Merge tag 'v3.10.100' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 #ifdef CONFIG_MTK_EXTMEM
31 extern void* extmem_malloc_page_align(size_t bytes);
32 extern void extmem_free(void* mem);
33 #endif
34
35 static void update_pages_handler(struct work_struct *work);
36
37 /*
38 * The ring buffer header is special. We must manually up keep it.
39 */
40 int ring_buffer_print_entry_header(struct trace_seq *s)
41 {
42 int ret;
43
44 ret = trace_seq_printf(s, "# compressed entry header\n");
45 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
46 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
47 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
48 ret = trace_seq_printf(s, "\n");
49 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
50 RINGBUF_TYPE_PADDING);
51 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
52 RINGBUF_TYPE_TIME_EXTEND);
53 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
54 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
55
56 return ret;
57 }
58
59 /*
60 * The ring buffer is made up of a list of pages. A separate list of pages is
61 * allocated for each CPU. A writer may only write to a buffer that is
62 * associated with the CPU it is currently executing on. A reader may read
63 * from any per cpu buffer.
64 *
65 * The reader is special. For each per cpu buffer, the reader has its own
66 * reader page. When a reader has read the entire reader page, this reader
67 * page is swapped with another page in the ring buffer.
68 *
69 * Now, as long as the writer is off the reader page, the reader can do what
70 * ever it wants with that page. The writer will never write to that page
71 * again (as long as it is out of the ring buffer).
72 *
73 * Here's some silly ASCII art.
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * | |-->| |-->| |
91 * +---+ +---+ +---+
92 * ^ |
93 * | |
94 * +---------------+
95 *
96 *
97 * +------+
98 * |reader| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | |-->| |-->| |
102 * | +---+ +---+ +---+
103 * | |
104 * | |
105 * +------------------------------+
106 *
107 *
108 * +------+
109 * |buffer| RING BUFFER
110 * |page |------------------v
111 * +------+ +---+ +---+ +---+
112 * ^ | | | |-->| |
113 * | New +---+ +---+ +---+
114 * | Reader------^ |
115 * | page |
116 * +------------------------------+
117 *
118 *
119 * After we make this swap, the reader can hand this page off to the splice
120 * code and be done with it. It can even allocate a new page if it needs to
121 * and swap that into the ring buffer.
122 *
123 * We will be using cmpxchg soon to make all this lockless.
124 *
125 */
126
127 /*
128 * A fast way to enable or disable all ring buffers is to
129 * call tracing_on or tracing_off. Turning off the ring buffers
130 * prevents all ring buffers from being recorded to.
131 * Turning this switch on, makes it OK to write to the
132 * ring buffer, if the ring buffer is enabled itself.
133 *
134 * There's three layers that must be on in order to write
135 * to the ring buffer.
136 *
137 * 1) This global flag must be set.
138 * 2) The ring buffer must be enabled for recording.
139 * 3) The per cpu buffer must be enabled for recording.
140 *
141 * In case of an anomaly, this global flag has a bit set that
142 * will permantly disable all ring buffers.
143 */
144
145 /*
146 * Global flag to disable all recording to ring buffers
147 * This has two bits: ON, DISABLED
148 *
149 * ON DISABLED
150 * ---- ----------
151 * 0 0 : ring buffers are off
152 * 1 0 : ring buffers are on
153 * X 1 : ring buffers are permanently disabled
154 */
155
156 enum {
157 RB_BUFFERS_ON_BIT = 0,
158 RB_BUFFERS_DISABLED_BIT = 1,
159 };
160
161 enum {
162 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
163 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
164 };
165
166 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
167
168 /* Used for individual buffers (after the counter) */
169 #define RB_BUFFER_OFF (1 << 20)
170
171 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
172
173 /**
174 * tracing_off_permanent - permanently disable ring buffers
175 *
176 * This function, once called, will disable all ring buffers
177 * permanently.
178 */
179 void tracing_off_permanent(void)
180 {
181 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
182 }
183
184 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
185 #define RB_ALIGNMENT 4U
186 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
187 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
188
189 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
190 # define RB_FORCE_8BYTE_ALIGNMENT 0
191 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
192 #else
193 # define RB_FORCE_8BYTE_ALIGNMENT 1
194 # define RB_ARCH_ALIGNMENT 8U
195 #endif
196
197 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
198
199 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
200 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
201
202 enum {
203 RB_LEN_TIME_EXTEND = 8,
204 RB_LEN_TIME_STAMP = 16,
205 };
206
207 #define skip_time_extend(event) \
208 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
209
210 static inline int rb_null_event(struct ring_buffer_event *event)
211 {
212 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
213 }
214
215 static void rb_event_set_padding(struct ring_buffer_event *event)
216 {
217 /* padding has a NULL time_delta */
218 event->type_len = RINGBUF_TYPE_PADDING;
219 event->time_delta = 0;
220 }
221
222 static unsigned
223 rb_event_data_length(struct ring_buffer_event *event)
224 {
225 unsigned length;
226
227 if (event->type_len)
228 length = event->type_len * RB_ALIGNMENT;
229 else
230 length = event->array[0];
231 return length + RB_EVNT_HDR_SIZE;
232 }
233
234 /*
235 * Return the length of the given event. Will return
236 * the length of the time extend if the event is a
237 * time extend.
238 */
239 static inline unsigned
240 rb_event_length(struct ring_buffer_event *event)
241 {
242 switch (event->type_len) {
243 case RINGBUF_TYPE_PADDING:
244 if (rb_null_event(event))
245 /* undefined */
246 return -1;
247 return event->array[0] + RB_EVNT_HDR_SIZE;
248
249 case RINGBUF_TYPE_TIME_EXTEND:
250 return RB_LEN_TIME_EXTEND;
251
252 case RINGBUF_TYPE_TIME_STAMP:
253 return RB_LEN_TIME_STAMP;
254
255 case RINGBUF_TYPE_DATA:
256 return rb_event_data_length(event);
257 default:
258 BUG();
259 }
260 /* not hit */
261 return 0;
262 }
263
264 /*
265 * Return total length of time extend and data,
266 * or just the event length for all other events.
267 */
268 static inline unsigned
269 rb_event_ts_length(struct ring_buffer_event *event)
270 {
271 unsigned len = 0;
272
273 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
274 /* time extends include the data event after it */
275 len = RB_LEN_TIME_EXTEND;
276 event = skip_time_extend(event);
277 }
278 return len + rb_event_length(event);
279 }
280
281 /**
282 * ring_buffer_event_length - return the length of the event
283 * @event: the event to get the length of
284 *
285 * Returns the size of the data load of a data event.
286 * If the event is something other than a data event, it
287 * returns the size of the event itself. With the exception
288 * of a TIME EXTEND, where it still returns the size of the
289 * data load of the data event after it.
290 */
291 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
292 {
293 unsigned length;
294
295 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
296 event = skip_time_extend(event);
297
298 length = rb_event_length(event);
299 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
300 return length;
301 length -= RB_EVNT_HDR_SIZE;
302 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
303 length -= sizeof(event->array[0]);
304 return length;
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
307
308 /* inline for ring buffer fast paths */
309 static void *
310 rb_event_data(struct ring_buffer_event *event)
311 {
312 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
313 event = skip_time_extend(event);
314 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
315 /* If length is in len field, then array[0] has the data */
316 if (event->type_len)
317 return (void *)&event->array[0];
318 /* Otherwise length is in array[0] and array[1] has the data */
319 return (void *)&event->array[1];
320 }
321
322 /**
323 * ring_buffer_event_data - return the data of the event
324 * @event: the event to get the data from
325 */
326 void *ring_buffer_event_data(struct ring_buffer_event *event)
327 {
328 return rb_event_data(event);
329 }
330 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
331
332 #define for_each_buffer_cpu(buffer, cpu) \
333 for_each_cpu(cpu, buffer->cpumask)
334
335 #define TS_SHIFT 27
336 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
337 #define TS_DELTA_TEST (~TS_MASK)
338
339 /* Flag when events were overwritten */
340 #define RB_MISSED_EVENTS (1 << 31)
341 /* Missed count stored at end */
342 #define RB_MISSED_STORED (1 << 30)
343
344 struct buffer_data_page {
345 u64 time_stamp; /* page time stamp */
346 local_t commit; /* write committed index */
347 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
348 };
349
350 /*
351 * Note, the buffer_page list must be first. The buffer pages
352 * are allocated in cache lines, which means that each buffer
353 * page will be at the beginning of a cache line, and thus
354 * the least significant bits will be zero. We use this to
355 * add flags in the list struct pointers, to make the ring buffer
356 * lockless.
357 */
358 struct buffer_page {
359 struct list_head list; /* list of buffer pages */
360 local_t write; /* index for next write */
361 unsigned read; /* index for next read */
362 local_t entries; /* entries on this page */
363 unsigned long real_end; /* real end of data */
364 struct buffer_data_page *page; /* Actual data page */
365 };
366
367 /*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
381
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 local_set(&bpage->commit, 0);
385 }
386
387 /**
388 * ring_buffer_page_len - the size of data on the page.
389 * @page: The page to read
390 *
391 * Returns the amount of data on the page, including buffer page header.
392 */
393 size_t ring_buffer_page_len(void *page)
394 {
395 return local_read(&((struct buffer_data_page *)page)->commit)
396 + BUF_PAGE_HDR_SIZE;
397 }
398
399 /*
400 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
401 * this issue out.
402 */
403 static void free_buffer_page(struct buffer_page *bpage)
404 {
405 #ifdef CONFIG_MTK_EXTMEM
406 extmem_free((void*) bpage->page);
407 #else
408 free_page((unsigned long)bpage->page);
409 #endif
410 kfree(bpage);
411 }
412
413 /*
414 * We need to fit the time_stamp delta into 27 bits.
415 */
416 static inline int test_time_stamp(u64 delta)
417 {
418 if (delta & TS_DELTA_TEST)
419 return 1;
420 return 0;
421 }
422
423 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
424
425 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
426 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
427
428 int ring_buffer_print_page_header(struct trace_seq *s)
429 {
430 struct buffer_data_page field;
431 int ret;
432
433 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
434 "offset:0;\tsize:%u;\tsigned:%u;\n",
435 (unsigned int)sizeof(field.time_stamp),
436 (unsigned int)is_signed_type(u64));
437
438 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
439 "offset:%u;\tsize:%u;\tsigned:%u;\n",
440 (unsigned int)offsetof(typeof(field), commit),
441 (unsigned int)sizeof(field.commit),
442 (unsigned int)is_signed_type(long));
443
444 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
445 "offset:%u;\tsize:%u;\tsigned:%u;\n",
446 (unsigned int)offsetof(typeof(field), commit),
447 1,
448 (unsigned int)is_signed_type(long));
449
450 ret = trace_seq_printf(s, "\tfield: char data;\t"
451 "offset:%u;\tsize:%u;\tsigned:%u;\n",
452 (unsigned int)offsetof(typeof(field), data),
453 (unsigned int)BUF_PAGE_SIZE,
454 (unsigned int)is_signed_type(char));
455
456 return ret;
457 }
458
459 struct rb_irq_work {
460 struct irq_work work;
461 wait_queue_head_t waiters;
462 bool waiters_pending;
463 };
464
465 /*
466 * head_page == tail_page && head == tail then buffer is empty.
467 */
468 struct ring_buffer_per_cpu {
469 int cpu;
470 atomic_t record_disabled;
471 struct ring_buffer *buffer;
472 raw_spinlock_t reader_lock; /* serialize readers */
473 arch_spinlock_t lock;
474 struct lock_class_key lock_key;
475 unsigned int nr_pages;
476 struct list_head *pages;
477 struct buffer_page *head_page; /* read from head */
478 struct buffer_page *tail_page; /* write to tail */
479 struct buffer_page *commit_page; /* committed pages */
480 struct buffer_page *reader_page;
481 unsigned long lost_events;
482 unsigned long last_overrun;
483 local_t entries_bytes;
484 local_t entries;
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
488 local_t committing;
489 local_t commits;
490 unsigned long read;
491 unsigned long read_bytes;
492 u64 write_stamp;
493 u64 read_stamp;
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 int nr_pages_to_update;
496 struct list_head new_pages; /* new pages to add */
497 struct work_struct update_pages_work;
498 struct completion update_done;
499
500 struct rb_irq_work irq_work;
501 };
502
503 struct ring_buffer {
504 unsigned flags;
505 int cpus;
506 atomic_t record_disabled;
507 atomic_t resize_disabled;
508 cpumask_var_t cpumask;
509
510 struct lock_class_key *reader_lock_key;
511
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
515
516 #ifdef CONFIG_HOTPLUG_CPU
517 struct notifier_block cpu_notify;
518 #endif
519 u64 (*clock)(void);
520
521 struct rb_irq_work irq_work;
522 };
523
524 struct ring_buffer_iter {
525 struct ring_buffer_per_cpu *cpu_buffer;
526 unsigned long head;
527 struct buffer_page *head_page;
528 struct buffer_page *cache_reader_page;
529 unsigned long cache_read;
530 u64 read_stamp;
531 };
532
533 /*
534 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
535 *
536 * Schedules a delayed work to wake up any task that is blocked on the
537 * ring buffer waiters queue.
538 */
539 static void rb_wake_up_waiters(struct irq_work *work)
540 {
541 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
542
543 wake_up_all(&rbwork->waiters);
544 }
545
546 /**
547 * ring_buffer_wait - wait for input to the ring buffer
548 * @buffer: buffer to wait on
549 * @cpu: the cpu buffer to wait on
550 *
551 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
552 * as data is added to any of the @buffer's cpu buffers. Otherwise
553 * it will wait for data to be added to a specific cpu buffer.
554 */
555 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
556 {
557 struct ring_buffer_per_cpu *cpu_buffer;
558 DEFINE_WAIT(wait);
559 struct rb_irq_work *work;
560
561 /*
562 * Depending on what the caller is waiting for, either any
563 * data in any cpu buffer, or a specific buffer, put the
564 * caller on the appropriate wait queue.
565 */
566 if (cpu == RING_BUFFER_ALL_CPUS)
567 work = &buffer->irq_work;
568 else {
569 if (!cpumask_test_cpu(cpu, buffer->cpumask))
570 return -ENODEV;
571 cpu_buffer = buffer->buffers[cpu];
572 work = &cpu_buffer->irq_work;
573 }
574
575
576 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
577
578 /*
579 * The events can happen in critical sections where
580 * checking a work queue can cause deadlocks.
581 * After adding a task to the queue, this flag is set
582 * only to notify events to try to wake up the queue
583 * using irq_work.
584 *
585 * We don't clear it even if the buffer is no longer
586 * empty. The flag only causes the next event to run
587 * irq_work to do the work queue wake up. The worse
588 * that can happen if we race with !trace_empty() is that
589 * an event will cause an irq_work to try to wake up
590 * an empty queue.
591 *
592 * There's no reason to protect this flag either, as
593 * the work queue and irq_work logic will do the necessary
594 * synchronization for the wake ups. The only thing
595 * that is necessary is that the wake up happens after
596 * a task has been queued. It's OK for spurious wake ups.
597 */
598 work->waiters_pending = true;
599
600 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
601 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
602 schedule();
603
604 finish_wait(&work->waiters, &wait);
605 return 0;
606 }
607
608 /**
609 * ring_buffer_poll_wait - poll on buffer input
610 * @buffer: buffer to wait on
611 * @cpu: the cpu buffer to wait on
612 * @filp: the file descriptor
613 * @poll_table: The poll descriptor
614 *
615 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
616 * as data is added to any of the @buffer's cpu buffers. Otherwise
617 * it will wait for data to be added to a specific cpu buffer.
618 *
619 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
620 * zero otherwise.
621 */
622 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
623 struct file *filp, poll_table *poll_table)
624 {
625 struct ring_buffer_per_cpu *cpu_buffer;
626 struct rb_irq_work *work;
627
628 if (cpu == RING_BUFFER_ALL_CPUS)
629 work = &buffer->irq_work;
630 else {
631 if (!cpumask_test_cpu(cpu, buffer->cpumask))
632 return -EINVAL;
633
634 cpu_buffer = buffer->buffers[cpu];
635 work = &cpu_buffer->irq_work;
636 }
637
638 poll_wait(filp, &work->waiters, poll_table);
639 work->waiters_pending = true;
640 /*
641 * There's a tight race between setting the waiters_pending and
642 * checking if the ring buffer is empty. Once the waiters_pending bit
643 * is set, the next event will wake the task up, but we can get stuck
644 * if there's only a single event in.
645 *
646 * FIXME: Ideally, we need a memory barrier on the writer side as well,
647 * but adding a memory barrier to all events will cause too much of a
648 * performance hit in the fast path. We only need a memory barrier when
649 * the buffer goes from empty to having content. But as this race is
650 * extremely small, and it's not a problem if another event comes in, we
651 * will fix it later.
652 */
653 smp_mb();
654
655 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
656 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
657 return POLLIN | POLLRDNORM;
658 return 0;
659 }
660
661 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
662 #define RB_WARN_ON(b, cond) \
663 ({ \
664 int _____ret = unlikely(cond); \
665 if (_____ret) { \
666 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
667 struct ring_buffer_per_cpu *__b = \
668 (void *)b; \
669 atomic_inc(&__b->buffer->record_disabled); \
670 } else \
671 atomic_inc(&b->record_disabled); \
672 WARN_ON(1); \
673 } \
674 _____ret; \
675 })
676
677 /* Up this if you want to test the TIME_EXTENTS and normalization */
678 #define DEBUG_SHIFT 0
679
680 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
681 {
682 /* shift to debug/test normalization and TIME_EXTENTS */
683 return buffer->clock() << DEBUG_SHIFT;
684 }
685
686 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
687 {
688 u64 time;
689
690 preempt_disable_notrace();
691 time = rb_time_stamp(buffer);
692 preempt_enable_no_resched_notrace();
693
694 return time;
695 }
696 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
697
698 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
699 int cpu, u64 *ts)
700 {
701 /* Just stupid testing the normalize function and deltas */
702 *ts >>= DEBUG_SHIFT;
703 }
704 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
705
706 /*
707 * Making the ring buffer lockless makes things tricky.
708 * Although writes only happen on the CPU that they are on,
709 * and they only need to worry about interrupts. Reads can
710 * happen on any CPU.
711 *
712 * The reader page is always off the ring buffer, but when the
713 * reader finishes with a page, it needs to swap its page with
714 * a new one from the buffer. The reader needs to take from
715 * the head (writes go to the tail). But if a writer is in overwrite
716 * mode and wraps, it must push the head page forward.
717 *
718 * Here lies the problem.
719 *
720 * The reader must be careful to replace only the head page, and
721 * not another one. As described at the top of the file in the
722 * ASCII art, the reader sets its old page to point to the next
723 * page after head. It then sets the page after head to point to
724 * the old reader page. But if the writer moves the head page
725 * during this operation, the reader could end up with the tail.
726 *
727 * We use cmpxchg to help prevent this race. We also do something
728 * special with the page before head. We set the LSB to 1.
729 *
730 * When the writer must push the page forward, it will clear the
731 * bit that points to the head page, move the head, and then set
732 * the bit that points to the new head page.
733 *
734 * We also don't want an interrupt coming in and moving the head
735 * page on another writer. Thus we use the second LSB to catch
736 * that too. Thus:
737 *
738 * head->list->prev->next bit 1 bit 0
739 * ------- -------
740 * Normal page 0 0
741 * Points to head page 0 1
742 * New head page 1 0
743 *
744 * Note we can not trust the prev pointer of the head page, because:
745 *
746 * +----+ +-----+ +-----+
747 * | |------>| T |---X--->| N |
748 * | |<------| | | |
749 * +----+ +-----+ +-----+
750 * ^ ^ |
751 * | +-----+ | |
752 * +----------| R |----------+ |
753 * | |<-----------+
754 * +-----+
755 *
756 * Key: ---X--> HEAD flag set in pointer
757 * T Tail page
758 * R Reader page
759 * N Next page
760 *
761 * (see __rb_reserve_next() to see where this happens)
762 *
763 * What the above shows is that the reader just swapped out
764 * the reader page with a page in the buffer, but before it
765 * could make the new header point back to the new page added
766 * it was preempted by a writer. The writer moved forward onto
767 * the new page added by the reader and is about to move forward
768 * again.
769 *
770 * You can see, it is legitimate for the previous pointer of
771 * the head (or any page) not to point back to itself. But only
772 * temporarially.
773 */
774
775 #define RB_PAGE_NORMAL 0UL
776 #define RB_PAGE_HEAD 1UL
777 #define RB_PAGE_UPDATE 2UL
778
779
780 #define RB_FLAG_MASK 3UL
781
782 /* PAGE_MOVED is not part of the mask */
783 #define RB_PAGE_MOVED 4UL
784
785 /*
786 * rb_list_head - remove any bit
787 */
788 static struct list_head *rb_list_head(struct list_head *list)
789 {
790 unsigned long val = (unsigned long)list;
791
792 return (struct list_head *)(val & ~RB_FLAG_MASK);
793 }
794
795 /*
796 * rb_is_head_page - test if the given page is the head page
797 *
798 * Because the reader may move the head_page pointer, we can
799 * not trust what the head page is (it may be pointing to
800 * the reader page). But if the next page is a header page,
801 * its flags will be non zero.
802 */
803 static inline int
804 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
805 struct buffer_page *page, struct list_head *list)
806 {
807 unsigned long val;
808
809 val = (unsigned long)list->next;
810
811 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
812 return RB_PAGE_MOVED;
813
814 return val & RB_FLAG_MASK;
815 }
816
817 /*
818 * rb_is_reader_page
819 *
820 * The unique thing about the reader page, is that, if the
821 * writer is ever on it, the previous pointer never points
822 * back to the reader page.
823 */
824 static int rb_is_reader_page(struct buffer_page *page)
825 {
826 struct list_head *list = page->list.prev;
827
828 return rb_list_head(list->next) != &page->list;
829 }
830
831 /*
832 * rb_set_list_to_head - set a list_head to be pointing to head.
833 */
834 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
835 struct list_head *list)
836 {
837 unsigned long *ptr;
838
839 ptr = (unsigned long *)&list->next;
840 *ptr |= RB_PAGE_HEAD;
841 *ptr &= ~RB_PAGE_UPDATE;
842 }
843
844 /*
845 * rb_head_page_activate - sets up head page
846 */
847 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
848 {
849 struct buffer_page *head;
850
851 head = cpu_buffer->head_page;
852 if (!head)
853 return;
854
855 /*
856 * Set the previous list pointer to have the HEAD flag.
857 */
858 rb_set_list_to_head(cpu_buffer, head->list.prev);
859 }
860
861 static void rb_list_head_clear(struct list_head *list)
862 {
863 unsigned long *ptr = (unsigned long *)&list->next;
864
865 *ptr &= ~RB_FLAG_MASK;
866 }
867
868 /*
869 * rb_head_page_dactivate - clears head page ptr (for free list)
870 */
871 static void
872 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
873 {
874 struct list_head *hd;
875
876 /* Go through the whole list and clear any pointers found. */
877 rb_list_head_clear(cpu_buffer->pages);
878
879 list_for_each(hd, cpu_buffer->pages)
880 rb_list_head_clear(hd);
881 }
882
883 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag, int new_flag)
887 {
888 struct list_head *list;
889 unsigned long val = (unsigned long)&head->list;
890 unsigned long ret;
891
892 list = &prev->list;
893
894 val &= ~RB_FLAG_MASK;
895
896 ret = cmpxchg((unsigned long *)&list->next,
897 val | old_flag, val | new_flag);
898
899 /* check if the reader took the page */
900 if ((ret & ~RB_FLAG_MASK) != val)
901 return RB_PAGE_MOVED;
902
903 return ret & RB_FLAG_MASK;
904 }
905
906 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
910 {
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_UPDATE);
913 }
914
915 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
919 {
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_HEAD);
922 }
923
924 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag)
928 {
929 return rb_head_page_set(cpu_buffer, head, prev,
930 old_flag, RB_PAGE_NORMAL);
931 }
932
933 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
934 struct buffer_page **bpage)
935 {
936 struct list_head *p = rb_list_head((*bpage)->list.next);
937
938 *bpage = list_entry(p, struct buffer_page, list);
939 }
940
941 static struct buffer_page *
942 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
943 {
944 struct buffer_page *head;
945 struct buffer_page *page;
946 struct list_head *list;
947 int i;
948
949 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
950 return NULL;
951
952 /* sanity check */
953 list = cpu_buffer->pages;
954 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
955 return NULL;
956
957 page = head = cpu_buffer->head_page;
958 /*
959 * It is possible that the writer moves the header behind
960 * where we started, and we miss in one loop.
961 * A second loop should grab the header, but we'll do
962 * three loops just because I'm paranoid.
963 */
964 for (i = 0; i < 3; i++) {
965 do {
966 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
967 cpu_buffer->head_page = page;
968 return page;
969 }
970 rb_inc_page(cpu_buffer, &page);
971 } while (page != head);
972 }
973
974 RB_WARN_ON(cpu_buffer, 1);
975
976 return NULL;
977 }
978
979 static int rb_head_page_replace(struct buffer_page *old,
980 struct buffer_page *new)
981 {
982 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
983 unsigned long val;
984 unsigned long ret;
985
986 val = *ptr & ~RB_FLAG_MASK;
987 val |= RB_PAGE_HEAD;
988
989 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
990
991 return ret == val;
992 }
993
994 /*
995 * rb_tail_page_update - move the tail page forward
996 *
997 * Returns 1 if moved tail page, 0 if someone else did.
998 */
999 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1000 struct buffer_page *tail_page,
1001 struct buffer_page *next_page)
1002 {
1003 struct buffer_page *old_tail;
1004 unsigned long old_entries;
1005 unsigned long old_write;
1006 int ret = 0;
1007
1008 /*
1009 * The tail page now needs to be moved forward.
1010 *
1011 * We need to reset the tail page, but without messing
1012 * with possible erasing of data brought in by interrupts
1013 * that have moved the tail page and are currently on it.
1014 *
1015 * We add a counter to the write field to denote this.
1016 */
1017 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1018 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1019
1020 /*
1021 * Just make sure we have seen our old_write and synchronize
1022 * with any interrupts that come in.
1023 */
1024 barrier();
1025
1026 /*
1027 * If the tail page is still the same as what we think
1028 * it is, then it is up to us to update the tail
1029 * pointer.
1030 */
1031 if (tail_page == cpu_buffer->tail_page) {
1032 /* Zero the write counter */
1033 unsigned long val = old_write & ~RB_WRITE_MASK;
1034 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1035
1036 /*
1037 * This will only succeed if an interrupt did
1038 * not come in and change it. In which case, we
1039 * do not want to modify it.
1040 *
1041 * We add (void) to let the compiler know that we do not care
1042 * about the return value of these functions. We use the
1043 * cmpxchg to only update if an interrupt did not already
1044 * do it for us. If the cmpxchg fails, we don't care.
1045 */
1046 (void)local_cmpxchg(&next_page->write, old_write, val);
1047 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1048
1049 /*
1050 * No need to worry about races with clearing out the commit.
1051 * it only can increment when a commit takes place. But that
1052 * only happens in the outer most nested commit.
1053 */
1054 local_set(&next_page->page->commit, 0);
1055
1056 old_tail = cmpxchg(&cpu_buffer->tail_page,
1057 tail_page, next_page);
1058
1059 if (old_tail == tail_page)
1060 ret = 1;
1061 }
1062
1063 return ret;
1064 }
1065
1066 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1067 struct buffer_page *bpage)
1068 {
1069 unsigned long val = (unsigned long)bpage;
1070
1071 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1072 return 1;
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 */
1080 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1081 struct list_head *list)
1082 {
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1084 return 1;
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1086 return 1;
1087 return 0;
1088 }
1089
1090 /**
1091 * check_pages - integrity check of buffer pages
1092 * @cpu_buffer: CPU buffer with pages to test
1093 *
1094 * As a safety measure we check to make sure the data pages have not
1095 * been corrupted.
1096 */
1097 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1098 {
1099 struct list_head *head = cpu_buffer->pages;
1100 struct buffer_page *bpage, *tmp;
1101
1102 /* Reset the head page if it exists */
1103 if (cpu_buffer->head_page)
1104 rb_set_head_page(cpu_buffer);
1105
1106 rb_head_page_deactivate(cpu_buffer);
1107
1108 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1109 return -1;
1110 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1111 return -1;
1112
1113 if (rb_check_list(cpu_buffer, head))
1114 return -1;
1115
1116 list_for_each_entry_safe(bpage, tmp, head, list) {
1117 if (RB_WARN_ON(cpu_buffer,
1118 bpage->list.next->prev != &bpage->list))
1119 return -1;
1120 if (RB_WARN_ON(cpu_buffer,
1121 bpage->list.prev->next != &bpage->list))
1122 return -1;
1123 if (rb_check_list(cpu_buffer, &bpage->list))
1124 return -1;
1125 }
1126
1127 rb_head_page_activate(cpu_buffer);
1128
1129 return 0;
1130 }
1131
1132 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1133 {
1134 int i;
1135 struct buffer_page *bpage, *tmp;
1136
1137 for (i = 0; i < nr_pages; i++) {
1138 #if !defined (CONFIG_MTK_EXTMEM)
1139 struct page *page;
1140 #endif
1141 /*
1142 * __GFP_NORETRY flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is
1144 * not destabilized.
1145 */
1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147 GFP_KERNEL | __GFP_NORETRY,
1148 cpu_to_node(cpu));
1149 if (!bpage)
1150 goto free_pages;
1151
1152 list_add(&bpage->list, pages);
1153
1154 #ifdef CONFIG_MTK_EXTMEM
1155 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1156 if(bpage->page == NULL) {
1157 pr_err("%s[%s] ext memory alloc failed!!!\n", __FILE__, __FUNCTION__);
1158 goto free_pages;
1159 }
1160 #else
1161 page = alloc_pages_node(cpu_to_node(cpu),
1162 GFP_KERNEL | __GFP_NORETRY, 0);
1163 if (!page)
1164 goto free_pages;
1165 bpage->page = page_address(page);
1166 #endif
1167 rb_init_page(bpage->page);
1168 }
1169
1170 return 0;
1171
1172 free_pages:
1173 list_for_each_entry_safe(bpage, tmp, pages, list) {
1174 list_del_init(&bpage->list);
1175 free_buffer_page(bpage);
1176 }
1177
1178 return -ENOMEM;
1179 }
1180
1181 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1182 unsigned nr_pages)
1183 {
1184 LIST_HEAD(pages);
1185
1186 WARN_ON(!nr_pages);
1187
1188 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1189 return -ENOMEM;
1190
1191 /*
1192 * The ring buffer page list is a circular list that does not
1193 * start and end with a list head. All page list items point to
1194 * other pages.
1195 */
1196 cpu_buffer->pages = pages.next;
1197 list_del(&pages);
1198
1199 cpu_buffer->nr_pages = nr_pages;
1200
1201 rb_check_pages(cpu_buffer);
1202
1203 return 0;
1204 }
1205
1206 static struct ring_buffer_per_cpu *
1207 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1208 {
1209 struct ring_buffer_per_cpu *cpu_buffer;
1210 struct buffer_page *bpage;
1211 #if !defined (CONFIG_MTK_EXTMEM)
1212 struct page *page;
1213 #endif
1214 int ret;
1215
1216 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217 GFP_KERNEL, cpu_to_node(cpu));
1218 if (!cpu_buffer)
1219 return NULL;
1220
1221 cpu_buffer->cpu = cpu;
1222 cpu_buffer->buffer = buffer;
1223 raw_spin_lock_init(&cpu_buffer->reader_lock);
1224 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1225 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1226 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1227 init_completion(&cpu_buffer->update_done);
1228 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1229 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1230
1231 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1232 GFP_KERNEL, cpu_to_node(cpu));
1233 if (!bpage)
1234 goto fail_free_buffer;
1235
1236 rb_check_bpage(cpu_buffer, bpage);
1237
1238 cpu_buffer->reader_page = bpage;
1239
1240 #ifdef CONFIG_MTK_EXTMEM
1241 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1242 if(bpage->page == NULL)
1243 goto fail_free_reader;
1244 #else
1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 if (!page)
1247 goto fail_free_reader;
1248 bpage->page = page_address(page);
1249 #endif
1250 rb_init_page(bpage->page);
1251
1252 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1253 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1254
1255 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1256 if (ret < 0)
1257 goto fail_free_reader;
1258
1259 cpu_buffer->head_page
1260 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1261 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1262
1263 rb_head_page_activate(cpu_buffer);
1264
1265 return cpu_buffer;
1266
1267 fail_free_reader:
1268 free_buffer_page(cpu_buffer->reader_page);
1269
1270 fail_free_buffer:
1271 kfree(cpu_buffer);
1272 return NULL;
1273 }
1274
1275 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1276 {
1277 struct list_head *head = cpu_buffer->pages;
1278 struct buffer_page *bpage, *tmp;
1279
1280 free_buffer_page(cpu_buffer->reader_page);
1281
1282 rb_head_page_deactivate(cpu_buffer);
1283
1284 if (head) {
1285 list_for_each_entry_safe(bpage, tmp, head, list) {
1286 list_del_init(&bpage->list);
1287 free_buffer_page(bpage);
1288 }
1289 bpage = list_entry(head, struct buffer_page, list);
1290 free_buffer_page(bpage);
1291 }
1292
1293 kfree(cpu_buffer);
1294 }
1295
1296 #ifdef CONFIG_HOTPLUG_CPU
1297 static int rb_cpu_notify(struct notifier_block *self,
1298 unsigned long action, void *hcpu);
1299 #endif
1300
1301 /**
1302 * ring_buffer_alloc - allocate a new ring_buffer
1303 * @size: the size in bytes per cpu that is needed.
1304 * @flags: attributes to set for the ring buffer.
1305 *
1306 * Currently the only flag that is available is the RB_FL_OVERWRITE
1307 * flag. This flag means that the buffer will overwrite old data
1308 * when the buffer wraps. If this flag is not set, the buffer will
1309 * drop data when the tail hits the head.
1310 */
1311 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1312 struct lock_class_key *key)
1313 {
1314 struct ring_buffer *buffer;
1315 int bsize;
1316 int cpu, nr_pages;
1317
1318 /* keep it in its own cache line */
1319 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer)
1322 return NULL;
1323
1324 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1325 goto fail_free_buffer;
1326
1327 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1328 buffer->flags = flags;
1329 buffer->clock = trace_clock_local;
1330 buffer->reader_lock_key = key;
1331
1332 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1333 init_waitqueue_head(&buffer->irq_work.waiters);
1334
1335 /* need at least two pages */
1336 if (nr_pages < 2)
1337 nr_pages = 2;
1338
1339 /*
1340 * In case of non-hotplug cpu, if the ring-buffer is allocated
1341 * in early initcall, it will not be notified of secondary cpus.
1342 * In that off case, we need to allocate for all possible cpus.
1343 */
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 get_online_cpus();
1346 cpumask_copy(buffer->cpumask, cpu_online_mask);
1347 #else
1348 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1349 #endif
1350 buffer->cpus = nr_cpu_ids;
1351
1352 bsize = sizeof(void *) * nr_cpu_ids;
1353 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1354 GFP_KERNEL);
1355 if (!buffer->buffers)
1356 goto fail_free_cpumask;
1357
1358 for_each_buffer_cpu(buffer, cpu) {
1359 buffer->buffers[cpu] =
1360 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1361 if (!buffer->buffers[cpu])
1362 goto fail_free_buffers;
1363 }
1364
1365 #ifdef CONFIG_HOTPLUG_CPU
1366 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1367 buffer->cpu_notify.priority = 0;
1368 register_cpu_notifier(&buffer->cpu_notify);
1369 #endif
1370
1371 put_online_cpus();
1372 mutex_init(&buffer->mutex);
1373
1374 return buffer;
1375
1376 fail_free_buffers:
1377 for_each_buffer_cpu(buffer, cpu) {
1378 if (buffer->buffers[cpu])
1379 rb_free_cpu_buffer(buffer->buffers[cpu]);
1380 }
1381 kfree(buffer->buffers);
1382
1383 fail_free_cpumask:
1384 free_cpumask_var(buffer->cpumask);
1385 put_online_cpus();
1386
1387 fail_free_buffer:
1388 kfree(buffer);
1389 return NULL;
1390 }
1391 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1392
1393 /**
1394 * ring_buffer_free - free a ring buffer.
1395 * @buffer: the buffer to free.
1396 */
1397 void
1398 ring_buffer_free(struct ring_buffer *buffer)
1399 {
1400 int cpu;
1401
1402 get_online_cpus();
1403
1404 #ifdef CONFIG_HOTPLUG_CPU
1405 unregister_cpu_notifier(&buffer->cpu_notify);
1406 #endif
1407
1408 for_each_buffer_cpu(buffer, cpu)
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
1411 put_online_cpus();
1412
1413 kfree(buffer->buffers);
1414 free_cpumask_var(buffer->cpumask);
1415
1416 kfree(buffer);
1417 }
1418 EXPORT_SYMBOL_GPL(ring_buffer_free);
1419
1420 void ring_buffer_set_clock(struct ring_buffer *buffer,
1421 u64 (*clock)(void))
1422 {
1423 buffer->clock = clock;
1424 }
1425
1426 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427
1428 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429 {
1430 return local_read(&bpage->entries) & RB_WRITE_MASK;
1431 }
1432
1433 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434 {
1435 return local_read(&bpage->write) & RB_WRITE_MASK;
1436 }
1437
1438 static int
1439 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1440 {
1441 struct list_head *tail_page, *to_remove, *next_page;
1442 struct buffer_page *to_remove_page, *tmp_iter_page;
1443 struct buffer_page *last_page, *first_page;
1444 unsigned int nr_removed;
1445 unsigned long head_bit;
1446 int page_entries;
1447
1448 head_bit = 0;
1449
1450 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1451 atomic_inc(&cpu_buffer->record_disabled);
1452 /*
1453 * We don't race with the readers since we have acquired the reader
1454 * lock. We also don't race with writers after disabling recording.
1455 * This makes it easy to figure out the first and the last page to be
1456 * removed from the list. We unlink all the pages in between including
1457 * the first and last pages. This is done in a busy loop so that we
1458 * lose the least number of traces.
1459 * The pages are freed after we restart recording and unlock readers.
1460 */
1461 tail_page = &cpu_buffer->tail_page->list;
1462
1463 /*
1464 * tail page might be on reader page, we remove the next page
1465 * from the ring buffer
1466 */
1467 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1468 tail_page = rb_list_head(tail_page->next);
1469 to_remove = tail_page;
1470
1471 /* start of pages to remove */
1472 first_page = list_entry(rb_list_head(to_remove->next),
1473 struct buffer_page, list);
1474
1475 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1476 to_remove = rb_list_head(to_remove)->next;
1477 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1478 }
1479
1480 next_page = rb_list_head(to_remove)->next;
1481
1482 /*
1483 * Now we remove all pages between tail_page and next_page.
1484 * Make sure that we have head_bit value preserved for the
1485 * next page
1486 */
1487 tail_page->next = (struct list_head *)((unsigned long)next_page |
1488 head_bit);
1489 next_page = rb_list_head(next_page);
1490 next_page->prev = tail_page;
1491
1492 /* make sure pages points to a valid page in the ring buffer */
1493 cpu_buffer->pages = next_page;
1494
1495 /* update head page */
1496 if (head_bit)
1497 cpu_buffer->head_page = list_entry(next_page,
1498 struct buffer_page, list);
1499
1500 /*
1501 * change read pointer to make sure any read iterators reset
1502 * themselves
1503 */
1504 cpu_buffer->read = 0;
1505
1506 /* pages are removed, resume tracing and then free the pages */
1507 atomic_dec(&cpu_buffer->record_disabled);
1508 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1509
1510 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511
1512 /* last buffer page to remove */
1513 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1514 list);
1515 tmp_iter_page = first_page;
1516
1517 do {
1518 to_remove_page = tmp_iter_page;
1519 rb_inc_page(cpu_buffer, &tmp_iter_page);
1520
1521 /* update the counters */
1522 page_entries = rb_page_entries(to_remove_page);
1523 if (page_entries) {
1524 /*
1525 * If something was added to this page, it was full
1526 * since it is not the tail page. So we deduct the
1527 * bytes consumed in ring buffer from here.
1528 * Increment overrun to account for the lost events.
1529 */
1530 local_add(page_entries, &cpu_buffer->overrun);
1531 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1532 }
1533
1534 /*
1535 * We have already removed references to this list item, just
1536 * free up the buffer_page and its page
1537 */
1538 free_buffer_page(to_remove_page);
1539 nr_removed--;
1540
1541 } while (to_remove_page != last_page);
1542
1543 RB_WARN_ON(cpu_buffer, nr_removed);
1544
1545 return nr_removed == 0;
1546 }
1547
1548 static int
1549 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1550 {
1551 struct list_head *pages = &cpu_buffer->new_pages;
1552 int retries, success;
1553
1554 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1555 /*
1556 * We are holding the reader lock, so the reader page won't be swapped
1557 * in the ring buffer. Now we are racing with the writer trying to
1558 * move head page and the tail page.
1559 * We are going to adapt the reader page update process where:
1560 * 1. We first splice the start and end of list of new pages between
1561 * the head page and its previous page.
1562 * 2. We cmpxchg the prev_page->next to point from head page to the
1563 * start of new pages list.
1564 * 3. Finally, we update the head->prev to the end of new list.
1565 *
1566 * We will try this process 10 times, to make sure that we don't keep
1567 * spinning.
1568 */
1569 retries = 10;
1570 success = 0;
1571 while (retries--) {
1572 struct list_head *head_page, *prev_page, *r;
1573 struct list_head *last_page, *first_page;
1574 struct list_head *head_page_with_bit;
1575
1576 head_page = &rb_set_head_page(cpu_buffer)->list;
1577 if (!head_page)
1578 break;
1579 prev_page = head_page->prev;
1580
1581 first_page = pages->next;
1582 last_page = pages->prev;
1583
1584 head_page_with_bit = (struct list_head *)
1585 ((unsigned long)head_page | RB_PAGE_HEAD);
1586
1587 last_page->next = head_page_with_bit;
1588 first_page->prev = prev_page;
1589
1590 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1591
1592 if (r == head_page_with_bit) {
1593 /*
1594 * yay, we replaced the page pointer to our new list,
1595 * now, we just have to update to head page's prev
1596 * pointer to point to end of list
1597 */
1598 head_page->prev = last_page;
1599 success = 1;
1600 break;
1601 }
1602 }
1603
1604 if (success)
1605 INIT_LIST_HEAD(pages);
1606 /*
1607 * If we weren't successful in adding in new pages, warn and stop
1608 * tracing
1609 */
1610 RB_WARN_ON(cpu_buffer, !success);
1611 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1612
1613 /* free pages if they weren't inserted */
1614 if (!success) {
1615 struct buffer_page *bpage, *tmp;
1616 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1617 list) {
1618 list_del_init(&bpage->list);
1619 free_buffer_page(bpage);
1620 }
1621 }
1622 return success;
1623 }
1624
1625 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1626 {
1627 int success;
1628
1629 if (cpu_buffer->nr_pages_to_update > 0)
1630 success = rb_insert_pages(cpu_buffer);
1631 else
1632 success = rb_remove_pages(cpu_buffer,
1633 -cpu_buffer->nr_pages_to_update);
1634
1635 if (success)
1636 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1637 }
1638
1639 static void update_pages_handler(struct work_struct *work)
1640 {
1641 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1642 struct ring_buffer_per_cpu, update_pages_work);
1643 rb_update_pages(cpu_buffer);
1644 complete(&cpu_buffer->update_done);
1645 }
1646
1647 /**
1648 * ring_buffer_resize - resize the ring buffer
1649 * @buffer: the buffer to resize.
1650 * @size: the new size.
1651 *
1652 * Minimum size is 2 * BUF_PAGE_SIZE.
1653 *
1654 * Returns 0 on success and < 0 on failure.
1655 */
1656 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 int cpu_id)
1658 {
1659 struct ring_buffer_per_cpu *cpu_buffer;
1660 unsigned nr_pages;
1661 int cpu, err = 0;
1662
1663 /*
1664 * Always succeed at resizing a non-existent buffer:
1665 */
1666 if (!buffer)
1667 return size;
1668
1669 /* Make sure the requested buffer exists */
1670 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 return size;
1673
1674 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 size *= BUF_PAGE_SIZE;
1676
1677 /* we need a minimum of two pages */
1678 if (size < BUF_PAGE_SIZE * 2)
1679 size = BUF_PAGE_SIZE * 2;
1680
1681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1682
1683 /*
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1687 */
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
1690
1691 /* prevent another thread from changing buffer sizes */
1692 mutex_lock(&buffer->mutex);
1693
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
1698
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
1701 /*
1702 * nothing more to do for removing pages or no update
1703 */
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
1706 /*
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
1709 */
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1712 &cpu_buffer->new_pages, cpu)) {
1713 /* not enough memory for new pages */
1714 err = -ENOMEM;
1715 goto out_err;
1716 }
1717 }
1718
1719 get_online_cpus();
1720 /*
1721 * Fire off all the required work handlers
1722 * We can't schedule on offline CPUs, but it's not necessary
1723 * since we can change their buffer sizes without any race.
1724 */
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
1727 if (!cpu_buffer->nr_pages_to_update)
1728 continue;
1729
1730 /* The update must run on the CPU that is being updated. */
1731 preempt_disable();
1732 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1733 rb_update_pages(cpu_buffer);
1734 cpu_buffer->nr_pages_to_update = 0;
1735 } else {
1736 /*
1737 * Can not disable preemption for schedule_work_on()
1738 * on PREEMPT_RT.
1739 */
1740 preempt_enable();
1741 schedule_work_on(cpu,
1742 &cpu_buffer->update_pages_work);
1743 preempt_disable();
1744 }
1745 preempt_enable();
1746 }
1747
1748 /* wait for all the updates to complete */
1749 for_each_buffer_cpu(buffer, cpu) {
1750 cpu_buffer = buffer->buffers[cpu];
1751 if (!cpu_buffer->nr_pages_to_update)
1752 continue;
1753
1754 if (cpu_online(cpu))
1755 wait_for_completion(&cpu_buffer->update_done);
1756 cpu_buffer->nr_pages_to_update = 0;
1757 }
1758
1759 put_online_cpus();
1760 } else {
1761 /* Make sure this CPU has been intitialized */
1762 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1763 goto out;
1764
1765 cpu_buffer = buffer->buffers[cpu_id];
1766
1767 if (nr_pages == cpu_buffer->nr_pages)
1768 goto out;
1769
1770 cpu_buffer->nr_pages_to_update = nr_pages -
1771 cpu_buffer->nr_pages;
1772
1773 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1774 if (cpu_buffer->nr_pages_to_update > 0 &&
1775 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1776 &cpu_buffer->new_pages, cpu_id)) {
1777 err = -ENOMEM;
1778 goto out_err;
1779 }
1780
1781 get_online_cpus();
1782
1783 preempt_disable();
1784 /* The update must run on the CPU that is being updated. */
1785 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1786 rb_update_pages(cpu_buffer);
1787 else {
1788 /*
1789 * Can not disable preemption for schedule_work_on()
1790 * on PREEMPT_RT.
1791 */
1792 preempt_enable();
1793 schedule_work_on(cpu_id,
1794 &cpu_buffer->update_pages_work);
1795 wait_for_completion(&cpu_buffer->update_done);
1796 preempt_disable();
1797 }
1798 preempt_enable();
1799
1800 cpu_buffer->nr_pages_to_update = 0;
1801 put_online_cpus();
1802 }
1803
1804 out:
1805 /*
1806 * The ring buffer resize can happen with the ring buffer
1807 * enabled, so that the update disturbs the tracing as little
1808 * as possible. But if the buffer is disabled, we do not need
1809 * to worry about that, and we can take the time to verify
1810 * that the buffer is not corrupt.
1811 */
1812 if (atomic_read(&buffer->record_disabled)) {
1813 atomic_inc(&buffer->record_disabled);
1814 /*
1815 * Even though the buffer was disabled, we must make sure
1816 * that it is truly disabled before calling rb_check_pages.
1817 * There could have been a race between checking
1818 * record_disable and incrementing it.
1819 */
1820 synchronize_sched();
1821 for_each_buffer_cpu(buffer, cpu) {
1822 cpu_buffer = buffer->buffers[cpu];
1823 rb_check_pages(cpu_buffer);
1824 }
1825 atomic_dec(&buffer->record_disabled);
1826 }
1827
1828 mutex_unlock(&buffer->mutex);
1829 return size;
1830
1831 out_err:
1832 for_each_buffer_cpu(buffer, cpu) {
1833 struct buffer_page *bpage, *tmp;
1834
1835 cpu_buffer = buffer->buffers[cpu];
1836 cpu_buffer->nr_pages_to_update = 0;
1837
1838 if (list_empty(&cpu_buffer->new_pages))
1839 continue;
1840
1841 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1842 list) {
1843 list_del_init(&bpage->list);
1844 free_buffer_page(bpage);
1845 }
1846 }
1847 mutex_unlock(&buffer->mutex);
1848 return err;
1849 }
1850 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1851
1852 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1853 {
1854 mutex_lock(&buffer->mutex);
1855 if (val)
1856 buffer->flags |= RB_FL_OVERWRITE;
1857 else
1858 buffer->flags &= ~RB_FL_OVERWRITE;
1859 mutex_unlock(&buffer->mutex);
1860 }
1861 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1862
1863 static inline void *
1864 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1865 {
1866 return bpage->data + index;
1867 }
1868
1869 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1870 {
1871 return bpage->page->data + index;
1872 }
1873
1874 static inline struct ring_buffer_event *
1875 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1876 {
1877 return __rb_page_index(cpu_buffer->reader_page,
1878 cpu_buffer->reader_page->read);
1879 }
1880
1881 static inline struct ring_buffer_event *
1882 rb_iter_head_event(struct ring_buffer_iter *iter)
1883 {
1884 return __rb_page_index(iter->head_page, iter->head);
1885 }
1886
1887 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1888 {
1889 return local_read(&bpage->page->commit);
1890 }
1891
1892 /* Size is determined by what has been committed */
1893 static inline unsigned rb_page_size(struct buffer_page *bpage)
1894 {
1895 return rb_page_commit(bpage);
1896 }
1897
1898 static inline unsigned
1899 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1900 {
1901 return rb_page_commit(cpu_buffer->commit_page);
1902 }
1903
1904 static inline unsigned
1905 rb_event_index(struct ring_buffer_event *event)
1906 {
1907 unsigned long addr = (unsigned long)event;
1908
1909 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1910 }
1911
1912 static inline int
1913 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1914 struct ring_buffer_event *event)
1915 {
1916 unsigned long addr = (unsigned long)event;
1917 unsigned long index;
1918
1919 index = rb_event_index(event);
1920 addr &= PAGE_MASK;
1921
1922 return cpu_buffer->commit_page->page == (void *)addr &&
1923 rb_commit_index(cpu_buffer) == index;
1924 }
1925
1926 static void
1927 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1928 {
1929 unsigned long max_count;
1930
1931 /*
1932 * We only race with interrupts and NMIs on this CPU.
1933 * If we own the commit event, then we can commit
1934 * all others that interrupted us, since the interruptions
1935 * are in stack format (they finish before they come
1936 * back to us). This allows us to do a simple loop to
1937 * assign the commit to the tail.
1938 */
1939 again:
1940 max_count = cpu_buffer->nr_pages * 100;
1941
1942 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1943 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1944 return;
1945 if (RB_WARN_ON(cpu_buffer,
1946 rb_is_reader_page(cpu_buffer->tail_page)))
1947 return;
1948 local_set(&cpu_buffer->commit_page->page->commit,
1949 rb_page_write(cpu_buffer->commit_page));
1950 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1951 cpu_buffer->write_stamp =
1952 cpu_buffer->commit_page->page->time_stamp;
1953 /* add barrier to keep gcc from optimizing too much */
1954 barrier();
1955 }
1956 while (rb_commit_index(cpu_buffer) !=
1957 rb_page_write(cpu_buffer->commit_page)) {
1958
1959 local_set(&cpu_buffer->commit_page->page->commit,
1960 rb_page_write(cpu_buffer->commit_page));
1961 RB_WARN_ON(cpu_buffer,
1962 local_read(&cpu_buffer->commit_page->page->commit) &
1963 ~RB_WRITE_MASK);
1964 barrier();
1965 }
1966
1967 /* again, keep gcc from optimizing */
1968 barrier();
1969
1970 /*
1971 * If an interrupt came in just after the first while loop
1972 * and pushed the tail page forward, we will be left with
1973 * a dangling commit that will never go forward.
1974 */
1975 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1976 goto again;
1977 }
1978
1979 static void rb_inc_iter(struct ring_buffer_iter *iter)
1980 {
1981 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1982
1983 /*
1984 * The iterator could be on the reader page (it starts there).
1985 * But the head could have moved, since the reader was
1986 * found. Check for this case and assign the iterator
1987 * to the head page instead of next.
1988 */
1989 if (iter->head_page == cpu_buffer->reader_page)
1990 iter->head_page = rb_set_head_page(cpu_buffer);
1991 else
1992 rb_inc_page(cpu_buffer, &iter->head_page);
1993
1994 iter->read_stamp = iter->head_page->page->time_stamp;
1995 iter->head = 0;
1996 }
1997
1998 /* Slow path, do not inline */
1999 static noinline struct ring_buffer_event *
2000 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2001 {
2002 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2003
2004 /* Not the first event on the page? */
2005 if (rb_event_index(event)) {
2006 event->time_delta = delta & TS_MASK;
2007 event->array[0] = delta >> TS_SHIFT;
2008 } else {
2009 /* nope, just zero it */
2010 event->time_delta = 0;
2011 event->array[0] = 0;
2012 }
2013
2014 return skip_time_extend(event);
2015 }
2016
2017 /**
2018 * rb_update_event - update event type and data
2019 * @event: the event to update
2020 * @type: the type of event
2021 * @length: the size of the event field in the ring buffer
2022 *
2023 * Update the type and data fields of the event. The length
2024 * is the actual size that is written to the ring buffer,
2025 * and with this, we can determine what to place into the
2026 * data field.
2027 */
2028 static void
2029 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2030 struct ring_buffer_event *event, unsigned length,
2031 int add_timestamp, u64 delta)
2032 {
2033 /* Only a commit updates the timestamp */
2034 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2035 delta = 0;
2036
2037 /*
2038 * If we need to add a timestamp, then we
2039 * add it to the start of the resevered space.
2040 */
2041 if (unlikely(add_timestamp)) {
2042 event = rb_add_time_stamp(event, delta);
2043 length -= RB_LEN_TIME_EXTEND;
2044 delta = 0;
2045 }
2046
2047 event->time_delta = delta;
2048 length -= RB_EVNT_HDR_SIZE;
2049 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2050 event->type_len = 0;
2051 event->array[0] = length;
2052 } else
2053 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2054 }
2055
2056 /*
2057 * rb_handle_head_page - writer hit the head page
2058 *
2059 * Returns: +1 to retry page
2060 * 0 to continue
2061 * -1 on error
2062 */
2063 static int
2064 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2065 struct buffer_page *tail_page,
2066 struct buffer_page *next_page)
2067 {
2068 struct buffer_page *new_head;
2069 int entries;
2070 int type;
2071 int ret;
2072
2073 entries = rb_page_entries(next_page);
2074
2075 /*
2076 * The hard part is here. We need to move the head
2077 * forward, and protect against both readers on
2078 * other CPUs and writers coming in via interrupts.
2079 */
2080 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2081 RB_PAGE_HEAD);
2082
2083 /*
2084 * type can be one of four:
2085 * NORMAL - an interrupt already moved it for us
2086 * HEAD - we are the first to get here.
2087 * UPDATE - we are the interrupt interrupting
2088 * a current move.
2089 * MOVED - a reader on another CPU moved the next
2090 * pointer to its reader page. Give up
2091 * and try again.
2092 */
2093
2094 switch (type) {
2095 case RB_PAGE_HEAD:
2096 /*
2097 * We changed the head to UPDATE, thus
2098 * it is our responsibility to update
2099 * the counters.
2100 */
2101 local_add(entries, &cpu_buffer->overrun);
2102 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2103
2104 /*
2105 * The entries will be zeroed out when we move the
2106 * tail page.
2107 */
2108
2109 /* still more to do */
2110 break;
2111
2112 case RB_PAGE_UPDATE:
2113 /*
2114 * This is an interrupt that interrupt the
2115 * previous update. Still more to do.
2116 */
2117 break;
2118 case RB_PAGE_NORMAL:
2119 /*
2120 * An interrupt came in before the update
2121 * and processed this for us.
2122 * Nothing left to do.
2123 */
2124 return 1;
2125 case RB_PAGE_MOVED:
2126 /*
2127 * The reader is on another CPU and just did
2128 * a swap with our next_page.
2129 * Try again.
2130 */
2131 return 1;
2132 default:
2133 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2134 return -1;
2135 }
2136
2137 /*
2138 * Now that we are here, the old head pointer is
2139 * set to UPDATE. This will keep the reader from
2140 * swapping the head page with the reader page.
2141 * The reader (on another CPU) will spin till
2142 * we are finished.
2143 *
2144 * We just need to protect against interrupts
2145 * doing the job. We will set the next pointer
2146 * to HEAD. After that, we set the old pointer
2147 * to NORMAL, but only if it was HEAD before.
2148 * otherwise we are an interrupt, and only
2149 * want the outer most commit to reset it.
2150 */
2151 new_head = next_page;
2152 rb_inc_page(cpu_buffer, &new_head);
2153
2154 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2155 RB_PAGE_NORMAL);
2156
2157 /*
2158 * Valid returns are:
2159 * HEAD - an interrupt came in and already set it.
2160 * NORMAL - One of two things:
2161 * 1) We really set it.
2162 * 2) A bunch of interrupts came in and moved
2163 * the page forward again.
2164 */
2165 switch (ret) {
2166 case RB_PAGE_HEAD:
2167 case RB_PAGE_NORMAL:
2168 /* OK */
2169 break;
2170 default:
2171 RB_WARN_ON(cpu_buffer, 1);
2172 return -1;
2173 }
2174
2175 /*
2176 * It is possible that an interrupt came in,
2177 * set the head up, then more interrupts came in
2178 * and moved it again. When we get back here,
2179 * the page would have been set to NORMAL but we
2180 * just set it back to HEAD.
2181 *
2182 * How do you detect this? Well, if that happened
2183 * the tail page would have moved.
2184 */
2185 if (ret == RB_PAGE_NORMAL) {
2186 /*
2187 * If the tail had moved passed next, then we need
2188 * to reset the pointer.
2189 */
2190 if (cpu_buffer->tail_page != tail_page &&
2191 cpu_buffer->tail_page != next_page)
2192 rb_head_page_set_normal(cpu_buffer, new_head,
2193 next_page,
2194 RB_PAGE_HEAD);
2195 }
2196
2197 /*
2198 * If this was the outer most commit (the one that
2199 * changed the original pointer from HEAD to UPDATE),
2200 * then it is up to us to reset it to NORMAL.
2201 */
2202 if (type == RB_PAGE_HEAD) {
2203 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2204 tail_page,
2205 RB_PAGE_UPDATE);
2206 if (RB_WARN_ON(cpu_buffer,
2207 ret != RB_PAGE_UPDATE))
2208 return -1;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static unsigned rb_calculate_event_length(unsigned length)
2215 {
2216 struct ring_buffer_event event; /* Used only for sizeof array */
2217
2218 /* zero length can cause confusions */
2219 if (!length)
2220 length = 1;
2221
2222 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2223 length += sizeof(event.array[0]);
2224
2225 length += RB_EVNT_HDR_SIZE;
2226 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2227
2228 return length;
2229 }
2230
2231 static inline void
2232 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2233 struct buffer_page *tail_page,
2234 unsigned long tail, unsigned long length)
2235 {
2236 struct ring_buffer_event *event;
2237
2238 /*
2239 * Only the event that crossed the page boundary
2240 * must fill the old tail_page with padding.
2241 */
2242 if (tail >= BUF_PAGE_SIZE) {
2243 /*
2244 * If the page was filled, then we still need
2245 * to update the real_end. Reset it to zero
2246 * and the reader will ignore it.
2247 */
2248 if (tail == BUF_PAGE_SIZE)
2249 tail_page->real_end = 0;
2250
2251 local_sub(length, &tail_page->write);
2252 return;
2253 }
2254
2255 event = __rb_page_index(tail_page, tail);
2256 kmemcheck_annotate_bitfield(event, bitfield);
2257
2258 /* account for padding bytes */
2259 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2260
2261 /*
2262 * Save the original length to the meta data.
2263 * This will be used by the reader to add lost event
2264 * counter.
2265 */
2266 tail_page->real_end = tail;
2267
2268 /*
2269 * If this event is bigger than the minimum size, then
2270 * we need to be careful that we don't subtract the
2271 * write counter enough to allow another writer to slip
2272 * in on this page.
2273 * We put in a discarded commit instead, to make sure
2274 * that this space is not used again.
2275 *
2276 * If we are less than the minimum size, we don't need to
2277 * worry about it.
2278 */
2279 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2280 /* No room for any events */
2281
2282 /* Mark the rest of the page with padding */
2283 rb_event_set_padding(event);
2284
2285 /* Set the write back to the previous setting */
2286 local_sub(length, &tail_page->write);
2287 return;
2288 }
2289
2290 /* Put in a discarded event */
2291 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2292 event->type_len = RINGBUF_TYPE_PADDING;
2293 /* time delta must be non zero */
2294 event->time_delta = 1;
2295
2296 /* Set write to end of buffer */
2297 length = (tail + length) - BUF_PAGE_SIZE;
2298 local_sub(length, &tail_page->write);
2299 }
2300
2301 /*
2302 * This is the slow path, force gcc not to inline it.
2303 */
2304 static noinline struct ring_buffer_event *
2305 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2306 unsigned long length, unsigned long tail,
2307 struct buffer_page *tail_page, u64 ts)
2308 {
2309 struct buffer_page *commit_page = cpu_buffer->commit_page;
2310 struct ring_buffer *buffer = cpu_buffer->buffer;
2311 struct buffer_page *next_page;
2312 int ret;
2313
2314 next_page = tail_page;
2315
2316 rb_inc_page(cpu_buffer, &next_page);
2317
2318 /*
2319 * If for some reason, we had an interrupt storm that made
2320 * it all the way around the buffer, bail, and warn
2321 * about it.
2322 */
2323 if (unlikely(next_page == commit_page)) {
2324 local_inc(&cpu_buffer->commit_overrun);
2325 goto out_reset;
2326 }
2327
2328 /*
2329 * This is where the fun begins!
2330 *
2331 * We are fighting against races between a reader that
2332 * could be on another CPU trying to swap its reader
2333 * page with the buffer head.
2334 *
2335 * We are also fighting against interrupts coming in and
2336 * moving the head or tail on us as well.
2337 *
2338 * If the next page is the head page then we have filled
2339 * the buffer, unless the commit page is still on the
2340 * reader page.
2341 */
2342 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2343
2344 /*
2345 * If the commit is not on the reader page, then
2346 * move the header page.
2347 */
2348 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2349 /*
2350 * If we are not in overwrite mode,
2351 * this is easy, just stop here.
2352 */
2353 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2354 local_inc(&cpu_buffer->dropped_events);
2355 goto out_reset;
2356 }
2357
2358 ret = rb_handle_head_page(cpu_buffer,
2359 tail_page,
2360 next_page);
2361 if (ret < 0)
2362 goto out_reset;
2363 if (ret)
2364 goto out_again;
2365 } else {
2366 /*
2367 * We need to be careful here too. The
2368 * commit page could still be on the reader
2369 * page. We could have a small buffer, and
2370 * have filled up the buffer with events
2371 * from interrupts and such, and wrapped.
2372 *
2373 * Note, if the tail page is also the on the
2374 * reader_page, we let it move out.
2375 */
2376 if (unlikely((cpu_buffer->commit_page !=
2377 cpu_buffer->tail_page) &&
2378 (cpu_buffer->commit_page ==
2379 cpu_buffer->reader_page))) {
2380 local_inc(&cpu_buffer->commit_overrun);
2381 goto out_reset;
2382 }
2383 }
2384 }
2385
2386 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2387 if (ret) {
2388 /*
2389 * Nested commits always have zero deltas, so
2390 * just reread the time stamp
2391 */
2392 ts = rb_time_stamp(buffer);
2393 next_page->page->time_stamp = ts;
2394 }
2395
2396 out_again:
2397
2398 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2399
2400 /* fail and let the caller try again */
2401 return ERR_PTR(-EAGAIN);
2402
2403 out_reset:
2404 /* reset write */
2405 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2406
2407 return NULL;
2408 }
2409
2410 static struct ring_buffer_event *
2411 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2412 unsigned long length, u64 ts,
2413 u64 delta, int add_timestamp)
2414 {
2415 struct buffer_page *tail_page;
2416 struct ring_buffer_event *event;
2417 unsigned long tail, write;
2418
2419 /*
2420 * If the time delta since the last event is too big to
2421 * hold in the time field of the event, then we append a
2422 * TIME EXTEND event ahead of the data event.
2423 */
2424 if (unlikely(add_timestamp))
2425 length += RB_LEN_TIME_EXTEND;
2426
2427 tail_page = cpu_buffer->tail_page;
2428 write = local_add_return(length, &tail_page->write);
2429
2430 /* set write to only the index of the write */
2431 write &= RB_WRITE_MASK;
2432 tail = write - length;
2433
2434 /*
2435 * If this is the first commit on the page, then it has the same
2436 * timestamp as the page itself.
2437 */
2438 if (!tail)
2439 delta = 0;
2440
2441 /* See if we shot pass the end of this buffer page */
2442 if (unlikely(write > BUF_PAGE_SIZE))
2443 return rb_move_tail(cpu_buffer, length, tail,
2444 tail_page, ts);
2445
2446 /* We reserved something on the buffer */
2447
2448 event = __rb_page_index(tail_page, tail);
2449 kmemcheck_annotate_bitfield(event, bitfield);
2450 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2451
2452 local_inc(&tail_page->entries);
2453
2454 /*
2455 * If this is the first commit on the page, then update
2456 * its timestamp.
2457 */
2458 if (!tail)
2459 tail_page->page->time_stamp = ts;
2460
2461 /* account for these added bytes */
2462 local_add(length, &cpu_buffer->entries_bytes);
2463
2464 return event;
2465 }
2466
2467 static inline int
2468 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2469 struct ring_buffer_event *event)
2470 {
2471 unsigned long new_index, old_index;
2472 struct buffer_page *bpage;
2473 unsigned long index;
2474 unsigned long addr;
2475
2476 new_index = rb_event_index(event);
2477 old_index = new_index + rb_event_ts_length(event);
2478 addr = (unsigned long)event;
2479 addr &= PAGE_MASK;
2480
2481 bpage = cpu_buffer->tail_page;
2482
2483 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2484 unsigned long write_mask =
2485 local_read(&bpage->write) & ~RB_WRITE_MASK;
2486 unsigned long event_length = rb_event_length(event);
2487 /*
2488 * This is on the tail page. It is possible that
2489 * a write could come in and move the tail page
2490 * and write to the next page. That is fine
2491 * because we just shorten what is on this page.
2492 */
2493 old_index += write_mask;
2494 new_index += write_mask;
2495 index = local_cmpxchg(&bpage->write, old_index, new_index);
2496 if (index == old_index) {
2497 /* update counters */
2498 local_sub(event_length, &cpu_buffer->entries_bytes);
2499 return 1;
2500 }
2501 }
2502
2503 /* could not discard */
2504 return 0;
2505 }
2506
2507 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2508 {
2509 local_inc(&cpu_buffer->committing);
2510 local_inc(&cpu_buffer->commits);
2511 }
2512
2513 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2514 {
2515 unsigned long commits;
2516
2517 if (RB_WARN_ON(cpu_buffer,
2518 !local_read(&cpu_buffer->committing)))
2519 return;
2520
2521 again:
2522 commits = local_read(&cpu_buffer->commits);
2523 /* synchronize with interrupts */
2524 barrier();
2525 if (local_read(&cpu_buffer->committing) == 1)
2526 rb_set_commit_to_write(cpu_buffer);
2527
2528 local_dec(&cpu_buffer->committing);
2529
2530 /* synchronize with interrupts */
2531 barrier();
2532
2533 /*
2534 * Need to account for interrupts coming in between the
2535 * updating of the commit page and the clearing of the
2536 * committing counter.
2537 */
2538 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2539 !local_read(&cpu_buffer->committing)) {
2540 local_inc(&cpu_buffer->committing);
2541 goto again;
2542 }
2543 }
2544
2545 static struct ring_buffer_event *
2546 rb_reserve_next_event(struct ring_buffer *buffer,
2547 struct ring_buffer_per_cpu *cpu_buffer,
2548 unsigned long length)
2549 {
2550 struct ring_buffer_event *event;
2551 u64 ts, delta;
2552 int nr_loops = 0;
2553 int add_timestamp;
2554 u64 diff;
2555
2556 rb_start_commit(cpu_buffer);
2557
2558 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2559 /*
2560 * Due to the ability to swap a cpu buffer from a buffer
2561 * it is possible it was swapped before we committed.
2562 * (committing stops a swap). We check for it here and
2563 * if it happened, we have to fail the write.
2564 */
2565 barrier();
2566 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2567 local_dec(&cpu_buffer->committing);
2568 local_dec(&cpu_buffer->commits);
2569 return NULL;
2570 }
2571 #endif
2572
2573 length = rb_calculate_event_length(length);
2574 again:
2575 add_timestamp = 0;
2576 delta = 0;
2577
2578 /*
2579 * We allow for interrupts to reenter here and do a trace.
2580 * If one does, it will cause this original code to loop
2581 * back here. Even with heavy interrupts happening, this
2582 * should only happen a few times in a row. If this happens
2583 * 1000 times in a row, there must be either an interrupt
2584 * storm or we have something buggy.
2585 * Bail!
2586 */
2587 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2588 goto out_fail;
2589
2590 ts = rb_time_stamp(cpu_buffer->buffer);
2591 diff = ts - cpu_buffer->write_stamp;
2592
2593 /* make sure this diff is calculated here */
2594 barrier();
2595
2596 /* Did the write stamp get updated already? */
2597 if (likely(ts >= cpu_buffer->write_stamp)) {
2598 delta = diff;
2599 if (unlikely(test_time_stamp(delta))) {
2600 int local_clock_stable = 1;
2601 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2602 local_clock_stable = sched_clock_stable;
2603 #endif
2604 WARN_ONCE(delta > (1ULL << 59),
2605 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2606 (unsigned long long)delta,
2607 (unsigned long long)ts,
2608 (unsigned long long)cpu_buffer->write_stamp,
2609 local_clock_stable ? "" :
2610 "If you just came from a suspend/resume,\n"
2611 "please switch to the trace global clock:\n"
2612 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2613 add_timestamp = 1;
2614 }
2615 }
2616
2617 event = __rb_reserve_next(cpu_buffer, length, ts,
2618 delta, add_timestamp);
2619 if (unlikely(PTR_ERR(event) == -EAGAIN))
2620 goto again;
2621
2622 if (!event)
2623 goto out_fail;
2624
2625 return event;
2626
2627 out_fail:
2628 rb_end_commit(cpu_buffer);
2629 return NULL;
2630 }
2631
2632 #ifdef CONFIG_TRACING
2633
2634 /*
2635 * The lock and unlock are done within a preempt disable section.
2636 * The current_context per_cpu variable can only be modified
2637 * by the current task between lock and unlock. But it can
2638 * be modified more than once via an interrupt. To pass this
2639 * information from the lock to the unlock without having to
2640 * access the 'in_interrupt()' functions again (which do show
2641 * a bit of overhead in something as critical as function tracing,
2642 * we use a bitmask trick.
2643 *
2644 * bit 0 = NMI context
2645 * bit 1 = IRQ context
2646 * bit 2 = SoftIRQ context
2647 * bit 3 = normal context.
2648 *
2649 * This works because this is the order of contexts that can
2650 * preempt other contexts. A SoftIRQ never preempts an IRQ
2651 * context.
2652 *
2653 * When the context is determined, the corresponding bit is
2654 * checked and set (if it was set, then a recursion of that context
2655 * happened).
2656 *
2657 * On unlock, we need to clear this bit. To do so, just subtract
2658 * 1 from the current_context and AND it to itself.
2659 *
2660 * (binary)
2661 * 101 - 1 = 100
2662 * 101 & 100 = 100 (clearing bit zero)
2663 *
2664 * 1010 - 1 = 1001
2665 * 1010 & 1001 = 1000 (clearing bit 1)
2666 *
2667 * The least significant bit can be cleared this way, and it
2668 * just so happens that it is the same bit corresponding to
2669 * the current context.
2670 */
2671 static DEFINE_PER_CPU(unsigned int, current_context);
2672
2673 static __always_inline int trace_recursive_lock(void)
2674 {
2675 unsigned int val = __this_cpu_read(current_context);
2676 int bit;
2677
2678 if (in_interrupt()) {
2679 if (in_nmi())
2680 bit = 0;
2681 else if (in_irq())
2682 bit = 1;
2683 else
2684 bit = 2;
2685 } else
2686 bit = 3;
2687
2688 if (unlikely(val & (1 << bit)))
2689 return 1;
2690
2691 val |= (1 << bit);
2692 __this_cpu_write(current_context, val);
2693
2694 return 0;
2695 }
2696
2697 static __always_inline void trace_recursive_unlock(void)
2698 {
2699 unsigned int val = __this_cpu_read(current_context);
2700
2701 val &= val & (val - 1);
2702 __this_cpu_write(current_context, val);
2703 }
2704
2705 #else
2706
2707 #define trace_recursive_lock() (0)
2708 #define trace_recursive_unlock() do { } while (0)
2709
2710 #endif
2711
2712 /**
2713 * ring_buffer_lock_reserve - reserve a part of the buffer
2714 * @buffer: the ring buffer to reserve from
2715 * @length: the length of the data to reserve (excluding event header)
2716 *
2717 * Returns a reseverd event on the ring buffer to copy directly to.
2718 * The user of this interface will need to get the body to write into
2719 * and can use the ring_buffer_event_data() interface.
2720 *
2721 * The length is the length of the data needed, not the event length
2722 * which also includes the event header.
2723 *
2724 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2725 * If NULL is returned, then nothing has been allocated or locked.
2726 */
2727 struct ring_buffer_event *
2728 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2729 {
2730 struct ring_buffer_per_cpu *cpu_buffer;
2731 struct ring_buffer_event *event;
2732 int cpu;
2733
2734 if (ring_buffer_flags != RB_BUFFERS_ON)
2735 return NULL;
2736
2737 /* If we are tracing schedule, we don't want to recurse */
2738 preempt_disable_notrace();
2739
2740 if (atomic_read(&buffer->record_disabled))
2741 goto out_nocheck;
2742
2743 if (trace_recursive_lock())
2744 goto out_nocheck;
2745
2746 cpu = raw_smp_processor_id();
2747
2748 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2749 goto out;
2750
2751 cpu_buffer = buffer->buffers[cpu];
2752
2753 if (atomic_read(&cpu_buffer->record_disabled))
2754 goto out;
2755
2756 if (length > BUF_MAX_DATA_SIZE)
2757 goto out;
2758
2759 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2760 if (!event)
2761 goto out;
2762
2763 return event;
2764
2765 out:
2766 trace_recursive_unlock();
2767
2768 out_nocheck:
2769 preempt_enable_notrace();
2770 return NULL;
2771 }
2772 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2773
2774 static void
2775 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2776 struct ring_buffer_event *event)
2777 {
2778 u64 delta;
2779
2780 /*
2781 * The event first in the commit queue updates the
2782 * time stamp.
2783 */
2784 if (rb_event_is_commit(cpu_buffer, event)) {
2785 /*
2786 * A commit event that is first on a page
2787 * updates the write timestamp with the page stamp
2788 */
2789 if (!rb_event_index(event))
2790 cpu_buffer->write_stamp =
2791 cpu_buffer->commit_page->page->time_stamp;
2792 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2793 delta = event->array[0];
2794 delta <<= TS_SHIFT;
2795 delta += event->time_delta;
2796 cpu_buffer->write_stamp += delta;
2797 } else
2798 cpu_buffer->write_stamp += event->time_delta;
2799 }
2800 }
2801
2802 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2803 struct ring_buffer_event *event)
2804 {
2805 local_inc(&cpu_buffer->entries);
2806 rb_update_write_stamp(cpu_buffer, event);
2807 rb_end_commit(cpu_buffer);
2808 }
2809
2810 static __always_inline void
2811 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2812 {
2813 if (buffer->irq_work.waiters_pending) {
2814 buffer->irq_work.waiters_pending = false;
2815 /* irq_work_queue() supplies it's own memory barriers */
2816 irq_work_queue(&buffer->irq_work.work);
2817 }
2818
2819 if (cpu_buffer->irq_work.waiters_pending) {
2820 cpu_buffer->irq_work.waiters_pending = false;
2821 /* irq_work_queue() supplies it's own memory barriers */
2822 irq_work_queue(&cpu_buffer->irq_work.work);
2823 }
2824 }
2825
2826 /**
2827 * ring_buffer_unlock_commit - commit a reserved
2828 * @buffer: The buffer to commit to
2829 * @event: The event pointer to commit.
2830 *
2831 * This commits the data to the ring buffer, and releases any locks held.
2832 *
2833 * Must be paired with ring_buffer_lock_reserve.
2834 */
2835 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2836 struct ring_buffer_event *event)
2837 {
2838 struct ring_buffer_per_cpu *cpu_buffer;
2839 int cpu = raw_smp_processor_id();
2840
2841 cpu_buffer = buffer->buffers[cpu];
2842
2843 rb_commit(cpu_buffer, event);
2844
2845 rb_wakeups(buffer, cpu_buffer);
2846
2847 trace_recursive_unlock();
2848
2849 preempt_enable_notrace();
2850
2851 return 0;
2852 }
2853 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2854
2855 static inline void rb_event_discard(struct ring_buffer_event *event)
2856 {
2857 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2858 event = skip_time_extend(event);
2859
2860 /* array[0] holds the actual length for the discarded event */
2861 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2862 event->type_len = RINGBUF_TYPE_PADDING;
2863 /* time delta must be non zero */
2864 if (!event->time_delta)
2865 event->time_delta = 1;
2866 }
2867
2868 /*
2869 * Decrement the entries to the page that an event is on.
2870 * The event does not even need to exist, only the pointer
2871 * to the page it is on. This may only be called before the commit
2872 * takes place.
2873 */
2874 static inline void
2875 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2876 struct ring_buffer_event *event)
2877 {
2878 unsigned long addr = (unsigned long)event;
2879 struct buffer_page *bpage = cpu_buffer->commit_page;
2880 struct buffer_page *start;
2881
2882 addr &= PAGE_MASK;
2883
2884 /* Do the likely case first */
2885 if (likely(bpage->page == (void *)addr)) {
2886 local_dec(&bpage->entries);
2887 return;
2888 }
2889
2890 /*
2891 * Because the commit page may be on the reader page we
2892 * start with the next page and check the end loop there.
2893 */
2894 rb_inc_page(cpu_buffer, &bpage);
2895 start = bpage;
2896 do {
2897 if (bpage->page == (void *)addr) {
2898 local_dec(&bpage->entries);
2899 return;
2900 }
2901 rb_inc_page(cpu_buffer, &bpage);
2902 } while (bpage != start);
2903
2904 /* commit not part of this buffer?? */
2905 RB_WARN_ON(cpu_buffer, 1);
2906 }
2907
2908 /**
2909 * ring_buffer_commit_discard - discard an event that has not been committed
2910 * @buffer: the ring buffer
2911 * @event: non committed event to discard
2912 *
2913 * Sometimes an event that is in the ring buffer needs to be ignored.
2914 * This function lets the user discard an event in the ring buffer
2915 * and then that event will not be read later.
2916 *
2917 * This function only works if it is called before the the item has been
2918 * committed. It will try to free the event from the ring buffer
2919 * if another event has not been added behind it.
2920 *
2921 * If another event has been added behind it, it will set the event
2922 * up as discarded, and perform the commit.
2923 *
2924 * If this function is called, do not call ring_buffer_unlock_commit on
2925 * the event.
2926 */
2927 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2928 struct ring_buffer_event *event)
2929 {
2930 struct ring_buffer_per_cpu *cpu_buffer;
2931 int cpu;
2932
2933 /* The event is discarded regardless */
2934 rb_event_discard(event);
2935
2936 cpu = smp_processor_id();
2937 cpu_buffer = buffer->buffers[cpu];
2938
2939 /*
2940 * This must only be called if the event has not been
2941 * committed yet. Thus we can assume that preemption
2942 * is still disabled.
2943 */
2944 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2945
2946 rb_decrement_entry(cpu_buffer, event);
2947 if (rb_try_to_discard(cpu_buffer, event))
2948 goto out;
2949
2950 /*
2951 * The commit is still visible by the reader, so we
2952 * must still update the timestamp.
2953 */
2954 rb_update_write_stamp(cpu_buffer, event);
2955 out:
2956 rb_end_commit(cpu_buffer);
2957
2958 trace_recursive_unlock();
2959
2960 preempt_enable_notrace();
2961
2962 }
2963 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2964
2965 /**
2966 * ring_buffer_write - write data to the buffer without reserving
2967 * @buffer: The ring buffer to write to.
2968 * @length: The length of the data being written (excluding the event header)
2969 * @data: The data to write to the buffer.
2970 *
2971 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2972 * one function. If you already have the data to write to the buffer, it
2973 * may be easier to simply call this function.
2974 *
2975 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2976 * and not the length of the event which would hold the header.
2977 */
2978 int ring_buffer_write(struct ring_buffer *buffer,
2979 unsigned long length,
2980 void *data)
2981 {
2982 struct ring_buffer_per_cpu *cpu_buffer;
2983 struct ring_buffer_event *event;
2984 void *body;
2985 int ret = -EBUSY;
2986 int cpu;
2987
2988 if (ring_buffer_flags != RB_BUFFERS_ON)
2989 return -EBUSY;
2990
2991 preempt_disable_notrace();
2992
2993 if (atomic_read(&buffer->record_disabled))
2994 goto out;
2995
2996 cpu = raw_smp_processor_id();
2997
2998 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2999 goto out;
3000
3001 cpu_buffer = buffer->buffers[cpu];
3002
3003 if (atomic_read(&cpu_buffer->record_disabled))
3004 goto out;
3005
3006 if (length > BUF_MAX_DATA_SIZE)
3007 goto out;
3008
3009 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3010 if (!event)
3011 goto out;
3012
3013 body = rb_event_data(event);
3014
3015 memcpy(body, data, length);
3016
3017 rb_commit(cpu_buffer, event);
3018
3019 rb_wakeups(buffer, cpu_buffer);
3020
3021 ret = 0;
3022 out:
3023 preempt_enable_notrace();
3024
3025 return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_write);
3028
3029 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3030 {
3031 struct buffer_page *reader = cpu_buffer->reader_page;
3032 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3033 struct buffer_page *commit = cpu_buffer->commit_page;
3034
3035 /* In case of error, head will be NULL */
3036 if (unlikely(!head))
3037 return 1;
3038
3039 return reader->read == rb_page_commit(reader) &&
3040 (commit == reader ||
3041 (commit == head &&
3042 head->read == rb_page_commit(commit)));
3043 }
3044
3045 /**
3046 * ring_buffer_record_disable - stop all writes into the buffer
3047 * @buffer: The ring buffer to stop writes to.
3048 *
3049 * This prevents all writes to the buffer. Any attempt to write
3050 * to the buffer after this will fail and return NULL.
3051 *
3052 * The caller should call synchronize_sched() after this.
3053 */
3054 void ring_buffer_record_disable(struct ring_buffer *buffer)
3055 {
3056 atomic_inc(&buffer->record_disabled);
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3059
3060 /**
3061 * ring_buffer_record_enable - enable writes to the buffer
3062 * @buffer: The ring buffer to enable writes
3063 *
3064 * Note, multiple disables will need the same number of enables
3065 * to truly enable the writing (much like preempt_disable).
3066 */
3067 void ring_buffer_record_enable(struct ring_buffer *buffer)
3068 {
3069 atomic_dec(&buffer->record_disabled);
3070 }
3071 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3072
3073 /**
3074 * ring_buffer_record_off - stop all writes into the buffer
3075 * @buffer: The ring buffer to stop writes to.
3076 *
3077 * This prevents all writes to the buffer. Any attempt to write
3078 * to the buffer after this will fail and return NULL.
3079 *
3080 * This is different than ring_buffer_record_disable() as
3081 * it works like an on/off switch, where as the disable() version
3082 * must be paired with a enable().
3083 */
3084 void ring_buffer_record_off(struct ring_buffer *buffer)
3085 {
3086 unsigned int rd;
3087 unsigned int new_rd;
3088
3089 do {
3090 rd = atomic_read(&buffer->record_disabled);
3091 new_rd = rd | RB_BUFFER_OFF;
3092 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3093 }
3094 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3095
3096 /**
3097 * ring_buffer_record_on - restart writes into the buffer
3098 * @buffer: The ring buffer to start writes to.
3099 *
3100 * This enables all writes to the buffer that was disabled by
3101 * ring_buffer_record_off().
3102 *
3103 * This is different than ring_buffer_record_enable() as
3104 * it works like an on/off switch, where as the enable() version
3105 * must be paired with a disable().
3106 */
3107 void ring_buffer_record_on(struct ring_buffer *buffer)
3108 {
3109 unsigned int rd;
3110 unsigned int new_rd;
3111
3112 do {
3113 rd = atomic_read(&buffer->record_disabled);
3114 new_rd = rd & ~RB_BUFFER_OFF;
3115 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3116 }
3117 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3118
3119 /**
3120 * ring_buffer_record_is_on - return true if the ring buffer can write
3121 * @buffer: The ring buffer to see if write is enabled
3122 *
3123 * Returns true if the ring buffer is in a state that it accepts writes.
3124 */
3125 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3126 {
3127 return !atomic_read(&buffer->record_disabled);
3128 }
3129
3130 /**
3131 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3132 * @buffer: The ring buffer to stop writes to.
3133 * @cpu: The CPU buffer to stop
3134 *
3135 * This prevents all writes to the buffer. Any attempt to write
3136 * to the buffer after this will fail and return NULL.
3137 *
3138 * The caller should call synchronize_sched() after this.
3139 */
3140 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3141 {
3142 struct ring_buffer_per_cpu *cpu_buffer;
3143
3144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3145 return;
3146
3147 cpu_buffer = buffer->buffers[cpu];
3148 atomic_inc(&cpu_buffer->record_disabled);
3149 }
3150 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3151
3152 /**
3153 * ring_buffer_record_enable_cpu - enable writes to the buffer
3154 * @buffer: The ring buffer to enable writes
3155 * @cpu: The CPU to enable.
3156 *
3157 * Note, multiple disables will need the same number of enables
3158 * to truly enable the writing (much like preempt_disable).
3159 */
3160 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3161 {
3162 struct ring_buffer_per_cpu *cpu_buffer;
3163
3164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3165 return;
3166
3167 cpu_buffer = buffer->buffers[cpu];
3168 atomic_dec(&cpu_buffer->record_disabled);
3169 }
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3171
3172 /*
3173 * The total entries in the ring buffer is the running counter
3174 * of entries entered into the ring buffer, minus the sum of
3175 * the entries read from the ring buffer and the number of
3176 * entries that were overwritten.
3177 */
3178 static inline unsigned long
3179 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3180 {
3181 return local_read(&cpu_buffer->entries) -
3182 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3183 }
3184
3185 /**
3186 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3187 * @buffer: The ring buffer
3188 * @cpu: The per CPU buffer to read from.
3189 */
3190 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3191 {
3192 unsigned long flags;
3193 struct ring_buffer_per_cpu *cpu_buffer;
3194 struct buffer_page *bpage;
3195 u64 ret = 0;
3196
3197 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3198 return 0;
3199
3200 cpu_buffer = buffer->buffers[cpu];
3201 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3202 /*
3203 * if the tail is on reader_page, oldest time stamp is on the reader
3204 * page
3205 */
3206 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3207 bpage = cpu_buffer->reader_page;
3208 else
3209 bpage = rb_set_head_page(cpu_buffer);
3210 if (bpage)
3211 ret = bpage->page->time_stamp;
3212 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3213
3214 return ret;
3215 }
3216 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3217
3218 /**
3219 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3220 * @buffer: The ring buffer
3221 * @cpu: The per CPU buffer to read from.
3222 */
3223 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3224 {
3225 struct ring_buffer_per_cpu *cpu_buffer;
3226 unsigned long ret;
3227
3228 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3229 return 0;
3230
3231 cpu_buffer = buffer->buffers[cpu];
3232 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3233
3234 return ret;
3235 }
3236 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3237
3238 /**
3239 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3240 * @buffer: The ring buffer
3241 * @cpu: The per CPU buffer to get the entries from.
3242 */
3243 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3244 {
3245 struct ring_buffer_per_cpu *cpu_buffer;
3246
3247 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3248 return 0;
3249
3250 cpu_buffer = buffer->buffers[cpu];
3251
3252 return rb_num_of_entries(cpu_buffer);
3253 }
3254 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3255
3256 /**
3257 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3258 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3259 * @buffer: The ring buffer
3260 * @cpu: The per CPU buffer to get the number of overruns from
3261 */
3262 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3263 {
3264 struct ring_buffer_per_cpu *cpu_buffer;
3265 unsigned long ret;
3266
3267 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3268 return 0;
3269
3270 cpu_buffer = buffer->buffers[cpu];
3271 ret = local_read(&cpu_buffer->overrun);
3272
3273 return ret;
3274 }
3275 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3276
3277 /**
3278 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3279 * commits failing due to the buffer wrapping around while there are uncommitted
3280 * events, such as during an interrupt storm.
3281 * @buffer: The ring buffer
3282 * @cpu: The per CPU buffer to get the number of overruns from
3283 */
3284 unsigned long
3285 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3286 {
3287 struct ring_buffer_per_cpu *cpu_buffer;
3288 unsigned long ret;
3289
3290 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3291 return 0;
3292
3293 cpu_buffer = buffer->buffers[cpu];
3294 ret = local_read(&cpu_buffer->commit_overrun);
3295
3296 return ret;
3297 }
3298 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3299
3300 /**
3301 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3302 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3303 * @buffer: The ring buffer
3304 * @cpu: The per CPU buffer to get the number of overruns from
3305 */
3306 unsigned long
3307 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3308 {
3309 struct ring_buffer_per_cpu *cpu_buffer;
3310 unsigned long ret;
3311
3312 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3313 return 0;
3314
3315 cpu_buffer = buffer->buffers[cpu];
3316 ret = local_read(&cpu_buffer->dropped_events);
3317
3318 return ret;
3319 }
3320 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3321
3322 /**
3323 * ring_buffer_read_events_cpu - get the number of events successfully read
3324 * @buffer: The ring buffer
3325 * @cpu: The per CPU buffer to get the number of events read
3326 */
3327 unsigned long
3328 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3329 {
3330 struct ring_buffer_per_cpu *cpu_buffer;
3331
3332 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3333 return 0;
3334
3335 cpu_buffer = buffer->buffers[cpu];
3336 return cpu_buffer->read;
3337 }
3338 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3339
3340 /**
3341 * ring_buffer_entries - get the number of entries in a buffer
3342 * @buffer: The ring buffer
3343 *
3344 * Returns the total number of entries in the ring buffer
3345 * (all CPU entries)
3346 */
3347 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3348 {
3349 struct ring_buffer_per_cpu *cpu_buffer;
3350 unsigned long entries = 0;
3351 int cpu;
3352
3353 /* if you care about this being correct, lock the buffer */
3354 for_each_buffer_cpu(buffer, cpu) {
3355 cpu_buffer = buffer->buffers[cpu];
3356 entries += rb_num_of_entries(cpu_buffer);
3357 }
3358
3359 return entries;
3360 }
3361 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3362
3363 /**
3364 * ring_buffer_overruns - get the number of overruns in buffer
3365 * @buffer: The ring buffer
3366 *
3367 * Returns the total number of overruns in the ring buffer
3368 * (all CPU entries)
3369 */
3370 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3371 {
3372 struct ring_buffer_per_cpu *cpu_buffer;
3373 unsigned long overruns = 0;
3374 int cpu;
3375
3376 /* if you care about this being correct, lock the buffer */
3377 for_each_buffer_cpu(buffer, cpu) {
3378 cpu_buffer = buffer->buffers[cpu];
3379 overruns += local_read(&cpu_buffer->overrun);
3380 }
3381
3382 return overruns;
3383 }
3384 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3385
3386 static void rb_iter_reset(struct ring_buffer_iter *iter)
3387 {
3388 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3389
3390 /* Iterator usage is expected to have record disabled */
3391 iter->head_page = cpu_buffer->reader_page;
3392 iter->head = cpu_buffer->reader_page->read;
3393
3394 iter->cache_reader_page = iter->head_page;
3395 iter->cache_read = cpu_buffer->read;
3396
3397 if (iter->head)
3398 iter->read_stamp = cpu_buffer->read_stamp;
3399 else
3400 iter->read_stamp = iter->head_page->page->time_stamp;
3401 }
3402
3403 /**
3404 * ring_buffer_iter_reset - reset an iterator
3405 * @iter: The iterator to reset
3406 *
3407 * Resets the iterator, so that it will start from the beginning
3408 * again.
3409 */
3410 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3411 {
3412 struct ring_buffer_per_cpu *cpu_buffer;
3413 unsigned long flags;
3414
3415 if (!iter)
3416 return;
3417
3418 cpu_buffer = iter->cpu_buffer;
3419
3420 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3421 rb_iter_reset(iter);
3422 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3423 }
3424 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3425
3426 /**
3427 * ring_buffer_iter_empty - check if an iterator has no more to read
3428 * @iter: The iterator to check
3429 */
3430 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3431 {
3432 struct ring_buffer_per_cpu *cpu_buffer;
3433
3434 cpu_buffer = iter->cpu_buffer;
3435
3436 return iter->head_page == cpu_buffer->commit_page &&
3437 iter->head == rb_commit_index(cpu_buffer);
3438 }
3439 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3440
3441 static void
3442 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3443 struct ring_buffer_event *event)
3444 {
3445 u64 delta;
3446
3447 switch (event->type_len) {
3448 case RINGBUF_TYPE_PADDING:
3449 return;
3450
3451 case RINGBUF_TYPE_TIME_EXTEND:
3452 delta = event->array[0];
3453 delta <<= TS_SHIFT;
3454 delta += event->time_delta;
3455 cpu_buffer->read_stamp += delta;
3456 return;
3457
3458 case RINGBUF_TYPE_TIME_STAMP:
3459 /* FIXME: not implemented */
3460 return;
3461
3462 case RINGBUF_TYPE_DATA:
3463 cpu_buffer->read_stamp += event->time_delta;
3464 return;
3465
3466 default:
3467 BUG();
3468 }
3469 return;
3470 }
3471
3472 static void
3473 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3474 struct ring_buffer_event *event)
3475 {
3476 u64 delta;
3477
3478 switch (event->type_len) {
3479 case RINGBUF_TYPE_PADDING:
3480 return;
3481
3482 case RINGBUF_TYPE_TIME_EXTEND:
3483 delta = event->array[0];
3484 delta <<= TS_SHIFT;
3485 delta += event->time_delta;
3486 iter->read_stamp += delta;
3487 return;
3488
3489 case RINGBUF_TYPE_TIME_STAMP:
3490 /* FIXME: not implemented */
3491 return;
3492
3493 case RINGBUF_TYPE_DATA:
3494 iter->read_stamp += event->time_delta;
3495 return;
3496
3497 default:
3498 BUG();
3499 }
3500 return;
3501 }
3502
3503 static struct buffer_page *
3504 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3505 {
3506 struct buffer_page *reader = NULL;
3507 unsigned long overwrite;
3508 unsigned long flags;
3509 int nr_loops = 0;
3510 int ret;
3511
3512 local_irq_save(flags);
3513 arch_spin_lock(&cpu_buffer->lock);
3514
3515 again:
3516 /*
3517 * This should normally only loop twice. But because the
3518 * start of the reader inserts an empty page, it causes
3519 * a case where we will loop three times. There should be no
3520 * reason to loop four times (that I know of).
3521 */
3522 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3523 reader = NULL;
3524 goto out;
3525 }
3526
3527 reader = cpu_buffer->reader_page;
3528
3529 /* If there's more to read, return this page */
3530 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3531 goto out;
3532
3533 /* Never should we have an index greater than the size */
3534 if (RB_WARN_ON(cpu_buffer,
3535 cpu_buffer->reader_page->read > rb_page_size(reader)))
3536 goto out;
3537
3538 /* check if we caught up to the tail */
3539 reader = NULL;
3540 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3541 goto out;
3542
3543 /* Don't bother swapping if the ring buffer is empty */
3544 if (rb_num_of_entries(cpu_buffer) == 0)
3545 goto out;
3546
3547 /*
3548 * Reset the reader page to size zero.
3549 */
3550 local_set(&cpu_buffer->reader_page->write, 0);
3551 local_set(&cpu_buffer->reader_page->entries, 0);
3552 local_set(&cpu_buffer->reader_page->page->commit, 0);
3553 cpu_buffer->reader_page->real_end = 0;
3554
3555 spin:
3556 /*
3557 * Splice the empty reader page into the list around the head.
3558 */
3559 reader = rb_set_head_page(cpu_buffer);
3560 if (!reader)
3561 goto out;
3562 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3563 cpu_buffer->reader_page->list.prev = reader->list.prev;
3564
3565 /*
3566 * cpu_buffer->pages just needs to point to the buffer, it
3567 * has no specific buffer page to point to. Lets move it out
3568 * of our way so we don't accidentally swap it.
3569 */
3570 cpu_buffer->pages = reader->list.prev;
3571
3572 /* The reader page will be pointing to the new head */
3573 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3574
3575 /*
3576 * We want to make sure we read the overruns after we set up our
3577 * pointers to the next object. The writer side does a
3578 * cmpxchg to cross pages which acts as the mb on the writer
3579 * side. Note, the reader will constantly fail the swap
3580 * while the writer is updating the pointers, so this
3581 * guarantees that the overwrite recorded here is the one we
3582 * want to compare with the last_overrun.
3583 */
3584 smp_mb();
3585 overwrite = local_read(&(cpu_buffer->overrun));
3586
3587 /*
3588 * Here's the tricky part.
3589 *
3590 * We need to move the pointer past the header page.
3591 * But we can only do that if a writer is not currently
3592 * moving it. The page before the header page has the
3593 * flag bit '1' set if it is pointing to the page we want.
3594 * but if the writer is in the process of moving it
3595 * than it will be '2' or already moved '0'.
3596 */
3597
3598 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3599
3600 /*
3601 * If we did not convert it, then we must try again.
3602 */
3603 if (!ret)
3604 goto spin;
3605
3606 /*
3607 * Yeah! We succeeded in replacing the page.
3608 *
3609 * Now make the new head point back to the reader page.
3610 */
3611 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3612 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3613
3614 /* Finally update the reader page to the new head */
3615 cpu_buffer->reader_page = reader;
3616 cpu_buffer->reader_page->read = 0;
3617
3618 if (overwrite != cpu_buffer->last_overrun) {
3619 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3620 cpu_buffer->last_overrun = overwrite;
3621 }
3622
3623 goto again;
3624
3625 out:
3626 /* Update the read_stamp on the first event */
3627 if (reader && reader->read == 0)
3628 cpu_buffer->read_stamp = reader->page->time_stamp;
3629
3630 arch_spin_unlock(&cpu_buffer->lock);
3631 local_irq_restore(flags);
3632
3633 return reader;
3634 }
3635
3636 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3637 {
3638 struct ring_buffer_event *event;
3639 struct buffer_page *reader;
3640 unsigned length;
3641
3642 reader = rb_get_reader_page(cpu_buffer);
3643
3644 /* This function should not be called when buffer is empty */
3645 if (RB_WARN_ON(cpu_buffer, !reader))
3646 return;
3647
3648 event = rb_reader_event(cpu_buffer);
3649
3650 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3651 cpu_buffer->read++;
3652
3653 rb_update_read_stamp(cpu_buffer, event);
3654
3655 length = rb_event_length(event);
3656 cpu_buffer->reader_page->read += length;
3657 }
3658
3659 static void rb_advance_iter(struct ring_buffer_iter *iter)
3660 {
3661 struct ring_buffer_per_cpu *cpu_buffer;
3662 struct ring_buffer_event *event;
3663 unsigned length;
3664
3665 cpu_buffer = iter->cpu_buffer;
3666
3667 /*
3668 * Check if we are at the end of the buffer.
3669 */
3670 if (iter->head >= rb_page_size(iter->head_page)) {
3671 /* discarded commits can make the page empty */
3672 if (iter->head_page == cpu_buffer->commit_page)
3673 return;
3674 rb_inc_iter(iter);
3675 return;
3676 }
3677
3678 event = rb_iter_head_event(iter);
3679
3680 length = rb_event_length(event);
3681
3682 /*
3683 * This should not be called to advance the header if we are
3684 * at the tail of the buffer.
3685 */
3686 if (RB_WARN_ON(cpu_buffer,
3687 (iter->head_page == cpu_buffer->commit_page) &&
3688 (iter->head + length > rb_commit_index(cpu_buffer))))
3689 return;
3690
3691 rb_update_iter_read_stamp(iter, event);
3692
3693 iter->head += length;
3694
3695 /* check for end of page padding */
3696 if ((iter->head >= rb_page_size(iter->head_page)) &&
3697 (iter->head_page != cpu_buffer->commit_page))
3698 rb_inc_iter(iter);
3699 }
3700
3701 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3702 {
3703 return cpu_buffer->lost_events;
3704 }
3705
3706 static struct ring_buffer_event *
3707 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3708 unsigned long *lost_events)
3709 {
3710 struct ring_buffer_event *event;
3711 struct buffer_page *reader;
3712 int nr_loops = 0;
3713
3714 again:
3715 /*
3716 * We repeat when a time extend is encountered.
3717 * Since the time extend is always attached to a data event,
3718 * we should never loop more than once.
3719 * (We never hit the following condition more than twice).
3720 */
3721 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3722 return NULL;
3723
3724 reader = rb_get_reader_page(cpu_buffer);
3725 if (!reader)
3726 return NULL;
3727
3728 event = rb_reader_event(cpu_buffer);
3729
3730 switch (event->type_len) {
3731 case RINGBUF_TYPE_PADDING:
3732 if (rb_null_event(event))
3733 RB_WARN_ON(cpu_buffer, 1);
3734 /*
3735 * Because the writer could be discarding every
3736 * event it creates (which would probably be bad)
3737 * if we were to go back to "again" then we may never
3738 * catch up, and will trigger the warn on, or lock
3739 * the box. Return the padding, and we will release
3740 * the current locks, and try again.
3741 */
3742 return event;
3743
3744 case RINGBUF_TYPE_TIME_EXTEND:
3745 /* Internal data, OK to advance */
3746 rb_advance_reader(cpu_buffer);
3747 goto again;
3748
3749 case RINGBUF_TYPE_TIME_STAMP:
3750 /* FIXME: not implemented */
3751 rb_advance_reader(cpu_buffer);
3752 goto again;
3753
3754 case RINGBUF_TYPE_DATA:
3755 if (ts) {
3756 *ts = cpu_buffer->read_stamp + event->time_delta;
3757 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3758 cpu_buffer->cpu, ts);
3759 }
3760 if (lost_events)
3761 *lost_events = rb_lost_events(cpu_buffer);
3762 return event;
3763
3764 default:
3765 BUG();
3766 }
3767
3768 return NULL;
3769 }
3770 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3771
3772 static struct ring_buffer_event *
3773 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3774 {
3775 struct ring_buffer *buffer;
3776 struct ring_buffer_per_cpu *cpu_buffer;
3777 struct ring_buffer_event *event;
3778 int nr_loops = 0;
3779
3780 cpu_buffer = iter->cpu_buffer;
3781 buffer = cpu_buffer->buffer;
3782
3783 /*
3784 * Check if someone performed a consuming read to
3785 * the buffer. A consuming read invalidates the iterator
3786 * and we need to reset the iterator in this case.
3787 */
3788 if (unlikely(iter->cache_read != cpu_buffer->read ||
3789 iter->cache_reader_page != cpu_buffer->reader_page))
3790 rb_iter_reset(iter);
3791
3792 again:
3793 if (ring_buffer_iter_empty(iter))
3794 return NULL;
3795
3796 /*
3797 * We repeat when a time extend is encountered or we hit
3798 * the end of the page. Since the time extend is always attached
3799 * to a data event, we should never loop more than three times.
3800 * Once for going to next page, once on time extend, and
3801 * finally once to get the event.
3802 * (We never hit the following condition more than thrice).
3803 */
3804 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3805 return NULL;
3806
3807 if (rb_per_cpu_empty(cpu_buffer))
3808 return NULL;
3809
3810 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3811 rb_inc_iter(iter);
3812 goto again;
3813 }
3814
3815 event = rb_iter_head_event(iter);
3816
3817 switch (event->type_len) {
3818 case RINGBUF_TYPE_PADDING:
3819 if (rb_null_event(event)) {
3820 rb_inc_iter(iter);
3821 goto again;
3822 }
3823 rb_advance_iter(iter);
3824 return event;
3825
3826 case RINGBUF_TYPE_TIME_EXTEND:
3827 /* Internal data, OK to advance */
3828 rb_advance_iter(iter);
3829 goto again;
3830
3831 case RINGBUF_TYPE_TIME_STAMP:
3832 /* FIXME: not implemented */
3833 rb_advance_iter(iter);
3834 goto again;
3835
3836 case RINGBUF_TYPE_DATA:
3837 if (ts) {
3838 *ts = iter->read_stamp + event->time_delta;
3839 ring_buffer_normalize_time_stamp(buffer,
3840 cpu_buffer->cpu, ts);
3841 }
3842 return event;
3843
3844 default:
3845 BUG();
3846 }
3847
3848 return NULL;
3849 }
3850 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3851
3852 static inline int rb_ok_to_lock(void)
3853 {
3854 /*
3855 * If an NMI die dumps out the content of the ring buffer
3856 * do not grab locks. We also permanently disable the ring
3857 * buffer too. A one time deal is all you get from reading
3858 * the ring buffer from an NMI.
3859 */
3860 if (likely(!in_nmi()))
3861 return 1;
3862
3863 tracing_off_permanent();
3864 return 0;
3865 }
3866
3867 /**
3868 * ring_buffer_peek - peek at the next event to be read
3869 * @buffer: The ring buffer to read
3870 * @cpu: The cpu to peak at
3871 * @ts: The timestamp counter of this event.
3872 * @lost_events: a variable to store if events were lost (may be NULL)
3873 *
3874 * This will return the event that will be read next, but does
3875 * not consume the data.
3876 */
3877 struct ring_buffer_event *
3878 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3879 unsigned long *lost_events)
3880 {
3881 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3882 struct ring_buffer_event *event;
3883 unsigned long flags;
3884 int dolock;
3885
3886 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3887 return NULL;
3888
3889 dolock = rb_ok_to_lock();
3890 again:
3891 local_irq_save(flags);
3892 if (dolock)
3893 raw_spin_lock(&cpu_buffer->reader_lock);
3894 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3895 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896 rb_advance_reader(cpu_buffer);
3897 if (dolock)
3898 raw_spin_unlock(&cpu_buffer->reader_lock);
3899 local_irq_restore(flags);
3900
3901 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3902 goto again;
3903
3904 return event;
3905 }
3906
3907 /**
3908 * ring_buffer_iter_peek - peek at the next event to be read
3909 * @iter: The ring buffer iterator
3910 * @ts: The timestamp counter of this event.
3911 *
3912 * This will return the event that will be read next, but does
3913 * not increment the iterator.
3914 */
3915 struct ring_buffer_event *
3916 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3917 {
3918 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3919 struct ring_buffer_event *event;
3920 unsigned long flags;
3921
3922 again:
3923 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3924 event = rb_iter_peek(iter, ts);
3925 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3926
3927 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3928 goto again;
3929
3930 return event;
3931 }
3932
3933 /**
3934 * ring_buffer_consume - return an event and consume it
3935 * @buffer: The ring buffer to get the next event from
3936 * @cpu: the cpu to read the buffer from
3937 * @ts: a variable to store the timestamp (may be NULL)
3938 * @lost_events: a variable to store if events were lost (may be NULL)
3939 *
3940 * Returns the next event in the ring buffer, and that event is consumed.
3941 * Meaning, that sequential reads will keep returning a different event,
3942 * and eventually empty the ring buffer if the producer is slower.
3943 */
3944 struct ring_buffer_event *
3945 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3946 unsigned long *lost_events)
3947 {
3948 struct ring_buffer_per_cpu *cpu_buffer;
3949 struct ring_buffer_event *event = NULL;
3950 unsigned long flags;
3951 int dolock;
3952
3953 dolock = rb_ok_to_lock();
3954
3955 again:
3956 /* might be called in atomic */
3957 preempt_disable();
3958
3959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3960 goto out;
3961
3962 cpu_buffer = buffer->buffers[cpu];
3963 local_irq_save(flags);
3964 if (dolock)
3965 raw_spin_lock(&cpu_buffer->reader_lock);
3966
3967 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3968 if (event) {
3969 cpu_buffer->lost_events = 0;
3970 rb_advance_reader(cpu_buffer);
3971 }
3972
3973 if (dolock)
3974 raw_spin_unlock(&cpu_buffer->reader_lock);
3975 local_irq_restore(flags);
3976
3977 out:
3978 preempt_enable();
3979
3980 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3981 goto again;
3982
3983 return event;
3984 }
3985 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3986
3987 /**
3988 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3989 * @buffer: The ring buffer to read from
3990 * @cpu: The cpu buffer to iterate over
3991 *
3992 * This performs the initial preparations necessary to iterate
3993 * through the buffer. Memory is allocated, buffer recording
3994 * is disabled, and the iterator pointer is returned to the caller.
3995 *
3996 * Disabling buffer recordng prevents the reading from being
3997 * corrupted. This is not a consuming read, so a producer is not
3998 * expected.
3999 *
4000 * After a sequence of ring_buffer_read_prepare calls, the user is
4001 * expected to make at least one call to ring_buffer_prepare_sync.
4002 * Afterwards, ring_buffer_read_start is invoked to get things going
4003 * for real.
4004 *
4005 * This overall must be paired with ring_buffer_finish.
4006 */
4007 struct ring_buffer_iter *
4008 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4009 {
4010 struct ring_buffer_per_cpu *cpu_buffer;
4011 struct ring_buffer_iter *iter;
4012
4013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4014 return NULL;
4015
4016 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4017 if (!iter)
4018 return NULL;
4019
4020 cpu_buffer = buffer->buffers[cpu];
4021
4022 iter->cpu_buffer = cpu_buffer;
4023
4024 atomic_inc(&buffer->resize_disabled);
4025 atomic_inc(&cpu_buffer->record_disabled);
4026
4027 return iter;
4028 }
4029 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4030
4031 /**
4032 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4033 *
4034 * All previously invoked ring_buffer_read_prepare calls to prepare
4035 * iterators will be synchronized. Afterwards, read_buffer_read_start
4036 * calls on those iterators are allowed.
4037 */
4038 void
4039 ring_buffer_read_prepare_sync(void)
4040 {
4041 synchronize_sched();
4042 }
4043 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4044
4045 /**
4046 * ring_buffer_read_start - start a non consuming read of the buffer
4047 * @iter: The iterator returned by ring_buffer_read_prepare
4048 *
4049 * This finalizes the startup of an iteration through the buffer.
4050 * The iterator comes from a call to ring_buffer_read_prepare and
4051 * an intervening ring_buffer_read_prepare_sync must have been
4052 * performed.
4053 *
4054 * Must be paired with ring_buffer_finish.
4055 */
4056 void
4057 ring_buffer_read_start(struct ring_buffer_iter *iter)
4058 {
4059 struct ring_buffer_per_cpu *cpu_buffer;
4060 unsigned long flags;
4061
4062 if (!iter)
4063 return;
4064
4065 cpu_buffer = iter->cpu_buffer;
4066
4067 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4068 arch_spin_lock(&cpu_buffer->lock);
4069 rb_iter_reset(iter);
4070 arch_spin_unlock(&cpu_buffer->lock);
4071 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4072 }
4073 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4074
4075 /**
4076 * ring_buffer_finish - finish reading the iterator of the buffer
4077 * @iter: The iterator retrieved by ring_buffer_start
4078 *
4079 * This re-enables the recording to the buffer, and frees the
4080 * iterator.
4081 */
4082 void
4083 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4084 {
4085 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4086 unsigned long flags;
4087
4088 /*
4089 * Ring buffer is disabled from recording, here's a good place
4090 * to check the integrity of the ring buffer.
4091 * Must prevent readers from trying to read, as the check
4092 * clears the HEAD page and readers require it.
4093 */
4094 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4095 rb_check_pages(cpu_buffer);
4096 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4097
4098 atomic_dec(&cpu_buffer->record_disabled);
4099 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4100 kfree(iter);
4101 }
4102 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4103
4104 /**
4105 * ring_buffer_read - read the next item in the ring buffer by the iterator
4106 * @iter: The ring buffer iterator
4107 * @ts: The time stamp of the event read.
4108 *
4109 * This reads the next event in the ring buffer and increments the iterator.
4110 */
4111 struct ring_buffer_event *
4112 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4113 {
4114 struct ring_buffer_event *event;
4115 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4116 unsigned long flags;
4117
4118 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4119 again:
4120 event = rb_iter_peek(iter, ts);
4121 if (!event)
4122 goto out;
4123
4124 if (event->type_len == RINGBUF_TYPE_PADDING)
4125 goto again;
4126
4127 rb_advance_iter(iter);
4128 out:
4129 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4130
4131 return event;
4132 }
4133 EXPORT_SYMBOL_GPL(ring_buffer_read);
4134
4135 /**
4136 * ring_buffer_size - return the size of the ring buffer (in bytes)
4137 * @buffer: The ring buffer.
4138 */
4139 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4140 {
4141 /*
4142 * Earlier, this method returned
4143 * BUF_PAGE_SIZE * buffer->nr_pages
4144 * Since the nr_pages field is now removed, we have converted this to
4145 * return the per cpu buffer value.
4146 */
4147 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148 return 0;
4149
4150 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4151 }
4152 EXPORT_SYMBOL_GPL(ring_buffer_size);
4153
4154 static void
4155 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4156 {
4157 rb_head_page_deactivate(cpu_buffer);
4158
4159 cpu_buffer->head_page
4160 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4161 local_set(&cpu_buffer->head_page->write, 0);
4162 local_set(&cpu_buffer->head_page->entries, 0);
4163 local_set(&cpu_buffer->head_page->page->commit, 0);
4164
4165 cpu_buffer->head_page->read = 0;
4166
4167 cpu_buffer->tail_page = cpu_buffer->head_page;
4168 cpu_buffer->commit_page = cpu_buffer->head_page;
4169
4170 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4171 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4172 local_set(&cpu_buffer->reader_page->write, 0);
4173 local_set(&cpu_buffer->reader_page->entries, 0);
4174 local_set(&cpu_buffer->reader_page->page->commit, 0);
4175 cpu_buffer->reader_page->read = 0;
4176
4177 local_set(&cpu_buffer->entries_bytes, 0);
4178 local_set(&cpu_buffer->overrun, 0);
4179 local_set(&cpu_buffer->commit_overrun, 0);
4180 local_set(&cpu_buffer->dropped_events, 0);
4181 local_set(&cpu_buffer->entries, 0);
4182 local_set(&cpu_buffer->committing, 0);
4183 local_set(&cpu_buffer->commits, 0);
4184 cpu_buffer->read = 0;
4185 cpu_buffer->read_bytes = 0;
4186
4187 cpu_buffer->write_stamp = 0;
4188 cpu_buffer->read_stamp = 0;
4189
4190 cpu_buffer->lost_events = 0;
4191 cpu_buffer->last_overrun = 0;
4192
4193 rb_head_page_activate(cpu_buffer);
4194 }
4195
4196 /**
4197 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4198 * @buffer: The ring buffer to reset a per cpu buffer of
4199 * @cpu: The CPU buffer to be reset
4200 */
4201 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4202 {
4203 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4204 unsigned long flags;
4205
4206 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4207 return;
4208
4209 atomic_inc(&buffer->resize_disabled);
4210 atomic_inc(&cpu_buffer->record_disabled);
4211
4212 /* Make sure all commits have finished */
4213 synchronize_sched();
4214
4215 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4216
4217 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4218 goto out;
4219
4220 arch_spin_lock(&cpu_buffer->lock);
4221
4222 rb_reset_cpu(cpu_buffer);
4223
4224 arch_spin_unlock(&cpu_buffer->lock);
4225
4226 out:
4227 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4228
4229 atomic_dec(&cpu_buffer->record_disabled);
4230 atomic_dec(&buffer->resize_disabled);
4231 }
4232 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4233
4234 /**
4235 * ring_buffer_reset - reset a ring buffer
4236 * @buffer: The ring buffer to reset all cpu buffers
4237 */
4238 void ring_buffer_reset(struct ring_buffer *buffer)
4239 {
4240 int cpu;
4241
4242 for_each_buffer_cpu(buffer, cpu)
4243 ring_buffer_reset_cpu(buffer, cpu);
4244 }
4245 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4246
4247 /**
4248 * rind_buffer_empty - is the ring buffer empty?
4249 * @buffer: The ring buffer to test
4250 */
4251 int ring_buffer_empty(struct ring_buffer *buffer)
4252 {
4253 struct ring_buffer_per_cpu *cpu_buffer;
4254 unsigned long flags;
4255 int dolock;
4256 int cpu;
4257 int ret;
4258
4259 dolock = rb_ok_to_lock();
4260
4261 /* yes this is racy, but if you don't like the race, lock the buffer */
4262 for_each_buffer_cpu(buffer, cpu) {
4263 cpu_buffer = buffer->buffers[cpu];
4264 local_irq_save(flags);
4265 if (dolock)
4266 raw_spin_lock(&cpu_buffer->reader_lock);
4267 ret = rb_per_cpu_empty(cpu_buffer);
4268 if (dolock)
4269 raw_spin_unlock(&cpu_buffer->reader_lock);
4270 local_irq_restore(flags);
4271
4272 if (!ret)
4273 return 0;
4274 }
4275
4276 return 1;
4277 }
4278 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4279
4280 /**
4281 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4282 * @buffer: The ring buffer
4283 * @cpu: The CPU buffer to test
4284 */
4285 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4286 {
4287 struct ring_buffer_per_cpu *cpu_buffer;
4288 unsigned long flags;
4289 int dolock;
4290 int ret;
4291
4292 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4293 return 1;
4294
4295 dolock = rb_ok_to_lock();
4296
4297 cpu_buffer = buffer->buffers[cpu];
4298 local_irq_save(flags);
4299 if (dolock)
4300 raw_spin_lock(&cpu_buffer->reader_lock);
4301 ret = rb_per_cpu_empty(cpu_buffer);
4302 if (dolock)
4303 raw_spin_unlock(&cpu_buffer->reader_lock);
4304 local_irq_restore(flags);
4305
4306 return ret;
4307 }
4308 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4309
4310 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4311 /**
4312 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4313 * @buffer_a: One buffer to swap with
4314 * @buffer_b: The other buffer to swap with
4315 *
4316 * This function is useful for tracers that want to take a "snapshot"
4317 * of a CPU buffer and has another back up buffer lying around.
4318 * it is expected that the tracer handles the cpu buffer not being
4319 * used at the moment.
4320 */
4321 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4322 struct ring_buffer *buffer_b, int cpu)
4323 {
4324 struct ring_buffer_per_cpu *cpu_buffer_a;
4325 struct ring_buffer_per_cpu *cpu_buffer_b;
4326 int ret = -EINVAL;
4327
4328 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4329 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4330 goto out;
4331
4332 cpu_buffer_a = buffer_a->buffers[cpu];
4333 cpu_buffer_b = buffer_b->buffers[cpu];
4334
4335 /* At least make sure the two buffers are somewhat the same */
4336 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4337 goto out;
4338
4339 ret = -EAGAIN;
4340
4341 if (ring_buffer_flags != RB_BUFFERS_ON)
4342 goto out;
4343
4344 if (atomic_read(&buffer_a->record_disabled))
4345 goto out;
4346
4347 if (atomic_read(&buffer_b->record_disabled))
4348 goto out;
4349
4350 if (atomic_read(&cpu_buffer_a->record_disabled))
4351 goto out;
4352
4353 if (atomic_read(&cpu_buffer_b->record_disabled))
4354 goto out;
4355
4356 /*
4357 * We can't do a synchronize_sched here because this
4358 * function can be called in atomic context.
4359 * Normally this will be called from the same CPU as cpu.
4360 * If not it's up to the caller to protect this.
4361 */
4362 atomic_inc(&cpu_buffer_a->record_disabled);
4363 atomic_inc(&cpu_buffer_b->record_disabled);
4364
4365 ret = -EBUSY;
4366 if (local_read(&cpu_buffer_a->committing))
4367 goto out_dec;
4368 if (local_read(&cpu_buffer_b->committing))
4369 goto out_dec;
4370
4371 buffer_a->buffers[cpu] = cpu_buffer_b;
4372 buffer_b->buffers[cpu] = cpu_buffer_a;
4373
4374 cpu_buffer_b->buffer = buffer_a;
4375 cpu_buffer_a->buffer = buffer_b;
4376
4377 ret = 0;
4378
4379 out_dec:
4380 atomic_dec(&cpu_buffer_a->record_disabled);
4381 atomic_dec(&cpu_buffer_b->record_disabled);
4382 out:
4383 return ret;
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4386 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4387
4388 /**
4389 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4390 * @buffer: the buffer to allocate for.
4391 *
4392 * This function is used in conjunction with ring_buffer_read_page.
4393 * When reading a full page from the ring buffer, these functions
4394 * can be used to speed up the process. The calling function should
4395 * allocate a few pages first with this function. Then when it
4396 * needs to get pages from the ring buffer, it passes the result
4397 * of this function into ring_buffer_read_page, which will swap
4398 * the page that was allocated, with the read page of the buffer.
4399 *
4400 * Returns:
4401 * The page allocated, or NULL on error.
4402 */
4403 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4404 {
4405 struct buffer_data_page *bpage;
4406 struct page *page;
4407
4408 page = alloc_pages_node(cpu_to_node(cpu),
4409 GFP_KERNEL | __GFP_NORETRY, 0);
4410 if (!page)
4411 return NULL;
4412
4413 bpage = page_address(page);
4414
4415 rb_init_page(bpage);
4416
4417 return bpage;
4418 }
4419 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4420
4421 /**
4422 * ring_buffer_free_read_page - free an allocated read page
4423 * @buffer: the buffer the page was allocate for
4424 * @data: the page to free
4425 *
4426 * Free a page allocated from ring_buffer_alloc_read_page.
4427 */
4428 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4429 {
4430 free_page((unsigned long)data);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4433
4434 /**
4435 * ring_buffer_read_page - extract a page from the ring buffer
4436 * @buffer: buffer to extract from
4437 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4438 * @len: amount to extract
4439 * @cpu: the cpu of the buffer to extract
4440 * @full: should the extraction only happen when the page is full.
4441 *
4442 * This function will pull out a page from the ring buffer and consume it.
4443 * @data_page must be the address of the variable that was returned
4444 * from ring_buffer_alloc_read_page. This is because the page might be used
4445 * to swap with a page in the ring buffer.
4446 *
4447 * for example:
4448 * rpage = ring_buffer_alloc_read_page(buffer);
4449 * if (!rpage)
4450 * return error;
4451 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4452 * if (ret >= 0)
4453 * process_page(rpage, ret);
4454 *
4455 * When @full is set, the function will not return true unless
4456 * the writer is off the reader page.
4457 *
4458 * Note: it is up to the calling functions to handle sleeps and wakeups.
4459 * The ring buffer can be used anywhere in the kernel and can not
4460 * blindly call wake_up. The layer that uses the ring buffer must be
4461 * responsible for that.
4462 *
4463 * Returns:
4464 * >=0 if data has been transferred, returns the offset of consumed data.
4465 * <0 if no data has been transferred.
4466 */
4467 int ring_buffer_read_page(struct ring_buffer *buffer,
4468 void **data_page, size_t len, int cpu, int full)
4469 {
4470 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4471 struct ring_buffer_event *event;
4472 struct buffer_data_page *bpage;
4473 struct buffer_page *reader;
4474 unsigned long missed_events;
4475 unsigned long flags;
4476 unsigned int commit;
4477 unsigned int read;
4478 u64 save_timestamp;
4479 int ret = -1;
4480
4481 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4482 goto out;
4483
4484 /*
4485 * If len is not big enough to hold the page header, then
4486 * we can not copy anything.
4487 */
4488 if (len <= BUF_PAGE_HDR_SIZE)
4489 goto out;
4490
4491 len -= BUF_PAGE_HDR_SIZE;
4492
4493 if (!data_page)
4494 goto out;
4495
4496 bpage = *data_page;
4497 if (!bpage)
4498 goto out;
4499
4500 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4501
4502 reader = rb_get_reader_page(cpu_buffer);
4503 if (!reader)
4504 goto out_unlock;
4505
4506 event = rb_reader_event(cpu_buffer);
4507
4508 read = reader->read;
4509 commit = rb_page_commit(reader);
4510
4511 /* Check if any events were dropped */
4512 missed_events = cpu_buffer->lost_events;
4513
4514 /*
4515 * If this page has been partially read or
4516 * if len is not big enough to read the rest of the page or
4517 * a writer is still on the page, then
4518 * we must copy the data from the page to the buffer.
4519 * Otherwise, we can simply swap the page with the one passed in.
4520 */
4521 if (read || (len < (commit - read)) ||
4522 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4523 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4524 unsigned int rpos = read;
4525 unsigned int pos = 0;
4526 unsigned int size;
4527
4528 if (full)
4529 goto out_unlock;
4530
4531 if (len > (commit - read))
4532 len = (commit - read);
4533
4534 /* Always keep the time extend and data together */
4535 size = rb_event_ts_length(event);
4536
4537 if (len < size)
4538 goto out_unlock;
4539
4540 /* save the current timestamp, since the user will need it */
4541 save_timestamp = cpu_buffer->read_stamp;
4542
4543 /* Need to copy one event at a time */
4544 do {
4545 /* We need the size of one event, because
4546 * rb_advance_reader only advances by one event,
4547 * whereas rb_event_ts_length may include the size of
4548 * one or two events.
4549 * We have already ensured there's enough space if this
4550 * is a time extend. */
4551 size = rb_event_length(event);
4552 memcpy(bpage->data + pos, rpage->data + rpos, size);
4553
4554 len -= size;
4555
4556 rb_advance_reader(cpu_buffer);
4557 rpos = reader->read;
4558 pos += size;
4559
4560 if (rpos >= commit)
4561 break;
4562
4563 event = rb_reader_event(cpu_buffer);
4564 /* Always keep the time extend and data together */
4565 size = rb_event_ts_length(event);
4566 } while (len >= size);
4567
4568 /* update bpage */
4569 local_set(&bpage->commit, pos);
4570 bpage->time_stamp = save_timestamp;
4571
4572 /* we copied everything to the beginning */
4573 read = 0;
4574 } else {
4575 /* update the entry counter */
4576 cpu_buffer->read += rb_page_entries(reader);
4577 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4578
4579 /* swap the pages */
4580 rb_init_page(bpage);
4581 bpage = reader->page;
4582 reader->page = *data_page;
4583 local_set(&reader->write, 0);
4584 local_set(&reader->entries, 0);
4585 reader->read = 0;
4586 *data_page = bpage;
4587
4588 /*
4589 * Use the real_end for the data size,
4590 * This gives us a chance to store the lost events
4591 * on the page.
4592 */
4593 if (reader->real_end)
4594 local_set(&bpage->commit, reader->real_end);
4595 }
4596 ret = read;
4597
4598 cpu_buffer->lost_events = 0;
4599
4600 commit = local_read(&bpage->commit);
4601 /*
4602 * Set a flag in the commit field if we lost events
4603 */
4604 if (missed_events) {
4605 /* If there is room at the end of the page to save the
4606 * missed events, then record it there.
4607 */
4608 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4609 memcpy(&bpage->data[commit], &missed_events,
4610 sizeof(missed_events));
4611 local_add(RB_MISSED_STORED, &bpage->commit);
4612 commit += sizeof(missed_events);
4613 }
4614 local_add(RB_MISSED_EVENTS, &bpage->commit);
4615 }
4616
4617 /*
4618 * This page may be off to user land. Zero it out here.
4619 */
4620 if (commit < BUF_PAGE_SIZE)
4621 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4622
4623 out_unlock:
4624 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4625
4626 out:
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4630
4631 #ifdef CONFIG_HOTPLUG_CPU
4632 static int rb_cpu_notify(struct notifier_block *self,
4633 unsigned long action, void *hcpu)
4634 {
4635 struct ring_buffer *buffer =
4636 container_of(self, struct ring_buffer, cpu_notify);
4637 long cpu = (long)hcpu;
4638 int cpu_i, nr_pages_same;
4639 unsigned int nr_pages;
4640
4641 switch (action) {
4642 case CPU_UP_PREPARE:
4643 case CPU_UP_PREPARE_FROZEN:
4644 if (cpumask_test_cpu(cpu, buffer->cpumask))
4645 return NOTIFY_OK;
4646
4647 nr_pages = 0;
4648 nr_pages_same = 1;
4649 /* check if all cpu sizes are same */
4650 for_each_buffer_cpu(buffer, cpu_i) {
4651 /* fill in the size from first enabled cpu */
4652 if (nr_pages == 0)
4653 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4654 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4655 nr_pages_same = 0;
4656 break;
4657 }
4658 }
4659 /* allocate minimum pages, user can later expand it */
4660 if (!nr_pages_same)
4661 nr_pages = 2;
4662 buffer->buffers[cpu] =
4663 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4664 if (!buffer->buffers[cpu]) {
4665 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4666 cpu);
4667 return NOTIFY_OK;
4668 }
4669 smp_wmb();
4670 cpumask_set_cpu(cpu, buffer->cpumask);
4671 break;
4672 case CPU_DOWN_PREPARE:
4673 case CPU_DOWN_PREPARE_FROZEN:
4674 /*
4675 * Do nothing.
4676 * If we were to free the buffer, then the user would
4677 * lose any trace that was in the buffer.
4678 */
4679 break;
4680 default:
4681 break;
4682 }
4683 return NOTIFY_OK;
4684 }
4685 #endif
4686
4687 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4688 /*
4689 * This is a basic integrity check of the ring buffer.
4690 * Late in the boot cycle this test will run when configured in.
4691 * It will kick off a thread per CPU that will go into a loop
4692 * writing to the per cpu ring buffer various sizes of data.
4693 * Some of the data will be large items, some small.
4694 *
4695 * Another thread is created that goes into a spin, sending out
4696 * IPIs to the other CPUs to also write into the ring buffer.
4697 * this is to test the nesting ability of the buffer.
4698 *
4699 * Basic stats are recorded and reported. If something in the
4700 * ring buffer should happen that's not expected, a big warning
4701 * is displayed and all ring buffers are disabled.
4702 */
4703 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4704
4705 struct rb_test_data {
4706 struct ring_buffer *buffer;
4707 unsigned long events;
4708 unsigned long bytes_written;
4709 unsigned long bytes_alloc;
4710 unsigned long bytes_dropped;
4711 unsigned long events_nested;
4712 unsigned long bytes_written_nested;
4713 unsigned long bytes_alloc_nested;
4714 unsigned long bytes_dropped_nested;
4715 int min_size_nested;
4716 int max_size_nested;
4717 int max_size;
4718 int min_size;
4719 int cpu;
4720 int cnt;
4721 };
4722
4723 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4724
4725 /* 1 meg per cpu */
4726 #define RB_TEST_BUFFER_SIZE 1048576
4727
4728 static char rb_string[] __initdata =
4729 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4730 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4731 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4732
4733 static bool rb_test_started __initdata;
4734
4735 struct rb_item {
4736 int size;
4737 char str[];
4738 };
4739
4740 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4741 {
4742 struct ring_buffer_event *event;
4743 struct rb_item *item;
4744 bool started;
4745 int event_len;
4746 int size;
4747 int len;
4748 int cnt;
4749
4750 /* Have nested writes different that what is written */
4751 cnt = data->cnt + (nested ? 27 : 0);
4752
4753 /* Multiply cnt by ~e, to make some unique increment */
4754 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4755
4756 len = size + sizeof(struct rb_item);
4757
4758 started = rb_test_started;
4759 /* read rb_test_started before checking buffer enabled */
4760 smp_rmb();
4761
4762 event = ring_buffer_lock_reserve(data->buffer, len);
4763 if (!event) {
4764 /* Ignore dropped events before test starts. */
4765 if (started) {
4766 if (nested)
4767 data->bytes_dropped += len;
4768 else
4769 data->bytes_dropped_nested += len;
4770 }
4771 return len;
4772 }
4773
4774 event_len = ring_buffer_event_length(event);
4775
4776 if (RB_WARN_ON(data->buffer, event_len < len))
4777 goto out;
4778
4779 item = ring_buffer_event_data(event);
4780 item->size = size;
4781 memcpy(item->str, rb_string, size);
4782
4783 if (nested) {
4784 data->bytes_alloc_nested += event_len;
4785 data->bytes_written_nested += len;
4786 data->events_nested++;
4787 if (!data->min_size_nested || len < data->min_size_nested)
4788 data->min_size_nested = len;
4789 if (len > data->max_size_nested)
4790 data->max_size_nested = len;
4791 } else {
4792 data->bytes_alloc += event_len;
4793 data->bytes_written += len;
4794 data->events++;
4795 if (!data->min_size || len < data->min_size)
4796 data->max_size = len;
4797 if (len > data->max_size)
4798 data->max_size = len;
4799 }
4800
4801 out:
4802 ring_buffer_unlock_commit(data->buffer, event);
4803
4804 return 0;
4805 }
4806
4807 static __init int rb_test(void *arg)
4808 {
4809 struct rb_test_data *data = arg;
4810
4811 while (!kthread_should_stop()) {
4812 rb_write_something(data, false);
4813 data->cnt++;
4814
4815 set_current_state(TASK_INTERRUPTIBLE);
4816 /* Now sleep between a min of 100-300us and a max of 1ms */
4817 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4818 }
4819
4820 return 0;
4821 }
4822
4823 static __init void rb_ipi(void *ignore)
4824 {
4825 struct rb_test_data *data;
4826 int cpu = smp_processor_id();
4827
4828 data = &rb_data[cpu];
4829 rb_write_something(data, true);
4830 }
4831
4832 static __init int rb_hammer_test(void *arg)
4833 {
4834 while (!kthread_should_stop()) {
4835
4836 /* Send an IPI to all cpus to write data! */
4837 smp_call_function(rb_ipi, NULL, 1);
4838 /* No sleep, but for non preempt, let others run */
4839 schedule();
4840 }
4841
4842 return 0;
4843 }
4844
4845 static __init int test_ringbuffer(void)
4846 {
4847 struct task_struct *rb_hammer;
4848 struct ring_buffer *buffer;
4849 int cpu;
4850 int ret = 0;
4851
4852 pr_info("Running ring buffer tests...\n");
4853
4854 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4855 if (WARN_ON(!buffer))
4856 return 0;
4857
4858 /* Disable buffer so that threads can't write to it yet */
4859 ring_buffer_record_off(buffer);
4860
4861 for_each_online_cpu(cpu) {
4862 rb_data[cpu].buffer = buffer;
4863 rb_data[cpu].cpu = cpu;
4864 rb_data[cpu].cnt = cpu;
4865 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4866 "rbtester/%d", cpu);
4867 if (WARN_ON(!rb_threads[cpu])) {
4868 pr_cont("FAILED\n");
4869 ret = -1;
4870 goto out_free;
4871 }
4872
4873 kthread_bind(rb_threads[cpu], cpu);
4874 wake_up_process(rb_threads[cpu]);
4875 }
4876
4877 /* Now create the rb hammer! */
4878 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4879 if (WARN_ON(!rb_hammer)) {
4880 pr_cont("FAILED\n");
4881 ret = -1;
4882 goto out_free;
4883 }
4884
4885 ring_buffer_record_on(buffer);
4886 /*
4887 * Show buffer is enabled before setting rb_test_started.
4888 * Yes there's a small race window where events could be
4889 * dropped and the thread wont catch it. But when a ring
4890 * buffer gets enabled, there will always be some kind of
4891 * delay before other CPUs see it. Thus, we don't care about
4892 * those dropped events. We care about events dropped after
4893 * the threads see that the buffer is active.
4894 */
4895 smp_wmb();
4896 rb_test_started = true;
4897
4898 set_current_state(TASK_INTERRUPTIBLE);
4899 /* Just run for 10 seconds */;
4900 schedule_timeout(10 * HZ);
4901
4902 kthread_stop(rb_hammer);
4903
4904 out_free:
4905 for_each_online_cpu(cpu) {
4906 if (!rb_threads[cpu])
4907 break;
4908 kthread_stop(rb_threads[cpu]);
4909 }
4910 if (ret) {
4911 ring_buffer_free(buffer);
4912 return ret;
4913 }
4914
4915 /* Report! */
4916 pr_info("finished\n");
4917 for_each_online_cpu(cpu) {
4918 struct ring_buffer_event *event;
4919 struct rb_test_data *data = &rb_data[cpu];
4920 struct rb_item *item;
4921 unsigned long total_events;
4922 unsigned long total_dropped;
4923 unsigned long total_written;
4924 unsigned long total_alloc;
4925 unsigned long total_read = 0;
4926 unsigned long total_size = 0;
4927 unsigned long total_len = 0;
4928 unsigned long total_lost = 0;
4929 unsigned long lost;
4930 int big_event_size;
4931 int small_event_size;
4932
4933 ret = -1;
4934
4935 total_events = data->events + data->events_nested;
4936 total_written = data->bytes_written + data->bytes_written_nested;
4937 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4938 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4939
4940 big_event_size = data->max_size + data->max_size_nested;
4941 small_event_size = data->min_size + data->min_size_nested;
4942
4943 pr_info("CPU %d:\n", cpu);
4944 pr_info(" events: %ld\n", total_events);
4945 pr_info(" dropped bytes: %ld\n", total_dropped);
4946 pr_info(" alloced bytes: %ld\n", total_alloc);
4947 pr_info(" written bytes: %ld\n", total_written);
4948 pr_info(" biggest event: %d\n", big_event_size);
4949 pr_info(" smallest event: %d\n", small_event_size);
4950
4951 if (RB_WARN_ON(buffer, total_dropped))
4952 break;
4953
4954 ret = 0;
4955
4956 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4957 total_lost += lost;
4958 item = ring_buffer_event_data(event);
4959 total_len += ring_buffer_event_length(event);
4960 total_size += item->size + sizeof(struct rb_item);
4961 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4962 pr_info("FAILED!\n");
4963 pr_info("buffer had: %.*s\n", item->size, item->str);
4964 pr_info("expected: %.*s\n", item->size, rb_string);
4965 RB_WARN_ON(buffer, 1);
4966 ret = -1;
4967 break;
4968 }
4969 total_read++;
4970 }
4971 if (ret)
4972 break;
4973
4974 ret = -1;
4975
4976 pr_info(" read events: %ld\n", total_read);
4977 pr_info(" lost events: %ld\n", total_lost);
4978 pr_info(" total events: %ld\n", total_lost + total_read);
4979 pr_info(" recorded len bytes: %ld\n", total_len);
4980 pr_info(" recorded size bytes: %ld\n", total_size);
4981 if (total_lost)
4982 pr_info(" With dropped events, record len and size may not match\n"
4983 " alloced and written from above\n");
4984 if (!total_lost) {
4985 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4986 total_size != total_written))
4987 break;
4988 }
4989 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4990 break;
4991
4992 ret = 0;
4993 }
4994 if (!ret)
4995 pr_info("Ring buffer PASSED!\n");
4996
4997 ring_buffer_free(buffer);
4998 return 0;
4999 }
5000
5001 late_initcall(test_ringbuffer);
5002 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */