sched: cleanup: refactor normalize_rt_tasks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
f5ff8422 64#include <linux/pagemap.h>
1da177e4 65
5517d86b 66#include <asm/tlb.h>
1da177e4 67
b035b6de
AD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73unsigned long long __attribute__((weak)) sched_clock(void)
74{
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76}
77
3a5e4dc1
AK
78#ifdef CONFIG_SMP
79#define is_migration_thread(p, rq) ((p) == (rq)->migration_thread)
80#else
81#define is_migration_thread(p, rq) 0
82#endif
83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
103 * Some helpers for converting nanosecond timing to jiffy resolution
104 */
a4ec24b4 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
106#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
142 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
29f59db3
SV
160#ifdef CONFIG_FAIR_GROUP_SCHED
161
29f59db3
SV
162struct cfs_rq;
163
164/* task group related information */
4cf86d77 165struct task_group {
29f59db3
SV
166 /* schedulable entities of this group on each cpu */
167 struct sched_entity **se;
168 /* runqueue "owned" by this group on each cpu */
169 struct cfs_rq **cfs_rq;
170 unsigned long shares;
5cb350ba
DG
171 /* spinlock to serialize modification to shares */
172 spinlock_t lock;
29f59db3
SV
173};
174
175/* Default task group's sched entity on each cpu */
176static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
177/* Default task group's cfs_rq on each cpu */
178static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
179
9b5b7751
SV
180static struct sched_entity *init_sched_entity_p[NR_CPUS];
181static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
182
183/* Default task group.
3a252015 184 * Every task in system belong to this group at bootup.
29f59db3 185 */
4cf86d77 186struct task_group init_task_group = {
3a252015
IM
187 .se = init_sched_entity_p,
188 .cfs_rq = init_cfs_rq_p,
189};
9b5b7751 190
24e377a8 191#ifdef CONFIG_FAIR_USER_SCHED
3a252015 192# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 193#else
3a252015 194# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
195#endif
196
4cf86d77 197static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
198
199/* return group to which a task belongs */
4cf86d77 200static inline struct task_group *task_group(struct task_struct *p)
29f59db3 201{
4cf86d77 202 struct task_group *tg;
9b5b7751 203
24e377a8
SV
204#ifdef CONFIG_FAIR_USER_SCHED
205 tg = p->user->tg;
206#else
4cf86d77 207 tg = &init_task_group;
24e377a8 208#endif
9b5b7751
SV
209
210 return tg;
29f59db3
SV
211}
212
213/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
214static inline void set_task_cfs_rq(struct task_struct *p)
215{
4cf86d77
IM
216 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
217 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
218}
219
220#else
221
222static inline void set_task_cfs_rq(struct task_struct *p) { }
223
224#endif /* CONFIG_FAIR_GROUP_SCHED */
225
6aa645ea
IM
226/* CFS-related fields in a runqueue */
227struct cfs_rq {
228 struct load_weight load;
229 unsigned long nr_running;
230
6aa645ea 231 u64 exec_clock;
e9acbff6 232 u64 min_vruntime;
6aa645ea
IM
233
234 struct rb_root tasks_timeline;
235 struct rb_node *rb_leftmost;
236 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
237 /* 'curr' points to currently running entity on this cfs_rq.
238 * It is set to NULL otherwise (i.e when none are currently running).
239 */
240 struct sched_entity *curr;
ddc97297
PZ
241
242 unsigned long nr_spread_over;
243
62160e3f 244#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
245 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
246
247 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
248 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
249 * (like users, containers etc.)
250 *
251 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
252 * list is used during load balance.
253 */
254 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 255 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 256 struct rcu_head rcu;
6aa645ea
IM
257#endif
258};
1da177e4 259
6aa645ea
IM
260/* Real-Time classes' related field in a runqueue: */
261struct rt_rq {
262 struct rt_prio_array active;
263 int rt_load_balance_idx;
264 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
265};
266
1da177e4
LT
267/*
268 * This is the main, per-CPU runqueue data structure.
269 *
270 * Locking rule: those places that want to lock multiple runqueues
271 * (such as the load balancing or the thread migration code), lock
272 * acquire operations must be ordered by ascending &runqueue.
273 */
70b97a7f 274struct rq {
6aa645ea 275 spinlock_t lock; /* runqueue lock */
1da177e4
LT
276
277 /*
278 * nr_running and cpu_load should be in the same cacheline because
279 * remote CPUs use both these fields when doing load calculation.
280 */
281 unsigned long nr_running;
6aa645ea
IM
282 #define CPU_LOAD_IDX_MAX 5
283 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 284 unsigned char idle_at_tick;
46cb4b7c
SS
285#ifdef CONFIG_NO_HZ
286 unsigned char in_nohz_recently;
287#endif
495eca49 288 struct load_weight load; /* capture load from *all* tasks on this cpu */
6aa645ea
IM
289 unsigned long nr_load_updates;
290 u64 nr_switches;
291
292 struct cfs_rq cfs;
293#ifdef CONFIG_FAIR_GROUP_SCHED
294 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 295#endif
6aa645ea 296 struct rt_rq rt;
1da177e4
LT
297
298 /*
299 * This is part of a global counter where only the total sum
300 * over all CPUs matters. A task can increase this counter on
301 * one CPU and if it got migrated afterwards it may decrease
302 * it on another CPU. Always updated under the runqueue lock:
303 */
304 unsigned long nr_uninterruptible;
305
36c8b586 306 struct task_struct *curr, *idle;
c9819f45 307 unsigned long next_balance;
1da177e4 308 struct mm_struct *prev_mm;
6aa645ea 309
6aa645ea
IM
310 u64 clock, prev_clock_raw;
311 s64 clock_max_delta;
312
313 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
314 u64 idle_clock;
315 unsigned int clock_deep_idle_events;
529c7726 316 u64 tick_timestamp;
6aa645ea 317
1da177e4
LT
318 atomic_t nr_iowait;
319
320#ifdef CONFIG_SMP
321 struct sched_domain *sd;
322
323 /* For active balancing */
324 int active_balance;
325 int push_cpu;
0a2966b4 326 int cpu; /* cpu of this runqueue */
1da177e4 327
36c8b586 328 struct task_struct *migration_thread;
1da177e4
LT
329 struct list_head migration_queue;
330#endif
331
332#ifdef CONFIG_SCHEDSTATS
333 /* latency stats */
334 struct sched_info rq_sched_info;
335
336 /* sys_sched_yield() stats */
337 unsigned long yld_exp_empty;
338 unsigned long yld_act_empty;
339 unsigned long yld_both_empty;
2d72376b 340 unsigned long yld_count;
1da177e4
LT
341
342 /* schedule() stats */
343 unsigned long sched_switch;
2d72376b 344 unsigned long sched_count;
1da177e4
LT
345 unsigned long sched_goidle;
346
347 /* try_to_wake_up() stats */
2d72376b 348 unsigned long ttwu_count;
1da177e4 349 unsigned long ttwu_local;
b8efb561
IM
350
351 /* BKL stats */
2d72376b 352 unsigned long bkl_count;
1da177e4 353#endif
fcb99371 354 struct lock_class_key rq_lock_key;
1da177e4
LT
355};
356
f34e3b61 357static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 358static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 359
dd41f596
IM
360static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
361{
362 rq->curr->sched_class->check_preempt_curr(rq, p);
363}
364
0a2966b4
CL
365static inline int cpu_of(struct rq *rq)
366{
367#ifdef CONFIG_SMP
368 return rq->cpu;
369#else
370 return 0;
371#endif
372}
373
20d315d4 374/*
b04a0f4c
IM
375 * Update the per-runqueue clock, as finegrained as the platform can give
376 * us, but without assuming monotonicity, etc.:
20d315d4 377 */
b04a0f4c 378static void __update_rq_clock(struct rq *rq)
20d315d4
IM
379{
380 u64 prev_raw = rq->prev_clock_raw;
381 u64 now = sched_clock();
382 s64 delta = now - prev_raw;
383 u64 clock = rq->clock;
384
b04a0f4c
IM
385#ifdef CONFIG_SCHED_DEBUG
386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387#endif
20d315d4
IM
388 /*
389 * Protect against sched_clock() occasionally going backwards:
390 */
391 if (unlikely(delta < 0)) {
392 clock++;
393 rq->clock_warps++;
394 } else {
395 /*
396 * Catch too large forward jumps too:
397 */
529c7726
IM
398 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
399 if (clock < rq->tick_timestamp + TICK_NSEC)
400 clock = rq->tick_timestamp + TICK_NSEC;
401 else
402 clock++;
20d315d4
IM
403 rq->clock_overflows++;
404 } else {
405 if (unlikely(delta > rq->clock_max_delta))
406 rq->clock_max_delta = delta;
407 clock += delta;
408 }
409 }
410
411 rq->prev_clock_raw = now;
412 rq->clock = clock;
b04a0f4c 413}
20d315d4 414
b04a0f4c
IM
415static void update_rq_clock(struct rq *rq)
416{
417 if (likely(smp_processor_id() == cpu_of(rq)))
418 __update_rq_clock(rq);
20d315d4
IM
419}
420
674311d5
NP
421/*
422 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 423 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
424 *
425 * The domain tree of any CPU may only be accessed from within
426 * preempt-disabled sections.
427 */
48f24c4d
IM
428#define for_each_domain(cpu, __sd) \
429 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
430
431#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
432#define this_rq() (&__get_cpu_var(runqueues))
433#define task_rq(p) cpu_rq(task_cpu(p))
434#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
435
bf5c91ba
IM
436/*
437 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
438 */
439#ifdef CONFIG_SCHED_DEBUG
440# define const_debug __read_mostly
441#else
442# define const_debug static const
443#endif
444
445/*
446 * Debugging: various feature bits
447 */
448enum {
bbdba7c0
IM
449 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
450 SCHED_FEAT_START_DEBIT = 2,
06877c33 451 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 452 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 453 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 454 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
455};
456
457const_debug unsigned int sysctl_sched_features =
bf5c91ba 458 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
94dfb5e7 459 SCHED_FEAT_START_DEBIT *1 |
06877c33 460 SCHED_FEAT_TREE_AVG *0 |
ce6c1311 461 SCHED_FEAT_APPROX_AVG *0 |
95938a35
MG
462 SCHED_FEAT_WAKEUP_PREEMPT *1 |
463 SCHED_FEAT_PREEMPT_RESTRICT *1;
bf5c91ba
IM
464
465#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
466
e436d800
IM
467/*
468 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
469 * clock constructed from sched_clock():
470 */
471unsigned long long cpu_clock(int cpu)
472{
e436d800
IM
473 unsigned long long now;
474 unsigned long flags;
b04a0f4c 475 struct rq *rq;
e436d800 476
2cd4d0ea 477 local_irq_save(flags);
b04a0f4c
IM
478 rq = cpu_rq(cpu);
479 update_rq_clock(rq);
480 now = rq->clock;
2cd4d0ea 481 local_irq_restore(flags);
e436d800
IM
482
483 return now;
484}
a58f6f25 485EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 486
1da177e4 487#ifndef prepare_arch_switch
4866cde0
NP
488# define prepare_arch_switch(next) do { } while (0)
489#endif
490#ifndef finish_arch_switch
491# define finish_arch_switch(prev) do { } while (0)
492#endif
493
494#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 495static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
496{
497 return rq->curr == p;
498}
499
70b97a7f 500static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
501{
502}
503
70b97a7f 504static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 505{
da04c035
IM
506#ifdef CONFIG_DEBUG_SPINLOCK
507 /* this is a valid case when another task releases the spinlock */
508 rq->lock.owner = current;
509#endif
8a25d5de
IM
510 /*
511 * If we are tracking spinlock dependencies then we have to
512 * fix up the runqueue lock - which gets 'carried over' from
513 * prev into current:
514 */
515 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
516
4866cde0
NP
517 spin_unlock_irq(&rq->lock);
518}
519
520#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 521static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
522{
523#ifdef CONFIG_SMP
524 return p->oncpu;
525#else
526 return rq->curr == p;
527#endif
528}
529
70b97a7f 530static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
531{
532#ifdef CONFIG_SMP
533 /*
534 * We can optimise this out completely for !SMP, because the
535 * SMP rebalancing from interrupt is the only thing that cares
536 * here.
537 */
538 next->oncpu = 1;
539#endif
540#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
541 spin_unlock_irq(&rq->lock);
542#else
543 spin_unlock(&rq->lock);
544#endif
545}
546
70b97a7f 547static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
548{
549#ifdef CONFIG_SMP
550 /*
551 * After ->oncpu is cleared, the task can be moved to a different CPU.
552 * We must ensure this doesn't happen until the switch is completely
553 * finished.
554 */
555 smp_wmb();
556 prev->oncpu = 0;
557#endif
558#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
559 local_irq_enable();
1da177e4 560#endif
4866cde0
NP
561}
562#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 563
b29739f9
IM
564/*
565 * __task_rq_lock - lock the runqueue a given task resides on.
566 * Must be called interrupts disabled.
567 */
70b97a7f 568static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
569 __acquires(rq->lock)
570{
3a5c359a
AK
571 for (;;) {
572 struct rq *rq = task_rq(p);
573 spin_lock(&rq->lock);
574 if (likely(rq == task_rq(p)))
575 return rq;
b29739f9 576 spin_unlock(&rq->lock);
b29739f9 577 }
b29739f9
IM
578}
579
1da177e4
LT
580/*
581 * task_rq_lock - lock the runqueue a given task resides on and disable
582 * interrupts. Note the ordering: we can safely lookup the task_rq without
583 * explicitly disabling preemption.
584 */
70b97a7f 585static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
586 __acquires(rq->lock)
587{
70b97a7f 588 struct rq *rq;
1da177e4 589
3a5c359a
AK
590 for (;;) {
591 local_irq_save(*flags);
592 rq = task_rq(p);
593 spin_lock(&rq->lock);
594 if (likely(rq == task_rq(p)))
595 return rq;
1da177e4 596 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 597 }
1da177e4
LT
598}
599
a9957449 600static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
601 __releases(rq->lock)
602{
603 spin_unlock(&rq->lock);
604}
605
70b97a7f 606static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
607 __releases(rq->lock)
608{
609 spin_unlock_irqrestore(&rq->lock, *flags);
610}
611
1da177e4 612/*
cc2a73b5 613 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 614 */
a9957449 615static struct rq *this_rq_lock(void)
1da177e4
LT
616 __acquires(rq->lock)
617{
70b97a7f 618 struct rq *rq;
1da177e4
LT
619
620 local_irq_disable();
621 rq = this_rq();
622 spin_lock(&rq->lock);
623
624 return rq;
625}
626
1b9f19c2 627/*
2aa44d05 628 * We are going deep-idle (irqs are disabled):
1b9f19c2 629 */
2aa44d05 630void sched_clock_idle_sleep_event(void)
1b9f19c2 631{
2aa44d05
IM
632 struct rq *rq = cpu_rq(smp_processor_id());
633
634 spin_lock(&rq->lock);
635 __update_rq_clock(rq);
636 spin_unlock(&rq->lock);
637 rq->clock_deep_idle_events++;
638}
639EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
640
641/*
642 * We just idled delta nanoseconds (called with irqs disabled):
643 */
644void sched_clock_idle_wakeup_event(u64 delta_ns)
645{
646 struct rq *rq = cpu_rq(smp_processor_id());
647 u64 now = sched_clock();
1b9f19c2 648
2aa44d05
IM
649 rq->idle_clock += delta_ns;
650 /*
651 * Override the previous timestamp and ignore all
652 * sched_clock() deltas that occured while we idled,
653 * and use the PM-provided delta_ns to advance the
654 * rq clock:
655 */
656 spin_lock(&rq->lock);
657 rq->prev_clock_raw = now;
658 rq->clock += delta_ns;
659 spin_unlock(&rq->lock);
1b9f19c2 660}
2aa44d05 661EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 662
c24d20db
IM
663/*
664 * resched_task - mark a task 'to be rescheduled now'.
665 *
666 * On UP this means the setting of the need_resched flag, on SMP it
667 * might also involve a cross-CPU call to trigger the scheduler on
668 * the target CPU.
669 */
670#ifdef CONFIG_SMP
671
672#ifndef tsk_is_polling
673#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
674#endif
675
676static void resched_task(struct task_struct *p)
677{
678 int cpu;
679
680 assert_spin_locked(&task_rq(p)->lock);
681
682 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
683 return;
684
685 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
686
687 cpu = task_cpu(p);
688 if (cpu == smp_processor_id())
689 return;
690
691 /* NEED_RESCHED must be visible before we test polling */
692 smp_mb();
693 if (!tsk_is_polling(p))
694 smp_send_reschedule(cpu);
695}
696
697static void resched_cpu(int cpu)
698{
699 struct rq *rq = cpu_rq(cpu);
700 unsigned long flags;
701
702 if (!spin_trylock_irqsave(&rq->lock, flags))
703 return;
704 resched_task(cpu_curr(cpu));
705 spin_unlock_irqrestore(&rq->lock, flags);
706}
707#else
708static inline void resched_task(struct task_struct *p)
709{
710 assert_spin_locked(&task_rq(p)->lock);
711 set_tsk_need_resched(p);
712}
713#endif
714
45bf76df
IM
715#if BITS_PER_LONG == 32
716# define WMULT_CONST (~0UL)
717#else
718# define WMULT_CONST (1UL << 32)
719#endif
720
721#define WMULT_SHIFT 32
722
194081eb
IM
723/*
724 * Shift right and round:
725 */
cf2ab469 726#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 727
cb1c4fc9 728static unsigned long
45bf76df
IM
729calc_delta_mine(unsigned long delta_exec, unsigned long weight,
730 struct load_weight *lw)
731{
732 u64 tmp;
733
734 if (unlikely(!lw->inv_weight))
194081eb 735 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
736
737 tmp = (u64)delta_exec * weight;
738 /*
739 * Check whether we'd overflow the 64-bit multiplication:
740 */
194081eb 741 if (unlikely(tmp > WMULT_CONST))
cf2ab469 742 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
743 WMULT_SHIFT/2);
744 else
cf2ab469 745 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 746
ecf691da 747 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
748}
749
750static inline unsigned long
751calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
752{
753 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
754}
755
1091985b 756static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
757{
758 lw->weight += inc;
45bf76df
IM
759}
760
1091985b 761static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
762{
763 lw->weight -= dec;
45bf76df
IM
764}
765
2dd73a4f
PW
766/*
767 * To aid in avoiding the subversion of "niceness" due to uneven distribution
768 * of tasks with abnormal "nice" values across CPUs the contribution that
769 * each task makes to its run queue's load is weighted according to its
770 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
771 * scaled version of the new time slice allocation that they receive on time
772 * slice expiry etc.
773 */
774
dd41f596
IM
775#define WEIGHT_IDLEPRIO 2
776#define WMULT_IDLEPRIO (1 << 31)
777
778/*
779 * Nice levels are multiplicative, with a gentle 10% change for every
780 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
781 * nice 1, it will get ~10% less CPU time than another CPU-bound task
782 * that remained on nice 0.
783 *
784 * The "10% effect" is relative and cumulative: from _any_ nice level,
785 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
786 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
787 * If a task goes up by ~10% and another task goes down by ~10% then
788 * the relative distance between them is ~25%.)
dd41f596
IM
789 */
790static const int prio_to_weight[40] = {
254753dc
IM
791 /* -20 */ 88761, 71755, 56483, 46273, 36291,
792 /* -15 */ 29154, 23254, 18705, 14949, 11916,
793 /* -10 */ 9548, 7620, 6100, 4904, 3906,
794 /* -5 */ 3121, 2501, 1991, 1586, 1277,
795 /* 0 */ 1024, 820, 655, 526, 423,
796 /* 5 */ 335, 272, 215, 172, 137,
797 /* 10 */ 110, 87, 70, 56, 45,
798 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
799};
800
5714d2de
IM
801/*
802 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
803 *
804 * In cases where the weight does not change often, we can use the
805 * precalculated inverse to speed up arithmetics by turning divisions
806 * into multiplications:
807 */
dd41f596 808static const u32 prio_to_wmult[40] = {
254753dc
IM
809 /* -20 */ 48388, 59856, 76040, 92818, 118348,
810 /* -15 */ 147320, 184698, 229616, 287308, 360437,
811 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
812 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
813 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
814 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
815 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
816 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 817};
2dd73a4f 818
dd41f596
IM
819static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
820
821/*
822 * runqueue iterator, to support SMP load-balancing between different
823 * scheduling classes, without having to expose their internal data
824 * structures to the load-balancing proper:
825 */
826struct rq_iterator {
827 void *arg;
828 struct task_struct *(*start)(void *);
829 struct task_struct *(*next)(void *);
830};
831
832static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
833 unsigned long max_nr_move, unsigned long max_load_move,
834 struct sched_domain *sd, enum cpu_idle_type idle,
835 int *all_pinned, unsigned long *load_moved,
a4ac01c3 836 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
837
838#include "sched_stats.h"
dd41f596 839#include "sched_idletask.c"
5522d5d5
IM
840#include "sched_fair.c"
841#include "sched_rt.c"
dd41f596
IM
842#ifdef CONFIG_SCHED_DEBUG
843# include "sched_debug.c"
844#endif
845
846#define sched_class_highest (&rt_sched_class)
847
9c217245
IM
848/*
849 * Update delta_exec, delta_fair fields for rq.
850 *
851 * delta_fair clock advances at a rate inversely proportional to
495eca49 852 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
853 * delta_exec advances at the same rate as wall-clock (provided
854 * cpu is not idle).
855 *
856 * delta_exec / delta_fair is a measure of the (smoothened) load on this
857 * runqueue over any given interval. This (smoothened) load is used
858 * during load balance.
859 *
495eca49 860 * This function is called /before/ updating rq->load
9c217245
IM
861 * and when switching tasks.
862 */
29b4b623 863static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 864{
495eca49 865 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
866}
867
79b5dddf 868static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 869{
495eca49 870 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
871}
872
e5fa2237 873static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
874{
875 rq->nr_running++;
29b4b623 876 inc_load(rq, p);
9c217245
IM
877}
878
db53181e 879static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
880{
881 rq->nr_running--;
79b5dddf 882 dec_load(rq, p);
9c217245
IM
883}
884
45bf76df
IM
885static void set_load_weight(struct task_struct *p)
886{
887 if (task_has_rt_policy(p)) {
dd41f596
IM
888 p->se.load.weight = prio_to_weight[0] * 2;
889 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
890 return;
891 }
45bf76df 892
dd41f596
IM
893 /*
894 * SCHED_IDLE tasks get minimal weight:
895 */
896 if (p->policy == SCHED_IDLE) {
897 p->se.load.weight = WEIGHT_IDLEPRIO;
898 p->se.load.inv_weight = WMULT_IDLEPRIO;
899 return;
900 }
71f8bd46 901
dd41f596
IM
902 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
903 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
904}
905
8159f87e 906static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 907{
dd41f596 908 sched_info_queued(p);
fd390f6a 909 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 910 p->se.on_rq = 1;
71f8bd46
IM
911}
912
69be72c1 913static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 914{
f02231e5 915 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 916 p->se.on_rq = 0;
71f8bd46
IM
917}
918
14531189 919/*
dd41f596 920 * __normal_prio - return the priority that is based on the static prio
14531189 921 */
14531189
IM
922static inline int __normal_prio(struct task_struct *p)
923{
dd41f596 924 return p->static_prio;
14531189
IM
925}
926
b29739f9
IM
927/*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
36c8b586 934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
935{
936 int prio;
937
e05606d3 938 if (task_has_rt_policy(p))
b29739f9
IM
939 prio = MAX_RT_PRIO-1 - p->rt_priority;
940 else
941 prio = __normal_prio(p);
942 return prio;
943}
944
945/*
946 * Calculate the current priority, i.e. the priority
947 * taken into account by the scheduler. This value might
948 * be boosted by RT tasks, or might be boosted by
949 * interactivity modifiers. Will be RT if the task got
950 * RT-boosted. If not then it returns p->normal_prio.
951 */
36c8b586 952static int effective_prio(struct task_struct *p)
b29739f9
IM
953{
954 p->normal_prio = normal_prio(p);
955 /*
956 * If we are RT tasks or we were boosted to RT priority,
957 * keep the priority unchanged. Otherwise, update priority
958 * to the normal priority:
959 */
960 if (!rt_prio(p->prio))
961 return p->normal_prio;
962 return p->prio;
963}
964
1da177e4 965/*
dd41f596 966 * activate_task - move a task to the runqueue.
1da177e4 967 */
dd41f596 968static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 969{
dd41f596
IM
970 if (p->state == TASK_UNINTERRUPTIBLE)
971 rq->nr_uninterruptible--;
1da177e4 972
8159f87e 973 enqueue_task(rq, p, wakeup);
e5fa2237 974 inc_nr_running(p, rq);
1da177e4
LT
975}
976
1da177e4
LT
977/*
978 * deactivate_task - remove a task from the runqueue.
979 */
2e1cb74a 980static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 981{
dd41f596
IM
982 if (p->state == TASK_UNINTERRUPTIBLE)
983 rq->nr_uninterruptible++;
984
69be72c1 985 dequeue_task(rq, p, sleep);
db53181e 986 dec_nr_running(p, rq);
1da177e4
LT
987}
988
1da177e4
LT
989/**
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
992 */
36c8b586 993inline int task_curr(const struct task_struct *p)
1da177e4
LT
994{
995 return cpu_curr(task_cpu(p)) == p;
996}
997
2dd73a4f
PW
998/* Used instead of source_load when we know the type == 0 */
999unsigned long weighted_cpuload(const int cpu)
1000{
495eca49 1001 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1002}
1003
1004static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1005{
1006#ifdef CONFIG_SMP
1007 task_thread_info(p)->cpu = cpu;
dd41f596 1008#endif
29f59db3 1009 set_task_cfs_rq(p);
2dd73a4f
PW
1010}
1011
1da177e4 1012#ifdef CONFIG_SMP
c65cc870 1013
dd41f596 1014void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1015{
dd41f596
IM
1016 int old_cpu = task_cpu(p);
1017 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1018 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1019 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1020 u64 clock_offset;
dd41f596
IM
1021
1022 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1023
1024#ifdef CONFIG_SCHEDSTATS
1025 if (p->se.wait_start)
1026 p->se.wait_start -= clock_offset;
dd41f596
IM
1027 if (p->se.sleep_start)
1028 p->se.sleep_start -= clock_offset;
1029 if (p->se.block_start)
1030 p->se.block_start -= clock_offset;
6cfb0d5d 1031#endif
2830cf8c
SV
1032 p->se.vruntime -= old_cfsrq->min_vruntime -
1033 new_cfsrq->min_vruntime;
dd41f596
IM
1034
1035 __set_task_cpu(p, new_cpu);
c65cc870
IM
1036}
1037
70b97a7f 1038struct migration_req {
1da177e4 1039 struct list_head list;
1da177e4 1040
36c8b586 1041 struct task_struct *task;
1da177e4
LT
1042 int dest_cpu;
1043
1da177e4 1044 struct completion done;
70b97a7f 1045};
1da177e4
LT
1046
1047/*
1048 * The task's runqueue lock must be held.
1049 * Returns true if you have to wait for migration thread.
1050 */
36c8b586 1051static int
70b97a7f 1052migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1053{
70b97a7f 1054 struct rq *rq = task_rq(p);
1da177e4
LT
1055
1056 /*
1057 * If the task is not on a runqueue (and not running), then
1058 * it is sufficient to simply update the task's cpu field.
1059 */
dd41f596 1060 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1061 set_task_cpu(p, dest_cpu);
1062 return 0;
1063 }
1064
1065 init_completion(&req->done);
1da177e4
LT
1066 req->task = p;
1067 req->dest_cpu = dest_cpu;
1068 list_add(&req->list, &rq->migration_queue);
48f24c4d 1069
1da177e4
LT
1070 return 1;
1071}
1072
1073/*
1074 * wait_task_inactive - wait for a thread to unschedule.
1075 *
1076 * The caller must ensure that the task *will* unschedule sometime soon,
1077 * else this function might spin for a *long* time. This function can't
1078 * be called with interrupts off, or it may introduce deadlock with
1079 * smp_call_function() if an IPI is sent by the same process we are
1080 * waiting to become inactive.
1081 */
36c8b586 1082void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1083{
1084 unsigned long flags;
dd41f596 1085 int running, on_rq;
70b97a7f 1086 struct rq *rq;
1da177e4 1087
3a5c359a
AK
1088 for (;;) {
1089 /*
1090 * We do the initial early heuristics without holding
1091 * any task-queue locks at all. We'll only try to get
1092 * the runqueue lock when things look like they will
1093 * work out!
1094 */
1095 rq = task_rq(p);
fa490cfd 1096
3a5c359a
AK
1097 /*
1098 * If the task is actively running on another CPU
1099 * still, just relax and busy-wait without holding
1100 * any locks.
1101 *
1102 * NOTE! Since we don't hold any locks, it's not
1103 * even sure that "rq" stays as the right runqueue!
1104 * But we don't care, since "task_running()" will
1105 * return false if the runqueue has changed and p
1106 * is actually now running somewhere else!
1107 */
1108 while (task_running(rq, p))
1109 cpu_relax();
fa490cfd 1110
3a5c359a
AK
1111 /*
1112 * Ok, time to look more closely! We need the rq
1113 * lock now, to be *sure*. If we're wrong, we'll
1114 * just go back and repeat.
1115 */
1116 rq = task_rq_lock(p, &flags);
1117 running = task_running(rq, p);
1118 on_rq = p->se.on_rq;
1119 task_rq_unlock(rq, &flags);
fa490cfd 1120
3a5c359a
AK
1121 /*
1122 * Was it really running after all now that we
1123 * checked with the proper locks actually held?
1124 *
1125 * Oops. Go back and try again..
1126 */
1127 if (unlikely(running)) {
1128 cpu_relax();
1129 continue;
1130 }
fa490cfd 1131
3a5c359a
AK
1132 /*
1133 * It's not enough that it's not actively running,
1134 * it must be off the runqueue _entirely_, and not
1135 * preempted!
1136 *
1137 * So if it wa still runnable (but just not actively
1138 * running right now), it's preempted, and we should
1139 * yield - it could be a while.
1140 */
1141 if (unlikely(on_rq)) {
1142 schedule_timeout_uninterruptible(1);
1143 continue;
1144 }
fa490cfd 1145
3a5c359a
AK
1146 /*
1147 * Ahh, all good. It wasn't running, and it wasn't
1148 * runnable, which means that it will never become
1149 * running in the future either. We're all done!
1150 */
1151 break;
1152 }
1da177e4
LT
1153}
1154
1155/***
1156 * kick_process - kick a running thread to enter/exit the kernel
1157 * @p: the to-be-kicked thread
1158 *
1159 * Cause a process which is running on another CPU to enter
1160 * kernel-mode, without any delay. (to get signals handled.)
1161 *
1162 * NOTE: this function doesnt have to take the runqueue lock,
1163 * because all it wants to ensure is that the remote task enters
1164 * the kernel. If the IPI races and the task has been migrated
1165 * to another CPU then no harm is done and the purpose has been
1166 * achieved as well.
1167 */
36c8b586 1168void kick_process(struct task_struct *p)
1da177e4
LT
1169{
1170 int cpu;
1171
1172 preempt_disable();
1173 cpu = task_cpu(p);
1174 if ((cpu != smp_processor_id()) && task_curr(p))
1175 smp_send_reschedule(cpu);
1176 preempt_enable();
1177}
1178
1179/*
2dd73a4f
PW
1180 * Return a low guess at the load of a migration-source cpu weighted
1181 * according to the scheduling class and "nice" value.
1da177e4
LT
1182 *
1183 * We want to under-estimate the load of migration sources, to
1184 * balance conservatively.
1185 */
a9957449 1186static unsigned long source_load(int cpu, int type)
1da177e4 1187{
70b97a7f 1188 struct rq *rq = cpu_rq(cpu);
dd41f596 1189 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1190
3b0bd9bc 1191 if (type == 0)
dd41f596 1192 return total;
b910472d 1193
dd41f596 1194 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1195}
1196
1197/*
2dd73a4f
PW
1198 * Return a high guess at the load of a migration-target cpu weighted
1199 * according to the scheduling class and "nice" value.
1da177e4 1200 */
a9957449 1201static unsigned long target_load(int cpu, int type)
1da177e4 1202{
70b97a7f 1203 struct rq *rq = cpu_rq(cpu);
dd41f596 1204 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1205
7897986b 1206 if (type == 0)
dd41f596 1207 return total;
3b0bd9bc 1208
dd41f596 1209 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1210}
1211
1212/*
1213 * Return the average load per task on the cpu's run queue
1214 */
1215static inline unsigned long cpu_avg_load_per_task(int cpu)
1216{
70b97a7f 1217 struct rq *rq = cpu_rq(cpu);
dd41f596 1218 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1219 unsigned long n = rq->nr_running;
1220
dd41f596 1221 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1222}
1223
147cbb4b
NP
1224/*
1225 * find_idlest_group finds and returns the least busy CPU group within the
1226 * domain.
1227 */
1228static struct sched_group *
1229find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1230{
1231 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1232 unsigned long min_load = ULONG_MAX, this_load = 0;
1233 int load_idx = sd->forkexec_idx;
1234 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1235
1236 do {
1237 unsigned long load, avg_load;
1238 int local_group;
1239 int i;
1240
da5a5522
BD
1241 /* Skip over this group if it has no CPUs allowed */
1242 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1243 continue;
da5a5522 1244
147cbb4b 1245 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1246
1247 /* Tally up the load of all CPUs in the group */
1248 avg_load = 0;
1249
1250 for_each_cpu_mask(i, group->cpumask) {
1251 /* Bias balancing toward cpus of our domain */
1252 if (local_group)
1253 load = source_load(i, load_idx);
1254 else
1255 load = target_load(i, load_idx);
1256
1257 avg_load += load;
1258 }
1259
1260 /* Adjust by relative CPU power of the group */
5517d86b
ED
1261 avg_load = sg_div_cpu_power(group,
1262 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1263
1264 if (local_group) {
1265 this_load = avg_load;
1266 this = group;
1267 } else if (avg_load < min_load) {
1268 min_load = avg_load;
1269 idlest = group;
1270 }
3a5c359a 1271 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1272
1273 if (!idlest || 100*this_load < imbalance*min_load)
1274 return NULL;
1275 return idlest;
1276}
1277
1278/*
0feaece9 1279 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1280 */
95cdf3b7
IM
1281static int
1282find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1283{
da5a5522 1284 cpumask_t tmp;
147cbb4b
NP
1285 unsigned long load, min_load = ULONG_MAX;
1286 int idlest = -1;
1287 int i;
1288
da5a5522
BD
1289 /* Traverse only the allowed CPUs */
1290 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1291
1292 for_each_cpu_mask(i, tmp) {
2dd73a4f 1293 load = weighted_cpuload(i);
147cbb4b
NP
1294
1295 if (load < min_load || (load == min_load && i == this_cpu)) {
1296 min_load = load;
1297 idlest = i;
1298 }
1299 }
1300
1301 return idlest;
1302}
1303
476d139c
NP
1304/*
1305 * sched_balance_self: balance the current task (running on cpu) in domains
1306 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1307 * SD_BALANCE_EXEC.
1308 *
1309 * Balance, ie. select the least loaded group.
1310 *
1311 * Returns the target CPU number, or the same CPU if no balancing is needed.
1312 *
1313 * preempt must be disabled.
1314 */
1315static int sched_balance_self(int cpu, int flag)
1316{
1317 struct task_struct *t = current;
1318 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1319
c96d145e 1320 for_each_domain(cpu, tmp) {
9761eea8
IM
1321 /*
1322 * If power savings logic is enabled for a domain, stop there.
1323 */
5c45bf27
SS
1324 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1325 break;
476d139c
NP
1326 if (tmp->flags & flag)
1327 sd = tmp;
c96d145e 1328 }
476d139c
NP
1329
1330 while (sd) {
1331 cpumask_t span;
1332 struct sched_group *group;
1a848870
SS
1333 int new_cpu, weight;
1334
1335 if (!(sd->flags & flag)) {
1336 sd = sd->child;
1337 continue;
1338 }
476d139c
NP
1339
1340 span = sd->span;
1341 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1342 if (!group) {
1343 sd = sd->child;
1344 continue;
1345 }
476d139c 1346
da5a5522 1347 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1348 if (new_cpu == -1 || new_cpu == cpu) {
1349 /* Now try balancing at a lower domain level of cpu */
1350 sd = sd->child;
1351 continue;
1352 }
476d139c 1353
1a848870 1354 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1355 cpu = new_cpu;
476d139c
NP
1356 sd = NULL;
1357 weight = cpus_weight(span);
1358 for_each_domain(cpu, tmp) {
1359 if (weight <= cpus_weight(tmp->span))
1360 break;
1361 if (tmp->flags & flag)
1362 sd = tmp;
1363 }
1364 /* while loop will break here if sd == NULL */
1365 }
1366
1367 return cpu;
1368}
1369
1370#endif /* CONFIG_SMP */
1da177e4
LT
1371
1372/*
1373 * wake_idle() will wake a task on an idle cpu if task->cpu is
1374 * not idle and an idle cpu is available. The span of cpus to
1375 * search starts with cpus closest then further out as needed,
1376 * so we always favor a closer, idle cpu.
1377 *
1378 * Returns the CPU we should wake onto.
1379 */
1380#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1381static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1382{
1383 cpumask_t tmp;
1384 struct sched_domain *sd;
1385 int i;
1386
4953198b
SS
1387 /*
1388 * If it is idle, then it is the best cpu to run this task.
1389 *
1390 * This cpu is also the best, if it has more than one task already.
1391 * Siblings must be also busy(in most cases) as they didn't already
1392 * pickup the extra load from this cpu and hence we need not check
1393 * sibling runqueue info. This will avoid the checks and cache miss
1394 * penalities associated with that.
1395 */
1396 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1397 return cpu;
1398
1399 for_each_domain(cpu, sd) {
1400 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1401 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1402 for_each_cpu_mask(i, tmp) {
1403 if (idle_cpu(i))
1404 return i;
1405 }
9761eea8 1406 } else {
e0f364f4 1407 break;
9761eea8 1408 }
1da177e4
LT
1409 }
1410 return cpu;
1411}
1412#else
36c8b586 1413static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1414{
1415 return cpu;
1416}
1417#endif
1418
1419/***
1420 * try_to_wake_up - wake up a thread
1421 * @p: the to-be-woken-up thread
1422 * @state: the mask of task states that can be woken
1423 * @sync: do a synchronous wakeup?
1424 *
1425 * Put it on the run-queue if it's not already there. The "current"
1426 * thread is always on the run-queue (except when the actual
1427 * re-schedule is in progress), and as such you're allowed to do
1428 * the simpler "current->state = TASK_RUNNING" to mark yourself
1429 * runnable without the overhead of this.
1430 *
1431 * returns failure only if the task is already active.
1432 */
36c8b586 1433static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1434{
1435 int cpu, this_cpu, success = 0;
1436 unsigned long flags;
1437 long old_state;
70b97a7f 1438 struct rq *rq;
1da177e4 1439#ifdef CONFIG_SMP
7897986b 1440 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1441 unsigned long load, this_load;
1da177e4
LT
1442 int new_cpu;
1443#endif
1444
1445 rq = task_rq_lock(p, &flags);
1446 old_state = p->state;
1447 if (!(old_state & state))
1448 goto out;
1449
dd41f596 1450 if (p->se.on_rq)
1da177e4
LT
1451 goto out_running;
1452
1453 cpu = task_cpu(p);
1454 this_cpu = smp_processor_id();
1455
1456#ifdef CONFIG_SMP
1457 if (unlikely(task_running(rq, p)))
1458 goto out_activate;
1459
7897986b
NP
1460 new_cpu = cpu;
1461
2d72376b 1462 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1463 if (cpu == this_cpu) {
1464 schedstat_inc(rq, ttwu_local);
7897986b
NP
1465 goto out_set_cpu;
1466 }
1467
1468 for_each_domain(this_cpu, sd) {
1469 if (cpu_isset(cpu, sd->span)) {
1470 schedstat_inc(sd, ttwu_wake_remote);
1471 this_sd = sd;
1472 break;
1da177e4
LT
1473 }
1474 }
1da177e4 1475
7897986b 1476 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1477 goto out_set_cpu;
1478
1da177e4 1479 /*
7897986b 1480 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1481 */
7897986b
NP
1482 if (this_sd) {
1483 int idx = this_sd->wake_idx;
1484 unsigned int imbalance;
1da177e4 1485
a3f21bce
NP
1486 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1487
7897986b
NP
1488 load = source_load(cpu, idx);
1489 this_load = target_load(this_cpu, idx);
1da177e4 1490
7897986b
NP
1491 new_cpu = this_cpu; /* Wake to this CPU if we can */
1492
a3f21bce
NP
1493 if (this_sd->flags & SD_WAKE_AFFINE) {
1494 unsigned long tl = this_load;
33859f7f
MOS
1495 unsigned long tl_per_task;
1496
1497 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1498
1da177e4 1499 /*
a3f21bce
NP
1500 * If sync wakeup then subtract the (maximum possible)
1501 * effect of the currently running task from the load
1502 * of the current CPU:
1da177e4 1503 */
a3f21bce 1504 if (sync)
dd41f596 1505 tl -= current->se.load.weight;
a3f21bce
NP
1506
1507 if ((tl <= load &&
2dd73a4f 1508 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1509 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1510 /*
1511 * This domain has SD_WAKE_AFFINE and
1512 * p is cache cold in this domain, and
1513 * there is no bad imbalance.
1514 */
1515 schedstat_inc(this_sd, ttwu_move_affine);
1516 goto out_set_cpu;
1517 }
1518 }
1519
1520 /*
1521 * Start passive balancing when half the imbalance_pct
1522 * limit is reached.
1523 */
1524 if (this_sd->flags & SD_WAKE_BALANCE) {
1525 if (imbalance*this_load <= 100*load) {
1526 schedstat_inc(this_sd, ttwu_move_balance);
1527 goto out_set_cpu;
1528 }
1da177e4
LT
1529 }
1530 }
1531
1532 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1533out_set_cpu:
1534 new_cpu = wake_idle(new_cpu, p);
1535 if (new_cpu != cpu) {
1536 set_task_cpu(p, new_cpu);
1537 task_rq_unlock(rq, &flags);
1538 /* might preempt at this point */
1539 rq = task_rq_lock(p, &flags);
1540 old_state = p->state;
1541 if (!(old_state & state))
1542 goto out;
dd41f596 1543 if (p->se.on_rq)
1da177e4
LT
1544 goto out_running;
1545
1546 this_cpu = smp_processor_id();
1547 cpu = task_cpu(p);
1548 }
1549
1550out_activate:
1551#endif /* CONFIG_SMP */
2daa3577 1552 update_rq_clock(rq);
dd41f596 1553 activate_task(rq, p, 1);
1da177e4
LT
1554 /*
1555 * Sync wakeups (i.e. those types of wakeups where the waker
1556 * has indicated that it will leave the CPU in short order)
1557 * don't trigger a preemption, if the woken up task will run on
1558 * this cpu. (in this case the 'I will reschedule' promise of
1559 * the waker guarantees that the freshly woken up task is going
1560 * to be considered on this CPU.)
1561 */
dd41f596
IM
1562 if (!sync || cpu != this_cpu)
1563 check_preempt_curr(rq, p);
1da177e4
LT
1564 success = 1;
1565
1566out_running:
1567 p->state = TASK_RUNNING;
1568out:
1569 task_rq_unlock(rq, &flags);
1570
1571 return success;
1572}
1573
36c8b586 1574int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1575{
1576 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1577 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1578}
1da177e4
LT
1579EXPORT_SYMBOL(wake_up_process);
1580
36c8b586 1581int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1582{
1583 return try_to_wake_up(p, state, 0);
1584}
1585
1da177e4
LT
1586/*
1587 * Perform scheduler related setup for a newly forked process p.
1588 * p is forked by current.
dd41f596
IM
1589 *
1590 * __sched_fork() is basic setup used by init_idle() too:
1591 */
1592static void __sched_fork(struct task_struct *p)
1593{
dd41f596
IM
1594 p->se.exec_start = 0;
1595 p->se.sum_exec_runtime = 0;
f6cf891c 1596 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1597
1598#ifdef CONFIG_SCHEDSTATS
1599 p->se.wait_start = 0;
dd41f596
IM
1600 p->se.sum_sleep_runtime = 0;
1601 p->se.sleep_start = 0;
dd41f596
IM
1602 p->se.block_start = 0;
1603 p->se.sleep_max = 0;
1604 p->se.block_max = 0;
1605 p->se.exec_max = 0;
eba1ed4b 1606 p->se.slice_max = 0;
dd41f596 1607 p->se.wait_max = 0;
6cfb0d5d 1608#endif
476d139c 1609
dd41f596
IM
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
476d139c 1612
e107be36
AK
1613#ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615#endif
1616
1da177e4
LT
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
dd41f596
IM
1624}
1625
1626/*
1627 * fork()/clone()-time setup:
1628 */
1629void sched_fork(struct task_struct *p, int clone_flags)
1630{
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635#ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637#endif
02e4bac2 1638 set_task_cpu(p, cpu);
b29739f9
IM
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
2ddbf952
HS
1644 if (!rt_prio(p->prio))
1645 p->sched_class = &fair_sched_class;
b29739f9 1646
52f17b6c 1647#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1648 if (likely(sched_info_on()))
52f17b6c 1649 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1650#endif
d6077cb8 1651#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1652 p->oncpu = 0;
1653#endif
1da177e4 1654#ifdef CONFIG_PREEMPT
4866cde0 1655 /* Want to start with kernel preemption disabled. */
a1261f54 1656 task_thread_info(p)->preempt_count = 1;
1da177e4 1657#endif
476d139c 1658 put_cpu();
1da177e4
LT
1659}
1660
1661/*
1662 * wake_up_new_task - wake up a newly created task for the first time.
1663 *
1664 * This function will do some initial scheduler statistics housekeeping
1665 * that must be done for every newly created context, then puts the task
1666 * on the runqueue and wakes it.
1667 */
36c8b586 1668void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1669{
1670 unsigned long flags;
dd41f596 1671 struct rq *rq;
1da177e4
LT
1672
1673 rq = task_rq_lock(p, &flags);
147cbb4b 1674 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1675 update_rq_clock(rq);
1da177e4
LT
1676
1677 p->prio = effective_prio(p);
1678
00bf7bfc 1679 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
dd41f596 1680 activate_task(rq, p, 0);
1da177e4 1681 } else {
1da177e4 1682 /*
dd41f596
IM
1683 * Let the scheduling class do new task startup
1684 * management (if any):
1da177e4 1685 */
ee0827d8 1686 p->sched_class->task_new(rq, p);
e5fa2237 1687 inc_nr_running(p, rq);
1da177e4 1688 }
dd41f596
IM
1689 check_preempt_curr(rq, p);
1690 task_rq_unlock(rq, &flags);
1da177e4
LT
1691}
1692
e107be36
AK
1693#ifdef CONFIG_PREEMPT_NOTIFIERS
1694
1695/**
421cee29
RD
1696 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1697 * @notifier: notifier struct to register
e107be36
AK
1698 */
1699void preempt_notifier_register(struct preempt_notifier *notifier)
1700{
1701 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_register);
1704
1705/**
1706 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1707 * @notifier: notifier struct to unregister
e107be36
AK
1708 *
1709 * This is safe to call from within a preemption notifier.
1710 */
1711void preempt_notifier_unregister(struct preempt_notifier *notifier)
1712{
1713 hlist_del(&notifier->link);
1714}
1715EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1716
1717static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1718{
1719 struct preempt_notifier *notifier;
1720 struct hlist_node *node;
1721
1722 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1723 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1724}
1725
1726static void
1727fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729{
1730 struct preempt_notifier *notifier;
1731 struct hlist_node *node;
1732
1733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1734 notifier->ops->sched_out(notifier, next);
1735}
1736
1737#else
1738
1739static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1740{
1741}
1742
1743static void
1744fire_sched_out_preempt_notifiers(struct task_struct *curr,
1745 struct task_struct *next)
1746{
1747}
1748
1749#endif
1750
4866cde0
NP
1751/**
1752 * prepare_task_switch - prepare to switch tasks
1753 * @rq: the runqueue preparing to switch
421cee29 1754 * @prev: the current task that is being switched out
4866cde0
NP
1755 * @next: the task we are going to switch to.
1756 *
1757 * This is called with the rq lock held and interrupts off. It must
1758 * be paired with a subsequent finish_task_switch after the context
1759 * switch.
1760 *
1761 * prepare_task_switch sets up locking and calls architecture specific
1762 * hooks.
1763 */
e107be36
AK
1764static inline void
1765prepare_task_switch(struct rq *rq, struct task_struct *prev,
1766 struct task_struct *next)
4866cde0 1767{
e107be36 1768 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1769 prepare_lock_switch(rq, next);
1770 prepare_arch_switch(next);
1771}
1772
1da177e4
LT
1773/**
1774 * finish_task_switch - clean up after a task-switch
344babaa 1775 * @rq: runqueue associated with task-switch
1da177e4
LT
1776 * @prev: the thread we just switched away from.
1777 *
4866cde0
NP
1778 * finish_task_switch must be called after the context switch, paired
1779 * with a prepare_task_switch call before the context switch.
1780 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1781 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1782 *
1783 * Note that we may have delayed dropping an mm in context_switch(). If
1784 * so, we finish that here outside of the runqueue lock. (Doing it
1785 * with the lock held can cause deadlocks; see schedule() for
1786 * details.)
1787 */
a9957449 1788static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1789 __releases(rq->lock)
1790{
1da177e4 1791 struct mm_struct *mm = rq->prev_mm;
55a101f8 1792 long prev_state;
1da177e4
LT
1793
1794 rq->prev_mm = NULL;
1795
1796 /*
1797 * A task struct has one reference for the use as "current".
c394cc9f 1798 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1799 * schedule one last time. The schedule call will never return, and
1800 * the scheduled task must drop that reference.
c394cc9f 1801 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1802 * still held, otherwise prev could be scheduled on another cpu, die
1803 * there before we look at prev->state, and then the reference would
1804 * be dropped twice.
1805 * Manfred Spraul <manfred@colorfullife.com>
1806 */
55a101f8 1807 prev_state = prev->state;
4866cde0
NP
1808 finish_arch_switch(prev);
1809 finish_lock_switch(rq, prev);
e107be36 1810 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1811 if (mm)
1812 mmdrop(mm);
c394cc9f 1813 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1814 /*
1815 * Remove function-return probe instances associated with this
1816 * task and put them back on the free list.
9761eea8 1817 */
c6fd91f0 1818 kprobe_flush_task(prev);
1da177e4 1819 put_task_struct(prev);
c6fd91f0 1820 }
1da177e4
LT
1821}
1822
1823/**
1824 * schedule_tail - first thing a freshly forked thread must call.
1825 * @prev: the thread we just switched away from.
1826 */
36c8b586 1827asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1828 __releases(rq->lock)
1829{
70b97a7f
IM
1830 struct rq *rq = this_rq();
1831
4866cde0
NP
1832 finish_task_switch(rq, prev);
1833#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1834 /* In this case, finish_task_switch does not reenable preemption */
1835 preempt_enable();
1836#endif
1da177e4
LT
1837 if (current->set_child_tid)
1838 put_user(current->pid, current->set_child_tid);
1839}
1840
1841/*
1842 * context_switch - switch to the new MM and the new
1843 * thread's register state.
1844 */
dd41f596 1845static inline void
70b97a7f 1846context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1847 struct task_struct *next)
1da177e4 1848{
dd41f596 1849 struct mm_struct *mm, *oldmm;
1da177e4 1850
e107be36 1851 prepare_task_switch(rq, prev, next);
dd41f596
IM
1852 mm = next->mm;
1853 oldmm = prev->active_mm;
9226d125
ZA
1854 /*
1855 * For paravirt, this is coupled with an exit in switch_to to
1856 * combine the page table reload and the switch backend into
1857 * one hypercall.
1858 */
1859 arch_enter_lazy_cpu_mode();
1860
dd41f596 1861 if (unlikely(!mm)) {
1da177e4
LT
1862 next->active_mm = oldmm;
1863 atomic_inc(&oldmm->mm_count);
1864 enter_lazy_tlb(oldmm, next);
1865 } else
1866 switch_mm(oldmm, mm, next);
1867
dd41f596 1868 if (unlikely(!prev->mm)) {
1da177e4 1869 prev->active_mm = NULL;
1da177e4
LT
1870 rq->prev_mm = oldmm;
1871 }
3a5f5e48
IM
1872 /*
1873 * Since the runqueue lock will be released by the next
1874 * task (which is an invalid locking op but in the case
1875 * of the scheduler it's an obvious special-case), so we
1876 * do an early lockdep release here:
1877 */
1878#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1879 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1880#endif
1da177e4
LT
1881
1882 /* Here we just switch the register state and the stack. */
1883 switch_to(prev, next, prev);
1884
dd41f596
IM
1885 barrier();
1886 /*
1887 * this_rq must be evaluated again because prev may have moved
1888 * CPUs since it called schedule(), thus the 'rq' on its stack
1889 * frame will be invalid.
1890 */
1891 finish_task_switch(this_rq(), prev);
1da177e4
LT
1892}
1893
1894/*
1895 * nr_running, nr_uninterruptible and nr_context_switches:
1896 *
1897 * externally visible scheduler statistics: current number of runnable
1898 * threads, current number of uninterruptible-sleeping threads, total
1899 * number of context switches performed since bootup.
1900 */
1901unsigned long nr_running(void)
1902{
1903 unsigned long i, sum = 0;
1904
1905 for_each_online_cpu(i)
1906 sum += cpu_rq(i)->nr_running;
1907
1908 return sum;
1909}
1910
1911unsigned long nr_uninterruptible(void)
1912{
1913 unsigned long i, sum = 0;
1914
0a945022 1915 for_each_possible_cpu(i)
1da177e4
LT
1916 sum += cpu_rq(i)->nr_uninterruptible;
1917
1918 /*
1919 * Since we read the counters lockless, it might be slightly
1920 * inaccurate. Do not allow it to go below zero though:
1921 */
1922 if (unlikely((long)sum < 0))
1923 sum = 0;
1924
1925 return sum;
1926}
1927
1928unsigned long long nr_context_switches(void)
1929{
cc94abfc
SR
1930 int i;
1931 unsigned long long sum = 0;
1da177e4 1932
0a945022 1933 for_each_possible_cpu(i)
1da177e4
LT
1934 sum += cpu_rq(i)->nr_switches;
1935
1936 return sum;
1937}
1938
1939unsigned long nr_iowait(void)
1940{
1941 unsigned long i, sum = 0;
1942
0a945022 1943 for_each_possible_cpu(i)
1da177e4
LT
1944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1945
1946 return sum;
1947}
1948
db1b1fef
JS
1949unsigned long nr_active(void)
1950{
1951 unsigned long i, running = 0, uninterruptible = 0;
1952
1953 for_each_online_cpu(i) {
1954 running += cpu_rq(i)->nr_running;
1955 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1956 }
1957
1958 if (unlikely((long)uninterruptible < 0))
1959 uninterruptible = 0;
1960
1961 return running + uninterruptible;
1962}
1963
48f24c4d 1964/*
dd41f596
IM
1965 * Update rq->cpu_load[] statistics. This function is usually called every
1966 * scheduler tick (TICK_NSEC).
48f24c4d 1967 */
dd41f596 1968static void update_cpu_load(struct rq *this_rq)
48f24c4d 1969{
495eca49 1970 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
1971 int i, scale;
1972
1973 this_rq->nr_load_updates++;
dd41f596
IM
1974
1975 /* Update our load: */
1976 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1977 unsigned long old_load, new_load;
1978
1979 /* scale is effectively 1 << i now, and >> i divides by scale */
1980
1981 old_load = this_rq->cpu_load[i];
1982 new_load = this_load;
a25707f3
IM
1983 /*
1984 * Round up the averaging division if load is increasing. This
1985 * prevents us from getting stuck on 9 if the load is 10, for
1986 * example.
1987 */
1988 if (new_load > old_load)
1989 new_load += scale-1;
dd41f596
IM
1990 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1991 }
48f24c4d
IM
1992}
1993
dd41f596
IM
1994#ifdef CONFIG_SMP
1995
1da177e4
LT
1996/*
1997 * double_rq_lock - safely lock two runqueues
1998 *
1999 * Note this does not disable interrupts like task_rq_lock,
2000 * you need to do so manually before calling.
2001 */
70b97a7f 2002static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2003 __acquires(rq1->lock)
2004 __acquires(rq2->lock)
2005{
054b9108 2006 BUG_ON(!irqs_disabled());
1da177e4
LT
2007 if (rq1 == rq2) {
2008 spin_lock(&rq1->lock);
2009 __acquire(rq2->lock); /* Fake it out ;) */
2010 } else {
c96d145e 2011 if (rq1 < rq2) {
1da177e4
LT
2012 spin_lock(&rq1->lock);
2013 spin_lock(&rq2->lock);
2014 } else {
2015 spin_lock(&rq2->lock);
2016 spin_lock(&rq1->lock);
2017 }
2018 }
6e82a3be
IM
2019 update_rq_clock(rq1);
2020 update_rq_clock(rq2);
1da177e4
LT
2021}
2022
2023/*
2024 * double_rq_unlock - safely unlock two runqueues
2025 *
2026 * Note this does not restore interrupts like task_rq_unlock,
2027 * you need to do so manually after calling.
2028 */
70b97a7f 2029static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2030 __releases(rq1->lock)
2031 __releases(rq2->lock)
2032{
2033 spin_unlock(&rq1->lock);
2034 if (rq1 != rq2)
2035 spin_unlock(&rq2->lock);
2036 else
2037 __release(rq2->lock);
2038}
2039
2040/*
2041 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2042 */
70b97a7f 2043static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2044 __releases(this_rq->lock)
2045 __acquires(busiest->lock)
2046 __acquires(this_rq->lock)
2047{
054b9108
KK
2048 if (unlikely(!irqs_disabled())) {
2049 /* printk() doesn't work good under rq->lock */
2050 spin_unlock(&this_rq->lock);
2051 BUG_ON(1);
2052 }
1da177e4 2053 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2054 if (busiest < this_rq) {
1da177e4
LT
2055 spin_unlock(&this_rq->lock);
2056 spin_lock(&busiest->lock);
2057 spin_lock(&this_rq->lock);
2058 } else
2059 spin_lock(&busiest->lock);
2060 }
2061}
2062
1da177e4
LT
2063/*
2064 * If dest_cpu is allowed for this process, migrate the task to it.
2065 * This is accomplished by forcing the cpu_allowed mask to only
2066 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2067 * the cpu_allowed mask is restored.
2068 */
36c8b586 2069static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2070{
70b97a7f 2071 struct migration_req req;
1da177e4 2072 unsigned long flags;
70b97a7f 2073 struct rq *rq;
1da177e4
LT
2074
2075 rq = task_rq_lock(p, &flags);
2076 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2077 || unlikely(cpu_is_offline(dest_cpu)))
2078 goto out;
2079
2080 /* force the process onto the specified CPU */
2081 if (migrate_task(p, dest_cpu, &req)) {
2082 /* Need to wait for migration thread (might exit: take ref). */
2083 struct task_struct *mt = rq->migration_thread;
36c8b586 2084
1da177e4
LT
2085 get_task_struct(mt);
2086 task_rq_unlock(rq, &flags);
2087 wake_up_process(mt);
2088 put_task_struct(mt);
2089 wait_for_completion(&req.done);
36c8b586 2090
1da177e4
LT
2091 return;
2092 }
2093out:
2094 task_rq_unlock(rq, &flags);
2095}
2096
2097/*
476d139c
NP
2098 * sched_exec - execve() is a valuable balancing opportunity, because at
2099 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2100 */
2101void sched_exec(void)
2102{
1da177e4 2103 int new_cpu, this_cpu = get_cpu();
476d139c 2104 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2105 put_cpu();
476d139c
NP
2106 if (new_cpu != this_cpu)
2107 sched_migrate_task(current, new_cpu);
1da177e4
LT
2108}
2109
2110/*
2111 * pull_task - move a task from a remote runqueue to the local runqueue.
2112 * Both runqueues must be locked.
2113 */
dd41f596
IM
2114static void pull_task(struct rq *src_rq, struct task_struct *p,
2115 struct rq *this_rq, int this_cpu)
1da177e4 2116{
2e1cb74a 2117 deactivate_task(src_rq, p, 0);
1da177e4 2118 set_task_cpu(p, this_cpu);
dd41f596 2119 activate_task(this_rq, p, 0);
1da177e4
LT
2120 /*
2121 * Note that idle threads have a prio of MAX_PRIO, for this test
2122 * to be always true for them.
2123 */
dd41f596 2124 check_preempt_curr(this_rq, p);
1da177e4
LT
2125}
2126
2127/*
2128 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2129 */
858119e1 2130static
70b97a7f 2131int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2132 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2133 int *all_pinned)
1da177e4
LT
2134{
2135 /*
2136 * We do not migrate tasks that are:
2137 * 1) running (obviously), or
2138 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2139 * 3) are cache-hot on their current CPU.
2140 */
1da177e4
LT
2141 if (!cpu_isset(this_cpu, p->cpus_allowed))
2142 return 0;
81026794
NP
2143 *all_pinned = 0;
2144
2145 if (task_running(rq, p))
2146 return 0;
1da177e4 2147
1da177e4
LT
2148 return 1;
2149}
2150
dd41f596 2151static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2152 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2153 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2154 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2155 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2156{
dd41f596
IM
2157 int pulled = 0, pinned = 0, skip_for_load;
2158 struct task_struct *p;
2159 long rem_load_move = max_load_move;
1da177e4 2160
2dd73a4f 2161 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2162 goto out;
2163
81026794
NP
2164 pinned = 1;
2165
1da177e4 2166 /*
dd41f596 2167 * Start the load-balancing iterator:
1da177e4 2168 */
dd41f596
IM
2169 p = iterator->start(iterator->arg);
2170next:
2171 if (!p)
1da177e4 2172 goto out;
50ddd969
PW
2173 /*
2174 * To help distribute high priority tasks accross CPUs we don't
2175 * skip a task if it will be the highest priority task (i.e. smallest
2176 * prio value) on its new queue regardless of its load weight
2177 */
dd41f596
IM
2178 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2179 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2180 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2181 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2182 p = iterator->next(iterator->arg);
2183 goto next;
1da177e4
LT
2184 }
2185
dd41f596 2186 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2187 pulled++;
dd41f596 2188 rem_load_move -= p->se.load.weight;
1da177e4 2189
2dd73a4f
PW
2190 /*
2191 * We only want to steal up to the prescribed number of tasks
2192 * and the prescribed amount of weighted load.
2193 */
2194 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2195 if (p->prio < *this_best_prio)
2196 *this_best_prio = p->prio;
dd41f596
IM
2197 p = iterator->next(iterator->arg);
2198 goto next;
1da177e4
LT
2199 }
2200out:
2201 /*
2202 * Right now, this is the only place pull_task() is called,
2203 * so we can safely collect pull_task() stats here rather than
2204 * inside pull_task().
2205 */
2206 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2207
2208 if (all_pinned)
2209 *all_pinned = pinned;
dd41f596 2210 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2211 return pulled;
2212}
2213
dd41f596 2214/*
43010659
PW
2215 * move_tasks tries to move up to max_load_move weighted load from busiest to
2216 * this_rq, as part of a balancing operation within domain "sd".
2217 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2218 *
2219 * Called with both runqueues locked.
2220 */
2221static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2222 unsigned long max_load_move,
dd41f596
IM
2223 struct sched_domain *sd, enum cpu_idle_type idle,
2224 int *all_pinned)
2225{
5522d5d5 2226 const struct sched_class *class = sched_class_highest;
43010659 2227 unsigned long total_load_moved = 0;
a4ac01c3 2228 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2229
2230 do {
43010659
PW
2231 total_load_moved +=
2232 class->load_balance(this_rq, this_cpu, busiest,
2233 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2234 sd, idle, all_pinned, &this_best_prio);
dd41f596 2235 class = class->next;
43010659 2236 } while (class && max_load_move > total_load_moved);
dd41f596 2237
43010659
PW
2238 return total_load_moved > 0;
2239}
2240
2241/*
2242 * move_one_task tries to move exactly one task from busiest to this_rq, as
2243 * part of active balancing operations within "domain".
2244 * Returns 1 if successful and 0 otherwise.
2245 *
2246 * Called with both runqueues locked.
2247 */
2248static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2249 struct sched_domain *sd, enum cpu_idle_type idle)
2250{
5522d5d5 2251 const struct sched_class *class;
a4ac01c3 2252 int this_best_prio = MAX_PRIO;
43010659
PW
2253
2254 for (class = sched_class_highest; class; class = class->next)
2255 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2256 1, ULONG_MAX, sd, idle, NULL,
2257 &this_best_prio))
43010659
PW
2258 return 1;
2259
2260 return 0;
dd41f596
IM
2261}
2262
1da177e4
LT
2263/*
2264 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2265 * domain. It calculates and returns the amount of weighted load which
2266 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2267 */
2268static struct sched_group *
2269find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2270 unsigned long *imbalance, enum cpu_idle_type idle,
2271 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2272{
2273 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2274 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2275 unsigned long max_pull;
2dd73a4f
PW
2276 unsigned long busiest_load_per_task, busiest_nr_running;
2277 unsigned long this_load_per_task, this_nr_running;
7897986b 2278 int load_idx;
5c45bf27
SS
2279#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2280 int power_savings_balance = 1;
2281 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2282 unsigned long min_nr_running = ULONG_MAX;
2283 struct sched_group *group_min = NULL, *group_leader = NULL;
2284#endif
1da177e4
LT
2285
2286 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2287 busiest_load_per_task = busiest_nr_running = 0;
2288 this_load_per_task = this_nr_running = 0;
d15bcfdb 2289 if (idle == CPU_NOT_IDLE)
7897986b 2290 load_idx = sd->busy_idx;
d15bcfdb 2291 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2292 load_idx = sd->newidle_idx;
2293 else
2294 load_idx = sd->idle_idx;
1da177e4
LT
2295
2296 do {
5c45bf27 2297 unsigned long load, group_capacity;
1da177e4
LT
2298 int local_group;
2299 int i;
783609c6 2300 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2301 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2302
2303 local_group = cpu_isset(this_cpu, group->cpumask);
2304
783609c6
SS
2305 if (local_group)
2306 balance_cpu = first_cpu(group->cpumask);
2307
1da177e4 2308 /* Tally up the load of all CPUs in the group */
2dd73a4f 2309 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2310
2311 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2312 struct rq *rq;
2313
2314 if (!cpu_isset(i, *cpus))
2315 continue;
2316
2317 rq = cpu_rq(i);
2dd73a4f 2318
9439aab8 2319 if (*sd_idle && rq->nr_running)
5969fe06
NP
2320 *sd_idle = 0;
2321
1da177e4 2322 /* Bias balancing toward cpus of our domain */
783609c6
SS
2323 if (local_group) {
2324 if (idle_cpu(i) && !first_idle_cpu) {
2325 first_idle_cpu = 1;
2326 balance_cpu = i;
2327 }
2328
a2000572 2329 load = target_load(i, load_idx);
783609c6 2330 } else
a2000572 2331 load = source_load(i, load_idx);
1da177e4
LT
2332
2333 avg_load += load;
2dd73a4f 2334 sum_nr_running += rq->nr_running;
dd41f596 2335 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2336 }
2337
783609c6
SS
2338 /*
2339 * First idle cpu or the first cpu(busiest) in this sched group
2340 * is eligible for doing load balancing at this and above
9439aab8
SS
2341 * domains. In the newly idle case, we will allow all the cpu's
2342 * to do the newly idle load balance.
783609c6 2343 */
9439aab8
SS
2344 if (idle != CPU_NEWLY_IDLE && local_group &&
2345 balance_cpu != this_cpu && balance) {
783609c6
SS
2346 *balance = 0;
2347 goto ret;
2348 }
2349
1da177e4 2350 total_load += avg_load;
5517d86b 2351 total_pwr += group->__cpu_power;
1da177e4
LT
2352
2353 /* Adjust by relative CPU power of the group */
5517d86b
ED
2354 avg_load = sg_div_cpu_power(group,
2355 avg_load * SCHED_LOAD_SCALE);
1da177e4 2356
5517d86b 2357 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2358
1da177e4
LT
2359 if (local_group) {
2360 this_load = avg_load;
2361 this = group;
2dd73a4f
PW
2362 this_nr_running = sum_nr_running;
2363 this_load_per_task = sum_weighted_load;
2364 } else if (avg_load > max_load &&
5c45bf27 2365 sum_nr_running > group_capacity) {
1da177e4
LT
2366 max_load = avg_load;
2367 busiest = group;
2dd73a4f
PW
2368 busiest_nr_running = sum_nr_running;
2369 busiest_load_per_task = sum_weighted_load;
1da177e4 2370 }
5c45bf27
SS
2371
2372#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2373 /*
2374 * Busy processors will not participate in power savings
2375 * balance.
2376 */
dd41f596
IM
2377 if (idle == CPU_NOT_IDLE ||
2378 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2379 goto group_next;
5c45bf27
SS
2380
2381 /*
2382 * If the local group is idle or completely loaded
2383 * no need to do power savings balance at this domain
2384 */
2385 if (local_group && (this_nr_running >= group_capacity ||
2386 !this_nr_running))
2387 power_savings_balance = 0;
2388
dd41f596 2389 /*
5c45bf27
SS
2390 * If a group is already running at full capacity or idle,
2391 * don't include that group in power savings calculations
dd41f596
IM
2392 */
2393 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2394 || !sum_nr_running)
dd41f596 2395 goto group_next;
5c45bf27 2396
dd41f596 2397 /*
5c45bf27 2398 * Calculate the group which has the least non-idle load.
dd41f596
IM
2399 * This is the group from where we need to pick up the load
2400 * for saving power
2401 */
2402 if ((sum_nr_running < min_nr_running) ||
2403 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2404 first_cpu(group->cpumask) <
2405 first_cpu(group_min->cpumask))) {
dd41f596
IM
2406 group_min = group;
2407 min_nr_running = sum_nr_running;
5c45bf27
SS
2408 min_load_per_task = sum_weighted_load /
2409 sum_nr_running;
dd41f596 2410 }
5c45bf27 2411
dd41f596 2412 /*
5c45bf27 2413 * Calculate the group which is almost near its
dd41f596
IM
2414 * capacity but still has some space to pick up some load
2415 * from other group and save more power
2416 */
2417 if (sum_nr_running <= group_capacity - 1) {
2418 if (sum_nr_running > leader_nr_running ||
2419 (sum_nr_running == leader_nr_running &&
2420 first_cpu(group->cpumask) >
2421 first_cpu(group_leader->cpumask))) {
2422 group_leader = group;
2423 leader_nr_running = sum_nr_running;
2424 }
48f24c4d 2425 }
5c45bf27
SS
2426group_next:
2427#endif
1da177e4
LT
2428 group = group->next;
2429 } while (group != sd->groups);
2430
2dd73a4f 2431 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2432 goto out_balanced;
2433
2434 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2435
2436 if (this_load >= avg_load ||
2437 100*max_load <= sd->imbalance_pct*this_load)
2438 goto out_balanced;
2439
2dd73a4f 2440 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2441 /*
2442 * We're trying to get all the cpus to the average_load, so we don't
2443 * want to push ourselves above the average load, nor do we wish to
2444 * reduce the max loaded cpu below the average load, as either of these
2445 * actions would just result in more rebalancing later, and ping-pong
2446 * tasks around. Thus we look for the minimum possible imbalance.
2447 * Negative imbalances (*we* are more loaded than anyone else) will
2448 * be counted as no imbalance for these purposes -- we can't fix that
2449 * by pulling tasks to us. Be careful of negative numbers as they'll
2450 * appear as very large values with unsigned longs.
2451 */
2dd73a4f
PW
2452 if (max_load <= busiest_load_per_task)
2453 goto out_balanced;
2454
2455 /*
2456 * In the presence of smp nice balancing, certain scenarios can have
2457 * max load less than avg load(as we skip the groups at or below
2458 * its cpu_power, while calculating max_load..)
2459 */
2460 if (max_load < avg_load) {
2461 *imbalance = 0;
2462 goto small_imbalance;
2463 }
0c117f1b
SS
2464
2465 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2466 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2467
1da177e4 2468 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2469 *imbalance = min(max_pull * busiest->__cpu_power,
2470 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2471 / SCHED_LOAD_SCALE;
2472
2dd73a4f
PW
2473 /*
2474 * if *imbalance is less than the average load per runnable task
2475 * there is no gaurantee that any tasks will be moved so we'll have
2476 * a think about bumping its value to force at least one task to be
2477 * moved
2478 */
7fd0d2dd 2479 if (*imbalance < busiest_load_per_task) {
48f24c4d 2480 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2481 unsigned int imbn;
2482
2483small_imbalance:
2484 pwr_move = pwr_now = 0;
2485 imbn = 2;
2486 if (this_nr_running) {
2487 this_load_per_task /= this_nr_running;
2488 if (busiest_load_per_task > this_load_per_task)
2489 imbn = 1;
2490 } else
2491 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2492
dd41f596
IM
2493 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2494 busiest_load_per_task * imbn) {
2dd73a4f 2495 *imbalance = busiest_load_per_task;
1da177e4
LT
2496 return busiest;
2497 }
2498
2499 /*
2500 * OK, we don't have enough imbalance to justify moving tasks,
2501 * however we may be able to increase total CPU power used by
2502 * moving them.
2503 */
2504
5517d86b
ED
2505 pwr_now += busiest->__cpu_power *
2506 min(busiest_load_per_task, max_load);
2507 pwr_now += this->__cpu_power *
2508 min(this_load_per_task, this_load);
1da177e4
LT
2509 pwr_now /= SCHED_LOAD_SCALE;
2510
2511 /* Amount of load we'd subtract */
5517d86b
ED
2512 tmp = sg_div_cpu_power(busiest,
2513 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2514 if (max_load > tmp)
5517d86b 2515 pwr_move += busiest->__cpu_power *
2dd73a4f 2516 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2517
2518 /* Amount of load we'd add */
5517d86b 2519 if (max_load * busiest->__cpu_power <
33859f7f 2520 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2521 tmp = sg_div_cpu_power(this,
2522 max_load * busiest->__cpu_power);
1da177e4 2523 else
5517d86b
ED
2524 tmp = sg_div_cpu_power(this,
2525 busiest_load_per_task * SCHED_LOAD_SCALE);
2526 pwr_move += this->__cpu_power *
2527 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2528 pwr_move /= SCHED_LOAD_SCALE;
2529
2530 /* Move if we gain throughput */
7fd0d2dd
SS
2531 if (pwr_move > pwr_now)
2532 *imbalance = busiest_load_per_task;
1da177e4
LT
2533 }
2534
1da177e4
LT
2535 return busiest;
2536
2537out_balanced:
5c45bf27 2538#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2539 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2540 goto ret;
1da177e4 2541
5c45bf27
SS
2542 if (this == group_leader && group_leader != group_min) {
2543 *imbalance = min_load_per_task;
2544 return group_min;
2545 }
5c45bf27 2546#endif
783609c6 2547ret:
1da177e4
LT
2548 *imbalance = 0;
2549 return NULL;
2550}
2551
2552/*
2553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2554 */
70b97a7f 2555static struct rq *
d15bcfdb 2556find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2557 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2558{
70b97a7f 2559 struct rq *busiest = NULL, *rq;
2dd73a4f 2560 unsigned long max_load = 0;
1da177e4
LT
2561 int i;
2562
2563 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2564 unsigned long wl;
0a2966b4
CL
2565
2566 if (!cpu_isset(i, *cpus))
2567 continue;
2568
48f24c4d 2569 rq = cpu_rq(i);
dd41f596 2570 wl = weighted_cpuload(i);
2dd73a4f 2571
dd41f596 2572 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2573 continue;
1da177e4 2574
dd41f596
IM
2575 if (wl > max_load) {
2576 max_load = wl;
48f24c4d 2577 busiest = rq;
1da177e4
LT
2578 }
2579 }
2580
2581 return busiest;
2582}
2583
77391d71
NP
2584/*
2585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2586 * so long as it is large enough.
2587 */
2588#define MAX_PINNED_INTERVAL 512
2589
1da177e4
LT
2590/*
2591 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2592 * tasks if there is an imbalance.
1da177e4 2593 */
70b97a7f 2594static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2595 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2596 int *balance)
1da177e4 2597{
43010659 2598 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2599 struct sched_group *group;
1da177e4 2600 unsigned long imbalance;
70b97a7f 2601 struct rq *busiest;
0a2966b4 2602 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2603 unsigned long flags;
5969fe06 2604
89c4710e
SS
2605 /*
2606 * When power savings policy is enabled for the parent domain, idle
2607 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2608 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2609 * portraying it as CPU_NOT_IDLE.
89c4710e 2610 */
d15bcfdb 2611 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2612 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2613 sd_idle = 1;
1da177e4 2614
2d72376b 2615 schedstat_inc(sd, lb_count[idle]);
1da177e4 2616
0a2966b4
CL
2617redo:
2618 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2619 &cpus, balance);
2620
06066714 2621 if (*balance == 0)
783609c6 2622 goto out_balanced;
783609c6 2623
1da177e4
LT
2624 if (!group) {
2625 schedstat_inc(sd, lb_nobusyg[idle]);
2626 goto out_balanced;
2627 }
2628
0a2966b4 2629 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2630 if (!busiest) {
2631 schedstat_inc(sd, lb_nobusyq[idle]);
2632 goto out_balanced;
2633 }
2634
db935dbd 2635 BUG_ON(busiest == this_rq);
1da177e4
LT
2636
2637 schedstat_add(sd, lb_imbalance[idle], imbalance);
2638
43010659 2639 ld_moved = 0;
1da177e4
LT
2640 if (busiest->nr_running > 1) {
2641 /*
2642 * Attempt to move tasks. If find_busiest_group has found
2643 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2644 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2645 * correctly treated as an imbalance.
2646 */
fe2eea3f 2647 local_irq_save(flags);
e17224bf 2648 double_rq_lock(this_rq, busiest);
43010659 2649 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2650 imbalance, sd, idle, &all_pinned);
e17224bf 2651 double_rq_unlock(this_rq, busiest);
fe2eea3f 2652 local_irq_restore(flags);
81026794 2653
46cb4b7c
SS
2654 /*
2655 * some other cpu did the load balance for us.
2656 */
43010659 2657 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2658 resched_cpu(this_cpu);
2659
81026794 2660 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2661 if (unlikely(all_pinned)) {
2662 cpu_clear(cpu_of(busiest), cpus);
2663 if (!cpus_empty(cpus))
2664 goto redo;
81026794 2665 goto out_balanced;
0a2966b4 2666 }
1da177e4 2667 }
81026794 2668
43010659 2669 if (!ld_moved) {
1da177e4
LT
2670 schedstat_inc(sd, lb_failed[idle]);
2671 sd->nr_balance_failed++;
2672
2673 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2674
fe2eea3f 2675 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2676
2677 /* don't kick the migration_thread, if the curr
2678 * task on busiest cpu can't be moved to this_cpu
2679 */
2680 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2681 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2682 all_pinned = 1;
2683 goto out_one_pinned;
2684 }
2685
1da177e4
LT
2686 if (!busiest->active_balance) {
2687 busiest->active_balance = 1;
2688 busiest->push_cpu = this_cpu;
81026794 2689 active_balance = 1;
1da177e4 2690 }
fe2eea3f 2691 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2692 if (active_balance)
1da177e4
LT
2693 wake_up_process(busiest->migration_thread);
2694
2695 /*
2696 * We've kicked active balancing, reset the failure
2697 * counter.
2698 */
39507451 2699 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2700 }
81026794 2701 } else
1da177e4
LT
2702 sd->nr_balance_failed = 0;
2703
81026794 2704 if (likely(!active_balance)) {
1da177e4
LT
2705 /* We were unbalanced, so reset the balancing interval */
2706 sd->balance_interval = sd->min_interval;
81026794
NP
2707 } else {
2708 /*
2709 * If we've begun active balancing, start to back off. This
2710 * case may not be covered by the all_pinned logic if there
2711 * is only 1 task on the busy runqueue (because we don't call
2712 * move_tasks).
2713 */
2714 if (sd->balance_interval < sd->max_interval)
2715 sd->balance_interval *= 2;
1da177e4
LT
2716 }
2717
43010659 2718 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2719 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2720 return -1;
43010659 2721 return ld_moved;
1da177e4
LT
2722
2723out_balanced:
1da177e4
LT
2724 schedstat_inc(sd, lb_balanced[idle]);
2725
16cfb1c0 2726 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2727
2728out_one_pinned:
1da177e4 2729 /* tune up the balancing interval */
77391d71
NP
2730 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2731 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2732 sd->balance_interval *= 2;
2733
48f24c4d 2734 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2735 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2736 return -1;
1da177e4
LT
2737 return 0;
2738}
2739
2740/*
2741 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2742 * tasks if there is an imbalance.
2743 *
d15bcfdb 2744 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2745 * this_rq is locked.
2746 */
48f24c4d 2747static int
70b97a7f 2748load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2749{
2750 struct sched_group *group;
70b97a7f 2751 struct rq *busiest = NULL;
1da177e4 2752 unsigned long imbalance;
43010659 2753 int ld_moved = 0;
5969fe06 2754 int sd_idle = 0;
969bb4e4 2755 int all_pinned = 0;
0a2966b4 2756 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2757
89c4710e
SS
2758 /*
2759 * When power savings policy is enabled for the parent domain, idle
2760 * sibling can pick up load irrespective of busy siblings. In this case,
2761 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2762 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2763 */
2764 if (sd->flags & SD_SHARE_CPUPOWER &&
2765 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2766 sd_idle = 1;
1da177e4 2767
2d72376b 2768 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2769redo:
d15bcfdb 2770 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2771 &sd_idle, &cpus, NULL);
1da177e4 2772 if (!group) {
d15bcfdb 2773 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2774 goto out_balanced;
1da177e4
LT
2775 }
2776
d15bcfdb 2777 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2778 &cpus);
db935dbd 2779 if (!busiest) {
d15bcfdb 2780 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2781 goto out_balanced;
1da177e4
LT
2782 }
2783
db935dbd
NP
2784 BUG_ON(busiest == this_rq);
2785
d15bcfdb 2786 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2787
43010659 2788 ld_moved = 0;
d6d5cfaf
NP
2789 if (busiest->nr_running > 1) {
2790 /* Attempt to move tasks */
2791 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2792 /* this_rq->clock is already updated */
2793 update_rq_clock(busiest);
43010659 2794 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2795 imbalance, sd, CPU_NEWLY_IDLE,
2796 &all_pinned);
d6d5cfaf 2797 spin_unlock(&busiest->lock);
0a2966b4 2798
969bb4e4 2799 if (unlikely(all_pinned)) {
0a2966b4
CL
2800 cpu_clear(cpu_of(busiest), cpus);
2801 if (!cpus_empty(cpus))
2802 goto redo;
2803 }
d6d5cfaf
NP
2804 }
2805
43010659 2806 if (!ld_moved) {
d15bcfdb 2807 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2808 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2810 return -1;
2811 } else
16cfb1c0 2812 sd->nr_balance_failed = 0;
1da177e4 2813
43010659 2814 return ld_moved;
16cfb1c0
NP
2815
2816out_balanced:
d15bcfdb 2817 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2818 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2819 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2820 return -1;
16cfb1c0 2821 sd->nr_balance_failed = 0;
48f24c4d 2822
16cfb1c0 2823 return 0;
1da177e4
LT
2824}
2825
2826/*
2827 * idle_balance is called by schedule() if this_cpu is about to become
2828 * idle. Attempts to pull tasks from other CPUs.
2829 */
70b97a7f 2830static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2831{
2832 struct sched_domain *sd;
dd41f596
IM
2833 int pulled_task = -1;
2834 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2835
2836 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2837 unsigned long interval;
2838
2839 if (!(sd->flags & SD_LOAD_BALANCE))
2840 continue;
2841
2842 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2843 /* If we've pulled tasks over stop searching: */
1bd77f2d 2844 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2845 this_rq, sd);
2846
2847 interval = msecs_to_jiffies(sd->balance_interval);
2848 if (time_after(next_balance, sd->last_balance + interval))
2849 next_balance = sd->last_balance + interval;
2850 if (pulled_task)
2851 break;
1da177e4 2852 }
dd41f596 2853 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2854 /*
2855 * We are going idle. next_balance may be set based on
2856 * a busy processor. So reset next_balance.
2857 */
2858 this_rq->next_balance = next_balance;
dd41f596 2859 }
1da177e4
LT
2860}
2861
2862/*
2863 * active_load_balance is run by migration threads. It pushes running tasks
2864 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2865 * running on each physical CPU where possible, and avoids physical /
2866 * logical imbalances.
2867 *
2868 * Called with busiest_rq locked.
2869 */
70b97a7f 2870static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2871{
39507451 2872 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2873 struct sched_domain *sd;
2874 struct rq *target_rq;
39507451 2875
48f24c4d 2876 /* Is there any task to move? */
39507451 2877 if (busiest_rq->nr_running <= 1)
39507451
NP
2878 return;
2879
2880 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2881
2882 /*
39507451
NP
2883 * This condition is "impossible", if it occurs
2884 * we need to fix it. Originally reported by
2885 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2886 */
39507451 2887 BUG_ON(busiest_rq == target_rq);
1da177e4 2888
39507451
NP
2889 /* move a task from busiest_rq to target_rq */
2890 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2891 update_rq_clock(busiest_rq);
2892 update_rq_clock(target_rq);
39507451
NP
2893
2894 /* Search for an sd spanning us and the target CPU. */
c96d145e 2895 for_each_domain(target_cpu, sd) {
39507451 2896 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2897 cpu_isset(busiest_cpu, sd->span))
39507451 2898 break;
c96d145e 2899 }
39507451 2900
48f24c4d 2901 if (likely(sd)) {
2d72376b 2902 schedstat_inc(sd, alb_count);
39507451 2903
43010659
PW
2904 if (move_one_task(target_rq, target_cpu, busiest_rq,
2905 sd, CPU_IDLE))
48f24c4d
IM
2906 schedstat_inc(sd, alb_pushed);
2907 else
2908 schedstat_inc(sd, alb_failed);
2909 }
39507451 2910 spin_unlock(&target_rq->lock);
1da177e4
LT
2911}
2912
46cb4b7c
SS
2913#ifdef CONFIG_NO_HZ
2914static struct {
2915 atomic_t load_balancer;
2916 cpumask_t cpu_mask;
2917} nohz ____cacheline_aligned = {
2918 .load_balancer = ATOMIC_INIT(-1),
2919 .cpu_mask = CPU_MASK_NONE,
2920};
2921
7835b98b 2922/*
46cb4b7c
SS
2923 * This routine will try to nominate the ilb (idle load balancing)
2924 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2925 * load balancing on behalf of all those cpus. If all the cpus in the system
2926 * go into this tickless mode, then there will be no ilb owner (as there is
2927 * no need for one) and all the cpus will sleep till the next wakeup event
2928 * arrives...
2929 *
2930 * For the ilb owner, tick is not stopped. And this tick will be used
2931 * for idle load balancing. ilb owner will still be part of
2932 * nohz.cpu_mask..
7835b98b 2933 *
46cb4b7c
SS
2934 * While stopping the tick, this cpu will become the ilb owner if there
2935 * is no other owner. And will be the owner till that cpu becomes busy
2936 * or if all cpus in the system stop their ticks at which point
2937 * there is no need for ilb owner.
2938 *
2939 * When the ilb owner becomes busy, it nominates another owner, during the
2940 * next busy scheduler_tick()
2941 */
2942int select_nohz_load_balancer(int stop_tick)
2943{
2944 int cpu = smp_processor_id();
2945
2946 if (stop_tick) {
2947 cpu_set(cpu, nohz.cpu_mask);
2948 cpu_rq(cpu)->in_nohz_recently = 1;
2949
2950 /*
2951 * If we are going offline and still the leader, give up!
2952 */
2953 if (cpu_is_offline(cpu) &&
2954 atomic_read(&nohz.load_balancer) == cpu) {
2955 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2956 BUG();
2957 return 0;
2958 }
2959
2960 /* time for ilb owner also to sleep */
2961 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2962 if (atomic_read(&nohz.load_balancer) == cpu)
2963 atomic_set(&nohz.load_balancer, -1);
2964 return 0;
2965 }
2966
2967 if (atomic_read(&nohz.load_balancer) == -1) {
2968 /* make me the ilb owner */
2969 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2970 return 1;
2971 } else if (atomic_read(&nohz.load_balancer) == cpu)
2972 return 1;
2973 } else {
2974 if (!cpu_isset(cpu, nohz.cpu_mask))
2975 return 0;
2976
2977 cpu_clear(cpu, nohz.cpu_mask);
2978
2979 if (atomic_read(&nohz.load_balancer) == cpu)
2980 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2981 BUG();
2982 }
2983 return 0;
2984}
2985#endif
2986
2987static DEFINE_SPINLOCK(balancing);
2988
2989/*
7835b98b
CL
2990 * It checks each scheduling domain to see if it is due to be balanced,
2991 * and initiates a balancing operation if so.
2992 *
2993 * Balancing parameters are set up in arch_init_sched_domains.
2994 */
a9957449 2995static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2996{
46cb4b7c
SS
2997 int balance = 1;
2998 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2999 unsigned long interval;
3000 struct sched_domain *sd;
46cb4b7c 3001 /* Earliest time when we have to do rebalance again */
c9819f45 3002 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3003 int update_next_balance = 0;
1da177e4 3004
46cb4b7c 3005 for_each_domain(cpu, sd) {
1da177e4
LT
3006 if (!(sd->flags & SD_LOAD_BALANCE))
3007 continue;
3008
3009 interval = sd->balance_interval;
d15bcfdb 3010 if (idle != CPU_IDLE)
1da177e4
LT
3011 interval *= sd->busy_factor;
3012
3013 /* scale ms to jiffies */
3014 interval = msecs_to_jiffies(interval);
3015 if (unlikely(!interval))
3016 interval = 1;
dd41f596
IM
3017 if (interval > HZ*NR_CPUS/10)
3018 interval = HZ*NR_CPUS/10;
3019
1da177e4 3020
08c183f3
CL
3021 if (sd->flags & SD_SERIALIZE) {
3022 if (!spin_trylock(&balancing))
3023 goto out;
3024 }
3025
c9819f45 3026 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3027 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3028 /*
3029 * We've pulled tasks over so either we're no
5969fe06
NP
3030 * longer idle, or one of our SMT siblings is
3031 * not idle.
3032 */
d15bcfdb 3033 idle = CPU_NOT_IDLE;
1da177e4 3034 }
1bd77f2d 3035 sd->last_balance = jiffies;
1da177e4 3036 }
08c183f3
CL
3037 if (sd->flags & SD_SERIALIZE)
3038 spin_unlock(&balancing);
3039out:
f549da84 3040 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3041 next_balance = sd->last_balance + interval;
f549da84
SS
3042 update_next_balance = 1;
3043 }
783609c6
SS
3044
3045 /*
3046 * Stop the load balance at this level. There is another
3047 * CPU in our sched group which is doing load balancing more
3048 * actively.
3049 */
3050 if (!balance)
3051 break;
1da177e4 3052 }
f549da84
SS
3053
3054 /*
3055 * next_balance will be updated only when there is a need.
3056 * When the cpu is attached to null domain for ex, it will not be
3057 * updated.
3058 */
3059 if (likely(update_next_balance))
3060 rq->next_balance = next_balance;
46cb4b7c
SS
3061}
3062
3063/*
3064 * run_rebalance_domains is triggered when needed from the scheduler tick.
3065 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3066 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3067 */
3068static void run_rebalance_domains(struct softirq_action *h)
3069{
dd41f596
IM
3070 int this_cpu = smp_processor_id();
3071 struct rq *this_rq = cpu_rq(this_cpu);
3072 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3073 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3074
dd41f596 3075 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3076
3077#ifdef CONFIG_NO_HZ
3078 /*
3079 * If this cpu is the owner for idle load balancing, then do the
3080 * balancing on behalf of the other idle cpus whose ticks are
3081 * stopped.
3082 */
dd41f596
IM
3083 if (this_rq->idle_at_tick &&
3084 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3085 cpumask_t cpus = nohz.cpu_mask;
3086 struct rq *rq;
3087 int balance_cpu;
3088
dd41f596 3089 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3090 for_each_cpu_mask(balance_cpu, cpus) {
3091 /*
3092 * If this cpu gets work to do, stop the load balancing
3093 * work being done for other cpus. Next load
3094 * balancing owner will pick it up.
3095 */
3096 if (need_resched())
3097 break;
3098
de0cf899 3099 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3100
3101 rq = cpu_rq(balance_cpu);
dd41f596
IM
3102 if (time_after(this_rq->next_balance, rq->next_balance))
3103 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3104 }
3105 }
3106#endif
3107}
3108
3109/*
3110 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3111 *
3112 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3113 * idle load balancing owner or decide to stop the periodic load balancing,
3114 * if the whole system is idle.
3115 */
dd41f596 3116static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3117{
46cb4b7c
SS
3118#ifdef CONFIG_NO_HZ
3119 /*
3120 * If we were in the nohz mode recently and busy at the current
3121 * scheduler tick, then check if we need to nominate new idle
3122 * load balancer.
3123 */
3124 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3125 rq->in_nohz_recently = 0;
3126
3127 if (atomic_read(&nohz.load_balancer) == cpu) {
3128 cpu_clear(cpu, nohz.cpu_mask);
3129 atomic_set(&nohz.load_balancer, -1);
3130 }
3131
3132 if (atomic_read(&nohz.load_balancer) == -1) {
3133 /*
3134 * simple selection for now: Nominate the
3135 * first cpu in the nohz list to be the next
3136 * ilb owner.
3137 *
3138 * TBD: Traverse the sched domains and nominate
3139 * the nearest cpu in the nohz.cpu_mask.
3140 */
3141 int ilb = first_cpu(nohz.cpu_mask);
3142
3143 if (ilb != NR_CPUS)
3144 resched_cpu(ilb);
3145 }
3146 }
3147
3148 /*
3149 * If this cpu is idle and doing idle load balancing for all the
3150 * cpus with ticks stopped, is it time for that to stop?
3151 */
3152 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3153 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3154 resched_cpu(cpu);
3155 return;
3156 }
3157
3158 /*
3159 * If this cpu is idle and the idle load balancing is done by
3160 * someone else, then no need raise the SCHED_SOFTIRQ
3161 */
3162 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3163 cpu_isset(cpu, nohz.cpu_mask))
3164 return;
3165#endif
3166 if (time_after_eq(jiffies, rq->next_balance))
3167 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3168}
dd41f596
IM
3169
3170#else /* CONFIG_SMP */
3171
1da177e4
LT
3172/*
3173 * on UP we do not need to balance between CPUs:
3174 */
70b97a7f 3175static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3176{
3177}
dd41f596
IM
3178
3179/* Avoid "used but not defined" warning on UP */
3180static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3181 unsigned long max_nr_move, unsigned long max_load_move,
3182 struct sched_domain *sd, enum cpu_idle_type idle,
3183 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3184 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3185{
3186 *load_moved = 0;
3187
3188 return 0;
3189}
3190
1da177e4
LT
3191#endif
3192
1da177e4
LT
3193DEFINE_PER_CPU(struct kernel_stat, kstat);
3194
3195EXPORT_PER_CPU_SYMBOL(kstat);
3196
3197/*
41b86e9c
IM
3198 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3199 * that have not yet been banked in case the task is currently running.
1da177e4 3200 */
41b86e9c 3201unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3202{
1da177e4 3203 unsigned long flags;
41b86e9c
IM
3204 u64 ns, delta_exec;
3205 struct rq *rq;
48f24c4d 3206
41b86e9c
IM
3207 rq = task_rq_lock(p, &flags);
3208 ns = p->se.sum_exec_runtime;
3209 if (rq->curr == p) {
a8e504d2
IM
3210 update_rq_clock(rq);
3211 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3212 if ((s64)delta_exec > 0)
3213 ns += delta_exec;
3214 }
3215 task_rq_unlock(rq, &flags);
48f24c4d 3216
1da177e4
LT
3217 return ns;
3218}
3219
1da177e4
LT
3220/*
3221 * Account user cpu time to a process.
3222 * @p: the process that the cpu time gets accounted to
3223 * @hardirq_offset: the offset to subtract from hardirq_count()
3224 * @cputime: the cpu time spent in user space since the last update
3225 */
3226void account_user_time(struct task_struct *p, cputime_t cputime)
3227{
3228 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3229 cputime64_t tmp;
3230
3231 p->utime = cputime_add(p->utime, cputime);
3232
3233 /* Add user time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (TASK_NICE(p) > 0)
3236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3237 else
3238 cpustat->user = cputime64_add(cpustat->user, tmp);
3239}
3240
3241/*
3242 * Account system cpu time to a process.
3243 * @p: the process that the cpu time gets accounted to
3244 * @hardirq_offset: the offset to subtract from hardirq_count()
3245 * @cputime: the cpu time spent in kernel space since the last update
3246 */
3247void account_system_time(struct task_struct *p, int hardirq_offset,
3248 cputime_t cputime)
3249{
3250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3251 struct rq *rq = this_rq();
1da177e4
LT
3252 cputime64_t tmp;
3253
3254 p->stime = cputime_add(p->stime, cputime);
3255
3256 /* Add system time to cpustat. */
3257 tmp = cputime_to_cputime64(cputime);
3258 if (hardirq_count() - hardirq_offset)
3259 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3260 else if (softirq_count())
3261 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3262 else if (p != rq->idle)
3263 cpustat->system = cputime64_add(cpustat->system, tmp);
3264 else if (atomic_read(&rq->nr_iowait) > 0)
3265 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3266 else
3267 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3268 /* Account for system time used */
3269 acct_update_integrals(p);
1da177e4
LT
3270}
3271
3272/*
3273 * Account for involuntary wait time.
3274 * @p: the process from which the cpu time has been stolen
3275 * @steal: the cpu time spent in involuntary wait
3276 */
3277void account_steal_time(struct task_struct *p, cputime_t steal)
3278{
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3281 struct rq *rq = this_rq();
1da177e4
LT
3282
3283 if (p == rq->idle) {
3284 p->stime = cputime_add(p->stime, steal);
3285 if (atomic_read(&rq->nr_iowait) > 0)
3286 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3287 else
3288 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3289 } else
3290 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3291}
3292
7835b98b
CL
3293/*
3294 * This function gets called by the timer code, with HZ frequency.
3295 * We call it with interrupts disabled.
3296 *
3297 * It also gets called by the fork code, when changing the parent's
3298 * timeslices.
3299 */
3300void scheduler_tick(void)
3301{
7835b98b
CL
3302 int cpu = smp_processor_id();
3303 struct rq *rq = cpu_rq(cpu);
dd41f596 3304 struct task_struct *curr = rq->curr;
529c7726 3305 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3306
3307 spin_lock(&rq->lock);
546fe3c9 3308 __update_rq_clock(rq);
529c7726
IM
3309 /*
3310 * Let rq->clock advance by at least TICK_NSEC:
3311 */
3312 if (unlikely(rq->clock < next_tick))
3313 rq->clock = next_tick;
3314 rq->tick_timestamp = rq->clock;
f1a438d8 3315 update_cpu_load(rq);
dd41f596
IM
3316 if (curr != rq->idle) /* FIXME: needed? */
3317 curr->sched_class->task_tick(rq, curr);
dd41f596 3318 spin_unlock(&rq->lock);
7835b98b 3319
e418e1c2 3320#ifdef CONFIG_SMP
dd41f596
IM
3321 rq->idle_at_tick = idle_cpu(cpu);
3322 trigger_load_balance(rq, cpu);
e418e1c2 3323#endif
1da177e4
LT
3324}
3325
1da177e4
LT
3326#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3327
3328void fastcall add_preempt_count(int val)
3329{
3330 /*
3331 * Underflow?
3332 */
9a11b49a
IM
3333 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3334 return;
1da177e4
LT
3335 preempt_count() += val;
3336 /*
3337 * Spinlock count overflowing soon?
3338 */
33859f7f
MOS
3339 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3340 PREEMPT_MASK - 10);
1da177e4
LT
3341}
3342EXPORT_SYMBOL(add_preempt_count);
3343
3344void fastcall sub_preempt_count(int val)
3345{
3346 /*
3347 * Underflow?
3348 */
9a11b49a
IM
3349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3350 return;
1da177e4
LT
3351 /*
3352 * Is the spinlock portion underflowing?
3353 */
9a11b49a
IM
3354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3355 !(preempt_count() & PREEMPT_MASK)))
3356 return;
3357
1da177e4
LT
3358 preempt_count() -= val;
3359}
3360EXPORT_SYMBOL(sub_preempt_count);
3361
3362#endif
3363
3364/*
dd41f596 3365 * Print scheduling while atomic bug:
1da177e4 3366 */
dd41f596 3367static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3368{
dd41f596
IM
3369 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3370 prev->comm, preempt_count(), prev->pid);
3371 debug_show_held_locks(prev);
3372 if (irqs_disabled())
3373 print_irqtrace_events(prev);
3374 dump_stack();
3375}
1da177e4 3376
dd41f596
IM
3377/*
3378 * Various schedule()-time debugging checks and statistics:
3379 */
3380static inline void schedule_debug(struct task_struct *prev)
3381{
1da177e4
LT
3382 /*
3383 * Test if we are atomic. Since do_exit() needs to call into
3384 * schedule() atomically, we ignore that path for now.
3385 * Otherwise, whine if we are scheduling when we should not be.
3386 */
dd41f596
IM
3387 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3388 __schedule_bug(prev);
3389
1da177e4
LT
3390 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3391
2d72376b 3392 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3393#ifdef CONFIG_SCHEDSTATS
3394 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3395 schedstat_inc(this_rq(), bkl_count);
3396 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3397 }
3398#endif
dd41f596
IM
3399}
3400
3401/*
3402 * Pick up the highest-prio task:
3403 */
3404static inline struct task_struct *
ff95f3df 3405pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3406{
5522d5d5 3407 const struct sched_class *class;
dd41f596 3408 struct task_struct *p;
1da177e4
LT
3409
3410 /*
dd41f596
IM
3411 * Optimization: we know that if all tasks are in
3412 * the fair class we can call that function directly:
1da177e4 3413 */
dd41f596 3414 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3415 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3416 if (likely(p))
3417 return p;
1da177e4
LT
3418 }
3419
dd41f596
IM
3420 class = sched_class_highest;
3421 for ( ; ; ) {
fb8d4724 3422 p = class->pick_next_task(rq);
dd41f596
IM
3423 if (p)
3424 return p;
3425 /*
3426 * Will never be NULL as the idle class always
3427 * returns a non-NULL p:
3428 */
3429 class = class->next;
3430 }
3431}
1da177e4 3432
dd41f596
IM
3433/*
3434 * schedule() is the main scheduler function.
3435 */
3436asmlinkage void __sched schedule(void)
3437{
3438 struct task_struct *prev, *next;
3439 long *switch_count;
3440 struct rq *rq;
dd41f596
IM
3441 int cpu;
3442
3443need_resched:
3444 preempt_disable();
3445 cpu = smp_processor_id();
3446 rq = cpu_rq(cpu);
3447 rcu_qsctr_inc(cpu);
3448 prev = rq->curr;
3449 switch_count = &prev->nivcsw;
3450
3451 release_kernel_lock(prev);
3452need_resched_nonpreemptible:
3453
3454 schedule_debug(prev);
1da177e4 3455
1e819950
IM
3456 /*
3457 * Do the rq-clock update outside the rq lock:
3458 */
3459 local_irq_disable();
c1b3da3e 3460 __update_rq_clock(rq);
1e819950
IM
3461 spin_lock(&rq->lock);
3462 clear_tsk_need_resched(prev);
1da177e4 3463
1da177e4 3464 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3465 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3466 unlikely(signal_pending(prev)))) {
1da177e4 3467 prev->state = TASK_RUNNING;
dd41f596 3468 } else {
2e1cb74a 3469 deactivate_task(rq, prev, 1);
1da177e4 3470 }
dd41f596 3471 switch_count = &prev->nvcsw;
1da177e4
LT
3472 }
3473
dd41f596 3474 if (unlikely(!rq->nr_running))
1da177e4 3475 idle_balance(cpu, rq);
1da177e4 3476
31ee529c 3477 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3478 next = pick_next_task(rq, prev);
1da177e4
LT
3479
3480 sched_info_switch(prev, next);
dd41f596 3481
1da177e4 3482 if (likely(prev != next)) {
1da177e4
LT
3483 rq->nr_switches++;
3484 rq->curr = next;
3485 ++*switch_count;
3486
dd41f596 3487 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3488 } else
3489 spin_unlock_irq(&rq->lock);
3490
dd41f596
IM
3491 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3492 cpu = smp_processor_id();
3493 rq = cpu_rq(cpu);
1da177e4 3494 goto need_resched_nonpreemptible;
dd41f596 3495 }
1da177e4
LT
3496 preempt_enable_no_resched();
3497 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3498 goto need_resched;
3499}
1da177e4
LT
3500EXPORT_SYMBOL(schedule);
3501
3502#ifdef CONFIG_PREEMPT
3503/*
2ed6e34f 3504 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3505 * off of preempt_enable. Kernel preemptions off return from interrupt
3506 * occur there and call schedule directly.
3507 */
3508asmlinkage void __sched preempt_schedule(void)
3509{
3510 struct thread_info *ti = current_thread_info();
3511#ifdef CONFIG_PREEMPT_BKL
3512 struct task_struct *task = current;
3513 int saved_lock_depth;
3514#endif
3515 /*
3516 * If there is a non-zero preempt_count or interrupts are disabled,
3517 * we do not want to preempt the current task. Just return..
3518 */
beed33a8 3519 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3520 return;
3521
3a5c359a
AK
3522 do {
3523 add_preempt_count(PREEMPT_ACTIVE);
3524
3525 /*
3526 * We keep the big kernel semaphore locked, but we
3527 * clear ->lock_depth so that schedule() doesnt
3528 * auto-release the semaphore:
3529 */
1da177e4 3530#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3531 saved_lock_depth = task->lock_depth;
3532 task->lock_depth = -1;
1da177e4 3533#endif
3a5c359a 3534 schedule();
1da177e4 3535#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3536 task->lock_depth = saved_lock_depth;
1da177e4 3537#endif
3a5c359a 3538 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3539
3a5c359a
AK
3540 /*
3541 * Check again in case we missed a preemption opportunity
3542 * between schedule and now.
3543 */
3544 barrier();
3545 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3546}
1da177e4
LT
3547EXPORT_SYMBOL(preempt_schedule);
3548
3549/*
2ed6e34f 3550 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3551 * off of irq context.
3552 * Note, that this is called and return with irqs disabled. This will
3553 * protect us against recursive calling from irq.
3554 */
3555asmlinkage void __sched preempt_schedule_irq(void)
3556{
3557 struct thread_info *ti = current_thread_info();
3558#ifdef CONFIG_PREEMPT_BKL
3559 struct task_struct *task = current;
3560 int saved_lock_depth;
3561#endif
2ed6e34f 3562 /* Catch callers which need to be fixed */
1da177e4
LT
3563 BUG_ON(ti->preempt_count || !irqs_disabled());
3564
3a5c359a
AK
3565 do {
3566 add_preempt_count(PREEMPT_ACTIVE);
3567
3568 /*
3569 * We keep the big kernel semaphore locked, but we
3570 * clear ->lock_depth so that schedule() doesnt
3571 * auto-release the semaphore:
3572 */
1da177e4 3573#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3574 saved_lock_depth = task->lock_depth;
3575 task->lock_depth = -1;
1da177e4 3576#endif
3a5c359a
AK
3577 local_irq_enable();
3578 schedule();
3579 local_irq_disable();
1da177e4 3580#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3581 task->lock_depth = saved_lock_depth;
1da177e4 3582#endif
3a5c359a 3583 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3584
3a5c359a
AK
3585 /*
3586 * Check again in case we missed a preemption opportunity
3587 * between schedule and now.
3588 */
3589 barrier();
3590 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3591}
3592
3593#endif /* CONFIG_PREEMPT */
3594
95cdf3b7
IM
3595int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3596 void *key)
1da177e4 3597{
48f24c4d 3598 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3599}
1da177e4
LT
3600EXPORT_SYMBOL(default_wake_function);
3601
3602/*
3603 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3604 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3605 * number) then we wake all the non-exclusive tasks and one exclusive task.
3606 *
3607 * There are circumstances in which we can try to wake a task which has already
3608 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3609 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3610 */
3611static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3612 int nr_exclusive, int sync, void *key)
3613{
2e45874c 3614 wait_queue_t *curr, *next;
1da177e4 3615
2e45874c 3616 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3617 unsigned flags = curr->flags;
3618
1da177e4 3619 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3620 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3621 break;
3622 }
3623}
3624
3625/**
3626 * __wake_up - wake up threads blocked on a waitqueue.
3627 * @q: the waitqueue
3628 * @mode: which threads
3629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3630 * @key: is directly passed to the wakeup function
1da177e4
LT
3631 */
3632void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3633 int nr_exclusive, void *key)
1da177e4
LT
3634{
3635 unsigned long flags;
3636
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, 0, key);
3639 spin_unlock_irqrestore(&q->lock, flags);
3640}
1da177e4
LT
3641EXPORT_SYMBOL(__wake_up);
3642
3643/*
3644 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3645 */
3646void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3647{
3648 __wake_up_common(q, mode, 1, 0, NULL);
3649}
3650
3651/**
67be2dd1 3652 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3656 *
3657 * The sync wakeup differs that the waker knows that it will schedule
3658 * away soon, so while the target thread will be woken up, it will not
3659 * be migrated to another CPU - ie. the two threads are 'synchronized'
3660 * with each other. This can prevent needless bouncing between CPUs.
3661 *
3662 * On UP it can prevent extra preemption.
3663 */
95cdf3b7
IM
3664void fastcall
3665__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3666{
3667 unsigned long flags;
3668 int sync = 1;
3669
3670 if (unlikely(!q))
3671 return;
3672
3673 if (unlikely(!nr_exclusive))
3674 sync = 0;
3675
3676 spin_lock_irqsave(&q->lock, flags);
3677 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3678 spin_unlock_irqrestore(&q->lock, flags);
3679}
3680EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3681
3682void fastcall complete(struct completion *x)
3683{
3684 unsigned long flags;
3685
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done++;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 1, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3691}
3692EXPORT_SYMBOL(complete);
3693
3694void fastcall complete_all(struct completion *x)
3695{
3696 unsigned long flags;
3697
3698 spin_lock_irqsave(&x->wait.lock, flags);
3699 x->done += UINT_MAX/2;
3700 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3701 0, 0, NULL);
3702 spin_unlock_irqrestore(&x->wait.lock, flags);
3703}
3704EXPORT_SYMBOL(complete_all);
3705
8cbbe86d
AK
3706static inline long __sched
3707do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3708{
1da177e4
LT
3709 if (!x->done) {
3710 DECLARE_WAITQUEUE(wait, current);
3711
3712 wait.flags |= WQ_FLAG_EXCLUSIVE;
3713 __add_wait_queue_tail(&x->wait, &wait);
3714 do {
8cbbe86d
AK
3715 if (state == TASK_INTERRUPTIBLE &&
3716 signal_pending(current)) {
3717 __remove_wait_queue(&x->wait, &wait);
3718 return -ERESTARTSYS;
3719 }
3720 __set_current_state(state);
1da177e4
LT
3721 spin_unlock_irq(&x->wait.lock);
3722 timeout = schedule_timeout(timeout);
3723 spin_lock_irq(&x->wait.lock);
3724 if (!timeout) {
3725 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3726 return timeout;
1da177e4
LT
3727 }
3728 } while (!x->done);
3729 __remove_wait_queue(&x->wait, &wait);
3730 }
3731 x->done--;
1da177e4
LT
3732 return timeout;
3733}
1da177e4 3734
8cbbe86d
AK
3735static long __sched
3736wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3737{
1da177e4
LT
3738 might_sleep();
3739
3740 spin_lock_irq(&x->wait.lock);
8cbbe86d 3741 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3742 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3743 return timeout;
3744}
1da177e4 3745
8cbbe86d
AK
3746void fastcall __sched wait_for_completion(struct completion *x)
3747{
3748 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3749}
8cbbe86d 3750EXPORT_SYMBOL(wait_for_completion);
1da177e4
LT
3751
3752unsigned long fastcall __sched
8cbbe86d 3753wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3754{
8cbbe86d 3755 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3756}
8cbbe86d 3757EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3758
8cbbe86d 3759int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3760{
8cbbe86d 3761 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
0fec171c 3762}
8cbbe86d 3763EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3764
8cbbe86d
AK
3765unsigned long fastcall __sched
3766wait_for_completion_interruptible_timeout(struct completion *x,
3767 unsigned long timeout)
0fec171c 3768{
8cbbe86d 3769 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3770}
8cbbe86d 3771EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3772
8cbbe86d
AK
3773static long __sched
3774sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3775{
0fec171c
IM
3776 unsigned long flags;
3777 wait_queue_t wait;
3778
3779 init_waitqueue_entry(&wait, current);
1da177e4 3780
8cbbe86d 3781 __set_current_state(state);
1da177e4 3782
8cbbe86d
AK
3783 spin_lock_irqsave(&q->lock, flags);
3784 __add_wait_queue(q, &wait);
3785 spin_unlock(&q->lock);
3786 timeout = schedule_timeout(timeout);
3787 spin_lock_irq(&q->lock);
3788 __remove_wait_queue(q, &wait);
3789 spin_unlock_irqrestore(&q->lock, flags);
3790
3791 return timeout;
3792}
3793
3794void __sched interruptible_sleep_on(wait_queue_head_t *q)
3795{
3796 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3797}
1da177e4
LT
3798EXPORT_SYMBOL(interruptible_sleep_on);
3799
0fec171c 3800long __sched
95cdf3b7 3801interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3802{
8cbbe86d 3803 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3804}
1da177e4
LT
3805EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3806
0fec171c 3807void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3808{
8cbbe86d 3809 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3810}
1da177e4
LT
3811EXPORT_SYMBOL(sleep_on);
3812
0fec171c 3813long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3814{
8cbbe86d 3815 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3816}
1da177e4
LT
3817EXPORT_SYMBOL(sleep_on_timeout);
3818
b29739f9
IM
3819#ifdef CONFIG_RT_MUTEXES
3820
3821/*
3822 * rt_mutex_setprio - set the current priority of a task
3823 * @p: task
3824 * @prio: prio value (kernel-internal form)
3825 *
3826 * This function changes the 'effective' priority of a task. It does
3827 * not touch ->normal_prio like __setscheduler().
3828 *
3829 * Used by the rt_mutex code to implement priority inheritance logic.
3830 */
36c8b586 3831void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3832{
3833 unsigned long flags;
83b699ed 3834 int oldprio, on_rq, running;
70b97a7f 3835 struct rq *rq;
b29739f9
IM
3836
3837 BUG_ON(prio < 0 || prio > MAX_PRIO);
3838
3839 rq = task_rq_lock(p, &flags);
a8e504d2 3840 update_rq_clock(rq);
b29739f9 3841
d5f9f942 3842 oldprio = p->prio;
dd41f596 3843 on_rq = p->se.on_rq;
83b699ed
SV
3844 running = task_running(rq, p);
3845 if (on_rq) {
69be72c1 3846 dequeue_task(rq, p, 0);
83b699ed
SV
3847 if (running)
3848 p->sched_class->put_prev_task(rq, p);
3849 }
dd41f596
IM
3850
3851 if (rt_prio(prio))
3852 p->sched_class = &rt_sched_class;
3853 else
3854 p->sched_class = &fair_sched_class;
3855
b29739f9
IM
3856 p->prio = prio;
3857
dd41f596 3858 if (on_rq) {
83b699ed
SV
3859 if (running)
3860 p->sched_class->set_curr_task(rq);
8159f87e 3861 enqueue_task(rq, p, 0);
b29739f9
IM
3862 /*
3863 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3864 * our priority decreased, or if we are not currently running on
3865 * this runqueue and our priority is higher than the current's
b29739f9 3866 */
83b699ed 3867 if (running) {
d5f9f942
AM
3868 if (p->prio > oldprio)
3869 resched_task(rq->curr);
dd41f596
IM
3870 } else {
3871 check_preempt_curr(rq, p);
3872 }
b29739f9
IM
3873 }
3874 task_rq_unlock(rq, &flags);
3875}
3876
3877#endif
3878
36c8b586 3879void set_user_nice(struct task_struct *p, long nice)
1da177e4 3880{
dd41f596 3881 int old_prio, delta, on_rq;
1da177e4 3882 unsigned long flags;
70b97a7f 3883 struct rq *rq;
1da177e4
LT
3884
3885 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3886 return;
3887 /*
3888 * We have to be careful, if called from sys_setpriority(),
3889 * the task might be in the middle of scheduling on another CPU.
3890 */
3891 rq = task_rq_lock(p, &flags);
a8e504d2 3892 update_rq_clock(rq);
1da177e4
LT
3893 /*
3894 * The RT priorities are set via sched_setscheduler(), but we still
3895 * allow the 'normal' nice value to be set - but as expected
3896 * it wont have any effect on scheduling until the task is
dd41f596 3897 * SCHED_FIFO/SCHED_RR:
1da177e4 3898 */
e05606d3 3899 if (task_has_rt_policy(p)) {
1da177e4
LT
3900 p->static_prio = NICE_TO_PRIO(nice);
3901 goto out_unlock;
3902 }
dd41f596
IM
3903 on_rq = p->se.on_rq;
3904 if (on_rq) {
69be72c1 3905 dequeue_task(rq, p, 0);
79b5dddf 3906 dec_load(rq, p);
2dd73a4f 3907 }
1da177e4 3908
1da177e4 3909 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3910 set_load_weight(p);
b29739f9
IM
3911 old_prio = p->prio;
3912 p->prio = effective_prio(p);
3913 delta = p->prio - old_prio;
1da177e4 3914
dd41f596 3915 if (on_rq) {
8159f87e 3916 enqueue_task(rq, p, 0);
29b4b623 3917 inc_load(rq, p);
1da177e4 3918 /*
d5f9f942
AM
3919 * If the task increased its priority or is running and
3920 * lowered its priority, then reschedule its CPU:
1da177e4 3921 */
d5f9f942 3922 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3923 resched_task(rq->curr);
3924 }
3925out_unlock:
3926 task_rq_unlock(rq, &flags);
3927}
1da177e4
LT
3928EXPORT_SYMBOL(set_user_nice);
3929
e43379f1
MM
3930/*
3931 * can_nice - check if a task can reduce its nice value
3932 * @p: task
3933 * @nice: nice value
3934 */
36c8b586 3935int can_nice(const struct task_struct *p, const int nice)
e43379f1 3936{
024f4747
MM
3937 /* convert nice value [19,-20] to rlimit style value [1,40] */
3938 int nice_rlim = 20 - nice;
48f24c4d 3939
e43379f1
MM
3940 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3941 capable(CAP_SYS_NICE));
3942}
3943
1da177e4
LT
3944#ifdef __ARCH_WANT_SYS_NICE
3945
3946/*
3947 * sys_nice - change the priority of the current process.
3948 * @increment: priority increment
3949 *
3950 * sys_setpriority is a more generic, but much slower function that
3951 * does similar things.
3952 */
3953asmlinkage long sys_nice(int increment)
3954{
48f24c4d 3955 long nice, retval;
1da177e4
LT
3956
3957 /*
3958 * Setpriority might change our priority at the same moment.
3959 * We don't have to worry. Conceptually one call occurs first
3960 * and we have a single winner.
3961 */
e43379f1
MM
3962 if (increment < -40)
3963 increment = -40;
1da177e4
LT
3964 if (increment > 40)
3965 increment = 40;
3966
3967 nice = PRIO_TO_NICE(current->static_prio) + increment;
3968 if (nice < -20)
3969 nice = -20;
3970 if (nice > 19)
3971 nice = 19;
3972
e43379f1
MM
3973 if (increment < 0 && !can_nice(current, nice))
3974 return -EPERM;
3975
1da177e4
LT
3976 retval = security_task_setnice(current, nice);
3977 if (retval)
3978 return retval;
3979
3980 set_user_nice(current, nice);
3981 return 0;
3982}
3983
3984#endif
3985
3986/**
3987 * task_prio - return the priority value of a given task.
3988 * @p: the task in question.
3989 *
3990 * This is the priority value as seen by users in /proc.
3991 * RT tasks are offset by -200. Normal tasks are centered
3992 * around 0, value goes from -16 to +15.
3993 */
36c8b586 3994int task_prio(const struct task_struct *p)
1da177e4
LT
3995{
3996 return p->prio - MAX_RT_PRIO;
3997}
3998
3999/**
4000 * task_nice - return the nice value of a given task.
4001 * @p: the task in question.
4002 */
36c8b586 4003int task_nice(const struct task_struct *p)
1da177e4
LT
4004{
4005 return TASK_NICE(p);
4006}
1da177e4 4007EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4008
4009/**
4010 * idle_cpu - is a given cpu idle currently?
4011 * @cpu: the processor in question.
4012 */
4013int idle_cpu(int cpu)
4014{
4015 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4016}
4017
1da177e4
LT
4018/**
4019 * idle_task - return the idle task for a given cpu.
4020 * @cpu: the processor in question.
4021 */
36c8b586 4022struct task_struct *idle_task(int cpu)
1da177e4
LT
4023{
4024 return cpu_rq(cpu)->idle;
4025}
4026
4027/**
4028 * find_process_by_pid - find a process with a matching PID value.
4029 * @pid: the pid in question.
4030 */
a9957449 4031static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4032{
4033 return pid ? find_task_by_pid(pid) : current;
4034}
4035
4036/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4037static void
4038__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4039{
dd41f596 4040 BUG_ON(p->se.on_rq);
48f24c4d 4041
1da177e4 4042 p->policy = policy;
dd41f596
IM
4043 switch (p->policy) {
4044 case SCHED_NORMAL:
4045 case SCHED_BATCH:
4046 case SCHED_IDLE:
4047 p->sched_class = &fair_sched_class;
4048 break;
4049 case SCHED_FIFO:
4050 case SCHED_RR:
4051 p->sched_class = &rt_sched_class;
4052 break;
4053 }
4054
1da177e4 4055 p->rt_priority = prio;
b29739f9
IM
4056 p->normal_prio = normal_prio(p);
4057 /* we are holding p->pi_lock already */
4058 p->prio = rt_mutex_getprio(p);
2dd73a4f 4059 set_load_weight(p);
1da177e4
LT
4060}
4061
4062/**
72fd4a35 4063 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4064 * @p: the task in question.
4065 * @policy: new policy.
4066 * @param: structure containing the new RT priority.
5fe1d75f 4067 *
72fd4a35 4068 * NOTE that the task may be already dead.
1da177e4 4069 */
95cdf3b7
IM
4070int sched_setscheduler(struct task_struct *p, int policy,
4071 struct sched_param *param)
1da177e4 4072{
83b699ed 4073 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4074 unsigned long flags;
70b97a7f 4075 struct rq *rq;
1da177e4 4076
66e5393a
SR
4077 /* may grab non-irq protected spin_locks */
4078 BUG_ON(in_interrupt());
1da177e4
LT
4079recheck:
4080 /* double check policy once rq lock held */
4081 if (policy < 0)
4082 policy = oldpolicy = p->policy;
4083 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4084 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4085 policy != SCHED_IDLE)
b0a9499c 4086 return -EINVAL;
1da177e4
LT
4087 /*
4088 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4089 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4090 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4091 */
4092 if (param->sched_priority < 0 ||
95cdf3b7 4093 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4094 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4095 return -EINVAL;
e05606d3 4096 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4097 return -EINVAL;
4098
37e4ab3f
OC
4099 /*
4100 * Allow unprivileged RT tasks to decrease priority:
4101 */
4102 if (!capable(CAP_SYS_NICE)) {
e05606d3 4103 if (rt_policy(policy)) {
8dc3e909 4104 unsigned long rlim_rtprio;
8dc3e909
ON
4105
4106 if (!lock_task_sighand(p, &flags))
4107 return -ESRCH;
4108 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4109 unlock_task_sighand(p, &flags);
4110
4111 /* can't set/change the rt policy */
4112 if (policy != p->policy && !rlim_rtprio)
4113 return -EPERM;
4114
4115 /* can't increase priority */
4116 if (param->sched_priority > p->rt_priority &&
4117 param->sched_priority > rlim_rtprio)
4118 return -EPERM;
4119 }
dd41f596
IM
4120 /*
4121 * Like positive nice levels, dont allow tasks to
4122 * move out of SCHED_IDLE either:
4123 */
4124 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4125 return -EPERM;
5fe1d75f 4126
37e4ab3f
OC
4127 /* can't change other user's priorities */
4128 if ((current->euid != p->euid) &&
4129 (current->euid != p->uid))
4130 return -EPERM;
4131 }
1da177e4
LT
4132
4133 retval = security_task_setscheduler(p, policy, param);
4134 if (retval)
4135 return retval;
b29739f9
IM
4136 /*
4137 * make sure no PI-waiters arrive (or leave) while we are
4138 * changing the priority of the task:
4139 */
4140 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4141 /*
4142 * To be able to change p->policy safely, the apropriate
4143 * runqueue lock must be held.
4144 */
b29739f9 4145 rq = __task_rq_lock(p);
1da177e4
LT
4146 /* recheck policy now with rq lock held */
4147 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4148 policy = oldpolicy = -1;
b29739f9
IM
4149 __task_rq_unlock(rq);
4150 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4151 goto recheck;
4152 }
2daa3577 4153 update_rq_clock(rq);
dd41f596 4154 on_rq = p->se.on_rq;
83b699ed
SV
4155 running = task_running(rq, p);
4156 if (on_rq) {
2e1cb74a 4157 deactivate_task(rq, p, 0);
83b699ed
SV
4158 if (running)
4159 p->sched_class->put_prev_task(rq, p);
4160 }
f6b53205 4161
1da177e4 4162 oldprio = p->prio;
dd41f596 4163 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4164
dd41f596 4165 if (on_rq) {
83b699ed
SV
4166 if (running)
4167 p->sched_class->set_curr_task(rq);
dd41f596 4168 activate_task(rq, p, 0);
1da177e4
LT
4169 /*
4170 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4171 * our priority decreased, or if we are not currently running on
4172 * this runqueue and our priority is higher than the current's
1da177e4 4173 */
83b699ed 4174 if (running) {
d5f9f942
AM
4175 if (p->prio > oldprio)
4176 resched_task(rq->curr);
dd41f596
IM
4177 } else {
4178 check_preempt_curr(rq, p);
4179 }
1da177e4 4180 }
b29739f9
IM
4181 __task_rq_unlock(rq);
4182 spin_unlock_irqrestore(&p->pi_lock, flags);
4183
95e02ca9
TG
4184 rt_mutex_adjust_pi(p);
4185
1da177e4
LT
4186 return 0;
4187}
4188EXPORT_SYMBOL_GPL(sched_setscheduler);
4189
95cdf3b7
IM
4190static int
4191do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4192{
1da177e4
LT
4193 struct sched_param lparam;
4194 struct task_struct *p;
36c8b586 4195 int retval;
1da177e4
LT
4196
4197 if (!param || pid < 0)
4198 return -EINVAL;
4199 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4200 return -EFAULT;
5fe1d75f
ON
4201
4202 rcu_read_lock();
4203 retval = -ESRCH;
1da177e4 4204 p = find_process_by_pid(pid);
5fe1d75f
ON
4205 if (p != NULL)
4206 retval = sched_setscheduler(p, policy, &lparam);
4207 rcu_read_unlock();
36c8b586 4208
1da177e4
LT
4209 return retval;
4210}
4211
4212/**
4213 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4214 * @pid: the pid in question.
4215 * @policy: new policy.
4216 * @param: structure containing the new RT priority.
4217 */
4218asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4219 struct sched_param __user *param)
4220{
c21761f1
JB
4221 /* negative values for policy are not valid */
4222 if (policy < 0)
4223 return -EINVAL;
4224
1da177e4
LT
4225 return do_sched_setscheduler(pid, policy, param);
4226}
4227
4228/**
4229 * sys_sched_setparam - set/change the RT priority of a thread
4230 * @pid: the pid in question.
4231 * @param: structure containing the new RT priority.
4232 */
4233asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4234{
4235 return do_sched_setscheduler(pid, -1, param);
4236}
4237
4238/**
4239 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4240 * @pid: the pid in question.
4241 */
4242asmlinkage long sys_sched_getscheduler(pid_t pid)
4243{
36c8b586 4244 struct task_struct *p;
3a5c359a 4245 int retval;
1da177e4
LT
4246
4247 if (pid < 0)
3a5c359a 4248 return -EINVAL;
1da177e4
LT
4249
4250 retval = -ESRCH;
4251 read_lock(&tasklist_lock);
4252 p = find_process_by_pid(pid);
4253 if (p) {
4254 retval = security_task_getscheduler(p);
4255 if (!retval)
4256 retval = p->policy;
4257 }
4258 read_unlock(&tasklist_lock);
1da177e4
LT
4259 return retval;
4260}
4261
4262/**
4263 * sys_sched_getscheduler - get the RT priority of a thread
4264 * @pid: the pid in question.
4265 * @param: structure containing the RT priority.
4266 */
4267asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4268{
4269 struct sched_param lp;
36c8b586 4270 struct task_struct *p;
3a5c359a 4271 int retval;
1da177e4
LT
4272
4273 if (!param || pid < 0)
3a5c359a 4274 return -EINVAL;
1da177e4
LT
4275
4276 read_lock(&tasklist_lock);
4277 p = find_process_by_pid(pid);
4278 retval = -ESRCH;
4279 if (!p)
4280 goto out_unlock;
4281
4282 retval = security_task_getscheduler(p);
4283 if (retval)
4284 goto out_unlock;
4285
4286 lp.sched_priority = p->rt_priority;
4287 read_unlock(&tasklist_lock);
4288
4289 /*
4290 * This one might sleep, we cannot do it with a spinlock held ...
4291 */
4292 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4293
1da177e4
LT
4294 return retval;
4295
4296out_unlock:
4297 read_unlock(&tasklist_lock);
4298 return retval;
4299}
4300
4301long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4302{
1da177e4 4303 cpumask_t cpus_allowed;
36c8b586
IM
4304 struct task_struct *p;
4305 int retval;
1da177e4 4306
5be9361c 4307 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4308 read_lock(&tasklist_lock);
4309
4310 p = find_process_by_pid(pid);
4311 if (!p) {
4312 read_unlock(&tasklist_lock);
5be9361c 4313 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4314 return -ESRCH;
4315 }
4316
4317 /*
4318 * It is not safe to call set_cpus_allowed with the
4319 * tasklist_lock held. We will bump the task_struct's
4320 * usage count and then drop tasklist_lock.
4321 */
4322 get_task_struct(p);
4323 read_unlock(&tasklist_lock);
4324
4325 retval = -EPERM;
4326 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4327 !capable(CAP_SYS_NICE))
4328 goto out_unlock;
4329
e7834f8f
DQ
4330 retval = security_task_setscheduler(p, 0, NULL);
4331 if (retval)
4332 goto out_unlock;
4333
1da177e4
LT
4334 cpus_allowed = cpuset_cpus_allowed(p);
4335 cpus_and(new_mask, new_mask, cpus_allowed);
4336 retval = set_cpus_allowed(p, new_mask);
4337
4338out_unlock:
4339 put_task_struct(p);
5be9361c 4340 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4341 return retval;
4342}
4343
4344static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4345 cpumask_t *new_mask)
4346{
4347 if (len < sizeof(cpumask_t)) {
4348 memset(new_mask, 0, sizeof(cpumask_t));
4349 } else if (len > sizeof(cpumask_t)) {
4350 len = sizeof(cpumask_t);
4351 }
4352 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4353}
4354
4355/**
4356 * sys_sched_setaffinity - set the cpu affinity of a process
4357 * @pid: pid of the process
4358 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4359 * @user_mask_ptr: user-space pointer to the new cpu mask
4360 */
4361asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4362 unsigned long __user *user_mask_ptr)
4363{
4364 cpumask_t new_mask;
4365 int retval;
4366
4367 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4368 if (retval)
4369 return retval;
4370
4371 return sched_setaffinity(pid, new_mask);
4372}
4373
4374/*
4375 * Represents all cpu's present in the system
4376 * In systems capable of hotplug, this map could dynamically grow
4377 * as new cpu's are detected in the system via any platform specific
4378 * method, such as ACPI for e.g.
4379 */
4380
4cef0c61 4381cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4382EXPORT_SYMBOL(cpu_present_map);
4383
4384#ifndef CONFIG_SMP
4cef0c61 4385cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4386EXPORT_SYMBOL(cpu_online_map);
4387
4cef0c61 4388cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4389EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4390#endif
4391
4392long sched_getaffinity(pid_t pid, cpumask_t *mask)
4393{
36c8b586 4394 struct task_struct *p;
1da177e4 4395 int retval;
1da177e4 4396
5be9361c 4397 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4398 read_lock(&tasklist_lock);
4399
4400 retval = -ESRCH;
4401 p = find_process_by_pid(pid);
4402 if (!p)
4403 goto out_unlock;
4404
e7834f8f
DQ
4405 retval = security_task_getscheduler(p);
4406 if (retval)
4407 goto out_unlock;
4408
2f7016d9 4409 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4410
4411out_unlock:
4412 read_unlock(&tasklist_lock);
5be9361c 4413 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4414
9531b62f 4415 return retval;
1da177e4
LT
4416}
4417
4418/**
4419 * sys_sched_getaffinity - get the cpu affinity of a process
4420 * @pid: pid of the process
4421 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4422 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4423 */
4424asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4425 unsigned long __user *user_mask_ptr)
4426{
4427 int ret;
4428 cpumask_t mask;
4429
4430 if (len < sizeof(cpumask_t))
4431 return -EINVAL;
4432
4433 ret = sched_getaffinity(pid, &mask);
4434 if (ret < 0)
4435 return ret;
4436
4437 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4438 return -EFAULT;
4439
4440 return sizeof(cpumask_t);
4441}
4442
4443/**
4444 * sys_sched_yield - yield the current processor to other threads.
4445 *
dd41f596
IM
4446 * This function yields the current CPU to other tasks. If there are no
4447 * other threads running on this CPU then this function will return.
1da177e4
LT
4448 */
4449asmlinkage long sys_sched_yield(void)
4450{
70b97a7f 4451 struct rq *rq = this_rq_lock();
1da177e4 4452
2d72376b 4453 schedstat_inc(rq, yld_count);
4530d7ab 4454 current->sched_class->yield_task(rq);
1da177e4
LT
4455
4456 /*
4457 * Since we are going to call schedule() anyway, there's
4458 * no need to preempt or enable interrupts:
4459 */
4460 __release(rq->lock);
8a25d5de 4461 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4462 _raw_spin_unlock(&rq->lock);
4463 preempt_enable_no_resched();
4464
4465 schedule();
4466
4467 return 0;
4468}
4469
e7b38404 4470static void __cond_resched(void)
1da177e4 4471{
8e0a43d8
IM
4472#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4473 __might_sleep(__FILE__, __LINE__);
4474#endif
5bbcfd90
IM
4475 /*
4476 * The BKS might be reacquired before we have dropped
4477 * PREEMPT_ACTIVE, which could trigger a second
4478 * cond_resched() call.
4479 */
1da177e4
LT
4480 do {
4481 add_preempt_count(PREEMPT_ACTIVE);
4482 schedule();
4483 sub_preempt_count(PREEMPT_ACTIVE);
4484 } while (need_resched());
4485}
4486
4487int __sched cond_resched(void)
4488{
9414232f
IM
4489 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4490 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4491 __cond_resched();
4492 return 1;
4493 }
4494 return 0;
4495}
1da177e4
LT
4496EXPORT_SYMBOL(cond_resched);
4497
4498/*
4499 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4500 * call schedule, and on return reacquire the lock.
4501 *
4502 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4503 * operations here to prevent schedule() from being called twice (once via
4504 * spin_unlock(), once by hand).
4505 */
95cdf3b7 4506int cond_resched_lock(spinlock_t *lock)
1da177e4 4507{
6df3cecb
JK
4508 int ret = 0;
4509
1da177e4
LT
4510 if (need_lockbreak(lock)) {
4511 spin_unlock(lock);
4512 cpu_relax();
6df3cecb 4513 ret = 1;
1da177e4
LT
4514 spin_lock(lock);
4515 }
9414232f 4516 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4517 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4518 _raw_spin_unlock(lock);
4519 preempt_enable_no_resched();
4520 __cond_resched();
6df3cecb 4521 ret = 1;
1da177e4 4522 spin_lock(lock);
1da177e4 4523 }
6df3cecb 4524 return ret;
1da177e4 4525}
1da177e4
LT
4526EXPORT_SYMBOL(cond_resched_lock);
4527
4528int __sched cond_resched_softirq(void)
4529{
4530 BUG_ON(!in_softirq());
4531
9414232f 4532 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4533 local_bh_enable();
1da177e4
LT
4534 __cond_resched();
4535 local_bh_disable();
4536 return 1;
4537 }
4538 return 0;
4539}
1da177e4
LT
4540EXPORT_SYMBOL(cond_resched_softirq);
4541
1da177e4
LT
4542/**
4543 * yield - yield the current processor to other threads.
4544 *
72fd4a35 4545 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4546 * thread runnable and calls sys_sched_yield().
4547 */
4548void __sched yield(void)
4549{
4550 set_current_state(TASK_RUNNING);
4551 sys_sched_yield();
4552}
1da177e4
LT
4553EXPORT_SYMBOL(yield);
4554
4555/*
4556 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4557 * that process accounting knows that this is a task in IO wait state.
4558 *
4559 * But don't do that if it is a deliberate, throttling IO wait (this task
4560 * has set its backing_dev_info: the queue against which it should throttle)
4561 */
4562void __sched io_schedule(void)
4563{
70b97a7f 4564 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4565
0ff92245 4566 delayacct_blkio_start();
1da177e4
LT
4567 atomic_inc(&rq->nr_iowait);
4568 schedule();
4569 atomic_dec(&rq->nr_iowait);
0ff92245 4570 delayacct_blkio_end();
1da177e4 4571}
1da177e4
LT
4572EXPORT_SYMBOL(io_schedule);
4573
4574long __sched io_schedule_timeout(long timeout)
4575{
70b97a7f 4576 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4577 long ret;
4578
0ff92245 4579 delayacct_blkio_start();
1da177e4
LT
4580 atomic_inc(&rq->nr_iowait);
4581 ret = schedule_timeout(timeout);
4582 atomic_dec(&rq->nr_iowait);
0ff92245 4583 delayacct_blkio_end();
1da177e4
LT
4584 return ret;
4585}
4586
4587/**
4588 * sys_sched_get_priority_max - return maximum RT priority.
4589 * @policy: scheduling class.
4590 *
4591 * this syscall returns the maximum rt_priority that can be used
4592 * by a given scheduling class.
4593 */
4594asmlinkage long sys_sched_get_priority_max(int policy)
4595{
4596 int ret = -EINVAL;
4597
4598 switch (policy) {
4599 case SCHED_FIFO:
4600 case SCHED_RR:
4601 ret = MAX_USER_RT_PRIO-1;
4602 break;
4603 case SCHED_NORMAL:
b0a9499c 4604 case SCHED_BATCH:
dd41f596 4605 case SCHED_IDLE:
1da177e4
LT
4606 ret = 0;
4607 break;
4608 }
4609 return ret;
4610}
4611
4612/**
4613 * sys_sched_get_priority_min - return minimum RT priority.
4614 * @policy: scheduling class.
4615 *
4616 * this syscall returns the minimum rt_priority that can be used
4617 * by a given scheduling class.
4618 */
4619asmlinkage long sys_sched_get_priority_min(int policy)
4620{
4621 int ret = -EINVAL;
4622
4623 switch (policy) {
4624 case SCHED_FIFO:
4625 case SCHED_RR:
4626 ret = 1;
4627 break;
4628 case SCHED_NORMAL:
b0a9499c 4629 case SCHED_BATCH:
dd41f596 4630 case SCHED_IDLE:
1da177e4
LT
4631 ret = 0;
4632 }
4633 return ret;
4634}
4635
4636/**
4637 * sys_sched_rr_get_interval - return the default timeslice of a process.
4638 * @pid: pid of the process.
4639 * @interval: userspace pointer to the timeslice value.
4640 *
4641 * this syscall writes the default timeslice value of a given process
4642 * into the user-space timespec buffer. A value of '0' means infinity.
4643 */
4644asmlinkage
4645long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4646{
36c8b586 4647 struct task_struct *p;
a4ec24b4 4648 unsigned int time_slice;
3a5c359a 4649 int retval;
1da177e4 4650 struct timespec t;
1da177e4
LT
4651
4652 if (pid < 0)
3a5c359a 4653 return -EINVAL;
1da177e4
LT
4654
4655 retval = -ESRCH;
4656 read_lock(&tasklist_lock);
4657 p = find_process_by_pid(pid);
4658 if (!p)
4659 goto out_unlock;
4660
4661 retval = security_task_getscheduler(p);
4662 if (retval)
4663 goto out_unlock;
4664
a4ec24b4
DA
4665 if (p->policy == SCHED_FIFO)
4666 time_slice = 0;
4667 else if (p->policy == SCHED_RR)
4668 time_slice = DEF_TIMESLICE;
4669 else {
4670 struct sched_entity *se = &p->se;
4671 unsigned long flags;
4672 struct rq *rq;
4673
4674 rq = task_rq_lock(p, &flags);
4675 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4676 task_rq_unlock(rq, &flags);
4677 }
1da177e4 4678 read_unlock(&tasklist_lock);
a4ec24b4 4679 jiffies_to_timespec(time_slice, &t);
1da177e4 4680 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4681 return retval;
3a5c359a 4682
1da177e4
LT
4683out_unlock:
4684 read_unlock(&tasklist_lock);
4685 return retval;
4686}
4687
2ed6e34f 4688static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4689
4690static void show_task(struct task_struct *p)
1da177e4 4691{
1da177e4 4692 unsigned long free = 0;
36c8b586 4693 unsigned state;
1da177e4 4694
1da177e4 4695 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4696 printk("%-13.13s %c", p->comm,
4697 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4698#if BITS_PER_LONG == 32
1da177e4 4699 if (state == TASK_RUNNING)
4bd77321 4700 printk(" running ");
1da177e4 4701 else
4bd77321 4702 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4703#else
4704 if (state == TASK_RUNNING)
4bd77321 4705 printk(" running task ");
1da177e4
LT
4706 else
4707 printk(" %016lx ", thread_saved_pc(p));
4708#endif
4709#ifdef CONFIG_DEBUG_STACK_USAGE
4710 {
10ebffde 4711 unsigned long *n = end_of_stack(p);
1da177e4
LT
4712 while (!*n)
4713 n++;
10ebffde 4714 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4715 }
4716#endif
4bd77321 4717 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4718
4719 if (state != TASK_RUNNING)
4720 show_stack(p, NULL);
4721}
4722
e59e2ae2 4723void show_state_filter(unsigned long state_filter)
1da177e4 4724{
36c8b586 4725 struct task_struct *g, *p;
1da177e4 4726
4bd77321
IM
4727#if BITS_PER_LONG == 32
4728 printk(KERN_INFO
4729 " task PC stack pid father\n");
1da177e4 4730#else
4bd77321
IM
4731 printk(KERN_INFO
4732 " task PC stack pid father\n");
1da177e4
LT
4733#endif
4734 read_lock(&tasklist_lock);
4735 do_each_thread(g, p) {
4736 /*
4737 * reset the NMI-timeout, listing all files on a slow
4738 * console might take alot of time:
4739 */
4740 touch_nmi_watchdog();
39bc89fd 4741 if (!state_filter || (p->state & state_filter))
e59e2ae2 4742 show_task(p);
1da177e4
LT
4743 } while_each_thread(g, p);
4744
04c9167f
JF
4745 touch_all_softlockup_watchdogs();
4746
dd41f596
IM
4747#ifdef CONFIG_SCHED_DEBUG
4748 sysrq_sched_debug_show();
4749#endif
1da177e4 4750 read_unlock(&tasklist_lock);
e59e2ae2
IM
4751 /*
4752 * Only show locks if all tasks are dumped:
4753 */
4754 if (state_filter == -1)
4755 debug_show_all_locks();
1da177e4
LT
4756}
4757
1df21055
IM
4758void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4759{
dd41f596 4760 idle->sched_class = &idle_sched_class;
1df21055
IM
4761}
4762
f340c0d1
IM
4763/**
4764 * init_idle - set up an idle thread for a given CPU
4765 * @idle: task in question
4766 * @cpu: cpu the idle task belongs to
4767 *
4768 * NOTE: this function does not set the idle thread's NEED_RESCHED
4769 * flag, to make booting more robust.
4770 */
5c1e1767 4771void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4772{
70b97a7f 4773 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4774 unsigned long flags;
4775
dd41f596
IM
4776 __sched_fork(idle);
4777 idle->se.exec_start = sched_clock();
4778
b29739f9 4779 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4780 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4781 __set_task_cpu(idle, cpu);
1da177e4
LT
4782
4783 spin_lock_irqsave(&rq->lock, flags);
4784 rq->curr = rq->idle = idle;
4866cde0
NP
4785#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4786 idle->oncpu = 1;
4787#endif
1da177e4
LT
4788 spin_unlock_irqrestore(&rq->lock, flags);
4789
4790 /* Set the preempt count _outside_ the spinlocks! */
4791#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4792 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4793#else
a1261f54 4794 task_thread_info(idle)->preempt_count = 0;
1da177e4 4795#endif
dd41f596
IM
4796 /*
4797 * The idle tasks have their own, simple scheduling class:
4798 */
4799 idle->sched_class = &idle_sched_class;
1da177e4
LT
4800}
4801
4802/*
4803 * In a system that switches off the HZ timer nohz_cpu_mask
4804 * indicates which cpus entered this state. This is used
4805 * in the rcu update to wait only for active cpus. For system
4806 * which do not switch off the HZ timer nohz_cpu_mask should
4807 * always be CPU_MASK_NONE.
4808 */
4809cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4810
4811#ifdef CONFIG_SMP
4812/*
4813 * This is how migration works:
4814 *
70b97a7f 4815 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4816 * runqueue and wake up that CPU's migration thread.
4817 * 2) we down() the locked semaphore => thread blocks.
4818 * 3) migration thread wakes up (implicitly it forces the migrated
4819 * thread off the CPU)
4820 * 4) it gets the migration request and checks whether the migrated
4821 * task is still in the wrong runqueue.
4822 * 5) if it's in the wrong runqueue then the migration thread removes
4823 * it and puts it into the right queue.
4824 * 6) migration thread up()s the semaphore.
4825 * 7) we wake up and the migration is done.
4826 */
4827
4828/*
4829 * Change a given task's CPU affinity. Migrate the thread to a
4830 * proper CPU and schedule it away if the CPU it's executing on
4831 * is removed from the allowed bitmask.
4832 *
4833 * NOTE: the caller must have a valid reference to the task, the
4834 * task must not exit() & deallocate itself prematurely. The
4835 * call is not atomic; no spinlocks may be held.
4836 */
36c8b586 4837int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4838{
70b97a7f 4839 struct migration_req req;
1da177e4 4840 unsigned long flags;
70b97a7f 4841 struct rq *rq;
48f24c4d 4842 int ret = 0;
1da177e4
LT
4843
4844 rq = task_rq_lock(p, &flags);
4845 if (!cpus_intersects(new_mask, cpu_online_map)) {
4846 ret = -EINVAL;
4847 goto out;
4848 }
4849
4850 p->cpus_allowed = new_mask;
4851 /* Can the task run on the task's current CPU? If so, we're done */
4852 if (cpu_isset(task_cpu(p), new_mask))
4853 goto out;
4854
4855 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4856 /* Need help from migration thread: drop lock and wait. */
4857 task_rq_unlock(rq, &flags);
4858 wake_up_process(rq->migration_thread);
4859 wait_for_completion(&req.done);
4860 tlb_migrate_finish(p->mm);
4861 return 0;
4862 }
4863out:
4864 task_rq_unlock(rq, &flags);
48f24c4d 4865
1da177e4
LT
4866 return ret;
4867}
1da177e4
LT
4868EXPORT_SYMBOL_GPL(set_cpus_allowed);
4869
4870/*
4871 * Move (not current) task off this cpu, onto dest cpu. We're doing
4872 * this because either it can't run here any more (set_cpus_allowed()
4873 * away from this CPU, or CPU going down), or because we're
4874 * attempting to rebalance this task on exec (sched_exec).
4875 *
4876 * So we race with normal scheduler movements, but that's OK, as long
4877 * as the task is no longer on this CPU.
efc30814
KK
4878 *
4879 * Returns non-zero if task was successfully migrated.
1da177e4 4880 */
efc30814 4881static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4882{
70b97a7f 4883 struct rq *rq_dest, *rq_src;
dd41f596 4884 int ret = 0, on_rq;
1da177e4
LT
4885
4886 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4887 return ret;
1da177e4
LT
4888
4889 rq_src = cpu_rq(src_cpu);
4890 rq_dest = cpu_rq(dest_cpu);
4891
4892 double_rq_lock(rq_src, rq_dest);
4893 /* Already moved. */
4894 if (task_cpu(p) != src_cpu)
4895 goto out;
4896 /* Affinity changed (again). */
4897 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4898 goto out;
4899
dd41f596 4900 on_rq = p->se.on_rq;
6e82a3be 4901 if (on_rq)
2e1cb74a 4902 deactivate_task(rq_src, p, 0);
6e82a3be 4903
1da177e4 4904 set_task_cpu(p, dest_cpu);
dd41f596
IM
4905 if (on_rq) {
4906 activate_task(rq_dest, p, 0);
4907 check_preempt_curr(rq_dest, p);
1da177e4 4908 }
efc30814 4909 ret = 1;
1da177e4
LT
4910out:
4911 double_rq_unlock(rq_src, rq_dest);
efc30814 4912 return ret;
1da177e4
LT
4913}
4914
4915/*
4916 * migration_thread - this is a highprio system thread that performs
4917 * thread migration by bumping thread off CPU then 'pushing' onto
4918 * another runqueue.
4919 */
95cdf3b7 4920static int migration_thread(void *data)
1da177e4 4921{
1da177e4 4922 int cpu = (long)data;
70b97a7f 4923 struct rq *rq;
1da177e4
LT
4924
4925 rq = cpu_rq(cpu);
4926 BUG_ON(rq->migration_thread != current);
4927
4928 set_current_state(TASK_INTERRUPTIBLE);
4929 while (!kthread_should_stop()) {
70b97a7f 4930 struct migration_req *req;
1da177e4 4931 struct list_head *head;
1da177e4 4932
1da177e4
LT
4933 spin_lock_irq(&rq->lock);
4934
4935 if (cpu_is_offline(cpu)) {
4936 spin_unlock_irq(&rq->lock);
4937 goto wait_to_die;
4938 }
4939
4940 if (rq->active_balance) {
4941 active_load_balance(rq, cpu);
4942 rq->active_balance = 0;
4943 }
4944
4945 head = &rq->migration_queue;
4946
4947 if (list_empty(head)) {
4948 spin_unlock_irq(&rq->lock);
4949 schedule();
4950 set_current_state(TASK_INTERRUPTIBLE);
4951 continue;
4952 }
70b97a7f 4953 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4954 list_del_init(head->next);
4955
674311d5
NP
4956 spin_unlock(&rq->lock);
4957 __migrate_task(req->task, cpu, req->dest_cpu);
4958 local_irq_enable();
1da177e4
LT
4959
4960 complete(&req->done);
4961 }
4962 __set_current_state(TASK_RUNNING);
4963 return 0;
4964
4965wait_to_die:
4966 /* Wait for kthread_stop */
4967 set_current_state(TASK_INTERRUPTIBLE);
4968 while (!kthread_should_stop()) {
4969 schedule();
4970 set_current_state(TASK_INTERRUPTIBLE);
4971 }
4972 __set_current_state(TASK_RUNNING);
4973 return 0;
4974}
4975
4976#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
4977/*
4978 * Figure out where task on dead CPU should go, use force if neccessary.
4979 * NOTE: interrupts should be disabled by the caller
4980 */
48f24c4d 4981static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 4982{
efc30814 4983 unsigned long flags;
1da177e4 4984 cpumask_t mask;
70b97a7f
IM
4985 struct rq *rq;
4986 int dest_cpu;
1da177e4 4987
3a5c359a
AK
4988 do {
4989 /* On same node? */
4990 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4991 cpus_and(mask, mask, p->cpus_allowed);
4992 dest_cpu = any_online_cpu(mask);
4993
4994 /* On any allowed CPU? */
4995 if (dest_cpu == NR_CPUS)
4996 dest_cpu = any_online_cpu(p->cpus_allowed);
4997
4998 /* No more Mr. Nice Guy. */
4999 if (dest_cpu == NR_CPUS) {
5000 rq = task_rq_lock(p, &flags);
5001 cpus_setall(p->cpus_allowed);
5002 dest_cpu = any_online_cpu(p->cpus_allowed);
5003 task_rq_unlock(rq, &flags);
1da177e4 5004
3a5c359a
AK
5005 /*
5006 * Don't tell them about moving exiting tasks or
5007 * kernel threads (both mm NULL), since they never
5008 * leave kernel.
5009 */
5010 if (p->mm && printk_ratelimit())
5011 printk(KERN_INFO "process %d (%s) no "
5012 "longer affine to cpu%d\n",
5013 p->pid, p->comm, dead_cpu);
5014 }
5015 } while (!__migrate_task(p, dead_cpu, dest_cpu));
1da177e4
LT
5016}
5017
5018/*
5019 * While a dead CPU has no uninterruptible tasks queued at this point,
5020 * it might still have a nonzero ->nr_uninterruptible counter, because
5021 * for performance reasons the counter is not stricly tracking tasks to
5022 * their home CPUs. So we just add the counter to another CPU's counter,
5023 * to keep the global sum constant after CPU-down:
5024 */
70b97a7f 5025static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5026{
70b97a7f 5027 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5028 unsigned long flags;
5029
5030 local_irq_save(flags);
5031 double_rq_lock(rq_src, rq_dest);
5032 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5033 rq_src->nr_uninterruptible = 0;
5034 double_rq_unlock(rq_src, rq_dest);
5035 local_irq_restore(flags);
5036}
5037
5038/* Run through task list and migrate tasks from the dead cpu. */
5039static void migrate_live_tasks(int src_cpu)
5040{
48f24c4d 5041 struct task_struct *p, *t;
1da177e4
LT
5042
5043 write_lock_irq(&tasklist_lock);
5044
48f24c4d
IM
5045 do_each_thread(t, p) {
5046 if (p == current)
1da177e4
LT
5047 continue;
5048
48f24c4d
IM
5049 if (task_cpu(p) == src_cpu)
5050 move_task_off_dead_cpu(src_cpu, p);
5051 } while_each_thread(t, p);
1da177e4
LT
5052
5053 write_unlock_irq(&tasklist_lock);
5054}
5055
a9957449
AD
5056/*
5057 * activate_idle_task - move idle task to the _front_ of runqueue.
5058 */
5059static void activate_idle_task(struct task_struct *p, struct rq *rq)
5060{
5061 update_rq_clock(rq);
5062
5063 if (p->state == TASK_UNINTERRUPTIBLE)
5064 rq->nr_uninterruptible--;
5065
5066 enqueue_task(rq, p, 0);
5067 inc_nr_running(p, rq);
5068}
5069
dd41f596
IM
5070/*
5071 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5072 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5073 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5074 */
5075void sched_idle_next(void)
5076{
48f24c4d 5077 int this_cpu = smp_processor_id();
70b97a7f 5078 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5079 struct task_struct *p = rq->idle;
5080 unsigned long flags;
5081
5082 /* cpu has to be offline */
48f24c4d 5083 BUG_ON(cpu_online(this_cpu));
1da177e4 5084
48f24c4d
IM
5085 /*
5086 * Strictly not necessary since rest of the CPUs are stopped by now
5087 * and interrupts disabled on the current cpu.
1da177e4
LT
5088 */
5089 spin_lock_irqsave(&rq->lock, flags);
5090
dd41f596 5091 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5092
5093 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5094 activate_idle_task(p, rq);
1da177e4
LT
5095
5096 spin_unlock_irqrestore(&rq->lock, flags);
5097}
5098
48f24c4d
IM
5099/*
5100 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5101 * offline.
5102 */
5103void idle_task_exit(void)
5104{
5105 struct mm_struct *mm = current->active_mm;
5106
5107 BUG_ON(cpu_online(smp_processor_id()));
5108
5109 if (mm != &init_mm)
5110 switch_mm(mm, &init_mm, current);
5111 mmdrop(mm);
5112}
5113
054b9108 5114/* called under rq->lock with disabled interrupts */
36c8b586 5115static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5116{
70b97a7f 5117 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5118
5119 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5120 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5121
5122 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5123 BUG_ON(p->state == TASK_DEAD);
1da177e4 5124
48f24c4d 5125 get_task_struct(p);
1da177e4
LT
5126
5127 /*
5128 * Drop lock around migration; if someone else moves it,
5129 * that's OK. No task can be added to this CPU, so iteration is
5130 * fine.
054b9108 5131 * NOTE: interrupts should be left disabled --dev@
1da177e4 5132 */
054b9108 5133 spin_unlock(&rq->lock);
48f24c4d 5134 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5135 spin_lock(&rq->lock);
1da177e4 5136
48f24c4d 5137 put_task_struct(p);
1da177e4
LT
5138}
5139
5140/* release_task() removes task from tasklist, so we won't find dead tasks. */
5141static void migrate_dead_tasks(unsigned int dead_cpu)
5142{
70b97a7f 5143 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5144 struct task_struct *next;
48f24c4d 5145
dd41f596
IM
5146 for ( ; ; ) {
5147 if (!rq->nr_running)
5148 break;
a8e504d2 5149 update_rq_clock(rq);
ff95f3df 5150 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5151 if (!next)
5152 break;
5153 migrate_dead(dead_cpu, next);
e692ab53 5154
1da177e4
LT
5155 }
5156}
5157#endif /* CONFIG_HOTPLUG_CPU */
5158
e692ab53
NP
5159#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5160
5161static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5162 {
5163 .procname = "sched_domain",
c57baf1e 5164 .mode = 0555,
e0361851 5165 },
e692ab53
NP
5166 {0,},
5167};
5168
5169static struct ctl_table sd_ctl_root[] = {
e0361851 5170 {
c57baf1e 5171 .ctl_name = CTL_KERN,
e0361851 5172 .procname = "kernel",
c57baf1e 5173 .mode = 0555,
e0361851
AD
5174 .child = sd_ctl_dir,
5175 },
e692ab53
NP
5176 {0,},
5177};
5178
5179static struct ctl_table *sd_alloc_ctl_entry(int n)
5180{
5181 struct ctl_table *entry =
5182 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5183
5184 BUG_ON(!entry);
5185 memset(entry, 0, n * sizeof(struct ctl_table));
5186
5187 return entry;
5188}
5189
5190static void
e0361851 5191set_table_entry(struct ctl_table *entry,
e692ab53
NP
5192 const char *procname, void *data, int maxlen,
5193 mode_t mode, proc_handler *proc_handler)
5194{
e692ab53
NP
5195 entry->procname = procname;
5196 entry->data = data;
5197 entry->maxlen = maxlen;
5198 entry->mode = mode;
5199 entry->proc_handler = proc_handler;
5200}
5201
5202static struct ctl_table *
5203sd_alloc_ctl_domain_table(struct sched_domain *sd)
5204{
ace8b3d6 5205 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5206
e0361851 5207 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5208 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5209 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5210 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5211 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5212 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5213 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5214 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5215 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5216 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5217 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5218 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5219 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5220 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5221 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5222 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5223 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5224 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5225 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5226 &sd->cache_nice_tries,
5227 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5228 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53
NP
5229 sizeof(int), 0644, proc_dointvec_minmax);
5230
5231 return table;
5232}
5233
5234static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5235{
5236 struct ctl_table *entry, *table;
5237 struct sched_domain *sd;
5238 int domain_num = 0, i;
5239 char buf[32];
5240
5241 for_each_domain(cpu, sd)
5242 domain_num++;
5243 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5244
5245 i = 0;
5246 for_each_domain(cpu, sd) {
5247 snprintf(buf, 32, "domain%d", i);
e692ab53 5248 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5249 entry->mode = 0555;
e692ab53
NP
5250 entry->child = sd_alloc_ctl_domain_table(sd);
5251 entry++;
5252 i++;
5253 }
5254 return table;
5255}
5256
5257static struct ctl_table_header *sd_sysctl_header;
5258static void init_sched_domain_sysctl(void)
5259{
5260 int i, cpu_num = num_online_cpus();
5261 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5262 char buf[32];
5263
5264 sd_ctl_dir[0].child = entry;
5265
5266 for (i = 0; i < cpu_num; i++, entry++) {
5267 snprintf(buf, 32, "cpu%d", i);
e692ab53 5268 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5269 entry->mode = 0555;
e692ab53
NP
5270 entry->child = sd_alloc_ctl_cpu_table(i);
5271 }
5272 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5273}
5274#else
5275static void init_sched_domain_sysctl(void)
5276{
5277}
5278#endif
5279
1da177e4
LT
5280/*
5281 * migration_call - callback that gets triggered when a CPU is added.
5282 * Here we can start up the necessary migration thread for the new CPU.
5283 */
48f24c4d
IM
5284static int __cpuinit
5285migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5286{
1da177e4 5287 struct task_struct *p;
48f24c4d 5288 int cpu = (long)hcpu;
1da177e4 5289 unsigned long flags;
70b97a7f 5290 struct rq *rq;
1da177e4
LT
5291
5292 switch (action) {
5be9361c
GS
5293 case CPU_LOCK_ACQUIRE:
5294 mutex_lock(&sched_hotcpu_mutex);
5295 break;
5296
1da177e4 5297 case CPU_UP_PREPARE:
8bb78442 5298 case CPU_UP_PREPARE_FROZEN:
dd41f596 5299 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5300 if (IS_ERR(p))
5301 return NOTIFY_BAD;
1da177e4
LT
5302 kthread_bind(p, cpu);
5303 /* Must be high prio: stop_machine expects to yield to it. */
5304 rq = task_rq_lock(p, &flags);
dd41f596 5305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5306 task_rq_unlock(rq, &flags);
5307 cpu_rq(cpu)->migration_thread = p;
5308 break;
48f24c4d 5309
1da177e4 5310 case CPU_ONLINE:
8bb78442 5311 case CPU_ONLINE_FROZEN:
1da177e4
LT
5312 /* Strictly unneccessary, as first user will wake it. */
5313 wake_up_process(cpu_rq(cpu)->migration_thread);
5314 break;
48f24c4d 5315
1da177e4
LT
5316#ifdef CONFIG_HOTPLUG_CPU
5317 case CPU_UP_CANCELED:
8bb78442 5318 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5319 if (!cpu_rq(cpu)->migration_thread)
5320 break;
1da177e4 5321 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5322 kthread_bind(cpu_rq(cpu)->migration_thread,
5323 any_online_cpu(cpu_online_map));
1da177e4
LT
5324 kthread_stop(cpu_rq(cpu)->migration_thread);
5325 cpu_rq(cpu)->migration_thread = NULL;
5326 break;
48f24c4d 5327
1da177e4 5328 case CPU_DEAD:
8bb78442 5329 case CPU_DEAD_FROZEN:
1da177e4
LT
5330 migrate_live_tasks(cpu);
5331 rq = cpu_rq(cpu);
5332 kthread_stop(rq->migration_thread);
5333 rq->migration_thread = NULL;
5334 /* Idle task back to normal (off runqueue, low prio) */
5335 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5336 update_rq_clock(rq);
2e1cb74a 5337 deactivate_task(rq, rq->idle, 0);
1da177e4 5338 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5339 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5340 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5341 migrate_dead_tasks(cpu);
5342 task_rq_unlock(rq, &flags);
5343 migrate_nr_uninterruptible(rq);
5344 BUG_ON(rq->nr_running != 0);
5345
5346 /* No need to migrate the tasks: it was best-effort if
5be9361c 5347 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5348 * the requestors. */
5349 spin_lock_irq(&rq->lock);
5350 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5351 struct migration_req *req;
5352
1da177e4 5353 req = list_entry(rq->migration_queue.next,
70b97a7f 5354 struct migration_req, list);
1da177e4
LT
5355 list_del_init(&req->list);
5356 complete(&req->done);
5357 }
5358 spin_unlock_irq(&rq->lock);
5359 break;
5360#endif
5be9361c
GS
5361 case CPU_LOCK_RELEASE:
5362 mutex_unlock(&sched_hotcpu_mutex);
5363 break;
1da177e4
LT
5364 }
5365 return NOTIFY_OK;
5366}
5367
5368/* Register at highest priority so that task migration (migrate_all_tasks)
5369 * happens before everything else.
5370 */
26c2143b 5371static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5372 .notifier_call = migration_call,
5373 .priority = 10
5374};
5375
5376int __init migration_init(void)
5377{
5378 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5379 int err;
48f24c4d
IM
5380
5381 /* Start one for the boot CPU: */
07dccf33
AM
5382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5383 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5385 register_cpu_notifier(&migration_notifier);
48f24c4d 5386
1da177e4
LT
5387 return 0;
5388}
5389#endif
5390
5391#ifdef CONFIG_SMP
476f3534
CL
5392
5393/* Number of possible processor ids */
5394int nr_cpu_ids __read_mostly = NR_CPUS;
5395EXPORT_SYMBOL(nr_cpu_ids);
5396
3e9830dc 5397#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5398static void sched_domain_debug(struct sched_domain *sd, int cpu)
5399{
5400 int level = 0;
5401
41c7ce9a
NP
5402 if (!sd) {
5403 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5404 return;
5405 }
5406
1da177e4
LT
5407 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5408
5409 do {
5410 int i;
5411 char str[NR_CPUS];
5412 struct sched_group *group = sd->groups;
5413 cpumask_t groupmask;
5414
5415 cpumask_scnprintf(str, NR_CPUS, sd->span);
5416 cpus_clear(groupmask);
5417
5418 printk(KERN_DEBUG);
5419 for (i = 0; i < level + 1; i++)
5420 printk(" ");
5421 printk("domain %d: ", level);
5422
5423 if (!(sd->flags & SD_LOAD_BALANCE)) {
5424 printk("does not load-balance\n");
5425 if (sd->parent)
33859f7f
MOS
5426 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5427 " has parent");
1da177e4
LT
5428 break;
5429 }
5430
5431 printk("span %s\n", str);
5432
5433 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5434 printk(KERN_ERR "ERROR: domain->span does not contain "
5435 "CPU%d\n", cpu);
1da177e4 5436 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5437 printk(KERN_ERR "ERROR: domain->groups does not contain"
5438 " CPU%d\n", cpu);
1da177e4
LT
5439
5440 printk(KERN_DEBUG);
5441 for (i = 0; i < level + 2; i++)
5442 printk(" ");
5443 printk("groups:");
5444 do {
5445 if (!group) {
5446 printk("\n");
5447 printk(KERN_ERR "ERROR: group is NULL\n");
5448 break;
5449 }
5450
5517d86b 5451 if (!group->__cpu_power) {
1da177e4 5452 printk("\n");
33859f7f
MOS
5453 printk(KERN_ERR "ERROR: domain->cpu_power not "
5454 "set\n");
26797a34 5455 break;
1da177e4
LT
5456 }
5457
5458 if (!cpus_weight(group->cpumask)) {
5459 printk("\n");
5460 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5461 break;
1da177e4
LT
5462 }
5463
5464 if (cpus_intersects(groupmask, group->cpumask)) {
5465 printk("\n");
5466 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5467 break;
1da177e4
LT
5468 }
5469
5470 cpus_or(groupmask, groupmask, group->cpumask);
5471
5472 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5473 printk(" %s", str);
5474
5475 group = group->next;
5476 } while (group != sd->groups);
5477 printk("\n");
5478
5479 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5480 printk(KERN_ERR "ERROR: groups don't span "
5481 "domain->span\n");
1da177e4
LT
5482
5483 level++;
5484 sd = sd->parent;
33859f7f
MOS
5485 if (!sd)
5486 continue;
1da177e4 5487
33859f7f
MOS
5488 if (!cpus_subset(groupmask, sd->span))
5489 printk(KERN_ERR "ERROR: parent span is not a superset "
5490 "of domain->span\n");
1da177e4
LT
5491
5492 } while (sd);
5493}
5494#else
48f24c4d 5495# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5496#endif
5497
1a20ff27 5498static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5499{
5500 if (cpus_weight(sd->span) == 1)
5501 return 1;
5502
5503 /* Following flags need at least 2 groups */
5504 if (sd->flags & (SD_LOAD_BALANCE |
5505 SD_BALANCE_NEWIDLE |
5506 SD_BALANCE_FORK |
89c4710e
SS
5507 SD_BALANCE_EXEC |
5508 SD_SHARE_CPUPOWER |
5509 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5510 if (sd->groups != sd->groups->next)
5511 return 0;
5512 }
5513
5514 /* Following flags don't use groups */
5515 if (sd->flags & (SD_WAKE_IDLE |
5516 SD_WAKE_AFFINE |
5517 SD_WAKE_BALANCE))
5518 return 0;
5519
5520 return 1;
5521}
5522
48f24c4d
IM
5523static int
5524sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5525{
5526 unsigned long cflags = sd->flags, pflags = parent->flags;
5527
5528 if (sd_degenerate(parent))
5529 return 1;
5530
5531 if (!cpus_equal(sd->span, parent->span))
5532 return 0;
5533
5534 /* Does parent contain flags not in child? */
5535 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5536 if (cflags & SD_WAKE_AFFINE)
5537 pflags &= ~SD_WAKE_BALANCE;
5538 /* Flags needing groups don't count if only 1 group in parent */
5539 if (parent->groups == parent->groups->next) {
5540 pflags &= ~(SD_LOAD_BALANCE |
5541 SD_BALANCE_NEWIDLE |
5542 SD_BALANCE_FORK |
89c4710e
SS
5543 SD_BALANCE_EXEC |
5544 SD_SHARE_CPUPOWER |
5545 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5546 }
5547 if (~cflags & pflags)
5548 return 0;
5549
5550 return 1;
5551}
5552
1da177e4
LT
5553/*
5554 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5555 * hold the hotplug lock.
5556 */
9c1cfda2 5557static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5558{
70b97a7f 5559 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5560 struct sched_domain *tmp;
5561
5562 /* Remove the sched domains which do not contribute to scheduling. */
5563 for (tmp = sd; tmp; tmp = tmp->parent) {
5564 struct sched_domain *parent = tmp->parent;
5565 if (!parent)
5566 break;
1a848870 5567 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5568 tmp->parent = parent->parent;
1a848870
SS
5569 if (parent->parent)
5570 parent->parent->child = tmp;
5571 }
245af2c7
SS
5572 }
5573
1a848870 5574 if (sd && sd_degenerate(sd)) {
245af2c7 5575 sd = sd->parent;
1a848870
SS
5576 if (sd)
5577 sd->child = NULL;
5578 }
1da177e4
LT
5579
5580 sched_domain_debug(sd, cpu);
5581
674311d5 5582 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5583}
5584
5585/* cpus with isolated domains */
67af63a6 5586static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5587
5588/* Setup the mask of cpus configured for isolated domains */
5589static int __init isolated_cpu_setup(char *str)
5590{
5591 int ints[NR_CPUS], i;
5592
5593 str = get_options(str, ARRAY_SIZE(ints), ints);
5594 cpus_clear(cpu_isolated_map);
5595 for (i = 1; i <= ints[0]; i++)
5596 if (ints[i] < NR_CPUS)
5597 cpu_set(ints[i], cpu_isolated_map);
5598 return 1;
5599}
5600
8927f494 5601__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5602
5603/*
6711cab4
SS
5604 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5605 * to a function which identifies what group(along with sched group) a CPU
5606 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5607 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5608 *
5609 * init_sched_build_groups will build a circular linked list of the groups
5610 * covered by the given span, and will set each group's ->cpumask correctly,
5611 * and ->cpu_power to 0.
5612 */
a616058b 5613static void
6711cab4
SS
5614init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5615 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5616 struct sched_group **sg))
1da177e4
LT
5617{
5618 struct sched_group *first = NULL, *last = NULL;
5619 cpumask_t covered = CPU_MASK_NONE;
5620 int i;
5621
5622 for_each_cpu_mask(i, span) {
6711cab4
SS
5623 struct sched_group *sg;
5624 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5625 int j;
5626
5627 if (cpu_isset(i, covered))
5628 continue;
5629
5630 sg->cpumask = CPU_MASK_NONE;
5517d86b 5631 sg->__cpu_power = 0;
1da177e4
LT
5632
5633 for_each_cpu_mask(j, span) {
6711cab4 5634 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5635 continue;
5636
5637 cpu_set(j, covered);
5638 cpu_set(j, sg->cpumask);
5639 }
5640 if (!first)
5641 first = sg;
5642 if (last)
5643 last->next = sg;
5644 last = sg;
5645 }
5646 last->next = first;
5647}
5648
9c1cfda2 5649#define SD_NODES_PER_DOMAIN 16
1da177e4 5650
9c1cfda2 5651#ifdef CONFIG_NUMA
198e2f18 5652
9c1cfda2
JH
5653/**
5654 * find_next_best_node - find the next node to include in a sched_domain
5655 * @node: node whose sched_domain we're building
5656 * @used_nodes: nodes already in the sched_domain
5657 *
5658 * Find the next node to include in a given scheduling domain. Simply
5659 * finds the closest node not already in the @used_nodes map.
5660 *
5661 * Should use nodemask_t.
5662 */
5663static int find_next_best_node(int node, unsigned long *used_nodes)
5664{
5665 int i, n, val, min_val, best_node = 0;
5666
5667 min_val = INT_MAX;
5668
5669 for (i = 0; i < MAX_NUMNODES; i++) {
5670 /* Start at @node */
5671 n = (node + i) % MAX_NUMNODES;
5672
5673 if (!nr_cpus_node(n))
5674 continue;
5675
5676 /* Skip already used nodes */
5677 if (test_bit(n, used_nodes))
5678 continue;
5679
5680 /* Simple min distance search */
5681 val = node_distance(node, n);
5682
5683 if (val < min_val) {
5684 min_val = val;
5685 best_node = n;
5686 }
5687 }
5688
5689 set_bit(best_node, used_nodes);
5690 return best_node;
5691}
5692
5693/**
5694 * sched_domain_node_span - get a cpumask for a node's sched_domain
5695 * @node: node whose cpumask we're constructing
5696 * @size: number of nodes to include in this span
5697 *
5698 * Given a node, construct a good cpumask for its sched_domain to span. It
5699 * should be one that prevents unnecessary balancing, but also spreads tasks
5700 * out optimally.
5701 */
5702static cpumask_t sched_domain_node_span(int node)
5703{
9c1cfda2 5704 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5705 cpumask_t span, nodemask;
5706 int i;
9c1cfda2
JH
5707
5708 cpus_clear(span);
5709 bitmap_zero(used_nodes, MAX_NUMNODES);
5710
5711 nodemask = node_to_cpumask(node);
5712 cpus_or(span, span, nodemask);
5713 set_bit(node, used_nodes);
5714
5715 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5716 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5717
9c1cfda2
JH
5718 nodemask = node_to_cpumask(next_node);
5719 cpus_or(span, span, nodemask);
5720 }
5721
5722 return span;
5723}
5724#endif
5725
5c45bf27 5726int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5727
9c1cfda2 5728/*
48f24c4d 5729 * SMT sched-domains:
9c1cfda2 5730 */
1da177e4
LT
5731#ifdef CONFIG_SCHED_SMT
5732static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5733static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5734
6711cab4
SS
5735static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5736 struct sched_group **sg)
1da177e4 5737{
6711cab4
SS
5738 if (sg)
5739 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5740 return cpu;
5741}
5742#endif
5743
48f24c4d
IM
5744/*
5745 * multi-core sched-domains:
5746 */
1e9f28fa
SS
5747#ifdef CONFIG_SCHED_MC
5748static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5749static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5750#endif
5751
5752#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5753static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5754 struct sched_group **sg)
1e9f28fa 5755{
6711cab4 5756 int group;
a616058b
SS
5757 cpumask_t mask = cpu_sibling_map[cpu];
5758 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5759 group = first_cpu(mask);
5760 if (sg)
5761 *sg = &per_cpu(sched_group_core, group);
5762 return group;
1e9f28fa
SS
5763}
5764#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5765static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5766 struct sched_group **sg)
1e9f28fa 5767{
6711cab4
SS
5768 if (sg)
5769 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5770 return cpu;
5771}
5772#endif
5773
1da177e4 5774static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5775static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5776
6711cab4
SS
5777static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5778 struct sched_group **sg)
1da177e4 5779{
6711cab4 5780 int group;
48f24c4d 5781#ifdef CONFIG_SCHED_MC
1e9f28fa 5782 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5783 cpus_and(mask, mask, *cpu_map);
6711cab4 5784 group = first_cpu(mask);
1e9f28fa 5785#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5786 cpumask_t mask = cpu_sibling_map[cpu];
5787 cpus_and(mask, mask, *cpu_map);
6711cab4 5788 group = first_cpu(mask);
1da177e4 5789#else
6711cab4 5790 group = cpu;
1da177e4 5791#endif
6711cab4
SS
5792 if (sg)
5793 *sg = &per_cpu(sched_group_phys, group);
5794 return group;
1da177e4
LT
5795}
5796
5797#ifdef CONFIG_NUMA
1da177e4 5798/*
9c1cfda2
JH
5799 * The init_sched_build_groups can't handle what we want to do with node
5800 * groups, so roll our own. Now each node has its own list of groups which
5801 * gets dynamically allocated.
1da177e4 5802 */
9c1cfda2 5803static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5804static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5805
9c1cfda2 5806static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5807static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5808
6711cab4
SS
5809static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5810 struct sched_group **sg)
9c1cfda2 5811{
6711cab4
SS
5812 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5813 int group;
5814
5815 cpus_and(nodemask, nodemask, *cpu_map);
5816 group = first_cpu(nodemask);
5817
5818 if (sg)
5819 *sg = &per_cpu(sched_group_allnodes, group);
5820 return group;
1da177e4 5821}
6711cab4 5822
08069033
SS
5823static void init_numa_sched_groups_power(struct sched_group *group_head)
5824{
5825 struct sched_group *sg = group_head;
5826 int j;
5827
5828 if (!sg)
5829 return;
3a5c359a
AK
5830 do {
5831 for_each_cpu_mask(j, sg->cpumask) {
5832 struct sched_domain *sd;
08069033 5833
3a5c359a
AK
5834 sd = &per_cpu(phys_domains, j);
5835 if (j != first_cpu(sd->groups->cpumask)) {
5836 /*
5837 * Only add "power" once for each
5838 * physical package.
5839 */
5840 continue;
5841 }
08069033 5842
3a5c359a
AK
5843 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5844 }
5845 sg = sg->next;
5846 } while (sg != group_head);
08069033 5847}
1da177e4
LT
5848#endif
5849
a616058b 5850#ifdef CONFIG_NUMA
51888ca2
SV
5851/* Free memory allocated for various sched_group structures */
5852static void free_sched_groups(const cpumask_t *cpu_map)
5853{
a616058b 5854 int cpu, i;
51888ca2
SV
5855
5856 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5857 struct sched_group **sched_group_nodes
5858 = sched_group_nodes_bycpu[cpu];
5859
51888ca2
SV
5860 if (!sched_group_nodes)
5861 continue;
5862
5863 for (i = 0; i < MAX_NUMNODES; i++) {
5864 cpumask_t nodemask = node_to_cpumask(i);
5865 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5866
5867 cpus_and(nodemask, nodemask, *cpu_map);
5868 if (cpus_empty(nodemask))
5869 continue;
5870
5871 if (sg == NULL)
5872 continue;
5873 sg = sg->next;
5874next_sg:
5875 oldsg = sg;
5876 sg = sg->next;
5877 kfree(oldsg);
5878 if (oldsg != sched_group_nodes[i])
5879 goto next_sg;
5880 }
5881 kfree(sched_group_nodes);
5882 sched_group_nodes_bycpu[cpu] = NULL;
5883 }
51888ca2 5884}
a616058b
SS
5885#else
5886static void free_sched_groups(const cpumask_t *cpu_map)
5887{
5888}
5889#endif
51888ca2 5890
89c4710e
SS
5891/*
5892 * Initialize sched groups cpu_power.
5893 *
5894 * cpu_power indicates the capacity of sched group, which is used while
5895 * distributing the load between different sched groups in a sched domain.
5896 * Typically cpu_power for all the groups in a sched domain will be same unless
5897 * there are asymmetries in the topology. If there are asymmetries, group
5898 * having more cpu_power will pickup more load compared to the group having
5899 * less cpu_power.
5900 *
5901 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5902 * the maximum number of tasks a group can handle in the presence of other idle
5903 * or lightly loaded groups in the same sched domain.
5904 */
5905static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5906{
5907 struct sched_domain *child;
5908 struct sched_group *group;
5909
5910 WARN_ON(!sd || !sd->groups);
5911
5912 if (cpu != first_cpu(sd->groups->cpumask))
5913 return;
5914
5915 child = sd->child;
5916
5517d86b
ED
5917 sd->groups->__cpu_power = 0;
5918
89c4710e
SS
5919 /*
5920 * For perf policy, if the groups in child domain share resources
5921 * (for example cores sharing some portions of the cache hierarchy
5922 * or SMT), then set this domain groups cpu_power such that each group
5923 * can handle only one task, when there are other idle groups in the
5924 * same sched domain.
5925 */
5926 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5927 (child->flags &
5928 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5929 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5930 return;
5931 }
5932
89c4710e
SS
5933 /*
5934 * add cpu_power of each child group to this groups cpu_power
5935 */
5936 group = child->groups;
5937 do {
5517d86b 5938 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5939 group = group->next;
5940 } while (group != child->groups);
5941}
5942
1da177e4 5943/*
1a20ff27
DG
5944 * Build sched domains for a given set of cpus and attach the sched domains
5945 * to the individual cpus
1da177e4 5946 */
51888ca2 5947static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5948{
5949 int i;
d1b55138
JH
5950#ifdef CONFIG_NUMA
5951 struct sched_group **sched_group_nodes = NULL;
6711cab4 5952 int sd_allnodes = 0;
d1b55138
JH
5953
5954 /*
5955 * Allocate the per-node list of sched groups
5956 */
dd41f596 5957 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5958 GFP_KERNEL);
d1b55138
JH
5959 if (!sched_group_nodes) {
5960 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5961 return -ENOMEM;
d1b55138
JH
5962 }
5963 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5964#endif
1da177e4
LT
5965
5966 /*
1a20ff27 5967 * Set up domains for cpus specified by the cpu_map.
1da177e4 5968 */
1a20ff27 5969 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5970 struct sched_domain *sd = NULL, *p;
5971 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5972
1a20ff27 5973 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5974
5975#ifdef CONFIG_NUMA
dd41f596
IM
5976 if (cpus_weight(*cpu_map) >
5977 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5978 sd = &per_cpu(allnodes_domains, i);
5979 *sd = SD_ALLNODES_INIT;
5980 sd->span = *cpu_map;
6711cab4 5981 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5982 p = sd;
6711cab4 5983 sd_allnodes = 1;
9c1cfda2
JH
5984 } else
5985 p = NULL;
5986
1da177e4 5987 sd = &per_cpu(node_domains, i);
1da177e4 5988 *sd = SD_NODE_INIT;
9c1cfda2
JH
5989 sd->span = sched_domain_node_span(cpu_to_node(i));
5990 sd->parent = p;
1a848870
SS
5991 if (p)
5992 p->child = sd;
9c1cfda2 5993 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5994#endif
5995
5996 p = sd;
5997 sd = &per_cpu(phys_domains, i);
1da177e4
LT
5998 *sd = SD_CPU_INIT;
5999 sd->span = nodemask;
6000 sd->parent = p;
1a848870
SS
6001 if (p)
6002 p->child = sd;
6711cab4 6003 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6004
1e9f28fa
SS
6005#ifdef CONFIG_SCHED_MC
6006 p = sd;
6007 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6008 *sd = SD_MC_INIT;
6009 sd->span = cpu_coregroup_map(i);
6010 cpus_and(sd->span, sd->span, *cpu_map);
6011 sd->parent = p;
1a848870 6012 p->child = sd;
6711cab4 6013 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6014#endif
6015
1da177e4
LT
6016#ifdef CONFIG_SCHED_SMT
6017 p = sd;
6018 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6019 *sd = SD_SIBLING_INIT;
6020 sd->span = cpu_sibling_map[i];
1a20ff27 6021 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6022 sd->parent = p;
1a848870 6023 p->child = sd;
6711cab4 6024 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6025#endif
6026 }
6027
6028#ifdef CONFIG_SCHED_SMT
6029 /* Set up CPU (sibling) groups */
9c1cfda2 6030 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6031 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6032 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6033 if (i != first_cpu(this_sibling_map))
6034 continue;
6035
dd41f596
IM
6036 init_sched_build_groups(this_sibling_map, cpu_map,
6037 &cpu_to_cpu_group);
1da177e4
LT
6038 }
6039#endif
6040
1e9f28fa
SS
6041#ifdef CONFIG_SCHED_MC
6042 /* Set up multi-core groups */
6043 for_each_cpu_mask(i, *cpu_map) {
6044 cpumask_t this_core_map = cpu_coregroup_map(i);
6045 cpus_and(this_core_map, this_core_map, *cpu_map);
6046 if (i != first_cpu(this_core_map))
6047 continue;
dd41f596
IM
6048 init_sched_build_groups(this_core_map, cpu_map,
6049 &cpu_to_core_group);
1e9f28fa
SS
6050 }
6051#endif
6052
1da177e4
LT
6053 /* Set up physical groups */
6054 for (i = 0; i < MAX_NUMNODES; i++) {
6055 cpumask_t nodemask = node_to_cpumask(i);
6056
1a20ff27 6057 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6058 if (cpus_empty(nodemask))
6059 continue;
6060
6711cab4 6061 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6062 }
6063
6064#ifdef CONFIG_NUMA
6065 /* Set up node groups */
6711cab4 6066 if (sd_allnodes)
dd41f596
IM
6067 init_sched_build_groups(*cpu_map, cpu_map,
6068 &cpu_to_allnodes_group);
9c1cfda2
JH
6069
6070 for (i = 0; i < MAX_NUMNODES; i++) {
6071 /* Set up node groups */
6072 struct sched_group *sg, *prev;
6073 cpumask_t nodemask = node_to_cpumask(i);
6074 cpumask_t domainspan;
6075 cpumask_t covered = CPU_MASK_NONE;
6076 int j;
6077
6078 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6079 if (cpus_empty(nodemask)) {
6080 sched_group_nodes[i] = NULL;
9c1cfda2 6081 continue;
d1b55138 6082 }
9c1cfda2
JH
6083
6084 domainspan = sched_domain_node_span(i);
6085 cpus_and(domainspan, domainspan, *cpu_map);
6086
15f0b676 6087 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6088 if (!sg) {
6089 printk(KERN_WARNING "Can not alloc domain group for "
6090 "node %d\n", i);
6091 goto error;
6092 }
9c1cfda2
JH
6093 sched_group_nodes[i] = sg;
6094 for_each_cpu_mask(j, nodemask) {
6095 struct sched_domain *sd;
9761eea8 6096
9c1cfda2
JH
6097 sd = &per_cpu(node_domains, j);
6098 sd->groups = sg;
9c1cfda2 6099 }
5517d86b 6100 sg->__cpu_power = 0;
9c1cfda2 6101 sg->cpumask = nodemask;
51888ca2 6102 sg->next = sg;
9c1cfda2
JH
6103 cpus_or(covered, covered, nodemask);
6104 prev = sg;
6105
6106 for (j = 0; j < MAX_NUMNODES; j++) {
6107 cpumask_t tmp, notcovered;
6108 int n = (i + j) % MAX_NUMNODES;
6109
6110 cpus_complement(notcovered, covered);
6111 cpus_and(tmp, notcovered, *cpu_map);
6112 cpus_and(tmp, tmp, domainspan);
6113 if (cpus_empty(tmp))
6114 break;
6115
6116 nodemask = node_to_cpumask(n);
6117 cpus_and(tmp, tmp, nodemask);
6118 if (cpus_empty(tmp))
6119 continue;
6120
15f0b676
SV
6121 sg = kmalloc_node(sizeof(struct sched_group),
6122 GFP_KERNEL, i);
9c1cfda2
JH
6123 if (!sg) {
6124 printk(KERN_WARNING
6125 "Can not alloc domain group for node %d\n", j);
51888ca2 6126 goto error;
9c1cfda2 6127 }
5517d86b 6128 sg->__cpu_power = 0;
9c1cfda2 6129 sg->cpumask = tmp;
51888ca2 6130 sg->next = prev->next;
9c1cfda2
JH
6131 cpus_or(covered, covered, tmp);
6132 prev->next = sg;
6133 prev = sg;
6134 }
9c1cfda2 6135 }
1da177e4
LT
6136#endif
6137
6138 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6139#ifdef CONFIG_SCHED_SMT
1a20ff27 6140 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6141 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6142
89c4710e 6143 init_sched_groups_power(i, sd);
5c45bf27 6144 }
1da177e4 6145#endif
1e9f28fa 6146#ifdef CONFIG_SCHED_MC
5c45bf27 6147 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6148 struct sched_domain *sd = &per_cpu(core_domains, i);
6149
89c4710e 6150 init_sched_groups_power(i, sd);
5c45bf27
SS
6151 }
6152#endif
1e9f28fa 6153
5c45bf27 6154 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6155 struct sched_domain *sd = &per_cpu(phys_domains, i);
6156
89c4710e 6157 init_sched_groups_power(i, sd);
1da177e4
LT
6158 }
6159
9c1cfda2 6160#ifdef CONFIG_NUMA
08069033
SS
6161 for (i = 0; i < MAX_NUMNODES; i++)
6162 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6163
6711cab4
SS
6164 if (sd_allnodes) {
6165 struct sched_group *sg;
f712c0c7 6166
6711cab4 6167 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6168 init_numa_sched_groups_power(sg);
6169 }
9c1cfda2
JH
6170#endif
6171
1da177e4 6172 /* Attach the domains */
1a20ff27 6173 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6174 struct sched_domain *sd;
6175#ifdef CONFIG_SCHED_SMT
6176 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6177#elif defined(CONFIG_SCHED_MC)
6178 sd = &per_cpu(core_domains, i);
1da177e4
LT
6179#else
6180 sd = &per_cpu(phys_domains, i);
6181#endif
6182 cpu_attach_domain(sd, i);
6183 }
51888ca2
SV
6184
6185 return 0;
6186
a616058b 6187#ifdef CONFIG_NUMA
51888ca2
SV
6188error:
6189 free_sched_groups(cpu_map);
6190 return -ENOMEM;
a616058b 6191#endif
1da177e4 6192}
1a20ff27
DG
6193/*
6194 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6195 */
51888ca2 6196static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6197{
6198 cpumask_t cpu_default_map;
51888ca2 6199 int err;
1da177e4 6200
1a20ff27
DG
6201 /*
6202 * Setup mask for cpus without special case scheduling requirements.
6203 * For now this just excludes isolated cpus, but could be used to
6204 * exclude other special cases in the future.
6205 */
6206 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6207
51888ca2
SV
6208 err = build_sched_domains(&cpu_default_map);
6209
6210 return err;
1a20ff27
DG
6211}
6212
6213static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6214{
51888ca2 6215 free_sched_groups(cpu_map);
9c1cfda2 6216}
1da177e4 6217
1a20ff27
DG
6218/*
6219 * Detach sched domains from a group of cpus specified in cpu_map
6220 * These cpus will now be attached to the NULL domain
6221 */
858119e1 6222static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6223{
6224 int i;
6225
6226 for_each_cpu_mask(i, *cpu_map)
6227 cpu_attach_domain(NULL, i);
6228 synchronize_sched();
6229 arch_destroy_sched_domains(cpu_map);
6230}
6231
6232/*
6233 * Partition sched domains as specified by the cpumasks below.
6234 * This attaches all cpus from the cpumasks to the NULL domain,
6235 * waits for a RCU quiescent period, recalculates sched
6236 * domain information and then attaches them back to the
6237 * correct sched domains
6238 * Call with hotplug lock held
6239 */
51888ca2 6240int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6241{
6242 cpumask_t change_map;
51888ca2 6243 int err = 0;
1a20ff27
DG
6244
6245 cpus_and(*partition1, *partition1, cpu_online_map);
6246 cpus_and(*partition2, *partition2, cpu_online_map);
6247 cpus_or(change_map, *partition1, *partition2);
6248
6249 /* Detach sched domains from all of the affected cpus */
6250 detach_destroy_domains(&change_map);
6251 if (!cpus_empty(*partition1))
51888ca2
SV
6252 err = build_sched_domains(partition1);
6253 if (!err && !cpus_empty(*partition2))
6254 err = build_sched_domains(partition2);
6255
6256 return err;
1a20ff27
DG
6257}
6258
5c45bf27 6259#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6260static int arch_reinit_sched_domains(void)
5c45bf27
SS
6261{
6262 int err;
6263
5be9361c 6264 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6265 detach_destroy_domains(&cpu_online_map);
6266 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6267 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6268
6269 return err;
6270}
6271
6272static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6273{
6274 int ret;
6275
6276 if (buf[0] != '0' && buf[0] != '1')
6277 return -EINVAL;
6278
6279 if (smt)
6280 sched_smt_power_savings = (buf[0] == '1');
6281 else
6282 sched_mc_power_savings = (buf[0] == '1');
6283
6284 ret = arch_reinit_sched_domains();
6285
6286 return ret ? ret : count;
6287}
6288
5c45bf27
SS
6289#ifdef CONFIG_SCHED_MC
6290static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6291{
6292 return sprintf(page, "%u\n", sched_mc_power_savings);
6293}
48f24c4d
IM
6294static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6295 const char *buf, size_t count)
5c45bf27
SS
6296{
6297 return sched_power_savings_store(buf, count, 0);
6298}
6707de00
AB
6299static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6300 sched_mc_power_savings_store);
5c45bf27
SS
6301#endif
6302
6303#ifdef CONFIG_SCHED_SMT
6304static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6305{
6306 return sprintf(page, "%u\n", sched_smt_power_savings);
6307}
48f24c4d
IM
6308static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6309 const char *buf, size_t count)
5c45bf27
SS
6310{
6311 return sched_power_savings_store(buf, count, 1);
6312}
6707de00
AB
6313static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6314 sched_smt_power_savings_store);
6315#endif
6316
6317int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6318{
6319 int err = 0;
6320
6321#ifdef CONFIG_SCHED_SMT
6322 if (smt_capable())
6323 err = sysfs_create_file(&cls->kset.kobj,
6324 &attr_sched_smt_power_savings.attr);
6325#endif
6326#ifdef CONFIG_SCHED_MC
6327 if (!err && mc_capable())
6328 err = sysfs_create_file(&cls->kset.kobj,
6329 &attr_sched_mc_power_savings.attr);
6330#endif
6331 return err;
6332}
5c45bf27
SS
6333#endif
6334
1da177e4
LT
6335/*
6336 * Force a reinitialization of the sched domains hierarchy. The domains
6337 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6338 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6339 * which will prevent rebalancing while the sched domains are recalculated.
6340 */
6341static int update_sched_domains(struct notifier_block *nfb,
6342 unsigned long action, void *hcpu)
6343{
1da177e4
LT
6344 switch (action) {
6345 case CPU_UP_PREPARE:
8bb78442 6346 case CPU_UP_PREPARE_FROZEN:
1da177e4 6347 case CPU_DOWN_PREPARE:
8bb78442 6348 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6349 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6350 return NOTIFY_OK;
6351
6352 case CPU_UP_CANCELED:
8bb78442 6353 case CPU_UP_CANCELED_FROZEN:
1da177e4 6354 case CPU_DOWN_FAILED:
8bb78442 6355 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6356 case CPU_ONLINE:
8bb78442 6357 case CPU_ONLINE_FROZEN:
1da177e4 6358 case CPU_DEAD:
8bb78442 6359 case CPU_DEAD_FROZEN:
1da177e4
LT
6360 /*
6361 * Fall through and re-initialise the domains.
6362 */
6363 break;
6364 default:
6365 return NOTIFY_DONE;
6366 }
6367
6368 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6369 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6370
6371 return NOTIFY_OK;
6372}
1da177e4
LT
6373
6374void __init sched_init_smp(void)
6375{
5c1e1767
NP
6376 cpumask_t non_isolated_cpus;
6377
5be9361c 6378 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6379 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6380 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6381 if (cpus_empty(non_isolated_cpus))
6382 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6383 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6384 /* XXX: Theoretical race here - CPU may be hotplugged now */
6385 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6386
e692ab53
NP
6387 init_sched_domain_sysctl();
6388
5c1e1767
NP
6389 /* Move init over to a non-isolated CPU */
6390 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6391 BUG();
1da177e4
LT
6392}
6393#else
6394void __init sched_init_smp(void)
6395{
6396}
6397#endif /* CONFIG_SMP */
6398
6399int in_sched_functions(unsigned long addr)
6400{
6401 /* Linker adds these: start and end of __sched functions */
6402 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6403
1da177e4
LT
6404 return in_lock_functions(addr) ||
6405 (addr >= (unsigned long)__sched_text_start
6406 && addr < (unsigned long)__sched_text_end);
6407}
6408
a9957449 6409static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6410{
6411 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6412#ifdef CONFIG_FAIR_GROUP_SCHED
6413 cfs_rq->rq = rq;
6414#endif
67e9fb2a 6415 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6416}
6417
1da177e4
LT
6418void __init sched_init(void)
6419{
476f3534 6420 int highest_cpu = 0;
dd41f596
IM
6421 int i, j;
6422
0a945022 6423 for_each_possible_cpu(i) {
dd41f596 6424 struct rt_prio_array *array;
70b97a7f 6425 struct rq *rq;
1da177e4
LT
6426
6427 rq = cpu_rq(i);
6428 spin_lock_init(&rq->lock);
fcb99371 6429 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6430 rq->nr_running = 0;
dd41f596
IM
6431 rq->clock = 1;
6432 init_cfs_rq(&rq->cfs, rq);
6433#ifdef CONFIG_FAIR_GROUP_SCHED
6434 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6435 {
6436 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6437 struct sched_entity *se =
6438 &per_cpu(init_sched_entity, i);
6439
6440 init_cfs_rq_p[i] = cfs_rq;
6441 init_cfs_rq(cfs_rq, rq);
4cf86d77 6442 cfs_rq->tg = &init_task_group;
3a252015 6443 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6444 &rq->leaf_cfs_rq_list);
6445
3a252015
IM
6446 init_sched_entity_p[i] = se;
6447 se->cfs_rq = &rq->cfs;
6448 se->my_q = cfs_rq;
4cf86d77 6449 se->load.weight = init_task_group_load;
9b5b7751 6450 se->load.inv_weight =
4cf86d77 6451 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6452 se->parent = NULL;
6453 }
4cf86d77 6454 init_task_group.shares = init_task_group_load;
5cb350ba 6455 spin_lock_init(&init_task_group.lock);
dd41f596 6456#endif
1da177e4 6457
dd41f596
IM
6458 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6459 rq->cpu_load[j] = 0;
1da177e4 6460#ifdef CONFIG_SMP
41c7ce9a 6461 rq->sd = NULL;
1da177e4 6462 rq->active_balance = 0;
dd41f596 6463 rq->next_balance = jiffies;
1da177e4 6464 rq->push_cpu = 0;
0a2966b4 6465 rq->cpu = i;
1da177e4
LT
6466 rq->migration_thread = NULL;
6467 INIT_LIST_HEAD(&rq->migration_queue);
6468#endif
6469 atomic_set(&rq->nr_iowait, 0);
6470
dd41f596
IM
6471 array = &rq->rt.active;
6472 for (j = 0; j < MAX_RT_PRIO; j++) {
6473 INIT_LIST_HEAD(array->queue + j);
6474 __clear_bit(j, array->bitmap);
1da177e4 6475 }
476f3534 6476 highest_cpu = i;
dd41f596
IM
6477 /* delimiter for bitsearch: */
6478 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6479 }
6480
2dd73a4f 6481 set_load_weight(&init_task);
b50f60ce 6482
e107be36
AK
6483#ifdef CONFIG_PREEMPT_NOTIFIERS
6484 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6485#endif
6486
c9819f45 6487#ifdef CONFIG_SMP
476f3534 6488 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6489 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6490#endif
6491
b50f60ce
HC
6492#ifdef CONFIG_RT_MUTEXES
6493 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6494#endif
6495
1da177e4
LT
6496 /*
6497 * The boot idle thread does lazy MMU switching as well:
6498 */
6499 atomic_inc(&init_mm.mm_count);
6500 enter_lazy_tlb(&init_mm, current);
6501
6502 /*
6503 * Make us the idle thread. Technically, schedule() should not be
6504 * called from this thread, however somewhere below it might be,
6505 * but because we are the idle thread, we just pick up running again
6506 * when this runqueue becomes "idle".
6507 */
6508 init_idle(current, smp_processor_id());
dd41f596
IM
6509 /*
6510 * During early bootup we pretend to be a normal task:
6511 */
6512 current->sched_class = &fair_sched_class;
1da177e4
LT
6513}
6514
6515#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6516void __might_sleep(char *file, int line)
6517{
48f24c4d 6518#ifdef in_atomic
1da177e4
LT
6519 static unsigned long prev_jiffy; /* ratelimiting */
6520
6521 if ((in_atomic() || irqs_disabled()) &&
6522 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6523 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6524 return;
6525 prev_jiffy = jiffies;
91368d73 6526 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6527 " context at %s:%d\n", file, line);
6528 printk("in_atomic():%d, irqs_disabled():%d\n",
6529 in_atomic(), irqs_disabled());
a4c410f0 6530 debug_show_held_locks(current);
3117df04
IM
6531 if (irqs_disabled())
6532 print_irqtrace_events(current);
1da177e4
LT
6533 dump_stack();
6534 }
6535#endif
6536}
6537EXPORT_SYMBOL(__might_sleep);
6538#endif
6539
6540#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6541static void normalize_task(struct rq *rq, struct task_struct *p)
6542{
6543 int on_rq;
6544 update_rq_clock(rq);
6545 on_rq = p->se.on_rq;
6546 if (on_rq)
6547 deactivate_task(rq, p, 0);
6548 __setscheduler(rq, p, SCHED_NORMAL, 0);
6549 if (on_rq) {
6550 activate_task(rq, p, 0);
6551 resched_task(rq->curr);
6552 }
6553}
6554
1da177e4
LT
6555void normalize_rt_tasks(void)
6556{
a0f98a1c 6557 struct task_struct *g, *p;
1da177e4 6558 unsigned long flags;
70b97a7f 6559 struct rq *rq;
1da177e4
LT
6560
6561 read_lock_irq(&tasklist_lock);
a0f98a1c 6562 do_each_thread(g, p) {
6cfb0d5d 6563 p->se.exec_start = 0;
6cfb0d5d 6564#ifdef CONFIG_SCHEDSTATS
dd41f596 6565 p->se.wait_start = 0;
dd41f596 6566 p->se.sleep_start = 0;
dd41f596 6567 p->se.block_start = 0;
6cfb0d5d 6568#endif
dd41f596
IM
6569 task_rq(p)->clock = 0;
6570
6571 if (!rt_task(p)) {
6572 /*
6573 * Renice negative nice level userspace
6574 * tasks back to 0:
6575 */
6576 if (TASK_NICE(p) < 0 && p->mm)
6577 set_user_nice(p, 0);
1da177e4 6578 continue;
dd41f596 6579 }
1da177e4 6580
b29739f9
IM
6581 spin_lock_irqsave(&p->pi_lock, flags);
6582 rq = __task_rq_lock(p);
1da177e4 6583
3a5e4dc1
AK
6584 if (!is_migration_thread(p, rq))
6585 normalize_task(rq, p);
6586
b29739f9
IM
6587 __task_rq_unlock(rq);
6588 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6589 } while_each_thread(g, p);
6590
1da177e4
LT
6591 read_unlock_irq(&tasklist_lock);
6592}
6593
6594#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6595
6596#ifdef CONFIG_IA64
6597/*
6598 * These functions are only useful for the IA64 MCA handling.
6599 *
6600 * They can only be called when the whole system has been
6601 * stopped - every CPU needs to be quiescent, and no scheduling
6602 * activity can take place. Using them for anything else would
6603 * be a serious bug, and as a result, they aren't even visible
6604 * under any other configuration.
6605 */
6606
6607/**
6608 * curr_task - return the current task for a given cpu.
6609 * @cpu: the processor in question.
6610 *
6611 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6612 */
36c8b586 6613struct task_struct *curr_task(int cpu)
1df5c10a
LT
6614{
6615 return cpu_curr(cpu);
6616}
6617
6618/**
6619 * set_curr_task - set the current task for a given cpu.
6620 * @cpu: the processor in question.
6621 * @p: the task pointer to set.
6622 *
6623 * Description: This function must only be used when non-maskable interrupts
6624 * are serviced on a separate stack. It allows the architecture to switch the
6625 * notion of the current task on a cpu in a non-blocking manner. This function
6626 * must be called with all CPU's synchronized, and interrupts disabled, the
6627 * and caller must save the original value of the current task (see
6628 * curr_task() above) and restore that value before reenabling interrupts and
6629 * re-starting the system.
6630 *
6631 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6632 */
36c8b586 6633void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6634{
6635 cpu_curr(cpu) = p;
6636}
6637
6638#endif
29f59db3
SV
6639
6640#ifdef CONFIG_FAIR_GROUP_SCHED
6641
29f59db3 6642/* allocate runqueue etc for a new task group */
4cf86d77 6643struct task_group *sched_create_group(void)
29f59db3 6644{
4cf86d77 6645 struct task_group *tg;
29f59db3
SV
6646 struct cfs_rq *cfs_rq;
6647 struct sched_entity *se;
9b5b7751 6648 struct rq *rq;
29f59db3
SV
6649 int i;
6650
29f59db3
SV
6651 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6652 if (!tg)
6653 return ERR_PTR(-ENOMEM);
6654
9b5b7751 6655 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6656 if (!tg->cfs_rq)
6657 goto err;
9b5b7751 6658 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6659 if (!tg->se)
6660 goto err;
6661
6662 for_each_possible_cpu(i) {
9b5b7751 6663 rq = cpu_rq(i);
29f59db3
SV
6664
6665 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6666 cpu_to_node(i));
6667 if (!cfs_rq)
6668 goto err;
6669
6670 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6671 cpu_to_node(i));
6672 if (!se)
6673 goto err;
6674
6675 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6676 memset(se, 0, sizeof(struct sched_entity));
6677
6678 tg->cfs_rq[i] = cfs_rq;
6679 init_cfs_rq(cfs_rq, rq);
6680 cfs_rq->tg = tg;
29f59db3
SV
6681
6682 tg->se[i] = se;
6683 se->cfs_rq = &rq->cfs;
6684 se->my_q = cfs_rq;
6685 se->load.weight = NICE_0_LOAD;
6686 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6687 se->parent = NULL;
6688 }
6689
9b5b7751
SV
6690 for_each_possible_cpu(i) {
6691 rq = cpu_rq(i);
6692 cfs_rq = tg->cfs_rq[i];
6693 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6694 }
29f59db3 6695
9b5b7751 6696 tg->shares = NICE_0_LOAD;
5cb350ba 6697 spin_lock_init(&tg->lock);
29f59db3 6698
9b5b7751 6699 return tg;
29f59db3
SV
6700
6701err:
6702 for_each_possible_cpu(i) {
a65914b3 6703 if (tg->cfs_rq)
29f59db3 6704 kfree(tg->cfs_rq[i]);
a65914b3 6705 if (tg->se)
29f59db3
SV
6706 kfree(tg->se[i]);
6707 }
a65914b3
IM
6708 kfree(tg->cfs_rq);
6709 kfree(tg->se);
6710 kfree(tg);
29f59db3
SV
6711
6712 return ERR_PTR(-ENOMEM);
6713}
6714
9b5b7751
SV
6715/* rcu callback to free various structures associated with a task group */
6716static void free_sched_group(struct rcu_head *rhp)
29f59db3 6717{
9b5b7751 6718 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6719 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6720 struct sched_entity *se;
6721 int i;
6722
29f59db3
SV
6723 /* now it should be safe to free those cfs_rqs */
6724 for_each_possible_cpu(i) {
6725 cfs_rq = tg->cfs_rq[i];
6726 kfree(cfs_rq);
6727
6728 se = tg->se[i];
6729 kfree(se);
6730 }
6731
6732 kfree(tg->cfs_rq);
6733 kfree(tg->se);
6734 kfree(tg);
6735}
6736
9b5b7751 6737/* Destroy runqueue etc associated with a task group */
4cf86d77 6738void sched_destroy_group(struct task_group *tg)
29f59db3 6739{
9b5b7751
SV
6740 struct cfs_rq *cfs_rq;
6741 int i;
29f59db3 6742
9b5b7751
SV
6743 for_each_possible_cpu(i) {
6744 cfs_rq = tg->cfs_rq[i];
6745 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6746 }
6747
6748 cfs_rq = tg->cfs_rq[0];
6749
6750 /* wait for possible concurrent references to cfs_rqs complete */
6751 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
6752}
6753
9b5b7751 6754/* change task's runqueue when it moves between groups.
3a252015
IM
6755 * The caller of this function should have put the task in its new group
6756 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6757 * reflect its new group.
9b5b7751
SV
6758 */
6759void sched_move_task(struct task_struct *tsk)
29f59db3
SV
6760{
6761 int on_rq, running;
6762 unsigned long flags;
6763 struct rq *rq;
6764
6765 rq = task_rq_lock(tsk, &flags);
6766
6767 if (tsk->sched_class != &fair_sched_class)
6768 goto done;
6769
6770 update_rq_clock(rq);
6771
6772 running = task_running(rq, tsk);
6773 on_rq = tsk->se.on_rq;
6774
83b699ed 6775 if (on_rq) {
29f59db3 6776 dequeue_task(rq, tsk, 0);
83b699ed
SV
6777 if (unlikely(running))
6778 tsk->sched_class->put_prev_task(rq, tsk);
6779 }
29f59db3
SV
6780
6781 set_task_cfs_rq(tsk);
6782
83b699ed
SV
6783 if (on_rq) {
6784 if (unlikely(running))
6785 tsk->sched_class->set_curr_task(rq);
7074badb 6786 enqueue_task(rq, tsk, 0);
83b699ed 6787 }
29f59db3
SV
6788
6789done:
6790 task_rq_unlock(rq, &flags);
6791}
6792
6793static void set_se_shares(struct sched_entity *se, unsigned long shares)
6794{
6795 struct cfs_rq *cfs_rq = se->cfs_rq;
6796 struct rq *rq = cfs_rq->rq;
6797 int on_rq;
6798
6799 spin_lock_irq(&rq->lock);
6800
6801 on_rq = se->on_rq;
6802 if (on_rq)
6803 dequeue_entity(cfs_rq, se, 0);
6804
6805 se->load.weight = shares;
6806 se->load.inv_weight = div64_64((1ULL<<32), shares);
6807
6808 if (on_rq)
6809 enqueue_entity(cfs_rq, se, 0);
6810
6811 spin_unlock_irq(&rq->lock);
6812}
6813
4cf86d77 6814int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
6815{
6816 int i;
29f59db3 6817
5cb350ba 6818 spin_lock(&tg->lock);
9b5b7751 6819 if (tg->shares == shares)
5cb350ba 6820 goto done;
29f59db3 6821
9b5b7751 6822 /* return -EINVAL if the new value is not sane */
29f59db3 6823
9b5b7751 6824 tg->shares = shares;
29f59db3 6825 for_each_possible_cpu(i)
9b5b7751 6826 set_se_shares(tg->se[i], shares);
29f59db3 6827
5cb350ba
DG
6828done:
6829 spin_unlock(&tg->lock);
9b5b7751 6830 return 0;
29f59db3
SV
6831}
6832
5cb350ba
DG
6833unsigned long sched_group_shares(struct task_group *tg)
6834{
6835 return tg->shares;
6836}
6837
3a252015 6838#endif /* CONFIG_FAIR_GROUP_SCHED */