp += delta;
2074 return;
2075
2076 case RINGBUF_TYPE_TIME_STAMP:
2077 /* FIXME: not implemented */
2078 return;
2079
2080 case RINGBUF_TYPE_DATA:
2081 cpu_buffer->read_stamp += event->time_delta;
2082 return;
2083
2084 default:
2085 BUG();
2086 }
2087 return;
2088}
2089
2090static void
2091rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2092 struct ring_buffer_event *event)
2093{
2094 u64 delta;
2095
334d4169 2096 switch (event->type_len) {
7a8e76a3
SR
2097 case RINGBUF_TYPE_PADDING:
2098 return;
2099
2100 case RINGBUF_TYPE_TIME_EXTEND:
2101 delta = event->array[0];
2102 delta <<= TS_SHIFT;
2103 delta += event->time_delta;
2104 iter->read_stamp += delta;
2105 return;
2106
2107 case RINGBUF_TYPE_TIME_STAMP:
2108 /* FIXME: not implemented */
2109 return;
2110
2111 case RINGBUF_TYPE_DATA:
2112 iter->read_stamp += event->time_delta;
2113 return;
2114
2115 default:
2116 BUG();
2117 }
2118 return;
2119}
2120
d769041f
SR
2121static struct buffer_page *
2122rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 2123{
d769041f
SR
2124 struct buffer_page *reader = NULL;
2125 unsigned long flags;
818e3dd3 2126 int nr_loops = 0;
d769041f 2127
3e03fb7f
SR
2128 local_irq_save(flags);
2129 __raw_spin_lock(&cpu_buffer->lock);
d769041f
SR
2130
2131 again:
818e3dd3
SR
2132 /*
2133 * This should normally only loop twice. But because the
2134 * start of the reader inserts an empty page, it causes
2135 * a case where we will loop three times. There should be no
2136 * reason to loop four times (that I know of).
2137 */
3e89c7bb 2138 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
2139 reader = NULL;
2140 goto out;
2141 }
2142
d769041f
SR
2143 reader = cpu_buffer->reader_page;
2144
2145 /* If there's more to read, return this page */
bf41a158 2146 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
2147 goto out;
2148
2149 /* Never should we have an index greater than the size */
3e89c7bb
SR
2150 if (RB_WARN_ON(cpu_buffer,
2151 cpu_buffer->reader_page->read > rb_page_size(reader)))
2152 goto out;
d769041f
SR
2153
2154 /* check if we caught up to the tail */
2155 reader = NULL;
bf41a158 2156 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 2157 goto out;
7a8e76a3
SR
2158
2159 /*
d769041f
SR
2160 * Splice the empty reader page into the list around the head.
2161 * Reset the reader page to size zero.
7a8e76a3 2162 */
7a8e76a3 2163
d769041f
SR
2164 reader = cpu_buffer->head_page;
2165 cpu_buffer->reader_page->list.next = reader->list.next;
2166 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158
SR
2167
2168 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2169 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2170 local_set(&cpu_buffer->reader_page->page->commit, 0);
7a8e76a3 2171
d769041f
SR
2172 /* Make the reader page now replace the head */
2173 reader->list.prev->next = &cpu_buffer->reader_page->list;
2174 reader->list.next->prev = &cpu_buffer->reader_page->list;
7a8e76a3
SR
2175
2176 /*
d769041f
SR
2177 * If the tail is on the reader, then we must set the head
2178 * to the inserted page, otherwise we set it one before.
7a8e76a3 2179 */
d769041f 2180 cpu_buffer->head_page = cpu_buffer->reader_page;
7a8e76a3 2181
bf41a158 2182 if (cpu_buffer->commit_page != reader)
d769041f
SR
2183 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2184
2185 /* Finally update the reader page to the new head */
2186 cpu_buffer->reader_page = reader;
2187 rb_reset_reader_page(cpu_buffer);
2188
2189 goto again;
2190
2191 out:
3e03fb7f
SR
2192 __raw_spin_unlock(&cpu_buffer->lock);
2193 local_irq_restore(flags);
d769041f
SR
2194
2195 return reader;
2196}
2197
2198static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2199{
2200 struct ring_buffer_event *event;
2201 struct buffer_page *reader;
2202 unsigned length;
2203
2204 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 2205
d769041f 2206 /* This function should not be called when buffer is empty */
3e89c7bb
SR
2207 if (RB_WARN_ON(cpu_buffer, !reader))
2208 return;
7a8e76a3 2209
d769041f
SR
2210 event = rb_reader_event(cpu_buffer);
2211
334d4169
LJ
2212 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2213 || rb_discarded_event(event))
e4906eff 2214 cpu_buffer->read++;
d769041f
SR
2215
2216 rb_update_read_stamp(cpu_buffer, event);
2217
2218 length = rb_event_length(event);
6f807acd 2219 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
2220}
2221
2222static void rb_advance_iter(struct ring_buffer_iter *iter)
2223{
2224 struct ring_buffer *buffer;
2225 struct ring_buffer_per_cpu *cpu_buffer;
2226 struct ring_buffer_event *event;
2227 unsigned length;
2228
2229 cpu_buffer = iter->cpu_buffer;
2230 buffer = cpu_buffer->buffer;
2231
2232 /*
2233 * Check if we are at the end of the buffer.
2234 */
bf41a158 2235 if (iter->head >= rb_page_size(iter->head_page)) {
3e89c7bb
SR
2236 if (RB_WARN_ON(buffer,
2237 iter->head_page == cpu_buffer->commit_page))
2238 return;
d769041f 2239 rb_inc_iter(iter);
7a8e76a3
SR
2240 return;
2241 }
2242
2243 event = rb_iter_head_event(iter);
2244
2245 length = rb_event_length(event);
2246
2247 /*
2248 * This should not be called to advance the header if we are
2249 * at the tail of the buffer.
2250 */
3e89c7bb 2251 if (RB_WARN_ON(cpu_buffer,
f536aafc 2252 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
2253 (iter->head + length > rb_commit_index(cpu_buffer))))
2254 return;
7a8e76a3
SR
2255
2256 rb_update_iter_read_stamp(iter, event);
2257
2258 iter->head += length;
2259
2260 /* check for end of page padding */
bf41a158
SR
2261 if ((iter->head >= rb_page_size(iter->head_page)) &&
2262 (iter->head_page != cpu_buffer->commit_page))
7a8e76a3
SR
2263 rb_advance_iter(iter);
2264}
2265
f83c9d0f
SR
2266static struct ring_buffer_event *
2267rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
7a8e76a3
SR
2268{
2269 struct ring_buffer_per_cpu *cpu_buffer;
2270 struct ring_buffer_event *event;
d769041f 2271 struct buffer_page *reader;
818e3dd3 2272 int nr_loops = 0;
7a8e76a3 2273
7a8e76a3
SR
2274 cpu_buffer = buffer->buffers[cpu];
2275
2276 again:
818e3dd3
SR
2277 /*
2278 * We repeat when a timestamp is encountered. It is possible
2279 * to get multiple timestamps from an interrupt entering just
2280 * as one timestamp is about to be written. The max times
2281 * that this can happen is the number of nested interrupts we
2282 * can have. Nesting 10 deep of interrupts is clearly
2283 * an anomaly.
2284 */
3e89c7bb 2285 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2286 return NULL;
818e3dd3 2287
d769041f
SR
2288 reader = rb_get_reader_page(cpu_buffer);
2289 if (!reader)
7a8e76a3
SR
2290 return NULL;
2291
d769041f 2292 event = rb_reader_event(cpu_buffer);
7a8e76a3 2293
334d4169 2294 switch (event->type_len) {
7a8e76a3 2295 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2296 if (rb_null_event(event))
2297 RB_WARN_ON(cpu_buffer, 1);
2298 /*
2299 * Because the writer could be discarding every
2300 * event it creates (which would probably be bad)
2301 * if we were to go back to "again" then we may never
2302 * catch up, and will trigger the warn on, or lock
2303 * the box. Return the padding, and we will release
2304 * the current locks, and try again.
2305 */
d769041f 2306 rb_advance_reader(cpu_buffer);
2d622719 2307 return event;
7a8e76a3
SR
2308
2309 case RINGBUF_TYPE_TIME_EXTEND:
2310 /* Internal data, OK to advance */
d769041f 2311 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2312 goto again;
2313
2314 case RINGBUF_TYPE_TIME_STAMP:
2315 /* FIXME: not implemented */
d769041f 2316 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
2317 goto again;
2318
2319 case RINGBUF_TYPE_DATA:
2320 if (ts) {
2321 *ts = cpu_buffer->read_stamp + event->time_delta;
37886f6a
SR
2322 ring_buffer_normalize_time_stamp(buffer,
2323 cpu_buffer->cpu, ts);
7a8e76a3
SR
2324 }
2325 return event;
2326
2327 default:
2328 BUG();
2329 }
2330
2331 return NULL;
2332}
c4f50183 2333EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 2334
f83c9d0f
SR
2335static struct ring_buffer_event *
2336rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
2337{
2338 struct ring_buffer *buffer;
2339 struct ring_buffer_per_cpu *cpu_buffer;
2340 struct ring_buffer_event *event;
818e3dd3 2341 int nr_loops = 0;
7a8e76a3
SR
2342
2343 if (ring_buffer_iter_empty(iter))
2344 return NULL;
2345
2346 cpu_buffer = iter->cpu_buffer;
2347 buffer = cpu_buffer->buffer;
2348
2349 again:
818e3dd3
SR
2350 /*
2351 * We repeat when a timestamp is encountered. It is possible
2352 * to get multiple timestamps from an interrupt entering just
2353 * as one timestamp is about to be written. The max times
2354 * that this can happen is the number of nested interrupts we
2355 * can have. Nesting 10 deep of interrupts is clearly
2356 * an anomaly.
2357 */
3e89c7bb 2358 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
818e3dd3 2359 return NULL;
818e3dd3 2360
7a8e76a3
SR
2361 if (rb_per_cpu_empty(cpu_buffer))
2362 return NULL;
2363
2364 event = rb_iter_head_event(iter);
2365
334d4169 2366 switch (event->type_len) {
7a8e76a3 2367 case RINGBUF_TYPE_PADDING:
2d622719
TZ
2368 if (rb_null_event(event)) {
2369 rb_inc_iter(iter);
2370 goto again;
2371 }
2372 rb_advance_iter(iter);
2373 return event;
7a8e76a3
SR
2374
2375 case RINGBUF_TYPE_TIME_EXTEND:
2376 /* Internal data, OK to advance */
2377 rb_advance_iter(iter);
2378 goto again;
2379
2380 case RINGBUF_TYPE_TIME_STAMP:
2381 /* FIXME: not implemented */
2382 rb_advance_iter(iter);
2383 goto again;
2384
2385 case RINGBUF_TYPE_DATA:
2386 if (ts) {
2387 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
2388 ring_buffer_normalize_time_stamp(buffer,
2389 cpu_buffer->cpu, ts);
7a8e76a3
SR
2390 }
2391 return event;
2392
2393 default:
2394 BUG();
2395 }
2396
2397 return NULL;
2398}
c4f50183 2399EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 2400
f83c9d0f
SR
2401/**
2402 * ring_buffer_peek - peek at the next event to be read
2403 * @buffer: The ring buffer to read
2404 * @cpu: The cpu to peak at
2405 * @ts: The timestamp counter of this event.
2406 *
2407 * This will return the event that will be read next, but does
2408 * not consume the data.
2409 */
2410struct ring_buffer_event *
2411ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2412{
2413 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 2414 struct ring_buffer_event *event;
f83c9d0f
SR
2415 unsigned long flags;
2416
554f786e 2417 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2418 return NULL;
554f786e 2419
2d622719 2420 again:
f83c9d0f
SR
2421 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2422 event = rb_buffer_peek(buffer, cpu, ts);
2423 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2424
334d4169 2425 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2426 cpu_relax();
2427 goto again;
2428 }
2429
f83c9d0f
SR
2430 return event;
2431}
2432
2433/**
2434 * ring_buffer_iter_peek - peek at the next event to be read
2435 * @iter: The ring buffer iterator
2436 * @ts: The timestamp counter of this event.
2437 *
2438 * This will return the event that will be read next, but does
2439 * not increment the iterator.
2440 */
2441struct ring_buffer_event *
2442ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2443{
2444 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2445 struct ring_buffer_event *event;
2446 unsigned long flags;
2447
2d622719 2448 again:
f83c9d0f
SR
2449 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2450 event = rb_iter_peek(iter, ts);
2451 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2452
334d4169 2453 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2454 cpu_relax();
2455 goto again;
2456 }
2457
f83c9d0f
SR
2458 return event;
2459}
2460
7a8e76a3
SR
2461/**
2462 * ring_buffer_consume - return an event and consume it
2463 * @buffer: The ring buffer to get the next event from
2464 *
2465 * Returns the next event in the ring buffer, and that event is consumed.
2466 * Meaning, that sequential reads will keep returning a different event,
2467 * and eventually empty the ring buffer if the producer is slower.
2468 */
2469struct ring_buffer_event *
2470ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2471{
554f786e
SR
2472 struct ring_buffer_per_cpu *cpu_buffer;
2473 struct ring_buffer_event *event = NULL;
f83c9d0f 2474 unsigned long flags;
7a8e76a3 2475
2d622719 2476 again:
554f786e
SR
2477 /* might be called in atomic */
2478 preempt_disable();
2479
9e01c1b7 2480 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 2481 goto out;
7a8e76a3 2482
554f786e 2483 cpu_buffer = buffer->buffers[cpu];
f83c9d0f
SR
2484 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2485
2486 event = rb_buffer_peek(buffer, cpu, ts);
7a8e76a3 2487 if (!event)
554f786e 2488 goto out_unlock;
7a8e76a3 2489
d769041f 2490 rb_advance_reader(cpu_buffer);
7a8e76a3 2491
554f786e 2492 out_unlock:
f83c9d0f
SR
2493 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2494
554f786e
SR
2495 out:
2496 preempt_enable();
2497
334d4169 2498 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2499 cpu_relax();
2500 goto again;
2501 }
2502
7a8e76a3
SR
2503 return event;
2504}
c4f50183 2505EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
2506
2507/**
2508 * ring_buffer_read_start - start a non consuming read of the buffer
2509 * @buffer: The ring buffer to read from
2510 * @cpu: The cpu buffer to iterate over
2511 *
2512 * This starts up an iteration through the buffer. It also disables
2513 * the recording to the buffer until the reading is finished.
2514 * This prevents the reading from being corrupted. This is not
2515 * a consuming read, so a producer is not expected.
2516 *
2517 * Must be paired with ring_buffer_finish.
2518 */
2519struct ring_buffer_iter *
2520ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2521{
2522 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2523 struct ring_buffer_iter *iter;
d769041f 2524 unsigned long flags;
7a8e76a3 2525
9e01c1b7 2526 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2527 return NULL;
7a8e76a3
SR
2528
2529 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2530 if (!iter)
8aabee57 2531 return NULL;
7a8e76a3
SR
2532
2533 cpu_buffer = buffer->buffers[cpu];
2534
2535 iter->cpu_buffer = cpu_buffer;
2536
2537 atomic_inc(&cpu_buffer->record_disabled);
2538 synchronize_sched();
2539
f83c9d0f 2540 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3e03fb7f 2541 __raw_spin_lock(&cpu_buffer->lock);
642edba5 2542 rb_iter_reset(iter);
3e03fb7f 2543 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f 2544 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
2545
2546 return iter;
2547}
c4f50183 2548EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
2549
2550/**
2551 * ring_buffer_finish - finish reading the iterator of the buffer
2552 * @iter: The iterator retrieved by ring_buffer_start
2553 *
2554 * This re-enables the recording to the buffer, and frees the
2555 * iterator.
2556 */
2557void
2558ring_buffer_read_finish(struct ring_buffer_iter *iter)
2559{
2560 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2561
2562 atomic_dec(&cpu_buffer->record_disabled);
2563 kfree(iter);
2564}
c4f50183 2565EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
2566
2567/**
2568 * ring_buffer_read - read the next item in the ring buffer by the iterator
2569 * @iter: The ring buffer iterator
2570 * @ts: The time stamp of the event read.
2571 *
2572 * This reads the next event in the ring buffer and increments the iterator.
2573 */
2574struct ring_buffer_event *
2575ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2576{
2577 struct ring_buffer_event *event;
f83c9d0f
SR
2578 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2579 unsigned long flags;
7a8e76a3 2580
2d622719 2581 again:
f83c9d0f
SR
2582 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2583 event = rb_iter_peek(iter, ts);
7a8e76a3 2584 if (!event)
f83c9d0f 2585 goto out;
7a8e76a3
SR
2586
2587 rb_advance_iter(iter);
f83c9d0f
SR
2588 out:
2589 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 2590
334d4169 2591 if (event && event->type_len == RINGBUF_TYPE_PADDING) {
2d622719
TZ
2592 cpu_relax();
2593 goto again;
2594 }
2595
7a8e76a3
SR
2596 return event;
2597}
c4f50183 2598EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
2599
2600/**
2601 * ring_buffer_size - return the size of the ring buffer (in bytes)
2602 * @buffer: The ring buffer.
2603 */
2604unsigned long ring_buffer_size(struct ring_buffer *buffer)
2605{
2606 return BUF_PAGE_SIZE * buffer->pages;
2607}
c4f50183 2608EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
2609
2610static void
2611rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2612{
2613 cpu_buffer->head_page
2614 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
bf41a158 2615 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 2616 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 2617 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 2618
6f807acd 2619 cpu_buffer->head_page->read = 0;
bf41a158
SR
2620
2621 cpu_buffer->tail_page = cpu_buffer->head_page;
2622 cpu_buffer->commit_page = cpu_buffer->head_page;
2623
2624 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2625 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 2626 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 2627 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 2628 cpu_buffer->reader_page->read = 0;
7a8e76a3 2629
f0d2c681
SR
2630 cpu_buffer->nmi_dropped = 0;
2631 cpu_buffer->commit_overrun = 0;
7a8e76a3 2632 cpu_buffer->overrun = 0;
e4906eff
SR
2633 cpu_buffer->read = 0;
2634 local_set(&cpu_buffer->entries, 0);
69507c06
SR
2635
2636 cpu_buffer->write_stamp = 0;
2637 cpu_buffer->read_stamp = 0;
7a8e76a3
SR
2638}
2639
2640/**
2641 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2642 * @buffer: The ring buffer to reset a per cpu buffer of
2643 * @cpu: The CPU buffer to be reset
2644 */
2645void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2646{
2647 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2648 unsigned long flags;
2649
9e01c1b7 2650 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2651 return;
7a8e76a3 2652
41ede23e
SR
2653 atomic_inc(&cpu_buffer->record_disabled);
2654
f83c9d0f
SR
2655 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2656
3e03fb7f 2657 __raw_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
2658
2659 rb_reset_cpu(cpu_buffer);
2660
3e03fb7f 2661 __raw_spin_unlock(&cpu_buffer->lock);
f83c9d0f
SR
2662
2663 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
2664
2665 atomic_dec(&cpu_buffer->record_disabled);
7a8e76a3 2666}
c4f50183 2667EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
2668
2669/**
2670 * ring_buffer_reset - reset a ring buffer
2671 * @buffer: The ring buffer to reset all cpu buffers
2672 */
2673void ring_buffer_reset(struct ring_buffer *buffer)
2674{
7a8e76a3
SR
2675 int cpu;
2676
7a8e76a3 2677 for_each_buffer_cpu(buffer, cpu)
d769041f 2678 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 2679}
c4f50183 2680EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
2681
2682/**
2683 * rind_buffer_empty - is the ring buffer empty?
2684 * @buffer: The ring buffer to test
2685 */
2686int ring_buffer_empty(struct ring_buffer *buffer)
2687{
2688 struct ring_buffer_per_cpu *cpu_buffer;
2689 int cpu;
2690
2691 /* yes this is racy, but if you don't like the race, lock the buffer */
2692 for_each_buffer_cpu(buffer, cpu) {
2693 cpu_buffer = buffer->buffers[cpu];
2694 if (!rb_per_cpu_empty(cpu_buffer))
2695 return 0;
2696 }
554f786e 2697
7a8e76a3
SR
2698 return 1;
2699}
c4f50183 2700EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
2701
2702/**
2703 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2704 * @buffer: The ring buffer
2705 * @cpu: The CPU buffer to test
2706 */
2707int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2708{
2709 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 2710 int ret;
7a8e76a3 2711
9e01c1b7 2712 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 2713 return 1;
7a8e76a3
SR
2714
2715 cpu_buffer = buffer->buffers[cpu];
554f786e
SR
2716 ret = rb_per_cpu_empty(cpu_buffer);
2717
554f786e
SR
2718
2719 return ret;
7a8e76a3 2720}
c4f50183 2721EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3
SR
2722
2723/**
2724 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2725 * @buffer_a: One buffer to swap with
2726 * @buffer_b: The other buffer to swap with
2727 *
2728 * This function is useful for tracers that want to take a "snapshot"
2729 * of a CPU buffer and has another back up buffer lying around.
2730 * it is expected that the tracer handles the cpu buffer not being
2731 * used at the moment.
2732 */
2733int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2734 struct ring_buffer *buffer_b, int cpu)
2735{
2736 struct ring_buffer_per_cpu *cpu_buffer_a;
2737 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
2738 int ret = -EINVAL;
2739
9e01c1b7
RR
2740 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2741 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 2742 goto out;
7a8e76a3
SR
2743
2744 /* At least make sure the two buffers are somewhat the same */
6d102bc6 2745 if (buffer_a->pages != buffer_b->pages)
554f786e
SR
2746 goto out;
2747
2748 ret = -EAGAIN;
7a8e76a3 2749
97b17efe 2750 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 2751 goto out;
97b17efe
SR
2752
2753 if (atomic_read(&buffer_a->record_disabled))
554f786e 2754 goto out;
97b17efe
SR
2755
2756 if (atomic_read(&buffer_b->record_disabled))
554f786e 2757 goto out;
97b17efe 2758
7a8e76a3
SR
2759 cpu_buffer_a = buffer_a->buffers[cpu];
2760 cpu_buffer_b = buffer_b->buffers[cpu];
2761
97b17efe 2762 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 2763 goto out;
97b17efe
SR
2764
2765 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 2766 goto out;
97b17efe 2767
7a8e76a3
SR
2768 /*
2769 * We can't do a synchronize_sched here because this
2770 * function can be called in atomic context.
2771 * Normally this will be called from the same CPU as cpu.
2772 * If not it's up to the caller to protect this.
2773 */
2774 atomic_inc(&cpu_buffer_a->record_disabled);
2775 atomic_inc(&cpu_buffer_b->record_disabled);
2776
2777 buffer_a->buffers[cpu] = cpu_buffer_b;
2778 buffer_b->buffers[cpu] = cpu_buffer_a;
2779
2780 cpu_buffer_b->buffer = buffer_a;
2781 cpu_buffer_a->buffer = buffer_b;
2782
2783 atomic_dec(&cpu_buffer_a->record_disabled);
2784 atomic_dec(&cpu_buffer_b->record_disabled);
2785
554f786e
SR
2786 ret = 0;
2787out:
554f786e 2788 return ret;
7a8e76a3 2789}
c4f50183 2790EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
7a8e76a3 2791
8789a9e7
SR
2792/**
2793 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2794 * @buffer: the buffer to allocate for.
2795 *
2796 * This function is used in conjunction with ring_buffer_read_page.
2797 * When reading a full page from the ring buffer, these functions
2798 * can be used to speed up the process. The calling function should
2799 * allocate a few pages first with this function. Then when it
2800 * needs to get pages from the ring buffer, it passes the result
2801 * of this function into ring_buffer_read_page, which will swap
2802 * the page that was allocated, with the read page of the buffer.
2803 *
2804 * Returns:
2805 * The page allocated, or NULL on error.
2806 */
2807void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2808{
044fa782 2809 struct buffer_data_page *bpage;
ef7a4a16 2810 unsigned long addr;
8789a9e7
SR
2811
2812 addr = __get_free_page(GFP_KERNEL);
2813 if (!addr)
2814 return NULL;
2815
044fa782 2816 bpage = (void *)addr;
8789a9e7 2817
ef7a4a16
SR
2818 rb_init_page(bpage);
2819
044fa782 2820 return bpage;
8789a9e7 2821}
d6ce96da 2822EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
2823
2824/**
2825 * ring_buffer_free_read_page - free an allocated read page
2826 * @buffer: the buffer the page was allocate for
2827 * @data: the page to free
2828 *
2829 * Free a page allocated from ring_buffer_alloc_read_page.
2830 */
2831void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2832{
2833 free_page((unsigned long)data);
2834}
d6ce96da 2835EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
2836
2837/**
2838 * ring_buffer_read_page - extract a page from the ring buffer
2839 * @buffer: buffer to extract from
2840 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 2841 * @len: amount to extract
8789a9e7
SR
2842 * @cpu: the cpu of the buffer to extract
2843 * @full: should the extraction only happen when the page is full.
2844 *
2845 * This function will pull out a page from the ring buffer and consume it.
2846 * @data_page must be the address of the variable that was returned
2847 * from ring_buffer_alloc_read_page. This is because the page might be used
2848 * to swap with a page in the ring buffer.
2849 *
2850 * for example:
b85fa01e 2851 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
2852 * if (!rpage)
2853 * return error;
ef7a4a16 2854 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
2855 * if (ret >= 0)
2856 * process_page(rpage, ret);
8789a9e7
SR
2857 *
2858 * When @full is set, the function will not return true unless
2859 * the writer is off the reader page.
2860 *
2861 * Note: it is up to the calling functions to handle sleeps and wakeups.
2862 * The ring buffer can be used anywhere in the kernel and can not
2863 * blindly call wake_up. The layer that uses the ring buffer must be
2864 * responsible for that.
2865 *
2866 * Returns:
667d2412
LJ
2867 * >=0 if data has been transferred, returns the offset of consumed data.
2868 * <0 if no data has been transferred.
8789a9e7
SR
2869 */
2870int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 2871 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
2872{
2873 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2874 struct ring_buffer_event *event;
044fa782 2875 struct buffer_data_page *bpage;
ef7a4a16 2876 struct buffer_page *reader;
8789a9e7 2877 unsigned long flags;
ef7a4a16 2878 unsigned int commit;
667d2412 2879 unsigned int read;
4f3640f8 2880 u64 save_timestamp;
667d2412 2881 int ret = -1;
8789a9e7 2882
554f786e
SR
2883 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2884 goto out;
2885
474d32b6
SR
2886 /*
2887 * If len is not big enough to hold the page header, then
2888 * we can not copy anything.
2889 */
2890 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 2891 goto out;
474d32b6
SR
2892
2893 len -= BUF_PAGE_HDR_SIZE;
2894
8789a9e7 2895 if (!data_page)
554f786e 2896 goto out;
8789a9e7 2897
044fa782
SR
2898 bpage = *data_page;
2899 if (!bpage)
554f786e 2900 goto out;
8789a9e7
SR
2901
2902 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2903
ef7a4a16
SR
2904 reader = rb_get_reader_page(cpu_buffer);
2905 if (!reader)
554f786e 2906 goto out_unlock;
8789a9e7 2907
ef7a4a16
SR
2908 event = rb_reader_event(cpu_buffer);
2909
2910 read = reader->read;
2911 commit = rb_page_commit(reader);
667d2412 2912
8789a9e7 2913 /*
474d32b6
SR
2914 * If this page has been partially read or
2915 * if len is not big enough to read the rest of the page or
2916 * a writer is still on the page, then
2917 * we must copy the data from the page to the buffer.
2918 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 2919 */
474d32b6 2920 if (read || (len < (commit - read)) ||
ef7a4a16 2921 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 2922 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
2923 unsigned int rpos = read;
2924 unsigned int pos = 0;
ef7a4a16 2925 unsigned int size;
8789a9e7
SR
2926
2927 if (full)
554f786e 2928 goto out_unlock;
8789a9e7 2929
ef7a4a16
SR
2930 if (len > (commit - read))
2931 len = (commit - read);
2932
2933 size = rb_event_length(event);
2934
2935 if (len < size)
554f786e 2936 goto out_unlock;
ef7a4a16 2937
4f3640f8
SR
2938 /* save the current timestamp, since the user will need it */
2939 save_timestamp = cpu_buffer->read_stamp;
2940
ef7a4a16
SR
2941 /* Need to copy one event at a time */
2942 do {
474d32b6 2943 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
2944
2945 len -= size;
2946
2947 rb_advance_reader(cpu_buffer);
474d32b6
SR
2948 rpos = reader->read;
2949 pos += size;
ef7a4a16
SR
2950
2951 event = rb_reader_event(cpu_buffer);
2952 size = rb_event_length(event);
2953 } while (len > size);
667d2412
LJ
2954
2955 /* update bpage */
ef7a4a16 2956 local_set(&bpage->commit, pos);
4f3640f8 2957 bpage->time_stamp = save_timestamp;
ef7a4a16 2958
474d32b6
SR
2959 /* we copied everything to the beginning */
2960 read = 0;
8789a9e7 2961 } else {
afbab76a
SR
2962 /* update the entry counter */
2963 cpu_buffer->read += local_read(&reader->entries);
2964
8789a9e7 2965 /* swap the pages */
044fa782 2966 rb_init_page(bpage);
ef7a4a16
SR
2967 bpage = reader->page;
2968 reader->page = *data_page;
2969 local_set(&reader->write, 0);
778c55d4 2970 local_set(&reader->entries, 0);
ef7a4a16 2971 reader->read = 0;
044fa782 2972 *data_page = bpage;
8789a9e7 2973 }
667d2412 2974 ret = read;
8789a9e7 2975
554f786e 2976 out_unlock:
8789a9e7
SR
2977 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2978
554f786e 2979 out:
8789a9e7
SR
2980 return ret;
2981}
d6ce96da 2982EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 2983
a3583244
SR
2984static ssize_t
2985rb_simple_read(struct file *filp, char __user *ubuf,
2986 size_t cnt, loff_t *ppos)
2987{
5e39841c 2988 unsigned long *p = filp->private_data;
a3583244
SR
2989 char buf[64];
2990 int r;
2991
033601a3
SR
2992 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2993 r = sprintf(buf, "permanently disabled\n");
2994 else
2995 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
a3583244
SR
2996
2997 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2998}
2999
3000static ssize_t
3001rb_simple_write(struct file *filp, const char __user *ubuf,
3002 size_t cnt, loff_t *ppos)
3003{
5e39841c 3004 unsigned long *p = filp->private_data;
a3583244 3005 char buf[64];
5e39841c 3006 unsigned long val;
a3583244
SR
3007 int ret;
3008
3009 if (cnt >= sizeof(buf))
3010 return -EINVAL;
3011
3012 if (copy_from_user(&buf, ubuf, cnt))
3013 return -EFAULT;
3014
3015 buf[cnt] = 0;
3016
3017 ret = strict_strtoul(buf, 10, &val);
3018 if (ret < 0)
3019 return ret;
3020
033601a3
SR
3021 if (val)
3022 set_bit(RB_BUFFERS_ON_BIT, p);
3023 else
3024 clear_bit(RB_BUFFERS_ON_BIT, p);
a3583244
SR
3025
3026 (*ppos)++;
3027
3028 return cnt;
3029}
3030
5e2336a0 3031static const struct file_operations rb_simple_fops = {
a3583244
SR
3032 .open = tracing_open_generic,
3033 .read = rb_simple_read,
3034 .write = rb_simple_write,
3035};
3036
3037
3038static __init int rb_init_debugfs(void)
3039{
3040 struct dentry *d_tracer;
a3583244
SR
3041
3042 d_tracer = tracing_init_dentry();
3043
5452af66
FW
3044 trace_create_file("tracing_on", 0644, d_tracer,
3045 &ring_buffer_flags, &rb_simple_fops);
a3583244
SR
3046
3047 return 0;
3048}
3049
3050fs_initcall(rb_init_debugfs);
554f786e 3051
59222efe 3052#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
3053static int rb_cpu_notify(struct notifier_block *self,
3054 unsigned long action, void *hcpu)
554f786e
SR
3055{
3056 struct ring_buffer *buffer =
3057 container_of(self, struct ring_buffer, cpu_notify);
3058 long cpu = (long)hcpu;
3059
3060 switch (action) {
3061 case CPU_UP_PREPARE:
3062 case CPU_UP_PREPARE_FROZEN:
3063 if (cpu_isset(cpu, *buffer->cpumask))
3064 return NOTIFY_OK;
3065
3066 buffer->buffers[cpu] =
3067 rb_allocate_cpu_buffer(buffer, cpu);
3068 if (!buffer->buffers[cpu]) {
3069 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3070 cpu);
3071 return NOTIFY_OK;
3072 }
3073 smp_wmb();
3074 cpu_set(cpu, *buffer->cpumask);
3075 break;
3076 case CPU_DOWN_PREPARE:
3077 case CPU_DOWN_PREPARE_FROZEN:
3078 /*
3079 * Do nothing.
3080 * If we were to free the buffer, then the user would
3081 * lose any trace that was in the buffer.
3082 */
3083 break;
3084 default:
3085 break;
3086 }
3087 return NOTIFY_OK;
3088}
3089#endif